
Monitoring Robustness and Individual Fairness
Ashutosh Gupta

IIT Bombay

Mumbai, India

akg@iitb.ac.in

Thomas A. Henzinger

Institute of Science and Technology

Austria

Klosterneuburg, Austria

tah@ist.ac.at

Konstantin Kueffner

Institute of Science and Technology

Austria

Klosterneuburg, Austria

konstantin.kueffner@ist.ac.at

Kaushik Mallik

IMDEA Software Institute

Madrid, Spain

kaushik.mallik@imdea.org

David Pape

Department of Computer Science,

Paris Lodron University of Salzburg

Salzburg, Austria

david.pape@stud.plus.ac.at

Abstract
In automated decision-making, it is desirable that outputs of decision-

makers be robust to slight perturbations in their inputs, a property

that may be called input-output robustness. Input-output robust-
ness appears in various different forms in the literature, such as

robustness of AI models to adversarial or semantic perturbations

and individual fairness of AI models that make decisions about

humans. We propose runtime monitoring of input-output robust-

ness of deployed, black-box AI models, where the goal is to design

monitors that would observe one long execution sequence of the

model, and would raise an alarm whenever it is detected that two

similar inputs from the past led to dissimilar outputs. This way,

monitoring will complement existing offline “robustification” ap-

proaches to increase the trustworthiness of AI decision-makers. We

show that the monitoring problem can be cast as the fixed-radius

nearest neighbor (FRNN) search problem, which, despite being

well-studied, lacks suitable online solutions. We present our tool

Clemont1, which offers a number of lightweight monitors, some of

which use upgraded online variants of existing FRNN algorithms,

and one uses a novel algorithm based on binary decision diagrams—

a data-structure commonly used in software and hardware verifica-

tion. We have also developed an efficient parallelization technique

that can substantially cut down the computation time of monitors

for which the distance between input-output pairs is measured

using the 𝐿∞ norm. Using standard benchmarks from the literature

of adversarial and semantic robustness and individual fairness, we

perform a comparative study of different monitors in Clemont, and
demonstrate their effectiveness in correctly detecting robustness

violations at runtime.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing→ Law, social and behavioral sciences; • Soft-
ware and its engineering→ Formal software verification.
1
https://github.com/ariez-xyz/clemont (DOI: https://doi.org/10.5281/zenodo.15552183)

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737054

Keywords
Monitoring, individual fairness, adversarial robustness, semantic

robustness, fixed-radius nearest neighbor search, trustworthy AI

ACM Reference Format:
AshutoshGupta, ThomasA. Henzinger, Konstantin Kueffner, KaushikMallik,

and David Pape. 2025. Monitoring Robustness and Individual Fairness. In

Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3711896.3737054

1 Introduction
AI decision-makers are being increasingly used for making critical

decisions in a wide range of areas, including banking [48, 64], hir-

ing [53], object recognition [68], and autonomous driving [19, 80]. It

is therefore crucial that they are reliable and trustworthy. One of the

general yardsticks of reliability is (global) input-output robustness,
which stipulates that similar inputs to the given AI model must lead

to similar outputs. This subsumes a number of widely used metrics,

namely adversarial robustness of image classifiers [57], requiring im-

ages that are pixel-wise similar be assigned similar labels, semantic
robustness of image classifiers [26], requiring images that capture

similar semantic objects are assigned similar labels, and individ-
ual fairness of human-centric decision-makers [32, 67], requiring

individuals with similar features receive similar treatments.

Currently, input-output robustness of AI models is evaluated

offline, i.e., before seeing the actual inputs to be encountered dur-

ing the deployment [32, 52], and it is required that the model be

robust either with high probability with respect to a given input

data distribution—the probabilistic setting, or against all possible
inputs—the worst-case setting. In practice, these offline robustness

requirements of AI models are impossible to achieve due to vari-

ous reasons. For example, probabilistic robustness is problematic

under data distribution shifts [69], and worst-case robustness is

tricky in classification tasks due to output transitions near class

boundaries [44].

We propose a practical, runtime variant of input-output robust-
ness where robustness needs to be achieved on specific (finite)

runs of deployed models, and a given run violates robustness if

two similar inputs from the past produced dissimilar outputs. It is

easy to see that (worst-case) offline input-output robustness implies

runtime input-output robustness, but not the other way round: an

790

https://github.com/ariez-xyz/clemont
https://doi.org/10.5281/zenodo.15552183
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3737054
https://doi.org/10.1145/3711896.3737054
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3737054&domain=pdf&date_stamp=2025-08-03

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

AI

Decision-Maker

input-output history

FRNN

algo.

Monitor

new input

guitar

Violation!!!

earlier: ↦→ tie

now: ↦→ guitar

Figure 1: Schematic diagram of input-output robustnessmon-
itors. The monitor stores the history of seen input-output
pairs, and after arrival of each new input and the respective
output of the AI decision-maker, uses a fixed-radius nearest
neighbor (FRNN) search algorithm to check if any “close”
input from the past gave rise to a “distant” output. The pre-
dictions in the figure are from the AlexNet [50] model.

AI model that is unrobust in the offline setting can still produce

robust runs if the unrobust input pairs do not appear in practice.

Naturally, runtime input-output robustness is immune to data distri-

bution shifts, and remains unaffected by class boundaries if inputs

near the boundaries do not appear at runtime. This way, runtime

input-output robustness accounts for only those inputs that matter.

We propose monitoring of runtime input-output robustness. The

objective is to design algorithms—or monitors—which would ob-

serve one long input-output sequence of a given black-box decision-

maker, and, after each new observation, would raise an alarm if

runtime robustness has been violated by the current run. In addi-

tion, after detecting a violation, the monitor would present awitness
set, which is the set of every past input that is similar to the current

input but produced a dissimilar output. The witness set can then be

scrutinized by human experts, and measures can be taken if needed.

Monitoring has been extensively used to improve trustworthi-

ness of software systems in other areas of computer science, includ-

ing safety assurance in embedded systems [8] and bias mitigation

in human-centric AI [1, 39, 40]. Like in these applications, monitor-

ing is meant to complement—and not replace—the existing offline

measures of input-output robustness. In fact, our experiments em-

pirically show that offline robustness improves runtime robustness

by a significant margin. Yet, AI models that were designed using

state-of-the-art offline robust algorithms still showed considerable

runtime robustness violations.Withoutmonitoring, these violations

would go undetected. Some offline algorithms verify the absence

of robustness violations of trained models using formal methods

inspired approaches [49, 59], which usually do not scale for large

and complex models. As monitors treat the monitored systems

as black-boxes, their performances remain unaffected by model

complexities, making them essential tools when no verification

approach would scale. In fact, our monitors are shown to scale for

examples up to more than 100,000 feature dimensions and for neu-

ral networks with more than 350 million parameter. Such systems

are beyond the reach of static verification approaches.

We show that the algorithmic problem of monitoring input-

output robustness boils down to solving the well-known fixed-

radius nearest neighbor (FRNN) search problem at each step of

seeing a new input-output pair, as illustrated in Figure 1. In FRNN,

we are given a point 𝑝 , a set of points 𝑆 , and a constant 𝜖 > 0, where

𝑝 and 𝑆 belong to the same metric space, and the objective is to

compute the set 𝑆 ′ ⊆ 𝑆 which is the set of all points that are at most

𝜖-far from 𝑝 . For our monitoring problem, 𝑆 and 𝑝 are respectively

the past and current input-output pairs at any given point, and the

underlying metric space is designed in a way that two points are

close to each other if they correspond to the violation of robustness.

Even though FRNN has been studied extensively, most existing

algorithms consider the static setting where 𝑆 remains fixed. Usu-

ally, the static FRNN algorithms from the literature are concerned

with building fast indexing schemes for 𝑆 , such that the process of

computing 𝑆 ′ is efficient. For monitoring, we need the dynamic
variant, where 𝑆 is growing with incoming input-output pairs, and

𝑝 is the current input-output pair. The naïve approach to go from

the static to the dynamic setting would be to recompute the index

at each step after the latest point is added to 𝑆 , but this will cause a

substantial computational overhead in practice.

Our contributions are as follows.

• We present a practical solution for upgrading existing static

FRNN algorithms to the dynamic setting through periodic

recomputation of indices.

• We present a new dynamic FRNN algorithm based on the

symbolic data structure called binary decision diagram (BDD)

used in hardware and software verification.

• We present a parallelized FRNN algorithm that substantially

boosts the computational performances of our monitors.

• We implemented our monitors in the tool CLEMONT, and

show that it can detect violations within fraction of a second

to a few seconds (per decision) for real-world models with

more than 350M parameter and 150.5k input dimensions.

2 Related Work
The property of robustness has been studied across various domains

in computer science, most prominently, automata theory and AI.

Robustness in automata theory appears in the study of transduc-

ers [42], I/O-systems [42], and sequential circuits [31]. The notion

of robustness used are structurally similar to the ones used in AI

and include 𝜖-robustness, (𝜖, 𝛿)-robustness, or Lipschitz robustness
[17]. In AI we are interested in the robustness of a single model.

Here we differentiate between local or global robustness [57], which

differ by the domain where the robustness requirements must hold.

