Check for
Updates

Monitoring Robustness and Individual Fairness

Ashutosh Gupta Thomas A. Henzinger Konstantin Kueffner
IIT Bombay Institute of Science and Technology Institute of Science and Technology
Mumbai, India Austria Austria
akg@iitb.ac.in Klosterneuburg, Austria Klosterneuburg, Austria
tah@ist.ac.at konstantin kueffner@ist.ac.at
Kaushik Mallik David Pape

IMDEA Software Institute
Madrid, Spain
kaushik.mallik@imdea.org

Abstract

In automated decision-making, it is desirable that outputs of decision-
makers be robust to slight perturbations in their inputs, a property
that may be called input-output robustness. Input-output robust-
ness appears in various different forms in the literature, such as
robustness of Al models to adversarial or semantic perturbations
and individual fairness of AI models that make decisions about
humans. We propose runtime monitoring of input-output robust-
ness of deployed, black-box Al models, where the goal is to design
monitors that would observe one long execution sequence of the
model, and would raise an alarm whenever it is detected that two
similar inputs from the past led to dissimilar outputs. This way,
monitoring will complement existing offline “robustification” ap-
proaches to increase the trustworthiness of Al decision-makers. We
show that the monitoring problem can be cast as the fixed-radius
nearest neighbor (FRNN) search problem, which, despite being
well-studied, lacks suitable online solutions. We present our tool
Clemont!, which offers a number of lightweight monitors, some of
which use upgraded online variants of existing FRNN algorithms,
and one uses a novel algorithm based on binary decision diagrams—
a data-structure commonly used in software and hardware verifica-
tion. We have also developed an efficient parallelization technique
that can substantially cut down the computation time of monitors
for which the distance between input-output pairs is measured
using the Lo, norm. Using standard benchmarks from the literature
of adversarial and semantic robustness and individual fairness, we
perform a comparative study of different monitors in Clemont, and
demonstrate their effectiveness in correctly detecting robustness
violations at runtime.

CCS Concepts

« Computing methodologies — Artificial intelligence; « Ap-
plied computing — Law, social and behavioral sciences; « Soft-
ware and its engineering — Formal software verification.

!https://github.com/ariez-xyz/clemont (DOI: https://doi.org/10.5281/zenodo.15552183)

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD 25, Toronto, ON, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737054

790

Department of Computer Science,
Paris Lodron University of Salzburg
Salzburg, Austria
david.pape@stud.plus.ac.at

Keywords

Monitoring, individual fairness, adversarial robustness, semantic
robustness, fixed-radius nearest neighbor search, trustworthy Al

ACM Reference Format:

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik,
and David Pape. 2025. Monitoring Robustness and Individual Fairness. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (KDD ’25), August 3—-7, 2025, Toronto, ON, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3737054

1 Introduction

Al decision-makers are being increasingly used for making critical
decisions in a wide range of areas, including banking [48, 64], hir-
ing [53], object recognition [68], and autonomous driving [19, 80]. It
is therefore crucial that they are reliable and trustworthy. One of the
general yardsticks of reliability is (global) input-output robustness,
which stipulates that similar inputs to the given Al model must lead
to similar outputs. This subsumes a number of widely used metrics,
namely adversarial robustness of image classifiers [57], requiring im-
ages that are pixel-wise similar be assigned similar labels, semantic
robustness of image classifiers [26], requiring images that capture
similar semantic objects are assigned similar labels, and individ-
ual fairness of human-centric decision-makers [32, 67], requiring
individuals with similar features receive similar treatments.

Currently, input-output robustness of Al models is evaluated
offline, i.e., before seeing the actual inputs to be encountered dur-
ing the deployment [32, 52], and it is required that the model be
robust either with high probability with respect to a given input
data distribution—the probabilistic setting, or against all possible
inputs—the worst-case setting. In practice, these offline robustness
requirements of Al models are impossible to achieve due to vari-
ous reasons. For example, probabilistic robustness is problematic
under data distribution shifts [69], and worst-case robustness is
tricky in classification tasks due to output transitions near class
boundaries [44].

We propose a practical, runtime variant of input-output robust-
ness where robustness needs to be achieved on specific (finite)
runs of deployed models, and a given run violates robustness if
two similar inputs from the past produced dissimilar outputs. It is
easy to see that (worst-case) offline input-output robustness implies
runtime input-output robustness, but not the other way round: an


https://github.com/ariez-xyz/clemont
https://doi.org/10.5281/zenodo.15552183
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737054
https://doi.org/10.1145/3711896.3737054
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3737054&domain=pdf&date_stamp=2025-08-03

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Monitor
input-output history Violation!!!
FRNN |_|, earlier: a — tie
algo.
El now: a — guitar
== T

[

new input

—

+——— guitar

Al
Decision-Maker

Figure 1: Schematic diagram of input-output robustness mon-
itors. The monitor stores the history of seen input-output
pairs, and after arrival of each new input and the respective
output of the AI decision-maker, uses a fixed-radius nearest
neighbor (FRNN) search algorithm to check if any “close”
input from the past gave rise to a “distant” output. The pre-
dictions in the figure are from the AlexNet [50] model.

Al model that is unrobust in the offline setting can still produce
robust runs if the unrobust input pairs do not appear in practice.
Naturally, runtime input-output robustness is immune to data distri-
bution shifts, and remains unaffected by class boundaries if inputs
near the boundaries do not appear at runtime. This way, runtime
input-output robustness accounts for only those inputs that matter.

We propose monitoring of runtime input-output robustness. The
objective is to design algorithms—or monitors—which would ob-
serve one long input-output sequence of a given black-box decision-
maker, and, after each new observation, would raise an alarm if
runtime robustness has been violated by the current run. In addi-
tion, after detecting a violation, the monitor would present a witness
set, which is the set of every past input that is similar to the current
input but produced a dissimilar output. The witness set can then be
scrutinized by human experts, and measures can be taken if needed.

Monitoring has been extensively used to improve trustworthi-
ness of software systems in other areas of computer science, includ-
ing safety assurance in embedded systems [8] and bias mitigation
in human-centric Al [1, 39, 40]. Like in these applications, monitor-
ing is meant to complement—and not replace—the existing offline
measures of input-output robustness. In fact, our experiments em-
pirically show that offline robustness improves runtime robustness
by a significant margin. Yet, Al models that were designed using
state-of-the-art offline robust algorithms still showed considerable
runtime robustness violations. Without monitoring, these violations
would go undetected. Some offline algorithms verify the absence
of robustness violations of trained models using formal methods
inspired approaches [49, 59], which usually do not scale for large
and complex models. As monitors treat the monitored systems
as black-boxes, their performances remain unaffected by model
complexities, making them essential tools when no verification
approach would scale. In fact, our monitors are shown to scale for

791

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

examples up to more than 100,000 feature dimensions and for neu-
ral networks with more than 350 million parameter. Such systems
are beyond the reach of static verification approaches.

We show that the algorithmic problem of monitoring input-
output robustness boils down to solving the well-known fixed-
radius nearest neighbor (FRNN) search problem at each step of
seeing a new input-output pair, as illustrated in Figure 1. In FRNN,
we are given a point p, a set of points S, and a constant € > 0, where
p and S belong to the same metric space, and the objective is to
compute the set S’ C S which is the set of all points that are at most
e-far from p. For our monitoring problem, S and p are respectively
the past and current input-output pairs at any given point, and the
underlying metric space is designed in a way that two points are
close to each other if they correspond to the violation of robustness.

Even though FRNN has been studied extensively, most existing
algorithms consider the static setting where S remains fixed. Usu-
ally, the static FRNN algorithms from the literature are concerned
with building fast indexing schemes for S, such that the process of
computing S’ is efficient. For monitoring, we need the dynamic
variant, where S is growing with incoming input-output pairs, and
p is the current input-output pair. The naive approach to go from
the static to the dynamic setting would be to recompute the index
at each step after the latest point is added to S, but this will cause a
substantial computational overhead in practice.

