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Abstract
We examine population structures for their ability to maintain diversity in neutral evolution. We use the general framework of evolutionary 
graph theory and consider birth–death (bd) and death–birth (db) updating. The population is of size N. Initially all individuals represent 
different types. The basic question is: what is the time TN until one type takes over the population? This time is known as consensus 
time in computer science and as total coalescent time in evolutionary biology. For the complete graph, it is known that TN is quadratic in 
N for db and bd. For the cycle, we prove that TN is cubic in N for db and bd. For the star, we prove that TN is cubic for bd and quasilinear 
(N log N) for db. For the double star, we show that TN is quartic for bd. We derive upper and lower bounds for all undirected graphs for bd 
and db. We also show the Pareto front of graphs (of size N = 8) that maintain diversity the longest for bd and db. Further, we show that 
some graphs that quickly homogenize can maintain high levels of diversity longer than graphs that slowly homogenize. For directed 
graphs, we give simple contracting star-like structures that have superexponential time scales for maintaining diversity.
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Evolution—either by genetic reproduction or by learning—occurs in populations. The structure of a population affects the time scale 
and outcome of evolutionary processes. The propensity of populations to maintain diversity is of great interest in evolutionary biol
ogy, ecology, and social science. Here, we calculate for how long various population structures can maintain diversity under neutral 
evolution. In this setting, diversity is lost by random drift. We give precise results for a large variety of structures. We find that some 
structures have higher-order polynomial or even superexponential timescales for maintaining diversity. For realistic population sizes 
of thousands or millions of individuals, those structures can maintain diversity for times that exceed the lifetime of a universe. 
Therefore, they protect diversity “forever.”
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Introduction
Evolutionary graph theory is a method for studying the effect of 

population structure on evolutionary dynamics (1–9). The individu

als occupy the vertices of graphs, and the edges specify interactions 

between individuals. The special case of a well-mixed population is 

given by a complete graph with identical weights. In the case of con

stant selection, we are interested in the role of population structure 

on suppression/amplification selection effects and evolutionary 

timescales (10–21). Weighted edges can create amplification or sup

pression effects (15, 22, 23). Isothermal graphs have the same fix

ation probability as the well-mixed population (3, 4, 24). 

Unidirectional edges can introduce exceedingly long absorption 

times (25, 26). Even in neutral evolution, details of the evolutionary 

process can heavily affect timescales (27–29). Environments with 

mixed resource abundances have effects on fixation probabilities 

(30, 31). For frequency dependent selection, it is known that some 
graphs and update rules can promote evolution of cooperation (6, 
32–44). Expected absorption times in structured populations have 
also been studied in continuous time (45).

In this article, we analyze graphs for their ability to maintain di
versity in neutral evolution. We consider a population of finite 
size, N. Initially all individuals represent different types. All types 
have the same reproductive rate. We ask: what is the expected 
time, TN, until all individuals descend from the same type. This 
time is known as total coalescence time in biology. For a well- 
mixed population with N individuals, the coalescence time is 
known to be N generations, or N2 reproductive events (46–48). 
Our work builds upon and extends prior studies of absorption 
times in evolutionary dynamics. Iwamasa and Masuda (27) study 
the consensus time of voter models on various graphs. They show 
that for two types on small networks, the barbell and double star 
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graph families maximize the expected absorption time for death– 
birth (db) and birth–death (bd) updating, respectively. Further, 
they calculate the asymptotic expected absorption times for two 
types on those graphs. Diaz et al. (25) present a directed graph 
family that has at least exponential absorption time if one of the 
two types has a fitness advantage. Gao et al. (29) analyze all undir
ected graphs of size N = 6. They compute the absorption time 
starting with two types under neutral evolution and db updating. 
They find that graphs with a bottleneck between two large compo
nents typically have a large absorption time.

In contrast, our study expands the scope to N types and pro
vides rigorous analyses of the fastest and slowest graphs. We 
also examine directed graphs, which can superexponentially 
broaden the diversity timescales. We give upper and lower bounds 
for the diversity time of any undirected or directed graph. In add
ition to our proofs for arbitrarily sized population structures, we 
analyze various evolutionary properties of graphs up to size 
N = 100. In particular, we are concerned not only with the ex
pected time until homogeneity but also the expected number of 
types remaining in the population as a function of time. We exam
ine tradeoffs in diversity time between db and bd updating relative 
to the population structure.

Results
Diversity in structured populations
Consider a population of N individuals. Initially each individual is 
of a different type. Every time step, one individual is selected for 
birth and one individual for death. The individual selected for 
death is removed from the population. The individual selected 
for birth creates a copy of itself at the location of the individual 
that was selected for death. After many steps, the population 
will become homogeneous, which means that all individuals are 
of the same type. Once the population is homogeneous it remains 
so. Thus, homogeneity is an absorbing state. In principle, there are 
N different absorbing states—one for each of the types that 
are present initially. We are interested in calculating the average 
time TN until one of the absorbing states is reached.