Depending on applications, the existing robustness definitions go

by names like semantic robustness [26], adversarial robustness [57],

or individual fairness [32, 67].

The two general approaches ensuring the robustness of machine

learning models are training [7] and verification [59]. Training

robust models is done using techniques such as regularization,

curriculum learning, or ensemble learning [7]. Those techniques

often fail to provide strong robustness guarantees and those that

791

Monitoring Robustness and Individual Fairness KDD ’25, August 3–7, 2025, Toronto, ON, Canada

do, mostly do so in expectation [11, 51, 67]. Verifying models for

robustness is done using tool such as SMT solvers [46, 47], abstract

interpretation [36], mixed-integer programming [71], or branch-

and-bound [73]. A verified model is guaranteed to satisfy either

local [11] and global robustness [13, 43, 72, 76]. Those strong guar-

antees come at the cost of high computation time. In particular, they

do not scale as the complexity of the classifier increases, and usually

fail for networks with more than 1000 neurons [11, 13, 34, 59].

Monitoring is a well-established topic in runtime verification

of hardware, software, and cyber-physical systems [8]. Recently,

monitoring has been extended to verify group fairness properties of
deployed AI decision-makers [1, 39–41], thoughmonitoring individ-

ual fairness (an instance of i.o.r.) properties has appeared rarely [1].

The difference between monitoring group fairness and individual

fairness is in the past information that needs to be kept stored:

while individual fairness (and i.o.r. by extension) needs all decisions

from the past, for group fairness, the explicit past decisions can

be discarded and only some small statistics about them needs to

be kept [1, 39–41]. The only known work on monitoring individ-

ual fairness proposes a simple solution similar to our brute-force

monitor [1], which we show to not suffice in many benchmarks.

We will see that some of our monitors build upon existing FRNN

search algorithms, a survey of which is deferred to Section 4.

3 The Monitoring Problem
3.1 Input-Output Robustness (I.O.R.)
We consider input-output robustness of AI classifiers, though our

formulation can be easily extended for regression models. AI clas-
sifiers are modeled as functions of the form 𝐷 : 𝑋 → 𝑍 , where 𝑋

is the input space and 𝑍 is the output space, with the respective

distance metrics 𝑑𝑋 and 𝑑𝑍 . Each (𝑥, 𝐷 (𝑥)) pair will be referred to

as a decision of 𝐷 . Input-output robustness, or i.o.r. in short, of 𝐷

requires that a small difference in inputs must not result in a large

difference in outputs.

Definition 3.1. Let 𝐷 be a classifier. For given constants 𝜖𝑋 , 𝛿𝑍 >

0 and two inputs 𝑥, 𝑥 ′ ∈ 𝑋 , the classifier 𝐷 is (𝜖𝑋 , 𝛿𝑍)-input-output
robust, or (𝜖𝑋 , 𝛿𝑍)-i.o.r.2 in short, for 𝑥 and 𝑥 ′ if:

𝑑𝑋 (𝑥, 𝑥 ′) ≤ 𝜖𝑋 =⇒ 𝑑𝑍 (𝐷 (𝑥), 𝐷 (𝑥 ′)) ≤ 𝛿𝑍 . (1)

We drop the constants “𝜖𝑋 ” and “𝛿𝑍 ” if irrelevant or unambigu-

ous. Usually, i.o.r. is not defined with a pair of fixed inputs like in

Definition 3.1, but rather as local or global requirements on the

system, and these local and global variants can be retrieved from

our definition of i.o.r. as follows. The classifier 𝐷 satisfies local i.o.r.
with respect to a given input 𝑥 , if for every 𝑥 ′ ∈ 𝑋 , 𝐷 is i.o.r. for

𝑥 and 𝑥 ′, and 𝐷 satisfies global i.o.r., if for every pair of inputs

𝑥, 𝑥 ′ ∈ 𝑋 , 𝐷 is i.o.r. for 𝑥, 𝑥 ′ [17, 43, 52]. I.o.r. appears in different

forms in the literature, which are reviewed below.

Adversarial robustness. The definition of adversarial robust-

ness [26] exactly mirrors i.o.r. in (1) with 𝑋 usually being

real-coordinate spaces with either 𝐿2 or 𝐿∞ norm.

Semantic robustness. A decision-maker is semantically ro-
bust if a small semantic change in its input does not signifi-

cantly change the output [26], where two input images or

2
The acronym “i.o.r.” will represent both the noun “input-output robustness” and the

adjective “input-output robust.”

input texts are semantically close if their semantic mean-

ings are similar, although the distance between their feature

values can be large. For measuring semantic robustness of

the classifier 𝐷 : 𝑋 → 𝑍 , we use a separate AI model 𝑆 that

maps every input 𝑥 ∈ 𝑋 to a point 𝑦 in an intermediate

lower-dimensional semantic embedding space 𝑌 . Two inputs

𝑥, 𝑥 ′ ∈ 𝑋 are then semantically close if 𝑆 (𝑥) and 𝑆 (𝑥 ′) are
close to each other according to a given distance metric. Usu-

ally, 𝑋 and 𝑌 are real-coordinate spaces with either 𝐿2 or 𝐿∞
norms, and therefore semantic robustness reduces to i.o.r.

by defining 𝑑𝑋 (𝑥, 𝑥 ′) = ∥𝑆 (𝑥) − 𝑆 (𝑥 ′)∥ with the respective

norm ∥ · ∥, and 𝜖𝑋 is assumed to be specified.

Individual fairness. Individual fairness is a global robustness
property defined to assess the fairness of classifiers making

decisions about humans. Among many alternate definitions

[32, 43, 49, 67], we use the one of Biswas et.al. [13].

3.2 The New Runtime Variant
The existing local and global variants of i.o.r. are offline properties
of classifiers, meaning they are evaluated before observing the

actual inputs seen at runtime. In practice, a classifier that is not
locally or globally i.o.r. may still be acceptable, as long as the pairs

of inputs that witness the unrobust behaviors do not appear at

runtime. This motivates us to introduce the third, runtime variant
of i.o.r., which is a property of a given decision sequence, and not
a property of the underlying classifier. Here, a decision sequence

of the classifier 𝐷 : 𝑋 → 𝑍 is any finite input-output sequence

(𝑥1, 𝑧1), . . . , (𝑥𝑛, 𝑧𝑛) ∈ (𝑋 × 𝑍)𝑛 , for any 𝑛 > 0, such that for every

𝑖 ∈ [1;𝑛], 𝐷 (𝑥𝑖) = 𝑧𝑖 .

Definition 3.2. Let 𝐷 be a classifier and let 𝜖𝑋 , 𝛿𝑍 > 0. A decision

sequence (𝑥1, 𝑧1) . . . (𝑥𝑛, 𝑧𝑛) of 𝐷 is runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r. if
∀𝑖, 𝑗 ∈ [1;𝑛] . 𝑑𝑋 (𝑥𝑖 , 𝑥 𝑗) ≤ 𝜖𝑋 =⇒ 𝑑𝑍 (𝐷 (𝑥𝑖), 𝐷 (𝑥 𝑗)) ≤ 𝛿𝑍 . (2)

It is straightforward to show that runtime i.o.r. is weaker than
global i.o.r.:

Theorem 3.3. Suppose 𝜖𝑋 , 𝛿𝑍 > 0 are constants and 𝑋 is infinite.
(1) Every decision-sequence of every globally (𝜖𝑋 , 𝛿𝑍)-i.o.r. classi-

fier is runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r..
(2) If the decision-sequence of a classifier is runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r.,

the classifier is not necessarily globally (𝜖𝑋 , 𝛿𝑍)-i.o.r..

The proof is in Appendix B. Claim (1) of Theorem 3.3 implies

that if a given decision sequence of a classifier is not runtime i.o.r.,

then the classifier is surely not globally i.o.r. On the other hand,

Claim (2) suggests that if the decision sequence is runtime i.o.r.,

we will not be able to conclude whether the classifier is globally

i.o.r. or not. Furthermore, from Definition 3.2, as soon as a decision

sequence violates runtime i.o.r., so will every future extension of

the sequence, regardless of the decisions that will be made in future.

3.3 Monitoring Runtime I.O.R.
We consider the problem of online monitoring of runtime i.o.r.

of classifiers. The goal is to design a function—the monitor—that
observes one long decision sequence of a black-box classifier, and

after observing each new decision (𝑥, 𝑧), outputs the set of every
past decision (𝑥 ′, 𝑧′) such that 𝑥 and 𝑥 ′ are close but 𝑧 and 𝑧′ are

792

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

not. If the monitor always outputs the empty set while observing a

given long decision sequence, then the sequence is runtime i.o.r.