Our contributions are as follows.

e We present a practical solution for upgrading existing static
FRNN algorithms to the dynamic setting through periodic
recomputation of indices.

e We present a new dynamic FRNN algorithm based on the
symbolic data structure called binary decision diagram (BDD)
used in hardware and software verification.

e We present a parallelized FRNN algorithm that substantially
boosts the computational performances of our monitors.

e We implemented our monitors in the tool CLEMONT, and
show that it can detect violations within fraction of a second
to a few seconds (per decision) for real-world models with
more than 350M parameter and 150.5k input dimensions.

2 Related Work

The property of robustness has been studied across various domains
in computer science, most prominently, automata theory and Al.
Robustness in automata theory appears in the study of transduc-
ers [42], I/O-systems [42], and sequential circuits [31]. The notion
of robustness used are structurally similar to the ones used in Al
and include e-robustness, (€, §)-robustness, or Lipschitz robustness
[17]. In AI we are interested in the robustness of a single model.
Here we differentiate between local or global robustness [57], which
differ by the domain where the robustness requirements must hold.
Depending on applications, the existing robustness definitions go
by names like semantic robustness [26], adversarial robustness [57],
or individual fairness [32, 67].

The two general approaches ensuring the robustness of machine
learning models are training [7] and verification [59]. Training
robust models is done using techniques such as regularization,
curriculum learning, or ensemble learning [7]. Those techniques
often fail to provide strong robustness guarantees and those that



Monitoring Robustness and Individual Fairness

do, mostly do so in expectation [11, 51, 67]. Verifying models for
robustness is done using tool such as SMT solvers [46, 47], abstract
interpretation [36], mixed-integer programming [71], or branch-
and-bound [73]. A verified model is guaranteed to satisfy either
local [11] and global robustness [13, 43, 72, 76]. Those strong guar-
antees come at the cost of high computation time. In particular, they
do not scale as the complexity of the classifier increases, and usually
fail for networks with more than 1000 neurons [11, 13, 34, 59].
Monitoring is a well-established topic in runtime verification
of hardware, software, and cyber-physical systems [8]. Recently,
monitoring has been extended to verify group fairness properties of
deployed Al decision-makers [1, 39-41], though monitoring individ-
ual fairness (an instance of i.o.r.) properties has appeared rarely [1].
The difference between monitoring group fairness and individual
fairness is in the past information that needs to be kept stored:
while individual fairness (and i.0.r. by extension) needs all decisions
from the past, for group fairness, the explicit past decisions can
be discarded and only some small statistics about them needs to
be kept [1, 39-41]. The only known work on monitoring individ-
ual fairness proposes a simple solution similar to our brute-force
monitor [1], which we show to not suffice in many benchmarks.
We will see that some of our monitors build upon existing FRNN
search algorithms, a survey of which is deferred to Section 4.

3 The Monitoring Problem
3.1 Input-Output Robustness (I.O.R.)

We consider input-output robustness of Al classifiers, though our
formulation can be easily extended for regression models. Al clas-
sifiers are modeled as functions of the form D: X — Z, where X
is the input space and Z is the output space, with the respective
distance metrics dx and dz. Each (x, D(x)) pair will be referred to
as a decision of D. Input-output robustness, or i.o.r. in short, of D
requires that a small difference in inputs must not result in a large
difference in outputs.

Definition 3.1. Let D be a classifier. For given constants ex, dz >
0 and two inputs x,x” € X, the classifier D is (ex, §7)-input-output
robust, or (ex, (SZ)—i.o.r.2 in short, for x and x’ if:

dx (x, x') <ex = dZ(D(x),D(x')) < 6y.

)

We drop the constants “ex” and “§z” if irrelevant or unambigu-
ous. Usually, i.o.r. is not defined with a pair of fixed inputs like in
Definition 3.1, but rather as local or global requirements on the
system, and these local and global variants can be retrieved from
our definition of i.o.r. as follows. The classifier D satisfies local i.o.r.
with respect to a given input x, if for every x” € X, D is i.o.r. for
x and x’, and D satisfies global i.o.r., if for every pair of inputs
x,x" € X, D isiour for x,x” [17, 43, 52]. Lo.r. appears in different
forms in the literature, which are reviewed below.

Adversarial robustness. The definition of adversarial robust-
ness [26] exactly mirrors i.o.r. in (1) with X usually being
real-coordinate spaces with either Ly or Lo norm.

Semantic robustness. A decision-maker is semantically ro-
bust if a small semantic change in its input does not signifi-
cantly change the output [26], where two input images or

2The acronym “i.o.r.” will represent both the noun “input-output robustness” and the
adjective “input-output robust.”

792

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

input texts are semantically close if their semantic mean-
ings are similar, although the distance between their feature
values can be large. For measuring semantic robustness of
the classifier D: X — Z, we use a separate Al model S that
maps every input x € X to a point y in an intermediate
lower-dimensional semantic embedding space Y. Two inputs
x,x’ € X are then semantically close if S(x) and S(x”) are
close to each other according to a given distance metric. Usu-
ally, X and Y are real-coordinate spaces with either Ly or Lo
norms, and therefore semantic robustness reduces to i.o.r.
by defining dx (x,x”) = ||S(x) — S(x”)|| with the respective
norm || - ||, and ex is assumed to be specified.

Individual fairness. Individual fairness is a global robustness
property defined to assess the fairness of classifiers making
decisions about humans. Among many alternate definitions
[32, 43, 49, 67], we use the one of Biswas et.al. [13].

3.2 The New Runtime Variant

The existing local and global variants of i.o.r. are offline properties
of classifiers, meaning they are evaluated before observing the
actual inputs seen at runtime. In practice, a classifier that is not
locally or globally i.o.r. may still be acceptable, as long as the pairs
of inputs that witness the unrobust behaviors do not appear at
runtime. This motivates us to introduce the third, runtime variant
of i.o.r., which is a property of a given decision sequence, and not
a property of the underlying classifier. Here, a decision sequence
of the classifier D: X — Z is any finite input-output sequence
(x1,21), ..., (xn, 2n) € (X X Z)", for any n > 0, such that for every
€ [1;n], D(x;) = z;.

Definition 3.2. Let D be a classifier and let ex, §z > 0. A decision
sequence (x1,21) ... (xn, zn) of D is runtime (ex, 8z)-i.o.r. if

Vi, j € [1;n] . dx(xi,x]') <ex = dZ(D(x,'),D(xj)) <dz. (2)

It is straightforward to show that runtime i.o.r. is weaker than
global i.o.r.:

THEOREM 3.3. Suppose €x,dz > 0 are constants and X is infinite.

(1) Every decision-sequence of every globally (ex, §z)-i.o.r. classi-
fier is runtime (ex, 8z)-i.o.r.

(2) Ifthe decision-sequence of a classifier is runtime (ex, 8z)-i.o.r,
the classifier is not necessarily globally (ex, 8z)-i.o.r.

The proof is in Appendix B. Claim (1) of Theorem 3.3 implies
that if a given decision sequence of a classifier is not runtime i.o.r.,
then the classifier is surely not globally i.o.r. On the other hand,
Claim (2) suggests that if the decision sequence is runtime i.o.r,
we will not be able to conclude whether the classifier is globally
i.0.r. or not. Furthermore, from Definition 3.2, as soon as a decision
sequence violates runtime i.o.r.,, so will every future extension of
the sequence, regardless of the decisions that will be made in future.

3.3 Monitoring Runtime I.O.R.

We consider the problem of online monitoring of runtime i.o.r.
of classifiers. The goal is to design a function—the monitor—that
observes one long decision sequence of a black-box classifier, and
after observing each new decision (x, z), outputs the set of every
past decision (x’,z’) such that x and x’ are close but z and z’ are



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

not. If the monitor always outputs the empty set while observing a
given long decision sequence, then the sequence is runtime i.o.r.