Population states with more than one type are called heteroge
neous (or diverse). All heterogeneous states are transient. They 
will be lost after some time. The absorption time TN gives us a meas
ure for the ability of a population structure to maintain diversity.

We are interested in exploring population structures for their 
ability to maintain diversity for extended periods of time. We de
scribe the population structure as a strongly connected directed 
graph G = (V, E). The vertices V denote the locations of individuals 
in the population. The edges E represent possible interactions be
tween the individuals. For any two individuals, u and v, if v is a 
neighbor of u in G, then the offspring of u can replace v. The evo
lutionary dynamics on graphs can be interpreted as biological re
production or learning. In the case of learning, one individual 
becomes a learner and the other a teacher. Then, the learner 
adopts the type of the teacher.

The order of birth and death matters. Under birth–death (bd) 
updating, an individual i is chosen uniformly at random from 
the population to reproduce. Then, an individual j is chosen for 
death uniformly at random from the outgoing neighbors of i. If in
dividual i resides at location u ∈ V and j resides at location v ∈ V, 
then the probability of this event occurring at any step given 
(u, v) ∈ E is

1
N
·

1
deg+ (u)

. (1) 

Here, deg+ (u) represents the number of outgoing neighbors of ver
tex u.

Under death–birth (db) updating, an individual j is chosen uni
formly at random from the population to die. Then, an individual 
i is chosen for birth uniformly at random from the incoming 
neighbors of j. If individual j resides at location v ∈ V and i resides 
at location u ∈ V, then the probability of this event occurring at 
any step given (u, v) ∈ E is

1
N
·

1
deg− (v)

. (2) 

Here, deg− (v) represents the number of incoming neighbors 
of v.

We call a graph undirected (bidirectional) if (u, v) ∈ E implies 
(v, u) ∈ E for all vertices u, v ∈ V. In other words, individuals 
have reciprocal interactions in undirected graphs. Since the num
ber of incoming neighbors is the same as the number of outgoing 
neighbors in an undirected graph, we denote the number of neigh
bors of a vertex u ∈ V in an undirected graph as simply deg (u).

An undirected graph where all vertices have the same number 
of neighbors is called a regular graph. Suppose all vertices in a 
regular graph have D neighbors. Then assuming (u, v) ∈ E, the 
probability that location u ∈ V is selected for birth and location v ∈ 
V is selected for death is given by

1
N
·

1
D
. (3) 

Since this relationship holds regardless of the update rule, ques
tions about diversity on regular graphs are unaffected by the gov
erning dynamics. See Fig. 1 for illustrations of the two update 
rules.

Time of evolution
We want to calculate the time (in number of steps) until the popu
lation becomes homogeneous. Since the population starts with 
maximum diversity, we measure the ability of a population struc
ture to maintain diversity by the expected time until homogeneity 
is reached. We refer to the time until homogeneity as the absorp
tion time. It is important to note that the absorption time of an ob
served bd or db process is a number while the absorption time of a 
population structure is a random variable. We are interested in 
the expected absorption time of various population structures 
(see Figs. 2 and 3 and Table 1 for a few examples).

We measure time as a function of the population size N. Often, 
we are interested in the asymptotics of the time rather than an ex
act expression.

Well-mixed populations
Consider a population structure with N individuals where every 
individual interacts with every other individual. This configur
ation is assumed when analyzing evolutionary dynamics without 
explicit reference to population structure. We represent this well- 
mixed population structure as a complete graph on N vertices 
with self-loops: the edges are the Cartesian product of the vertex 
set by itself. Complete graphs are highly symmetric. Thus, knowl
edge about the frequencies of the various types in the populations 
is sufficient information for calculating the expected absorption 
time.

Consider bd updating and suppose there are currently k types 
in the population. Let λ ≡ (λ1, . . . , λk) denote the vector of abun
dances. We have λ1 + · · · + λk = N. We order the abundances such 
that λ1 ≥ λ2 ≥ · · · ≥ λk > 0.
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Fig. 1. a) An example of a directed graph with various types in the population. b) For bd updating, first an individual is chosen for reproduction and then 
one of its neighbors is chosen to be replaced; here the center vertex is selected for birth and the topmost vertex is selected for death. c) For db updating, 
first an individual i chosen for death (or to update its type) and then one of the neighbors is chosen for reproduction; here the center vertex is selected for 
death and the topmost vertex is selected for birth.

