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Abstract

Motivated by questions arising at the intersection of information theory and geometry, we
compare two dissimilarity measures between finite categorical distributions. One is the
well-known Jensen–Shannon divergence, which is easy to compute and whose square root
is a proper metric. The other is what we call the minmax divergence, which is harder to
compute. Just like the Jensen–Shannon divergence, it arises naturally from the Kullback–
Leibler divergence. The main contribution of this paper is a proof showing that the minmax
divergence can be tightly approximated by the Jensen–Shannon divergence. The bounds
suggest that the square root of the minmax divergence is a metric, and we prove that
this is indeed true in the one-dimensional case. The general case remains open. Finally,
we consider analogous questions in the context of another Bregman divergence and the
corresponding Burbea–Rao (Jensen–Bregman) divergence.

Keywords: information theory; relative entropy; Kullback–Leibler divergence; Jensen–
Shannon divergence; minmax divergence; Bregman divergence; Burbea–Rao divergence;
Jensen-Bregman divergence; metric; bounds

1. Introduction
The starting point of this work is the introduction of the minmax divergence between

two finite categorical distributions. It is a special case of a natural measurement arising in
certain constructions from computational geometry and topology. Specifically, it coincides
with the smallest radius at which two appropriately defined balls intersect. However, since
our results promise to be useful also outside the field of geometry and topology, we will
tailor the exposition accordingly.

The main result are tight bounds between the minmax divergence and the standard
Jensen–Shannon divergence (as well as its generalizations). Given these bounds and the
well-known fact the square root of the Jensen–Shannon divergence is a metric, we ask if the
same can be proven about the minmax divergence. A supplementary result is a proof that
in one dimension its square root is a metric. The general case is left as an open question.

The basic definition of the minmax divergence is based on the classic notion of Shannon
entropy and has an intuitive information theoretic interpretation, as will be explained
shortly. The definition coincides with an interpretation of the Chernoff information recently
provided by Nielsen in [1]. In Section 2, we generalize this definition slightly, allowing
us to work with the entire positive orthant of Rn. Later in Section 5, we further generalize
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using the language of Bregman divergences, which allows us to work with other notions
of entropy, such as the Burg entropy. Before we proceed, we mention that the following
exposition is tailored towards this generalization. In particular, we prefer to work with
negative Shannon entropy. Being a strictly convex function it allows for a smoother
transition to the case of Bregman divergences, which are defined via such functions.

Shannon entropy and related concepts. We start from basic definitions and review
their information-theoretical interpretations. Consider a random variable that takes one
of n values. Letting x = (x1, x2, . . . , xn) be the vector of probabilities, we can encode the
outcome with expected efficiency −E(x), in which

E(x) = ∑n
i=1 xi ln xi (1)

is the (negative) Shannon entropy of x. We remark that if a binary logarithm was used, this
quantity would be expressed in bits. We use natural logarithms to simplify calculations.
Suppose we mistakenly assume that the underlying probability vector is y = (y1, y2, . . . , yn),
and we encode the random variable based on this faulty assumption. The expected effi-
ciency is then −E(y)− ⟨∇E(y), x − y⟩. Comparing this with −E(x), we get

D(x∥y) = E(x)− E(y)− ⟨∇E(y), x − y⟩ (2)

= ∑n
i=1 xi ln xi

yi
(3)

as a measure of the efficiency loss due to the faulty assumption. This quantity is often
referred to as the relative entropy, which we note is not symmetric. Next assume we know
that the random variable is either chosen according to the distribution x or according to
the distribution y, each with 50% likelihood. Our best bet is to encode the result as if the
underlying probability distribution were the average, µ = 1

2 (x + y). The expected efficiency
is −E(µ), which we compare with − 1

2 E(x)− 1
2 E(y), the expected efficiency assuming we

know from which distribution the random variable is chosen. The difference,

JS(x, y) = 1
2 E(x) + 1

2 E(y)− E(µ) (4)

= 1
2 ∑n

i=1[xi ln 2xi
xi+yi

+ yi ln 2yi
xi+yi

] (5)

is the Jensen–Shannon divergence. This can be generalized to non-negative likelihoods
ξ + η = 1, for which our best bet is to encode using ξx + ηy, with expected divergence
ξE(x) + ηE(y) − E(ξx + ηy). There are unique likelihoods, ξ0 + η0 = 1, for which the
expected divergence is maximized. Because E is convex, this is also the situation in which
the maximum divergence is minimized. We therefore consider this solution our best bet
if we do not know how x and y split the likelihood. Setting z = ξ0x + η0y, the expected
efficiency is −E(z), which we compare with −ξ0E(x)− η0E(y). The difference,

Mx(x, y) = ξ0E(x) + η0E(y)− E(z) (6)

= ∑n
i=1[ξ0xi ln xi

zi
+ η0yi ln yi

zi
], (7)

minimizes the maximum divergence over all possible choices of likelihoods ξ + η = 1. We
therefore call Mx(x, y) the minmax divergence between the two probability distributions. In
the next section, we will provide an easier to work with alternative definition.

Main result. Our main result is a comparison of the minmax divergence with the
standard Jensen–Shannon divergence. Specifically, we prove

e ln 2
2 Mx(x, y) ≤ JS(x, y) ≤ Mx(x, y) (8)
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as tight bounds. We remark that the final result uses a generalized form of the above
concepts, as defined in the next section.

Given that e ln 2
2 ≈ 0.94208, the two divergences are very close. (As we will argue

shortly, it makes sense to consider the square roots of these divergences, in which case
the constant is approximately 0.9706, which is even closer to 1.) Additionally, the Jensen–
Shannon divergence and the minmax divergence also yield the same intrinsic metric, which
is 1

4 times the intrinsic metric defined by the relative entropy. In the literature, the relative
entropy is also known as the Kullback–Leibler divergence [2], and the corresponding intrinsic
metric is known as the Fisher information metric [3]. Both are however not length metrics,
which means that integrating infinitesimal steps gives a corresponding intrinsic metric,
which is different from the original metric.

In light of these similarities, we ask if they share more properties. In particular Endres
and Schindelin proved that

√
JS(x, y) is a metric [4]. We were able to prove a similar

result in dimension one (specifically, in a slightly generalized setting in which x, y ∈ R+).
Namely, we prove that

√
Mx(x, y) is a metric. The result in higher dimensions turns out to

be challenging, and remains open. We do believe that the geometric proof techniques we
introduce are worth sharing, and are likely to be useful in the high-dimensional case (in
combination with some other techniques).

Applications in computational geometry. We briefly explain how the above concepts
can be used in computational geometry and topology and, in particular, why the main
result is useful. Our main motivation comes from the field of topological data analysis,
a subfield of computational geometry and topology. In short, the idea is to characterize
the shape of data or, in other words, its geometric-topological structure. We briefly describe
a simple case to which our main result is immediately applicable. For a comprehensive
treatment of topological data analysis in the context of arbitrary Bregman divergences,
which includes our setup with relative entropy, see [5].

In the simplest case—which is also most relevant here—the input data is a finite
collection of points. We consider the union of the balls centered at these points and increase
their common radius from zero to infinity. As the radius changes, so does the connectivity
(or topology) of the union of balls. One basic topological property is the structure of
the connected components. At radius zero, each point constitutes its own connected
component, and these components may merge as the radius increases. Specifically, two
components may merge when two balls develop a nonempty intersection for the first time.
(We remark that higher-degree topological features can also be considered, but this requires
tools from algebraic topology, which are beyond the scope of this paper.).

