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Abstract
We study the problem of predictive runtime monitoring of black-box dynamical systems with quan-
titative safety properties. The black-box setting stipulates that the exact semantics of the dynamical
system and the controller are unknown, and that we are only able to observe the state of the con-
trolled (aka, closed-loop) system at finitely many time points. We present a novel framework for
predicting future states of the system based on the states observed in the past. The numbers of
past states and of predicted future states are parameters provided by the user. Our method is based
on a combination of Taylor’s expansion and the backward difference operator for numerical dif-
ferentiation. Additionally, we provide upper bound on the prediction error when the controlled
system’s dynamics are smooth and the maximum magnitudes of the higher order derivatives of
the trajectories are known. The predicted states are then used to predict safety violations ahead in
time. Our experiments demonstrate practical applicability of our method for complex black-box
systems, showing that it is computationally lightweight and yet significantly more accurate than
the state-of-the-art predictive safety monitoring techniques.
Keywords: Runtime monitoring, predictive safety monitoring, control systems, black-box control

1. Introduction

A majority of autonomous systems nowadays depend on advanced artificial intelligence (AI) tech-
nologies. For instance, in self-driving cars, deep learning is routinely used to design perception
modules (Janai et al., 2020) and reinforcement learning has shown great promise for designing nav-
igation controllers (Lillicrap et al., 2016). Although revolutionary, these AI technologies are hard
to analyze and may pose serious safety risks in the underlying systems (Amodei et al., 2016).

Towards the safe and trustworthy deployment of AI-powered systems, we study the problem
of predictive runtime monitoring of continuous-time dynamical systems possibly operated by a
learned controller. We consider the black-box setting, in which the exact semantics of the system
dynamics and the controller are unknown. Rather, one is only able to observe the state of the
system at finitely many sampling instances. Our goal is to design a runtime monitoring algorithm
which, at each sampling point, takes the past states into account, and predicts the future states
and resulting future safety status of the system within a given time horizon. Unlike traditional
runtime monitoring concerning fulfillment of safety only in the past (Bartocci and Falcone, 2018),
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our predictive monitors raise safety warnings before they actually take place, so that the system can
be intervened and steered out of danger in time, e.g., by using a fail-safe backup controller as in
shielding (Alshiekh et al., 2018).

Figure 1: Predictive monitoring using our TPM (solid) and
the baseline TTC (dashed). The solid blue line is
the ground truth trajectory. Green and red repre-
sent predictions of, respectively, safe and unsafe
behaviors within the horizon. As can be seen,
TMP is more accurate in predicting smooth turns.

Our contributions. We present Taylor-
based Predictive Monitoring (TPM),
a new framework for predictive run-
time monitoring of black-box con-
trolled dynamical systems. For a
given time t and samples of past
observed states xt−kτ , . . . , xt−τ , xt
with a given sampling time τ , our
goal is to predict the next h states
xt+τ , . . . , xt+hτ . Here, the numbers
k and h are parameters that can be
chosen by the user.

TPM consists of a learning phase
followed by a prediction phase. In the
learning phase, TPM first uses Tay-
lor’s polynomials in order to approx-
imate the true system dynamics and
the controller via a polynomial func-
tion. Taylor’s polynomial expansion
is a classical result in mathematical analysis that allows us to represent an arbitrary nonlinear func-
tion around a given point using polynomials with arbitrary accuracy (Rudin, 1964). The challenge
is that the coefficients of Taylor’s polynomials use derivatives of the function, which in our setting
are unknown owing to the black-box nature of the system. To address this challenge, we then use
the backward difference method (Gear, 1967) to numerically approximate the derivatives from the
past state observations. By combining these two ingredients, we obtain an approximate polynomial
model of the system in the vicinity of the current time. In the prediction phase, this polynomial
model is used to compute the predicted future states xt+τ , . . . , xt+hτ . Finally, the predictions can
be used to reason about possible future violations of a safety specification of interest. TPM can
reason about both qualitative and more general quantitative safety specifications; see Sec. 2 for the
formal definition.