Fig. 2. Absorption times for bd vs db updating for all 11,117 connected undirected graphs with N = 8 vertices. Each dot represents a graph. The positively 
sloped dashed line has unit slope and passes through the dot representing the complete graph; all regular graphs are on this dashed line. The negatively 
sloped dashed line is such that it is the smallest sector that contains all the dots and has apex at the dot that corresponds to the complete graph. Some 
dots are circled with its corresponding graphical representation displayed adjacently. The double star maximizes the bd absorption time. The barbell 
maximizes the db absorption time. The Pareto front (the dashed line segments) connects the two.

Fig. 3. Various undirected graph families on N = 10 vertices: a) the complete graph; b) cycle; c) star; and d) double star. e) Results of average number of 
types remaining in the population, D, at time T, averaged over 250 simulations of bd updating per graph. Each graph has N = 10 vertices. The plot is on a 
log–log scale to accentuate the number of types remaining when the values are close to one another. The horizontal axis begins at T = 1. If D = 1 at a 
particular time T, no dot is drawn. Note that on average the star graph maintains more diversity than the double star graph up until roughly T ≈ 5 × 102. 
See Fig. S1 in the SI Section 11 for the plot when N = 100.

Brewster et al. | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/8/pgaf252/8227157 by library@
ist.ac.at user on 03 Septem

ber 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf252#supplementary-data


During each time step, one of three events occurs: 

(1) the abundances, λ1, . . . , λk, remain exactly the same;
(2) the abundance of one type increases by one, while the abun

dance of another type decreases by one, but the number of 
types in the population remains the same;

(3) the abundance of one type increases by one, the abundance 
of another type decreases by one, and the number of types 
in the population decreases by one.

The process can be described as beginning in a state of maximum 
entropy (λ1 = · · · = λN) and reaching a state of minimum entropy 
(λ1 = N). We show that the expected absorption time of this pro
cess starting from configuration λ is exactly

TN = N2 − N −
􏽘k

i=1

􏽘λi−1

ℓ=1

(N + λi − 2ℓ)ℓ
N − ℓ

. (4) 

One intuitive way to think about the formula is as follows (see 
SI Section 2). Imagine the “histogram” of the partition λ and for 
each h ≥ 0, denote by bh the number of boxes above the line 
y = h. (In particular, b0 = N.) An explicit formula for bh is 
􏽐

i max (λi − h, 0). Then, the expected absorption time from the 
given configuration is

TN = N · N −
􏽘N−1

h=0

bh

N − h

􏼠 􏼡

. (5) 

In the case when k = N (i.e. λ1 = · · · = λN), Eq. 4 yields the expected 
absorption time from maximum diversity as

N · (N − 1). (6) 

If we consider a complete graph with no self-loops, the ex

pected absorption time is (N − 1)2 which is not asymptotically 
different than the expected absorption time with self-loops. 
(See the SI Section 2 for details.) Well-mixed population struc
tures are represented by regular graphs since each vertex has 
the same number of neighbors. Thus, our results under bd dy
namics are the same as the results for db updating. Next, we 
will explore population structures beyond well-mixed 
populations.

Cycles
Consider a population with N individuals whose locations 
form a circle-like structure. Individuals interact with each of 
their two adjacent neighbors. This population structure is rep
resented by an undirected cycle graph. A cycle is a regular 
graph since each vertex has exactly two neighbors. Types are 
always clustered together on the vertices of the cycle. As indi
viduals give birth and die, some clusters take over others. In 
many steps of the selection process on the cycle, individuals 
in the interior of the cluster are chosen for reproduction; the 
individual is only able to reproduce to locations where individ
uals of its type already reside. Thus, no change in the popula
tion configuration occurs. When the individual selected for 
birth resides on a boundary between differing types, there is 
a 50% chance that the configuration of the population changes. 
These updates are called active steps.

Individuals of the same type are always clustered together on 
the cycle. Using similar logic to the case of the well-mixed popula
tion, it suffices to know only the frequencies of the types and their 
relative locations around the perimeter of the cycle. Recall 
bh =

􏽐
i max (λi − h, 0). For the expected absorption time from giv

en frequencies, we arrive at

TN =
(N + 1)N(N − 1)

6
−
􏽘N−1

h=0

bh · h. (7) 

When the process starts with maximum diversity, this results in 
the expected absorption time as simply

TN =
(N + 1)N(N − 1)

6
. (8) 

Some existing results for cycles are known (50). See the SI Section 
3 for more details.

So far, we have examined regular graphs. Next, we will analyze 
graphs that are far from regular.

Stars
A star graph has one central vertex and multiple vertices con
nected to the central vertex. For a star with N vertices we denote 
n as the number of noncentral vertices so that n + 1 = N. More for
mally, the central vertex c ∈ V is connected to the remaining ver
tices v1, . . . , vn ∈ V bidirectionally. These graphs are not regular 
because the central vertex has degree n whereas the remaining 
vertices have degree 1. However, stars are very similar to complete 
graphs in the following sense: the noncentral vertices are con
nected to each other with paths of length two. There are two types 
of events that can occur on a star: 

1. a vertex on the periphery is selected for birth, or
2. the central vertex is selected for birth.