This setup can be easily implemented in the Euclidean space. However, in the more
interesting situation in which each point is a finite categorical distribution, the balls are
better defined using the relative entropy (and not the Euclidean distance), as it allows
the outcome to have an information-theoretic interpretation, as outlined above. The
radius at which two balls intersect coincides with the minmax divergence [6], whose direct
computation (especially for many pairs of points) can be slow. The proposed inequality
suggests we compute the approximating Jensen–Shannon divergence instead. It remains
fairly accurate while being significantly faster, simpler, and more robust. In particular,
this allows for a simple computation of a weighted undirected graph that describes the
connected structure of data measured with relative entropy. In topological data analysis
language, it would be called the 1-skeleton of the Čech complex (the full complex would be
a weighted simplicial complex that encodes intersections between arbitrary tuples of balls
and captures higher-degree topological information.).

In summary, our results simplify a fundamental computation in topological data
analysis for an important kind of inputs. This is often the first step towards computing a
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topological descriptor, which has been proven useful in a variety of fields [7] ranging from
biology, to astronomy, to materials science. Moreover, if the square root of the minmax
divergence is indeed a metric (a fact we were unable to prove beyond dimension one), it
would allow one to use existing theoretic in computational tools. Here we mention stability
results in topological data analysis that exploit the metric structure of data [8], and classical
nearest neighbour search tools that focus on metric spaces [9].

Outline. Section 2 introduces the main concepts in their generalized forms and proves
some of their fundamental properties. Section 3 shows that the Jensen–Shannon divergence
approximates the minmax divergence within a factor 1.061 . . . Section 4 proves that in
one dimension the square root of the minmax divergence is a metric. Section 5 extends
the results beyond the Shannon entropy using the framework of Bregman divergences.
Section 6 concludes the paper.

Related work. Many concepts used in this paper lead back to the seminal work of
Claude Shannon [10] on information theory and, in particular, the notion of Shannon
entropy. This notion was extended to a dissimilarity measure between two probability
distributions by Kullback and Leibler [2], often referred to as the relative (Shannon) en-
tropy or the Kullback–Leibler divergence. The best known metric derived from relative
Shannon entropy is based on the Jensen–Shannon divergence, defined by Lin in 1991 [11].
Interestingly, its more general form was introduced a decade earlier by Burbea and Rao [12].
Lew Bregman introduced a notion of Bregman divergence [13], which generalizes the
relative entropy. Various other metrics derived from Bregman divergences were studied
in [14,15]. More recently, Bregman divergences were further generalized by Nielsen in
various ways [16–18]. Our work is motivated by results at the intersection of Bregman
geometry and computational geometry. The starting point for this direction is the work of
Boissonnat, Nielsen and Nock [19–21] on computational geometry in the Bregman context.

2. Generalized Definitions
In the Introduction, we described basic concepts (such as the relative entropy) along

with their information-theoretical interpretation. In this section, we introduce more general
versions of these concepts, allowing us to work in the entire positive orthant Rn

+. We
remark that the definitions change in subtle ways, and that applying the usual definitions
in this extended setup may on occasion be non-sensical.

For the reminder of this paper, we are exclusively concerned with two spaces: the
n-dimensional positive orthant, denoted Rn

+, which consists of all points x = (x1, x2, . . . , xn)

with xi > 0 for 1 ≤ i ≤ n, and the open (n − 1)-dimensional standard simplex, denoted
∆ = ∆n−1, which consists of the points x ∈ Rn

+ that satisfy ∑n
i=1 xi = 1. A point x ∈ ∆ is

really a finite probability distribution, which leads us to believe that ∆ is the more important
setting. However, Rn

+ is often easier to work with, and we can restrict results to ∆ ⊆ Rn
+.

Shannon entropy and relative entropy. Writing ln t for the natural logarithm of
t > 0, the (negative) Shannon entropy is E : Rn

+ → R defined by E(x) = ∑n
i=1[xi ln xi − xi].

(Subtracting the extra term is a standard trick to simplify computations while not affecting
the interpretation of the resulting relative entropy. However, the interpretation of the
Shannon entropy mentioned in the Introduction holds only up to a constant.) We write
E|∆ : ∆ → R for its restriction to the standard simplex.

As mentioned in Section 1, −E(x) pertains to the expected efficiency of encoding a
random variable that distributes according to x ∈ ∆. If we encode the values assuming the
random variable distributes according to y ∈ ∆, the expected efficiency is the negative of
the best linear approximation of E at y evaluated at x, which is −E(y)− ⟨∇E(y), x − y⟩.
The relative entropy can be viewed as the non-negative difference between the above
approximation and the Shannon entropy of x; see Figure 1.
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yx

D
(x
∥y

)

Figure 1. The graph of the Shannon entropy on R+, the graph of its best linear approximation at y,
and the relative entropy from x to y.

Going back to x, y ∈ Rn
+, we consider a generalized form of the relative entropy from x

to y:

D(x∥y) = E(x)− E(y)− ⟨∇E(y), x − y⟩ (9)

= ∑n
i=1[xi ln xi

yi
− xi + yi] (10)

= ∑n
i=1 D(xi∥yi). (11)

Note the extra additive terms, which are absent in the usual form and ensure that the
result is nonnegative. When restricted to the standard simplex, it simplifies to its more
standard form, namely ∑n

i=1 xi ln xi
yi

.
We say the relative entropy is decomposable because it satisfies (11). Observe that the

notation separates the points x and y by a double bar as opposed to a comma to remind
us that the measure is generally not symmetric. The relative entropy is also known as the
Kullback divergence, the Kullback–Leibler divergence, or simply the divergence; see [3] (page 57).
It measures the divergence in encoding efficiency due to assuming a different distribution.

Jensen–Shannon divergence. Similar to the relative entropy, the Jensen–Shannon
divergence generalized to the positive orthant is a function JS : Rn

+ × Rn
+ → R, but it is

symmetric by taking the average relative entropy from x to µ = 1
2 (x + y) and from y to µ;

see Figure 2:

JS(x, y) = 1
2 [D(x∥µ) + D(y∥µ)] (12)

= 1
2 E(x) + 1

2 E(y)− E(µ) (13)

= 1
2 ∑n

i=1[xi ln 2xi
xi+yi

+ yi ln 2yi
xi+yi

]. (14)

= ∑n
i=1 JS(xi, yi), (15)

in which we get (13) by noting (x − µ) + (y − µ) = 0. Similar to the relative entropy,
the Jensen–Shannon divergence is decomposable (15). As pointed out in [4], JS(x, y) mea-
sures the divergence of expected efficiency when we encode a random variable that dis-
tributes half of the time according to x ∈ ∆ and the other half of the time according to y ∈ ∆
using the average of x and y.