Taylor’s polynomials and backward difference method are both standard in numerical analysis.
However, to the best of our knowledge, their combined application to monitoring black-box con-
trolled dynamical systems is novel. We also derive a formal upper bound on the approximation
error induced by TPM, for when the system dynamics and the controller are (k + 1)-times contin-
uously differentiable functions, and the upper bounds on the first (k + 1) derivatives of the state
trajectories are known. These bounds may be available from the domain knowledge about the phys-
ical model and by minimally accessing the AI controller (Shen et al., 2022), and the requirement
of having these bounds is common to several other data-driven approaches with formal guarantees,
e.g., (Bunton and Tabuada, 2024).

We implemented and experimentally evaluated TPM on two complex controlled dynamical sys-
tems. As a baseline, we compared our method to the time-to-collision (TTC) metric (Vogel, 2003),
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a technique for providing runtime safety assurances of autonomous systems. TTC is routinely de-
ployed in autonomous driving to predict on-road safety violation (Wang et al., 2021), and is defined
as the time after which the vehicle will violate safety (i.e. cause “collision”) if it continues with its
current velocity. One can view TTC as a special case of our method where only degree 1 Taylor’s
polynomial is used. As shown in Fig. 1, reasoning about the first-order derivative only can be too
conservative and may lead to failures in correctly predicting future safety violations. This is seen in
our experiments as well, with TPM showing superior predictive power compared to TTC.

Our contributions can be summarized as follows:
1. Predictive runtime monitoring. We present Taylor-based Predictive Monitoring (TPM), a

framework for predictive runtime monitoring of black-box controlled dynamical systems with
a given quantitative safety specification. TPM is based on a combination of Taylor’s polyno-
mials and the backward difference method of numerical differentiation.

2. Formal error bound analysis. We provide formal error bounds for our predictions in the
setting when the bounds on the higher-order derivatives of the dynamics are known.

3. Experiments. Empirical results demonstrate practical applicability of our framework to com-
plex dynamical systems. TPM shows superior predictive power compared to the baseline
TTC, a classical approach for runtime safety assurances of autonomous systems.

Related Work. In the formal methods literature, traditional runtime verification approaches treat
the monitored system as a black-box, and output at each time point whether a given specification has
been violated or fulfilled in the past (Bartocci and Falcone, 2018). There are works on predictive
monitoring, which assume that some abstract model of the system is either available (Zhang et al.,
2012; Pinisetty et al., 2017) or can be learned at runtime (Stoller et al., 2011; Ferrando and Delzanno,
2023). Our work is close to the latter, but, instead of learning a detailed general purpose model of
the system, our TPM “learns” only the essential trend required to predict the future states in the
vicinity of the current time. For a more comprehensive overview on data-driven monitoring, we
refer to a survey (Taleb et al., 2023). Additionally, black-box monitoring has also been considered
in the context of certificate-based neural control (Yu et al., 2025). As discussed in Sec. 1, time-
to-collision (TTC) metric (Vogel, 2003) can be viewed as a special case of our method where only
degree 1 Taylor’s polynomial is used.

Numerical and data-driven inference algorithms are fundamental to many different disciplines,
such as time series forecasting in economics (Hyndman, 2018), state estimation of dynamical sys-
tems from observed output sequences (Diop et al., 1994; Bunton and Tabuada, 2024), and data-
driven online control (De Persis and Tesi, 2019). While our data-driven prediction algorithm has
some resemblance to existing techniques, to the best of our knowledge, our work is the first to apply
such techniques to the setting of runtime monitoring of controlled dynamical systems.

2. Preliminaries and Problem Statement

Controlled dynamical systems. A controlled dynamical system, or system in short, is defined via

dx(t)

dt
= f(x(t), u(t)), x(0) = x0, ∀t ≥ 0 . u(t) = π(x(t)), (1)

where t ∈ R≥0 denotes time, x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm denote the state and the
control input at time t, x0 ∈ X is the initial state, f : X × U → X is the (nonlinear) dynamics,
and π : X → U is the controller which assigns a control input to each state. We will assume that
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f and π are Lipschitz continuous, which is the standard assumption (Dawson et al., 2023; Szegedy
et al., 2014) required for the existence and uniqueness of the solution of (1), where the solution will
be called the trajectory of the system, denoted as ξ : R≥0 → Rn. Additional assumptions on the
higher-order derivatives of ξ will be introduced subsequently during prediction error analysis.

