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Abstract
We develop a heuristic for the density of integer points on affine cubic surfaces. Our
heuristic applies to smooth surfaces defined by cubic polynomials that are log K3, but
it can also be adjusted to handle singular cubic surfaces. We compare our heuristic to
Heath-Brown’s prediction for sums of three cubes, as well as to asymptotic formulae in
the literature around Zagier’s work on the Markoff cubic surface, and work of Baragar
and Umeda on further surfaces of Markoff-type. We also test our heuristic against
numerical data for several families of cubic surfaces.
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1 Introduction

Let U ⊂ A
3 be a cubic surface defined by an irreducible polynomial f ∈ Z[x, y, z]

of degree 3, such that the surface is smooth over Q. This paper develops heuristics for
the expected asymptotic behaviour of the counting function

NU (B) = #
{
(x, y, z) ∈ Z

3 : max{|x |, |y|, |z|} � B, f (x, y, z) = 0
}

,

as B → ∞. A well-studied example is the cubic polynomial

f (x, y, z) = x3 + y3 + z3 − k, (1.1)

for non-zero k ∈ Z. When k is cube-free, it has been conjectured by Heath-Brown [24]
that NU (B) ∼ ck log B for an appropriate constant ck , which is positive if and only
if k �≡ ±4 mod 9. Thus, in this example, U (Z) is expected to be infinite if and only
if k �≡ ±4 mod 9. For some values of k, this follows from the presence of parametric
solutions. When k = 1, for example, the parameterisation

(9t4)3 + (3t − 9t4)3 + (1 − 9t3)3 = 1 (1.2)

was discovered by Mahler [33] in 1936. In 1956, Lehmer [30] discovered an infinite
family of parameterisations for the case k = 1. In general, however, even showing
that U (Z) is non-empty has proved very challenging. Indeed, for the cases k = 33
and k = 42, this has only recently been established by Booker [4] and Booker–
Sutherland [5], respectively. In fact, Booker and Sutherland [5, Sec. 2A] also provide
experimental evidence for Heath-Brown’s conjecture by comparing

∑
k NU (B) with∑

k ck log B, where the sum runs over cube-free integers k ∈ [3, 1000] and B runs
over the interval [107.5, 1015].

In some cases, the cubic surface admits a group action that renders an analysis of
NU (B) more tractable. When NK/Q(x, y, z) is the norm form associated to a cubic
extension K/Q, the proof of Dirichlet’s unit theorem allows one to study the counting
function for the polynomial f (x, y, z) = NK/Q(x, y, z) − k, for any non-zero k ∈ Z.
Assuming that U (Z) �= ∅, it follows from [47, Sec. 5] that

NU (B) ∼ ck(log B)r−1, (1.3)

for a suitable constant ck > 0, where r is the number of infinite places in K .
The Markoff surface U ⊂ A

3 is defined by the polynomial

f (x, y, z) = x2 + y2 + z2 − 3xyz. (1.4)

It follows from work of Zagier [49] that there exists a constant c > 0 such that
NU (B) ∼ c(log B)2, as B → ∞. For given k ∈ Z, the arithmetic of the surfaces

x2 + y2 + z2 − xyz = k (1.5)
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has been investigated deeply by Ghosh and Sarnak [21], who raise interesting ques-
tions about failures of the integral Hasse principle. In particular, it follows from [21,

Thm. 1.2] that the integral Hasse principle fails for at least
√
K (log K )− 1

4 integer
coefficients |k| � K . These observations have been refined and put into the context
of the Brauer–Manin obstruction by Loughran–Mitankin [31] and Colliot-Thélène–
Wei–Xu [15]. In particular, the numerical evidence presented in [21, Conj. 10.2] for
the density of Hasse failures is not wholly accounted for by the Brauer group. For
the surfaces (1.5), an asymptotic formula of the shape NU (B) ∼ cGS(log B)2 can be
deduced by taking n = 4 and a = 1 in recent work by Gamburd, Magee and Ronan
[19, Thm. 3]. These surfaces are smooth when k /∈ {0, 4}, providing many examples
to compare with our heuristic.

The Markoff surface defined by (1.4) is singular and only fits into the scope of
our heuristic after passing to a minimal desingularisation (as explained in Section 8).
However, Baragar andUmeda [1] have shown how to adapt Zagier’s argument to study
NU (B) for surfaces U ⊂ A

3 defined by the polynomial

f (x, y, z) = ax2 + by2 + cz2 − dxyz − 1, (1.6)

for a, b, c, d ∈ N such that 4abc − d2 �= 0 and such that d is divisible by a, b and c.
This surface is smooth over Q. Moreover,U admits three non-commuting involutions
defined over Z, which are the so-called Vieta involutions. The induced action by the
free product (Z/2Z)∗(Z/2Z)∗(Z/2Z) has finitelymany orbits and so, as for (1.4), this
can be used to study the setU (Z) of integral points. The surfaces (1.6) generalise cubic
surfaces considered by Mordell [35], and were first studied by Jin and Schmidt [29],
who show U (Z) �= ∅ if and only if f is one of seven possibilities (up to permutation
of the coefficients), with one of them being given by

f (x, y, z) = x2 + by2 + bz2 − 2bxyz − 1, (1.7)

for any b ∈ N. This case is ignored, however, since the surface contains the line
x − 1 = y − z = 0, which contributes at least 2B points to NU (B). Baragar and
Umeda [1, Thm. 5.1] have shown that in each of the six remaining cases, there is a
constant cBU > 0 such that

NU (B) ∼ cBU(log B)2, (1.8)

as B → ∞. The coefficient vectors for the six surfaces, together with a numerical
value for cBU, are presented in Table 1. In fact, the article [1, Sec. 4] contains a small
oversight that affects the leading constant. The authors multiply their constant by 3 to
account for negative coordinates,whereas it should bemultiplied by4: for each solution
(x, y, z) ∈ N

3, there are the three additional solutions (x,−y,−z), (−x, y,−z), and
(−x,−y, z). The same oversight applies to [1, Sec. 5] and the constants in our Table 1
are thus corrected by a factor of 4/3. It is worth highlighting that while Baragar and
Umeda use the height |x |+|y|+|z|, rather than the sup-norm, this makes no difference
to the leading term, since these norms are equivalent and the counting function grows
logarithmically in B.
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Table 1 Surfaces studied by
Baragar and Umeda [1]

a b c d cBU

(i) 1 5 5 5 5.22750241554 . . .

(ii) 1 3 6 6 2.96508393913 . . .

(iii) 2 7 14 14 2.46790596426 . . .

(iv) 2 2 3 6 4.05640933744 . . .

(v) 6 10 15 30 2.49318310680 . . .

(vi) 1 2 2 2 4.92081804684 . . .

We are now ready to discuss our main heuristic, which comes from the circle
method. Such heuristics are typically obtained by examining the major arc contribu-
tion, for a suitable set of major arcs, and ignoring the contribution from the minor
arcs. This approach would suffice for surfaces with trivial Picard group, since then
the associated singular series converges. However, for surfaces with non-trivial Picard
group, such as the cubic surface x3 + ky3 + kz3 = 1 considered in Section 6.2, the
singular series diverges and the precise choice of major arcs would have a strong
effect on the purported value of the leading constant. We shall avoid this difficulty by
adopting a variant of the smooth δ-function version of the circle method originating in
work of Duke, Friedlander and Iwaniec [18], and later developed byHeath-Brown [25,
Thm. 1]. Once coupled with Poisson summation, the main idea is to ignore the contri-
bution from the non-trivial characters, in order to obtain a heuristic for NU (B) for any
cubic surface U ⊂ A

3 that is smooth and log K3 over Q. Here, we say that a smooth
cubic surface UQ ⊂ A

3
Q
is log K3 if the minimal desingularisation X̃Q of the com-

pactification XQ of UQ in P
3
Q
satisfies the property that the boundary D̃ = X̃Q \ UQ

is a divisor with strict normal crossings whose class in Pic X̃ is ω∨
X̃
. In particular, it

follows from the adjunction formula thatU is log K3 if X itself is smooth over Q and
X \U has strict normal crossings.

In general, it may happen that U contains A
1-curves that are defined over Z; for

instance, this happens if any of the lines on XQ = X ⊗Z Q are defined over Z, as
in the example (1.7). It is therefore natural to try and classify those log K3 surfaces
which admit infinitely many A

1-curves, a programme that is already under way over
Q, thanks to Chen and Zhu [12]. In the presence of A

1-curves it is natural to study
the subset U (Z)◦ obtained by removing those points in U (Z) that are contained in
any A

1-curves defined over Z, since we expect the contribution from integer points on
these curves to dominate the counting function. As B → ∞, this leads us to analyse
the modified counting function

N ◦
U (B) = #

{
(x, y, z) ∈ U (Z)◦ : max{|x |, |y|, |z|} � B

}
. (1.9)

We are now ready to reveal the main conjecture issuing from our investigation.

Conjecture 1.1 Let U ⊂ A
3 be a cubic surface that is smooth and log K3 over Q and

that is defined by a cubic polynomial f ∈ Z[x, y, z]. Denote by �U the Picard number
of U over Q and by b the maximal number of components of D̃(R) that share a real
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point. Then

N ◦
U (B) = OU

(
(log B)�U+b

)
.

This resonates with a conjecture of Harpaz [23, Conj. 1.2], where an unspecified
logarithmic growth is predicted for a certain class of log K3 surfaces. Conjecture 1.1
is the crudest conclusion that one can draw from our heuristic, which actually predicts
an asymptotic formula for N ◦

U (B).

Heuristic 1.2 Let U ⊂ A
3 be a cubic surface satisfying the hypotheses of Conjec-

ture 1.1, with Picard number �U , such that U (Z) is not thin. Denote by b the maximal
number of components of D̃(R) that share a real point, and byA all such sets of car-
dinality b; for A = {D̃1(R), . . . , D̃b(R)} ∈ A, denote by ZA = D̃1(R)∩ · · ·∩ D̃b(R)

the corresponding intersection. Then

N ◦
U (B) ∼ ch(log B)�U+b,

as B → ∞, with
ch = γU · τU ,H (V ), (1.10)

where γU ∈ Q>0, τU ,H is the Tamagawa measure induced by the standard height H,
and V is the set of limit points of U (Z) in

⋃
A∈A ZA ×U (Afin

Z
).

It is natural to impose the assumption that U (Z) is Zariski dense in this heuristic.
We have been led to further require that the set of integral points is not thin, since we
do not expect the leading constant in (1.3) to agree with this heuristic andU (Z) is thin
in this case.

The Tamagawameasure τU ,H is defined using residue measures at the archimedean
place, as described in work of Chambert-Loir and Tschinkel [10, Secs. 2.1.9 and
2.1.12]. The set V of limit points can be studied via the Brauer–Manin obstruc-
tion, whose use to study integral points goes back to Colliot-Thélène and Xu [17];
Santens [41] has developed a variant that can also explain failures of accumulation phe-
nomena at the infinite place. A further obstruction to approximation over R is analytic
in nature, as expounded inwork ofWilsch [48] and Santens [41]. For log Fano varieties
whose Brauer group modulo constants is finite, it would follow from a conjecture of
Santens [41, Conj. 6.6 and Thm. 6.11] and an equidistribution theorem of Chambert-
Loir and Tschinkel [10, Prop. 2.10] that the algebraic Brauer–Manin obstruction is the
only one. However, as observed in [15, 31] for the Markoff-type surfaces (1.5), the
Brauer–Manin obstruction is not always sufficient for log K3 surfaces.

In order to illustrate ourwork,we state here a concrete conjecture for the polynomial
f (x, y, z) = x3 + ky3 + kz3 − 1, where k > 1 is square-free. We shall see in Section
6.2 that b = 1 and �U = 2 for the surface U ⊂ A

3 defined by f .

Conjecture 1.3 Let U ⊂ A
3 be the cubic surface defined by x3 + ky3 + kz3 = 1,

for a square-free integer k > 1. Then Heuristic 1.2 holds with γU = 3
8 and V =

D(R) ×U (Afin
Z

).

By adapting the parameterisation of Lehmer [30] to the setting of Conjecture 1.3,
we are led to infinitelymanyA

1-curves of increasing degree contained inU .We expect
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that a modification to work of Coccia [13] would yield analogues of his results for
k = 1: the set of integer points on the Lehmer curves is thin (cf. [13, p. 371]), while
its complement is not (cf. [13, Thm. 8]).

Summary of the article

Section 2

Formally speaking, our heuristic will involve the quantities

∫ ∞

−∞

∫

[−B,B]3
e(t f (x, y, z))dxdydzdt

and

μ∞(B) = lim
ε→0

1

2ε
vol{x ∈ [−B, B]3 : | f (x)| < ε},

both ofwhich capture the real density of points onU .We shall introduce somehypothe-
ses concerning the convergence properties of the oscillatory integral. Moreover, in
Proposition 2.4 we shall apply work of Chambert-Loir and Tschinkel [10] to deduce
that μ∞(B) grows like a power of log B, as B → ∞.

Section 3

This is the heart of our paper and concerns a circle method heuristic applied to NU (B).
We shall derive an asymptotic expansion of the contribution from the trivial character,
as B → ∞, for a smoothly weighted variant of the counting function NU (B). This is
achieved in Theorem 3.9, which will align with Conjecture 1.1.When �U = 0, we will
arrive at a precise asymptotic prediction for NU (B) in Heuristic 3.11. Furthermore,
we shall place Heuristic 1.2 in the context of the Manin conjecture for rational points
on Fano varieties.

Section 4

We show that the exponent of log B in Heuristic 3.11 matches the asymptotic formula
in (1.3).

Section 5

We demonstrate that Heuristic 3.11 matches the heuristic developed by Heath-Brown
[24] for the sums of cubes example in (1.1), when k is cube-free.

Section 6

We shall adapt our work in Section 5 to develop a heuristic for the surface (1.1) when k
is a cube, together with the cubic surface x3 +ky3 +kz3 = 1,when k > 1 is a square-
free integer. These surfaces will be seen to have Picard rank 3 and 2, respectively. In
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the former case we compare with Heuristic 1.2 when k = 1, using numerical data
provided for us by Andrew Sutherland. For the second family of surfaces, we will
gather numerical data for all square-free integer values of 2 � k � 1000 and discuss
Conjecture 1.3.

Section 7

We test Heuristic 3.11 against the asymptotic formula (1.8) of Baragar andUmeda.We
will find that it correctly predicts the exponent of log B, but that it fails to explain the
leading constant. (Although we omit the details, similar arguments should go through
for the surfaces (1.5).) In line with Heuristic 1.2, we shall modify the heuristic leading
constant to take into account failures of strong approximation. All of the surfaces in
Table 1 are equipped with a group action that makes it very efficient to test numerically
for failures of strong approximation. In addition to uncovering failures coming from
the Brauer–Manin obstruction, wewill find failures of strong approximation that occur
at infinitely many primes. In particular, we observe a failure of the relative Hardy–
Littlewood property, as introduced by Borovoi and Rudnick [6, Def. 2.3]. On the
other hand, we conduct a numerical investigation of equidistribution in Section 7.3,
finding that the observed frequencies of reductions modulom occur with the expected
frequency, for various m ∈ N. Nonetheless, it seems unlikely that Heuristic 1.2 is
compatible with the numerical values occurring in (1.8).

Section 8

We extend our heuristic to the singular Markoff surface, as defined by the polynomial
(1.4).Wewill find that the situation is similar to the examples of Baragar andUmeda in
Section 7. However, while failures of strong approximation don’t explain the leading
constant, as in Section 7, such a modification does help to explain the power of log B.

Section 9

We gather numerical evidence for two further cubic surfaces. The first is the cubic
surface U ⊂ A

3 defined by
(x2 − ky2)z = y − 1,

for a square-free integer k > 1. Under suitable assumptions, it has been shown by
Harpaz [23] that U (Z) is Zariski dense, prompting him to ask in [23, Qn. 4.4] about
the exponent of log B in the associated counting function N ◦

U (B), after removing
the A

1-curve z = y − 1 = 0. We apply Heuristics 1.2 and 3.11 to deduce that the
expected exponent is 2 and we gather numerical evidence for all square-free integers
2 � k � 1000, which strongly supports this.

The second surface, which takes the shape

(ax + 1)(bx + 1) + (cy + 1)(dy + 1) = xyz,
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for suitable a, b, c, d ∈ Z, was also suggested to us by Harpaz (in private communica-
tion). This example will be seen to have non-trivial Picard group and contain several
A
1-curves that are defined over Z. In this case, moreover, there are no involutions

defined over Q and so we do not have a way to approach an asymptotic formula for
the counting function, nor do we have an efficient way of enumerating integer points.
By searching for points of height � 1010, and identifying problematic A

1-curves of
degrees 1, . . . , 4, we find that the numerical data bears little resemblance to Heuris-
tic 1.2.

Section 10

We offer some concluding remarks.