1 ex

−1

µ y

JS
(x

,y
)

M
x(

x,
y)

Figure 2. A pair x, y ∈ R+ that satisfies E(x) = E(y), the midpoint, µ = (x + y)/2, and the minmax
divergence center z = 1. The Jensen–Shannon divergence and the minmax divergence of x and y
are labeled.
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It is not difficult to prove that if we substitute any other point for µ, then the average
relative entropy and therefore the divergence in efficiency increases. For reasons that will
become obvious shortly, we prove this optimality result for a weighted version of this
divergence. Let ξ + η = 1 and set w = ξx + ηy. The corresponding weighted Jensen–Shannon
divergence is

JSξ(x∥y) = ξD(x∥w) + ηD(y∥w) (16)

= ξE(x) + ηE(y)− E(w) (17)

= ∑n
i=1[ξxi ln xi

wi
+ ηyi ln yi

wi
] (18)

= ∑n
i=1 JSξ(xi∥yi). (19)

To prove optimality, we set fξ(u) = ξD(x∥u) + ηD(y∥u), noting that fξ(w) = JSξ(x∥y).
The following lemma and proof can also be found in [22].

Lemma 1 (Optimality of Weighted JS). Let x, y ∈ Rn
+, ξ + η = 1, and w = ξx + ηy. Then

fξ(w) ≤ fξ(u) for every u ∈ Rn
+, with equality iff u = w.

Proof. Computing the difference, X = fξ(u)− fξ(w), most terms cancel and we get

X = ξ[D(x∥u)−D(x∥w)] + η[D(y∥u)−D(y∥w)] (20)

= E(w)− E(u)− ⟨∇E(u), w − u⟩, (21)

in which we use ξ(x − w) + η(y − w) = 0. In other words, the difference is equal to
D(w∥u), which is non-negative and zero iff u = w by the strict convexity of E.

Remark 1. To get an information theoretic interpretation of the result, we assume x, y ∈ ∆ and
suppose a random variable that distributes according to x with likelihood 0 ≤ ξ ≤ 1 and according
to y with likelihood η = 1 − ξ. Lemma 1 says that our best bet is to encode with w = ξx + ηy. In
words, w minimizes the weighted Jensen–Shannon divergence.

Minmax divergence. Similar to the Jensen–Shannon divergence, the minmax diver-
gence is a symmetric function Mx: Rn

+ × Rn
+ → R. It is defined by mapping x, y to the

larger relative entropy to a third point, z ∈ Rn
+, in which z is selected so as to minimize

this maximum:

Mx(x, y) = inf
z∈Rn

+

max{D(x∥z), D(y∥z)}. (22)

We call the point z that gives the infimum the minmax divergence center of the pair. We
remark that the general form of minmax divergence introduced in Section 5 generalizes the
Chernoff information [1] popular in statistics.

As proved for example in [6], z is a convex combination of x and y. We strengthen this
result by proving that it is the particular convex combination that maximizes the weighted
Jensen–Shannon divergence, and that this weighted Jensen–Shannon divergence equals the
minmax divergence.

Lemma 2 (Minmax-Maxweight). Let x, y ∈ Rn
+ and ξ0 + η0 = 1 such that z0 = ξ0x + η0y is

the minmax divergence center. Then Mx(x, y) = JSξ0
(x∥y) ≥ JSξ(x∥y) for all ξ.

Proof. Let ξ + η = 1 and write z = ξx + ηy for a general affine combination of x and y.
The restriction of E to the line of such points is a strictly convex function. It follows that
there is a unique affine combination, z0 = ξ0x + η0y, such that D(x∥z0) = D(y∥z0). The
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weighted Jensen–Shannon divergence at z0 is JSξ0
(x∥y) = ξ0D(x∥z0) + η0D(y∥z0), which

is equal to D(x∥z0) = D(y∥z0), as claimed.
By convexity of the restriction of E, the maximum relative entropy is larger than this

shared value for every affine combination z ̸= z0. Similarly, the weighted Jensen–Shannon
divergence is smaller than JSξ0

(x∥y) at every affine combination z ̸= z0.

Remark 2. In contrast to the other measures discussed so far, the minmax divergence is
not decomposable.

Remark 3. Since the minmax divergence center of x and y lies between these two points, it is
constrained to a compact set so we can replace the infimum in (22) by a minimum. This justifies
the name of corresponding divergence. Lemma 2 says that the minimum of the maximum relative
entropy is equal to the maximum weighted Jensen–Shannon divergence, which justifies the name of
the lemma.

Explicit formula. While the minmax divergence is defined as an infimum, it is possible
to compute it explicitly. To state the formula, we introduce G : R+ → R defined by

G(t) = t
t

t−1
e − t ln t

t−1 . (23)

It is well defined at all positive t ̸= 1, and we get G(1) = 0 in the limit because limt→1 t
t

t−1 =

e and limt→1
t ln t
t−1 = 1 by the rule de l’Hôpital.

Lemma 3 (Minmax divergence Formula). For x, y ∈ R+, we have Mx(x, y) = xG( y
x ).

Proof. For x = y both sides vanish, so the relation holds. We therefore assume x ̸= y for
the remainder of the proof. Letting z be the minmax divergence center of x and y, we recall
that the derivative at z is the slope of the line that passes through (x, E(x)) and (y, E(y)):
E′(z) = ln z = [E(y)− E(x)]/[y − x]. We express this equation in terms of y

x :

ln z =
y ln y − x ln x − (y − x)

y − x
(24)

=
y
x (ln

y
x + ln x)− ln x

y
x − 1

− 1 (25)

=
y
x ln y

x
y
x − 1

+ ln x − 1. (26)

Write A = ( y
x ln y

x )/(
y
x − 1) for the first term on the right-hand side of (26). Recall that the

minmax divergence of x and y is the vertical distance between the point (z, E(z)) and the
line that passes through (x, E(x)) and (y, E(y)). By construction, the slope of this line is
ln z. We express the vertical distance as the sum of two vertical distances, which we then
express in terms of A and y

x :

Mx(x, y) = [(z − x) ln z] + [E(x)− E(z)] (27)

= z − x + x ln x − x ln z (28)

= z − x + x ln x − x[A + ln x − 1] (29)

= x[eA−1 − A] (30)

= xG
( y

x
)
, (31)
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in which we use (26) to get (29), we cancel −x + x ln x and replace z to get (30), and finally
use y

x = eln y
x to get (31).

Bregman divergences. The relative entropy can be viewed from the perspective of
Bregman divergences [13]. Indeed, it is an instance of a Bregman divergence generated
by the negative Shannon entropy. We briefly introduce the setup for general Bregman
divergences, generated by arbitrary convex functions, or more technically functions of
Legendre type.

Given an open convex set Ω ⊆ Rd, a function F : Ω → R is of Legendre type if it is (1)
differentiable, (2) strictly convex and (3) the magnitude of its gradient diverges to positive
infinity when evaluated at points converging to the boundary of the domain. Given a
function F of Legendre type, the Bregman divergence [13] generated by F is defined as

DF : Ω × Ω → R, DF(x∥y) = F(x)− (F(y) + ⟨∇F(y), x − y⟩).

We will use this concept to generalize our main result in Section 5.

3. Comparison of Divergences
We think of the Jensen–Shannon divergence as a readily computed approximation

of the minmax divergence. The approximation is very close, and we prove in this section
that the Jensen–Shannon divergence is always between e ln 2

2 = 0.942 . . . and 1 times the
minmax divergence. We prove this first in one dimension and then generalize the result to
n dimensions.