First, consider bd updating on a star. The case of event 1 occurs 
with probability 1 − 1/N. The only place for a vertex on the periph
ery to give birth is into the center. On the other hand, the case of 
event 2 happens with probability only 1/N. When the center is se
lected for reproduction, it places its offspring at a vertex chosen 
uniformly at random from the periphery. On average, the center 
reproduces every N steps. The type of the individual at the central 
vertex at the time it gives birth is highly likely to be directly pro
portional to the relative abundances of the types on the periphery. 
Thus the process is akin to the complete graph with each step 
scaled by a factor of N. We show that the expected absorption 

Table 1. Asymptotic absorption times for various graph families 
under bd and db updating.

Graph family bd time db time

Undirected Complete Θ(N2) Θ(N2)
Cycle Θ(N3) Θ(N3)
Star Θ(N3) Θ(N logN)

Double star Θ(N4) –
Barbell – Ω(N4)

Undirected 
graph

O(N6 logN), 
Ω(N logN)

O(N5 logN), 
Ω(N logN)

Directed Contracting star 2Θ(N logN) 2Θ(N logN)

Directed graph 2O(N logN) 2O(N logN) , Ω(N logN)

We use O, Ω, and Θ to represent asymptotic upper, lower, and tight bounds, 
respectively (see Section 1.2 of (49) for formal definitions). For the double star, 
we have no estimate for db updating. For the barbell, we have no estimate for bd 
updating. For bd updating, there is a gap between the slowest undirected family 
of graphs we know (double star) and our theoretical upper bound for any 
undirected graph. Similarly, for db updating there is a gap between the slowest 
undirected family of graphs we know (barbell) and our theoretical upper bound 
for any undirected graph. In both cases, whether our analysis is not tight 
enough or there are even slower graph families that we have not found is 
unknown. In contrast, we find that contracting stars are the slowest of the 
directed graphs.
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time of a star on N vertices is Θ(N3). We conjecture that the exact 
expected absorption time under bd updating is

TN = n3 − n2 + n ·Hn (9) 

The expression Hn represents the sum of the first n terms of the 

harmonic series 
1
1

+
1
2

+
1
3

+ · · ·. See the SI Section 5 for more 

details.
Next, consider db updating on a star. The case of event 1 only 

happens when the central vertex is selected for death. This 
event occurs with probability 1/N. On the other hand, event 2 oc
curs with remaining probability. Let i be the number of types in 
the periphery different from the center. There are two kinds of 
active steps. Either the center is replaced by a different type or 
the center reproduces onto a different type. The former event 
has probability (1/N) · (i/n) and the latter event has probability 
i/N. The ratio between the two events is 1/n. Thus in n active 
steps, the center is not replaced by a different type with 
probability

1 −
1
N

􏼒 􏼓n

≥ 1/e. (10) 

If the center is replaced, we restart the process. That means with 
constant probability, the process ends in n active steps. 
Counting all steps gives a logarithmic slowdown yielding an ex
pected absorption time of Θ(N log N) under db dynamics. See the 
SI Section 5 for details.

Stars promote diversity under bd updating and demote diver
sity under db updating.

Double stars
A double star graph is a bidirectional graph composed by joining 
two equally sized stars together by their central vertices. For sim
plicity, we consider only double stars with an even number of ver
tices. We denote n as the number of noncentral nodes on one star. 
The total number of nodes in a double star is N = 2n + 2. Similar to 
stars, double stars are also nonregular graphs since the two cen
tral vertices have degree n + 1 = N/2 and the remaining nodes 
have degree 1. We consider bd updating. Compared to the star, 
there is an additional event that could happen: one center could 
give birth onto the other center. This invasion attempt happens 
with probability roughly

2 ·
1
N
·

1
N/2

= Θ N−2( 􏼁
. (11) 

Suppose a star has a homogeneous population except for a single 
differing type at its central vertex. It is known that under bd 

updating, the probability the individual initially placed at the cen
ter will take over the population is

1
n

1
n + n

=
1

1 + n2 = Θ N−2( 􏼁
. (12) 

This probability is known as the fixation probability (see Ref. (4)). 
Successful invasion is rare. If the individual initially placed at 
the center goes extinct, this likely happens quickly, in a constant 
number of steps. Since both an invasion attempt and fixation 

must occur, a successful invasion takes roughly Θ(N4) steps on 
average. Thus, the typical evolution of the population on a double 
star proceeds as follows: 

1. Evolution occurs primarily in the two stars of the double star; 
sometimes invasion attempts occur but invaders are quickly 
wiped out.

