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Abstract: For correlated real symmetric or complex Hermitian random matrices, we
prove that the local eigenvalue statistics at any cusp singularity are universal. Since the
density of states typically exhibits only square root edge or cubic root cusp singularities,
our result completes the proof of the Wigner—-Dyson—Mehta universality conjecture in
all spectral regimes for a very general class of random matrices. Previously only the
bulk and the edge universality were established in this generality (Alt et al. in Ann
Probab 48(2):963-1001, 2020), while cusp universality was proven only for Wigner-type
matrices with independent entries (Cipolloni et al. in Pure Appl Anal 1:615-707, 2019;
Erd&s et al. in Commun. Math. Phys. 378:1203—-1278,2018). As our main technical input,
we prove an optimal local law at the cusp using the Zigzag strategy, a recursive tandem
of the characteristic flow method and a Green function comparison argument. Moreover,
our proof of the optimal local law holds uniformly in the spectrum, thus we also provide
a significantly simplified alternative proof of the local eigenvalue universality in the
previously studied bulk (Erdds et al. in Forum Math. Sigma 7:E8, 2019) and edge (Alt
et al. in Ann Probab 48(2):963-1001, 2020) regimes.

1. Introduction

The celebrated Wigner—Dyson—-Mehta (WDM) conjecture asserts that the local eigen-
value statistics of large random matrices become universal: they depend only on the
symmetry class of the matrix and not on the precise details of its distribution. This
remarkable effect is extremely robust and manifests in all spectral regimes. The corre-
lation functions of the eigenvalues are governed by one of three universal determinantal
processes, whose kernel functions depend on the local shape of the eigenvalue density.
As proven by Dyson, Gaudin and Mehta [54] for the Gaussian GOE/GUE ensembles,
the local statistics of the eigenvalues in the bulk of the spectrum are driven by the sine
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kernel. At the spectral edges, where the density of states vanishes like a square root,
Tracy and Widom [65,66] computed that the correlation functions for GOE/GUE are
given by the Airy kernel. As was first observed by Wigner [69], and formalized as a con-
jecture for standard Wigner matrices by Dyson and Mehta in the 1960s, these statistics
hold well beyond the Gaussian ensembles. After the first proofs for standard Wigner
matrices [19,38,40,61,63,64], these universality results in the bulk and at the edge saw
rapid development and were gradually extended! to ensembles of ever greater gener-
ality: for Wigner matrices with diagonal [51,53] and non-diagonal deformations [47],
Wigner-type ensembles with not necessarily identically distributed but still independent
entries [7], and even to random matrices allowing for substantial correlations among the
entries [9,11,35].

The third and final class of universal local statistics emerges at the cusp-like singu-
larities of the density with cubic-root behavior. There, the eigenvalues form a Pearcey
process, which was first identified by Brézin and Hikami for a Gaussian unitary (GUE)
matrix with a special deterministic deformation [22,23]. Compared to the bulk and edge,
the cusp regime is less understood and universality in this most delicate spectral regime
was established only recently in [32,36], however only for a special class of random
matrices. More precisely, these proofs were restricted to Wigner-type ensembles with
independent entries and diagonal deformations, and did not cover the broadest class of
correlated ensembles, for which bulk and edge universality had already been proven.

Our main result completes the picture by proving the universality of the local eigen-
values statistics at the cusp for random matrices with correlated entries and an arbitrary
deformation, as stated in our main result, Theorem 2.13. The proof follows the three-step
strategy, a general method for proving universality of local spectral statistics, summa-
rized in [41]. The first step in this strategy is the local law, which asserts that the resolvent
Gz =(H-7latz=E+ in € H of the random matrix H concentrates around a
deterministic matrix M (z) as the dimension of the matrix tends to infinity. This concen-
tration estimate holds for 7 just above the local eigenvalue spacing at E, resolving the
empirical distribution of eigenvalues at this scale. The second step is to establish univer-
sality for ensembles with a tiny Gaussian component, and the third step is a perturbative
argument that removes the Gaussian component. Crucially, the optimal local law is used
as a key input for both the second and third steps. These latter two steps have proven to be
extremely robust and essentially model-independent tools [11,32,35,36]. Nevertheless,
the critical first step, the proof of the local law, remains highly model-dependent.

As our main technical result, Theorem 2.8, we prove the optimal average and isotropic
local laws for correlated random matrices. These local laws assert that for any fixed
& > 0, any deterministic matrix B and test vectors x, y, the bounds

((Gz) — M(2))B)| < N6 IIBIIhS

and [(G(2) — M(2)), | S NE‘/ P || iyl
(1.1)
hold with very high probability. Here N is the dimension of the random matrix H,
(-) := N~1Tr[] denotes the normalized trace, and p(z) = 7~ HIM(2)) > 0is the self
consistent density of states. Moreover, Theorem 2.8 provides further optimal improve-
ments to the right-hand sides of (1.1) for spectral parameters z = E +in with energy E

' In another direction of generalization, sparse matrices [4,37,45,52], adjacency matrices of regular graphs
[14], band matrices [20,21,60], and dynamically defined matrices [3] have also been considered. In parallel
to that, universal statistics in the bulk and at the edge have been established for invariant S-ensembles (see,
e.g., [12,15,18,19,33,34,48,55-58,68]) and their discrete analogs [13,16,42,46], although often using very
different methods.
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outside of the self-consistent spectrum. We point out that the local laws in (1.1) are op-
timal in terms of their dependence on p(z) and the (normalized) Hilbert—Schmidt norm
| Bllns := (BB*)Y/2 of the observable matrix B. In many cases, such as for low-rank
observables, || B ||ps is much smaller than the operator norm || B||, which has traditionally
been used in previous single-resolvent local laws [11,35,36]. Thus, our local law (1.1)
unifies and improves upon the previous local laws, even in the Wigner-type case.

Traditional proofs of the local laws relied on solving an approximate self-consistent
equation for the difference G — M. They consisted of two parts: a stability analysis of
the underlying deterministic Dyson equation and a probabilistic estimate on the fluc-
tuations. Both steps become quite cumbersome beyond the simple Wigner matrices. In
particular, for general Wigner-type [7,36] and correlated random matrices [11,35], the
stability analysis became intricate [8,10], and the probabilistic part relied on sophis-
ticated Feynman graph expansions. Recently, a completely new approach, the Zigzag
strategy [24,27-29,31,39], has been developed. This approach consists of an iterated
application of two steps in tandem (cf. Figure 3 below): the characteristic flow method
[1,2,6,17,44,49,50], coined the zig-step, and a Green function comparison (GFT) argu-
ment driven by an Ornstein-Uhlenbeck flow, called the zag-step. Remarkably, the Zigzag
strategy circumvents many of the difficulties that arise along the more traditional local
law proofs. It even removes the key obstacles that previously hindered the proof of the
optimal local law at the cusp for the most general correlated matrices. We now explain
this crucial aspect in more detail.

For traditional proofs of the local laws, the bulk regime is the easiest since the underly-
ing Dyson equation is stable when p (z) is separated away from zero. In the regime where
the density p(z) vanishes, this stability deteriorates — specifically, the corresponding sta-
bility factor behaves like p (z)"'ata square-root edge and as p(z) —2 ata cubic-root cusp.
This blow-up had to be compensated by a fine control on the error term in the approximate
Dyson equation. On the probabilistic side, obtaining the optimal very-high-probability
estimate on the fluctuation error required a high moment calculation that exploited var-
ious fluctuation averaging mechanisms, even in the simplest bulk regime. In the edge
regime, an additional factor p(z) needed to be extracted, which essentially relied on the
emergence of the imaginary part of the resolvent via the Ward identity, GG* = IG /1.
However, for cusp singularities, an additional second order cancellation effect was nec-
essary. This delicate effect, coined the cusp fluctuation averaging [36], arises from a
finite set of critical Feynman subdiagrams, called the o -cells. Roughly speaking, a o-
cell consists of four resolvents interconnected through the deterministic approximation
M and the correlation four-tensor of the matrix elements. In the case of Wigner-type
matrices with diagonal deformations, M becomes a diagonal matrix, leading to a sim-
plification of the original matrix Dyson equation into a vector equation. Moreover, since
the entries of a Wigner-type matrix are independent, the correlation tensor is reduced to
a matrix acting on the diagonal. These substantial simplifications facilitated the intricate
extraction of o -cells, effectively capturing the second order cancellation effect. Identi-
fying the analog of the o -cells for correlated matrices, when M is no longer diagonal
and the correlation is a full-fledged four-tensor remains out of reach.

In this paper, we leverage the Zigzag strategy to conveniently avoid the complicated
graphical expansions and, more importantly, circumvent the extraction of o -cells. The
only stability input required is a trivial bound of the form p(z)/n, that is precisely
tracked by the Ward identity. The characteristic flow at the heart of the Zigzag strategy
has previously proved itself to be effective in dealing with a first order blow-up of the
stability factor, such as at the edge of Wigner matrices [27], and in capturing the z; — 2



253  Page 4 of 60 L. Erd” os, J. Henheik, V. Riabov

decorrelation effect for the Hermitizations of non-Hermitian i.i.d. matrices [30,31]. The
current work demonstrates that the Zigzag strategy is even capable of circumnavigating
general second order instabilities arising at the cusp. Evidence of this feature of the
characteristic flow has already been observed for unitary Brownian motion [3] and in a
special non-Hermitian setting [24], where an additional symmetry was available.