2 Archimedean densities

Let f ∈ Z[x, y, z] be a cubic polynomial and put

g(x) = B−3 f (Bx), (2.1)

where x = (x, y, z). Note that g(x) � 1, where the implied constant is only allowed
to depend on the coefficients of f . Given a compactly supported bounded function
w : R

3 → R�0, our work will feature the oscillatory integral

I (t) =
∫

R3
w(x)e (tg(x)) dx, (2.2)

for t ∈ R. Note that I (t) also depends on B, in view of the definition of g. In
traditional applications of the circle method the real density often arises formally
via the oscillatory integral

σ∞(B) =
∫ ∞

−∞
I (t)dt . (2.3)

An alternative formulation is via the limit

μ∞(B) = lim
ε→0

1

2ε
vol{x ∈ [−B, B]3 : | f (x)| < ε}, (2.4)

and it usually possible to prove that σ∞(B) and μ∞(B) both converge to the same
quantity, as B → ∞. However, there are subtleties in the present setting and it will
be convenient to build this into our assumptions.

Hypothesis 2.1 Assume that σ∞(B) and μ∞(B) both converge, in the notation of
(2.3) and (2.4). Then σ∞(B) ∼ μ∞(B), as B → ∞.

For the polynomial (1.1), we shall verify this hypothesis in Section 5.2.
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2.1 Oscillatory integrals

Let us begin by discussing some properties and assumptions around the oscillatory
integral I (t) in (2.2) and the real density (2.3). To begin with, it is clear that I (t) is
infinitely differentiable and satisfies

I (t) � 1, (2.5)

for any t ∈ R, where the implied constant depends only onw. Ifw is a smooth function
and |∇ f (x)| > 0 throughout supp(w), then it is possible to establish exponential decay
for I (t), by using repeated applications of integration by parts. This would lead to a
bound of the form ∫ ∞

−∞
|I (t)|dt � 1,

which is the most favourable situation and underpins many applications of the circle
method. When ∇ f (x) = 0 for some x ∈ supp(w), on the other hand, the situation is
much more subtle, as indicated in works of Greenblatt [22] and Varchenko [46].

Example 2.2 It is instructive to consider the polynomial f (x, y, z) = x3+ y3+ z3−k,
for non-zero k ∈ Z. Takingw(x, y, z) = ν(x)ν(y)ν(z), where ν : R → R is a smooth
even bump function such that ν(x) = 1 on [−1, 1], it follows that

I (t) = e(−kt/B3)Rν(t)
3,

where

Rν(t) =
∫ ∞

−∞
ν(x)e(t x3)dx .

The second derivative test [44, Lem. 4.4] yields Rν(t) � min{1, |t |−1/3}. Hence
I (t) � min{1, |t |−1} and we have

∫ ∞

−∞
|t |−δ|I (t)|dt �δ 1,

for any δ ∈ (0, 1), where the implied constant depends on δ. We can get an asymptotic
formula for I (t), as |t | → ∞, by noting that

Rν(t) =
∫ ∞

−∞
e(t x3)dx − R1−ν(t).

The first term can be evaluated as

∫ ∞

−∞
e(t x3)dx = 1

|t |1/3 · 
( 13 )

(2π)1/3
√
3
,
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for any t ∈ R
∗. Since 1 − ν is smooth and supported on the region R

2 \ [−1, 1], the
second term is easily seen to be ON (|t |−N ) on repeated integration by parts. Hence

I (t) = 
( 13 )
3

6π
√
3

· e(−kt/B3)

|t | + ON (|t |−N ). (2.6)

This formula can be used to check that the integral

∫ ∞

−∞
I (t)

(2 + π2t2)
s+1
2

dt

is a holomorphic function of s ∈ C in the half-plane �(s) � −1.

Motivated by this example, our circle method heuristic will proceed under the
following assumptions about I (t).

Hypothesis 2.3 Let I (t) be given by (2.2). Then the following hold:

(i) We have ∫ ∞

−∞
|t |−δ|I (t)|dt �δ 1,

for any δ ∈ (0, 1), where the implied constant depends only on w, f and δ.
(ii) The integral ∫ ∞

−∞
I (t)

(2 + π2t2)
s+1
2

dt

is a holomorphic function of s ∈ C in the half-plane �(s) � −1.

2.2 The real density

Wenow proceed to an analysis ofμ∞(B), as defined in (2.4), usingwork of Chambert-
Loir and Tschinkel [10, Thm. 4.7]. To begin with, we write

μ∞(B) = lim
ε→0

1

2ε
vol
{
P ∈ A

3(R) : H∞(P) � B, | f (x, y, z)| < ε
}

,

where H∞(P) = max{|x | , |y| , |z| , 1} for a real point P = (x, y, z) ∈ A
3(R). This is

a volume on the surface U defined by f . Let f0(t0, x0, y0, z0) be the homogenisation
of f (x, y, z), with x = x0/t0, y = y0/t0, and z = z0/t0, so that f = f0/t30 . Let
X = V ( f0) be the closure ofU in P

3, which we assume to be normal. Let � : X̃ → X
be a minimal desingularisation. We shall assume that D̃ = X̃ \ Ũ has strict normal
crossings and that U is log K3, so that the log canonical bundle ωX̃ (D̃) ∼= OX̃ is
trivial. As a consequence of the adjunction formula, this condition is equivalent to
�∗OX (D) ∼= OX̃ (D̃), where D = X \ U ; in particular, this is automatic if X is
smooth.



Integral points on cubic surfaces: heuristics and numerics Page 11 of 65    81 

The Leray form onU is a regular 2-form ω onU such that d f ∧ω = dx ∧dy∧dz.
This allows us to write

μ∞(B) =
∫

P∈U (R), H∞(P)�B
|ω| . (2.7)

We shall endow certain line bundles with adelic metrics. On OP3(d), for d ∈ Z,
consider the standard sup-norm

‖g(P)‖v = |g(P)|v
max{|t0|v , |x0|v , |y0|v , |z0|v}d , (2.8)

where P = (t0 : x0 : y0 : z0) ∈ P
3(Qv) is a point over one of the local fields, and

g ∈ 
(OP3(d),U ) is a local section. We have ωP3 ∼= OP3(−4) mapping dx ∧dy∧dz
to t−4

0 . This induces a metric on ωP3 with

‖dx ∧ dy ∧ dz‖ω
P3

=
∥∥∥t−4

0

∥∥∥O
P3 (−4)

= max{1, |x | , |y| , |z|}4,

after dividing numerator and denominator of (2.8) by t−4
0 . We have an isomorphism

OP3(X) → OP3(3), mapping the canonical section 1X to f0, inducing an adelic metric
on the former bundle. Now the adjunction isomorphism ωX → ωP3(X)|X induces a
metric on ωX . We follow [10, Sec. 2.1.13] to get an explicit description. Consider the
local equation f ∈ 
(A3,OP3(−X)) of X . On this bundle, we have an adelic metric
(induced by the one on OP3(X)), with

‖ f ‖O
P3 (−X) ‖1X‖O

P3 (X) = | f | ,

since the product of the two sections on the left is f inOP3 ⊂ KP3 . As the adjunction
isomorphism sends ω �→ ω ∧ f −1 d f , we get

‖ω‖ωX
=
∥∥∥ω ∧ f −1 d f

∥∥∥
ω

P3 (X)

= ‖ f ‖−1
O

P3 (−X)
‖ω ∧ d f ‖ω

P3

=
‖1X‖O

P3 (X)

| f | ‖dx ∧ dy ∧ dz‖ω
P3

= | f |
max{1, |x | , |y| , |z|}3

1

| f | max{1, |x | , |y| , |z|}4

= max{1, |x | , |y| , |z|}. (2.9)

Using all this, we can reformulate (2.7) as

μ∞(B) =
∫

{P∈X(R):‖t0‖−1�B}
‖1D‖−1 |ω|

‖ω‖ .
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As � is crepant, the metric on ωX can be pulled back to one on ωX̃ , and the one on
its dual bundleOX (D) toOX̃ (D̃) by the log K3 assumption. It follows that the above
volume can be expressed as

μ∞(B) =
∫

{P∈X̃(R):‖�∗t0‖−1�B}
∥∥1D̃

∥∥−1 |�∗ω|
‖�∗ω‖

on the desingularisation: the exceptional set and its image are null sets and the inte-
grands and height conditions coincide outside them. In the notation of [10, Sec. 4.2],
we have ∥∥1D̃

∥∥−1 |�∗ω|
‖�∗ω‖ = dτ

(X̃ ,D̃)
,

and an asymptotic expansion of this quantity is studied bymeans of itsMellin transform
and a Tauberian theorem [10, Thm. 4.7]. In this analysis, Tamagawa measures on
certain subsets of D arise naturally.

Let b be the maximal number of components of D̃(R) that share a common real
point, as in Conjecture 1.1. Note that if the set of integral points is Zariski dense, the
set U (R) of real points cannot be compact, so that D̃(R) �= ∅ and b � 1. Denote by
A all sets of such components of cardinality b. For each A ∈ A, let ZA =⋂D′∈A D′
be the intersection, which is a nonempty subset of D̃(R) by assumption, and set
DA = ∑

D∈A D and �A = ∑
D′∈A\A D′. In [10, Sec. 2.1.12], Chambert-Loir and

Tschinkel define a residue measure τA on ZA, which we normalise with a factor of 2b

as in [10, Sec. 4.1]. This measure depends on a metric on ωX̃ (DA), but
∥∥1�A

∥∥−1
τA

does not, provided that the metrics on ωX̃ (DA) and OX̃ (�A) are chosen so that their
product coincides with the one on ωX̃ (D). Moreover, since the residue measure is
finite and

∥∥1�A

∥∥ is bounded from below on ZA as a consequence of the maximality
assumption and compactness, we get a finite volume

μA = 2b
∫

ZA

∥∥1�A

∥∥−1 dτA. (2.10)

We may now record the following asymptotic formula.

Proposition 2.4 Under the above assumptions and notation, including that the set of
integral points is Zariski dense, we have

μ∞(B) = c∞(log B)b + O
(
(log B)b−1

)
,

where

c∞ = 1

b!
∑
A∈A

μA. (2.11)

Proof This follows from [10, Thm. 4.7] with dα = λα = 0 for all α ∈ A, whence
σ = 0. Then [10, Eq. (4.3)] coincides with μA once evaluated at s = 0. ��
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In the next result we derive an explicit expression for c∞ for certain polynomials
featuring in our work.

Lemma 2.5 Suppose that X is a smooth compactification of the affine surface defined
by f (x, y, z) = q(x, y, z) − dxyz, where q is a quadratic polynomial. Then

∑
A∈A

μA = 12

|d| ,

so that c∞ = 6/|d| in (2.11).

Proof Write q(x, y, z) = Q(x, y, z) + L(x, y, z) + e with Q and L homogeneous of
degrees 2 and 1, respectively. Then X is defined by the cubic form

f0 = dx0y0z0 − Q(x0, y0, z0)t0 − L(x0, y0, z0)t
2
0 − et30 .

In particular, the complement D of U in X is V (dx0y0z0), a union of three lines
D = L1 + L2 + L3. The Clemens complex associated with D is a triangle with three
edges {Li , L j }, for 1 � i < j � 3. Associated with each of these edges is a residue
measure τi, j on Li ∩ L j , this intersection consisting of only one rational point Pi, j .
For the case (i, j) = (1, 2) we have

L1 = V (t0, x0), L2 = V (t0, y0), P1,2 = (0 : 0 : 0 : 1).

We are interested in the norm
∥∥1Lk

∥∥
ωP

induced by the adjunction formula. Consider
the affine chart around P1,2 given by the coordinate functions x ′ = x0/z0, y′ = y0/z0,
and t ′ = t0/z0. In these coordinates, P1,2 = (0, 0, 0) and X is cut out by

f ′ = f0/z
3
0 = dx ′y′ − Q(x ′, y′, 1)t ′ − L(x ′, y′, 1)t ′2 − et ′3.

Note that the two partial derivatives d f ′/ dx ′, d f ′/ dy′ vanish in (0, 0, 0), so that

d f ′

dt ′
(0, 0, 0) = Q(0, 0, 1) �= 0,

by the smoothness assumption. Since f ′ is analytic, so is t ′ as a function of x ′ and y′
by the implicit function theorem. Note that

f ′ = dx ′y′ − Q(0, 0, 1)t ′(1 + O(x ′) + O(y′)) + O(t ′2)

as a formal power series. Hence

t ′ = dx ′y′

Q(0, 0, 1)
(1 + O(x ′) + O(y′)).
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Now

∥∥1L3

∥∥ ∥∥∥x ′−1 dx ′ ∧ y′−1 dy
∥∥∥ =

∥∥∥ f ′−1
∥∥∥ ∥∥dx ′ ∧ dy′ ∧ d f ′∥∥

∥∥1L11L21L3

∥∥
|x ′y′| , (2.12)

by arguments similar to those appearing in the proof of Proposition 2.4. Analogously
to there,

∥∥ f ′−1
∥∥ = max{∣∣t ′∣∣ , ∣∣x ′∣∣ , ∣∣y′∣∣ , 1}−3 = 1 + O(x ′) + O(y′). Note that

d f ′ = (Q(0, 0, 1) + O(x ′) + O(y′)) dt ′ + f1 dx + f2 dy

for some f1 and f2 ∈ Q[x ′, y′], so that
∥∥dx ′ ∧ dy′ ∧ d f ′∥∥ = |Q(0, 0, 1)| ∥∥dx ′ ∧ dy′ ∧ dt ′(1 + O(x ′) + O(y′))

∥∥
= |Q(0, 0, 1)|max{∣∣t ′∣∣ , ∣∣x ′∣∣ , ∣∣y′∣∣ , 1}4(1 + O(x ′) + O(y′))
= |Q(0, 0, 1)| + O(x ′) + O(y′).

Finally,

∥∥1L11L21L3

∥∥ = ‖t0‖ = |t0|
max{|t0| , |x0| , |y0| , |z0|}

=
∣∣t ′∣∣

max{|t ′| , |x ′| , |y′| , 1}
=
∣∣∣∣

dx ′y′

Q(0, 0, 1)

∣∣∣∣ (1 + O(x ′) + O(y′)).

Hence (2.12) becomes |d| + O(x ′) + O(y′). The integral (2.10) is over a single point
and its value is simply the inverse of (2.12) evaluated at P1,2 = (0, 0) in the chosen
chart. It still has to be renormalised by multiplying with c2

R
= 4, as in [10, Sec. 4.1].

The sum in (2.11) now runs over the three edges of the Clemens complex and each of
the summands μA is equal to 4/ |d|, finishing the proof. ��

3 A circle method heuristic

In this section we explore a heuristic based on the smooth δ-function version of the
circle method due to Duke, Friedlander and Iwaniec [18]. This was developed and
applied to quadratic forms by Heath-Brown [25] and put on an adelic footing by
Getz [20] and Tran [45], in an effort to detect lower order terms. It is the latter approach
that we shall adopt here. We begin, however, by analysing a certain Dirichlet series
whose coefficients are complete exponential sums.

To fix notation, let U = V ( f ) ⊂ A
3
Q
and U = V ( f ) ⊂ A

3
Z
be the Q-variety

and Z-scheme defined by our irreducible, cubic polynomial f . Throughout, we shall
assume thatU is smooth, and only briefly sketch a key difference of the singular case
in Section 3.5. Denote byX and X the closures of U andU in P

3
Z
and P

3
Q
, respectively,

and assume that X is normal. If X is singular, some parts of our arguments will require
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us to pass to a minimal desingularisation X̃ → X , described by a sequence of blow-
ups of P

3. Let � : X̃ → X be the model described by the sequence of blow-ups in
the closures of the centres. As U is smooth, these blow-ups keep it and its model U
invariant. Finally, denote by D̃ = X̃ \ U and D̃ = X̃ \ U the boundary divisor. If
D̃ does not have strict normal crossings, we replace X̃ and X̃ by varieties arising as
blow-ups with centres outside U that achieve this condition. Finally, let S be the set
of primes of bad reduction of X̃.

3.1 Exponential sums and global L-functions

Let eq(·) = exp( 2π i ·q ), for any q ∈ N. A key role in our work will be played by the
Dirichlet series

F(s) =
∞∑
q=1

q−s−3
∑

a mod q
gcd(a,q)=1

∑

b∈(Z/qZ)3

eq(a f (b)), (3.1)

for s ∈ C and a given cubic polynomial f ∈ Z[x, y, z]. It is easy to see that F(s) is
absolutely convergent for �(s) > 2. In this section we shall relate F(s) to an infinite
Euler product involving the quantities

ν(pk) = #
{
x ∈ (Z/pkZ)3 : f (x) ≡ 0 mod pk

}
, (3.2)

for prime powers pk . The following result is standard but we include its proof for the
sake of completeness.

Lemma 3.1 Assume that �(s) > 2. Then

F(s) =
∏
p

σp(s),

where

σp(s) = 1 +
∞∑
k=1

1

pks

(
ν(pk)

p2k
− ν(pk−1)

p2(k−1)

)
.