2. After roughly Θ(N3) steps the stars are each homogeneous, 
but there are still two types remaining in the population.

3. The process terminates after the next successful invasion; 

this takes on average Θ(N4) steps.

Overall, the expected absorption time for a double star is Θ(N4). 
This structure promotes diversity under bd updating for the lon
gest out of all of the undirected graphs we considered. In db updat
ing, the central hubs give birth often. Though unlike the star, the 
two stars on the double star must eventually agree on the type. 
See the SI Section 7 for proofs of the upper and lower bounds.

Barbells
A barbell graph is a bidirectional graph composed by joining two 
equally sized cliques (i.e. fully connected subgraphs) together by 
a path. If the two cliques have n vertices, then the path has n verti
ces, combining for a total of N = 3n vertices in the graph (see Fig. 4).

For db updating, the process eventually settles on two types in 
the population. Each type occupies a clique and part of the path. 
Then one type attempts to invade the other clique. There is a 
1/n chance invasion is successful. But invasions only happen 
roughly every n3 steps due to the absorption time of a path graph. 
The ends of the paths have high degree. Thus it is much more like
ly that the path remains heterogeneous when it is nearly homoge
neous due to the db updating process. The process resolves in 
expected time Ω(N4). See the SI Section 8 for details. For bd updat
ing, the barbell diversity time is faster. Invasion into a clique hap
pens at a much higher rate for bd updating since an end node on 
the connecting path has a 1/2 probability of invading if it selected 
for birth (with probability 1/N). However for db updating, invasion 
occurs when a node in a clique connected to the connecting path 

Fig. 4. a) A barbell graph with N = 7 + 7 + 7 = 21 vertices. b) A semilog plot displaying the number of types in each part of the barbell graph vs. time, 
averaged over 250 simulations.
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dies (with probability 1/N); but, there is only a 1/n probability that 
the node on the path will invade into the clique.

Time bounds on any two-way population 
structure
Under bd updating, it is known that if the initial configuration on 
an undirected graph contains only two types, the expected ab
sorption time is O(N6). Recent work for a multitype bd process 
yields an O(N7) upper bound for the expected absorption time 
when the process starts with N types (51). We show that this upper 
bound can be tightened to O(N6 log N) by a divide-and-conquer 
proof strategy. For db updating, the literature on consensus prob
lems gives an O(N5) upper bound on the expected absorption time 
when the process starts with two types (52). Similar to the bd case, 
we can achieve an upper bound on the expected absorption time 
for any graph of O(N5 log N) for db updating. See the SI Section 9
for details.

For both bd and db updating, an Ω(N log N) lower bound for 
the expected absorption time follows by considering that at least 
N − 1 locations must eventually be a death site for the process to 
absorb. The expected amount of time for N − 1 locations to be a 
death site is (N − 1) ·HN−1. We note that HN−1 = Θ( log N). See 
Methods and SI Section 9 for more details and proof.

Contracting star
We have shown that all undirected graphs have expected absorp
tion time at most some polynomial function of the population 
size. We call these absorption times short. In neutral evolution 
under bd updating, it is known that some families of directed 

graphs (graphs that have some one-way connections) also have 
short absorption times (26). We give a construction of a directed 
graph family with long absorption times, times that are some 
superexponential function of the population size.

A contracting star is a directed graph with multiple blades bi
directionally connected to a central vertex. Each blade consists 
of a bidirectional path. For every pair of vertices on a blade, there 
is a directed edge from the vertex farther from the center to the 
vertex closer to the center (see Fig. 5).

For simplicity, we restrict contracting stars to have N vertices 
and b equally sized blades so that b divides N − 1. We show that 
under bd updating, the expected absorption time of a contracting 
star with two blades is

TN ≥ 2Ω(N log N). (13) 

See the SI Section 10 for more details.

Computer experiments
We investigate properties of small graphs. First, we consider vari
ous graph families with N ≤ 100 vertices and estimate the ex
pected absorption times via simulations. For bd updating (see 
Fig. 6a), we see that double stars are asymptotically slower than 
stars, which is in alignment with our theoretical results.

Similarly, stars seems asymptotically slower than cycles and 
paths. Finally, cycles and paths seem asymptotically slower 
than well-mixed populations. It appears that paths are slower 
than cycles by some multiplicative constant. In contrast, for db 
updating (see Fig. 6b), we see that double stars are not the asymp
totically slowest graphs presented. We do not rigorously analyze 