Safety properties. We consider quantitative safety properties which are functions of the form
φ : X → R, assigning a real valued safety level to each system state. We say that the controlled
dynamical system under a given controller satisfies the safety property if φ(ξ(t)) ≥ 0 for all time
steps t ∈ R≥0, i.e., if the safety level remains non-negative along the trajectory. For example, if we
are interested in analyzing boolean (or qualitative) safety violations, we define φ(x) = −1 if the
state x is unsafe and φ(x) = 0 otherwise. If we are interested in a quantitative safety properties, like
the value of a barrier function B (Prajna et al., 2007), then we define φ(x) = B(x) for all states x.

Problem statement. Suppose we are given a black-box controlled dynamical system and a quan-
titative safety property φ; both the dynamics and the controller of the system are unknown but we
can observe the resulting trajectory ξ. Let τ ∈ R≥0 be a given sampling time and h ∈ N be a
given prediction horizon. A predictive runtime monitor, or a monitor in short, observes the trajec-
tory of the system at the sampling instances, and after each new observation, predicts the safety
levels in the next h sampling instances. Formally, at each time t ∈ {τ, 2τ, 3τ, . . .}, the monitor
takes the input sequence . . . , ξ(t − 2τ), ξ(t − τ), ξ(t) in account and outputs either the sequence
φ(ξ(t+ τ)), . . . , φ(ξ(t+ hτ)) or a statistic thereof (e.g., the minimum φ or the first instance when
φ becomes negative). We consider the problem of designing a monitor for the given safety property.

Taylor’s expansion. Before presenting our monitor, we recall Taylor’s polynomial of a (l + 1)-
times continuously differentiable function g : R → R. For each 1 ≤ i ≤ l, denote by g(i) the i-th
derivative of g. For a fixed point t ∈ R, the Taylor’s polynomial of g of degree l at point t is

Pl(s) = g(t) +
g(1)(t)

1!
(s− t) +

g(2)(t)

2!
(s− t)2 + . . .+

g(l)(t)

l!
(s− t)l. (2)

The following theorem is a classical result from mathematical analysis which provides an upper
bound on the approximation error of a function via its Taylor’s polynomial at a given point.

Theorem 1 (Taylor’s theorem (Rudin, 1964)) Suppose that g : R → R is an (l + 1)-times con-
tinuously differentiable function. Let t ∈ R and let Pl be the Taylor’s polynomial of g of degree l at
point t. Then, for every s ∈ R, there exists a point r ∈ (t, s) such that

g(s)− Pl(s) =
g(l+1)(r)

(l + 1)!
(s− t)l+1.

Hence, if B ≥ supr∈(t,s) |g(l+1)(r)|, then we have |g(s)− Pl(s)| ≤ B
(l+1)!(s− t)l+1.

3. Algorithms

The heart of our monitor is a numerical algorithm (Sec. 3.1) for predicting the future states of a
given black-box system from the states observed so far along the trajectory. These predicted future
states will then be used to obtain the desired predictive runtime monitor (Sec. 3.2).
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3.1. A Numerical Algorithm for Predicting Future States

Our (state) prediction algorithm has two phases: (1) In the learning phase, for each dimension
i ∈ [1;n] of the system’s state space, we use a polynomial with time as its variable to approximate
the dimension i of the trajectory ξ. The polynomial approximation function is obtained via a nu-
merical procedure that uses a finite set of past states ξ(t− kτ), . . . , ξ(t− 2τ), ξ(t− τ), ξ(t) with an
appropriately large k, which we will refer to as the τ -stencil of length (k+1) ending at t. We write
x−k = ξ(t− kτ), . . . , x−1 = ξ(t− τ), x0 = ξ(t), omitting t whenever it is clear from the context.
(2) In the prediction phase, the learned polynomial approximation functions are used to compute the
predictions of the future states up to the horizon h, denoted as x1 = ξ(t+ τ), . . . , xh = ξ(t+ hτ).

Learning phase. The learning phase independently considers each dimension i ∈ [1;n] of the
system’s state space and computes a polynomial approximation for the i-th dimension of the tra-
jectory function ξ. Hence, in what follows, without loss of generality, we assume that n = 1 and
present our procedure for computing a polynomial approximation to the scalar-valued signal ξ.