PROBLEM 1 (MONITORING RUNTIME LO.R.). Let D: X — Z be
an arbitrary (black-box) classifier and let ex, 57 > 0 be constants.
Compute the function M: (X X Z)* x (X x Z) — 2X*2) such that
for every finite sequence of past decisions p = (x1,21) . .. (xn, z2n) of
D, and for every new decision (Xp+1, Zn+1),

M(p, (xn+1,2n+1)) = {(x1,2i),1 € [1;n] |
dx (Xns1.%1) < €x Adz(zne1,2i) > 87}
The function M will be called the i.o.r. monitor.

Monitoring runtime i.o.r. offers an added level of trustworthiness
in Al decision making, especially when the underlying decision
maker is not known to be globally i.o.r. One possibility is that the
outputs of the monitor can be sent for scrutiny by human experts, so
that necessary steps can be taken. Without monitoring, robustness
violations would go undetected, and could manifest in greater risks
and loss of trustworthiness.

3.4 Reduction to Fixed-Radius Nearest Neighbor

Problem 1 reduces to the online fixed-radius nearest neighbor (FRNN)
problem stated below:

PrOBLEM 2 (FRNN MONITORING). Let Q be a set equipped with
the distance metric dg and eg > 0 be a given constant. Compute
the function M: QF x Q — 29 such that for every sequence of past
points p =q1 ...qn € QF, and for every new point qn+1 € Q,

M(p,q) = {qi,i € [1;n] | dp(qn+1.9i) < €0}
The function M will be called the FRNN monitor.

Problem 1 reduces to Problem 2 by using Q = XxZ, eg = €x, and
by defining the metric dg as follows: For every (x,2), (x’,2') € Q,
{dx(x, ¥) i dz(znin,z) 2 5z

[e¢]

otherwise.

do((x.2). (x",2)) =

The advantage of stating the monitoring problem using Problem 2
instead of using Problem 1 is simplicity, and from now on, the “mon-
itoring problem” will refer to Problem 2 unless stated otherwise.

4 Preliminaries of FRNN Algorithms

We review the existing FRNN algorithms with a focus on the ones
used by our monitors. We use the notation from Problem 2, where
Q is a set with the distance metric dp, and eg > 0 is given.

4.1 Brute-Force (BF) FRNN

The most straightforward solution of Problem 2 is the brute-force
algorithm, which simply stores the set of seen points in memory,
and after seeing a new point from Q, performs a brute-force search
to collect all ep-close points. If Q is a d-dimensional real-coordinate
space, then clearly the time complexity at the n-th step is O(d - n),
since the new point must be compared with n other d-dimensional
points. In Section 4.2, we will review some FRNN algorithms with
asymptotically better complexities but significantly higher over-
head costs. Because of this, for small n, an efficient implementation

793

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

of the brute-force approach is capable of outperforming other alter-
natives. This will be visible in our experiments as well where we
use the highly optimized brute-force similarity search algorithm
implemented in Meta’s Faiss library [30].

4.2 Static FRNN with Indexing

Although FRNN is a well-studied problem, most existing non-brute-
force approaches consider the static, one-shot version of Problem 2,
namely the setting where the nearest neighbors will be searched
once, and the set of seen points is not accumulating. In Section 5,
we will present FRNN monitors that use static FRNN algorithm as
their back-ends, and, in principle, any off-the-shelf static FRNN
algorithm can be used. For concrete experimentation and as a proof-
of-concept, we chose two representative static algorithms, namely
the classic k-dimensional tree or k-d tree algorithm and the sorting-
based nearest neighbor algorithm. These algorithms improve over
the brute-force alternative by storing the given points in efficient
data structures, aka indexes, such that searching for nearest neigh-
bors becomes efficient. We will assume that in Problem 2, Q = R
for some dimension d € N, and dQ is either the Ly-norm or the
Leo-norm. Although there are FRNN algorithms for general metric
spaces [24, 78], they will be redundant for most use cases of i.o.r..
Let {q1,....qn} = D C R? be the given set of past points, and
qn+1 be the new point as described in Problem 2.

k-d trees. k-d trees are binary trees for storing the given set of
points D in a k-dimensional space (for us k = d and the space is
Q). Each leaf node of a k-d tree contains a set of points in 9. Each
internal node divides the space Q into two halves using a hyper-
plane, and points in D that are on the left side of the hyperplane
are stored in the left sub-tree, whereas the points that are on the
right side are stored in the right sub-tree. The construction of a k-d
tree from D takes O(dnlogn) time. k-d trees are not optimized
for finding all neighbors within a given radius, but rather for iden-
tifying a fixed number nearest neighbors, which takes O(logn)
time on an average and still O(n) time in the worst case. If we
modify k-d trees for the purpose of FRNN queries, then each query
would take O(d - n'~1/4 + d - m) time, where m is the number of
neighbors which are eg-close to the given input point. If m is large
and approaches n, then the time complexity approaches O(n)—the
same as the brute-force approach. In practice, most data sets are
sparse and m is usually small. Furthermore, k-d tree-based FRNN
is superior to brute-force when d is small but n is large, whereas
both become equivalent (modulo the additional indexing overhead
of k-d trees) when d is large and n is small.

Sorting-based nearest neighbor (SNN). The recently developed
SNN algorithm uses a sorting-based indexing scheme that is faster
to build than k-d trees. In particular, the indexing step requires
O(nlogn + nd?)-time. The algorithm computes an ascending se-
quence of key values, each value corresponding to a point in the
dataset D. The property satisfied by the key values is, that if two
points have key values e-far apart, then their L, distance must also
be greater than €. The FRNN queries exploit this relationship. First,
the key value of the input point is computed, requiring O(d?)-time.
Second the algorithm can safely discards all points with key val-
ues e-far from the key value of the input point. This can be done
efficiently using binary search in O(log n)-time. Then a brute force



Monitoring Robustness and Individual Fairness

search is performed on the remaining points. The soundness of
SNN relies on the chosen norm, although they are not restricted to
the Ly norm, the Lo, norm is not supported [20].

4.3 Survey of Other FRNN Algorithms

We chose k-d tree [10] and SNN [20] as representative indexing
algorithms, where the indexing of k-d trees uses an implicit par-
titioning over the input space, while the indexing of SNN uses a
partition-free approach. Other algorithms using partitioning-based
indexing include R trees [27, 38], ball trees [61], cover trees [12],
general metric trees [22], and GriSpy [18], and other algorithms
using partition-free indexing include the work by Connor et.al. [25].
Any of these algorithms could be used in our monitor, and as a
general rule of thumb, the partition-based approaches will face
higher computational blow-up than the partition-free methods for
monitoring systems with high-dimensional input spaces [20].

The key aspect in monitoring runtime i.o.r. is scalability, which
will require us to use optimized FRNN algorithms that are fast even
for high-dimensional data, such that the nearest neighbor search
consistently ends before the arrival of the next input. Multiple
strategies could be used for improving scalability.

A first alternative would be to use off-the-shelf parallelized FRNN
algorithms, which include works on both CPU-based [14, 16, 21, 45,
58, 77] and GPU-based [56, 60, 63, 79] parallelization. These algo-
rithms have their own strengths and weaknesses, and the choice
of the appropriate algorithm will ultimately be driven by the ap-
plication’s requirements. For instance, algorithms based on recent
developments in GPU hardware tend to be limited to 3 dimensions
[56], while CPU-based algorithm are more flexible [14].

In Section 5, we will build FRNN monitors by periodically re-
computing indexes of static FRNN algorithms. A faster alternative
would be to use dynamic FRNN algorithms permitting incremental
updates to the indexing structure [14, 23, 33, 35, 77]. Recent works
present incremental indexing of Hamming weight trees for FRNN
in Hamming spaces [33] and of k-d trees for FRNN in Euclidian
metric spaces [14, 77]. Most of these works provide approximate
solutions (explained below), whereas we intend to find the exact set
of nearest neighbors; the few existing algorithms [14, 77] for the
exact setting will be incorporated in future editions of our monitors.