If p /∈ S then

σp(s) = 1 − 1

ps
+ ν(p)

ps+2 . (3.3)

Proof Since we are working with s ∈ C such that �(s) > 2, the infinite sum in F(s)
is absolutely convergent. Define the exponential sum

Sq =
∑

a mod q
gcd(a,q)=1

∑

b∈(Z/qZ)3

eq(a f (b)) =
∑

b∈(Z/qZ)3

cq( f (b)),
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for q ∈ N, where cq(·) is the Ramanujan sum. Then Sq is a multiplicative function of
q and so we obtain an Euler product

F(s) =
∏
p

σp(s),

where

σp(s) =
∞∑
k=0

1

pk(s+3)

∑

b mod pk

cpk ( f (b)).

Let a ∈ Z. At prime powers the Ramanujan sum takes the values

cpk (a) =

⎧
⎪⎨
⎪⎩

0 if pk−1
� a,

−pk−1 if pk−1 | a but pk � a,

pk − pk−1 if pk | a.
(3.4)

It follows that

σp(s) = 1 +
∞∑
k=1

ν(pk) − p2ν(pk−1)

pks+2k ,

as claimed in the first part of the lemma. Moreover, if U is smooth and p /∈ S, then
p is a prime of good reduction and Hensel’s lemma yields ν(pk) = p2(k−1)ν(p) for
k � 1. The second part easily follows. ��

Lemma 3.1 can be used to give a meromorphic continuation of F(s), provided one
has enough information about ν(p) for large primes p. Let X̃Q = X̃ ⊗Q Q and let

Pic(X̃Q) be the geometric Picard group of X̃ . The global L-function that plays a role
here is defined as an Euler product

L(s,Pic(X̃Q)) =
∏
p<∞

L p(s,Pic(X̃Q)),

L p(s,Pic(X̃Q)) = det
(
1 − p−s Fr p | (Pic(X̃Q) ⊗ Q)Ip

)−1
,

(3.5)

where �(s) > 1, Fr p is a geometric Frobenius element, and Ip is an inertia subgroup
at p. Let �X̃ be the rank of the Picard group Pic(X̃). Then, as described by Peyre [36,
Sec. 2.1], L(s,Pic(X̃Q)) is anArtin L-functionwhich has ameromorphic continuation
to the whole complex plane, with a pole of order �X̃ at s = 1.

Bearing this notation in mind, we will need to examine ν(p) carefully. Note that

ν(p) = #U(Fp) = #X̃(Fp) − #D̃(Fp).

As described by Manin [34, Thm. 23.1], a result of Weil yields

#X̃(Fp)

p2
= 1 + ap(X̃)

p
+ 1

p2
, (3.6)
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where ap(X̃) is the trace of the Frobenius element Fr p acting on the Picard group
Pic(X̃Fp

), which is isomorphic to Pic(X̃Q) for almost all primes by [36, Lem. 2.2.1].

We note that ap(X̃) is bounded independently of p, by Deligne’s resolution of the
Weil conjectures. Hence

ν(p)

p2
= 1 + ap(X̃)

p
− #D̃(Fp)

p2
+ O(p−3/2).

Returning to the Dirichlet series F(s), it therefore follows from applying this in
Lemma 3.1 that

σp(s) = 1 − 1

ps
+ ν(p)

ps+2 = 1 + ap(X̃) − #D̃(Fp)/p

ps+1 + O(p−�(s)−3/2), (3.7)

for any p /∈ S. For sufficiently large primes, the Hasse–Weil bound implies that
#D̃(Fp) = O(p) and so σp(s) = 1+ O(p−�(s)−1), for any p /∈ S, and so F(s) is an
absolutely convergent Euler product for �(s) > 0.

We can relate the analytic properties of F(s) to those of the global L-function
introduced in (3.5). For s ∈ C with �(s) > −1/2 and sufficiently large primes, we
find that

L p(s,Pic(X̃Q))−1 = 1 − ap(X̃)

ps
+ 1

ps+1 .

Since �(s) > −1/2, we deduce from (3.7) that

σp(s) = L p(s + 1,Pic(X̃Q))

(
1 − #D̃(Fp)

ps+2

)(
1 + O(p−�(s)−3/2)

)
.

Let us define another Euler product

ζ(s, D̃) =
∏
p

ζp(s, D̃), ζp(s, D̃) =
(
1 − #D̃(Fp)

ps+1

)−1

,

for �(s) > 1. We will see in the proof of Proposition 3.2 that ζ(s, D̃) has a meromor-
phic continuation to the region �(s) > −1/2 with a pole at s = 1. Thus, it will follow
that there is a function F̃(s) which is holomorphic in the half-plane �(s) > −1/2,
such that

F(s) = L(s + 1,Pic(X̃Q))ζ(s + 1, D̃)−1 F̃(s). (3.8)

An expression like this is essentially implied by work of Chambert-Loir and Tschinkel
[10, Thm. 2.5] on convergence factors on adelic spaces, but we have chosen to include
our own deduction for the sake of completeness and to deal explicitly with F as
a function in s. (In particular, we have used factors associated with the easier zeta
function ζ(s + 1, D̃), rather than L(s + 1,CH0(D̃Q)).)
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Proposition 3.2 Assume that U(Z) is Zariski dense. Then the function F(s) has a
meromorphic continuation to the half-plane �(s) > −1/2 with a singularity at s = 0
of order �U . Moreover, letting σp = limk→∞ p−2kν(pk), we have

lim
s→0

(
s�U F(s)

) = λ0
∏
p

λpσp,

where

λ0 = lim
s→0

s�U
L(s + 1,Pic(X̃Q))

ζ(s + 1, D̃)
and λp = ζp(1, D̃)L p(1,Pic(X̃Q))−1.

Proof Our starting point is the observation that σp(0) = σp in Lemma 3.1. Recall that
L(s,Pic(X̃Q)) has a pole of order �X̃ at s = 1. Moreover, we claim that ζ(s, D̃) has
a meromorphic continuation to the region �(s) > −1/2 with a pole of order rD̃ at
s = 1, where rD̃ is the number of irreducible components of D̃ as a divisor over Q.
For this, for any σ = �(s) > 1, we take logarithms of both sides to obtain

log ζ(s, D̃) =
∑
p

#D̃(Fp)

ps+1 + Oσ (1),

where the implied constant depends on σ . According to work of Serre [43, Cor. 7.13],
we have ∑

p�x

#D̃(Fp) = rD̃x

log x

(
1 + O

(
1

log x

))
.

But then, for any 1 � y < x , we may combine this with Abel summation to deduce
that ∑

y<p�x

#D̃(Fp)

ps+1 = (s + 1)rD̃
2

∫ x

y

du

us log u
+ Oσ

(
1

log y

)
.

Similarly, it follows from the prime number theorem that

∫ x

y

du

us log u
= 1

s

∑

y<p�x

1

ps
+ Oσ

(
1

log y

)
= −1

s

∑

y<p�x

log

(
1 − 1

ps

)
+ Oσ

(
1

log y

)
,

for σ > 1. Hence, we obtain ζ(s, D̃) = ζ(s)αG(s) in the region σ > 1, where G(s)
is holomorphic in the region σ > −1/2 and α = (s + 1)rD̃/(2s). This therefore
establishes the claim.

It follows from (3.8) that F(s) has ameromorphic continuation to the region�(s) >

−1/2 with a pole of order �X̃ −rD̃ at s = 0. If the set of integral points on U is Zariski
dense then, as explained in the proof of [48, Thm. 2.4.1(ii)],U cannot have invertible
regular functions inducing a relation between the components of D̃ in Pic X̃ . Thus
the left morphism in the localisation sequence CH0(D̃) → Pic X̃ → PicU → 0 is
injective and it follows that �X̃ − rD̃ = �U . ��
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3.2 A smooth ı-function

We now come to record the version of the smooth δ-function that we shall use in our
analysis. Let

δ(n) =
{
1 if n = 0,

0 if n ∈ Z and n �= 0.

A smooth interpretation of this δ-function goes back to work of Duke, Friedlander
and Iwaniec [18], but was developed for Diophantine equations by Heath-Brown [25,
Thm. 1]. The version recorded below is essentially due to Tran [45], but we have
elected to reprove it here, since Tran is missing a factor 2 in his statement.

Proposition 3.3 Let � : R
2 → R be a Schwartz function satisfying the hypotheses

(i) �(−x,−y) = �(x, y) for all x, y ∈ R,
(ii) �(x, 0) = 0 for all x ∈ R,
(iii)

∫∞
−∞ �(0, y)dy = 1.

Then for any n ∈ Z and sufficiently large Q, there exists cQ > 0 such that

δ(n) = 2cQ
Q

∞∑
q=1

1

q

∑
a mod q

e

(
an

q

)
h

(
n

qQ
,
q

Q

)
,

where h(x, y) = �(x, y) − �(y, x). Moreover, cQ = 1+ ON (Q−N ) for any N � 1.

Proof Since n/q runs over all divisors of n as q does, we are easily led to the expression

∑
q∈N
q|n

(
�

(
n

qQ
,
q

Q

)
− �

(
q

Q
,

n

qQ

))
= δ(n)

∑
q∈N

�

(
0,

q

Q

)
,

by (ii). We take Q large enough to ensure that the point (0, 1/Q) is contained in the
support of�, so that the right hand side doesn’t vanish. It follows from (i) and Poisson
summation that

∑
q∈N

�

(
0,

q

Q

)
= 1

2

∑
q∈Z

�

(
0,

q

Q

)
= 1

2

∑
c∈Z

∫ ∞

−∞
�

(
0,

t

Q

)
e(−ct)dt .

Part (iii) shows that the inner integral is Q when c = 0. On the other hand, repeated
integration by parts shows that the integral is ON (Q(Q|c|)−N ) when c �= 0. Defining
cQ via ∑

q∈N

�

(
0,

q

Q

)
= c−1

Q
Q

2
,
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we deduce that cQ = 1 + ON (Q−N ) and

δ(n) = 2cQ
Q

∑
q∈N
q|n

h

(
n

qQ
,
q

Q

)
.

The proposition follows on using additive characters to detect the condition q | n. ��
The main difference between Proposition 3.3 and the version in Heath-Brown [25,

Thm. 1] is that one has a sum over all additive characters, rather than just over primitive
characters. We note that the function

�(x, y) = e−x2(e−y2 − e−2y2)√
π(1 − 2−1/2)

(3.9)

is a Schwartz function that clearly satisfies the conditions (i)–(iii) in Proposition 3.3.

3.3 Application of the circle method

Let w : R
3 → R�0 be a compactly supported smooth weight function. Rather than

studying NU (B), we shall begin by considering the weighted counting function

NU (B, w) =
∑

x∈Z3

f (x)=0

w(B−1x),

as B → ∞. As is well-known, on assuming a reasonable dependence on w in all the
error terms, it is possible to approximate the characteristic function of [−B, B]3 by
suitable weight functions to deduce the asymptotic behaviour of NU (B), as B → ∞.

Let �:R2 → R be the function (3.9), which satisfies the hypotheses (i)–(iii) in
Proposition 3.3. Let h(x, y) = �(x, y) − �(y, x). Then it follows from this result
that

NU (B, w) = 2cQ
Q

∞∑
q=1

1

q

∑
a mod q

∑

x∈Z3

w(B−1x)eq(a f (x))h
(

f (x)
qQ

,
q

Q

)
,

where cQ = 1 + ON (Q−N ). Breaking the sum over x into residue classes modulo q
and applying the 3-dimensional Poisson summation formula, one readily obtains

NU (B, w) = 2cQ
Q

∑

c∈Z3

∞∑
q=1

q−4Sq(c)
∫

R3
w(B−1x)h

(
f (x)
qQ

,
q

Q

)
eq(−c.x)dx,

where
Sq(c) =

∑
a mod q

∑
b mod q

eq(a f (b) + c.b).
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Since h(x, y) is a Schwartz function, we expect that only q, x with q � Q and
f (x) � Q2 make a dominant contribution. Moreover, the integrand is zero unless
w(B−1x) �= 0 and it can be shown that | f (x)| has exact order of magnitude B3 for
typical such x. In this way we are led to make the choice Q = B3/2 in our analysis. (In
fact, one can take Q = cB3/2 for any constant c > 0 without affecting the heuristic
main term, while taking Q = Bθ for θ > 3

2 would cause problems in the analysis of
the oscillatory integral.)

Our circle method heuristic arises from asymptotically evaluating the contribution
from the trivial character, corresponding to c = 0. (In fact, there is evidence to suggest
that the contribution from possible accumulating subvarieties is accounted for by the
non-trivial characters, as discussed by Heath-Brown [26] for diagonal cubic surfaces
in P

3.) For our heuristic, we shall take c = 0 and cQ = 1, leaving us to estimate

M(B, w) = 2

Q

∞∑
q=1

q−4Sq(0)
∫

R3
w(B−1x)h

(
f (x)
qQ

,
q

Q

)
dx, (3.10)

with Q = B3/2. This will eventually be achieved in Theorem 3.9.
Let

D(s) =
∞∑
q=1

q−s−4Sq(0),

for s ∈ C. In view of the trivial bound |Sq(0)| � q4, this is absolutely convergent for
�(s) > 1. We proceed by proving the following result.

Lemma 3.4 Let �(s) > 1. Then we have

D(s) = F(s + 1)ζ(s + 1),

where F(s) is given by (3.1).

Proof Let s ∈ C such that �(s) > 1, so that D(s) is absolutely convergent. Breaking
the sum according to the greatest common divisor of a and q, we find that

D(s) =
∞∑
q=1

q−s−4
∑
r |q

∑
a mod q

gcd(a,q)=r

∑
b mod q

eq(a f (b)).

Making the change of variables q = rq ′ and a = ra′, one concludes that

D(s) =
∞∑

q ′=1

∞∑
r=1

q ′−s−4r−s−4
∑

a′ mod q ′
gcd(a′,q ′)=1

r3
∑

b mod q ′
eq ′(a′ f (b)).

The statement of the lemma is now obvious. ��
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An application of the Mellin inversion theorem yields

1

2π i

∫ 2+i∞

2−i∞
D(s)

∫ ∞

0

∫

R3
w(B−1x)h

(
f (x)
yQ

,
y

Q

)
dxys−1dyds

=
∞∑
q=1

q−4Sq(0) · 1

2π i

∫ 2+i∞

2−i∞

(∫ ∞

0

∫

R3
w(B−1x)h

(
f (x)
yQ

,
y

Q

)
ys−1dxdy

)
ds

qs

=
∞∑
q=1

q−4Sq(0)
∫

R3
w(B−1x)h

(
f (x)
qQ

,
q

Q

)
dx,

which we recognise as appearing in our expression for M(B, w). Replacing y/Q by
y and x by Bx, we obtain

∫ ∞

0

∫

R3
w(B−1x)h

(
f (x)
yQ

,
y

Q

)
ys−1dxdy

= B3Qs
∫ ∞

0

∫

R3
w(x)h

(
g(x)
y

, y

)
ys−1dxdy,

where g(x) = Q−2 f (Bx). (Note that this coincides with the definition (2.1), since
Q = B3/2.) Returning to (3.10), it follows from Lemma 3.4 that

M(B, w) = 2Q−1B3

2π i

∫ 2+i∞

2−i∞
F(s + 1)ζ(s + 1)G(s)Qsds, (3.11)

where

G(s) =
∫ ∞

0

∫

R3
w(x)h

(
g(x)
y

, y

)
ys−1dxdy.

We seek to obtain a meromorphic continuation of G(s) sufficiently far to the left of
the line �(s) = 2.

Let

kt (y) =
∫ ∞

−∞
h(x, y)e(−t xy)dx, (3.12)

for any t, y ∈ R. The following result evaluates this integral.

Lemma 3.5 We have

kt (y) = 1

1 − 2−1/2

(
2−1/2e− 1

2 y
2(2+π2t2) − e−y2(2+π2t2)

)
.

In particular kε1t (ε2y) = kt (y) for ε1, ε2 ∈ {±1}.
Proof On recalling that h(x, y) = �(x, y) − �(y, x), in the notation of (3.9), it
follows that kt (y) = M(t, y) − Msw(t, y) where

M(t, y) =
∫ ∞

−∞
�(x, y)e(−t xy)dx and Msw(t, y) =

∫ ∞

−∞
�(y, x)e(−t xy)dx .
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It will be convenient to put C = √
π(1 − 2−1/2) in the proof, so that we may write

�(x, y) = C−1e−x2(e−y2 − e−2y2). Then

kt (y) = 1

C

(
−e−2y2

∫ ∞

−∞
e−x2e(−t xy)dx + e−y2

∫ ∞

−∞
e−2x2e(−t xy)dx

)

=
√

π

C

(
−e−y2(2+π2t2) + 2−1/2e− 1

2 y
2(2+π2t2)

)
,

on completing the square and executing the integral over x . Substituting in the value
of C completes the proof of the lemma. ��

Wemay now assess the analytic properties of the function G(s), in which it will be
convenient to recall the definition (2.2) of I (t).