Approximation with ellipse. The main tool in proving the relation between the minmax
divergence and the Jensen–Shannon divergence is the—surprisingly close—approximation
of the graph of the Shannon entropy defined over R+ with an arc of an ellipse. We are
interested in the interval [0, e], so we choose the ellipse to

• pass through the points (0, 0) and (e, 0);
• have its minimum at the point (1,−1);
• have the same curvature at (1,−1) as the graph of the Shannon entropy.

Writing the ellipse as the zero-set of a function, we introduce Γ : R2 → R defined by

Γ(x1, x2) = x2
1 + (2 − e)x1x2 + (3 − e)x2

2

− ex1 + (2 − e)x2. (32)

It is not difficult to check that Γ−1(0) satisfies the above three properties. We also note that
Γ(x1, x2) is negative for points inside the ellipse and positive for points outside the ellipse.
Within [0, e], the approximation of E by the lower portion of the ellipse is astonishingly
close, and we exaggerate the difference in Figure 3 to make it visible. We prove that from 0
to 1 the graph of E is below the ellipse, and from 1 to e it is above the ellipse.

Lemma 4 (Below-Above). Letting E : R+ → R be the 1-dimensional Shannon entropy and
Γ : R2 → R the function defined in (32). Then

Γ(x, E(x))

{
> 0 for 0 < x < 1,
< 0 for 1 < x < e.

(33)

Proof. Write Γ(x, E(x)) = x f (x), in which

f (x) = (2x − 2) + (2 − e + ex − 4x) ln x

+ (3 − e)x ln2 x. (34)
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We have f (1) = f (e) = 0 by construction of Γ, but not necessarily f (0) = 0 because we
divided by x. It suffices to prove that f (x) is positive for 0 < x < 1 and negative for
1 < x < e. Next we compute the first two derivatives, again after removing a monotonic
factor to simplify the computations. Specifically, we write f ′(x) = 1

x g(x), in which

g(x) = (e − 2)(x − 1 − x ln x) + (3 − e)x ln2 x, (35)

g′(x) = (3 − e) ln2 x − (3e − 8) ln x. (36)

The derivative of g is quadratic in ln x, with zeros at x = 1 and x = u0 = exp(3e−8
3−e ) = 1.732 . . .

Hence, g′(x) is negative for 1 < x < u0 and positive outside the corresponding closed
interval. Returning to g, we note that g is zero, negative, positive at 1 < u0 < e:

g(1) = 0, g(u0) = −0.010 . . . , g(e) = 0.047 . . . (37)

Our analysis of g′ implies that g increases from 0 to 1, it decreases from 1 to u0, and finally
it increases again from u0 to e, with a zero at some value u1 between u0 and e. Hence, f
decreases from 0 to u1, with 1 < u1 < e, and it increases from u1 to e. Since f (1) = f (e) = 0,
this implies that f is positive from 0 to 1 and negative from 1 to e. The claimed inequalities
for Γ follow.

Midpoint lines. We are interested in the relative position of two midpoint lines. The
first is defined by the Shannon entropy, E, and the second by the function G : [0, e] → R
whose graph is the portion of the ellipse on and below the horizontal coordinate axis. Both
lines consist of points ( 1

2 (x + y), t) with 0 ≤ x ≤ 1 ≤ y ≤ e, in which the points of the first
line satisfy E(x) = E(y) = t and the points of the second line satisfy G(x) = G(y) = t.

The ellipse can be obtained by shearing a circle, and since this operation takes straight
lines to straight lines, it follows that the midpoint line of G is a straight line segment.
Its endpoints are (1,−1) and ( e

2 , 0). By Lemma 4, the midpoint line of E is a curve that
connects the same two endpoints but lies otherwise to the left of the line segment; see
Figure 3.

e
2

−1

eyµx

T0

Tx

1

Figure 3. The (blue) midpoint line of E lies to the left of the (black) midpoint line of G. The two shaded
trapezoids visualize the ratios between the minmax divergence and the Jensen–Shannon divergence
for the pairs 0 < e and 0 < x < y < e with E(x) = E(y). Since the upper right corner of the smaller
trapezoid lies on the midpoint line of E, the second ratio is smaller than the first ratio.

Inequalities. Recall the definition of the weighted Jensen–Shannon divergence for a
real parameter and points:

JSξ(x∥y) = ξE(x) + ηE(y)− E(z), (38)

in which η = 1 − ξ and z = ξx + ηy. The (unweighted) Jensen–Shannon divergence is
JS(x, y) = JS1/2(x∥y), and from Lemma 2 we know that the minmax divergence can be
written as Mx(x, y) = maxξ JSξ(x∥y). We prove that the two measures of information
divergence are good approximations of each other.
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Theorem 1 (Loss Comparison). Letting x, y ∈ Rn
+, we have e ln 2

2 Mx(x, y) ≤ JS(x, y)
≤ Mx(x, y).

Proof. The upper bound on JS(x, y) follows from Lemma 2, so we focus on proving
the lower bound. We begin with the 1-dimensional case, when n = 1. Recall that
D(Cx∥Cy) = C D(x∥y) for every C ≥ 0. Hence,

JS(Cx, Cy) = C JS(x, y), (39)

Mx(Cx, Cy) = C Mx(x, y), (40)

which implies that the ratio is independent of C. Given x < y, we can find C > 0 such
that E(Cx) = E(Cy), so we assume E(x) = E(y) for the remainder of the 1-dimensional
argument. This implies that the minmax divergence center is z = 1. Setting x = 0 and
y = e, we have E(0) = E(e) = 0, and the ratio is

Mx(0, e)
JS(0, e)

=
−1

E( e
2 )

=
−1

e
2 ln e

2 − e
2
=

2
e ln 2

. (41)

Observe that this ratio is the length of the left edge divided by the length of the right
edge of the trapezoid T0 in Figure 3. For a general pair 0 < x < y with E(x) = E(y),
we represent the ratio by the left and right edges of a similar trapezoid, Tx. Importantly,
the two trapezoids share (1,−1) as their common lower left corner, and the bottom edge of
Tx has smaller positive slope than the bottom edge of T0. The height of T0 is 1 and that of
Tx is t < 1. To compare the two ratios, we thus consider Tx/t + (1 − t, t − 1), which is the
scaled version of Tx whose lower left corner is (1,−1) and whose height is 1. The upper
right corner of Tx lies on the midpoint line of E, which by Lemma 4 implies that the upper
right corner of the scaled trapezoid lies to the left of e

2 on the horizontal coordinate axis. It
follows that the width of the scaled trapezoid is smaller than the width of T0. Hence,

Mx(x, y)
JS(x, y)

<
Mx(0, e)
JS(0, e)

=
2

e ln 2
. (42)

We get equality for x = 0 and for x = 1, which implies the claimed lower bound for n = 1
dimension. Moving on to n ≥ 1 dimensions, we recall that the minmax divergence center
is a convex combination of the two points [6]. Specifically, the center satisfies z = ξx + ηy
with ξ, η ≥ 0 and ξ + η = 1. Using Lemma 2, the decomposability of the weighted
Jensen–Shannon divergence (19), and the claimed inequality in n = 1 dimension—in this
sequence—we get

Mx(x, y) = JSξ(x∥y) (43)

= ∑n
i=1 JSξ(xi∥yi) (44)

≤ 2
e ln 2 ∑n

i=1 JS(xi, yi) (45)

=
2

e ln 2
JS(x, y), (46)

as claimed.