A third alternative would be to use approximate FRNN algorithms,
which would trade off monitoring accuracy with performance and
may occasionally output false positives (reporting robustness vi-
olations even if there is none) or false negatives (not reporting
robustness violations even if there are some). The literature on
approximate FRNN is vast, and includes approximation schemes
that are either data-dependent [5] or data-independent [3], and use
various techniques ranging from input space dimensionality reduc-
tion [6] to approximate tree-based space partitioning [12, 54, 65] to
the hierarchical navigable small world search algorithm [55]. All
these approaches can be integrated within our monitor, and may
be useful if occasional false outputs are acceptable.

5 FRNN Monitoring via Periodic Indexing

Most existing, non-brute-force FRNN algorithms build index struc-
tures for storing the set of input points, and these indexes usually

794

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

do not support incremental updates that would be suitable for mon-
itoring input sequences. Recomputing the entire index at each step
would incur a substantial computational cost and is infeasible. We
resolve this in Algorithm 1 by using a simple practical approach,
namely re-indexing the FRNN data structure only periodically, after
the interval of a given fixed number of inputs 7 > 0. The algorithm
stores the past inputs in two separate memories, namely a long-term
memory L and a short-term memory S. The long-term memory L is
updated periodically and stores past inputs that appeared before the
last update of L, while the short-term memory S is the “buffer” that
stores inputs that appeared after the last update of L. Every time a
new input g appears, we need to search for its neighbors in the set
L US. We delegate the search over S to the brute-force approach
and the search over L separately to a static FRNN approach. Every
time the size of S reaches 7, we transfer the points in S to L, reset
S to the empty set, rebuild the index of the static FRNN algorithm
using the updated L, and continue with the next input.

In our experiments, for the static part, we compared k-d tree-
based FRNN and SNN as proof-of-concept, although any FRNN
algorithm could be used. For a fixed dimension of the input space
and for a large set of past input points, the performances of k-d
trees and SNN are significantly better than the brute-force approach,
making them suitable for searching over L. The hyper-parameter
7 needs to be selected in a way that it creates a balance between
the increasing query time of the brute-force algorithm and the cost
of re-indexing the static FRNN algorithm. The following method
can be applied. Let n be a given number of input-output pairs, and
suppose f(n), g(n), and h(n) represent, respectively, the worst-case
time complexities of computing the FRNN index, the search over
the long-term memory, and the search over the short-term memory.
Typically, f(n) > h(n) > g(n), and there is the tradeoff between
indexing too frequently (low 7), paying the high price of f(n) more
often, and indexing too rarely (high 7), paying the price of h(n) more
often while the lower amount g(n) could be used. We can express
the overall amortized complexity of the monitoring algorithm (per
execution step) as T(7) = (f(n+1) + 7g(n) + X7_; h(i))/7. The
functions f, g, and h will depend on the particular algorithms being
employed, but usually they are simple enough that we can find the
optimal 7 such that T(7) is minimized.

6 FRNN Monitoring using
Binary Decision Diagrams (BDD)

We now present a new FRNN monitoring algorithm that is suitable
in the dynamic setting of monitoring, where the seen inputs are
incrementally updated over time. Our new algorithm gives rise
to monitors that in many cases outperform the monitors using
off-the-shelf FRNN algorithms with periodic indexing. The ides is
to perform a bi-level search, where the top-level search is fast but
approximate, and uses an indexing scheme with binary decision dia-
grams (BDD), and the bottom-level search is slow but exact, and uses
the brute-force algorithm. While the top-level search would quickly
narrow down the search space, it can generate false positives, which
would then be eliminated by the bottom-level brute-force search.
This algorithm works only for L, distance; extensions to other
metrics is left for future work.



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Algorithm 1 FRNN Monitor: Static FRNN with Periodic Indexing

Input: Space Q, distance metric dg, constant eg > 0
L0
2: S0
3: F « StaticFRNN(Q, dp, €Q)
4. F.Computelndex(L)
5. while true do
6: q «— GetNewInput()
7: U « F.FRNN(q)
8 V « BruteForceFRNN (S, q;dg, €0)
9: outputU UV

10: S« Su{q}

1 if |S| = 7 then

12: L—LUS

13: S0

14: F.Computelndex(L)
15: end if

16: end while

BDDs for indexing. BDDs have been extensively used in hard-
ware and software verification in computer science. The syntactic
description of BDDs is irrelevant and out of scope; see the work of
Bryant [15] for reference. We will use BDDs essentially as black-
boxes to build an efficient data structure for the FRNN search. To this
end, a BDD is essentially a function of the form f: {0,1}" — {0, 1},
where n > 0 is the number of boolean input variables. Let Q, dQ,
and €g be as defined in Problem 2.
Suppose Q has some real and some

categorical dimensions. Assuming that L@7) =1

the real dimensions have a bounded A
range, we will discretize the real di- =L
mensions into finitely many (non- g q|
overlapping) intervals of width ep. Each .
interval has a representative point as its

label, and every other points inside this o

interval is “approximated” by the same

label. For example, in a data set on hu- Figure 2: Dis-
mans, “age” can be a real-valued feature, cretization of
whose realistic range could be 0-120. If Q = R The

points have neigh-
boring label, but
are €p apart.

e = 1, the discrete intervals become
[0,1),[1,2),...,[119,120). For each in-
terval, we can choose the lower bound
as its label, i.e., the label of [34, 35) is 34.
Given a real feature value x, we will use x to represent its respective
label. The categorical dimensions (such as “gender”) are assumed
to have only finitely many values, and the “label” of each possible
value is the value itself. This way, we discretized Q using a set of
finitely many vectors of labels, call it @ where the i-th element of
each vector is the respective label in the i-th feature dimension. For
a given input g € Q, let g represent its corresponding label vector.

We now introduce the the BDD f: {0,1}" — {0, 1} which will
store the set W of past inputs using their discrete label vectors.
For this, we will require n = log(|Q|) bits to encode the label
vectors. At each point, for a given ¢ € Q, and assuming by is
the boolean encoding of g, f(b) = 1iff q has been seen in the past.

795

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

After seeing every new input, f can be updated using standard BDD
operations [15]. We also maintain a dictionary A, that maps each
label vector o € Q to the set of seen points g € Q with label v. We
need another BDD for encoding the distance function dQ, denoted
as f;: {0,1}2" — {0, 1}, which takes as inputs two binary encoded
label vectors b, b” of two inputs g, ¢’, and outputs f;(b,b’) = 1iff
each vector entry of g and ¢’ are either all the same or are adjacent
labels to each other; in our example of “age,” 34 and 35 are adjacent
labels. The BDD f; is constructed statically in the beginning using
standard BDD operations [15].

The sketch of the algorithm. The FRNN monitor uses a hierarchi-
cal FRNN search: The BDDs sit at the top-level, and after each new
input q is observed, quickly checks if any past point had the same
or adjacent labels. There are three possible outcomes: (a) Neither
g nor its neighbors appeared before, in which case the monitor
outputs M(-,q) = 0, a case that we expect to experience most of
the time. (b) The vector g appeared before but none of its neighbors
did, in which case the monitor outputs M(-, q) = A(g), since every
two points with the same label vector are at most €g apart. (c) Both
(a) and (b) are false, i.e., some neighbor ¢’ of g appeared before,
which could mean either a true positive or false positive, since the
distance between two points with neighboring labels may or may
not be smaller than eg; see Figure 2 for an illustration.

When Option (c) is true and the result of the top-level search is
inconclusive, the bottom-level brute-force search comes to rescue.
But now, the brute-force algorithm only needs to search within
the set of seen inputs that have the neighboring labels of g, which
in most case will be significantly faster than the regular brute-
force search over the entire set of seen inputs. The pseudocode
of the full algorithm is included in Appendix A, which includes
elementary BDD operations like disjunction and membership query.
Even though these operations have exponential complexity in the
number of BDD variables n [15], i.e., linear complexity with respect
to |Q|, still in practice, modern BDD libraries use a number of smart
heuristics and have superior scalability.