Besides unraveling this remarkable power of the Zigzag approach in full generality,
our paper is the first to implement the method in a correlated setting, which requires
adjustments to the Zigzag dynamics. The GFT argument at the core of the zag step
requires an a-priori bound on the resolvent as an input, which typically stems from a
single resolvent local law. This, however, would render our argument circular. Hence, to
remedy the situation, we augment the zag step with an internal induction® (bootstrap) in
n. Furthermore, our result has two additional features: (i) for the averaged law in (1.1),
we obtain the optimal estimate on the observable B in terms of its Hilbert—Schmidt
norm, and (ii) we extend the Zigzag approach beyond the typical above the scale regime
of Nnp(z) > N¥ (see Sect. 6). We emphasize that, in addition to covering the missing
cusp regime, our proof also provides a unified approach to optimal local laws for the
most general class of random matrices with correlated entries, completely eliminating
any dependence of the proof on the specific spectral regime. The price we pay for our
simple and self-contained Zigzag proof of the local law is assuming fullness of the
correlated random matrix (cf. Assumption 2.4), rather than the slightly weaker flatness
condition (cf. [35, Assumption (E)]). However, this stronger assumption is justified
because fullness is necessary for deducing universality using the three-step strategy,
regardless of how the local law is proven.

Notations and conventions. We use the notation [ N ] torepresent the index set {1, ..., N}.
The letters a, b, j, and k are used to denote integer indices, while « (with various sub-
scripts) denotes elements of [N]%. All unrestricted summations of the form Y, and )",
are understood torun over a € [N]and a € [N ]2, respectively.

We denote vectors in CV*V using boldface letters, e.g., x. The scalar product on CY
is defined by (x, y) := ijzl X;yj, and the corresponding Euclidean norm is denoted
by [lx| := (x, x)!/2.

Matrices are denoted by capital letters. Unless explicitly stated otherwise, all matrices
we consider are N x N. For a matrix A € CN*V | the angle brackets (A) := N—1Tr[A]
denote its normalized trace. We use the following notations for the matrix norms:

24172
[ Allmax == max |Aapl, 1Al := sup [|Ax], [[Ally = (JAI7)77,

’ lxll=1

where |A|?> := AA*. Furthermore, for any a € [N] and vectors x and y, we use the
following notation:

Axy = (x, Ay), Axq = (x,Aey), Agy:= (€4, AYy),

where e, is the standard a-th basis vector of CV.

We denote the complex upper half-plane by H, that is, H := {z € C : 3z > 0},
and its closure by H := H U R. For a complex number z € C, we use the notation
(z) == 1+|zl.

2 This argument is reminiscent of [47] and we also refer to [62] for an alternative approach.
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We use ¢ and C to denote unspecified, positive constants-small and large, respectively-
that are independent of N and may change from line to line. Various tolerance exponents
are denoted by Greek letters such as ¢, £, §, ¢, i, v. The notation £ < & means that there
exists a small absolute constant ¢ > 0 such thaté < ce. Weuse v > 0 to denote arbitrary
small tolerance exponents.

For two positive quantities X and ), we write X < ) if there exists a constant C > 0
that depends only on the model parameters in Assumptions 2.1-2.5 (unless explicitly
stated otherwise), such that X < C)). We use the notation X ~ ) if both X < ) and
Y < X hold. For an arbitrary quantity X and a positive quantity )/, we use the notation
X = O(Y) to indicate that |X| < V.

Let @ := {Q™w)|N € N, u € UM} be a family of events depending on N and
possibly on a parameter u that varies over some parameter set /). We say that 2 holds
with very high probability (w.v.h.p.) uniformly in u € V) if, for any D > 0,

sup P[@™ )] >1-N"7,
ueld ™)

for any N > No(D). We often discard the explicit dependence of Q™) and /™ on N,
and simply refer to €2 as a very-high-probability event. A bound is said to hold w.v.h.p.
if it holds on a very-high-probability event.

2. Main Results
We consider real symmetric or complex Hermitian random matrices H of the form
H=A+W, EW =0, 2.1)

where A € CV*V is a bounded deterministic matrix (cf. Assumption 2.1 below) and
W has sufficiently fast decaying correlations between its matrix elements (cf. Assump-
tion 2.3 below).

For any random matrix H, we define the self-energy operator Sg corresponding to
H by its action on any deterministic matrix X € CNV*V,

SylX1:=E[(H —EH)X(H — EH)]. (2.2)
The Matrix Dyson Equation (MDE) with a data pair (A, S) is given by
~M@) ' =z - A+S[M(©2)] (2.3)

for the unknown matrix valued function M (z), z € C\R. It is well known (Theorem 2.1
[8]) that the MDE has a unique solution under the constraint that (J3z)IM (z) > 0, where
IM = %(M — M*). The corresponding self-consistent density of states (scDOS) p is a
probability density function on the real line defined via the Stieltjes inversion formula,

o(x) == lim l(~3M(;c+in)). (2.4)
n—+0 7T

We define p(z) := A (IM(z)) to be the harmonic extension of the scDOS to the
complex upper-half plane. With a slight abuse of notation, we also refer to p(z) as
scDOS. As shown in [10], under suitable assumptions (which are formulated precisely
in Sect. 2.1 below) on the data pair (A, S) and the solution M of the MDE (2.3), the
scDOS p is 1/3-Holder continuous. Furthermore, the set where the scDOS is positive,
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{x €e R: p(x) > 0}, splits into finitely many connected components, that are called
bands. Inside the bands, the density is real-analytic with a square root growth behavior
at the edges. If two bands touch, however, a cubic root cusp emerges. These are the only
two possible types of singularities. Precise universal asymptotic formulas in the almost
cusp regime are given, e.g., in [36, Egs. (2.4a)—(2.4e)].

As the main result of this paper, Theorem 2.13, we show the universality of the
local eigenvalue statistics of correlated real symmetric and complex Hermitian random
matrices at cusp-like singularities. As mentioned in the introduction, the proof of cusp
universality follows the three-step strategy [41], the first step of which is a local law (see
Theorem 2.8) identifying the empirical eigenvalue distribution on a scale slightly above
the typical eigenvalue spacing, with very high probability. After precisely formulating
the assumptions that we impose on the random matrix (2.1) in Sect. 2.1, we present our
novel local law in Sect. 2.2. Afterwards, in Sect. 2.3, we formulate our main result on cusp
universality and other consequences of the local law, such as eigenvector delocalization
and eigenvalue rigidity.

2.1. Assumptions. In this section, we precisely formulate the assumptions, under which
our main result, Theorem 2.8, holds, and comment on them.

Assumption 2.1 (Bounded expectation). There exists a constant C4 > 0 such that
|A|l < Ca, uniformly in N.

Assumption 2.2 (Finite moments). For every p € N, there exists a constant i, such
thatIEh/Nwalp < upforalla e [N]2

Before formulating our assumption on the correlation structure of the random ma-
trix W, we introduce some custom notation to keep the definition of the norms of the
(normalized) cumulants?,

(@1, eer @) = K (VNwgy s oos VNWg,) (2.5)

relatively compact. First, a double index o; € [N]? is represented by two single indices
a;, b; € [N], identifying o; = (a;, b;). For brevity, we often use the notation a;b; =
(a;, b;). Next, if, instead of an index a € [N], we write a dot (-) in a scalar quantity,
then we consider it as an N-vector indexed by the coordinate in place of the dot. As an
example, k (aj-, axby) is an N-vector, whose i-entry is k (ayi, axby) and ||« (a1-, axby) ||
is its Euclidean (vector) norm. Similarly, || X (x, *)|| refers to the operator norm of the
N? x N? matrix with entries X (a1, @2). We also introduce a combination of these
conventions. In particular, | |« (x3*, -x)|| H denotes the operator norm || Y || of the matrix
Y with entries Y (i, j) = ||k (xi, - j)|| = || Y_, xak (ai, -j)||. Since the operator norm is
invariant under transposition of the matrix, this does not lead to ambiguity regarding the

3 Letw = (wi, ..., wg) be arandom vector. Recall that its joint cumulants, kz;, withm € N](;, are tradition-
ally given as the coefficients of the log-characteristic function

. it)ym
log Eel¥ = E Km a )' )
m!
m

Forw = (VNwg,, ..., vV Nwg; ) we use the notation « (g, ..., ) = k(¥ Nwg, .., VNWey ) = K1, 1)
and note that, by construction, k (a1, ..., &) is invariant under permutations of its arguments. For example,
fork =2, k(ay, @2) = NE[wy; wa, ]
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order of i and j. Note that we use dot (-) as a placeholder for the variable related to the
inner norm, and star () for the outer norm.

The following assumption on the correlation structure of W is formulated in the
real symmetric case. For complex Hermitian matrices, we require the cumulant norms
introduced below to be bounded for all choices of real and imaginary in each of the
arguments of a cumulant, i.e. for K((xl%‘, e oc,iek) = K(\/Nflwm, e \/ﬁi”kwa,{) and
all choices of X; € {N, I} (see [35, Appendix C] for a more detailed discussion).