Remark 4. The bounds in Theorem 1 are tight. To see this for the lower bound, we note that
Mx(0, e) = 1 and JS(0, e) = −E( e

2 ) =
e ln 2

2 . While 0 is formally not part of the domain, we can
take points arbitrarily close to 0 and thus get the bound in the limit. To see that the upper bound
is tight, we let ε > 0 be small and set x = 1 − ε and y = 1 + ε. We can see the two entropies
geometrically as the vertical distance of two points on the graph of E below the line that passes
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through (x, E(x)) and (y, E(y)); see Figure 2. For JS(x, y) this point is (µ, E(µ)) = (1,−1),
and for Mx(x, y) this point is (z, E(z)), in which z is the minmax divergence center of x and y.
To determine z, we note that D(x∥z) = D(y∥z). After some computations, including the Taylor
expansions of ln s around s = 1 and of es around s = 0, we find that z is 1− 1

3 ε2 plus a fourth-order
term in ε. In words, z approaches µ = 1 much faster than a and b. It follows that in the limit,
the two entropies are the same, as required.

4. Proof of Metric in Dimension One
As proved in [4], the square root of the Jensen–Shannon divergence is a metric in R+.

Using the decomposability of the Jensen–Shannon divergence together with the Minkowski
inequality, it is then easy to prove that this square root is also a metric in Rn

+. We prove that
the square root of the minmax divergence is a metric in R+. Since the minmax divergence
is not decomposable, we do not know yet whether its square root is a metric in Rn

+.
The ratio method. Suppose A : R × R → R satisfies the triangle inequality and

B : R×R → R is another function on the product. To prove that B also satisfies the triangle
inequality, we may consider the ratio, f (x, y) = B(x, y)/A(x, y) and prove its monotonicity,
that is:

f (a, b) ≤ f (x, y) (47)

whenever a ≤ x ≤ y ≤ b.

Lemma 5 (Triangle Inequality). Let A, B, f : R × R → R in which A satisfies the triangle
inequality and f = B/A is monotonic. Then B satisfies the triangle inequality.

Proof. Let x ≤ y ≤ z. Then

B(x, y)+B(y, z) = f (x, y)A(x, y)+ f (y, z)A(y, z) (48)

≥ f (x, z)A(x, z) (49)

= B(x, z), (50)

in which we get (49) using the monotonicity of f and the triangle inequality for A.

To apply the lemma, we set B(x, y) =
√

Mx(x, y) and A(x, y) = |√y −
√

x|. Clearly,
A is a metric in R+, so it will suffice to show that the ratio is monotonic.

A first application. As a warm up exercise, we use the ratio method expressed in
Lemma 5 to re-prove the main result of [4].

Theorem 2 (JS Revisited). Let E : Rn
+ → R be the Shannon entropy and JS : Rn

+ ×Rn
+ → R

map every pair to the Jensen–Shannon divergence. Then
√

JS is a metric in Rn
+.

Proof. We begin with the one-dimensional case, n = 1. It is clear that JS(x, y) is non-
negative, zero iff x = y, and symmetric. It remains to prove that its square root satisfies the
triangle inequality. Setting

f (x, y) =
√

JS(x, y)
|√y −

√
x|

, (51)

we will prove that f is monotonic as defined in (47). Recall that JS(Cx, Cy) = C JS(x, y)
for every C > 0. It follows that f (Cx, Cy) = f (x, y), which allows us to assume
x = 1. To simplify the notation, we set t2 = y assuming t2 ≥ 1. Writing
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g(t) = JS(1, t2)/(t − 1)2 = f (1, y)2, we aim at proving that g is monotonically decreasing,
that is: g′(t) < 0 for all t ≥ 1. Recall from (5) that

JS(1, t2) = 1
2

[
ln 2

1+t2 + t2 ln 2t2

1+t2

]
, (52)

∂JS(1, t2)

∂t
= t ln 2t2

t2+1 . (53)

The derivative of g is g′(t) = N(t)/(t − 1)3, in which

N(t) = (t − 1)
∂JS(1, t2)

∂t
− 2JS(1, t2) (54)

= −t ln t2 + (t2 + 1) ln t2+1
2 . (55)

For t = 1, both the numerator and the denominator vanish: N(1) = 0 and D(1) = 0 in
which D(t) = (t − 1)3. Applying the rule de l’Hôpital three times, we get

N′(t) = ln t2+1
2 − ln t2 + 2t−2

t2+1 , (56)

N′′(t) = − 2(t+1)(t−1)2

(t2+1)2t , (57)

N′′′(t) = 4t7−6t6−8t5+6t4−12t3+14t2+1
(t5+2t3+t)2 , (58)

with N′(1) = N′′(1) = N′′(1) = 0. However, D′(1) = D′′(1) = 0 and D′′′(1) = 6. Hence,
g′(1) = 0 and it suffices to prove g′′(t) < 0 for t > 1. Since the denominator of g′ is positive,
this is equivalent to N′(t) < 0 for t > 1. But this follows from N′(1) = 0 and N′′(t) < 0
for t > 1, which can be seen from (57). Hence f is monotonic and since the denominator
in (51) satisfies the triangle inequality, Lemma 5 implies that

√
JS also satisfies the triangle

inequality and therefore is a metric.
Having established the claim in one dimension, we get the n-dimensional result using

the Minkowski inequality, which for non-negative real numbers ai and bi implies√
∑n

i=1(ai + bi)2 ≤
√

∑n
i=1 a2

i +
√

∑n
i=1 b2

i . (59)

Recall that the Jensen–Shannon divergence is decomposable: JS(x, y) = ∑n
i=1 JS(xi, yi) for

x, y ∈ Rn
+. Letting z ∈ Rn

+ be a third point, we set a2
i = JS(xi, yi) and b2

i = JS(yi, zi) for all i.
Since

√
JS satisfies the triangle inequality in one dimension, we have (ai + bi)

2 ≥ JS(xi, zi)

for 1 ≤ i ≤ n. It follows that the left-hand side of (59) is larger than or equal to
√

JS(x, z).
The right-hand side of (59) is equal to

√
JS(x, y) +

√
JS(y, z), which implies the triangle

inequality for the square root of the Jensen–Shannon divergence in n dimensions.

Further preparations. Recall that the Shannon entropy is defined by E(t) = t ln t − t.
The related function, F : R+ → R, defined by

F(t) =
√

E(t2) + 1 (60)

=
√

2t2 ln t − t2 + 1, (61)

will play a crucial role in the proof of our next theorem; see Figure 4. The derivative
has a discontinuity at t = 1, but if we reflect the preceding branch to get F̄ : R+ → R
defined by F̄(t) = −F(t) for 0 < t ≤ 1 and F̄(t) = F(t) for 1 ≤ t, we obtain a convex
function; see again Figure 4 on the left. Appendix A proves that F̄ is convex and everywhere
differentiable, and that its derivative, F̄′, is concave; see again Figure 4.
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−1

1

1

|ℓ|
|r|

√
x

√
y1

Figure 4. Left: the (solid) graph of F and the (partially dotted) graph of F̄. Right: the (solid) graph of
F′ and the (partially dotted) graph of F̄′. The shaded regions have area |ℓ| and |r|, as discussed in the
proof of Theorem 3.