Lemma 3.6 Assume that Hypothesis 2.3 holds. Then G(s) has a meromorphic con-
tinuation to the region �(s) � −1 with a simple pole at s = −1. Moreover, in this
region we have

G(s) = 1

2
· 2s/2 − 1

1 − 2−1/2 · 


(
s + 1

2

)
R(s), (3.13)

where

R(s) =
∫ ∞

−∞
I (t)

(2 + π2t2)
s+1
2

dt (3.14)

is holomorphic.

Proof Let σ = �(s) > 2. In this region we have

G(s) =
∫ ∞

0

∫

R3
w(x)h

(
g(x)
y

, y

)
ys−1dxdy.

We denote by

H(t, y) =
∫ ∞

−∞
h(x, y)e(−t x)dx

the Fourier transform of h(x, y) with respect to the first variable. Then the Fourier
inversion theorem yields

∫

R3
w(x)h

(
g(x)
y

, y

)
dx =

∫ ∞

−∞
H(t, y)

(∫

R3
w(x)e

(
tg(x)
y

)
dx
)
dt

= y
∫ ∞

−∞
H(yt, y)I (t)dt,

on replacing t/y by t and recalling the definition (2.2) of I (t). But H(yt, y) = kt (y),
in the notation of (3.12). Hence it follows from Lemma 3.5 that

∫

R3
w(x)h

(
g(x)
y

, y

)
dx = y

1 − 2−1/2

∑
i∈{0,1}

(−1)i+1

2i/2

∫ ∞

−∞
I (t)e

− 1
2i
y2(2+π2t2)dt .
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Thus

G(s) = 1

1 − 2−1/2

∑
i∈{0,1}

(−1)i+1

2i/2

∫ ∞

0
ys
∫ ∞

−∞
I (t)e

− 1
2i
y2(2+π2t2)dtdy.

Taking absolute values we see that

G(s) �
∫ ∞

0
yσ e−y2 J (y)dy,

where

J (y) =
∫ ∞

−∞
|I (t)|e− 1

2π2t2 y2dt .

If |t y| � 1 then we take e− 1
2π2t2y2 � 1 and it follows from (2.5) that

∫

|t |�1/y
|I (t)|e− 1

2π2t2y2dt � y−1.

When |t y| � 1 we may take e− 1
2π2t2y2 � |t y|−1/2, and it follows from part (i) of

Hypothesis 2.3 that

∫

|t |>1/y
|I (t)|e− 1

2π2t2 y2dt � y−1/2
∫ ∞

−∞
|t |−1/2|I (t)|dt � y−1/2.

Hence

G(s) �
∫ ∞

0
yσ−1e−y2dy +

∫ ∞

0
yσ−1/2e−y2dy,

which is bounded for σ > 0. Thus G(s) is absolutely convergent in the region σ > 0.
Working in the region σ > 0, an application of Fubini’s theorem allows us to

interchange the order of integration. This leads to the expression

G(s) = 1

1 − 2−1/2

∑
i∈{0,1}

(−1)i+1

2i/2

∫ ∞

−∞
I (t)Ji (t, s)dt,

where

Ji (t, s) =
∫ ∞

0
yse

− 1
2i
y2(2+π2t2)dy

= 2i(s+1)/2

(2 + π2t2)
s+1
2

∫ ∞

0
yse−y2dy

= 2i(s+1)/2

(2 + π2t2)
s+1
2

· 1
2

· 


(
s + 1

2

)
.
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We may now execute the sum over i ∈ {0, 1} and finally arrive at the expression for
G(s) recorded in the statement of the lemma. Since part (ii) of Hypothesis 2.3 ensures
that R(s) is holomorphic in the region σ � −1, this gives the desired meromorphic
continuation of G(s) to the region σ � −1. ��

We will need to understand the derivatives of the function (3.14) in the region
�(s) � −1. Let R(�)(s) be the �th derivative with respect to s, for any integer � � 0.
Then it follows that

R(�)(s) = (−1)�

2�

∫ ∞

−∞
I (t)(log(2 + π2t2))�

(2 + π2t2)
s+1
2

dt,

whence

R(�)(−1) = (−1)�
∫ ∞

−∞
I (t)(log

√
2 + π2t2)�dt .

In the light of (2.5), the interval [−2, 2] contributes O(1) to the integral. On the other
hand, when |t | � 2 we have

log
√
2 + π2t2 = log |t | + logπ + O(|t |−2),

since log(1+ 2
π2t2

) = O(|t |−2). According to part (i) of Hypothesis 2.3, we conclude
that

R(�)(−1) = (−1)�
∫ ∞

−∞
I (t)(log |t | + logπ)�dt + O�(1).

The following result summarises our analysis of this function.

Lemma 3.7 Assume Hypothesis 2.3 and let � � 0 be an integer. Then there is a monic
degree � polynomial P ∈ R[x] such that

R(�)(−1) = (−1)�
∫ ∞

−∞
I (t)P(log |t |)dt + O�(1).

3.4 Conclusions and heuristics

It is now time to return to our expression (3.11) for M(B, w), in order to record
our main circle method heuristic. Assume Hypothesis 2.3 holds. If Q = B3/2 then
Q−2B3 = 1 and we find that

M(B, w) = 2 · 1

2π i

∫ 2+i∞

2−i∞
F(s + 1)ζ(s + 1)G(s)Qs+1ds.

Proposition 3.2 implies that F(s + 1) has a meromorphic continuation to the region
�(s) > − 3

2 with a pole of order �U at s = −1. Moreover, Lemma 3.6 implies that
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G(s) has a meromorphic continuation to the region �(s) � −1 with a simple pole
at s = −1. In addition to this, it follows from (3.13) that G(0) = 0, so that the
integrand is holomorphic at s = 0. Overall, we conclude that in the region�(s) � −1
the function F(s + 1)ζ(s + 1)G(s)Qs has a pole of order �U + 1 at s = −1 and is
holomorphic everywhere else.

In the usual way the asymptotic behaviour of M(B, w) is obtained by moving the
line of integration to the left in order to capture the pole at s = −1. We shall not
delve into details here, but content ourselves with recording the expected asymptotic
formula

M(B, w) ∼ 2 · Ress=−1

(
F(s + 1)ζ(s + 1)G(s)Qs+1

)

= Ress=0

(
2(s−1)/2 − 1

1 − 2−1/2 F(s)ζ(s)

( s
2

)
R(s − 1)Qs

)
,

on making the substitution (3.13).
We recall that we have F(s) = s−�U F̃(s), for some function F̃(s) which is holo-

morphic for �(s) > − 1
2 . Moreover, we have 
( s2 ) = s−1(2 + O(s)). Let

U (s) = 2(s−1)/2 − 1

1 − 2−1/2 ζ(s)R(s − 1)Qs .

This is holomorphic for�(s) � 0. Taking the Taylor expansion about the point s = 0,
we obtain

U (s) = U (0) + U ′(0)
1! s + U ′′(0)

2! s2 + · · · + U (�U )(0)

�U ! s�U + O(s�U+1).

It therefore follows that

Ress=0

(
U (s)F(s)ζ(s)


( s
2

))
= 2F̃(0)U (�U )(0)

�U ! + O

(
max

0����U−1
|U (�)(0)|

)
.

At this point it is convenient to make another assumption about the asymptotic
behaviour of the integral I (t).

Hypothesis 3.8 Let I (t) be given by (2.2) and define

J�(B) =
∫ ∞

−∞
I (t)(log |t |)�dt, (3.15)

for � � 0. Then J�(B) �� (log B)b+�, where b is defined in Conjecture 1.1 and the
implied constant is allowed to depend on w, f and �.
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Under Hypotheses 2.3 and 3.8, it is clear from Lemma 3.7 and the Leibniz rule that

U (�)(0) = −ζ(0)
�∑

j=0

(
�

j

)
R( j)(−1)(log Q)�− j + O

(
(log B)b+�−1

)

= −ζ(0) · �!
�∑

j=0

(−1) j J j (B)(log Q)�− j

j !(� − j)! + O
(
(log B)b+�−1

)
,

for any integer � � 0. Since ζ(0) = − 1
2 and Q = B3/2, we therefore deduce the

following result.

Theorem 3.9 UnderHypotheses 2.3 and3.8, the contribution from the trivial character
is

M(B, w) = lim
s→0

(
s�U F(s)

) · r(B) + O((log B)�U+b−1),

where if J j (B) is given by (3.15) then

r(B) =
�U∑
j=0

(−1) j
( 3
2

)�U− j
J j (B)(log B)�U− j

j !(�U − j)! .

According to Hypothesis 3.8, we have r(B) = O((log B)�U+b), which therefore
accordswithConjecture 1.1.When�U > 0 the sum r(B) featuresmultiple terms, some
of which have negative coefficients, but all with seemingly equal order of magnitude.
This is very different to classical applications of the circle method. When �U = 0,
however, the contribution from the trivial character is more straightforward. Thus,
under Hypotheses 2.3 and 3.8, we obtain

M(B, w) = F(0) · J0(B) + O((log B)b−1),

where J0(B) is given by (3.15). In particular, we have J0(B) = σ∞(B), in the nota-
tion of (2.3). It follows from Proposition 3.2 that F(0) = ∏

p σp, where σp are the
local densities. For our heuristic we shall suppose that the characteristic function of
the region [−B, B]3 is approximated by an appropriate compactly supported smooth
weight function w. This leads to the following expectation.

Heuristic 3.10 Let U ⊂ A
3 be a smooth cubic surface that is log K3 over Q and that

is defined by a cubic polynomial f ∈ Z[x, y, z]. Assume that �U = 0. Then

N ◦
U (B) ∼

∏
p

σp · σ∞(B),

as B → ∞, where σ∞(B) is given by (2.3).

We may further refine this by supposing that Hypothesis 2.1 holds. Combining
Heuristic 3.10 with Proposition 2.4, we are therefore led to the following expectation.
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Heuristic 3.11 Let U ⊂ A
3 be a smooth cubic surface that is log K3 over Q and that

is defined by a cubic polynomial f ∈ Z[x, y, z]. Assume that U (Z) is Zariski dense
and �U = 0. Then

N ◦
U (B) ∼ c∞

∏
p

σp · (log B)b,

as B → ∞, where c∞ is given by (2.11).

Later, in Section 6, we shall return to the heuristic suggested by Theorem 3.9
for some explicit cubic surfaces U ⊂ A

3 with �U > 0. It remains to offer some
justification for Heuristic 1.2, which is concerned with arbitrary �U � 0.

Analogy with Manin’s conjecture

It is natural to draw comparisons with Manin’s conjecture, which concerns the distri-
bution of Q-rational points on smooth, projective, Fano varieties V defined over Q.
A value for the leading constant in this conjecture has been suggested by Peyre [36,
37]. Let H :V (Q) → R�0 be an anticanonical height function and define the counting
function N (Z; B) = # {P ∈ Z : H(P) � B} , for any subset Z ⊂ V (Q). Then, as
put forward in [37, Sec. 8], we expect there to exist a thin set � ⊂ V (Q) for which

N (V (Q) \ �; B) ∼ cV B(log B)�V −1,

as B → ∞. (Note that rational points are much more prolific for Fano varieties than
integral points are expected to be in the setting of log K3 surfaces.) The conjectured
leading constant has the structure

cV = αV · βV · τV ,H

(
V (AQ)Br V

)
, (3.16)

where V (AQ)Br V is the set of adelic points on V that are orthogonal to the Brauer–
Manin pairing, and τV ,H is the Tamagawa measure defined in [36, Sec. 2]. The
constants αV and βV are rational numbers; the latter is the order of the Brauer group
Br(V )/Br(Q) and the former is the volume of a certain polytope in the dual of the
effective cone of divisors, as defined in [36, Déf. 2.4]. In particular, if the Picard group
is trivial and the height function is associated with q times a generator, then αV = 1/q.

Suppose that V ⊂ P
n is a smooth complete intersection of r degree d hypersur-

faces, with n � r + 2d−1(d − 1)r(r + 1). Then it follows from work of Birch [3],
which is proved using the circle method, that an asymptotic formula is available for
N (V (Q); B), with αV = 1/(n + 1 − rd) and βV = 1, and where τV ,H (V (AQ)Br V )

is the usual product of local densities. However, there exist many Fano varieties V for
which the full Manin–Peyre conjecture holds with βV �= 1 or with a more compli-
cated expression for αV . An example of the latter is provided by the smooth quartic del
Pezzo surface (corresponding to (d, n, r) = (2, 4, 2) in the above notation) studied
by de la Bretèche and Browning [7], in which an asymptotic formula is obtained with
αV = 1/36 and βV = 1.



Integral points on cubic surfaces: heuristics and numerics Page 29 of 65    81 

A refined heuristic

Returning to the setting of log K3 surfacesU ⊂ A
3, as in Conjecture 1.1, we have seen

that Theorem 3.9 suggests an asymptotic behaviour N ◦
U (B) ∼ ch(log B)�U+b, for a

suitable constant ch. Inspired by our discussion of Peyre’s constant, we have been led
tomodify the product of local densities to account for failures of strong approximation,
in addition to allowing for an unspecified positive rational factor. This has led us to
the value for ch proposed in (1.10), which concludes our discussion of Heuristic 1.2.

3.5 Singularities on U

We conclude by briefly remarking on the case of singularU . In this case, we still have
σp = limk→∞ p−2kν(pk) andwe proceed by comparing this quantity to the analogous
one defined on a minimal desingularisation. To this end, let � : X̃ → X and X̃ → X
be minimal desingularisations as before, but now without � being an isomorphism
above U and without the requirement that D have strict normal crossings. Define
ν̃(p) = #Ũ(Fp).

Lemma 3.12 There is a finite set S of places (containing the archimedean one and
those of bad reduction of X̃) such that

lim
k→∞

ν(pk)

p2k
= ν̃(p)

p2

for all p /∈ S.

Proof The minimal desingularisation is crepant, so that �∗ωX ∼= ωX̃ . Moreover, this
isomorphism spreads out to an isomorphism between �∗ωX and ωX̃, except possibly
above a finite set of places. Let S be the union of these places, the places of bad
reduction of X̃, and the archimedean place. Equip ωX with a metric that is the model
metric outside S, and ωX̃ with the pullback metric. After possibly enlarging S, this
pullback is the model metric outside S. Let p /∈ S be a prime, and denote by τp and
τ̃p the resulting Tamagawa measures on X(Qp) and X̃(Qp), respectively, satisfying
τp = �∗τ̃p. (Their definitions coincide on Xreg ∼= �−1Xreg.)

We construct a countable disjoint covering B of U(Zp) ∩ Xreg(Qp) as follows. Let
x ∈ U(Zp)∩ Xreg(Qp) be a Zp-point whose generic point is regular. Denote by ex the
minimal power of p annihilating the torsion of H0(SpecZp, x∗�U/Zp ). Define

Ux = {x′ ∈ U(Zp) : x′ ≡ x mod pex}.

For fixed E , those x with ex � E form a finite set of balls BE = {Ux1, . . .UxsE
}; let

B =⋃∞
E=1 BE be their union.

For each of theUx, the arguments used by Salberger [40, Thm. 2.13] are applicable
and show that

τp(Ux) = p−2ex = lim
l→∞

#{x′ ∈ U(Z/plZ) : x′ ≡ x mod pex}
p2l

.
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As l grows, apart from the at most finitely many singularities, eventually every point
modulo pl is counted this way; it follows that

τp(U(Zp) ∩ Xreg(Qp)) =
∑
Ux∈B

τp(Ux) = lim
l→∞

ν(pl)

p2l
.

According to [40, Cor. 2.15], we also get τ̃p(Ũ(Zp)) = ν̃(p)/p2. Moreover, � restricts
to a measure-preserving homeomorphism �−1Xreg(Qp) → Xreg(Qp) by construction
of the Tamagawa measures. As the complement �−1Xsing(Qp) of the former set is a
null set, we obtain

ν̃(p)

p2
= τ̃p(Ũ(Zp) ∩ �−1Xreg(Qp)) = τp(U(Zp) ∩ Xreg(Qp)) = lim

l→∞
ν(pl)

p2l
,

as claimed. ��

As a consequence of this result, we deduce that

∏
p/∈S

L p(1,Pic(X̃Q))

ζ(1, D̃)
σp =

∏
p/∈S

L p(1,Pic(X̃Q))

ζ(1, D̃)

ν̃(p)

p2

is absolutely convergent, suggesting an asymptotic behaviour

N ◦
U (B) ∼ c(log B)�Ũ+b,

for a suitable constant c.