Problem 1 (Monitoring runtime i.o.r.). Let 𝐷 : 𝑋 → 𝑍 be
an arbitrary (black-box) classifier and let 𝜖𝑋 , 𝛿𝑍 > 0 be constants.
Compute the function𝑀 : (𝑋 × 𝑍)+ × (𝑋 × 𝑍) → 2

(𝑋×𝑍) such that
for every finite sequence of past decisions 𝜌 = (𝑥1, 𝑧1) . . . (𝑥𝑛, 𝑧𝑛) of
𝐷 , and for every new decision (𝑥𝑛+1, 𝑧𝑛+1),

𝑀 (𝜌, (𝑥𝑛+1, 𝑧𝑛+1)) =
{
(𝑥𝑖 , 𝑧𝑖), 𝑖 ∈ [1;𝑛] |

𝑑𝑋 (𝑥𝑛+1, 𝑥𝑖) ≤ 𝜖𝑋 ∧ 𝑑𝑍 (𝑧𝑛+1, 𝑧𝑖) > 𝛿𝑍
}
.

The function𝑀 will be called the i.o.r. monitor.

Monitoring runtime i.o.r. offers an added level of trustworthiness

in AI decision making, especially when the underlying decision

maker is not known to be globally i.o.r. One possibility is that the

outputs of the monitor can be sent for scrutiny by human experts, so

that necessary steps can be taken. Without monitoring, robustness

violations would go undetected, and could manifest in greater risks

and loss of trustworthiness.

3.4 Reduction to Fixed-Radius Nearest Neighbor
Problem 1 reduces to the online fixed-radius nearest neighbor (FRNN)
problem stated below:

Problem 2 (FRNN monitoring). Let 𝑄 be a set equipped with
the distance metric 𝑑𝑄 and 𝜖𝑄 > 0 be a given constant. Compute
the function𝑀 : 𝑄+ ×𝑄 → 2

𝑄 such that for every sequence of past
points 𝜌 = 𝑞1 . . . 𝑞𝑛 ∈ 𝑄+, and for every new point 𝑞𝑛+1 ∈ 𝑄 ,

𝑀 (𝜌, 𝑞) = {𝑞𝑖 , 𝑖 ∈ [1;𝑛] | 𝑑𝑄 (𝑞𝑛+1, 𝑞𝑖) ≤ 𝜖𝑄 }.

The function𝑀 will be called the FRNN monitor.

Problem 1 reduces to Problem 2 by using𝑄 = 𝑋×𝑍 , 𝜖𝑄 = 𝜖𝑋 , and

by defining the metric 𝑑𝑄 as follows: For every (𝑥, 𝑧), (𝑥 ′, 𝑧′) ∈ 𝑄 ,

𝑑𝑄 ((𝑥, 𝑧), (𝑥 ′, 𝑧′)) :=
{
𝑑𝑋 (𝑥, 𝑥 ′) if 𝑑𝑍 (𝑧𝑛+1, 𝑧𝑖) ≥ 𝛿𝑍

∞ otherwise.

The advantage of stating the monitoring problem using Problem 2

instead of using Problem 1 is simplicity, and from now on, the “mon-

itoring problem” will refer to Problem 2 unless stated otherwise.

4 Preliminaries of FRNN Algorithms
We review the existing FRNN algorithms with a focus on the ones

used by our monitors. We use the notation from Problem 2, where

𝑄 is a set with the distance metric 𝑑𝑄 , and 𝜖𝑄 > 0 is given.

4.1 Brute-Force (BF) FRNN
The most straightforward solution of Problem 2 is the brute-force

algorithm, which simply stores the set of seen points in memory,

and after seeing a new point from 𝑄 , performs a brute-force search

to collect all 𝜖𝑄 -close points. If𝑄 is a 𝑑-dimensional real-coordinate

space, then clearly the time complexity at the 𝑛-th step is O(𝑑 · 𝑛),
since the new point must be compared with 𝑛 other 𝑑-dimensional

points. In Section 4.2, we will review some FRNN algorithms with

asymptotically better complexities but significantly higher over-

head costs. Because of this, for small 𝑛, an efficient implementation

of the brute-force approach is capable of outperforming other alter-

natives. This will be visible in our experiments as well where we

use the highly optimized brute-force similarity search algorithm

implemented in Meta’s Faiss library [30].

4.2 Static FRNN with Indexing
Although FRNN is a well-studied problem, most existing non-brute-
force approaches consider the static, one-shot version of Problem 2,

namely the setting where the nearest neighbors will be searched

once, and the set of seen points is not accumulating. In Section 5,

we will present FRNN monitors that use static FRNN algorithm as

their back-ends, and, in principle, any off-the-shelf static FRNN

algorithm can be used. For concrete experimentation and as a proof-

of-concept, we chose two representative static algorithms, namely

the classic 𝑘-dimensional tree or 𝑘-d tree algorithm and the sorting-
based nearest neighbor algorithm. These algorithms improve over

the brute-force alternative by storing the given points in efficient

data structures, aka indexes, such that searching for nearest neigh-

bors becomes efficient. We will assume that in Problem 2, 𝑄 = R𝑑

for some dimension 𝑑 ∈ N, and 𝑑𝑄 is either the 𝐿2-norm or the

𝐿∞-norm. Although there are FRNN algorithms for general metric

spaces [24, 78], they will be redundant for most use cases of i.o.r..

Let {𝑞1, . . . , 𝑞𝑛} =: D ⊆ R𝑑 be the given set of past points, and

𝑞𝑛+1 be the new point as described in Problem 2.

𝑘-d trees. 𝑘-d trees are binary trees for storing the given set of

points D in a 𝑘-dimensional space (for us 𝑘 = 𝑑 and the space is

𝑄). Each leaf node of a 𝑘-d tree contains a set of points in D. Each

internal node divides the space 𝑄 into two halves using a hyper-

plane, and points in D that are on the left side of the hyperplane

are stored in the left sub-tree, whereas the points that are on the

right side are stored in the right sub-tree. The construction of a 𝑘-d

tree from D takes O(𝑑𝑛 log𝑛) time. 𝑘-d trees are not optimized

for finding all neighbors within a given radius, but rather for iden-

tifying a fixed number nearest neighbors, which takes O(log𝑛)
time on an average and still O(𝑛) time in the worst case. If we

modify 𝑘-d trees for the purpose of FRNN queries, then each query

would take O(𝑑 · 𝑛1−1/𝑑 + 𝑑 ·𝑚) time, where𝑚 is the number of

neighbors which are 𝜖𝑄 -close to the given input point. If𝑚 is large

and approaches 𝑛, then the time complexity approaches O(𝑛)—the
same as the brute-force approach. In practice, most data sets are

sparse and𝑚 is usually small. Furthermore, 𝑘-d tree-based FRNN

is superior to brute-force when 𝑑 is small but 𝑛 is large, whereas

both become equivalent (modulo the additional indexing overhead

of 𝑘-d trees) when 𝑑 is large and 𝑛 is small.

Sorting-based nearest neighbor (SNN). The recently developed

SNN algorithm uses a sorting-based indexing scheme that is faster

to build than 𝑘-d trees. In particular, the indexing step requires

O(𝑛 log𝑛 + 𝑛𝑑2)-time. The algorithm computes an ascending se-

quence of key values, each value corresponding to a point in the

dataset D. The property satisfied by the key values is, that if two

points have key values 𝜖-far apart, then their 𝐿2 distance must also

be greater than 𝜖 . The FRNN queries exploit this relationship. First,

the key value of the input point is computed, requiring O(𝑑2)-time.

Second the algorithm can safely discards all points with key val-

ues 𝜖-far from the key value of the input point. This can be done

efficiently using binary search in O(log𝑛)-time. Then a brute force

793

Monitoring Robustness and Individual Fairness KDD ’25, August 3–7, 2025, Toronto, ON, Canada

search is performed on the remaining points. The soundness of

SNN relies on the chosen norm, although they are not restricted to

the 𝐿2 norm, the 𝐿∞ norm is not supported [20].

4.3 Survey of Other FRNN Algorithms
We chose 𝑘-d tree [10] and SNN [20] as representative indexing

algorithms, where the indexing of 𝑘-d trees uses an implicit par-

titioning over the input space, while the indexing of SNN uses a

partition-free approach. Other algorithms using partitioning-based

indexing include R trees [27, 38], ball trees [61], cover trees [12],

general metric trees [22], and GriSpy [18], and other algorithms

using partition-free indexing include the work by Connor et.al. [25].

Any of these algorithms could be used in our monitor, and as a

general rule of thumb, the partition-based approaches will face

higher computational blow-up than the partition-free methods for

monitoring systems with high-dimensional input spaces [20].

The key aspect in monitoring runtime i.o.r. is scalability, which

will require us to use optimized FRNN algorithms that are fast even

for high-dimensional data, such that the nearest neighbor search

consistently ends before the arrival of the next input. Multiple

strategies could be used for improving scalability.

A first alternative would be to use off-the-shelf parallelized FRNN
algorithms, which include works on both CPU-based [14, 16, 21, 45,

58, 77] and GPU-based [56, 60, 63, 79] parallelization. These algo-

rithms have their own strengths and weaknesses, and the choice

of the appropriate algorithm will ultimately be driven by the ap-

plication’s requirements. For instance, algorithms based on recent

developments in GPU hardware tend to be limited to 3 dimensions

[56], while CPU-based algorithm are more flexible [14].