Fig. 5. a) An undirected path on N = 9 vertices. b) A contracting star (or contracting path) on N = 9 vertices and b = 2 blades. A contracting path is a 
composition of a bidirectional (undirected) path and “contracting” directed edges pointing inwards. c) Plots for the normalized frequency of a type in the 
population of the undirected path on N = 9 vertices vs. time over 1, 000 simulations. The population starts with the types as colored in (a). The height of 
each color is proportional to frequency of the corresponding type in the population. d) Plots as in c) but for the contracting path on N = 9 vertices. 
e) Contracting star on N = 13 vertices and b = 3 blades. f) Simulation results of the expected absorption time for bd updating of a undirected path, a 
contracting path, and a contracting star (with three blades) over varying population sizes. The plot is semilog and N ranges from 2 to 20. Each dot 
represents the average of 100 trials starting from maximum diversity. The dotted lines towards the right side of the plot indicate various power law level 
lines. The path graph family follows a level line, but the contracted star graph families grow faster than some polynomial of the population size.
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double stars under db updating, but from Fig. 6b we see that the 
diversity time of the double star becomes much faster under db 
updating compared to bd updating. We also see that stars absorb 
faster than complete graphs. It is known that the absorption times 
for regular graphs (e.g. complete graph, cycles) are independent of 
the two updating mechanisms we consider.

Next, we look at all connected undirected graphs with N = 8 
vertices. We analyze the bd absorption time vs. the db absorption 

time for such graphs. From Fig. 2, we observe that there are no 

graphs that have a higher db absorption time than bd absorption 

time; the graphs that come closest are the regular graphs for 

which the two times are exactly equal. The edit distance between 

two graphs is the minimum number of vertex (or edge) deletions 

(or insertions) to transform one graph into an isomorphic version 

of the other. The Pareto front of the graphs with the longest ab

sorptions under bd or db seems to fall under a gradient from bar

bell to double star, with small graph edit distance between 

consecutive members. We also see that distance in the bd vs db 

absorption time plane is not always correlated with the graph 

edit distance (see Fig. 7d). The normalized degree entropy of an 

undirected graph is defined as

−
1

log N

􏽘

u∈V

deg (u)
􏽐

v∈V deg (v)
log

deg (u)
􏽐

v∈V deg (v)

􏼒 􏼓

(14) 

The normalized degree entropy measures the regularity of the 

graph; the value of this quantity is between 0 and 1. In Fig. 7b, 

we see that low normalized degree entropy roughly correlates to 

lower db absorption times vs. bd absorption times. For N = 8, the 

graph with the lowest normalized degree entropy is the star. 

Graphs with higher normalized degree entropy are more time- 

robust to the particulars of the two updating mechanisms. We 

note that adding edges to a graph does not necessarily decrease 

its expected absorption time (see Fig. 7c).
For all connected undirected graphs with N ≤ 8, we computed 

the exact expected absorption time under bd updating. We found 
that the slowest absorbers are graphs resembling double stars (see 
Fig. 7a). This may indicate that double stars are the slowest ab
sorbers under bd updating.

Finally, we more closely examine bd updating on various 
graphs of the same size. We are interested in the average number 
of type remaining at time T in the process. We find that although a 
double star has a longer expected absorption time, a star can 
maintain more types for a longer amount of time (see Fig. 3).

Discussion
In summary, we have shown that population structure and up
date rules can have large effects on the maintenance of diversity.

We have shown the following five results which hold both for 
bd and for db updating: (i) For the complete graph, which de
scribes a well-mixed population, the time scale for loss of diversity 
is Θ(N2). (ii) For the cycle, which describes a simple 1D population 
structure, the time scale is Θ(N3). (iii) The lower provable bound 
for any undirected graph is Ω(N log N); for db updating the star 
matches this lower bound but we have no matching example for 
bd updating. (iv) The slowest directed graph which we have iden
tified so far—the contracting star—loses diversity at the vast time 
scale of 2Θ(N log N). (v) The upper bound for the directed graph is 
2O(N log N).

We derive the following additional results which hold for bd 
updating: (i) the star has time scale Θ(N3); (ii) the double star has 
time scale Θ(N4); (iii) for any undirected graph the upper bound 
is O(N6 log N).

We derive the following additional results which hold for db 
updating: (i) the star has time scale Θ(N log N); (ii) the barbell has 
a lower bound of Ω(N4); (iii) for any undirected graph the upper 
bound is O(N5 log N).

For bd updating, we establish that double-star graphs have a 
time scale of Θ(N4),while any undirected graph has an upper 
bound of O(N6 log N). Closing this gap remains an open challenge. 
Furthermore, the complete graphs has a time scale of Θ(N2) while 
the lower bound for any graph is Ω(N log N). Determining whether 
tighter bounds can be achieved for intermediate cases is an intri
guing direction for future research. While we prove that star 
graphs have diversity times of Θ(N3), we conjecture an exact for
mula for their diversity time. Proving this formula would provide 
a deeper understanding of star dynamics.

For db updating, we show that barbell graphs have a lower 
bound of Ω(N4) and that any graph has an upper bound of 
O(N5 log N). Closing this gap remains an open challenge. Star 
graphs have an upper bound of O(N log N) matching the general 
lower bound of Ω(N log N) for any graph.