7 Performance Optimization: Parallelized FRNN

Many existing FRNN algorithms, including k-d trees and our BDD-
based algorithm, use partitioning of the input space, which causes
a blow-up in the complexity with growing search space dimen-
sion [4]. We present a parallelization scheme for performing near-
est neighbor search over real-coordinate spaces equipped with the
Lo distance metric. The idea is that for the Lo, metric, two points
are e-close iff they are e-close in each dimension. This inspired
us to decompose the given FRNN problem instance into multiple
sub-instances of FRNN with fewer dimensions than the original
problem. Each sub-problem can be solved independently, and there-
fore in parallel, and it is made sure that when the solutions of the
sub-problems are composed in a certain way, we obtain a solution
for the original FRNN problem. Our parallelization scheme works as
a wrapper on any FRNN monitoring algorithm. In our experiments,
we demonstrate the efficacy of the parallelized version of both k-d
tree-based FRNN monitors and BDD-based FRNN monitors.

For simplicity, we explain the parallelized algorithm using two
parallel decompositions of the given problem; the extension to arbi-
trarily many decompositions is straightforward. Before describing



Monitoring Robustness and Individual Fairness

Algorithm 2 Parallelized FRNN Monitoring

Input: Space Q, distance metric dg, constant eg > 0
S0
2: while true do
3: q «— GetNewInput()

4 S « AssignUniqueLabels(S)

5 Sp— {seR*XN |3g€eS. (qA qid) =s}
6: Sp ¢ {seR"xXN|3geS.(¢B,q.id) = s}
7: Do in parallel

8: Ty < FRNN(S4, (p.A, p.id); dQ, EQ)

9: Tg « FRNN(SB, (p.B,p.id); dQ, 6Q)

10: End parallel

11: Te—{teR™|3JieN.JaeTy.3beTg. (tAi =
a, (t.B,i) = b}

12: output T

13: S—Sud{q}

14: end while

the algorithm, we introduce some notation. We consider FRNN
problems on the metric space (R?", de) where do is the Lo, norm.
For a given point ¢ = (r1,...,"n,Tn+1,-..,12n) € R we will
write q.A and g¢.B to respectively denote the projections (ry, ..., ")
and (ru+1, . - -, r2n). We will use the augmented space (R%* xN, dZ, ),
where the extra dimension N will be used to add unique labels to the
points in R?", and d’, equals to do with the labels of the points ig-
nored. For a given point ¢ = (r1,...,n, 'n+1s - - -, '2n, M) in the aug-
mented set, we will write g.id to denote the label m of ¢, while q.A
and q.B will as usual represent (r1,...,r) and (rp41, ..., r2n), re-
spectively. We define the function AssignUniqueLabels which takes
as input a given finite set S € R%", and outputs a set S in the aug-
mented space R% x N such that S exactly contains the elements of
S which are now assigned unique labels.
The parallelized algorithm is pre-
sented in Algorithm 2, and we explain it
using a simple example in Figure 3. Sup-
pose n = 1, i.e,, the original FRNN prob-
lem is in the metric space (R?, dw). Let
the inputs be the set S = {q1, g2, ¢3} and
the new point p, as shown in Figure 3,
where the shaded region around p rep-
resents its ep-neighborhood for a given
€g > 0 (as in Problem 2). Clearly, the

. Figure 3: Par-
FRNN algorithm should output T = {q3} .
as the set of e-neighbors of p. allell‘zed‘ FRNN
monitoring.

To solve this problem in parallel, we
first assign unique labels (Line 4 in Al-
gorithm 2) to the points q1, q2, g3; let g;.id = i for every i € {1,2,3}.
Then we project S to the two individual dimensions A and B, giving
us the lower dimensional sets S4 and Sg (Lines 5 and 6), where we
ensure that the labels of the points are preserved in the projections.
Now we solve—in parallel—the two single-dimensional FRNN in-
stances (54, (p.A, p.id), eg) and (S, (p.B, p.id), €p), giving us the
lower-dimensional sets of ep-close points T4 and Tp, respectively
(Lines 8 and 9). Finally we compose T4 and Tp to obtain the final
answer T (Line 11). The key insight is that the dew-norm suggests

796

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

that two points p and g are ep-close iff they are ep-close in all
dimensions. Therefore, if there is a point q that is eg-close to p in A
but not in B or vice versa, then q is not e-close to p and hence is not
included in T; this case applies to both points q; and g2 in Figure 3.
As the point g3 is e-close to p in both dimensions, it is added to T.
Note that the additional identification labels of the points help us to
perform this synchronized check across both A and B dimensions.

8 Experimental Evaluation

We implemented our algorithms in the tool Clemont, and use it to
monitor well-known benchmark models from the literature. On one
hand, we demonstrate the monitors’ effectiveness on real-world
benchmarks (Section 8.1), and on the other hand we demonstrate
their feasibility in terms of computational resources (Section 8.2).

Different parts of the experiments were run on different ma-
chines. Our monitors for all our examples run on CPUs, and GPU-
based implementations (especially the parallellized FRNN algo-
rithm) are left for future works. The only place GPUs were used
are for training the models used in our experiments. Our monitors
were evaluated on personal laptops with 8GB memory for all exam-
ples other than the adversarial robustness example with ImageNet
model, whose feature space is too large (150,000 features) for per-
sonal laptops, and we used machines with 256GB memory for this
one experiment.

8.1 Practical Applications of I.O.R. Monitoring

The experimental setup and the corresponding results are provided
in Table 1. For adversarial and semantic robustness, we picked a
number of image data sets provided by RobustBench [26], which
is a standardized benchmark suite for comparing robustness of Al
models. For each of the data sets, we picked the best and the worst
performing models, and provided them with a sequence of input
images, some of which were deliberately modified with adversar-
ial or semantic corruptions. For individual fairness, we picked the
standard fairness data sets, and used baseline and fair models from
various existing works from the literature. These models were then
given a sequence of input features of individuals. In all these ex-
periments, we deployed our monitors to track the violation of the
respective robustness or fairness conditions by the Al models.

Diffenderfer
gaussian_noise -
shot_noise -
impulse_noise -
defocus_blur -
glass_blur -
motion_blur -
zoom_blur -
snow -
frost - [ |
fog -
brightness -
contrast - [ | | | | ]|
elastic_transform -
pixelate -
jpeg_compression -
12345123451234512345
Severity  Severity  Severity  Severity

Gowal  Diffenderfer ~ Standard Tian AlexNet

iso_noise -
near_focus -
far_focus -
xy_motion_blur -
2_motion_blur -
flash -
low_light -
color_quant -

1234512345

Severity  Severity

0.00 483 13.09 33.03 0.00 1.42 4.83 13.0933.03

% violations. % violations

Figure 4: Semantic robustness violations identified during
monitoring. Left to right: Robust [29] and base [37] CI-
FAR100C model, robust [29] and base [26] CIFAR10C model,
robust [70] and base [26] ImageNet model.



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Key Takeaways. The results are summarized in Table 1, and some
concrete instances of detected semantic robustness violations are
displayed in Appendix C. Our monitors always output correct an-
swers by design, and therefore the only interesting quality metric
is the violations rate, representing the average number of inputs
for which the monitor detected i.o.r. violations. Except for a few
cases of individual fairness, the violation rate is always positive,
highlighting the need for monitoring as an additional safeguard.

The violation rate also confirms that robust or fair training algo-
rithms do improve the runtime i.o.r. in practice, which is expected.

For semantic robustness, we observe some interesting trends. As
the severity of the corruption increases, in most cases the violation
rate goes down. We suspect that this is because higher corruption
increases the distance between the corrupted and the original image
in the embedding space, and differences in output labels are not con-
sidered as robustness violation anymore. However, for corruption
of contrast, this trend does not hold.

We report the time and the memory requirements for monitoring
the sequence of all the inputs from the entire benchmark data sets.
We observe that the brute-force algorithm outperforms all other
approaches in every category, which can be explained by the small
number of data points for which brute-force excels (see Section 8.2).