In Section 5, we will build FRNN monitors by periodically re-

computing indexes of static FRNN algorithms. A faster alternative

would be to use dynamic FRNN algorithms permitting incremental

updates to the indexing structure [14, 23, 33, 35, 77]. Recent works

present incremental indexing of Hamming weight trees for FRNN

in Hamming spaces [33] and of 𝑘-d trees for FRNN in Euclidian

metric spaces [14, 77]. Most of these works provide approximate

solutions (explained below), whereas we intend to find the exact set

of nearest neighbors; the few existing algorithms [14, 77] for the

exact setting will be incorporated in future editions of our monitors.

A third alternative would be to use approximate FRNN algorithms,
which would trade off monitoring accuracy with performance and

may occasionally output false positives (reporting robustness vi-

olations even if there is none) or false negatives (not reporting

robustness violations even if there are some). The literature on

approximate FRNN is vast, and includes approximation schemes

that are either data-dependent [5] or data-independent [3], and use

various techniques ranging from input space dimensionality reduc-

tion [6] to approximate tree-based space partitioning [12, 54, 65] to

the hierarchical navigable small world search algorithm [55]. All

these approaches can be integrated within our monitor, and may

be useful if occasional false outputs are acceptable.

5 FRNN Monitoring via Periodic Indexing
Most existing, non-brute-force FRNN algorithms build index struc-

tures for storing the set of input points, and these indexes usually

do not support incremental updates that would be suitable for mon-

itoring input sequences. Recomputing the entire index at each step

would incur a substantial computational cost and is infeasible. We

resolve this in Algorithm 1 by using a simple practical approach,

namely re-indexing the FRNN data structure only periodically, after

the interval of a given fixed number of inputs 𝜏 > 0. The algorithm

stores the past inputs in two separate memories, namely a long-term

memory 𝐿 and a short-term memory 𝑆 . The long-term memory 𝐿 is

updated periodically and stores past inputs that appeared before the
last update of 𝐿, while the short-term memory 𝑆 is the “buffer” that

stores inputs that appeared after the last update of 𝐿. Every time a

new input 𝑞 appears, we need to search for its neighbors in the set

𝐿 ∪ 𝑆 . We delegate the search over 𝑆 to the brute-force approach

and the search over 𝐿 separately to a static FRNN approach. Every

time the size of 𝑆 reaches 𝜏 , we transfer the points in 𝑆 to 𝐿, reset

𝑆 to the empty set, rebuild the index of the static FRNN algorithm

using the updated 𝐿, and continue with the next input.

In our experiments, for the static part, we compared 𝑘-d tree-

based FRNN and SNN as proof-of-concept, although any FRNN

algorithm could be used. For a fixed dimension of the input space

and for a large set of past input points, the performances of 𝑘-d

trees and SNN are significantly better than the brute-force approach,

making them suitable for searching over 𝐿. The hyper-parameter

𝜏 needs to be selected in a way that it creates a balance between

the increasing query time of the brute-force algorithm and the cost

of re-indexing the static FRNN algorithm. The following method

can be applied. Let 𝑛 be a given number of input-output pairs, and

suppose 𝑓 (𝑛), 𝑔(𝑛), and ℎ(𝑛) represent, respectively, the worst-case
time complexities of computing the FRNN index, the search over

the long-term memory, and the search over the short-term memory.

Typically, 𝑓 (𝑛) > ℎ(𝑛) > 𝑔(𝑛), and there is the tradeoff between

indexing too frequently (low 𝜏), paying the high price of 𝑓 (𝑛) more

often, and indexing too rarely (high 𝜏), paying the price ofℎ(𝑛)more

often while the lower amount 𝑔(𝑛) could be used. We can express

the overall amortized complexity of the monitoring algorithm (per

execution step) as 𝑇 (𝜏) = (𝑓 (𝑛 + 𝜏) + 𝜏𝑔(𝑛) + ∑𝜏
𝑖=1 ℎ(𝑖))/𝜏 . The

functions 𝑓 , 𝑔, and ℎ will depend on the particular algorithms being

employed, but usually they are simple enough that we can find the

optimal 𝜏 such that 𝑇 (𝜏) is minimized.

6 FRNN Monitoring using
Binary Decision Diagrams (BDD)

We now present a new FRNN monitoring algorithm that is suitable

in the dynamic setting of monitoring, where the seen inputs are

incrementally updated over time. Our new algorithm gives rise

to monitors that in many cases outperform the monitors using

off-the-shelf FRNN algorithms with periodic indexing. The ides is

to perform a bi-level search, where the top-level search is fast but
approximate, and uses an indexing scheme with binary decision dia-
grams (BDD), and the bottom-level search is slow but exact, and uses
the brute-force algorithm. While the top-level search would quickly

narrow down the search space, it can generate false positives, which

would then be eliminated by the bottom-level brute-force search.

This algorithm works only for 𝐿∞ distance; extensions to other

metrics is left for future work.

794

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

Algorithm 1 FRNN Monitor: Static FRNN with Periodic Indexing

Input: Space 𝑄 , distance metric 𝑑𝑄 , constant 𝜖𝑄 > 0

1: 𝐿 ← ∅ ⊲ initialize long-term memory

2: 𝑆 ← ∅ ⊲ initialize short-term memory

3: 𝐹 ← StaticFRNN (𝑄,𝑑𝑄 , 𝜖𝑄) ⊲ initialize static FRNN object

4: 𝐹 .ComputeIndex (𝐿) ⊲ initial indexing

5: while true do ⊲ monitoring begins

6: 𝑞 ← GetNewInput () ⊲ 𝑞 is the new input

7: 𝑈 ← 𝐹 .FRNN (𝑞) ⊲ static FRNN

8: 𝑉 ← BruteForceFRNN (𝑆, 𝑞;𝑑𝑄 , 𝜖𝑄) ⊲ brute-force FRNN

9: output 𝑈 ∪𝑉 ⊲ monitor’s output

10: 𝑆 ← 𝑆 ∪ {𝑞} ⊲ update short-term memory

11: if |𝑆 | = 𝜏 then ⊲ recompute index for static FRNN?

12: 𝐿 ← 𝐿 ∪ 𝑆 ⊲ update long-term memory

13: 𝑆 ← ∅ ⊲ reset short-term memory

14: 𝐹 .ComputeIndex (𝐿) ⊲ recompute index

15: end if
16: end while

BDDs for indexing. BDDs have been extensively used in hard-

ware and software verification in computer science. The syntactic

description of BDDs is irrelevant and out of scope; see the work of

Bryant [15] for reference. We will use BDDs essentially as black-

boxes to build an efficient data structure for the FRNN search. To this

end, a BDD is essentially a function of the form 𝑓 : {0, 1}𝑛 → {0, 1},
where 𝑛 > 0 is the number of boolean input variables. Let 𝑄 , 𝑑𝑄 ,

and 𝜖𝑄 be as defined in Problem 2.

Figure 2: Dis-
cretization of
𝑄 = R2. The
points have neigh-
boring label, but
are 𝜖𝑄 apart.

Suppose 𝑄 has some real and some

categorical dimensions. Assuming that

the real dimensions have a bounded

range, we will discretize the real di-

mensions into finitely many (non-

overlapping) intervals of width 𝜖𝑄 . Each

interval has a representative point as its

label, and every other points inside this

interval is “approximated” by the same

label. For example, in a data set on hu-

mans, “age” can be a real-valued feature,

whose realistic range could be 0–120. If

𝜖𝑄 = 1, the discrete intervals become

[0, 1), [1, 2), . . . , [119, 120). For each in-

terval, we can choose the lower bound

as its label, i.e., the label of [34, 35) is 34.
Given a real feature value 𝑥 , we will use 𝑥 to represent its respective

label. The categorical dimensions (such as “gender”) are assumed

to have only finitely many values, and the “label” of each possible

value is the value itself. This way, we discretized 𝑄 using a set of

finitely many vectors of labels, call it 𝑄 , where the 𝑖-th element of

each vector is the respective label in the 𝑖-th feature dimension. For

a given input 𝑞 ∈ 𝑄 , let 𝑞 represent its corresponding label vector.

We now introduce the the BDD 𝑓 : {0, 1}𝑛 → {0, 1} which will

store the set𝑊 of past inputs using their discrete label vectors.

For this, we will require 𝑛 = log(|𝑄 |) bits to encode the label

vectors. At each point, for a given 𝑞 ∈ 𝑄 , and assuming 𝑏𝑞 is

the boolean encoding of 𝑞, 𝑓 (𝑏) = 1 iff 𝑞 has been seen in the past.

After seeing every new input, 𝑓 can be updated using standard BDD

operations [15]. We also maintain a dictionary Δ, that maps each

label vector 𝑣 ∈ 𝑄 to the set of seen points 𝑞 ∈ 𝑄 with label 𝑣 . We

need another BDD for encoding the distance function 𝑑𝑄 , denoted

as 𝑓𝑑 : {0, 1}2𝑛 → {0, 1}, which takes as inputs two binary encoded

label vectors 𝑏,𝑏′ of two inputs 𝑞, 𝑞′, and outputs 𝑓𝑑 (𝑏,𝑏′) = 1 iff

each vector entry of 𝑞 and 𝑞′ are either all the same or are adjacent

labels to each other; in our example of “age,” 34 and 35 are adjacent

labels. The BDD 𝑓𝑑 is constructed statically in the beginning using

standard BDD operations [15].