Assumption 2.3 (Correlation structure). The correlations among the matrix entries
(wg)o of W satisfy the following.

(i) The cumulants (o, ..., ax) have bounded matrix norms (viewed as an N> x N*
matrix), i.e. for all k > 2 there exists a constant Cy > 0 such that*

il == Y le(an, oo kg, %, )| < Ci. (2.6)
O, O —2
Moreover, we suppose that
Ml = inf (el + lkallg) < Ca, @7
K=K¢+Kd

where the infimum is taken over all decompositions of k in two functions ke, kd,
where the subscripts stand for “direct” and “cross" (see [35, Remark 2.8] for an
explanation of this terminology) and the corresponding norms are defined as

lixclly == sup || licGex, =) |, and llxll, == sup | llxGex, ) |-
lxl<1 Ixl<1
Finally, we assume that
llell§” == N7/
x sup > k@b, arbi. azb)||Xpay | Yiyay |1 Zbsay | < C3.
X, Y, Z ECNXN : ab,ayby,ayby

IX1 Y1 <1, 1 Zllps < 1
(2.8)

(ii) There exists a positive |1 > 0, such that for every o there exists an index set N (o) of
cardinality |IN'(a)| < NY2=1 with the property that® wy, L wg for all B ¢ N (a).
That is, every element is correlated with at most N>~ other matrix elements and
is independent of the rest.

The first part of Assumption 2.3 is needed to control every finite order term in a cumu-
lant expansion in Proposition 5.2, analogously to Assumption (C) in [35]. The condition
in (2.8) is needed only since we are dealing with Hilbert—Schmidt norm error terms
and thus did not appear in [35], where the observables were bounded in terms of their
operator norm. In Example 2.6 below, we present a prototypical class of models with a
polynomially decaying metric correlation structure satisfying Assumption 2.3 (i). Com-
plementary to Assumption 2.3 (i), the only purpose of the second part of Assumption 2.3

4 We remark that the constants Cy in the bounds (2.6)—(2.8) could also be replaced by Cy , N Y for any
v > 0, where Cy , is a positive constant. All our proofs hold under this more general condition, but we omit
it for simplicity.

5 In this context, the symbol | means that the random variables are independent.
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is to ensure that the cumulant expansion can be truncated. In [35], this was guaranteed
by a more complicated and slightly more general condition on the correlation decay
(cf. [35, Assumption (D)]).

Assumption 2.4 (Fullness). We say that a random matrix H satisfies the fullness con-
dition with a constant ¢ > 0 if

NE[|Tr[(H — EH)X1*] = ¢ Tr[X?], (2.9)

for any deterministic matrix X of the same symmetry class as H (real symmetric or
complex Hermitian).

We assume that there exists a constant cgyy > 0 such that the random matrix H
satisfies the fullness condition as in (2.9) with the constant ¢ := cqy1.

Assumption 2.5 (Bounded self-consistent Green function). Fix Cyy, ¢y > 0 and define
the set of admissible energies as

I=Tcyey =fleeR: M@ < Cu(z)™" forall zeC
with Nz € e —cy,e+cpl}. (2.10)
We assume that T # ().
Recall that we refer to the constants in Assumptions 2.1-2.5 as model parameters.

Example 2.6 (Polynomially Decaying Metric Correlation Structure). A prime example
of correlated random matrix satisfying the Assumption 2.3 (i) is the polynomially de-
caying model. For second order cumulants, we assume that

)
b1, a2by)| < ,
by, by =

(2.11a)

for some s > 2, where we define the distance d on the set of labels [N]? as
d(aiby, azby) := minfla; — az| + |by — bal, lay — ba| + |b1 — as]}. (2.11b)
For cumulants of order £ > 3, we assume the following decay condition

1

e, .. a0 <G T 1+d(e)*’

€€ min

2.11¢)

where T i 1s a minimal spanning tree, i.e., a spanning tree for which the sum of the edge
weights is minimal, in a complete graph with vertices o1, a2, . . ., & and edge weights
induced by the distance d, defined in (2.11b). The validity of (2.6)—(2.7) was asserted
in Example 2.10 of [35], and we verify the new condition (2.8) in Appendix B.

2.2. Local law. In this section, we formulate our main technical result, the optimal local
laws in Theorem 2.8. These show that G(z) = (H —z)~! is very well approximated by
M (z) inthe N — oo limit, with optimal convergence rate even at all singular points of
the scDOS down to the typical eigenvalue spacing. We now define the scale on which
the eigenvalues are predicted to fluctuate around a given energy e.
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Definition 2.7 (Local fluctuation scale). Let ¢y € Z be an admissible energy. We define
the self-consistent fluctuation scale n; = nj(ep) > 0 (indicated by subscript f) at energy
e via

1§ 1
/ p(ep +x)dx = —, (2.12)
—ng N

if eg € suppp. In case that eg ¢ suppp, we define n; as the fluctuation scale at a nearby
edge. More precisely, let I be the largest interval with ¢9 € I C R\suppp and set
A :=min{|]|, 1}. Then, n; satisfies the scaling relation

N72BAY if A > N34
ns { (2.13)

N34 if A<N4,

While for eq in the bulk, where the scDOS satisfies p ~ 1, we have n; ~ N -1t
holds that nj ~ N2 ata regular edge and n; ~ N~3/% at an exact cusp.

Theorem 2.8 (Optimal Local Laws). Fix small N-independent constants €y, &y > 0.
Let H € CN*N be a real symmetric or complex Hermitian correlated random matrix.
Suppose that Assumptions 2.1-2.5 are satisfied, and let T be the set of admissible en-
ergies from (2.10). Then, uniformly for all z € H with Nz € I and dist(z, suppp) €
[Nn;(Nz), N DY the resolvent G(z) := (H — 7)™} satisfies the optimal isotropic local
law,

p(2)
(z)2Nn

(G - M@),,| < N® [EANGTP (2.142)

for any deterministic vectors x, y € CV, and the optimal average local law,

o

((Gz) — M(2))B)| < 1 Blhs , (2.14b)
(2)

N dist(z, suppp)

for any deterministic matrix B € CN*N | both with very high probability.

2.3. Delocalization, rigidity, and universality. The local law in Theorem 2.8 is the main
input for eigenvector delocalization, eigenvalue rigidity, and universality, as stated below.
While Corollaries 2.10-2.11 and Theorem 2.13 are proven as corollaries to Theorem 2.8
in Sect. 3.3, the exclusion of eigenvalues outside the support of the scDOS in Theorem 2.9
is obtained alongside the proof of Theorem 2.8 and presented in Sect. 6.

Theorem 2.9 (No eigenvalues outside the support of the scDOS). Under the assumptions
of Theorem 2.8 we have the following: Let eq € I \ suppp. There exists a constant ¢ > 0
such that for any fixed small N -independent constant 6y > 0

dist (spec H N [eg — ¢, eg + c], suppp) < N%ns(eo), (2.15)

with very high probability. Here we use the convention that dist(9, ...) = 0.
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Corollary 2.10 (Eigenvector delocalization). Letu; € CN with ||u;| = 1 be a normal-
ized eigenvector of H corresponding to the eigenvalue A;. Then, under the assumptions
of Theorem 2.8, for any small N -independent constant wy > 0, the estimate

(0]
max |(x,ul-)| < N

ie[N]: - JN

Ai ez

(2.16)

holds with very high probability, uniformly in deterministic vectors x € CV with
x| = 1.

Corollary 2.11 (Band rigidity and eigenvalue rigidity). Assume the conditions of The-
orem 2.8 with T = R in Assumption 2.5. Then, the following holds.

(a) For any 6 > 0, whenever eg € R\ suppp with dist(eq, suppp) > Nenf(eo), the num-
ber of eigenvalues less than e is deterministic with high probability. More precisely,

€0
| spec H N (=00, e)| = N/ p(x)dx, wuvhp. (2.17)
—00

(b) Let .1 < ... < Ay denote the ordered eigenvalues of H and assume that ey €
int(suppp). Then, for any small N-independent constant xo > 0, it holds that

|Ak(eo) — €0 < N*nj(eo) . (2.18)

with very high probability, where we defined the (self-consistent) eigenvalue index
as k(eo) :== [N [ p(x)dxT].

Remark 2.12 (Integer mass). We point out that (2.17) entails the nontrivial fact that,
whenever ey ¢ suppp satisfies dist(eg, suppp) > N 0 ns(eo) for some & > 0, the inte-
gral N fi%o p(x)dx is always an integer. An immediate consequence is that, for each

connected component [a, b] of suppp, it holds that N fab p(x)dx is an integer. That is,
each spectral band contains that number of eigenvalues with very high probability. For
spectral bands which are separated by a distance of order one, this was previously shown
in [11, Corollary 2.9]. Our Corollary 2.11 improves this to the optimal minimal distance
N€n;(eo).