8.2 Computational Performances of Monitors

It is expected that the average computation time of monitors will
grow with respect to the length of decision sequences and the
number of dimensions in the data, due to the increase in FRNN
search complexities. We demonstrate these trends empirically.

Length of decision sequences. We used the HIGGS data set [75]
because of its large volume of 10.5 million entries. For each entry we
generated a synthetic output, and then used our different monitors
to sequentially run over the 10.5 million decisions. We repeated this
experiment with 24 and 12 dimensions, and for different values of
€g € {0.01,0.025,0.05}. In Figure 5, we report the rolling average
processing time per input (with 100k window size) with respect to
increasing length of the decision sequence. We observe that BDD-
based monitors are fastest for low dimensions and large values of
€0, outperforming k-d trees with Leo-norm. This is surprising given
the stellar performance of k-d trees for the Ly norm. Both SNN and
brute force perform reasonably well across all our experiments.
Furthermore, the BDD-based algorithm shows a non-monotonic
trend with respect to €p: As €g increases, the number of partitions
decreases, so the BDDs get smaller and more efficient. However,
this introduces more false positives, requiring the lower-level brute-
force routine to engage more frequently, causing a decrease in
performance. Intuitively, the BDD-based monitor performs well
when the input data is sparse, so that the false positives are less
frequent. This is expected for high-dimensional data, although
higher dimension would increase the computational cost. This can
be balanced by parallelizing with a just enough number of parallel
workers, s.t. the data in each paralle]l FRNN remains sparse.

Number of dimensions and parallel processing units. We
augmented ImageNet data [28] with Gaussian noise and synthetic
decisions, and ran our monitor on sequences of 10,000 labeled
samples with varying number of dimensions, obtained by sam-
pling random pixels from the image. We compare various FRNN

797

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

monitoring algorithms, both without parallelization and measuring
computational time starting from an initial history of length 100k,
and with parallelization and measuring computational time from
the beginning (see Algorithm 2). In Figure 5, we can observe that
BDD-based monitors are the slowest as the dimensions increase,
and k-d trees and SNN are somewhat comparable. Moreover, the
plots show that parallelization drastically increases the viability of
monitoring in high dimensions. The number of threads should be
chosen as a function of the dimension, as we can observe that there
exists a sweet spot in the trade-off between the dimensionality
reduction and parallelization overhead. This behavior is especially
pronounced for BDD-based monitoring, as was explained earlier.

9 Discussions

We propose runtime i.o.r. as a new variant of i.o.r. properties that
include adversarial robustness, semantic robustness, and individual
fairness in one umbrella. Runtime i.o.r. requires the current run of a
given Al decision maker be robust, and therefore is weaker than the
traditional local or global i.o.r. properties that require robustness
to be satisfied even for inputs that may never appear in practice.
We propose monitors for the detection of runtime i.o.r. violations
by deployed black-box AI models. Our monitors build upon FRNN
algorithms and use various optimizations, and their effectiveness
and feasibility are demonstrated on real-world benchmarks.
Several future directions exist. Firstly, we will incorporate more
advanced FRNN algorithms in our monitors, like the ones with
dynamic indexing and approximate solutions. Secondly, our robust-
ness (semantic and adversarial) case studies are only on image data
sets, but there are other possibilities. We plan to build monitors for
spam filters that would warn the user if different verdicts were made
for semantically similar texts from the past. Finally, we will address
various engineering questions about the monitoring aspect, like
buffering new inputs while computation of previous inputs is still
running, and distributed monitoring for networks of Al models.

Acknowledgments

This work was supported in part by the ERC project ERC-2020-
AdG 101020093 and the SBI Foundation Hub for Data Science &
Analytics, IIT Bombay.

References

[1] Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming,.
In Proceedings of the Conference on Fairness, Accountability, and Transparency.
211-219.

Sajjad Amini, Mohammadreza Teymoorianfard, Shiqing Ma, and Amir
Houmansadr. 2024. MeanSparse: Post-Training Robustness Enhancement
Through Mean-Centered Feature Sparsification. arXiv preprint arXiv:2406.05927
(2024).

Alexandr Andoni and Piotr Indyk. 2008. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Commun. ACM 51, 1 (2008),
117-122.

Alexandr Andoni and Piotr Indyk. 2017. Nearest neighbors in high-dimensional
spaces. In Handbook of Discrete and Computational Geometry. Chapman and
Hall/CRC, 1135-1155.

Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. 2014. Be-
yond locality-sensitive hashing. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms. SIAM, 1018-1028.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate nearest
neighbor search in high dimensions. In Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018. World Scientific, 3287-3318.

Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021. Recent Advances
in Adversarial Training for Adversarial Robustness. (2021).

[2]

[7



Monitoring Robustness and Individual Fairness KDD ’25, August 3-7, 2025, Toronto, ON, Canada

‘ Data Set n d ‘Norm € ‘Base # Param. Violations (%) | Robust #Param. Violations (%)

Time per sample (ms) ‘ Memory (MB)

| | | | | BF k-d k-d(16t) | BF k-d k-d(16t)

Adv. CIFAR-10 20k 3.1k 8 [26] 36M 0.948 [9] 366M 0.196 3.71 6.09 1.87 2191 2852 1946

Robust. | CIFAR-100 : Lo 25 |[66] 11M 0.344 [74]  267TM 0316 547 3204 9.73 2057 2878 1945
ImageNet 10k 150.5k % [26] 26M 0.767 [2] 198M 0.186 0.26s 7.73s 0.62s 64GB75GB 65GB

\ \ \ | | BFE k-d SNN | BF k-d SNN

Sem CIFAR-10-C 20k 75 [26] 36M [29] 268M 2.36 83.75 12.75 388 519 573

Robus.t CIFAR-100-C 384" Ly : [37] 267TM Fig 4 [29] 269M Fig 4 4.53 59.26 37.80 396 519 573
ImageNet 10k 12.5 | [50] 61M [70] 86M 32.78 0.2s 60.25 376 373 401

() from DINOv2[62] embedding ‘ [67] [49] [67] [49] ‘ [67] [49] [67] [49] BF k-d BDD BF k-d BDD

Ind German 1k 31 [67] 33k 1.5k 0.0 2.9 (67] 33k 1.5k 0.0 0.0 0.31 0.30 0.74 220 223 235

Fair' Adult 48.8k 15 Lo 0.16 [49] 51k 11k 0.1 232 [49] 51k 11k 0.0 2.5 0.69 1.21 5.38 250 360 275

COMPAS 6.2k 18 15k 0.7k 1.8 55.4 15k 07k 02 40.6 0.31 0.49 4.50 223 235 236

Table 1: Experimental setup and performance summary for robustness monitoring applications. For each experimental setting
we compare: the detected i.o.r. violations for the base model and the robust model; the processing time per input and the total
memory required by our monitor implemented with various FRNN algorithms.

0.06 0.06 0.06 ;
0.05 0.05 0.05 Té’
— — — s
E 5 0.04 5 0.04 ]
2 g 2 @
s s s
] 3 g o
3 o003 8 0.031 E
2 2 2 3
J &
£ £ 002 £ 002 g
0.01 0.01 z
0.00 -+ . : . : . 0.00
00 02 04 06 08 10 22 24 20 28 210 212 QM Qle
Sample le7 Sample le7 Number of Dimensions
0.06 0.06 0.06
0.0 0.0 0.05 o)
3 2 % = £ 100
5 0.04 5 0.04 \ 5 0.04 3
2 g 2 X)
] ] / ]
g 8 003 8 003 g
§o003 a0 o x4 F 1072
g 0.02 7 g 0.02 & £ 0.02 &
Y E V) / = e o
. / g o/
0.01 [t ] 0.01 // e 0.01 <102
0.00 0.00 0.00
00 02 04 06 08 10 00 02 04 06 08 10 282t 20 2% 20 g 2w g
Sample le7 Sample le7 Sample le7 Number of Dimensions

Figure 5: LEFT: Performance comparison on the HIGGS dataset with 10 million entries. The rows correspond to 12 and 24
dimensional inputs respectively. The columns correspond to a € of 0.01, 0.025, and 0.05 respectively. Legend: BDD (—), Brute
Force (—), Kd-tree Lo, (—), Kd-tree Ly (——), SNN (—), 2-threaded BDD (- --), 2-threaded Kd-tree ( ). RIGHT: The plot
shows average processing time for 10k images from ImageNet: without parallelization after pre-loading 100k images (top);
with parallelization after pre-loading 0 images (bottom). Parallelization plot only: BDD at 1 thread (—®—), BDD at 16 threads
(—<), BDD at 96 threads (—¥), Kd-tree at 1 thread ( ), Kd-tree at 16 threads (—<), Kd-tree at 96 threads (—¥)

[8] Ezio Bartocci and Yliés Falcone. 2018. Lectures on runtime verification. Springer. (ICSE). IEEE, 1546-1558.