The superexponential time scale that is achieved by contract
ing stars means that diversity can by maintained “forever” if the 
population size is not too small. But even the N4 time scale that 
is reached by undirected graphs, which corresponds to N3 gener
ations, would imply that for (microbial) population sizes of 
N = 106 diversity is maintained for 1018 generations, which ex
ceeds the time scale of evolution on earth.

Fig. 6. Log–log plots of the absorption time (T) of various graph families for 1 ≤ N ≤ 100, with 250 simulations per data point. The boundaries of the shaded 
regions denote the power law exponent; these level lines are described in the legend on the bottom right. We can see that regular graphs (e.g. complete 
and cycle graphs) are unaffected by the updating dynamics. a) bd updating b) db updating.
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Our study suggests many possibilities for future research. We 
have analyzed the expected time until a population becomes 
homogeneous. However, we noticed that a graph could maintain 
some number of types longer than another but still homogenize 
quicker. For example, we observed that a double star becomes 
homogeneous slower than a star on average, but a double star 
loses types more rapidly than a star at times closer to the incep
tion of the process. It would be insightful to understand which 
population structures can maintain diversity of at least a certain 
number of distinct types for the longest.

Also, the notion of diversity which we have used here is only 
one possibility of many. We have counted the number of distinct 
types that is present in the population. Other notions of diversity 
—such as the Simpson index or the Shannon entropy—take into 
account the frequency of different types and/or the spatial clus
tering of types.

We plan to study the effect of mutation on maintaining diver
sity. In this setting, new types are produced by mutation and exist
ing types become extinct by random drift. Then the population 
reaches a steady state level of diversity. We ask: how does popu
lation structure affect diversity at steady state.

Finally, one should investigate how variation in fitnesses af
fects our results. Our work in this paper solely examines neutral 
evolution.

These research directions collectively point toward a more 
comprehensive understanding of how population structure 

shapes evolutionary timescales. The interplay between spatial or
ganization, mutation, selection, and various metrics of diversity 
represents a rich space for theoretical exploration with significant 
practical implications for ecology, virology, cultural evolution, 
and other fields.

Methods
Next, we formulate our model and mathematical methods. See 
the SI Section 1 for further details and proofs.

Model
We consider a population of N individuals undergoing a selec
tion process with drift. The population structure is represented 
by an unweighted graph of N vertices (nodes). Individuals in the 
population reside on the vertices of the graph. The edges be
tween individuals can be either bidirectional (two-way) or 
unidirectional (one-way); if all edges are bidirectional, we 
refer to the graph representing the population structure as 
undirected. Initially, each individual is a unique type. At each 
step of the evolutionary process, an individual is selected for 
birth and an individual is selected for death. The individual 
selected for death is removed from the population. The 
individual selected for birth places a copy of itself at the loca
tion of the individual selected for death. Each state of the 

Fig. 7. a) Absorption times (T) of the slowest undirected graphs of bd updating for 1 ≤ N ≤ 8. b) db absorption time divided by bd absorption time (db/bd 
absorption time ratio), vs. normalized degree entropy for all graphs with N = 8 vertices. c) Three graphs on N = 4 vertices with corresponding bd 
absorption times below. We see that adding an edge can increase the absorption time (compare the leftmost graph absorption time to that of the center 
graph). We also see that adding an edge can decrease the absorption time (compare the center graph absorption time to that of the rightmost graph). d) 
Absorption times under bd and db updating for N = 8. The colors of the dots indicate the graph edit distance from a target graph. Lighter colors indicate a 
closer distance to the target whereas darker colors indicate a farther distance.
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process can be represented by a vector x ≡ (x1, . . . , xN), where 
xi ∈ {1, . . . , N} indicates the type residing at location i on the 
graph.

Dynamics details
We consider two different dynamics on the population. 

• bd updating: Under bd dynamics, individual i is chosen for 
birth uniformly at random from the population to give birth. 
Then individual j is chosen for death uniformly at random 
from the outgoing neighbors of i.

• db updating: Under db dynamics, individual j is chosen for 
death uniformly at random from the population to give birth. 
Then individual i is chosen for birth uniformly at random 
from the incoming neighbors of j.

We note that bd and db are typically stylized as bd and db in the 
literature of evolutionary dynamics (13, 18). The capitalized letter 
in “Birth” (“Death”) signifies that the individual selected for birth 
(death) is chosen proportional to its fitness, whereas the individ
ual selected for death (birth) is chosen uniformly at random. 
Our evolutionary dynamics model corresponds to neutral evolu
tion and thus all individuals have the same fitness. Therefore 
we do not capitalize any letters in the names of the updating rules.