4 Norm form equations

Let K/Q be a cubic number field and let k ∈ Z be non-zero. Let U ⊂ A
3
Z
be the

smooth cubic surface defined by the polynomial f (x, y, z) = NK/Q(x, y, z) − k,
where NK/Q(x, y, z) is the norm form associated to the number field, and let U be its
generic fibre. Since UQ is a torus over Q, it is an open subset of affine space over Q.
The Picard group of affine space vanishes and so it follows that the geometric Picard
group of U vanishes. Thus �U = 0, since the Picard group Pic(U ) is a subgroup of
the geometric Picard group.

We proceed by showing that the exponent r − 1 in (1.3) agrees with the exponent
of log B in Conjecture 1.1 and Heuristic 3.11. Observe that the divisor D is given by
V (NK/Q(x0, y0, z0)). If K is totally real, then b = 2. On the other hand, if K has a
complex embedding, then b = 1. Thus b = r − 1, and so the exponents of log B do
indeed match. We do not expect the leading constant in (1.3) to agree with the leading
constant in Heuristic 3.11, since U (Z) is a thin set.
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5 Sums of cubes: rank zero

In this section, we specialise to the smooth cubic surface U ⊂ A
3 defined by the

polynomial f (x, y, z) = x3 + y3 + z3 − k, for an integer k �≡ ±4 mod 9. Our main
aim is to check that Heuristic 3.11 aligns with the prediction worked out by Heath-
Brown [24, p. 622] when k is cube-free.

The compactification X ⊂ P
3 is the smooth cubic surface defined by the polynomial

f0 = x30 + y30 + z30 − kt30 . The divisor D is the smooth genus 1 curve V (x30 + y30 + z30).
In particular, D is geometrically irreducible and we have b = 1 in the notation of
Conjecture 1.1. We claim that

�U =
{
0 if k is not a cube,

3 if k is a cube.
(5.1)

Since �U = �X − 1, it will suffice to calculate �X . When k is a cube the surface
X is Q-isomorphic to the surface x30 + y30 + z30 + t30 = 0. But then it follows from
[39, Prop. 6.1] that �X = 4. When k is not a cube it follows from work of Segre [42,
Thm. IX] that �X = 1. This establishes the claim.

5.1 Non-archimedean densities

For any prime p the relevant p-adic density is σp = lim�→∞ p−2�ν(p�), where

ν(p�) = #{(x, y, z) ∈ (Z/p�
Z)3 : x3 + y3 + z3 ≡ k mod p�}.

Heath-Brown [24, p. 622] has calculated these explicitlywhen k is cube-free, beginning
with

σ3 = ν(27)

272
. (5.2)

Moreover,

σp =
{
1 if p ≡ 2 mod 3 and p � k,

1 − 1
p2

if p ≡ 2 mod 3 and p | k. (5.3)

On the other hand, if p ≡ 1 mod 3, let ap, bp the unique choice of integers such that
4p = a2p + 27b2p, with ap ≡ 1 mod 3 and bp > 0. Define

cp(k) =
{
2 if k(p−1)/3 ≡ 1 mod p,

−1 if k(p−1)/3 �≡ 1 mod p.
(5.4)

Then

σp =
⎧⎨
⎩
1 + 3cp(k)

p − ap
p2

if p ≡ 1 mod 3 and p � k,

1 + (p−1)ap−1
p2

if p ≡ 1 mod 3 and p | k. (5.5)

When k is not cube-free it is still possible to calculate explicit expressions for σp, but
we have chosen not to do so. However, if p � k then (5.2), (5.3) and (5.5) remain true.
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5.2 Archimedean density

We begin by discussing the integral I (t) in (2.2) in the special case (1.1). We already
saw inExample 2.2 thatHypothesis 2.3 holds in this case. In the development ofHeuris-
tic 3.11 we introduced Hypothesis 3.8, which concerns the asymptotic behaviour of
the integral J�(B), as defined in (3.15). The following result confirms this hypothesis,
since b = 1 in this setting.

Lemma 5.1 Let � � 0 be an integer. Then

J�(B) = κ�(log B)�+1 + O((log B)�),

where

κ� = 3�

� + 1
· 
( 13 )

3

π
√
3

.

Proof Combining (2.5) with (2.6) in (3.15), we readily obtain

J�(B) = 
( 13 )
3

3π
√
3

∫ ∞

2

cos(2π t/B3)(log t)�

t
dt + O�(1).

We have cos(θ) = 1 + O(θ2) for |θ | � 1. Hence

∫ B3/(2π)

2

cos(2π t/B3)(log t)�

t
dt =

∫ B3/(2π)

2

(log t)�

t
dt + O�((log B)�)

= 3�+1

� + 1
· (log B)�+1 + O�((log B)�).

On the other hand, we have

∫ ∞

B3/(2π)

cos(2π t/B3)(log t)�

t
dt =

∫ ∞

1

cos(t)(log(B3t/(2π)))�

t
dt + O�((log B)�)

= O�((log B)�),

since ∫ ∞

1

cos(t)(log t) j

t
dt � j 1,

for any j � 0. Putting these estimates together yields the lemma. ��
Taking � = 0, it follows from this result that

∫ ∞

−∞
I (t)dt ∼ 
( 13 )

3

π
√
3

· log B.
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On the other hand, it follows from Proposition 2.4 that μ∞(B) ∼ μD log B, where
μD is defined in (2.10). Although we omit details, one can adopt the argument in (2.9)
to prove that

μD = 
( 13 )
3

π
√
3

. (5.6)

Thus Hypothesis 2.1 is also true in this case.

5.3 Application of the heuristic

Wehave already seen in (1.2) that the surfaceU can containA
1-curves overZ, depend-

ing on the choice of k. (In fact, theA
1-curves of degree atmost 4 have all been identified

by Segre [42, Thm. XII].) Thus, we let N ◦
U (B) be the counting function defined in

(1.9), whereU (Z)◦ is obtained by removing those points inU (Z) that are contained in
any such curve.We are now ready to reveal what our heuristic says about N ◦

U (B)when
k is not a cube, so that �U = 0 and b = 1 in Heuristic 3.10. On applying Lemma 5.1,
we are therefore led to the following expectation, which fully recovers Heath-Brown’s
heuristic [24].

Heuristic 5.2 Let k ∈ Z be a non-cube that is not congruent to±4 mod 9. Let U ⊂ A
3

be the cubic surface defined by (1.1). Then

N ◦
U (B) ∼ 
( 13 )

3

π
√
3

·
∏
p

σp · log B,

as B → ∞. Explicit expressions for σp are given by (5.2)–(5.5) when k is cube-free.

When k is not a cube, the arithmetic of U has been studied by Colliot-Thélène
and Wittenberg [16], with the aim of understanding the effect of the Brauer group
on the integral Hasse principle. In this setting, it follows from [16, Props. 2.1 and
3.1] that Br(U )/Br(Q) ∼= Z/3Z. Although it is found in [16, Thm. 4.1] that there is
no obstruction to the Hasse principle, it can certainly happen that the Brauer group
obstructs strong approximation. When k = 3, for example, it was discovered by
Cassels [9] that any point (x, y, z) ∈ U (Z) must satisfy x ≡ y ≡ z mod 9. (This is
explained by the Brauer–Manin obstruction in [16, Remark 5.7].) In general, for any
cube-free k ∈ Z, letA be a non-trivial class of the Brauer group from [16, Prop. 2.1].
For any prime p �= 3 such that vp(k) = 0, the evaluation of A at any local point at
p is equal to 0 since both the surface and the class A have good reduction at such
primes. Thus there is no obstruction to strong approximation at these primes. On
the other hand, it follows from [16, Prop. 4.6] that there is an obstruction to strong
approximation at any prime p �= 3 for which vp(k) ∈ {1, 2} and that these are the
only obstructions. It is natural to expect that the the local factors σp in Heuristic 5.2
should be modified to take into account the possible failures of strong approximation
that occur when p | 3k and we conjecture that Heuristic 1.2 holds with γU = 3 and
V = (D(R) ×U (Afin

Z
))BrU , where the pairing with Br(U ) ∼= Br(X) is the restriction

of the usual Brauer–Manin pairing on X(AQ). In their work [5, Sec. 2A], Booker
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and Sutherland have provided numerical evidence that the constant in Heuristic 5.2 is
correct on average, and so we expect that Brauer–Manin obstruction cuts out 1

3 of the
adelic points, as for the case k = 3.

6 Sums of cubes: higher rank

We proceed by investigating N ◦
U (B) for the polynomial (1.1) when k is a cube, and

secondly, for the polynomial f (x, y, z) = x3 + ky3 + kz3 − 1 when k > 1 is a
square-free integer. In both cases we have b = 1. We shall find that �U = 3 in the
former case and �U = 2 in the latter.

6.1 Representations of a cube as a sum of three cubes

We begin by studying the cubic surface U ⊂ A
3 defined by (1.1) when k is a cube,

having already seen in (5.1) that �U = 3. Thus it follows from Conjecture 1.1 that
N ◦
U (B) = O((log B)4). It is natural to appeal to Theorem 3.9 in order to get an

analogue of Heuristic 5.2 for the case that k is a cube. On returning to the setting of
Proposition 3.2, we have ζ(s, D) = ζ(s). Moreover, if X ⊂ P

3 is the compactification
ofU , then it follows fromLemma 3.3 and Proposition 3.6 in [39] that L(s,Pic(XQ)) =
ζ(s)ζK (s)3, where ζK (s) is the Dedekind zeta function associated to K = Q(

√−3).
But ζK (s) = ζ(s)L(s, χ), where L(s, χ) is the Dirichlet L-function associated to the
real Dirichlet character

χ(n) =
{

(−3
n ) if 3 � n,

0 if 3 | n. (6.1)

It therefore follows that L(s,Pic(XQ)) = ζ(s)4L(s, χ)3, whence

λ0 = lim
s→0

s3ζ(s + 1)3L(s + 1, χ)3 = L(1, χ)3 = π3

34
√
3
,

by Dirichlet’s class number formula. Moreover,

λp = ζp(1, D)L p(1,Pic(XQ))−1 =
(
1 − 1

p

)3 (
1 − χ(p)

p

)3

.

Thus Theorem 3.9 suggests the heuristic

N ◦
U (B) ∼ λ0

∏
p

λpσp · r(B),

where

r(B) =
( 3
2

)3
J0(B)(log B)3

3! −
( 3
2

)2
J1(B)(log B)2

2! +
( 3
2

)
J2(B) log B

2! − J3(B)

3! .
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But it follows from Lemma 5.1 that r(B) ∼ C(log B)4, with

C =
( 3
2

)3
κ0

6
−
( 3
2

)2
κ1

2
+
( 3
2

)
κ2

2
− κ3

6
= 0.

Thus we seem to run into trouble when applying our circle method heuristic to this
particular case.

Instead, we appeal to Heuristic 1.2. When k is a cube it follows from Segre [42] that
the compactification X ⊂ P

3 is Q-rational. In particular, the Brauer group Br(X) is
trivial. Since we also have Br(U ) ∼= Br(X), by [16, Prop. 3.1], it follows that Brauer
group considerations don’t require us to make any adjustment to the leading constant.
In this way, on recalling Lemma 5.1, we are led to expect that

N ◦
U (B) ∼ γU · π2
( 13 )

3

35
·
∏
p

(
1 − 1

p

)3 (
1 − χ(p)

p

)3

σp · (log B)4 (6.2)

for some γU ∈ Q>0, where σp = lim�→∞ p−2�ν(p�).
We proceed to study this numerically when k = 1. We shall need to remove the

set of integral points lying on the infinite family of A
1-curves found by Lehmer [30].

Coccia has shown that this set is thin [13, p. 371], while its complement is not [13,
Thm. 8]. We can easily get explicit expressions for the local densities σp in this case.
Thus it follows from (5.2) that σ3 = ν(27)/272 = 2. If p �= 3 we can assess σp via
(5.3) and (5.5), which leads to the expression

σp = 1 + 3(1 + χ(p))

p
− ap(1 + χ(p))

2p2
.

The expectation N ◦
U (B) ∼ γU · c · (log B)4 now follows from (6.2), with

c = 56π2
( 13 )
3

310
·

∏
p≡2 mod 3

(
1 − 1

p2

)3 ∏
p≡1 mod 3

(
1 − 1

p

)6 (
1 + 6

p
− ap

p2

)
.

Evaluating the Euler product for p � 108 results in c ≈ 0.0958.
Based on his work with Booker, Sutherland has determined all integer solutions

of x3 + y3 + z3 = 1 with max{|x | , |y| , |z|} � Bmax = 3
√
2 · 1015, excluding those

on lines. We filtered out solutions on the first three embedded A
1-curves that were

discovered by Lehmer [30, Thm. A]. The remaining curves have degree � 22 and
contribute negligibly many points. Let N (B) denote the contribution to NU (B) from
the points not on one of the three curves of lowest degree.Wedetermined a least squares
linear regression of log N (B) with respect to log log B. In this, as in all regressions
in this paper, the input is the unweighted set of vectors (log log H(P), log N (H(P))

such that P is an integral point with
√
Bmax � H(P) � Bmax . In this way, we obtain

the estimate
log N (B) ≈ σ log log B + δ,
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Fig. 1 A comparison of N (B) and a linear fit with the heuristic

Fig. 2 A comparison of N (B) with c′(log B)4

with σ = 3.75 and δ = −3.48, as illustrated in Fig. 1. This seems to be compatible
with (6.2), which predicts σ = 4. We will take γU = 7

72 in (6.2), which yields the
modified constant c′ = 7

72 · c ≈ 0.00931. The estimate

cexp = N (Bmax)

(log Bmax)4
≈ 0.013

for the leading constant is roughly four thirds the size of this prediction, though as
reflected in Fig. 2, it most likely overestimates the true leading constant. In summary,
the modified leading constant seems to bring the prediction closer to the actual data.
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It remains to justify the numerical value γU = 7
72 in (6.2). In the setting of rational

points on Fano varieties, as in (3.16) (and further described in [37, p. 335]), Peyre’s
prediction for the leading constant involves a factor αX that depends on the geometry
of the effective cone Eff(X) ⊂ Pic(X)R

∼= R
4. Denoting by Eff(X)∨ ⊂ Pic(X)∗

R
the

dual of this cone, it can be described as an integral

αX = 1

3!
∫

Eff(X)∨
e−〈t,ω∨

X 〉, (6.3)

or as a volume
αX = volH {t ∈ Eff(X)∨ : 〈t, ω∨

X 〉 = 1}, (6.4)

for the hyperplane volume normalised by ωX and the Picard lattice. More generally,
as explained by Batyrev and Tschinkel [2, Def. 2.3.13], for arbitrary height functions
HL associated with a metrised line bundle L such that ω∨

X = L⊗a is a multiple of it,
the anticanonical bundle ω∨

X has to be replaced by L in both formulas.
In the context of integral points, formulae such as those described by Santens [41,

Conj. 6.6 and Thm. 6.11] and Wilsch [48, Sec. 2.5] have the feature that the effective
cone appearing in (6.3) and (6.4) needs to be replaced by that of a certain subvariety V
that depends on intersection properties of the boundary divisor D. If all components
of D share a real point, however, then this subvariety is simply V = X , by [48,
Rem. 2.2.9 (i)]. Moreover, the log anticanonical bundle ωX (D)∨ assumes the role of
the canonical bundle in this setting. For the Fermat cubic, the bundle associated with
the height function H(x, y, z) = max{|x |, |y|, |z|, 1} is O(1) ∼= ω∨

X . Since the log
anticanonical bundle is its multiple ωX (D)∨ ∼= OX ∼= ω⊗0

X , it would seem natural to
include the factor αX = 7

18 , as determined by Peyre and Tschinkel [39, Prop. 6.1].
However, one further modification seems prudent. When αX appears in its form (6.3),
the factor 1

3! comes from an application of Cauchy’s residue theorem to s−1Z(s)Bs

for a suitable meromorphic function Z(s) whose right-most pole is at s = 1 and is
of order 4. This results in an expected main term of order B(log B)3 in the Manin
conjecture for X . If such a pole is at s = 0 then s−1Z(s)Bs has a pole of order 5 at
s = 0, resulting in a main term of order (log B)4 and the relevant factor becomes 1

4!
instead of 1

3! . It therefore seems natural to believe that

γU = 3!
4! · αX = 7

72
.

6.2 An example with Picard rank two

We now consider the smooth cubic surface Uk ⊂ A
3 defined by the polynomial

f (x, y, z) = x3 + ky3 + kz3 − 1, for a square-free integer k > 1. This time, we shall
see thatTheorem3.9 suggests ameaningful heuristic for N ◦

Uk
(B). The compactification

Xk ⊂ P
3 is the smooth cubic surface x30 + ky30 + kz30 = t30 . The geometry of Xk has

been studied by Peyre and Tschinkel [39] and it follows from [39, Prop. 6.1] that
�Xk = 3. The divisor D is the smooth genus 1 curve V (x30 + ky30 + kz30). In particular,
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we have b = 1 and �Uk = �Xk −1 = 2. It follows from [14, Lemme 1] that the Brauer
group Br(Xk) is trivial and from [32, Thm. 1.1] that Br(Uk) ∼= Br(Xk).