[9] Brian R Bartoldson, James Diffenderfer, Konstantinos Parasyris, and Bhavya [14] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neighbors in
Kailkhura. 2024. Adversarial Robustness Limits via Scaling-Law and Human- Low Dimensions with Batch Updates. In 2022 Proceedings of the Symposium on
Alignment Studies. arXiv preprint arXiv:2404.09349 (2024). Algorithm Engineering and Experiments (ALENEX). SIAM, 195-208.

[10] JonLouis Bentley. 1975. Multidimensional binary search trees used for associative [15] Randal E Bryant. 2018. Binary decision diagrams. Handbook of model checking
searching. Commun. ACM 18, 9 (1975), 509-517. (2018), 191-217.

[11] Elias Benussi, Andrea Patane, Matthew Wicker, Luca Laurenti, and Marta [16] Yu Cao, Xiaojiang Zhang, Boheng Duan, Wenjing Zhao, and Huizan Wang. 2020.
Kwiatkowska. 2022. Individual Fairness Guarantees for Neural Networks. In 31st An improved method to build the KD tree based on presorted results. In 2020
International Joint Conference on Artificial Intelligence, IJCAI 2022. International IEEE 11th International Conference on Software Engineering and Service Science
Joint Conferences on Artificial Intelligence (IJCAI), 651-658. (ICSESS). IEEE, 71-75.

[12] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for [17] Marco Casadio, Ekaterina Komendantskaya, Matthew L Daggitt, Wen Kokke,
nearest neighbor. In Proceedings of the 23rd international conference on Machine Guy Katz, Guy Amir, and Idan Refaeli. 2022. Neural network robustness as
learning. 97-104. a verification property: a principled case study. In International conference on

[13] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness verification of neural computer aided verification. Springer, 219-231.

networks. In 2023 IEEE/ACM 45th International Conference on Software Engineering

798



KDD ’25, August 3-7, 2025, Toronto, ON, Canada

[18]

[19

[20

[21]

[23

[24]

[25

[26

[27]

[28

[29

[30]

[31

o
&

[33]

[34

[35]

[36]

[37]

[38

[39]

Martin Chalela, Emanuel Sillero, Luis Pereyra, Mario Alejandro Garcia, Juan B
Cabral, Marcelo Lares, and Manuel Merchan. 2021. Grispy: A python package
for fixed-radius nearest neighbors search. Astronomy and Computing 34 (2021),
100443.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and
Hongyang Li. 2024. End-to-end autonomous driving: Challenges and frontiers.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

Xinye Chen and Stefan Giittel. 2024. Fast and exact fixed-radius neighbor search
based on sorting. Peer} Computer Science 10 (2024), €1929.

Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L Bocchino Jr,
Sarita V Adve, and John C Hart. 2010. Parallel SAH kD tree construction.. In
High performance graphics. Citeseer, 77-86.

Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. 1997. M-tree: An efficient access
method for similarity search in metric spaces. In VIdb, Vol. 97. Citeseer, 426-435.
Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. 1997. M-tree: An efficient access
method for similarity search in metric spaces. In VIdb, Vol. 97. Citeseer, 426-435.
Kenneth L Clarkson. 1997. Nearest neighbor queries in metric spaces. In Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of computing.
609-617.

Michael Connor and Piyush Kumar. 2010. Fast construction of k-nearest neighbor
graphs for point clouds. IEEE transactions on visualization and computer graphics
16, 4 (2010), 599-608.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo
Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias
Hein. 2020. RobustBench: a standardized adversarial robustness benchmark.
arXiv preprint arXiv:2010.09670 (2020). Accessed: 2024-12-01.

Sanjoy Dasgupta and Kaushik Sinha. 2013. Randomized partition trees for exact
nearest neighbor search. In Conference on learning theory. PMLR, 317-337.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya
Kailkhura. 2021. A winning hand: Compressing deep networks can improve
out-of-distribution robustness. Advances in neural information processing systems
34 (2021), 664-676.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The faiss library. arXiv preprint arXiv:2401.08281 (2024).

Laurent Doyen, Thomas A Henzinger, Axel Legay, and Dejan Nickovic. 2010.
Robustness of sequential circuits. In 2010 10th International Conference on Appli-
cation of Concurrency to System Design. IEEE, 77-84.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. 214-226.

Sepehr Eghbali, Hassan Ashtiani, and Ladan Tahvildari. 2019. Online nearest
neighbor search using hamming weight trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence 42, 7 (2019), 1729-1740.

Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-
based framework for neural network verification. In Computer Aided Verification:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020,
Proceedings, Part I 32. Springer, 43-65.

Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, and Yiu Sang Moon.
2000. Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise
distances. The VLDB Journal 9 (2000), 154-173.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE symposium on security
and privacy (SP). IEEE, 3-18.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli.
2020. Uncovering the limits of adversarial training against norm-bounded adver-
sarial examples. arXiv preprint arXiv:2010.03593 (2020).

Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47-57.

Thomas Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.
2023. Runtime monitoring of dynamic fairness properties. In Proceedings of the
2023 ACM Conference on Fairness, Accountability, and Transparency. 604-614.
Thomas A Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.
2023. Monitoring algorithmic fairness. In International Conference on Computer
Aided Verification. Springer, 358-382.

Thomas A Henzinger, Konstantin Kueffner, and Kaushik Mallik. 2023. Monitoring
algorithmic fairness under partial observations. In International Conference on
Runtime Verification. Springer, 291-311.

Thomas A Henzinger, Jan Otop, and Roopsha Samanta. 2014. Lipschitz Robustness
of Finite-state Transducers. In 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 431-443.

799

[43

[44]

[45

[46]

=
)

[48

[49

[50

[
—

[52

(53]

[54

[55]

[57

[58

[59]

=
2

o
=

(64

[65

=
2

[67

[68

Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. 2020. Verifying
individual fairness in machine learning models. In Conference on Uncertainty in
Artificial Intelligence. PMLR, 749-758.

Anan Kabaha and Dana Drachsler Cohen. 2024. Verification of Neural Net-
works’ Global Robustness. Proceedings of the ACM on Programming Languages 8,
OOPSLA1 (2024), 1010-1039.

Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. ACM SIGMOD
Record 21, 2 (1992), 195-204.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97-117.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, et al.
2019. The marabou framework for verification and analysis of deep neural
networks. In Computer Aided Verification: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer, 443-452.
Orgun Kaya, Jan Schildbach, Deutsche Bank AG, and Stefan Schneider. 2019.
Artificial intelligence in banking. Artificial intelligence (2019).

Haitham Khedr and Yasser Shoukry. 2023. Certifair: A framework for certified
global fairness of neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 37. 8237-8245.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. ifair: Learning
individually fair data representations for algorithmic decision making. In 2019
ieee 35th international conference on data engineering (icde). IEEE, 1334-1345.
Klas Leino, Zifan Wang, and Matt Fredrikson. 2021. Globally-robust neural
networks. In International Conference on Machine Learning. PMLR, 6212-6222.
Lan Li, Tina Lassiter, Joohee Oh, and Min Kyung Lee. 2021. Algorithmic hiring
in practice: Recruiter and HR Professional’s perspectives on Al use in hiring. In
Proceedings of the 2021 AAAI/ACM Conference on Al Ethics, and Society. 166-176.
Yi Lin and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. J.
Amer. Statist. Assoc. 101, 474 (2006), 578-590.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.
Durga Keerthi Mandarapu, Vani Nagarajan, Artem Pelenitsyn, and Milind Kulka-
rni. 2024. Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances
using GPU Ray Tracing. In Proceedings of the 38th ACM International Conference
on Supercomputing. 14-25.