We use the Taylor’s polynomial Pl of ξ of a given degree l as the polynomial approximation. The
challenge in obtaining Pl is that its coefficients depend on the values of the derivatives ξ(1), . . . , ξ(l)

at time point t, which are unknown to us owing to the black-box nature of the system.
Therefore, we numerically approximate the values of the derivatives using the backward dif-

ference (BD) method (Gear, 1967) from the observed stencil x−k, . . . , x0 ending at time t. In
particular, the BD approximation of the i-th derivative at x0 is obtained as:

∇i x0 :=

{
(x0 − x−1)/τ if i = 1,

(∇i−1 x0 −∇i−1 x−1)/τ otherwise.

The following closed-form expression can be obtained from the inductive definition above:

∇i x0 =

∑i
j=0(−1)j

(
i
j

)
x−j

τ i
. (3)

It can be easily verified that ∇l x0 depends on states up to x−l in the past, and therefore the length of
the stencil must be k + 1 ≥ l. The approximation error is formally derived in the following lemma.

Lemma 2 Let i > 0 and suppose that ξ : R → R is an (i + 1)-times continuously differentiable
function. Then, for every given stencil of length k + 1 ≥ i, the following holds:

|ξ(i)(t)−∇i x0| ≤ τ

∣∣∣∣∣∣ξ
(i+1)(t)

(i+ 1)!

i∑
j=0

(−1)j
(
i

j

)
(−j)i+1

∣∣∣∣∣∣+O(τ2). (4)

The approximation ∇i x0 is called the first order approximation, because for small τ < 1, asymp-
totically, the first order term in τ dominates the error (i.e., the error is O(τ)). Higher order BD
approximations would lead to smaller errors and will be considered in future works.
Proof [Proof of Lem. 2] In (3), if we use the following infinite Taylor’s series expansion of x−j

x−j = ξ(t− jτ) = ξ(t)− jτ

1!
ξ(1)(t) +

(jτ)2

2!
ξ(2)(t)− (jτ)3

3!
ξ(3)(t) + . . . ,
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we observe that terms with derivatives of ξ of order lower than i cancel out, and we obtain:

∇i x0 = ξ(i)(t) +

∞∑
p=i+1

τp−iξ(p)(t)

p!

i∑
j=0

(−1)j
(
i

j

)
(−j)p.

The claim is established by separating the dominating term with p = i+1 (which results in the first
order term in τ ) in the sum on the right hand side from the higher order terms.

Replacing each ξ(i)(t) in (2) with ∇i x0 gives us the approximated Taylor’s polynomial P̄l(·).

Remark 3 The use of Taylor’s polynomial is a design choice, and any other polynomial approxi-
mation could be used. Since the l-th degree polynomial that interpolates between l + 1 points is
unique, all approaches would provide the same answer. It is possible to choose the stencil length
larger than l+1, in which case the polynomial is no longer unique, and a “best fit” polynomial can
be obtained, e.g., the one that minimizes the mean-squared error. We leave this for future work.

Prediction phase. The prediction phase of our monitor uses the approximated Taylor’s polyno-
mial P̄l of the trajectory ξ around the current time t in order to compute the predicted future states,
denoted as x̄1 = P̄l(t+τ), . . . , x̄h = P̄l(t+hτ). The following theorem establishes an error bound
for the setting when bounds on the (l + 1) derivatives of ξ are known.

Theorem 4 Let l > 0 and suppose that ξ : R → R is an (l + 1)-times continuously differentiable
function. Let P̄l(s) be the approximated Taylor’s polynomial obtained from a given stencil of length
k + 1 ≥ l ending at time t and the given sampling time τ . Let h ∈ N be a given horizon, and
m ∈ [1;h] be an arbitrary future sampling instance within the horizon. Suppose for every p ∈
[1, l + 1], Bp denotes the upper bound on the p-th derivative of ξ in the interval (t, t + mτ), i.e.,
Bp = supr∈(t,t+mτ) ξ

(p)(r). Then,

|ξ(t+mτ)− P̄l(t+mτ)| ≤ Bl+1

(l + 1)!
(mτ)l+1 + τ ·

l∑
p=1

∣∣∣∣∣∣ Bp+1

(p+ 1)!

p∑
j=0

(−1)j
(
p

j

)
(−j)p+1

∣∣∣∣∣∣+O(τ2)

= O((mτ)l+1 + τ).