6.2.1 Local densities

Adapting Lemma 5.1, it is straightforward to prove that

J�(B) = κ�(log B)�+1 + O((log B)�), (6.5)

in the notation of (3.15), where

κ� = 3�

� + 1
· 
( 13 )

3

π
√
3k2/3

.

Turning to the non-archimedean densities, we have σp = lim�→∞ p−2�ν(p�),with
ν(p�) = #

{
(x, y, z) ∈ (Z/p�

Z)3 : x3 + ky3 + kz3 ≡ 1 mod p�
}
. When p | 3k, the

densities can be calculated using a computer, with the outcome that

σp =
{
1 if p | k and p ≡ 2 mod 3,

3 if p | k and p ≡ 1 mod 3,
(6.6)

and

σ3 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 if k ≡ 0 mod 9,

2 if k ≡ ±1 mod 9,
5
3 if k ≡ ±2 mod 9,

1 if k ≡ ±3 mod 9,
4
3 if k ≡ ±4 mod 9.

(6.7)

Recall that any prime p ≡ 1 mod 3 admits a unique representation as 4p = a2p+27b2p ,
for ap, bp ∈ Z such that ap ≡ 1 mod 3 and bp > 0. We can then write p = ππ in
Q(

√−3), with π = 1
2 (ap + 3bp

√−3). Denote by ω = 1
2 (−1 + √−3), a primitive

cube root of unity.

Lemma 6.1 Let p � 3k. Then

σp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if p ≡ 2 mod 3,

1 + 6
p − ap

p2
if p ≡ 1 mod 3 and ( k

π
)3 = 1,

1 + 3
p + 1

2 (ap+9bp)
p2

if p ≡ 1 mod 3 and ( k
π
)3 = ω,

1 + 3
p + 1

2 (ap−9bp)
p2

if p ≡ 1 mod 3 and ( k
π
)3 = ω2,

where ( ·
π
)3 is the cubic residue symbol associated to π .
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Proof It follows fromHensel’s lemma thatσp = ν(p)/p2.Wecanuse cubic characters
to evaluate ν(p), following the approach in [39, Rem. 4.2] and the various identities
recorded in [27, Chapter 8]. We begin by writing

ν(p) =
∑

χ3
i =1

i=1,2,3

χ1(k
−1)χ2(k

−1)J (χ1, χ2, χ3),

where the sum is over all characters χi : F
∗
p → C

∗ of order dividing 3, and

J (χ1, χ2, χ3) =
∑

u,v,w∈Fp
u+v+w=1

χ1(u)χ2(v)χ3(w)

is the Jacobi sum. If p ≡ 2 mod 3 then there is only the trivial character and it follows
that ν(p) = p2, which gives the result.

Suppose next that p ≡ 1 mod 3. Then χ3
i = 1 if and only if χi ∈ {1, ψ,ψ}, where

ψ(·) = ( ·
π
)3 is the cubic residue symbol associated to π . J (χ1, χ2, χ3) = 0 whenever

precisely one or two of the characters χ1, χ2, χ3 is trivial. Hence

ν(p) = p2 + J (ψ,ψ,ψ)(ψ(k−2) + 2) + J (ψ,ψ,ψ)(ψ(k−2) + 2)

+ J (ψ,ψ,ψ)ψ(k−2) + J (ψ,ψ,ψ)ψ(k−2).

We note that ψ(−1) = 1 since −1 is a cube, and moreover ψ(k−2) = ψ(k) and
ψ(k−2) = ψ(k). On appealing to the standard formulae for Jacobi sums, we therefore
find that J (ψ,ψ,ψ) = τ(ψ)τ(ψ) = pψ(−1) = p, where

τ(ψ) =
∑
t∈Fp

ψ(t)ep(t)

is the Gauss sum. Similarly, J (ψ,ψ,ψ) = p. Moreover, we have

J (ψ,ψ,ψ) = −τ(ψ)3/p = −J (ψ,ψ), J (ψ,ψ,ψ) = −τ(ψ)3/p = −J (ψ,ψ).

Hence it follows that

ν(p)

p2
= 1 + 4 + cp(k)

p
− 2� (J (χ, χ)ψ(k))

p2
,

in the notation of (5.4). Now it follows from [27, Prop. 8.3.4] and its corollary that
J (ψ,ψ) = 1

2 (ap+3bp)+3bpω. Let us write Ak = 2� (J (ψ,ψ)ψ(k)) for simplicity.
If ψ(k) = 1 then Ak = 2�J (ψ,ψ) = ap, as claimed in the lemma. If ψ(k) = ω

then Ak = 2�(ωJ (ψ,ψ)) = − 1
2 (ap + 9bp). Finally, if ψ(k) = ω2 we get Ak =

2�(ω2 J (ψ,ψ)) = − 1
2 (ap − 9bp). ��
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6.2.2 Application of the heuristic

We can adapt the parameterisation of Lehmer [30] to the present setting. On substi-
tuting k�n/3�tn for tn in the Lehmer parametrisation, we are led to infinitely many
A
1-curves of increasing degree. The curves of lowest degree are given parametrically

by
x(t) = 9kt3 + 1, {y(t), z(t)} = {−9kt4 − 3t, 9kt4},

and

x(t) = 2435k3t9 − 32kt3 + 2334k2t6 + 1,

{y(t), z(t)} = {−2435k3t10 − 2434k2t7 − 34kt4 + 3t, 2435k3t10 − 135kt4}.
Let Nk(B) = N ◦

Uk
(B) be the counting function defined in (1.9), where Uk(Z)◦ is

obtained by removing those points in Uk(Z) that are contained in any such curve. We
are now ready to reveal what our heuristic says about Nk(B).

We have already seen that we may take �Uk = 2 and b = 1 in Theorem 3.9.
Returning to Proposition 3.2, we have ζ(s, D) = ζ(s) and it follows from Lemma 3.3
and Proposition 3.6 in [39] that L(s,Pic(Xk,Q)) = ζ(s)2ζK (s)L(s, χ)2, where ζK (s)

is the Dedekind zeta function associated to K = Q(k1/3) and L(s, χ) is the Dirichlet
L-function associated to the real Dirichlet character (6.1). Hence we have F(s) =
ζ(s + 1)ζK (s + 1)L(s + 1, χ)2 F̃(s) in (3.8). But then, on recalling Lemma 3.1, we
see that F̃(0) =∏p λpσp, where

λp =
(
1 − 1

p

)(
1 − χ(p)

p

)2

ζK ,p(1)
−1.

Moroeover,

λ0 = lim
s→0

s2ζ(s + 1)ζK (s + 1)L(s + 1, χ)2 = π2

27
· lim
s→1

(s − 1)ζK (s),

since L(1, χ)2 = π2/27.
Next, we clearly have

r(B) =
( 3
2

)2
J0(B)(log B)2

2! −
( 3
2

)
J1(B) log B

1! + J2(B)

2! ,

in Theorem 3.9. But then (6.5) yields r(B) = C∞(log B)3, with

C∞ =
( 3
2

)2
κ0

2! −
( 3
2

)
κ1

1! + κ2

2! =
√
3
( 13 )

3

8πk2/3
.

Similarly to (5.6), we note that C∞ = 3
8 · μD , where μD is the constant appearing in

Proposition 2.4, related to the real density. In summary, we are led to the following
expectation.
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Fig. 3 A comparison of N (B) with the circle method prediction

Heuristic 6.2 Let k > 1 be a square-free integer and let Uk ⊂ A
3 be the cubic surface

defined by x3 + ky3 + kz3 = 1. Then

Nk(B) ∼ c(k)
circle(log B)3,

as B → ∞, where

c(k)
circle = π
( 13 )

3

72
√
3k2/3

· lim
s→1

(s − 1)ζK (s) ·
∏
p

(
1 − 1

p

)(
1 − χ(p)

p

)2

ζK ,p(1)
−1σp.

Explicit expressions for σp are given by Lemma 6.1 for p � 3k, and by (6.6)–(6.7) for
p | 3k.

6.2.3 Numerical data

We have determined all integer points (x, y, z) ∈ Uk(Z) with max{|x | , |y| , |z|} �
1010, for all square-free integers 2 � k � 1000. We removed all points contained in
the A

1-curves of degrees 4 and 10, that we identified above. The higher degree curves
contribute negligibly and the numerics don’t suggest the presence of any further A

1-
curves of low degree. Let

N (B) =
∑

2�k�1000
k square-free

Nk(B).
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Fig. 4 A comparison of N (B) with (log B)3

Fig. 5 A scatter plot comparing the predicted leading constants to the heuristic leading constants determined
from the data

The sum of the predicted constant over all relevant k is

ccircle =
∑

2�k�1000
k square-free

c(k)
circle ≈ 3.73.

Figure 3 confirms that our prediction is very close to the numerical data. Moreover, a
least squares linear regression of log N (B) against log log B results in a fit

log N (B) ≈ 3.02 log log B + 1.31,
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which suggests the experimental leading constant cexp = exp(1.31) ≈ 3.71. This
agrees with Heuristic 6.2, which predicts slope 3 and leading constant ccircle ≈ 3.73.

In fact, as seen in Fig. 4, both the cumulative counting function N (B) as well as
individual counting functions (depicted for k = 2 and k = 3) align rather well with
the circle method prediction for B � 1010. Moreover, in Fig. 5 we have included a
scatter plot, in which each blue dot represents a surface in the family; on the x-axis is
the prediction for the constant coming from the circle method and on the y-axis is the
ratio N ◦

Uk
(B)/(log B)3, for B = 1010. The correlation is very good. Note that bothC∞

and the product of non-archimedean densities vary significantly with the parameter k,
and the presence of both factors in c(k)

circle is necessary to achieve the correlation seen
in Fig. 5. Indeed, estimating

log(c(k)
exp) ≈ log(c(k)

circle) + μ

results in an R2-value of 0.90, while analogous estimates using only C∞ or
λ0
∏

p λpσp instead of the full circle method constant result in R2-values of 0.40
and 0.38, respectively.

Finally, we compare our findings with Heuristic 1.2, recalling that Br(Uk) is trivial
in this case. Thus Heuristic 1.2 predicts that N ◦

U (B) ∼ γU · τU ,H (V )(log B)3 for
γU ∈ Q>0 and V = D(R) × U (Afin

Z
). If we take γU = 3

8 , we will therefore have

ch = c(k)
circle, in the notation of Heuristic 6.2, whence Conjecture 1.3.

7 The Baragar–Umeda examples

In this section we examine the surfaces appearing in Table 1 that were studied by
Baragar and Umeda [1]. In Fig. 6 we have plotted the integer points of low height on
the first surface in the table. Let U ⊂ A

3 be any surface in Table 1 and let X ⊂ P
3 be

its compactification. In particular X is a clearly a smooth cubic surface. An analysis
of the lines contained in X , similar to the calculations in [15], reveals that �U = 0.
The divisor at infinity is D = X \ U , which is equal to V (dx0y0z0), a union of three
lines

L1 = V (t0, x0), L2 = V (t0, y0), L3 = V (t0, z0) (7.1)

It follows that �U = 0 and b = 2 in Heuristic 3.11, and so the exponent of log B in
the heuristic agrees with the asymptotic formula (1.8).

7.1 The leading constant

We proceed by studying the constant in Heuristic 3.11 and comparing it to the constant
cBU in Table 1, for the different choices of coefficient vectors. We shall find that they
do not agree, even after making natural modifications along the lines suggested in
Heuristic 1.2.
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Fig. 6 Integer points on the surface x2 + 5y2 + 5z2 = 5xyz + 1 of height � 10

7.1.1 The number of solutions modulo p

Henceforth we focus on the surfaces (1.6) for square-free a, b, c, d ∈ N such that
4abc − d2 �= 0 and d is divisible by a, b and c. Moreover, we assume that none
of d2 − 4abc, a(d2 − 4abc), . . . , c(d2 − 4abc) is the square of an integer. These
conditions are clearly satisfied by the six surfaces in Table 1. We let S be the set of
prime divisors of 2abcd(d2 − 4abc).

Let p /∈ S and recall the definition (3.2) of ν(pk). We need to calculate this quan-
tity when k = 1 While it is possible to evaluate ν(p) using (3.6), we shall give an
elementary treatment using character sums, based on the expression

ν(p) = p2 + 1

p

∑
h∈F∗

p

∑
x,y,z∈Fp

ep (h f (x, y, z)) . (7.2)

We will need to recollect some relevant facts about character sums. Let A, B,C ∈ Z.
The quadratic Gauss sum is

∑
x∈Fp

ep(Ax
2 + Bx) = εp

√
p

(
A

p

)
ep(−4AB2), if p � 2A, (7.3)

where 4A is the multiplicative inverse of 4A modulo p and

εp =
{
1 if p ≡ 1 mod 4,

i if p ≡ 3 mod 4.
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When B = 0 and p � 2A, we note that the sum on the left hand side of (7.3) can be
written in the equivalent form

∑
x∈Fp

ep(Ax
2) =

∑
x∈Fp

(
1 +

(
x

p

))
ep(Ax) =

∑
x∈Fp

(
x

p

)
ep(Ax).

Next, the Legendre sum is

∑
x∈Fp

(
Ax2 + Bx + C

p

)
=
{

−( A
p ) if p � A and p � B2 − 4AC ,

(p − 1)( A
p ) if p � A and p | B2 − 4AC .

(7.4)

We are now ready to reveal our calculation of ν(p).

Lemma 7.1 For any p /∈ S, we have

ν(p)

p2
= 1 + 1

p

(
d2 − 4abc

p

)(
1 +

(
a

p

)
+
(
b

p

)
+
(
c

p

))
+ 1

p2
.

Proof Recall from (1.6) that f (x, y, z) = ax2 + by2 + cz2 − dxyz − 1. Applying the
formula (7.3) for Gauss sums in (7.2), we deduce that

ν(p) = p2 + εp√
p

∑
h∈F∗

p

(
ha

p

) ∑
y,z∈Fp

ep
(
h(by2 + cz2 − 1 − 4ad2y2z2)

)

= p2 + εp√
p

∑
h∈F∗

p

(
ha

p

) ∑
z∈Fp

ep
(
h(cz2 − 1)

) ∑
y∈Fp

ep
(
hy2(b − 4ad2z2)

)
.

Next we evaluate the sum over y. If b − 4ad2z2 �≡ 0 mod p then the inner sum is

εp
√
p( h(b−4ad2z2)

p ) by (7.3). Alternatively, it takes the value p. Thus

ν(p) = p2 + �1 + �2, (7.5)

where

�1 = ε2p

(
a

p

) ∑
z∈Fp

(
b − 4ad2z2

p

)
cp
(
cz2 − 1

)

and

�2 = εp
√
p
∑
h∈F∗

p

(
ha

p

) ∑
z∈Fp

b−4ad2z2≡0 mod p

ep
(
h(cz2 − 1)

)
.
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It follows from (3.4) that

�1 = ε2p

(
a

p

)⎛
⎝−

∑
z∈Fp

(
b − 4ad2z2

p

)
+ p

(
b − 4acd2

p

)(
1 +

(
c

p

))⎞
⎠ .

We evaluate the sum over z by appealing to (7.4). This yields

−
∑
z∈Fp

(
b − 4ad2z2

p

)
=
(

−4ad2

p

)
=
(−a

p

)
.

Thus

�1 = ε2p

(
a

p

)(−a

p

)
+ pε2p

(
ab − 4cd2

p

)(
1 +

(
c

p

))

= 1 + p

(
d2 − 4abc

p

)(
1 +

(
c

p

))
,

since ε2p = (−1
p ).

Next, we see that

�2 = εp
√
p
∑
h∈Fp

(
ha

p

)
ep
(
h(4abcd

2 − 1)
)(

1 +
(
ab

p

))

= εp
√
p

((
a

p

)
+
(
b

p

)) ∑
h∈Fp

(
h

p

)
ep
(
h(4abcd

2 − 1)
)

.

The inner sum is another Gauss sum and can be evaluated using (7.3). Thus

�2 = p

(
d2 − 4abc

p

)((
a

p

)
+
(
b

p

))
.

Combining our expressions for �1 and �2 in (7.5) and dividing by p2, we arrive at
the statement of the lemma. ��

7.1.2 Non-archimedean densities

Throughout this subsection, let k = d2 −4abc and let S be the set of prime divisors of
2abcdk. It is convenient to define Dirichlet characters χ1, . . . , χ4 via the Kronecker

symbols χi (n) =
(
Di
n

)
, where Di = disc(Ki ), for

K1 = Q(
√
k), K2 = Q(

√
ka), K3 = Q(

√
kb), K3 = Q(

√
kc).
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In particular, we have χ1(p) = ( d
2−4abc

p ) and

χ2(p) = χ1(p)

(
a

p

)
, χ3(p) = χ1(p)

(
b

p

)
, χ4(p) = χ1(p)

(
c

p

)
,

for p /∈ S. Thus Lemma 7.1 yields

ν(p)

p2
= 1 + χ1(p) + χ2(p) + χ3(p) + χ4(p)

p
+ 1

p2
, (7.6)

for any such prime. It follows from (3.3) that

σp(s) = 1 + χ1(p) + χ2(p) + χ3(p) + χ4(p)

ps+1 + 1

ps+2 .