Ravi Mangal, Aditya V Nori, and Alessandro Orso. 2019. Robustness of neural
networks: A probabilistic and practical approach. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 93-96.

Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2024. Pkd-tree: Parallel k d-tree
with Batch Updates. arXiv preprint arXiv:2411.09275 (2024).

Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin,
and Jin Song Dong. 2022. Adversarial robustness of deep neural networks: A
survey from a formal verification perspective. IEEE Transactions on Dependable
and Secure Computing (2022).

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. Rt-knns unbound:
Using rt cores to accelerate unrestricted neighbor search. In Proceedings of the
37th International Conference on Supercomputing. 289-300.

Stephen M Omohundro. 1989. Five balltree construction algorithms. (1989).
Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193 (2023).

Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based
Parallel R-tree Construction and Querying. In 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 618-627.

Mahfuzur Rahman, Teoh Hui Ming, Tarannum Azim Baigh, and Moniruzzaman
Sarker. 2023. Adoption of artificial intelligence in banking services: an empirical
analysis. International Journal of Emerging Markets 18, 10 (2023), 4270-4300.
Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for nearest neighbor
search. In Proceedings of the 25th acm sigkdd international conference on knowledge
discovery & data mining. 1378-1388.

Leslie Rice, Eric Wong, and Zico Kolter. 2020. Overfitting in adversarially robust
deep learning. In International conference on machine learning. PMLR, 8093-8104.
Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. 2020. Learn-
ing certified individually fair representations. Advances in neural information
processing systems 33 (2020), 7584-7596.

Alex Serban, Erik Poll, and Joost Visser. 2020. Adversarial examples on object
recognition: A comprehensive survey. ACM Computing Surveys (CSUR) 53, 3
(2020), 1-38.



Monitoring Robustness and Individual Fairness

[69] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,
and Ludwig Schmidt. 2020. Measuring robustness to natural distribution shifts
in image classification. Advances in Neural Information Processing Systems 33
(2020), 18583-18599.

Rui Tian, Zuxuan Wu, Qi Dai, Han Hu, and Yu-Gang Jiang. 2022. Deeper In-
sights into the Robustness of ViTs towards Common Corruptions. arXiv preprint
arXiv:2204.12143 (2022).

Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. 2017. Evaluating Robustness of
Neural Networks with Mixed Integer Programming. In International Conference
on Learning Representations.

Caterina Urban, Maria Christakis, Valentin Wiistholz, and Fuyuan Zhang. 2020.
Perfectly parallel fairness certification of neural networks. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1-30.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. 2021. Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verification. Advances in Neural
Information Processing Systems 34 (2021), 29909-29921.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan.
2023. Better diffusion models further improve adversarial training. In International
Conference on Machine Learning. PMLR, 36246-36263.

Daniel Whiteson. 2014. HIGGS. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5V312.

Samuel Yeom and Matt Fredrikson. 2020. Individual Fairness Revisited: Trans-
ferring Techniques from Adversarial Robustness. In Twenty-Ninth International
Joint Conference on Artificial Intelligence.

Rahul Yesantharao, Yigiu Wang, Laxman Dhulipala, and Julian Shun. 2021. Paral-
lel Batch-Dynamic k d-Trees. arXiv preprint arXiv:2112.06188 (2021).

Peter N Yianilos. 1993. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Soda, Vol. 93. 311-21.

Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial query
processing on gpus using r-trees. In Proceedings of the 2Nd ACM SIGSPATIAL
international workshop on analytics for big geospatial data. 23-31.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE access 8 (2020), 58443-58469.

[70

[71

(72

[73

[74

[75]

[76

[77

[78

[79

[80

Appendices

A Pseudocode of FRNN Monitoring Algorithm
using BDDs

B Proof of Theorem 3.3
THEOREM B.1. Suppose ex, 5z > 0 are constants and X is infinite.
(1) Every decision-sequence of every globally (ex, 8z)-i.o.r. classi-
fier is runtime (ex, 8z)-i.o.r.
(2) Ifthe decision-sequence of a classifier is runtime (ex, 8z)-i.o.r,
the classifier is not necessarily globally (ex, §z7)-i.o.r.

Proor. Claim (1): Let D be an (ex, 87)-i.o.r. classifier and let
X1,...,Xn € X" be a sequence of inputs. We know that i.o.r. is sat-
isfied for every two states in X. Hence, it must also be satisfied for
{x1,...,xp} € X. Claim (2): Let p = (x1,21),...,(xp,2n) € X"
be a runtime (ex, §7)-i.o.r. decision sequence. Let D be a clas-
sifier generating p. Let x,x’ € X such that dy(x,x") < ex \
{x1,...,xn}. We define D’ identical to D, but for x and x” where we
setdz(D(x),D(x’)) > 8z, i.e, D’ is not globally (ex, §z)-i.or.. O

800

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

Algorithm 3 FRNN Monitoring Algorithm using BDDs

Input: Space Q, distance metric dg, constant eg > 0
1: BDD f < bddZero
2. BDD f; < bddZero

3. O « Discretize(Q, do, €0)

. forg,q’ € Q do

if g and g are adjacent then
i — ¥ fig)

end if

8: end for

9: while true do

10: q <« GetNewInput()

1. BDDg e f(q)

AN A

=

12: BDDh« fAg

13: if h = bddZero then

14: R=0

15: else

16: if (h(b) =1 © b =79) then
17: R — A(g)

18: else

19: S « getPoints(h)

20: R « BruteForceFRNN (A(S), g; dg, €Q)
21: end if

22: end if

23: fefVvfz

24 A(g) < A(g) V{q}

25: output M(p,q) =R

26: end while




KDD ’25, August 3-7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

C Counterexample pairs in semantic robustness monitoring

do bird airplane ship

deer horse do
-
)
j = b
L}
=
somoble splne

e

— -t deer frog
i l ﬁ

Figure 6: Sample of flagged inputs for semantic robustness on CIFAR-10C, Frost corruption, severity 2, baseline model [26].

Image 65: projectile Image 5065: missile Image 112: pickup Image 5112 tow_truck image 2359: milk can_ Image 7359: cocktail_shaker

Image 3218: tree_frog Image 8218: tailed frog Image 3532: beach_wagon Image 8532: limousine Image 4382: bonnet
v
{ -
~ 4

Image 4581: ambulance Image 9581: minibus__ Image 4743: African_elephant __Image 9743: tusker

[ A

Figure 7: Flagged inputs for semantic robustness on Imagenet-3DCC, Fog corruption, severity 2, top model [70].

801



	Abstract
	1 Introduction
	2 Related Work
	3 The Monitoring Problem
	3.1 Input-Output Robustness (I.O.R.)
	3.2 The New Runtime Variant
	3.3 Monitoring Runtime I.O.R.
	3.4 Reduction to Fixed-Radius Nearest Neighbor

	4 Preliminaries of FRNN Algorithms
	4.1 Brute-Force (BF) FRNN
	4.2 Static FRNN with Indexing
	4.3 Survey of Other FRNN Algorithms

	5 FRNN Monitoring via Periodic Indexing
	6 FRNN Monitoring using Binary Decision Diagrams (BDD)
	7 Performance Optimization: Parallelized FRNN
	8 Experimental Evaluation
	8.1 Practical Applications of I.O.R. Monitoring
	8.2 Computational Performances of Monitors

	9 Discussions
	Acknowledgments
	References
	A Pseudocode of FRNN Monitoring Algorithm using BDDs
	B Proof of Theorem 3.3
	C Counterexample pairs in semantic robustness monitoring