The sketch of the algorithm. The FRNNmonitor uses a hierarchi-
cal FRNN search: The BDDs sit at the top-level, and after each new

input 𝑞 is observed, quickly checks if any past point had the same

or adjacent labels. There are three possible outcomes: (a) Neither

𝑞 nor its neighbors appeared before, in which case the monitor

outputs 𝑀 (·, 𝑞) = ∅, a case that we expect to experience most of

the time. (b) The vector 𝑞 appeared before but none of its neighbors

did, in which case the monitor outputs𝑀 (·, 𝑞) = Δ(𝑞), since every
two points with the same label vector are at most 𝜖𝑄 apart. (c) Both

(a) and (b) are false, i.e., some neighbor 𝑞′ of 𝑞 appeared before,

which could mean either a true positive or false positive, since the

distance between two points with neighboring labels may or may

not be smaller than 𝜖𝑄 ; see Figure 2 for an illustration.

When Option (c) is true and the result of the top-level search is

inconclusive, the bottom-level brute-force search comes to rescue.

But now, the brute-force algorithm only needs to search within

the set of seen inputs that have the neighboring labels of 𝑞, which

in most case will be significantly faster than the regular brute-

force search over the entire set of seen inputs. The pseudocode

of the full algorithm is included in Appendix A, which includes

elementary BDD operations like disjunction and membership query.

Even though these operations have exponential complexity in the

number of BDD variables 𝑛 [15], i.e., linear complexity with respect

to |𝑄 |, still in practice, modern BDD libraries use a number of smart

heuristics and have superior scalability.

7 Performance Optimization: Parallelized FRNN
Many existing FRNN algorithms, including 𝑘-d trees and our BDD-

based algorithm, use partitioning of the input space, which causes

a blow-up in the complexity with growing search space dimen-

sion [4]. We present a parallelization scheme for performing near-

est neighbor search over real-coordinate spaces equipped with the

𝐿∞ distance metric. The idea is that for the 𝐿∞ metric, two points

are 𝜖-close iff they are 𝜖-close in each dimension. This inspired

us to decompose the given FRNN problem instance into multiple

sub-instances of FRNN with fewer dimensions than the original

problem. Each sub-problem can be solved independently, and there-

fore in parallel, and it is made sure that when the solutions of the

sub-problems are composed in a certain way, we obtain a solution

for the original FRNN problem. Our parallelization scheme works as

a wrapper on any FRNN monitoring algorithm. In our experiments,

we demonstrate the efficacy of the parallelized version of both 𝑘-d

tree-based FRNN monitors and BDD-based FRNN monitors.

For simplicity, we explain the parallelized algorithm using two

parallel decompositions of the given problem; the extension to arbi-

trarily many decompositions is straightforward. Before describing

795

Monitoring Robustness and Individual Fairness KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Algorithm 2 Parallelized FRNN Monitoring

Input: Space 𝑄 , distance metric 𝑑𝑄 , constant 𝜖𝑄 > 0

1: 𝑆 ← ∅ ⊲ initialize memory

2: while true do ⊲ monitoring begins

3: 𝑞 ← GetNewInput () ⊲ 𝑞 is the new input

4: 𝑆 ← AssignUniqueLabels(𝑆) ⊲ 𝑆 ⊂ R2𝑛 × N

5: 𝑆𝐴 ← {𝑠 ∈ R𝑛 ×N | ∃𝑞 ∈ 𝑆 . (𝑞.A, 𝑞.id) = 𝑠} ⊲ projection on𝐴

6: 𝑆𝐵 ← {𝑠 ∈ R𝑛 ×N | ∃𝑞 ∈ 𝑆 . (𝑞.B, 𝑞.id) = 𝑠} ⊲ projection on 𝐵

7: Do in parallel
8: 𝑇𝐴 ← FRNN(𝑆𝐴, (𝑝.A, 𝑝.id);𝑑𝑄 , 𝜖𝑄) ⊲ local FRNN in𝐴

9: 𝑇𝐵 ← FRNN(𝑆𝐵, (𝑝.B, 𝑝.id);𝑑𝑄 , 𝜖𝑄) ⊲ local FRNN in 𝐵

10: End parallel
11: 𝑇 ← {𝑡 ∈ R2𝑛 | ∃𝑖 ∈ N . ∃𝑎 ∈ 𝑇𝐴 . ∃𝑏 ∈ 𝑇𝐵 . (𝑡 .A, 𝑖) =

𝑎, (𝑡 .B, 𝑖) = 𝑏} ⊲ composition of outputs of local FRNN monitors

12: output 𝑇
13: 𝑆 ← 𝑆 ∪ {𝑞} ⊲ update memory

14: end while

the algorithm, we introduce some notation. We consider FRNN

problems on the metric space (R2𝑛, 𝑑∞) where 𝑑∞ is the 𝐿∞ norm.

For a given point 𝑞 = (𝑟1, . . . , 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟2𝑛) ∈ R2𝑛
, we will

write 𝑞.A and 𝑞.B to respectively denote the projections (𝑟1, . . . , 𝑟𝑛)
and (𝑟𝑛+1, . . . , 𝑟2𝑛). We will use the augmented space (R2𝑛×N, 𝑑′∞),
where the extra dimensionNwill be used to add unique labels to the

points in R2𝑛
, and 𝑑′∞ equals to 𝑑∞ with the labels of the points ig-

nored. For a given point 𝑞 = (𝑟1, . . . , 𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟2𝑛,𝑚) in the aug-

mented set, we will write 𝑞.id to denote the label𝑚 of 𝑞, while 𝑞.𝐴

and 𝑞.𝐵 will as usual represent (𝑟1, . . . , 𝑟𝑛) and (𝑟𝑛+1, . . . , 𝑟2𝑛), re-
spectively. We define the function AssignUniqueLabels which takes

as input a given finite set 𝑆 ⊂ R2𝑛
, and outputs a set 𝑆 in the aug-

mented space R2𝑛 ×N such that 𝑆 exactly contains the elements of

𝑆 which are now assigned unique labels.

𝐴

𝐵
𝑞1

𝑞2

𝑞3
𝑝

𝑝.𝐴

𝑝.𝐵

Figure 3: Par-
allelized FRNN
monitoring.

The parallelized algorithm is pre-

sented in Algorithm 2, and we explain it

using a simple example in Figure 3. Sup-

pose 𝑛 = 1, i.e., the original FRNN prob-

lem is in the metric space (R2, 𝑑∞). Let
the inputs be the set 𝑆 = {𝑞1, 𝑞2, 𝑞3} and
the new point 𝑝 , as shown in Figure 3,

where the shaded region around 𝑝 rep-

resents its 𝜖𝑄 -neighborhood for a given

𝜖𝑄 > 0 (as in Problem 2). Clearly, the

FRNN algorithm should output𝑇 = {𝑞3}
as the set of 𝜖-neighbors of 𝑝 .

To solve this problem in parallel, we

first assign unique labels (Line 4 in Al-

gorithm 2) to the points 𝑞1, 𝑞2, 𝑞3; let 𝑞𝑖 .id = 𝑖 for every 𝑖 ∈ {1, 2, 3}.
Then we project 𝑆 to the two individual dimensions𝐴 and 𝐵, giving

us the lower dimensional sets 𝑆𝐴 and 𝑆𝐵 (Lines 5 and 6), where we

ensure that the labels of the points are preserved in the projections.

Now we solve—in parallel—the two single-dimensional FRNN in-

stances (𝑆𝐴, (𝑝.A, 𝑝.id), 𝜖𝑄) and (𝑆𝐵, (𝑝.B, 𝑝.id), 𝜖𝑄), giving us the
lower-dimensional sets of 𝜖𝑄 -close points 𝑇𝐴 and 𝑇𝐵 , respectively

(Lines 8 and 9). Finally we compose 𝑇𝐴 and 𝑇𝐵 to obtain the final

answer 𝑇 (Line 11). The key insight is that the 𝑑∞-norm suggests

that two points 𝑝 and 𝑞 are 𝜖𝑄 -close iff they are 𝜖𝑄 -close in all
dimensions. Therefore, if there is a point 𝑞 that is 𝜖𝑄 -close to 𝑝 in𝐴

but not in 𝐵 or vice versa, then 𝑞 is not 𝜖-close to 𝑝 and hence is not

included in 𝑇 ; this case applies to both points 𝑞1 and 𝑞2 in Figure 3.

As the point 𝑞3 is 𝜖-close to 𝑝 in both dimensions, it is added to 𝑇 .

Note that the additional identification labels of the points help us to

perform this synchronized check across both 𝐴 and 𝐵 dimensions.

8 Experimental Evaluation
We implemented our algorithms in the tool Clemont, and use it to

monitor well-known benchmark models from the literature. On one

hand, we demonstrate the monitors’ effectiveness on real-world

benchmarks (Section 8.1), and on the other hand we demonstrate

their feasibility in terms of computational resources (Section 8.2).

Different parts of the experiments were run on different ma-

chines. Our monitors for all our examples run on CPUs, and GPU-

based implementations (especially the parallellized FRNN algo-

rithm) are left for future works. The only place GPUs were used

are for training the models used in our experiments. Our monitors

were evaluated on personal laptops with 8GB memory for all exam-

ples other than the adversarial robustness example with ImageNet

model, whose feature space is too large (150,000 features) for per-

sonal laptops, and we used machines with 256GB memory for this

one experiment.