Define λ(s) = L(s, χ1)L(s, χ2)L(s, χ3)L(s, χ4) and

λp(s) = (L p(s, χ1)L p(s, χ2)L p(s, χ3)L p(s, χ4))
−1.

With this notation we have

F(s) =
∏
p

σp(s) = λ(s + 1)
∏
p

λp(s + 1)σp(s)

in Lemma 3.1, for �(s) > 2. Now

λp(s + 1)σp(s) =
(
1 − χ1(p)

ps+1

)
. . .

(
1 − χ4(p)

ps+1

)

×
(
1 + χ1(p) + χ2(p) + χ3(p) + χ4(p)

ps+1 + 1

ps+2

)
, (7.7)

for p /∈ S, and so the Euler product
∏

p λp(s + 1)σp(s) converges absolutely for

�(s) > − 1
2 . In particular, we have

lim
s→0

(
s�U F(s)

) = F(0) = λ(1)
∏
p

λp(1)σp =
∏
p

σp. (7.8)

This expression could also have been deduced from Proposition 3.2, but we have
chosen to present an explicit derivation using Dirichlet L-functions.

7.1.3 The expected leading constant

We are now ready to record an explicit expression for the expected leading constant
ccircle, say, in Heuristic 3.11, with �U = 0 and b = 2. Combining Lemma 2.5 with
(7.8), it follows that

ccircle = 6

d
· λ(1) · cS · cSc , (7.9)
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Table 2 The circle method
prediction and a comparison to
the actual leading constant

ccircle ccircle/cBU

(i) 2.997816 0.5734700

(ii) 2.997094 1.0107957

(iii) 1.484675 0.6015930

(iv) 2.397675 0.5910831

(v) 1.16853 0.4686900

(vi) 3.331807 0.6770839

with
cS =

∏
p∈S

λp(1)σp and cSc =
∏
p/∈S

λp(1)σp.

We determine λ(1) using Dirichlet’s class number formula, cS by a computer search
for points modulo small powers of p ∈ S, and cSc by multiplying the factors λp(1)σp

for p < 107. (Note that the latter are obtain by taking s = 0 in (7.7).) The results of
these computations are summarised in Table 2.

7.2 Modified expectations

For each of the surfaces in Table 1, we note thatU (R) has five connected components:
one bounded component and four unbounded ones. This is illustrated in Fig. 6 for
the first surface in the table. On the unbounded components, we have xyz > 0, and
the four components can be distinguished by imposing conditions on the signs of
the variables that are compatible with this observation. Denote by U0 the unbounded
component with x, y, z > 0. Due to the symmetry of the equation, it suffices to study
this component.

7.2.1 Hensel’s lemma and the place 2

While not a failure of strong approximation, we make the following observation.

Lemma 7.2 Let U ⊂ A
3 be one of the surfaces in Table 1. Then the map

U(Z2) → U(Z/2kZ)

is not surjective for any k. Indeed, its image consists of half the points in U(Z/2kZ) if
k � 3.

Proof Let k � 2, and let (x, y, z) be a solution modulo 2k . Then all eight points of
the form (x + δ12k−1, y + δ22k−1, z + δ32k−1) with δi ∈ {0, 1} are solutions modulo
2k . Indeed, changing x by 2k−1 results in

f (x + 2k−1, y, z) = a(x + 2k−1)2 + by2 + cz2 − d(x + 2k−1)yz − 1

= f (x, y, z) + 2kax + 22k−2a + d2k−1yz. (7.10)
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Clearly, 2k divides 2kax + 22k−2a. In case (i), precisely two of x , y, and z are even so
that 2 | yz, while in the remaining cases, d is even, so that 2k | d2k−1yz in any case.
Hence, f (x + 2k−1, y, z) ≡ f (x, y, z) ≡ 0 mod 2k , and modifications of y or z can
be treated analogously.

Let the parameters a, b, c, d be as in case (i) for now. If (x, y, z) is a solutionmodulo
2k , then precisely one of x, y, z is odd, say x (the other two cases are analogous). We
note that 4 | yz by the assumption on the parities of the coordinates, while 2k+1 | 22k−2

by the assumption on k, so that (7.10) implies that

f (x + 2k−1, y, z) − f (x, y, z) ≡ 2kax ≡ 2k mod 2k+1,

noting that both a and x are odd by assumption for the second equivalence. Using
that f (x, y, z) ≡ f (x + 2k−1, y, z) ≡ 0 mod 2k , this implies that precisely one of
f (x, y, z) and f (x + 2k−1, y, z) vanishes modulo 2k+1. (And then f also vanishes
modulo 2k+1 on the other seven points coinciding with this one modulo 2k , but on
none of the points coinciding with the other one modulo 2k .)

The remaining cases can be dealt with similarly, using that precisely one of x and
y is odd in case (ii), that y is always odd in case (iii), that z is always odd in cases (iv)
and (v), and that x is always odd in case (vi). ��

Remark 7.3 As a consequence of this and by [28, Ch. II, Lem. 6.6], the Tamagawa
volume of each residue disc in U(Z2) modulo 2k is 21−2k . (Note that this makes
Lemma 7.2 compatible with [6, Lem. 1.8.1].) Thus, whenever we count points in the
image U(Z) → U(Z/mZ) with 2 | m, we shall multiply the result by 2 when using it
as part of our modified leading constant.

On the other hand, for odd primes in S, with the help of a computer, we find that
each point P modulo p lifts to a point modulo p2 and the p-adic norm of a least one
of the partial derivatives is at least p−1 at P . Hence, Hensel’s lemma implies that all
points modulo odd primes lift to p-adic points and (3.3) holds for all odd places.

7.2.2 Failures of strong approximation

As usual let U ⊂ A
3 be one of the Baragar–Umeda surfaces (1.6) and let U be its

integral model over U . If a is a square modulo p, then there are obvious solutions
(±1/

√
a, 0, 0) ∈ U(Zp) modulo p. However, the group 
 acts trivially on these,

meaning that they only lift to the trivial solutions (±1, 0, 0) ∈ U(Z) if a ∈ {±1} is
an integral square, or not at all if it is not. (For instance, in case (i), there is a solution
(1, 0, 0) ∈ U(Fp) for all primes pwhich lifts only to (1, 0, 0), while (0, 3, 0) ∈ U(F11)

does not lift at all.) In the light of these observations, we are led to set

U(Z/pkZ)′ =
{
P ∈ U(Z/pkZ) : P �≡ {(α, 0, 0), (0, β, 0), (0, 0, γ )} mod p

for any α, β, γ ∈ Z/pZ

}
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for odd primes p and k � 1, and

U(Z/2kZ)′ =
⎧⎨
⎩P ∈ U(Z/2kZ) :

P ∈ im(U(Z2) → U(Z/2kZ)),

P �≡ {(α, 0, 0), (0, β, 0), (0, 0, γ )} mod 8
for any α, β, γ ∈ Z/8Z

⎫⎬
⎭

for k � 3.
For any integer m > 0, the description of U(Z) ∩ U0 as the orbit of one or more

primitive solutions under the group generated by the Vieta involutions allows us to
efficiently compute the image of

ϕm : U(Z) ∩U0 → U(Z/mZ). (7.11)

Althoughwe omit the details it is possible to extend the work of Colliot-Thélène–Wei–
Xu [15] and Loughran–Mitankin [31], in order to study the Brauer–Manin obstruction
for the Baragar–Umeda surfaces. In the case of the surface (i), for example, one can
check that the Brauer–Manin obstruction precisely cuts out this image form = 23 ·3·5;
in other words,

im ϕ23·3·5 = (U(Z/8Z)′ × U(Z/3Z)′ × U(Z/5Z)′
)BrU

.

(This makes sense, since the pairing is constant over all places different from ∞, 2, 3
and 5, so that the set cut out does not depend on choices of points over the remaining
primes.) Motivated by this, for any of the surfaces in Table 1, we define

mS =
∏
p∈S

pkp , with kp =
{
3 if p = 2,

1 if p ∈ S \ {2}. (7.12)

We can then prove the following facts about im ϕm , for various choices of m ∈ N.

Proposition 7.4 Let Im = im ϕm for m ∈ N. Then

(1) Ip = U(Fp)
′ if p /∈ S and p � 1000, provided U is not as in case (ii) or (iv);

(2) Ipq = Ip × Iq if p, q � 73 are distinct primes and p /∈ S;
(3) Ipql = Ipq × Il , up to reordering of p, q, l, if p, q, l � 23 are distinct primes;
(4) Im = Im/mS × ImS for m = 23 · 3 · · · 11; and
(5) #Im·mS = m2#ImS , where m =∏p∈S p.

Proof These equalities are established by determining the respective orbits using a
computer. More precisely, forU as in case (ii), the first equality fails for p ≡ ±1 mod
24, and for U as in case (iv), the behaviour seems to depend on p modulo 120. The
second computation reveals failures of strong approximation for precisely one pair
(p, q) with p, q ∈ S in all cases except (iv), similar to the one in case (i) that is
explained by the Brauer–Manin obstruction. ��

We expect that the failures of strong approximation encountered in the numerical
analysis of part (2) of Proposition 7.4 are all explained by the Brauer–Manin obstruc-
tion.
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7.2.3 The modified constant

Based on our observations in the previous section, we propose modifying our constant
along the lines of Heuristic 1.2. Let P1, P2, P3 be the three vertices of the triangle at
infinity. Let mS be defined by (7.12) and recall the definition (7.11) of the map ϕm ,
for any m ∈ N. We apply Heuristic 1.2 with the set

V0 = {P1, P2, P3} × π−1
mS

(
im ϕmS

)×
∏
p/∈S

U(Fp)
′,

where πk : ∏p|k U(Zp) → U(Z/kZ) is the reduction modulo k, for any k ∈ N. Note
that taking a different unbounded component Ui to U0 would give a different set Vi
of equal volume. We do not take the union, however, since the set V0 only approaches
each vertex of the triangle at infinity from one of the four possible directions, so in
fact the resulting volume would be 1

4τU ,H (V0 ∪ V1 ∪ V2 ∪ V3) = τU ,H (V0).
We proceed to calculate the value of τU ,H (V0). Let

c′
S = 2

# im (U(Z) ∩U0 → U(Z/mSZ))

m2
S

∏
p∈S

λp(1),

noting that the leading 2 is a consequence of Remark 7.3. For p /∈ S, we set

σ ′
p = #U(Fp)

′

p2
. (7.13)

Explicitly, on modifying (7.6) to remove the solutions (±√
a, 0, 0), etc., if they exist,

we find that

σ ′
p = 1 + χ1(p) + χ2(p) + χ3(p) + χ4(p)

p
−
(
2 +

(
a

p

)
+
(
b

p

)
+
(
c

p

))
1

p2
.

We set
c′
Sc =

∏
p/∈S

λp(1)σ
′
p.

Then we are led to modify the circle method constant in (7.9) to

c′
circle = 6

d
· λ(1) · c′

S · c′
Sc .

Numerical approximations of these new constants and a comparison to the constants
in Table 1 are recorded in Table 3. (It is interesting to note that our modified circle
method constant is always smaller than the actual constant.)

Recalling that not all points counted in (7.13) lift to Z-points in cases (ii) and (iv),
we further set

c′′
Sc =

∏
p/∈S

λp(1)
# im(U(Z) ∩U0 → U(Fp))

p2
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Table 3 The modified expected
constant and a comparison to the
actual leading constant

c′circle c′′circle c′circle/cBU c′′circle/cBU

(i) 0.8127795 0.1554814

(ii) 0.6682904 0.63 0.2253867 0.21

(iii) 0.5012050 0.2030892

(iv) 1.038439 0.51 0.2559995 0.13

(v) 0.4472312 0.1793816

(vi) 0.7655632 0.1555764

and arrive at the modified constant

c′′
circle = 6

d
· λ(1) · c′

S · c′′
Sc ,

by computing the images for primes p < 103. It follows from Proposition 7.4 that
this modification does not make a difference in cases (i), (iii), (v) and (vi), except for
a reduction in the bound for p that we can use to numerically calculate it.

It is interesting to speculate on the constant γU ∈ Q>0 in Heuristic 1.2, led by
the situation (3.16) for rational points on Fano varieties. An integral variant of the
α-constant has been described by Wilsch [48, Def. 2.2.8] for split log Fano varieties,
but this rational number is the same for the six surfaces considered here, since the
relevant cones are all isometric. Turning to the β-constant, it is possible to expand
on the arguments in [15] to deduce that the algebraic part of the Brauer group up to
constants has order 8 in cases (i) and (vi), and order 4 in the remaining cases. We note
that the quotients c′

circle/cBU are not integers, nor are they rational numbers of small
height. Thus Table 3 does not seem to be compatible with a version of Heuristic 1.2
with γU of small height.

7.3 Equidistribution

As a consequence of the failures of strong approximation, the equidistribution property
also fails. However, we can still ask about equidistribution to the uniform probability
measure on the image of the map ϕm in (7.11). In other words, we can ask whether
a variant of the relative Hardy–Littlewood property holds, as defined by Borovoi and
Rudnick [6, Def. 2.3], with respect to the density function δU(Z), which is the indicator
function of the closure of U(Z) in the adelic points U(AZ,fin) = ∏

p U(Zp). In fact,
the relative Hardy–Littlewood property fails: there are infinitely many places at which
strong approximation fails, and so δU(Z) is not locally constant. However, it is still
measurable, and it is natural to investigate this weaker property.

We numerically tested equidistribution of integral points modulo m, where m ∈
{8, 3, 5, 7}. This set always includes all primes in S and at least one place not in S.
In cases (ii), (v) and (vi), there is a failure of strong approximation simultaneously
involving the primes 2 and 3; in case (i), there is a failure involving 3 and 5; in case (iii),
there is one involving 2 and 7. To test for joint equidistribution modulo these primes,



Integral points on cubic surfaces: heuristics and numerics Page 53 of 65    81 

Fig. 7 A comparison of the maximal and minimal observed frequencies of reductions modulo m with the
expected frequency

we have thus added m = 24, 15 and 56, respectively. In each case, we computed the
set of integral points of height at most B for B � 101000, which can be done efficiently
using the Vieta involutions, resulting in between 3 · 106 and 7 · 106 points. For m as
before and Pm ∈ im ϕm , we computed the frequencies

p(Pm )
B = #{P ∈ U(Z) ∩U0 : H(P) � B, P ≡ Pm mod m}

#{P ∈ U(Z) ∩U0 : H(P) � B} .

Equidistribution modulo m means that p(Pm )
B → 1/k as B → ∞, where k = # im ϕm

is the number of points modulo m that lift to Z. We thus determined

rm,max
B = k max

Pm∈im ϕm
p(Pm )
B and rm,min

B = k min
Pm∈im ϕm

p(Pm )
B ,

expecting that both quantities converge to 1. The results are recorded in Fig. 7. As
# im ϕm grows likem2,we expect our order statistics to convergemore slowly for larger
values ofm.With that inmind, our results seem compatible with equidistribution, even
though we note that the distributions modulo 8 in cases (iii) and (v) are outliers.
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8 TheMarkoff surface

The Markoff surface is defined by the cubic equation (1.4) and has an A1-singularity
at (0, 0, 0). Over the reals, this singularity is an isolated point, while the remaining
four connected components are smooth. Again, let U0 be the unbounded component
on which x, y, z > 0.

Let X̃ → X be a minimal desingularisation and E its exceptional divisor. Let
� : X̃ → X be a model, let E be the closure of E , let Ũ = �−1U , and let Ũ = �−1U.
We note that the singular point (0, 0, 0) is invariant under the Vieta involutions, both
as an integral point and as an Fp-point. It follows that any integral point on U or Ũ
that reduces to (0, 0, 0) ∈ U(Fp) must be (0, 0, 0) or lie above (0, 0, 0), respectively.