As our last consequence to the optimal local laws in Theorem 2.8, we prove cusp
universality in Theorem 2.13 below. Since universality is already known in the bulk [35]
as well as the edge regime [11], we will henceforth focus on the (approximate) cubic-root
cusp. However, the optimal local laws of Theorem 2.8 can be used as an input for the
three-step strategy to yield bulk and edge universality as well. From the in-depth analysis
of the MDE (2.3) and its solution in [10], we know that the scDOS p is described by
explicit universal shape functions in the vicinity of local minima with a small value of
p and near small gaps in the support of p; see, e.g., [36, Egs. (2.4a)—(2.4e)] for precise
formulas.

Whenever the local length scale of such an almost cusp shape around a point b matches
(or is smaller than) the local eigenvalue spacing, i.e. if b is a small local minimum,
satisfying p(b) < N~1/4, or a midpoint of a gap with width A < N=3/4, then we call the
local shape around b a physical cusp —reflecting the fact that it becomes indistinguishable
from an exact cusp when resolved with a precision (slightly) above the local eigenvalue
spacing ~ N ~3/4 In this case, b is called a physical cusp point. Besides the local length
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scale of a physical cusp point b, the specific shape of the scDOS around b is characterized
by a single additional parameter y > 0, called the slope parameter.
In order to formulate our result on cusp universality in Theorem 2.13, it is natural to

consider the rescaled k-point function p,((N), which is implicitly defined as

N —1
E( ) Yo [ k) = /ka(x)p,im(x)dx, (2.19)

k {J1,- Jk}CIN]

for any test function f. Here, the summation is over all distinct subsets of k integers
from [N].

Theorem 2.13 (Cusp universality for correlated random matrices). Let H € CN*N be
a real symmetric or complex Hermitian correlated random matrix as in (2.1). Suppose
that Assumptions 2.1-2.5 are satisfied, assume that a physical cusp point b € 7 lies in
the set of admissible energies (2.10), and let y > 0 be the appropriate slope parameter at

b. Then, the local k-point correlation function at b is universal. That is, for every k € N

there exists a k-point correlation function pgg IGUE such that for any test function

F € Cg (§) on a bounded open set Q C ]Rk, it holds that,6

Nk/4 x GOE/GUE —c
/n;k Fe) [TPIEN) <b ' )’N3/4) ~Pea (x)} dx = Opa(N"“CIFlc).

(2.20)
where the parameter o depends on y, the local length scale and the specific shape of the
scDOS around b, i.e., whether it is an exact cusp, a small gap, or a small minimum (see
[36, Eq. (2.6)] or [32, Eq. (2.5)]). The constant c(k) > 0 in (2.20) depends only on k,
and the implicit constant in the error term depends on k and the diameter of the set SQ.
Remark 2.14 (On p,(igE/ GOE). For the universal k-point correlation function p,SSE/ GUE,
we have the following.

(1) In the complex Hermitian symmetry class, the k-point function takes the determinan-
tal form

k

i,j=1°

Peot(x) = det (Kq(xi, x))) 2.21)

where the extended Pearcey kernel with parameter o € R is given by

(2.22)

Here, E is a contour consisting of rays from +e'”/* to 0 and rays from 0 to £~ 7/4,

and & is the ray from —ioo to ico. See [5,23,67] and the references in [36] for more
details.

(1) In the real symmetric case, the k-point correlation function pgg

1 exp (— wt/4+aw?/2 — yw+z4/4 —az?/2 +xz
Ky(x. y) = . /dz/ dw p(—w'/4+aw?/2 — yw+2z%/4 — az*/2 + xz)
@ri)? Jg ® w—z

E (possibly only a
distribution) is not known explicitly, not even if it is Pfaffian. However, pggE exists in

the dual of C! as the limit of correlation functions of a suitable one-parameter family
of Gaussian comparison models (see Sec. 3 and in particular Eq. (3.5) of [32]).

6 Here, b is identified with the vector (b..., b) € RK.
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3. Zigzag Strategy: Proof of the Main Results

To streamline the presentation, we assume that the set of admissible energies Z, defined
in (2.10) of Assumption 2.5, is the entire real line, that is, Z = R. We discuss the
straightforward modifications for general 7 in Remark 3.8.

Definition 3.1 (Local Laws). Let H, be a random matrix depending on a parameter’
u € U, and let M, be the solution to the MDE (2.3) with the data pair (EH,, Sg,),
where Sy, is defined in (2.2). For all u € U, let D, C H and let £ > 0. We say that the
resolvent G, (z) := (H, — z)~" satisfies the averaged local law and the isotropic local
law, respectively, with data (D,,, &) uniformly in u € U, if and only if the bounds

N3 1
((Gu2) — My(2))B)| < Ny and ‘(Gu(z) - M), | < NE( P]»i]_(;) N N_ﬂ)
(3.1
hold uniformly in z := E +in € D, and in u € U, with very high probability, for any
deterministic vectors x, y € CN with ||x|| = || y|l = 1, and any deterministic matrices

B with || B[l = 1. Here p,(2) := = (3M,(2)).

The goal of the present section is to prove the local laws in the above the scale regime,
where p(z) N|z| is large. Fix a (small) N-independent constant ¢ > 0, a large constant
Cr > 0, and define the spectral domain DY a5

D =D™(e,Cp) :={z:=E+ineH : p(z)Nn > N, |[E| <Cr, n < CL}.
(3.2)
The regime p(z) Nn > N¥¢ is natural for studying the local laws, since p(E +in)Nn is
the typical number of eigenvalues in the interval of size n around the energy E.

Theorem 3.2 (Local Laws above the Scale). Fix a (small) N-independent constant
e > 0, a large constant Cy, > 0. Let H be a random matrix satisfying the Assumptions
2.1-2.5, then the resolvent G(z) := (H — z)~! satisfies the local laws (3.1) with data

(DY 28), for any fixed tolerance exponent 0 < & < Wlos, where DY = DV (¢, Cp).

To prove Theorem 2.8 in the below the scale regime, that is, to handle the case when
p(z)N|3z| is small, we proceed in two steps. In the key first step we use the local laws
above the scale of Theorem 3.2 to prove Theorem 2.9 that asserts the absence of spectrum
outside of the support of the scDOS p. Then the second step is a routine derivation of
(2.14b) and (2.14a) from (2.15) and (3.1). Both steps are presented in Sect. 6. In the main
part of the proof, we only consider spectral parameters z satisfying dist(z, suppp) < 1.
The easy extension to the regime dist(z, suppp) = 1 and the resulting (z) ~2-decay are
briefly addressed in the discussion above (6.28).

In the sequel, we treat the constants ¢, Cr, in (3.2) as additional model parameters
and omit them from the arguments of DV,

Throughout the paper, we consistently use the notation ¢, &, ¢, 8 to represent positive
N-independent tolerance exponents, each playing a particular role in the proof. Specifi-
cally, € denotes the tolerance exponent from the definition of the domain DAY (see (3.2)
and (3.21) below); & and its multiples represent the target tolerance exponents for the
local laws above the scale in (3.1). The exponent ¢ appears in the below-the-scale part
of the proof (Sect. 6). Multiples of —¢ are used in the exclusion estimate (6.9) and in

7 In applications, the parameter « will typically be time and the set 2/ will be a bounded subinterval of R.
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the lower bound on p N7 in (6.8). The exponent § refers to the step size used in various
inductive arguments. In the sequel, we adhere to the following conventions:

IKEKe, KE d<p, (3.3)

where i > 0 is the constant from Assumption 2.3 (ii). We also assume that the arbitrary
exponent v > 0 is much smaller than the other tolerance exponents, that is, v < § and
VKL<

3.1. Input: global laws. Let p(z) be the harmonic extension to H of the scDOS cor-
responding to a solution of (2.3). Given small positive constants ¢, £ > 0, and a large
constant D > 0, we define the global domain as

DE = DEO(D, ¢,§, p) 1=
{er=E+ineH: [E|<N?, N <n<NP p@~'n=N"*1). (4

Effectively, the function p (z) ™' 7 in (3.4) controls the proximity of the spectral parameter
7 to the support p.

Proposition 3.3. Let H be a random matrix satisfying the Assumptions 2.1-2.5, and let
0(2) be the scDOS arising from the solution to the MDE (2.3) corresponding to H. Let
Db .— T 4 [—cpr, em] +iR € C, where T is defined in (2.10). Fix a large constant
D > 0 and a tolerance exponent 0 < & < 11—08. Then the resolvent G(z) = (H — z)™!
satisfies

{(G(z) ~M@),,| = NY@lxllyl, (3.52)

< N¥W(z) 1<VZ—’>||B||hs, (3.5b)

‘((G(z) — M(2))B) ,

with very high probability, uniformly in z := E +in € DE(D, ¢, &, p) N DPY, for any
deterministic vectors x, y and matrices B. Here the control parameter V() is defined

as
| r(z) ! X
U(z) = ?N7 + 2NT’ n = Jz. (3.6)

We prove Proposition 3.3 in Sect. 7.