8.1 Practical Applications of I.O.R. Monitoring
The experimental setup and the corresponding results are provided

in Table 1. For adversarial and semantic robustness, we picked a

number of image data sets provided by RobustBench [26], which

is a standardized benchmark suite for comparing robustness of AI

models. For each of the data sets, we picked the best and the worst

performing models, and provided them with a sequence of input

images, some of which were deliberately modified with adversar-

ial or semantic corruptions. For individual fairness, we picked the

standard fairness data sets, and used baseline and fair models from

various existing works from the literature. These models were then

given a sequence of input features of individuals. In all these ex-

periments, we deployed our monitors to track the violation of the

respective robustness or fairness conditions by the AI models.

Figure 4: Semantic robustness violations identified during
monitoring. Left to right: Robust [29] and base [37] CI-
FAR100C model, robust [29] and base [26] CIFAR10C model,
robust [70] and base [26] ImageNet model.

796

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

Key Takeaways. The results are summarized in Table 1, and some

concrete instances of detected semantic robustness violations are

displayed in Appendix C. Our monitors always output correct an-

swers by design, and therefore the only interesting quality metric

is the violations rate, representing the average number of inputs

for which the monitor detected i.o.r. violations. Except for a few

cases of individual fairness, the violation rate is always positive,

highlighting the need for monitoring as an additional safeguard.

The violation rate also confirms that robust or fair training algo-

rithms do improve the runtime i.o.r. in practice, which is expected.

For semantic robustness, we observe some interesting trends. As

the severity of the corruption increases, in most cases the violation

rate goes down. We suspect that this is because higher corruption

increases the distance between the corrupted and the original image

in the embedding space, and differences in output labels are not con-

sidered as robustness violation anymore. However, for corruption

of contrast, this trend does not hold.

We report the time and the memory requirements for monitoring

the sequence of all the inputs from the entire benchmark data sets.

We observe that the brute-force algorithm outperforms all other

approaches in every category, which can be explained by the small

number of data points for which brute-force excels (see Section 8.2).

8.2 Computational Performances of Monitors
It is expected that the average computation time of monitors will

grow with respect to the length of decision sequences and the

number of dimensions in the data, due to the increase in FRNN

search complexities. We demonstrate these trends empirically.

Length of decision sequences. We used the HIGGS data set [75]

because of its large volume of 10.5 million entries. For each entry we

generated a synthetic output, and then used our different monitors

to sequentially run over the 10.5 million decisions. We repeated this

experiment with 24 and 12 dimensions, and for different values of

𝜖𝑄 ∈ {0.01, 0.025, 0.05}. In Figure 5, we report the rolling average

processing time per input (with 100k window size) with respect to

increasing length of the decision sequence. We observe that BDD-

based monitors are fastest for low dimensions and large values of

𝜖𝑄 , outperforming 𝑘-d trees with 𝐿∞-norm. This is surprising given

the stellar performance of 𝑘-d trees for the 𝐿2 norm. Both SNN and

brute force perform reasonably well across all our experiments.

Furthermore, the BDD-based algorithm shows a non-monotonic

trend with respect to 𝜖𝑄 : As 𝜖𝑄 increases, the number of partitions

decreases, so the BDDs get smaller and more efficient. However,

this introduces more false positives, requiring the lower-level brute-

force routine to engage more frequently, causing a decrease in

performance. Intuitively, the BDD-based monitor performs well

when the input data is sparse, so that the false positives are less

frequent. This is expected for high-dimensional data, although

higher dimension would increase the computational cost. This can

be balanced by parallelizing with a just enough number of parallel

workers, s.t. the data in each parallel FRNN remains sparse.

Number of dimensions and parallel processing units. We

augmented ImageNet data [28] with Gaussian noise and synthetic

decisions, and ran our monitor on sequences of 10, 000 labeled

samples with varying number of dimensions, obtained by sam-

pling random pixels from the image. We compare various FRNN

monitoring algorithms, both without parallelization and measuring

computational time starting from an initial history of length 100k,

and with parallelization and measuring computational time from

the beginning (see Algorithm 2). In Figure 5, we can observe that

BDD-based monitors are the slowest as the dimensions increase,

and 𝑘-d trees and SNN are somewhat comparable. Moreover, the

plots show that parallelization drastically increases the viability of

monitoring in high dimensions. The number of threads should be

chosen as a function of the dimension, as we can observe that there

exists a sweet spot in the trade-off between the dimensionality

reduction and parallelization overhead. This behavior is especially

pronounced for BDD-based monitoring, as was explained earlier.

9 Discussions
We propose runtime i.o.r. as a new variant of i.o.r. properties that

include adversarial robustness, semantic robustness, and individual

fairness in one umbrella. Runtime i.o.r. requires the current run of a

given AI decision maker be robust, and therefore is weaker than the

traditional local or global i.o.r. properties that require robustness

to be satisfied even for inputs that may never appear in practice.

We propose monitors for the detection of runtime i.o.r. violations

by deployed black-box AI models. Our monitors build upon FRNN

algorithms and use various optimizations, and their effectiveness

and feasibility are demonstrated on real-world benchmarks.

Several future directions exist. Firstly, we will incorporate more

advanced FRNN algorithms in our monitors, like the ones with

dynamic indexing and approximate solutions. Secondly, our robust-

ness (semantic and adversarial) case studies are only on image data

sets, but there are other possibilities. We plan to build monitors for

spam filters that would warn the user if different verdicts were made

for semantically similar texts from the past. Finally, we will address

various engineering questions about the monitoring aspect, like

buffering new inputs while computation of previous inputs is still

running, and distributed monitoring for networks of AI models.

Acknowledgments
This work was supported in part by the ERC project ERC-2020-

AdG 101020093 and the SBI Foundation Hub for Data Science &

Analytics, IIT Bombay.

References
[1] Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming.

In Proceedings of the Conference on Fairness, Accountability, and Transparency.
211–219.

[2] Sajjad Amini, Mohammadreza Teymoorianfard, Shiqing Ma, and Amir

Houmansadr. 2024. MeanSparse: Post-Training Robustness Enhancement

Through Mean-Centered Feature Sparsification. arXiv preprint arXiv:2406.05927
(2024).

[3] Alexandr Andoni and Piotr Indyk. 2008. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Commun. ACM 51, 1 (2008),

117–122.

[4] Alexandr Andoni and Piotr Indyk. 2017. Nearest neighbors in high-dimensional

spaces. In Handbook of Discrete and Computational Geometry. Chapman and

Hall/CRC, 1135–1155.

[5] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. 2014. Be-

yond locality-sensitive hashing. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms. SIAM, 1018–1028.

[6] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. 2018. Approximate nearest

neighbor search in high dimensions. In Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018. World Scientific, 3287–3318.

[7] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021. Recent Advances

in Adversarial Training for Adversarial Robustness. (2021).

797

Monitoring Robustness and Individual Fairness KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Data Set 𝑛 𝑑 Norm 𝜖 Base # Param. Violations (%) Robust #Param. Violations (%) Time per sample (ms) Memory (MB)

BF 𝑘-d 𝑘-d (16t) BF 𝑘-d 𝑘-d (16t)

Adv.

Robust.

CIFAR-10

20𝑘 3.1𝑘
𝐿∞

8

255

[26] 36M 0.948 [9] 366M 0.196 3.71 6.09 1.87 2191 2852 1946

CIFAR-100 [66] 11M 0.344 [74] 267M 0.316 5.47 32.04 9.73 2057 2878 1945

ImageNet 10𝑘 150.5𝑘 4

255
[26] 26M 0.767 [2] 198M 0.186 0.26s 7.73s 0.62s 64GB75GB 65GB

BF 𝑘-d SNN BF 𝑘-d SNN

Sem.

Robust.

CIFAR-10-C

20𝑘
384
∗ 𝐿2

7.5
[26] 36M

Fig 4

[29] 268M

Fig 4

2.36 83.75 12.75 388 519 573

CIFAR-100-C [37] 267M [29] 269M 4.53 59.26 37.80 396 519 573

ImageNet 10𝑘 12.5 [50] 61M [70] 86M 32.78 0.2s 60.25 376 373 401

(∗) from DINOv2[62] embedding [67] [49] [67] [49] [67] [49] [67] [49] BF 𝑘-d BDD BF 𝑘-d BDD

Ind.

Fair.

German 1𝑘 31

𝐿∞ 0.16
[67]

[49]

3.3k 1.5k 0.0 2.9

[67]

[49]

3.3k 1.5k 0.0 0.0 0.31 0.30 0.74 220 223 235

Adult 48.8𝑘 15 5.1k 1.1k 0.1 23.2 5.1k 1.1k 0.0 2.5 0.69 1.21 5.38 250 360 275

COMPAS 6.2𝑘 18 1.5k 0.7k 1.8 55.4 1.5k 0.7k 0.2 40.6 0.31 0.49 4.50 223 235 236

Table 1: Experimental setup and performance summary for robustness monitoring applications. For each experimental setting
we compare: the detected i.o.r. violations for the base model and the robust model; the processing time per input and the total
memory required by our monitor implemented with various FRNN algorithms.