8.1 Non-archimedean local densities

The local densities, adjusted as in Section 7.2, coincide for the Markoff surface and
its minimal desingularisation. More precisely, we note that for all primes, including 2
and 3, the point (0, 0, 0) is the only singular point in U(Fp). In the light of this, we set

U(Fp)
′ = Ũ(Fp)\E(Fp) ∼= {P ∈ Ũ(Fp) : �(P) �= (0, 0, 0)};

this set contains the image of the reductionmapU(Z)∩U0 → U(Fp) and only consists
of smooth points. For p = 2, we computed the image of ϕ2k : U(Z)∩U0 → U(Z/2kZ)

by the same method as in Section 7.2. For 2 � k � 10, it consists of one fourth of the
points in

{P ∈ U(Z/2kZ) : P �≡ (0, 0, 0) mod 2}. (8.1)

In contrast to the observation in Lemma 7.2, this is not a consequence of a failure of
Hensel’s lemma, as all points in the set (8.1) are smooth. Hence, we set

σ2 = # im ϕ4

42
,

without any of the normalisations described in Remark 7.3, and compute this to be
σ2 = 1/4. Computing im ϕm for m as in Proposition 7.4 does not reveal any further
failures of strong approximation. In fact, it follows from recent work of Chen [11,
Thm. 5.58] that the same is true whenm is a product of primes, with each prime larger
than some absolute constant. We are therefore led to set

σp = #U(Fp)
′

p2
,

for odd primes. It follows from [21, Lem. 6.4] (with α = 3 and β = 0) that

σp =
{

8
9 if p = 3,

1 + 3χ(p)
p if p > 3,
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Table 4 The circle method
prediction for the Markoff
surface and a comparison to the
actual leading constant as
determined by Zagier

ccircle ccircle/cZagier

1.256791 0.2897693

where χ(p) = (−1
p ). We have �U = 0. Moreover, setting λp = L p(1, χ)−3 clearly

makes
∏

λpσp absolutely convergent. Letting λ0 = L(1, χ)3, the analytic class num-
ber formula yields λ0 = π3/26.

Remark 8.1 This passage between points on U and a desingularisation only works
because of the exclusion of the singular point (0, 0, 0)modulo all primes. Its preimage
on X̃ is a (−2)-curve E and geometrically isomorphic to P

1. The ranks of Pic X̃ and
Pic Ũ increase by one, so that rk Pic Ũ = 1. As E splits over almost all primes
p, the naïve local densities on Ũ would become 1 + 1+3χ(p)

p over these primes. In
particular, FŨ (s) would have a pole of order 1 at s = 0. A similar heuristic for this
desingularisation would thus predict a growth rate of (log B)3, which is larger than
the (log B)2 obtained by Zagier [49]. Only by modifying the local densities to account
for failures of strong approximation, can we remove this pole and return the expected
order of growth to (log B)2.

8.2 Archimedean local densities

As � is crepant and an isomorphism above the boundary, it follows that we have
OX̃ (�−1(D1 + D2 + D3)) ∼= �∗ωX ∼= ωX̃ . Moreover, it is an isomorphism above the
unbounded real components. Hence, arguing similarly to Lemma 2.5 (with d = 3),
we have c∞ = 2 in (2.11).

8.3 Conclusion

In summary, Proposition 3.2 and Heuristic 3.11 leave us with the prediction NU (B) ∼
ccircle(log B)2, as B → ∞, where

ccircle = 2λ0
∏
p

λpσp = 4π3

35
∏
p>3

(
1 − χ(p)

p

)3 (
1 + 3χ(p)

p

)
.

We computed the Euler product for p < 108 and compared this constant with the
constant 0.180717104712 obtained by Zagier [49]. (Note that, as pointed out in [1,
p. 481], there is a typo in his paper.) Moreover, Zagier counts all ordered, positive
Markoff triples and so his constant has to bemultiplied by 24 to account for symmetries
and signs before comparing it to our expectations. This is summarised in Table 4. We
observe that the results are off by factors in a similar range to those present in Table 3.
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9 Further examples

9.1 A question posed by Harpaz

In [23, Qn. 4.4], Harpaz asks about the number of integral points of bounded height on
the surfacesUk ⊂ A

3 definedby the cubic polynomial f (x, y, z) = (x2−ky2)z−y+1,
for a square-free integer k > 1. It will be useful to recall Harpaz’ compactification,
which is based on the map Uk → P

2 given by (x, y, z) �→ (x : y : 1). This map
factors through the blow-up X of P

2 in the two points (±√
k : 1 : 1). Let D1 = V (z),

D2 = V (x − √
ky), and D3 = V (x + √

ky). Then D = D1 + D2 + D3 is defined
over Q, and Uk is isomorphic to X \ D.

Harpaz proves in [23, Prop. 4.3] that Uk(Z) is Zariski dense whenever the real
quadratic field K = Q(

√
k) has class number one and is such that the reduction map

o×
K → (oK /p)× is surjective for infinitely many prime ideals p of degree 1 over Q.

Moreover, the surfaceUk is smooth and admits a logK3 structure by [23, Ex. 2.13], and
furthermore, its compactification is a del Pezzo surface of degree 7 having geometric
Picard rank 3. Since the boundary is a triangle of three lines whose divisor classes
are linearly independent, so it follows that the geometric Picard group ofUk is trivial.
In particular, we have �Uk = 0 and Br1(Uk)/Br(Q) = 0. Moreover, note that the
components of D intersect pairwise in a real point, so that b = 2. It now follows from
Conjecture 1.1 that N ◦

Uk
(B) = O

(
(log B)2

)
, where the implied constant depends on

k.
We claim that the only A

1-curve over Z is the line z = y − 1 = 0. Suppose for a
contradiction that z �= 0 and that Uk contains the A

1-curve

x = a0t
k + · · · + ak, y = b0t

k + · · · + bk, z = c0t
l + · · · + cl ,

with integer coefficients such that max{|a0|, |b0|} �= 0 and c0 �= 0. Comparing coef-
ficients of t2k+l yields (a20 − kb20)c0 = 0, which implies that a0 = b0 = 0, since
k is square-free. This is a contradiction and so U ◦

k is obtained by removing the line
z = y − 1 = 0. Heuristic 3.11 then gives

N ◦
Uk

(B) ∼ c∞
∏
p

σp · (log B)2, (9.1)

where c∞ is the leading constant in Proposition 2.4 and σp = limk→∞ p−2kν(pk), in
the notation of (3.2).

9.1.1 Real density

In this section we give a direct estimate for the real density μ∞(B), as defined in
(2.4), as B → ∞. However, it turns out that there is an analytic obstruction to the
Zariski density of integral points near certain faces of the Clemens complex of a
desingularisation of the compactification ofUk . The outcome of this is that we should



Integral points on cubic surfaces: heuristics and numerics Page 57 of 65    81 

redefine μ∞(B) to involve only (x, y, z) ∈ Uk(R) for which

min{|x − √
ky|, |x + √

ky|} < 1 < max{|x − √
ky|, |x + √

ky|}, (9.2)

and we redefine c∞ to be the leading constant in the asymptotic formula for this
modified real density. To check this it is convenient to make the change of variables
u = x+√

ky and v = x−√
ky. Ifmax{|u|, |v|} < 1, then |y| = |u−v|/2√k � 1/

√
k,

leaving only the trivial solutions with y = 0. If min{|u|, |v|} > 1, on the other hand,
then |z| = |(y − 1)/uv| � max(|u|, |v|)/|uv| < 1, leaving only the non-dense set of
solutions with small |z|.
Lemma 9.1 We may take c∞ = 4√

k
.

Proof Using the Leray form to calculate the real density, it readily follows that

μ∞(B) =
∫

R
dxdy

|x2 − ky2| ,

whereR ⊂ R
2 is cut out by the inequalities |x |, |y| � B and |y − 1| � B|x2 − ky2|,

together with (9.2). Making the change of variables u = x + √
ky and v = x − √

ky,
we obtain

μ∞(B) = 1

2
√
k

∫

S
dxdy

|uv| ,

where now S ⊂ R
2 is cut out by the inequalities

|u + v| � 2B, |u − v| � 2
√
kB, |u − v − 2

√
k| � 2

√
kB|uv|,

together with min{|u|, |v|} < 1 < max{|u|, |v|}.
Summing over the possible signs of u and v, we deduce that

μ∞(B) = 1

2
√
k

∑
ε1,ε2∈{±1}

∫ 2(1+√
k)B

0

∫ 2(1+√
k)B

0

1S(ε1u, ε2v)

uv
dudv.

We isolate two subregions S1�S2 ⊂ S. Let A > 0 be a large parameter which doesn’t
depend on B and define S1 = ( AB , 1

A

)× (A, B
A

)
and S2 = (A, B

A

)× ( AB , 1
A

)
. Taking

1S(ε1u, ε2v) � 1, the overall contribution to μ∞(B) from

(u, v) ∈ [0, 2(1 + √
k)B]2 \ S1 � S2

is readily found to be O(log B), where the implied constant is allowed to depend on
A and k. Taking A sufficiently large, we clearly have 1S(ε1u, ε2v) = 1 whenever
(u, v) ∈ S1 � S2. Hence

μ∞(B) = 2√
k

∑
i∈{1,2}

∫∫

Si

dudv

uv
= 4√

k
(log B)2 + O(log B),
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with an implied constant that depends on A and k. ��

9.1.2 Non-archimedean densities

Lemma 9.2 Let p be a prime. Then

σp =

⎧⎪⎨
⎪⎩

1 − 1
p2

if p > 2 and ( kp ) = −1,

1 + 1
p2

if p > 2 and ( kp ) = +1,

1 if p | 2k.

Proof Let ν(p) be the number of zeros of f over Fp. It follows from Hensel’s lemma
that σp = ν(p)/p. Applying (7.2), we deduce that

ν(p) = p2 + 1

p

∑
h∈F∗

p

ep(h)
∑

x,y∈Fp

ep(−hy)
∑
z∈Fp

ep
(
h(x2 − ky2)z

)

= p2 +
∑
h∈F∗

p

ep(h)Up(h),

by orthogonality of characters, where

Up(h) =
∑

x,y∈Fp

x2=ky2

ep(−hy).

Suppose first that p � 2k. If ( kp ) = −1 thenUp(h) = 1, since only (x, y) = (0, 0) can

occur. On the other hand, if ( kp ) = +1, then

Up(h) = 1 +
∑
η∈Fp

η2=k

∑
x,y∈F∗

p
x=ηy

ep(−hy) = 1 + 2
∑
y∈F∗

p

ep(−hy) = −1,

since h ∈ F
∗
p. Suppose next that p = 2. Then

U2(h) =
∑

x,y∈F2
x=ky

e2(y) = 0.

Finally, we suppose that p > 2 and p | k. In this case

Up(h) =
∑
y∈Fp

ep(−hy) = 0.

The lemma follows on putting these together and evaluating the sum over h. ��
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Fig. 8 The number of points on Uk for square-free k ∈ [2, 1000] and a linear fit

Fig. 9 Comparison of N (B) with the prediction

9.1.3 Numerical data

CombiningLemmas 9.1 and 9.2 in (9.1), our heuristic leads us to expect that N ◦
Uk

(B) ∼
c(k)
circle(log B), with

c(k)
circle = 4√

k

∏

p�2k

(
1 + ( kp )

p2

)
.

Wecomputed integral points of height atmost 1011 onUk for all square-free integers
k ∈ [2, 1000]. Let

N (B) =
∑

2�k�1000
k square-free

N ◦
Uk

(B).
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Fig. 10 A scatter plot comparing the predicted leading constants to the heuristic leading constants deter-
mined from the data

The sum of the predicted constant over all relevant k is

ccircle =
∑

2�k�1000
k square-free

c(k)
circle ≈ 148.8.

A linear regression of log N (B) against log log B, as in the previous sections, provides
evidence for the exponent 2 of log B (Fig. 8). Based on this, a polynomial regression of
degree 2 suggests a behaviour N (B) = cestimate(log B)2+O(log B), where cestimate =
87. Note that cestimate/ccircle ≈ 3

5 , but we can offer no explanation for this disparity.
This is consistent with taking γU = 3

5 and V = D(R) × U (Afin
Z

) in Heuristic 1.2. In
Fig. 9 we have plotted the difference N (B) − cestimate(log B)2, for B � 1011, which
looks convincingly linear in log B. Finally, in Fig. 10 we have included a scatter plot,
in which each blue dot represents a surface in the family; on the x-axis is an estimated
leading constant and on the y-axis is the circle method prediction for the leading
constant associated to that particular surface. The correlation is rather good and a
similar calculation to that recorded at the end of Section 6.2 results in R2 = 0.84.
This further illustrates that γU ≈ 3

5 is an appropriate value in Heuristic 1.2.

9.2 An example with higher Picard rank

Finally, we compare Conjecture 1.1 with numerical data for a smooth affine cubic
surface of the shape

(ax + 1)(bx + 1) + (cy + 1)(dy + 1) = xyz,
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Fig. 11 Pentagon at infinity

Fig. 12 Configuration of blown
up points, with the images of the
pentagon at infinity labeled

for a, b, c, d ∈ Z. Such a surfaceU = Ua,b,c,d ⊂ A
3 is smooth if (a − b)(c− d) �= 0

and none of a, b, c or d are±1. Let X be the completion ofU inP
3, with homogeneous

coordinates t0, x0, y0, z0, as in Section 7. The divisor at infinity is again a union of
three lines L1, L2, and L3 defined as in (7.1). In particular, b = 2 in Conjecture 1.1.

Next, we note that the point Q = (0 : 0 : 0 : 1) is an A2-singularity. Let X̃ be
a minimal desingularisation. This is a weak del Pezzo surface of degree 3 and so it
has geometric Picard rank 7. As illustrated in Fig. 11, the triangle at infinity becomes
a pentagon on X̃ , formed by the strict transforms of L1, L2, and L3 (still denoted
by the same names) and two (−2)-curves E . The projection away from Q induces a
morphism X̃ → P

2. This morphism is a blow-up of six points, two sets of three on a
line, as in Fig. 12. All negative curves are rational, and those making up D̃ are linearly
independent, whence �U = 2. Moreover, this description of X̃ as a blow-up shows
that E1 + E2 + L1 + L2 + L3 has anticanonical class in the Picard group, and soU is
log K3. Finally, since the five negative curves making up D̃ are linearly independent
in Pic(X̃) = Pic(X̃Q), the subvariety U does not have invertible regular functions,

whence Br(U )/Br(Q) ∼= H1(Q,Pic(UQ)) = 0.

It follows from Conjecture 1.1 that N ◦
U (B) = O

(
(log B)4

)
, and we proceed to

investigate numerically the predicted power of log B. While there is an obstruction as
in [48, Thm. 2.4.1(i)], it only affects three of the minimal strata of D̃, namely those
lying above Q. Thus this obstruction does not change the predicted order of growth,
but merely the leading constant. Let (a, b, c, d) = (−2, 3,−3, 5). Computing all
integral A

1-curves of degree at most 8, we found curves of degrees 1, 2, 3, and 4.
We computed the set of integral points of height at most 2.5 · 1010 on the surface and
filtered out those on the A

1-curves that we found. We ran a least squares estimate to
compare log N (B) and log log B, where N (B) = N ◦

U (B), and we plotted the result
in Fig. 13. This results in an empirical exponent of log B of 1.78, which is much less
than the prediction of 4.
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Fig. 13 The number of points on U(−2,3,−3,5) of height at most B and a linear fit

10 Conclusion

We end this article by summarising the numerical data that we have gathered. All
surfaces that we studied are compatible with Conjecture 1.1. In fact, apart from the
individual surface studied in Section 9.2, all of the examples seem to have an associated
counting function N ◦

U (B) that behaves asymptotically like c(log B)�U+b, for suitable
c > 0, where �U and b are defined in Conjecture 1.1. In the case of the singular
Markoff surface studied in Section 8, this was only true after modifying the heuristic
to account for defects of strong approximation: these defects are big enough to not just
make the product of p-adic densities smaller in size, but they also affect its convergence
properties. It would be interesting to know whether a similar phenomenon, or perhaps
the presence of large lower order terms, can explain the disparity observed in Section
9.2 regarding the exponent of log B.

Turning to the leading constant c, the results of our investigation are more mixed.
While our heuristic specialises to Heath-Brown’s conjecture [24] for sums of three
cubes, for which Booker and Sutherland [5] have provided evidence on average, in
Section 6.1 we supplied a prediction for the surface x3 + y3 + z3 = 1 with less
compelling numerical data. On the other hand, the circle method heuristic aligned
very well with numerical data for the the surfaces x3 + ky3 + kz3 = 1 in Section
6.2. Moreover, in this case, we noted that the circle method heuristic is equivalent to
allowing for an explicit lowheight rational number γU inHeuristic 1.2. For the surfaces
(x2−ky2)z = y−1 in Section 9.1, we saw that the circle method heuristic only agrees
with the numerical data when adjoining a suitable γU -factor, as in Heuristic 1.2.While
in Section 9.1, this correlation is almost exclusively explained by the dependence of
the archimedean volume on the parameter k, in Section 6.2 it is both the Euler product
and the archimedean volume that depend highly on the parameter k.

Finally, for the Markoff surface and its variants studied in Sections 7 and 8, the
circle method prediction became systematically too small after accounting for failures
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of strong approximation, and there is no obvious choice of γU -factor explaining the
discrepancies. We suspect that the presence of a group action (generated by the Vieta
involutions) makes these surfaces incompatible with the circle method.

In summary, we suspect that Heuristic 1.2 is true for most cubic surfaces and that
there are only finitely possibilities for the γU -factor in the moduli space of all affine
cubic surfaces over Q. It would be very interesting to find a geometric interpretation
for its value.
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