3.2. Local law via zigzag strategy: Proof of Theorem 3.2.

3.2.1. Preliminaries: Two Random Matrix Flows For any random matrix H, we define
the covariance tensor Xy corresponding to H by its action on any deterministic matrix
X e (CNX N ,

TylX]:=E[Tr[(H — EH)X](H — EH)]. 3.7

Note that ¥ g is different from the self-energy operator (2.2), but they both carry equiva-
lent information. Moreover, it is positive definite on the space of matrices equipped with
the usual scalar product (X, Y) = (X*Y) and we will denote by /2 its square root.
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Along the proof, we use two distinct flows in the space of N x N random matrices:
the zig-flow (standard Ornstein—Uhlenbeck process), defined as

1 kD3]
dH, = ——H,dt + —, > 0; (3.8)
2 VN

and the zag-flow (modified Ornstein—Uhlenbeck process), distinguished by the super-
script £,

aH' = 3 (H' ~BH')dr+ S2[aB,]. 120, (3.9)

where X o is the covariance tensor of H 0 defined according to (3.7). In both (3.8) and
(3.9), °B; denotes the real symmetric or complex Hermitian Brownian motion, depending
on the symmetry class of H.

Note that along the zig-flow (3.8), the covariance tensor X; := Xy,, corresponding
to H; via (3.7), satisfies the ordinary differential equation

d¥; = (—%; + Zg)dt, (3.10)

where X is the covariance tensor of a GOE/GUE matrix in the same symmetry class as
H.Thatis £g[X] = N~ !X inthe complex Hermitian case, and Xg[X] = N-I(X+XxY
in the real-symmetric case, where X! denotes the transpose of X. On the other hand,
along the zag-flow (3.9), the expectation and the covariance tensor of H; (and hence the
self-energy Sg,) are preserved. Therefore, the deterministic approximation M remains
unchanged along the zag-flow.

For any ¢ > 0, we define the flow maps F._ and §’,, on the space of probability

zig zag
distribution P(CV*V) by

tie|H]| :== H;, where H, solves (3.8) with the initial condition Hy = H.

zig
3.11)
LaelH] = H', where H' solves (3.9) with the initial condition H’ = H.
(3.12)

The key relation between the flow maps g;ig and 3;ag is captured by the following
lemma.

Lemma 3.4 (Flow Distribution Surjectivity). Let H be a random matrix satisfying the
fullness condition (2.9) with a constant 0 < ¢ < 1, then there exists a random matrix

et (H) such that

el De ()] £ FO[H]. 0<1 < —log(l —o), (3.13)
where the function s(t) = s.(t) is defined as
s(t) = sc(t) :=loge —log(c — 1+e™"), (3.14)

and satisfies
sy <2c7't, 0<1<c/2. (3.15)

We defer the proof of Lemma 3.4 to the Appendix A.
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IhA

Fig. 1. The left panel depicts several trajectories of the flow (3.18) that terminate at the scale curve
pr (2)NJz = c (solid black line), while the the graph of scDOS p7 is superimposed in light blue. The
right panel depicts trajectories up to an intermediate time ¢ € (0, T') with their continuations beyond ¢ shown
as thin dotted lines. The pre-image of the scale curve at the time ¢ is depicted as a solid black line, and the
scale curve itself is depicted as a dashed black line. The graph of scDOS p; is superimposed in light blue. In
both panels, the black markers along the trajectories of (3.18) are evenly spaced in time

3.2.2. Zigzag approach: Iterative application of the characteristic flow and GFT We
consider the time-dependent matrix Dyson equation (MDE),

M) =z A+ S[Mi(2)], zeC\R, (32)IM;(z2) > 0, (3.16)

where the data pair (A,, S;) is given as the unique solutions to the differential equations
1
dA; = _EAtdt’ dS; = (=& + (-))dr . (3.17)

with the terminal conditions A = A =EH and S =S = E[(H — A)(-)(H — A)],
respectively.

Given M;(z), we consider the characteristic ODE for the time dependent spectral
parameter z; € C (see Figure 1),

1
dz; = —5z,df — (Mi(z))dr. (3.18)

By trivial ODE arguments, for all 0 < s < 1, the corresponding (inverse) flow map
¢s,; - H — H is defined uniquely by
¢s.1(z;) == zg, Wwhere z; solves (3.18). (3.19)
It can be directly checked that along the trajectories of (3.18), the solution to the
time-dependent MDE (3.16) satisfies
1
dM;(z;) = zMz(Zt)df- (3.20)

Lemma 3.5 (Time-Dependent Domains). There exist a constant C' ~ 1 such that for
any constant 0 < ¢’ < 7 and any terminal time 0 < T < 1, the time-dependent domains
Df‘b", t € [0, T, (see Figure 2), defined as
Di* =Di*(e, CL. ¢/, T)
= {z =E+ineM : p;(z)Nn> N°, |E|vn<Cp+C - (T —1), (3.21)
@)= (N T - 1)),

satisfy @5 (DY) € DM forall 0 < s <t < T, where @, is the flow map defined in
(3.19).
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Dﬁb" Pt

aby
Dt

t=20 0<t<T t=T

Fig. 2. The time-dependent domain D?b", defined in (3.21), is illustrated in blue at three distinct times: the
initial time ¢ = 0 (left), an intermediate time O < ¢ < T (center), and the terminal time t = 7T (right). The
graph of the scDOS p; is superimposed in black on each panel (not to scale)

We defer the proof of Lemma 3.5 to Appendix A.

As in (3.4), the function p; (z)~! n in the definition (3.21) effectively controls the dis-
tance between z and the support of p,. Therefore the time-dependent family of domains
D effectively interpolates between the global regime D#°P and the final target domain
rDabv‘

Indeed, since p(z) < 1, by choosing the constant ¢’ ~ 1 in (3.21) small enough, we
can guarantee that D DaTbV, where we recall that D®V is defined in (3.2). On the
other hand, it follows from (3.4) that by choosing

T :=CN ¢/, (3.22)

with a sufficiently large constant C > 1, we can guarantee that D3 C D&P| where
DeP i5 defined in (3.4).

We conduct the proof inductively. Fix a tolerance exponent 0 < £ < ¢, a step size
0 < 8 K & (recall (3.3)). For the terminal time 7 chosen as in (3.22), let K be the
smallest integer such that N —KéT < N—1%¢ and define a sequence of times {tk}fzo as

t0:=0, n:=T—N™®T, kefl,...,K—1}, tx:=T. (3.23)
Let {Alk}le denote the difference sequence of {f;} 1§=0’ that is
atgp =t —txr—1, kef{l,...,K}. (3.24)

Let X; solve the equation (3.10) with the terminal condition ¥7 = X, where %, defined
via (3.7), is the covariance tensor of the target matrix H, for which we eventually prove
the local laws in Theorem 2.8. Observe that for all 0 < ¢ < T, the solution X, satisfies

%, >0, = % Al (3.25)

where cfy is the constant in Assumption 2.4. Given the target random matrix ensemble
H, we construct two sequences of random matrices, {Hk}fzo and {H k}le recursively
by

Hg :=H, H':=§QV[H), Hi1:=9z.(H), ke{l,....K}, (3.26)

where s (t) := sz (1) and )z »;, are given by Lemma 3.4, and ¢'is the constant in (3.25). It
follows by a simple backward inductive argument starting at k = K that the covariance
tensor of both Hy and H* is given by X, hence by (3.25), Hi_1 is well-defined.

Proposition 3.6 (Zig Step). Fixk € {1, ..., K}, and denote
—tg— -1
Gi(2) = (Bg '[Hial—2), to1 <t <t (3.27)
Assume that for some §,v > Owith& + Kv K ¢, and £ < 2k, the resolvent G; satisfies
the local laws (3.1) with data (Dtabv,.f; + Lv) at time t = t;_1, then the resolvent G;
satisfies the local laws (3.1) with data (D?b", &+ (L + 1)) uniformly int € [ty—1, tx].
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—1

T ~ N—€/4

—lte
N

size of GUE/GOE component

Fig. 3. Schematic representation of the Zigzag induction. The random matrices Hy, H k as defined in (3.26),
are situated within an abstract coordinate system. The horizontal axis represents the size of the Gaussian
component, while the vertical axis indicates the lower bound on p(z)_ln in the domains, c.f. (3.21), where
we prove the local laws (3.1). Solid arrows denote applications of Proposition 3.6 (referred to as Zig steps,
in which we reduce p*l n at the cost of introducing a Gaussian component), and dashed arrows indicate
applications of Proposition 3.7 (Zag steps, in which we keep the spectral parameter fixed and remove the
previously introduced Gaussian component)

Proposition 3.7 (Zag Step). Fixk € {1,..., K}. Let s; := s(aty) be the time defined
in (3.14), let Hy be the random matrix defined in (3.26), and denote

G*(2) = (FoglHil —2) ', 0 <5 <. (3.28)

Assume that for some £, v > QOwith& + Kv < ¢, and £ < 2k, the resolvent G* satisfies
the local laws (3.1) with data (Df‘kbv, & +4v) at time s = sy, then G* satisfies the local

laws (3.1) with data (D;“kbv, &+ (€ + D)v) uniformly in s € [0, si].

Having formulated the cardinal steps of the Zigzag strategy, we now put them together
to prove our key theorem on the local laws above the scale. Note that in the above the
scaleregime p(z) Nn > N¥¢,theterm 1/(Nn) in the isotropic bound is (3.1) is dominated
by /p/(Nn), and hence will be ignored in Sects. 4 and 5.