One dimension. We are now ready to prove that the square root of the minmax
divergence is a metric in one dimension.

Theorem 3 (1D Metric). Let E : R+ → R be the Shannon entropy and Mx: R+ ×R+ → R map
every pair to its minmax divergence. Then

√
Mx is a metric in R+.

Proof. It is clear that
√

Mx(x, y) is non-negative, zero iff x = y, and symmetric. It thus
remains to prove that it satisfies the triangle inequality. Setting

f (x, y) =
√

Mx(x, y)
|√y −

√
x|

, (62)

we will prove shortly that f is monotonic as defined in (47). Lemma 5 then implies that√
Mx satisfies the triangle inequality. It thus remains to prove f (a, b) ≤ f (x, y) whenever

a ≤ x ≤ y ≤ b. We begin by noting that we may assume these intervals are canonical, by
which we mean that E(a) = E(b) and E(x) = E(y). Indeed, if E(x) ̸= E(y), then we can
find C > 0 such that E(Cx) = E(Cy), which then implies f (Cx, Cy) = f (x, y).

We now use the function f : R+ → R defined by F(t) =
√

E(t2) + 1 to draw a
geometric picture of the situation; see Figure 5.

1

√
x

√
a

√
y
√

b

F

ℓ

r

L R

Figure 5. To improve visibility, we draw the graph of F stretched in the horizontal direction. The
aspect ratios of the shaded rectangles are the values of f at x, y and at a, b. The tangent lines L at
t =

√
x and R at t =

√
y intersect at a point above the zero line.

To prove monotonicity, that is: f (a, b) ≤ f (x, y), we consider the linear functions
L, R : R → R that satisfy L(t) = F(t), for t =

√
a,
√

x, and R(t) = F(t), for t =
√

y,
√

b.
The goal is to show that the aspect ratio of the rectangle defined by a, b is less than that
defined by x, y. Equivalently, we show that the point at which the lines L and R meet
has positive second coordinate. By the differentiability of F and the transitivity of order
along the real line, it suffices to show this in the limit case, when a = x and y = b. In
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this case, L and R are the tangent lines of F at t =
√

x and t =
√

y, as shown in Figure 5.
Let ℓ = L(1) and r = R(1) be the coordinates of the points at which L and R intersect the
vertical line t = 1, and note that r ≤ 0 ≤ ℓ by convexity of F̄. The convexity of this function
furthermore implies

1 −
√

x >
√

y − 1, (63)

|L′(
√

x)| < |R′(
√

y)|. (64)

To compare the absolute values of ℓ and r, we express both as integrals:

ℓ =
∫ 1

t=
√

x
[F′(

√
x)− F′(t)]dt, (65)

r =
∫ √

y

t=1
[F′(t)− F′(

√
y)]dt; (66)

see Figure 4 on the right. The concavity of F̄′ together with (63) implies |ℓ| ≥ |r|, and since
L has smaller absolute slope than R (64), it follows that the two lines intersect above the
zero line, as required.

This concludes the proof in dimension one. The main obstacle to extending the proof
to arbitrary dimension is the lack of decomposability (separability) of the minmax loss. Still,
we decided to present the partial results and techniques, as they may help other researchers
complete the proof in the future. In particular, techniques for extending results from one
to arbitrary dimensions are present in the information theory literature; see for example
the work on Pinsker’s inequality [23], which compares the relative entropy with another
distance. This gives us hope that researchers in information theory may be well-equipped
to extend the result to arbitrary dimension.

5. Extensions to Other Bregman Divergences
In this section, we provide a perspective for our results by extending them beyond

the Shannon entropy. Specifically, we weaken the bounds while keeping them tight to
generalize Theorem 1 to Bregman divergences, and we prove that the square root of the
minmax divergence for the Burg entropy is a metric in R+.

This way the inequality can be used in other applied contexts. For example, the Burg
entropy (and the Itakura–Saito divergence it induces) are used in speech recognition [24].

Burbea–Rao divergence. The Burbea–Rao divergence, also called the Jensen–Bregman [25],
is a straightforward generalization of the Jensen–Shannon divergence. Specifically, the under-
lying divergence is generalized from the relative entropy to a Bregman divergence. Letting
F : Ω → R be a function of Legendre type generating a Bregman divergence and x, y ∈ Ω,
we define

BRF(x, y) = 1
2 [DF(x∥µ) + DF(y∥µ)] (67)

= 1
2 [F(x) + F(y)− 2F(µ)], (68)

in which µ = (x + y)/2. Lemma 1 generalizes with a verbatim proof in which we substitute
F for E. As done in [1], we also generalize the minmax divergence from the Kullback–Leibler
divergence to a general underlying Bregman divergence DF:

MxF(x, y) = min
z∈Ω

max{DF(x∥z), DF(y∥z)}. (69)

When we compare the two, we get bounds that are considerably worse than for the special
case of the Shannon entropy.
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Theorem 4 (Burbea–Rao divergence Comparison). Let F : Ω → R be a Legendre type function,
and let x, y be points in Ω. Then 1

2 MxF(x, y) ≤ BRF(x, y) ≤ MxF(x, y).

Proof. Let z ∈ Ω be the point that minimizes the right-hand side of (69). Using the
generalization of Lemma 1 to the Burbea–Rao divergence, we get

BRF(x, y) ≤ 1
2 [DF(x∥z) + DF(y∥z)]. (70)

Since DF(x∥z) = DF(y∥z), the right-hand side of (70) is equal to MxF(x, y), which implies
the claimed upper bound on the Burbea–Rao divergence. To prove the lower bound, we
note that the larger of the two divergences to µ is at least as large as MxF(x, y). Hence,
MxF(x, y) is at most the sum:

MxF(x, y) ≤ DF(x∥µ) + DF(y∥µ), (71)

and the claimed lower bound follows because the right-hand side of (71) evaluates to
2BRF(x, y).

Remark 5. The bounds in Theorem 4 are tight. To see this for the lower bound, we consider
F(t) = t + 1

t , which is strictly convex, differentiable, and with minimum at t = 1. Setting x = ε,
y = 1

ε for 0 < ε < 1, we have F(x) = F(y) = ε + 1
ε , which implies that t = 1 minimizes the

maximum divergence from x and y. Some computations show that the divergences are

MxF(x, y) = F(x)− F(1) = ε − 2 + 1
ε , (72)

BRF(x, y) = F(x)+F(y)
2 − F(µ) = ε2+1

2ε − 2ε
ε2+1 . (73)

For ε → 0, the ratio of BRF(x, y) over MxF(x, y) goes to 1
2 , as required. To see the upper bound, we

choose F(t) = t2 for which BRF(x, y) = MxF(x, y) for all x, y ∈ R.

Minmax divergence for Burg entropy. Another significant entropy appearing in this
context is the Burg entropy: B(x) = x− ln(x)+ 1, for x > 0. Let us denote the corresponding
minmax divergence my MB.

Theorem 5 (Metric for Burg Entropy). Let F : R+ → R be the Burg entropy. Then
√

MB is a
metric in R+.