Proof Follows by combining Thm. 1 and Lem. 2.

Thm. 4 suggests that, for small m and for τ < 1, the prediction error is linear in τ , i.e., O(τ).
However, for long prediction horizons h that allow m ∈ [1;h] to become too large, the term (mτ)l+1

may dominate over τ , and therefore the prediction error may increase to O((mτ)l+1). Hence, con-
sidering larger prediction horizon h requires using smaller sampling time τ . This trend is visible in
the ablation tests that we present in the experiments section. Finally, we remark that the (l+1)-times
differentiability assumption is necessary only for our error bound analysis in Thm. 4. Even though
the theoretical guarantees cannot be established in the black-box setting without the assumptions,
we empirically show that our approach is still useful and sufficiently accurate in practice.
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3.2. Taylor-Based Predictive Monitoring (TPM)

We now present TPM, our predictive runtime monitor for safety properties, based on the numerical
state prediction algorithm in Sec. 3.1. The monitor continuously observes the samples drawn from
the system’s trajectory and stores the latest l + 1 samples in the FIFO queue Q. Using the states
stored in Q as a stencil, TPM first computes the predicted future states using the approximate Tay-
lor’s polynomial. Afterwards, it outputs the safety levels of the predicted states or a desired statistic
thereof, like the minimum safety level in h steps or the first time instance when safety is violated
(i.e., φ drops below zero).

4. Experimental Evaluation

We implemented the algorithms from Sec. 3 in a prototype tool written in Python, and performed
experiments to investigate the following two research questions: (i) How does TPM compare to
state-of-the-art TTC method in giving early warnings of safety violations? (ii) How accurate is TPM
when compared against the ground truth data? Both questions are studied on two environments.
Environment 1: F1Tenth Racing (O’Kelly et al., 2020). A racing car of 1 : 10 scale needs to drive
around a track while avoiding getting too close to the track boundaries. The state vector comprises
of the X-Y coordinate, the rotation, the forward velocity, and the angular velocity. The control inputs
are the steering angle and the throttle. A state is safe if its distance to the track boundaries is greater
than a predefined threshold, set to 0.5m meters in our experiments. We consider 70 differently
parameterized controllers (Kresse, 2024), of which 54 are the so-called Pure Pursuit (PP) controllers
which track a pre-planned path (Coulter, 1992) and 16 are Follow-The-Gap (FTG) controllers which
steer towards the direction where there is the most free space (Sezer and Gokasan, 2012). The
sampling time for this environment is fixed at τ = 0.01 s.
Environment 2: F-16 Fighter Jet (Heidlauf et al., 2018). A simplified F-16 fighter jet system needs
to fly at a safe height above the ground. The 16-dimensional state vector comprises of air speed
(va), angle of attack (α), angle of sideslip (β), roll (ϕ), pitch, yaw, roll rate, pitch rate, yaw rate,
northward displacement, eastward displacement, altitude (alt), engine power lag, upward accel,
stability roll rate, and slide accel and yaw rate. The 4 control inputs are acceleration, stability roll
rate, the sum of side acceleration and yaw rate, and throttle. A state is safe if the altitude is between
1000 ft and 45000 ft. The sampling time for this environment is fixed at τ = 0.033 s.

4.1. Experiment 1: Comparison to the Classical Time-to-Collision Method

We compared the performance of TPM to the baseline time-to-collision (TTC) (Vogel, 2003), a
widely used measure in autonomous driving for predicting on-road safety violations (Wang et al.,
2021). The TTC metric represents a special case of our approach with l = 1, utilizing only the
current velocity to estimate the time to collision, assuming the vehicle continues in a straight line
along its current orientation.

We design TPM monitors with two different types of outputs, namely boolean safety outputs and
quantitative safety outputs, each of which can also be predicted by modifying the TTC algorithm.
In the following, we describe the two types of outputs along with ways to measure their accuracy,
for which we consider the actual system’s trajectory as the ground truth.
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Figure 2: Ablation test results for prediction errors on F1Tenth (top
row) and F-16 (bottom row). The lines represent the mean
whereas the shaded regions represent the spread. For TPM,
the constant l is the degree of the Taylor’s polynomial. The
lookahead (X-axes) are measured as hτ for varying h.