Proof of Theorem 3.2. Recall our choice of the constant ¢’ ~ 1in (3.21) and the terminal
time T ~ N ~¢/4in (3.22) that guarantees the inclusions ngv C Db apd POV = DaTbV.

Therefore, Proposition 3.3 implies that the resolvent Go(z) := (Hy — 7)1 of a random
matrix Hy, defined in (3.26), satisfies the local laws (3.1) with data (ngv, &). Using
Propositions 3.6 and 3.7 in tandem K times, we prove by forward induction on k that
for any v > 0, the resolvent G (z) := (Hy —z) ™! satisfies the local laws (3.1) with data
(DY, & +2kv), forall k € {1, ..., K}. Since Hg = H and DY = DV 5 D, this
concludes the proof of Theorem 3.2. O
Remark 3.8 (On Locality of Assumption 2.5). In the case of a general set of admissible
energies Z, defined in (2.10), our proof holds verbatim, except the spectral domains
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pelob paby Df‘bv used along the proof have to be restricted. More precisely, we need
the following modifications:

(i) we restrict the domain D;‘b", defined in (3.21), by intersecting it with the region
DM = {zeC : distMMz,T) <ey/2+C - (T -1}, 0<t=<T; (329

(ii) we restrict the domain DV, defined in (3.2), by intersecting it with phdd.

(iii) we restrict the global domain D2'°° defined in (3.4) by intersecting it with the set
{z €C : distMhz,T) < 3cp).

3.3. Proofs of Corollaries 2.10-2.11 and Theorem 2.13. In this section, we deduce
eigenvector delocalization, band rigidity and eigenvalue rigidity, as well as cusp univer-
sality from the local law in Theorem 2.8. These arguments are essentially independent
of the correlation structure of the random matrix, so we only refer to analogous proofs,
which can easily be adjusted to our case with straightforward modifications.

Proof of Corollary 2.10 on eigenvector delocalization. As usual, eigenvector delocal-
ization is an immediate consequence of the optimal isotropic local law from Theo-
rem 2.8 for IG; see [35, Proof of Corollary 2.4] or [7, Proof of Corollary 1.14] for this
argument. O

Proof of Corollary 2.11 on band rigidity and eigenvalue rigidity. The proof of band
rigidity was first done for correlated matrices in [11, Proof of Corollary 2.5 in Sec-
tion 5] but with dist(eq, suppp) = 1. The adjustments for dist(eg, suppp) > N 0 n;(eo)
are carried out in [36, Proof of Corollary 2.6] for the case of Wigner-type matrices
(i.e. without correlations). This argument immediately translates to our setting, hence
we omit the details for brevity.

Armed with band rigidity as in (2.17), the proof of Corollary 2.11 (b) is conducted
in the same way as in [7, Proofs of Corollaries 1.10 and 1.11] or [36, Proof of Corollary
2.6]. O

Proof of Theorem 2.13 on cusp universality. Giventhe optimallocallaw in Theorem 2.8,
universality at the cusp follows by the three-step strategy: The first step is the (model
dependent) local law. The second step establishes universality for matrices with a small
Gaussian component using the Dyson Brownian Motion, while the third step removes
the Gaussian component via a comparison argument. The second and third step have
already been worked out in the general correlated case in both the complex Hermitian
[36] and real symmetric [32] symmetry class. More precisely, as explained in [32, Be-
ginning of Section 3], once an appropriate local law for correlated matrices is available,
the arguments in [32,36] directly yields the desired universality. Now, our Theorem 2.8
provides the necessary local law and thus cusp universality follows by application of
[32,36]. ]

4. Characteristic Flow: Proof of Proposition 3.6

First, we collect the necessary properties of the solution M, to the time-dependent MDE
(3.16).
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Lemma 4.1 (Preliminary bounds on M;). Let (A, S) be a data-pair satisfying the As-
sumptions 2.1, 2.4, and 2.5. Then there exists a threshold T, ~ 1 such that for any
terminal time 0 < T < Ty, the solution M; to the time-dependent MDE (3.16), with the
terminal condition on the data pair (At, St) = (A, S), satisfies

M S 1, cpi(z) < IMi(2) < Cpi(2), (4.1)

uniformly in z with Nz € I, where 1 is the set of admissible energies from (2.10). Here
the second inequality holds in the sense of quadratic forms, with 1 <c < C < 1.

Essentially, at the terminal time ¢ = T, the bounds (4.1) follow from the assumptions
of the lemma, while at all other times 0 < ¢ < T, the equations (3.17) guarantee that
the data pair (A;, S;) constitutes only a small perturbation around (A7, S7). We give a
more detailed proof of Lemma 4.1 in Appendix A.

Equipped with Lemma 4.1, we are ready to prove Proposition 3.6.

Proof of Proposition 3.6. We conduct the proof in the complex Hermitian case, the ob-
vious modifications in the real symmetric case® are left to the reader. Throughout the
proof we consider the step index k to be fixed, and hence omit it from the subscripts.

It suffices to prove that the resolvent G; satisfies the local laws (3.1) with data
(D3 & + (£ + 1)v) for any fixed ¢ = ffina1 € [tx—1, ] and z € D;ﬁ;, since uniformity
in ¢ and z can be obtained by a simple grid atrgument.9 Let finit := tx—_1, and for all
t € [tinit, thnall, let 2, := @ 4, (z), where the map ¢ is defined in (3.19). It follows from
Lemma 3.5 that z; € bev for all ¢ € [finit, ffina1]. We denote G; := (H, — z;)~', and
M; := M;(z;), where M, is the solution to (3.16).

Using It6’s formula, we deduce that for any deterministic N x N matrix B,

1 1
d((G,—M)B) = (5(((;, —M)B)+(G,— M,)(GfB)) dr+ NG %: 9ab(G:B)d(By) .

4.2)
where 9,5 := 9p,,,, denotes the partial derivative with respect to the matrix entry Hgp ;.
In particular, for a fixed pair of deterministic vectors x, y € CN with x| = lyll =1,

setting B := N yx™* we obtain

A(Gi— M), = <%(G,—M,)xy+(G,—M,)(G,Z)xy)dwﬁ 3 0u0(G1),, A(B1)
ab

(4.3)
First, we prove that the resolvent G, satisfies the isotropic local law and averaged

local law in (3.1) for B := I with data (Dgat.ﬁ] JE+(L+ %)u). Define a set of deterministic

8 For a detailed treatment of the real-symmetric case in the setting of standard Wigner matrices, we refer
the reader to Section 4 of [27]. The only difference is the presence of an additional term in equation (4.5) due
to o = 1. However, its treatment follows identically to that of the other terms already present in the o = 0
case-see, for instance, equations (4.28) and (4.27) in [27]. The necessary modifications for the more general
ensembles considered here are entirely analogous.

9 The grid argument relies on two straightforward observations: First, the resolvent G (z) with [Jz| > N -1
— and, therefore, all quantities we consider — are Lipschitz continuous with a Lipschitz constant < N € for
some C > 0 both in z and in ¢. Second, for any C > 0, the intersection of NC—many very-high-probability
events also occurs with very high probability. Therefore, a uniform very-high probability bounds are first
established over a sufficiently fine N -C grid in the domain of z or 7, and then extended to the entire domain
by Lipschitz continuity.
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vectors V := {x, y}. Define the stopping time 7

mf{tmlt = = ffinal : max |\/ pr(ze)~ ]an N§+(Z+2)U}

(4.4)
A inf{finit <1< fhnal |Nnt(Gt — M) |2N35+3“+§)”},
where we denote 1; := Jz; > 0.
Computing the quadratic variation of the martingale term in (4.2), we obtain

IAT <(3GS)2> /t/\r (S‘GS)
) < ———ds < d
|:\/t|mt \/— Z ab )abi|t/\‘f - /t;nil Nzn% = finit Nz”? ’

IAT [ 1 IAT [ x
[, RG],
Tinit UK Linit N UK

4.5)
In the first step, we used that 9,5 (Gs) = N _I(G%)ha and employed a Ward identity
GG} = JG/ns twice. Moreover, in the penultimate step we used the norm bound
I3Gs| < n;l, and in the ultimate step we used the fact that n; > 0 in D;‘bv. We now
estimate the two integrals in the last line of (4.5) separately. For the first integral, we
use the imaginary part of (3.18) to obtain

At M) + 1 INT _(§ 1
f (M) + 15 >2 2 g = L g (4.6)
Tinit N nS N 77 N nlA‘L’

Tinit

For the second integral, we use the definition (4.4) of the stopping time t, and the
imaginary part of (3.18) to deduce that

1 1
INT (NG — IM. tat 3§37 Y) tat p3E+3EHaY)
f ( s _ é>ds < / —5 7 ds < T dny
Linit N UK finit N s finit N Ny (IMy)
N—s+3$+3(£+%v)
4.7

N 277t2/\t
where in the last inequality we used that, for all #ji < s < ffipa itholds that (SM) Nng ~
ps(z)N1g 2 N° by (3.21).