Proof. The proof follows a similar structure as the proof of Theorem 3. Setting up the ratio
method, we define

f (x, y) =
√

MB(x, y)
| ln x − ln y| , (74)

with the denominator being the induced path metric. By Lemma 5, we have to prove that f
is monotonic.

Next we simplify. Specifically, because DB(x∥y) = DB(kx∥ky), we have
f (kx, ky) = f (x, y) for all k > 0. We may therefore assume all intervals consid-
ered by the Ratio Method to be canonical, i.e., B(x) = B(y). In such case, we have
MB(x, y) = B(x) = B(y).

To prepare the geometric picture sketched in Figure 6, we define H(x) =
√

ex − x − 1
for x ∈ R. Note that f (x, y) is the aspect ratio of the rectangle in this picture. As in the
proof of Theorem 3, the monotonicity of f is established by proving that the tangent lines
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to H at ln x and ln y intersect above the horizontal axis for all canonical intervals [x, y]. To
this end, it suffices to show that λ > ρ, in which

• λ is the coordinate of the intersection of the horizontal axis with the tangent on H at
ln x;

• ρ is the coordinate of the intersection of the horizontal axis with the tangent on H at
ln y.

ρ λ

H
t

ln yln x

Figure 6. The two branches of the function H, two tangent lines touching the branches at points of
equal height, and their intersections with the horizontal coordinate axis.

Reflecting the left part of H, we obtain an injective function H̄ : R → R defined by

H̄(x) =

{
−H(x) for x < 0,

H(x) for 0 ≤ x.
(75)

Note that this does not change the intersections mentioned above. Letting K be the inverse
of H̄, We consider the graph of K; see Figure 7.

K

t

−t
λ

ρ
K′

−t t

λ
ρ

Figure 7. Left: the graph of K and the intersections of the two tangent lines with the vertical
coordinate axis. Right: the derivative, K′, and the two intersections represented as areas above and
below the curve.

Expressing this with integrals, and setting t = H(ln x) = H(ln y), we can compare the
two coordinates:

λ = K(−t) + tK′(−t) =
−t∫
0

[K′(s)− K′(−t)]ds, (76)

ρ = K(t)− tK′(t) =

t∫
0

[K′(s)− K′(t)]ds. (77)

By Lemmas A3 and A4, K′ is convex and decreasing. Using the integral representation
above, we interpret λ and ρ as areas; see Figure 3. It follows that λ > ρ and consequently√

MB is a metric.

6. Discussion
The main result of our work are the tight bounds between the minmax information

divergence and the Jensen–Shannon divergence (as well as analogous results for their
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generalizations). The former arises naturally in the context of computational geometry and
topology. Specifically, it coincides with the smallest radius of the nonempty intersection
between two balls in the geometry induced by the relative entropy (which generalizes
to other Bregman divergences). In this setting, this quantity is calculated repeatedly,
for example to compute the one-skeleton of the Čech complex, which is one of the standard
constructions in topological data analysis. In this case, our bounds are best presented as√

JS(x, y) ≤
√

Mx(x, y) ≤
√

2
e ln 2 JS(x, y) ≈ 1.030

√
JS(x, y). (78)

One can therefore closely approximate the relatively costly computations of the minmax
divergence, with the straightforward and efficient computations of the Jensen–Shannon
divergence. Indeed, computing the minmax information requires performing a binary
search or another numerical algorithm. On the other hand the formula for the Jensen–
Shannon divergences is not more complex then computing the Euclidean distance.

The tightness of the bounds makes it believable that the square root of the minmax
divergence may be a metric, similar to the Jensen–Shannon divergence. This turned out to
be true in the one dimensional case, but the general case of n-dimensional spaces appears
to be significantly more difficult. One key reason is that—unlike the Jensen–Shannon
divergence—the minmax divergence is not decomposable (separable). We leave this case
open and hope that a combinations of the proposed geometric proof techniques with
additional techniques may eventually lead to a successful resolution.
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Appendix A. First Curve Discussion
In this appendix, we prove that the function F̄ used in the proof of Theorem 3 is convex

and that its derivative is concave.
Convexity of F̄. Recall that the functions F, F̄ : R+ → R used in the proof of Theorem 3

are defined by

F(t) =
√

E(t2) + 1, (A1)

F̄(t) =

{
−F(t) for 0 < t ≤ 1,

F(t) for 1 ≤ t,
(A2)

in which E(t) = t ln t − t is the Shannon entropy; see Figure 4, left.



Entropy 2025, 27, 854 18 of 22

Lemma A1 (Convexity of Function). The function F̄ : R+ → R is convex and differentiable.

Proof. We aim at proving that F̄′′(t) is positive for all t > 0. This is equivalent to F̄′′(t)2 =

F′′(t)2 being positive for all t > 0, provided the second derivative is continuous and
positive at some t > 0. Indeed, for F̄′′ to change sign, its square must vanish. We compute

F′(t) =
2t ln t
F(t)

, (A3)

F′′(t) =
(2 ln t + 2)F(t)− 2t ln tF′(t)

F(t)2 (A4)

=
2[(t2 + 1) ln t − (t2 − 1)]

F(t)3 , (A5)

noting that F′′(e) = 4/(e2 + 1)3/2, which is positive as required. The numerator is twice
a(t) = (t2 + 1) ln t − (t2 − 1), which vanishes iff ln t = (t2 − 1)/(t2 + 1). The derivatives
on the two sides satisfy 1/t < 4t/(t2 + 1)2 for all positive t ̸= 1 because (t2 − 1)2 > 0 for
all positive t ̸= 1. Since a(1) = 0, this implies that t = 1 is the only positive root of the
numerator. It follows that F′′2 is positive everywhere, except possibly at t = 1, where we
get F′′(1) = 0

0 . We settle this case with the rule de l’Hôpital, computing derivatives of the
numerator and the denominator. We begin with the numerator:

a′(t) = 2t ln t + t2+1
t − 2t, (A6)

a′′(t) = 2 ln t + t2−1
t2 , (A7)

a′′′(t) = 2
t +

2
t3 , (A8)

with a(1) = a′(1) = a′′(1) = 0 and a′′′(1) = 4. Deriving N = a2, we get a structure similar
to the Pascal triangle with a non-zero term after six steps:

N′ = 2aa′, (A9)

N′′ = 2a′2 + 2aa′′, (A10)

N′′′ = 6a′a′′ + 2aa′′′, (A11)

N′′′′ = 6a′′2 + 8a′a′′′ + 2aa′′′′, (A12)

N′′′′′ = 20a′′a′′′ + 10a′a′′′′ + 2aa′′′′′, (A13)

N′′′′′′ = 20a′′′2 + 30a′′a′′′′ + 12a′a′′′′′ + 2aa′′′′′′. (A14)

All derivatives of a are well defined and take on finite values at t = 1. Since a(1) =

a′(1) = a′′(1) = 0 and a′′′(1) ̸= 0, all derivatives of N vanish at t = 1, except for the last,
which is N′′′′′′(1) = 20a′′′(t)2 = 320. To do the same for the denominator in (A5), we set
c(t) = F(t)2 = 2t2 ln t − t2 + 1 and compute two derivatives,

c′(t) = 4t ln t, (A15)

c′′(t) = 4 ln t + 4, (A16)

with c(1) = c′(1) = 0 and c′′(1) = 4. Starting with D = c3, we thus get
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D′ = 3c2c′, (A17)