Outputs with boolean ac-
curacy metrics. In this
case, the monitor raises a
warning if a safety vio-
lation is predicted within
the prediction horizon. We
measure the accuracy as
follows: A warning is clas-
sified as a true positive (TP)
if it is issued prior to an un-
safe state; otherwise, it is
a false positive (FP), indi-
cating a false alarm. Con-
versely, if there was no
prior warning but a unsafe
state occurs, it is catego-
rized as a false negative
(FN), representing a missed
detection; otherwise, it is
called a true negative (TN).
The true positive rate (aka,
sensitivity) is defined as
TPR = TP/(TP+FN), and the true negative rate (aka, specificity) is defined as TNR = TN/(TN+FP).
TPR indicates how well the monitor can predict a real safety violation, whereas TNR indicates how
well a monitor can predict the absence of it.

Outputs with quantitative accuracy metrics (Q). In this case, the monitors’ outputs are environment-
specific. In the F1Tenth environment, the output of the monitor is the same as before, i.e., it
raises a warning if an unsafe state is predicted within the prediction horizon. We measure accu-
racy as the earliest time before entering an unsafe state when a warning is issued: QF1TENTH =
(mini≥tUNSAFE−1 t

i
WARNING) − tUNSAFE, where tUNSAFE is the time when the unsafe state takes place,

tiWARNING is the time i when a warning is issued within the prediction horizon h. For the F-16 envi-
ronment, the monitor is required to output the minimum safety distance within the horizon, defined
as d = mini∈[0,h] |(xi − altmin) + (altmax − xi)|. We measure accuracy as the difference be-
tween the minimum safety distance predicted by the monitor and the ground truth minimum safety
distance observed: QF-16 = |dPREDICTED − dOBSERVED|, for a fixed prediction horizon set to 50.

The accuracy of the TPM and TTC monitors were measured on random simulations with ran-
dom initial states of the two systems that we consider: for F1Tenth, we collected 775, 300 simu-
lation steps with FTG controllers and 2, 647, 570 with PP controllers, and for F-16, we collected
33, 750, 000 simulation steps.

The results are reported in Tab. 1. We observe that, overall, TPM significantly outperforms
TTC in all categories except F1Tenth with FTG controller, in which case, owing to the less smooth
trajectories, TPM showed lower TNR, i.e., it was more “cautious” and more often predicted safety
would be violated when in reality it did not. In all other cases, TPM was more accurate and showed
higher TPR, TNR, and Q-value than TTC.
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Table 1: Performance comparisons between TPM and TTC on the F1Tenth and F-16 environments.
The “%” in bracket in TP, FP, and FN are with respect to the total simulation step counts.
The bold numerical entries indicate the which method among TPM and TTC was better.

Env. h Metric TPM TTC

F1
Te

nt
h

FTG PP FTG PP

50

TP 98323 (12.68%) 246143 (9.30%) 80023 (10.32%) 235180 (8.88%)
FP 36329 (4.69%) 33049 (1.25%) 12371 (1.60%) 100915 (3.81%)
FN 711 (0.09%) 269 (0.01%) 19011 (2.45%) 11232 (0.42%)

TPR 0.993 0.999 0.808 0.954
TNR 0.946 0.986 0.982 0.958
Q 47.28 s 49.69 s 39.22 s 46.61 s

100

TP 98736 (12.74%) 244257 (9.23%) 90232 (11.64%) 214305 (8.09%)
FP 177354 (22.88%) 238744 (9.02%) 133671 (17.24%) 566401 (21.39%)
FN 298 (0.04%) 2155 (0.08%) 8802 (1.14%) 32107 (1.21%)

TPR 0.997 0.991 0.911 0.870
TNR 0.738 0.901 0.802 0.764
Q 98.09 s 96.67 s 90.93 s 84.38 s

F-
16 50

TP 2706320 (8.01%) 2518888 (7.46%)
FP 20309 (0.06%) 298477 (0.88%)
FN 0 (0.00%) 0 (0.00%)

TPR 1.00 1.00
TNR 0.989 0.86
Q 72.01 ft 108.94 ft

These findings are further confirmed by our experiments shown in Fig. 2. Here, TPM signifi-
cantly outperforms TTC in the F-16 environment as well as for the PP controllers in the F1Tenth
environment. For FTG controllers, the TPM method performs better with a smaller lookahead, up
to approximately 0.8 seconds (i.e., h = 80).