Absorption time
The process always reaches a homogeneous state where there is 
only one type in the population. From a homogeneous state, no 
more state changes can occur. These homogeneous states are 
the only absorbing states in the Markov chain describing the pro
cess. The absorption time is the number of steps until an absorb
ing state is first reached. The expected absorption times starting in 
state x, denoted τx, are the solution to the system of linear equa
tions

τx =
0 if x1 = · · · = xN,
1 +

􏽘

x′
px→x′ · τx′ otherwise

􏼨

(15) 

The expression px→x′ is the probability of transitioning to state x′

in the next step given the current state is x. We are interested in 
the expected absorption time for x = (1, . . . , N). In general, Eq. 15
has exponential size and becomes intractable to solve for large N.

Fixation probability
Fixation of type i occurs when all individuals in the population are 
of type i. We note that since the process has no mutation, a type 
that has taken over the population will remain fixated indefinite
ly. The fixation probability of type i is the probability that type i fix
ates. Fixation probabilities depend on the initial configuration of 
types and the governing dynamics.

Graph families
We examine properties of various graph families. Each graph in 
a graph family is indexed by its size N. Well-mixed populations 
are represented by a complete graph with self-loops. The cycle 
graph family consists of undirected graphs where each vertex 
is connected to exactly two other vertices, forming a single 
closed loop. The star graph family consists of undirected graphs 
with a central vertex that is directly connected to all other ver
tices; these peripheral vertices have no connections to each oth
er. The double star graph family consists of graph formed by 
joining two stars graph of the same size by connected their 

centers; if N is odd, the star sizes differ by one. An undirected 
graph is regular if each vertex has the same number of neigh
bors. Complete and cycle graph families consists of regular 
graphs whereas star and double star graph families contain 
graphs that are not regular. A contracting star is a directed 
graph consisting of a central vertex connected to multiple 
blades of the same size. Each blade is made by taking a bidirec
tional path and, for each vertex, adding directed edges to verti
ces on its left. Then, the left most vertex of the blade is 
connected to the center vertex bidirectionally.

Mass increment method
Frequently in our mathematical analysis of expected absorption 
times, we argue that some “potential” function of the population 
state increases overtime by at least a nonnegligible constant 
rate in expectation. We choose a potential function such that it 
is bounded and achieves its extreme values only when the popu
lation is homogeneous. Thus we can compute an upper bound for 
the expected absorption time since the potential function will 
reach its extreme eventually. Similarly, we can track the variance 
of a potential function overtime. Observing the variance in the po
tential function allows us to compute a lower bound on the ex
pected absorption time.

Two types to N types
Previous work on absorption times has concentrated on dynam
ics when only two types are present in the population. Our 
method of analyzing the case of N types involves examining 
the process with two types and then concluding that starting 
with N types does not significantly slow down the process. The 
logic is as follows: Assign each type to one of two “meta”-types 
such that the original types are roughly split between the two 
meta-types. Then we run the process until one of the meta- 
types has fixated. At the end of this phase there must be roughly 
half of the number of original types remaining. We recursively 
repeat this meta-type assignment with the remaining individu
als. Since the number of types is reduced by a half after each 
phase, the number of phases is logarithmic in the population 
size.

Diversity
We measure diversity by the number of distinct types in the popu
lation. A population with N types has maximum diversity and a 
population with one type has no diversity.

Characteristic curves
At each time step of the evolutionary process, we can compute the 
diversity of the population. Diversity can only decrease overtime 
since no new types arise in the population. The characteristic 
curve of a population structure maps time to the expected diver
sity at that time in the population.

Properties of small graphs
Using the nauty software suite, we calculated the exact expected 
absorption times for all undirected graphs of sizes N ≤ 8 under bd 
and db updating (53). We created a linear system similar to Eq. 15
but we removed symmetries. Given that location i is occupied by 
one of N types at any given time, there are NN possible states x 
in Eq. 15; for N = 8 there are 88 ≈ 1.6 × 107 possible states. 
However, each type has the same relative fitness and does not mu
tate. Thus an unlabeled partition of the population based on the 
locations of the types suffices to create a system for the absorption 
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time. Each state of our reduced system corresponds to a partition 
of {1, . . . , N}. Thus, the number of equations in our system is the 
Nth Bell number; the 8th Bell number is 4140. For Ω, a partition 
of {1, . . . , N}, our reduced system is

τΩ =
0 if |Ω| = 1,
1 +

􏽘

Ω′
pΩ→Ω′ · τΩ′ otherwise

􏼨

(16) 

Properties of large graphs
We conducted simulations of both bd and db updating to estimate 
expected absorption times. We examined graphs of sizes up to 
N = 100. For undirected graphs we estimated the expected absorp
tion times for complete, cycle, double star, and star graphs. We 
conducted numerical calculations and simulations on a high- 
performance remote computing cluster and across multiple no
des in order to speed up our data collection.
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