Figure 5: LEFT: Performance comparison on the HIGGS dataset with 10 million entries. The rows correspond to 12 and 24
dimensional inputs respectively. The columns correspond to a 𝜖 of 0.01, 0.025, and 0.05 respectively. Legend: BDD (), Brute
Force (), Kd-tree 𝐿∞ (), Kd-tree 𝐿2 (), SNN (), 2-threaded BDD (), 2-threaded Kd-tree (). RIGHT: The plot
shows average processing time for 10k images from ImageNet: without parallelization after pre-loading 100k images (top);
with parallelization after pre-loading 0 images (bottom). Parallelization plot only: BDD at 1 thread (), BDD at 16 threads
(), BDD at 96 threads (), Kd-tree at 1 thread (), Kd-tree at 16 threads (), Kd-tree at 96 threads ()

[8] Ezio Bartocci and Yliès Falcone. 2018. Lectures on runtime verification. Springer.
[9] Brian R Bartoldson, James Diffenderfer, Konstantinos Parasyris, and Bhavya

Kailkhura. 2024. Adversarial Robustness Limits via Scaling-Law and Human-

Alignment Studies. arXiv preprint arXiv:2404.09349 (2024).
[10] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 9 (1975), 509–517.

[11] Elias Benussi, Andrea Patane, Matthew Wicker, Luca Laurenti, and Marta

Kwiatkowska. 2022. Individual Fairness Guarantees for Neural Networks. In 31st
International Joint Conference on Artificial Intelligence, IJCAI 2022. International
Joint Conferences on Artificial Intelligence (IJCAI), 651–658.

[12] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for

nearest neighbor. In Proceedings of the 23rd international conference on Machine
learning. 97–104.

[13] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness verification of neural

networks. In 2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE). IEEE, 1546–1558.
[14] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neighbors in

Low Dimensions with Batch Updates. In 2022 Proceedings of the Symposium on
Algorithm Engineering and Experiments (ALENEX). SIAM, 195–208.

[15] Randal E Bryant. 2018. Binary decision diagrams. Handbook of model checking
(2018), 191–217.

[16] Yu Cao, Xiaojiang Zhang, Boheng Duan, Wenjing Zhao, and Huizan Wang. 2020.

An improved method to build the KD tree based on presorted results. In 2020
IEEE 11th International Conference on Software Engineering and Service Science
(ICSESS). IEEE, 71–75.

[17] Marco Casadio, Ekaterina Komendantskaya, Matthew L Daggitt, Wen Kokke,

Guy Katz, Guy Amir, and Idan Refaeli. 2022. Neural network robustness as

a verification property: a principled case study. In International conference on
computer aided verification. Springer, 219–231.

798

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

[18] Martín Chalela, Emanuel Sillero, Luis Pereyra, Mario Alejandro García, Juan B

Cabral, Marcelo Lares, and Manuel Merchán. 2021. Grispy: A python package

for fixed-radius nearest neighbors search. Astronomy and Computing 34 (2021),

100443.

[19] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and

Hongyang Li. 2024. End-to-end autonomous driving: Challenges and frontiers.

IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).
[20] Xinye Chen and Stefan Güttel. 2024. Fast and exact fixed-radius neighbor search

based on sorting. PeerJ Computer Science 10 (2024), e1929.
[21] Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L Bocchino Jr,

Sarita V Adve, and John C Hart. 2010. Parallel SAH kD tree construction.. In

High performance graphics. Citeseer, 77–86.
[22] Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. 1997. M-tree: An efficient access

method for similarity search in metric spaces. In Vldb, Vol. 97. Citeseer, 426–435.
[23] Paolo Ciaccia, Marco Patella, Pavel Zezula, et al. 1997. M-tree: An efficient access

method for similarity search in metric spaces. In Vldb, Vol. 97. Citeseer, 426–435.
[24] Kenneth L Clarkson. 1997. Nearest neighbor queries in metric spaces. In Pro-

ceedings of the twenty-ninth annual ACM symposium on Theory of computing.
609–617.

[25] Michael Connor and Piyush Kumar. 2010. Fast construction of k-nearest neighbor

graphs for point clouds. IEEE transactions on visualization and computer graphics
16, 4 (2010), 599–608.

[26] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo

Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias

Hein. 2020. RobustBench: a standardized adversarial robustness benchmark.

arXiv preprint arXiv:2010.09670 (2020). Accessed: 2024-12-01.
[27] Sanjoy Dasgupta and Kaushik Sinha. 2013. Randomized partition trees for exact

nearest neighbor search. In Conference on learning theory. PMLR, 317–337.

[28] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[29] James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya

Kailkhura. 2021. A winning hand: Compressing deep networks can improve

out-of-distribution robustness. Advances in neural information processing systems
34 (2021), 664–676.

[30] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

The faiss library. arXiv preprint arXiv:2401.08281 (2024).
[31] Laurent Doyen, Thomas A Henzinger, Axel Legay, and Dejan Nickovic. 2010.

Robustness of sequential circuits. In 2010 10th International Conference on Appli-
cation of Concurrency to System Design. IEEE, 77–84.

[32] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. 214–226.

[33] Sepehr Eghbali, Hassan Ashtiani, and Ladan Tahvildari. 2019. Online nearest

neighbor search using hamming weight trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence 42, 7 (2019), 1729–1740.

[34] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An abstraction-

based framework for neural network verification. In Computer Aided Verification:
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part I 32. Springer, 43–65.

[35] Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, and Yiu Sang Moon.

2000. Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise

distances. The VLDB Journal 9 (2000), 154–173.
[36] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of

neural networks with abstract interpretation. In 2018 IEEE symposium on security
and privacy (SP). IEEE, 3–18.

[37] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli.

2020. Uncovering the limits of adversarial training against norm-bounded adver-

sarial examples. arXiv preprint arXiv:2010.03593 (2020).
[38] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[39] Thomas Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.

2023. Runtime monitoring of dynamic fairness properties. In Proceedings of the
2023 ACM Conference on Fairness, Accountability, and Transparency. 604–614.

[40] Thomas A Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.

2023. Monitoring algorithmic fairness. In International Conference on Computer
Aided Verification. Springer, 358–382.

[41] Thomas A Henzinger, Konstantin Kueffner, and Kaushik Mallik. 2023. Monitoring

algorithmic fairness under partial observations. In International Conference on
Runtime Verification. Springer, 291–311.

[42] Thomas AHenzinger, Jan Otop, and Roopsha Samanta. 2014. Lipschitz Robustness

of Finite-state Transducers. In 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science (FSTTCS 2014). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 431–443.

[43] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. 2020. Verifying

individual fairness in machine learning models. In Conference on Uncertainty in
Artificial Intelligence. PMLR, 749–758.

[44] Anan Kabaha and Dana Drachsler Cohen. 2024. Verification of Neural Net-

works’ Global Robustness. Proceedings of the ACM on Programming Languages 8,
OOPSLA1 (2024), 1010–1039.

[45] Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. ACM SIGMOD
Record 21, 2 (1992), 195–204.

[46] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In

Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97–117.

[47] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,

Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al.

2019. The marabou framework for verification and analysis of deep neural

networks. In Computer Aided Verification: 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer, 443–452.

[48] Orçun Kaya, Jan Schildbach, Deutsche Bank AG, and Stefan Schneider. 2019.

Artificial intelligence in banking. Artificial intelligence (2019).
[49] Haitham Khedr and Yasser Shoukry. 2023. Certifair: A framework for certified

global fairness of neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 37. 8237–8245.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[51] Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. ifair: Learning

individually fair data representations for algorithmic decision making. In 2019
ieee 35th international conference on data engineering (icde). IEEE, 1334–1345.

[52] Klas Leino, Zifan Wang, and Matt Fredrikson. 2021. Globally-robust neural

networks. In International Conference on Machine Learning. PMLR, 6212–6222.

[53] Lan Li, Tina Lassiter, Joohee Oh, and Min Kyung Lee. 2021. Algorithmic hiring

in practice: Recruiter and HR Professional’s perspectives on AI use in hiring. In

Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. 166–176.
[54] Yi Lin and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. J.

Amer. Statist. Assoc. 101, 474 (2006), 578–590.
[55] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[56] Durga Keerthi Mandarapu, Vani Nagarajan, Artem Pelenitsyn, and Milind Kulka-

rni. 2024. Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances

using GPU Ray Tracing. In Proceedings of the 38th ACM International Conference
on Supercomputing. 14–25.

[57] Ravi Mangal, Aditya V Nori, and Alessandro Orso. 2019. Robustness of neural

networks: A probabilistic and practical approach. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 93–96.

[58] Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2024. Pkd-tree: Parallel 𝑘 d-tree

with Batch Updates. arXiv preprint arXiv:2411.09275 (2024).
[59] Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin,

and Jin Song Dong. 2022. Adversarial robustness of deep neural networks: A

survey from a formal verification perspective. IEEE Transactions on Dependable
and Secure Computing (2022).

[60] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. Rt-knns unbound:

Using rt cores to accelerate unrestricted neighbor search. In Proceedings of the
37th International Conference on Supercomputing. 289–300.