4.2. Experiment 2: Prediction Accuracy and Ablation Tests

To visually inspect the prediction accuracy of TPM, in Fig. 3, we plot the outputs of several in-
stances of our monitor, with different horizon lengths, alongside the actual trajectory. We observe
that the prediction error increases with longer prediction horizons. To further analyze the relation-
ship between prediction error, Taylor polynomial’s degree l, and prediction horizon h, we conduct
ablation tests whose results are shown in Fig. 2. We observe that for F1Tenth, the configuration with
l = 2 outperforms the rest, for both PP and FTG agents, with the improvement being particularly
significant for PP agents. As the prediction horizon increases beyond 0.8s (80 prediction steps), the
configuration with l = 1 becomes slightly better for the FTG agents. In the F-16 environment, we
observe that l = 3 yields the best performance.

Overall, prediction accuracy is correlated with the smoothness of the dynamical system and the
used controller. This is not surprising since from Thm. 4, we know that the prediction error increases
as the values of the higher order derivatives increase, e.g., when the system has jerky movements.
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Figure 3: Visualization of the monitor’s output as compared to the
ground truth trajectories for the first two state dimensions
of F1Tenth with l = 2 (top row) and four different state
dimensions of F-16 with l = 3 (middle and bottom rows).

Monitoring overhead. Our
experiments were ran on
a personal computer with
12th Gen Intel(R) Core(TM)
i9-12900K processor and
32GB RAM. In our ex-
periments, the monitoring
overhead per observation
consistently remains below
0.001 seconds for l ≤ 14
and h = 1, or for l ≤
5 and h ≤ 10. For
longer prediction horizons,
the overhead incrementally
increases to approximately
0.002 seconds. These re-
sults demonstrate the ef-
ficiency of our monitor,
confirming its lightweight
nature and suitability for
practical applicability.

5. Conclusion

We introduced a lightweight
predictive runtime monitor-
ing framework for black-
box controlled dynamical
systems, which is able to predict safety violations ahead in time. At each time step, our moni-
tor learns a Taylor-based polynomial approximation of the system’s state trajectory from the past
observations, which is then used to perform predictions of future states so that safety violations
can be predicted. We derive formal upper bounds on the prediction error, given the knowledge of
bounds on the derivatives of the trajectory. We present the effectiveness of our monitor on models
of a racing car and a fighter aircraft taken from the literature. Future work will focus on studying
numerical instabilities, higher order numerical approximations of the derivatives in Taylor’s polyno-
mial, different forms of polynomial approximations, as well as extensions to stochastic dynamical
systems, multi-agent scenarios, and broader applications beyond safety verification.

10



PREDICTIVE MONITORING OF BLACK-BOX DYNAMICAL SYSTEMS

Acknowledgments

This work was supported in part by the ERC project ERC-2020-AdG 101020093.

References

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages 2669–2678. AAAI Press, 2018. doi:
10.1609/AAAI.V32I1.11797. URL https://doi.org/10.1609/aaai.v32i1.11797.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
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Preoteasa. Predictive runtime verification of timed properties. Journal of Systems and Software,
132:353–365, 2017.

Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control., 52(8):1415–1428,
2007. doi: 10.1109/TAC.2007.902736. URL https://doi.org/10.1109/TAC.2007.
902736.

W. Rudin. Principles of Mathematical Analysis. International series in pure and applied mathemat-
ics. McGraw-Hill, 1964.

Volkan Sezer and Metin Gokasan. A novel obstacle avoidance algorithm:“Follow the Gap Method”.
Robotics and Autonomous Systems, 60(9):1123–1134, 2012.

Siyuan Shen, Tianjia Shao, Kun Zhou, Chenfanfu Jiang, Feng Luo, and Yin Yang. Hod-net: high-
order differentiable deep neural networks and applications. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pages 8249–8258, 2022.

Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A. Smolka, and
Erez Zadok. Runtime verification with state estimation. In RV, volume 7186 of Lecture Notes in
Computer Science, pages 193–207. Springer, 2011.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6199.
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