D′′ = 6cc′2 + 3c2c′′, (A18)

D′′′ = 6c′3 + 18cc′c′′ + 3c2c′′′, (A19)

D′′′′ = 36c′2c′′ + 18cc′′2 + 24cc′c′′′ + 3c2c′′′′, (A20)

D′′′′′ = 90c′c′′2 + 60c′2c′′′ + 60cc′′c′′′ + 30cc′c′′′′ (A21)

+ 3c2c′′′′′, (A22)

D′′′′′′ = 90c′′3 + 360c′c′′c′′′ + 90c′2c′′′′ + 60cc′′′2 (A23)

+ 90cc′′c′′′′ + 36cc′c′′′′′ + 3c2c′′′′′′. (A24)

All derivatives of c are well defined and take on finite values at t = 1. Since
c(1) = c′(1) = 0 and c′′(1) ̸= 0, all derivatives of D vanish at t = 1, except for the last,
which is D′′′′′′(1) = 90c′′(1)3 = 5, 760. We conclude that F′′2 is positive at t = 1, namely
F′′(1)2 = 4·320

5,760 = 0.222 . . . This implies that F̄ is convex as well as differentiable.

Concavity of F̄′. Since F̄ is differentiable, its derivative F̄′ : R+ → R exists; see
Figure 4, right.

Lemma A2 (Concavity of Derivative). The function F̄′ : R+ → R is concave.

Proof. By definition, F̄′ is concave iff F̄′′ is monotonically decreasing, which is implied if
F̄′′2 = F′′2 is monotonically decreasing. Recall from (A5) that F′′(t)2 = 4a(t)2/F(t)6. The
derivative of the squared second derivative is therefore

(F′′(t)2)′ =
8a(t)a′(t)F(t)6 − 24a(t)2F(t)5F′(t)

F(t)12 (A25)

=
a(t)

t
· 8F(t)4 − 48a(t)t2 ln t

F(t)8 , (A26)

in which we get (A26) using a′(t) = F(t)2/t and F(t)F′(t) = 2t ln t. To continue, we write
b(t) for the numerator of the second factor in (A26). Since tF(t)8 is non-negative and the
sign of a(t) is the same as the sign of t − 1, it suffices to show that the sign of b(t) is that
same as the sign of 1 − t. But b(1) = 0, so it is enough to show that b is monotonically
decreasing, which it is iff b1(t) = b(

√
t)/4 is monotonically decreasing. We get

b1(t) = 2F(
√

t)4 − 6a(
√

t)t ln t (A27)

= 2[t ln t − t + 1]2

− 3[(t + 1) ln t − 2(t − 1)]t ln t (A28)

= (2t2 − 2t) ln t − (t2 + 3t) ln2 t + 2(t − 1)2, (A29)

in which we use F(
√

t)2 = E(t) + 1 = t ln t − t + 1 as well as a(
√

t) = 1
2 (t + 1) ln t − (t − 1)

to get (A28). Computing the derivative, we get

b′1(t) = (2t − 8) ln t − (2t + 3) ln2 t + 6t − 6, (A30)

which we need to be non-positive. Since b′1(1) = 0, it suffices to show that the sign of b′′1 (t)
agrees with the sign of 1 − t. Computing the second derivative, we get

b′′1 (t) = − 2
t [(t + 3) ln t + t ln2 t − 4t + 4]. (A31)
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The first factor, − 2
t , is always negative, so we just need to show that the second factor,

which we write as b2(t), has the same sign as t − 1. This is indeed the case, which we see
because b2(1) = 0 and

b′2(t) = ln2 t + 3 ln t − 3 + 3
t (A32)

= ln2 t + 3
t [E(t) + 1] (A33)

is non-negative for all t ∈ R+. We summarize by recalling the chain of implications from
back to front:

• b′2(t) is non-negative and sign(b2(t)) = sign(t − 1),
• sign(b′′1 (t)) = sign(1 − t) and b′1(t) is non-positive,
• sign(b(t)) = sign(1 − t) and (F′′(t)2)′ is non-positive,
• F′′2 and F̄′′ are monotonically decreasing,
• and finally, F̄′ is concave.

The only remaining uncertainty is at t = 1, where both the numerator and the denominator
of F′′ vanishes. But as shown in the proof of Lemma A1, F′′(1)2 = 0.222 . . . is well defined,
which implies that F̄′ is differentiable at t = 1 and thus concave over all of R+.

Appendix B. Second Curve Discussion
Recall that K is the inverse function of H̄ used in the proof of Theorem 5. In this

appendix, we prove that the derivative of K is convex and decreasing.
Function K. Recall that the functions H, H̄ : R → R used in the proof of Theorem 5 are

defined by

H(x) =
√

ex − x − 1, (A34)

H̄(x) =

{
−H(x) for x < 0,

H(x) for 0 ≤ x.
(A35)

It is easy to check that H̄ is continuously differentiable with a positive derivative. By the
Inverse Function Theorem, its inverse, K, exists and is continuously differentiable.

Lemma A3 (Convexity of Derivative). The derivative of the function K : R → R is convex.

Proof. Consider first the case x > 0, introduce y(x) =
√

ex − x − 1, and note that
y′(x) = dy

dx = ex−1
2y(x) . Setting x′(y) = dx

dy = 2y
ex−1 , we prove that x′(y) is convex or, equiva-

lently, that x′′(y) is increasing. Using the definition of y(x), we get

x′′(y(x)) = 2
(ex − 1)− yexx′(y)

(ex − 1)2 (A36)

= 2
−e2x + 2xex + 1

(ex − 1)3 . (A37)

Since both x(y) and y(x) are increasing functions, it suffices to show that g1(x) = x′′(y(x))
is increasing. Note that

g′1(x) = ex

(ex−1)4 g2(x), (A38)

in which g2(x) = ex − 4ex(x − 1)− 2x − 5. At this point, we need to prove that g2(x) is
positive. Observe that g′′2 (x) = 4ex(ex − x − 1) > 0 and g2(0) = g′2(0) = 0, thus g2(x) > 0
for x > 0. Tracing back the chain of derivations, we conclude that K′ = x′(y) is convex.



Entropy 2025, 27, 854 21 of 22

Consider second the case x < 0, introduce y(x) = −
√

ex − x − 1, and note that
y′(x) = dy

dx = ex−1
2y(x) , as above. Hence, we can repeat the steps using the same functions but

now for x < 0. We conclude that x′(y) is convex for x > 0 and for x < 0. We know that it
is continuous everywhere, and continuously differentiable for x ̸= 0 by the calculations
above. Using (A36) and (A37), we may also verify that x′′(y) is continuous at y = 0, hence
everywhere. This implies that K = x′(y) is convex on R.

Lemma A4 (Decreasing Derivative). The derivative of the function K : R → R is decreasing.

Proof. Consider first x > 0. By (A36) and (A37), it suffices to prove that

g3(x) = −e2x + 2xex + 1 < 0. (A39)

Indeed, this holds as g′3(x) = −2ex(ex − (x + 1)) < 0 and g′3(0) = 0. Since the derivative
of K is convex, for all x, and decreasing, for x > 0, it must also be decreasing for x ≤ 0.
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