Therefore, using the path-wise Burkholder-Davis-Gundy inequality (see Lemma 5.6

in [31] and Appendix B.6, Eq. (18) in [59]) and the fact that £ + Kv < ¢, we deduce
that, with very high probability

L 5 0{Ga(B.) | < M
Tinit \/_ b

(4.8)

tlmt<5<l

N Nnt/\r.

Next, using the Ward identity and the definition (4.4) of the stopping time t, we
obtain

Lo 1y
2 Ns ns ds N Ns

1
~ 3E+3(0+
(3Gy) 1 dpy, N¥HE 1 dns <1+CN_5+35+3(12+%)U

(4.9)
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where in the last inequality we used the imaginary part of (3.18) and the bound (I M)
Nng ~ ps(zs)Nns = N from (3.21). By integrating (4.2), it follows from the assump-
tion of Proposition 3.6 at f = f;_1 = fipjt and (4.8) that the bound

1 AT G — M. 364300
(Ginr — Mins)| < —<1 + CN€+3¥+“+3>V) </ M%ds + N_)
Tinit UK ds an/\l’

(4.10)
holds with very high probability. Here we used that§ < ¢ from (3.3), and the assumption
that v < 2Kv < ¢. Applying the Gronwall inequality yields the very-high-probability
bound,

NIERE]Y

(Gine = Mipe)| = : @.11)

Nniar
uniformly in tipjt < t < ffipal-
Similarly, computing the quadratic variation of the martingale term in (4.3), we obtain

N (3Gs) 1y (3G)
a < uu v d
|:‘/l;ml \/_ Z ab )ab]tAT B ‘/t;nit NT]% ’

2 E+(l+1)v 2
(25 N
S f Ps (Zsz) <1 + ) ds
Linit an A Ps(2s) N1
< Pint(Zent)
~ Nnar

)

(4.12)
where we used the imaginary part of (3.20) to obtain ps(zg) ~ prar(Ziac). There-
fore, using the path-wise Burkholder-Davis-Gundy inequality, we deduce the very-high-

probability bound
max Z B ( B,) <N’ Pireine) (4.13)
s =<t| J, f “ ab| = Niine '

Moreover, within in the Schwarz estimate

1(G2) ol = V(Gs1uu(1Gs Py,

using the Ward identity, together with (4.1), (4.4), and the relations £ + Kv < ¢, we
deduce that

NE+(Z+%)U

G| S P 1+ == ) S 2s(z5). 4.14
(@)l £ a1+ e ) S e an

Therefore, from (3.21) and the bound (4.11), we conclude that

1
AT AT N3§+3(Z+j)v 05 (25) N3S+3(l+l)l) ) (z )
2 s (Zs int(Zent
/ (Gs — Ms>(Gs)uvds‘ < / ¥ ds < e N :
Tinit Linit Ns Ns N Ntnt

(4.15)
Integrating (4.3), and combining the assumption of Proposition 3.6 at time t = f;_] =
tinit> (4.13) and (4.15) yields

1
|(Ginr — Minz),,| < NETEEDY pere(2) (4.16)
Nniae
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uniformly in #pi < t < tfinal, With very high probability, for all u, v € V. Note that the
term %(Gt — M;)yp on the right-hand side of (4.3) can be removed by differentiating
e "2(G, — M)y with the harmless prefactor e~/ = 1 + O(T).

Hence, using (4.11) and (4.16), we conclude that T = fq,,) With very high probability,
therefore establishing the isotropic local law and averaged local law in (3.1) for B := 1
with data (D2 £ + (£ + )v).

For a general observable B € CV*V | we use the bound (4.11) as input to obtain the
very-high-probability estimate

1 2/ 1/2 1
N3EFB g (SGS)I/ (:;sGSBB*) / N3ESB v 05 (25)
an Ns NT/S

< 1Bllns

4.17)
uniformly in #jpjiy < s < ffinal- Here, in the last step we used the isotropic bound (4.16)
for the eigenvectors v; of B B*, corresponding to the eigenvalues |o; |2, to conclude that,
with very high probability,

A

(G.-m)G25)

1
(NGBB) = 310, (36,0, < pe(zo) Bl (4.18)
J

Similarly, using (4.18), we estimate the quadratic variation of the corresponding mar-
tingale term in (4.2) for general B,

v

1 N
—— 8a GSBd%S g B . 419
U _Ng »(GsBJd( )ablm oz 1Bl (4.19)

INT

Combining (4.2), (4.17), and (4.19), we conclude that the resolvent G, satisfies the
averaged local law in (3.1) with data (Dﬁm,é + (£ + v) for any B € CN*N_ This
concludes the proof of Proposition 3.6. O

5. Green Function Comparison: Proof of Proposition 3.7

The goal of this section is to prove Proposition 3.7 and thereby conclude the argument for
the zag step of our proof. For simplicity and in order to avoid unnecessary complications,
we will carry out the proof only in the real symmetric case; the complex-Hermitian case
can be dealt with minor modifications.'? and is thus omitted. Moreover, since throughout
the argument the time #; defined in (3.23) remains fixed, for the remainder of this section,
we drop the superscript #; from D?kb", P, » and My, . To further condense the notation, we
abbreviate D := Dg(bv and Sfina) := s(afy).

The proof will be conducted iteratively along vertical truncations of the domain D,
defined as

D, =D ={z:=E+ineD=D™:p>N""}, 0<y=<l. 5D

Iy " Tk
This is formalized in the following proposition, which we prove in Sect. 5.2.

10" The notation in the cumulant expansion is slightly more involved in the complex case, as the real and
imaginary parts are treated separately; see [35, Appendix C]
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Proposition 5.1 (Zag Bootstrap). Fix a constant 0 < yg < 1 and assume that the
very-high-probability bounds on the matrix elements of the resolvent (3.28)

(G @)yl S1. |66 @) ] £ 021 52)

hold uniformly in z € Dy, and s € [0, Stnall, for any deterministic u,v € CN with
lull = vl = L

Fix y1 > yo — é with § < p satisfying § < &, and assume that for some v > 0 and
L € N, the resolvent G* satisfies the local laws (3.1) with data (D,,, & + €v) at time
§ = Sfinal. Then the resolvent G* satisfies the local laws (3.1) with data (D, , £ +(£+1)v)
uniformly in s € [0, Stinal]-

Armed with Proposition 5.1, we can easily conclude Proposition 3.7.

Proof of Proposition 3.7. The proof goes via induction in y (k) := 1 — k§ by iteratively
applying Proposition 5.1. As the base case, clearly, the estimates (5.2) hold for yy =
y(0) = 1 as a direct consequence of the bounds ||G*(E +in)| < n_l and p(E +
in) ~ 1 for n ~ 1. Moreover, the resolvent G* satisfies the local laws (3.1) with data
(Dy,, & +£v) with y; = y(1) at time s = sfna by assumption. Hence, the resolvent G*
satisfies the local laws (3.1) with data (D, (1), § + (£ + 1)v) uniformly in s € [0, Sfnal] by
Proposition 5.1. As a consequence, since & + (£ + 1)v <« &, we have that the resolvent
G* satisfies the bounds (5.2) uniformly in z € Dy, (1) and s € [0, Sfnall

As the induction step, assume now that for an integer k > 1 the resolvent G* satisfies
the bounds (5.2) uniformly in z € D)) and s € [0, sfinal. (Recall that, as above, G*
satisfies the local laws (3.1) with data (D, ), & +£v) at time 5 = S by assumption.)
Therefore, the resolvent G* satisfies the local laws (3.1) with data (Dy, (x+1), £ + (£ +1)v)
uniformly in s € [0, sgna] by Proposition 5.1. Note that after K’ := [(1 +¢)/8] ~ 1
steps, Dy, (k) = D and we have hence proven Proposition 3.7. O

It thus remains to prove Proposition 5.1. We begin by collecting several preliminaries
in Sect. 5.1. Afterwards, in Sect. 5.2 we give the proof of Proposition 5.1 based on average
and isotropic Gronwall estimates. These bounds are proven in Sects. 5.3.1 and 5.3.2,
respectively.

5.1. Preliminaries. In order to perform the GFT, i.e., compare initial and final W’s,
given by W/ = H' — A with H' being the solution to (3.9), we employ It6’s formula:
For a C2-function f(W"), it holds that

d 1 1
GBSV = —§E§ e () (0 YW + 55 O%jxt(a, BYE@, 35 (W), (5.3)

where «;(«, 8) denotes the (normalized, recall (2.5)) second order cumulant of wg (¢)
and wg(t), the matrix entries of W’. The first summand on the rhs. of (5.3) can now be
further treated by cumulant expansion, which is the first key ingredient for our proof.

Proposition 5.2 (Multivariate cumulant expansion, cf. Proposition 3.2 in [35] and
Lemma 3.1 in [43]). Let f : RN*N — C be a L times differentiable function with
bounded derivatives. Let W be a random matrix, whose normalized cumulants satisfy
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Assumption 2.3. Then, for any index atg € [N1? it holds that (recall the definition of the
neighborhood set N from Assumption 2.3)

Ewg, f (W) = Z > ]kaoff;/ozl,)c,E<aaf><W>+szL(f,ao), (5.4)

k=0 ae N (ag)*

where a¢ = (aq, ..., a) and 0y = awal ...Bwak fork > 1, and for k = 0 is considered as
the function f itself. Moreover, the error term in (5.4) satisfies
CL 1/2
@] S g 2 s (Bl + W)
aeN (ap)L A€l0.1]
(5.5)

for some constant C; > 0 depending only on L. The notation W|ns for N' C [N]* in
(5.5) refers to the matrix which equals W at all entries a € N and is zero otherwise.