[61] Stephen M Omohundro. 1989. Five balltree construction algorithms. (1989).

[62] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,

Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-

Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision.

arXiv preprint arXiv:2304.07193 (2023).
[63] Sushil K Prasad, Michael McDermott, Xi He, and Satish Puri. 2015. GPU-based

Parallel R-tree Construction and Querying. In 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 618–627.

[64] Mahfuzur Rahman, Teoh Hui Ming, Tarannum Azim Baigh, and Moniruzzaman

Sarker. 2023. Adoption of artificial intelligence in banking services: an empirical

analysis. International Journal of Emerging Markets 18, 10 (2023), 4270–4300.
[65] Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for nearest neighbor

search. In Proceedings of the 25th acm sigkdd international conference on knowledge
discovery & data mining. 1378–1388.

[66] Leslie Rice, Eric Wong, and Zico Kolter. 2020. Overfitting in adversarially robust

deep learning. In International conference on machine learning. PMLR, 8093–8104.

[67] Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. 2020. Learn-

ing certified individually fair representations. Advances in neural information
processing systems 33 (2020), 7584–7596.

[68] Alex Serban, Erik Poll, and Joost Visser. 2020. Adversarial examples on object

recognition: A comprehensive survey. ACM Computing Surveys (CSUR) 53, 3
(2020), 1–38.

799

Monitoring Robustness and Individual Fairness KDD ’25, August 3–7, 2025, Toronto, ON, Canada

[69] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,

and Ludwig Schmidt. 2020. Measuring robustness to natural distribution shifts

in image classification. Advances in Neural Information Processing Systems 33
(2020), 18583–18599.

[70] Rui Tian, Zuxuan Wu, Qi Dai, Han Hu, and Yu-Gang Jiang. 2022. Deeper In-

sights into the Robustness of ViTs towards Common Corruptions. arXiv preprint
arXiv:2204.12143 (2022).

[71] Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. 2017. Evaluating Robustness of

Neural Networks with Mixed Integer Programming. In International Conference
on Learning Representations.

[72] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020.

Perfectly parallel fairness certification of neural networks. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–30.

[73] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and

J Zico Kolter. 2021. Beta-crown: Efficient bound propagation with per-neuron

split constraints for neural network robustness verification. Advances in Neural
Information Processing Systems 34 (2021), 29909–29921.

[74] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan.

2023. Better diffusionmodels further improve adversarial training. In International
Conference on Machine Learning. PMLR, 36246–36263.

[75] Daniel Whiteson. 2014. HIGGS. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5V312.

[76] Samuel Yeom and Matt Fredrikson. 2020. Individual Fairness Revisited: Trans-

ferring Techniques from Adversarial Robustness. In Twenty-Ninth International
Joint Conference on Artificial Intelligence.

[77] Rahul Yesantharao, Yiqiu Wang, Laxman Dhulipala, and Julian Shun. 2021. Paral-

lel Batch-Dynamic 𝑘 d-Trees. arXiv preprint arXiv:2112.06188 (2021).
[78] Peter N Yianilos. 1993. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Soda, Vol. 93. 311–21.
[79] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial query

processing on gpus using r-trees. In Proceedings of the 2Nd ACM SIGSPATIAL
international workshop on analytics for big geospatial data. 23–31.

[80] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A

survey of autonomous driving: Common practices and emerging technologies.

IEEE access 8 (2020), 58443–58469.

Appendices
A Pseudocode of FRNN Monitoring Algorithm

using BDDs
B Proof of Theorem 3.3

Theorem B.1. Suppose 𝜖𝑋 , 𝛿𝑍 > 0 are constants and 𝑋 is infinite.
(1) Every decision-sequence of every globally (𝜖𝑋 , 𝛿𝑍)-i.o.r. classi-

fier is runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r..
(2) If the decision-sequence of a classifier is runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r.,

the classifier is not necessarily globally (𝜖𝑋 , 𝛿𝑍)-i.o.r..

Proof. Claim (1): Let 𝐷 be an (𝜖𝑋 , 𝛿𝑍)-i.o.r. classifier and let

𝑥1, . . . , 𝑥𝑛 ∈ 𝑋𝑛
be a sequence of inputs. We know that i.o.r. is sat-

isfied for every two states in 𝑋 . Hence, it must also be satisfied for

{𝑥1, . . . , 𝑥𝑛} ⊆ 𝑋 . Claim (2): Let 𝜌 = (𝑥1, 𝑧1), . . . , (𝑥𝑛, 𝑧𝑛) ∈ 𝑋𝑛

be a runtime (𝜖𝑋 , 𝛿𝑍)-i.o.r. decision sequence. Let 𝐷 be a clas-

sifier generating 𝜌 . Let 𝑥, 𝑥 ′ ∈ 𝑋 such that 𝑑𝑥 (𝑥, 𝑥 ′) ≤ 𝜖𝑋 \
{𝑥1, . . . , 𝑥𝑛}. We define𝐷′ identical to𝐷 , but for 𝑥 and 𝑥 ′ where we
set 𝑑𝑍 (𝐷 (𝑥), 𝐷 (𝑥 ′)) ≥ 𝛿𝑍 , i.e., 𝐷

′
is not globally (𝜖𝑋 , 𝛿𝑍)-i.o.r.. □

Algorithm 3 FRNN Monitoring Algorithm using BDDs

Input: Space 𝑄 , distance metric 𝑑𝑄 , constant 𝜖𝑄 > 0

1: BDD 𝑓 ← bddZero ⊲ initialize BDD for storing seen label vectors

2: BDD 𝑓𝑑 ← bddZero ⊲ initialize BDD for encoding the adjacency relation

two label vectors

3: 𝑄 ← Discretize(𝑄,𝑑𝑄 , 𝜖𝑄) ⊲ discretize the space𝑄 into boxes

4: for 𝑞, 𝑞′ ∈ 𝑄 do ⊲ compute 𝑓𝑑 (one-time process)

5: if 𝑞 and 𝑞′ are adjacent then
6: 𝑓𝑑 ← 𝑓𝑑 ∨ 𝑓(𝑞,𝑞′)
7: end if
8: end for
9: while true do ⊲ monitoring begins

10: 𝑞 ← GetNewInput () ⊲ 𝑞 is the next input point

11: BDD 𝑔← 𝑓𝑑 (·, 𝑞) ⊲ 𝑔 represents the labels that are adjacent to 𝑞 (the

label of 𝑞)

12: BDD ℎ ← 𝑓 ∧ 𝑔 ⊲ ℎ represents the labels that are in 𝑔 and also have

appeared before

13: if ℎ = bddZero then
14: 𝑅 = ∅ ⊲ no neighbor close to 𝑞 appeared in the past

15: else
16: if (ℎ(𝑏) = 1⇔ 𝑏 = 𝑞) then
17: 𝑅 ← Δ(𝑞) ⊲ the past neighbors of 𝑞 all had the label 𝑞

18: else
19: 𝑆 ← getPoints(ℎ) ⊲ collect past neighboring labels (some can

be false positives and are probably not coming from true neighbors of 𝑞)

20: 𝑅 ← BruteForceFRNN (Δ(𝑆), 𝑞;𝑑𝑄 , 𝜖𝑄) ⊲ low-level

brute-force search to eliminate false positives from 𝑆

21: end if
22: end if
23: 𝑓 ← 𝑓 ∨ 𝑓𝑞 ⊲ update the list of seen labels

24: Δ(𝑞) ← Δ(𝑞) ∪ {𝑞} ⊲ update the dictionary that maps seen labels to

seen points

25: output𝑀 (𝜌, 𝑞) = 𝑅 ⊲ the output of the monitor

26: end while

800

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Ashutosh Gupta, Thomas A. Henzinger, Konstantin Kueffner, Kaushik Mallik, and David Pape

C Counterexample pairs in semantic robustness monitoring

Figure 6: Sample of flagged inputs for semantic robustness on CIFAR-10C, Frost corruption, severity 2, baseline model [26].

Figure 7: Flagged inputs for semantic robustness on Imagenet-3DCC, Fog corruption, severity 2, top model [70].

801

	Abstract
	1 Introduction
	2 Related Work
	3 The Monitoring Problem
	3.1 Input-Output Robustness (I.O.R.)
	3.2 The New Runtime Variant
	3.3 Monitoring Runtime I.O.R.
	3.4 Reduction to Fixed-Radius Nearest Neighbor

	4 Preliminaries of FRNN Algorithms
	4.1 Brute-Force (BF) FRNN
	4.2 Static FRNN with Indexing
	4.3 Survey of Other FRNN Algorithms

	5 FRNN Monitoring via Periodic Indexing
	6 FRNN Monitoring using Binary Decision Diagrams (BDD)
	7 Performance Optimization: Parallelized FRNN
	8 Experimental Evaluation
	8.1 Practical Applications of I.O.R. Monitoring
	8.2 Computational Performances of Monitors

	9 Discussions
	Acknowledgments
	References
	A Pseudocode of FRNN Monitoring Algorithm using BDDs
	B Proof of Theorem 3.3
	C Counterexample pairs in semantic robustness monitoring