Note that the £k = 1 term in the expansion of the first summand on the rhs. of (5.3)
exactly cancels the second summand on the rhs. of (5.3). For Proposition 5.2 being
practically applicable we need to control (i) every order of the expansion, and (ii) the
truncation term 2. These will be guaranteed by Assumption 2.3 above.

The second key input required for the GFT argument is the following monotonicitiy
estimate on resolvents.

Lemma 5.3 (Monotonicity estimate). Fix a constant 0 < yo < 1 and assume that the
very-high-probability bounds (5.2) hold uniformly in z € D, and s € [0, Sginall, for any
deterministic u, v € CN with ||lu| = ||v|| = 1.

Fix y| > yo — 6. Then, we have

. U ~pS . . 1o
|G*(E +in)us| < ot ISG*(E +inDuul < p(E +1no)a ; (5.6)

with very high probability, uniformly in z := E +iny € D,, for any no > N~ v g,
time s € [0, Sfnall, and for any deterministic vectors u, v € CN with |lu|| = ||lv|| = 1.

We defer the proof of Lemma 5.3 to Appendix A.

5.2. Gronwall estimates: Proof of Proposition 5.1. In this section, we provide the proof
of Proposition 5.1 based on two Gronwall estimates, formulated in Propositions 5.4—
5.5 below that will be proven in the next subsection. The isotropic part of Proposition
5.1 will be concluded in a self-contained way, based entirely on the isotropic Gronwall
estimate in Proposition 5.4. Its conclusion in (5.11) then serves as an input for the average
Gronwall estimate in Proposition 5.5.

Proof of Proposition 5.1. We remind the reader that, as pointed out below (3.10), the
deterministic approximation M is time-independent in the zag step.

Proposition 5.4 (Isotropic Gronwall estimate). Assume the conditions of Proposition 5.1.
Fix x, y € CN of bounded norm, z :== E +in; € Dy, and no > N~ v iy such that
no/m < N°. For s € [0, Stinal], define

Sy == (G*(E +in) — M(E+in1))xy. (5.7)
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Then, for any (large) even p € N, it holds that

< <1+N1°6 /W) [EIS|? + Wm)” ], (5.8)

uniformly in s € [0, Sfnall, bounded x, y € CN, andz € D,,. Here, for n € [no, n1l, we

denoted
_|p(E+in)
v(n) = —Nﬁ . 5.9)

By Gronwall’s lemma, uniformly in s € [0, sfnai], from (5.8) we find that

d
—E|S.|P
‘ds |51

p(E +ino)
E[S|” < exp ((1 + N1 Ty ) G =) [ElSsga |7 + (W (1)) ]
< exp(N 1) [E Sy ” + (W @017 ] S ElSgipql” + (¥ (1)

(5.10)
Here we used that p(E +ing)/no < N¥/T by (3.21), sfna < N=*=D3T by (3.15),
T ~ N~8/*from (3.22),and § < & by (3.3). We point out that in (5.10), we use the final
value rather than the initial value, as is more customary in a typical Gronwall argument,
since in the zigzag strategy, illustrated in Figure 3, the endpoint of the flow is the known
object.

To estimate E|S;,, .17, recall that the resolvent G* satisfies the isotropic local law in
(3.1) with data (D,,, § + £v) at s = Sfina1. Therefore, since p in (5.10) was arbitrary, we
find that

p(z)

’(Gs(z) - M(z))xy’ < N+ oo (5.11)

uniformly in z := E +iny € Dy,, s € [0, Sfinall, and bounded x, y € C¥, with very high

probability.
This proves the isotropic part of Proposition 5.1 and we are left with the average part.

Proposition 5.5 (Average Gronwall estimate).
Fix B € CN*N of bounded Hilbert-Schmidt norm, |Bllns < 1, z := E +in € D,,,
and ng > N~y n1 such that no/n1 < N8. Fors e [0, Sfinall, define
Ry .= ((G*(E +im) — M(E +in))B) . (5.12)

Moreover, suppose that (5.11) holds uniformly in z := E +in1 € Dy, s € [0, Sfinall,
and bounded x,y € CV. Then, for any (large) even p € N it holds that

E +i N3§ p
< (1 + N2‘Sw> E|R,|” + <—) , (5.13)
N0 Nnj

NxN

d
—E|IR.IP
‘ds [Rs |

uniformly in s € [0, sfipall, bounded B € C ,and z € Dy,.
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Analogously to (5.10), by Gronwall’s lemma, uniformly in s € [0, Sfinai], we find that

_ps P(E +ino) N¥\7
E[Rs|? < exp <<1 +N 25—) (Sfinal — s)) [E| Ry |7 + <— ]
1Mo N

N N3
S exp(N ™) [El Ry l” + (W01))? | S E|Ryg|” + (N—m)

(5.14)
Here we used that p(E +ino)/no < N¥/T by (3.21), sfna < N~*=D3T by (3.15),
T ~ N~§/* by (3.22), and § < & by (3.3). Note that the small prefactor N 2% in (5.13)
is absolutely essential, unlike in the isotropic case (5.10), where a large prefactor N1% is
affordable thanks to the square root. The linear appearance of p/7n in (5.13) is only due
to fact that we estimate B in terms of its Hilbert—Schmidt norm || B ||s; cf. the estimate
in (5.21). For observables with ||B]|| ~ || B|lns, such as the identity matrix B = 1, the
linear dependence on p/n can be improved to a </p/n. We exploit this fact in (6.23)
below.
Recall that the resolvent G* satisfies the average local law in (3.1) with data (D, , & +
£v) at s = sfpal. Therefore, since p in (5.14) was arbitrary, we find that

N3E+HEFD)

[((G*(2) = M(2))B)| < N

’

uniformly in z := E +iny € Dy, s € [0, Sfnall, and B € CN*N with || Bllns < 1, with
very high probability.
This concludes the proof of Proposition 5.1. O

5.3. Cumulant expansion: Proofs of Propositions 5.5 and 5.4. The proofs of Proposi-
tions 5.4-5.5 are based on the multivariate camulant expansion from Proposition 5.2 and
the monotonicity estimate from Lemma 5.3. We begin by proving the average Gronwall
estimate in Proposition 5.5. Moreover, we will henceforth omit the superscript s from
the resolvent G*.

5.3.1. Average case

Proof of Proposition 5.5. Throughout the proof, we will assume that || Bljps < 1. By
(5.3) for Ry we have

d 1 1
SEIRIT = =3B} e (9)@Puy | RIP) + 5 D 7 ks (@1, ) BBy By [ Rs| 7], (5.15)

o] ar,a2

where wy, (s) is the a;-th entry of Wy, ky(aq, a2, ...) is a joint normalized cumulant of
We (5), Wa, (5), ... and dy; = 0y, (s) denotes the partial derivative in the direction of

Wy, ().
The first term on the rhs. of (5.15) can now be expanded by means of Proposition 5.2:

ks(aq, o)
E[wa, (5) (0, | Rs|1")] = Z > N§k+f)/2k, (00 0| RsIP] + QL. (5.16)

k=0 e N (a1)*
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Since L derivatives of | Rg|? create L additional resolvent matrix elements (where each
of them is bounded with the aid of Lemma 5.3) and using that [N (a1)| < NY2—n by
Assumption 2.3 (ii), the error term 27, can be estimated as

1
Q] < N—%NL(1/2—M)N(P+L)5 < N2PS+LE—p) (5.17)

Using the relation © > § from (3.3) and L:=[((+8)p+2)/(u—25)], we see that
Q] < N _2(N n1)~? (the factor N~ s needed to bound the summation over ¢ in
(5.15)). With this choice of L, the error term €27 will henceforth be ignored.

Plugging (5.16) into (5.15) and using that the k¥ = 0 term is zero by «(x1) =
Ewg, (s) = 0, and that the k = 1 term in (5.16) cancels the second term on the rhs. of
(5.15), we obtain

d
’—EIRS 171 <
ds

Ks (a1, @) 1y
ZZ > N(k+l)/2k'E(8alaa|Rs|”)+<N—) . (5.18)

=2 a1 geN(a)k n

We will now first estimate the third order cumulant terms (i.e. those with k = 2 in
(5.18)), as these are the most delicate, and afterwards turn to the higher order ones that
can be handled by simple power counting with a little twist due to the Hilbert—Schmidt
norm of the observable B. Moreover, we drop the time dependence of R, and ks whenever
it does not lead to confusion. We point out that Assumption 2.3 also holds for W* from
(3.9), uniformly in s € [0, 00). Indeed, adding an independent Gaussian random matrix
to Wy has no effect on cumulants of order k > 3 (by Gaussianity) and leaves the first
two joint moments as well as the independence property of Assumption 2.3 (ii) invariant
(the covariance tensor X is trivial beyond the range N (a1)) by construction (3.9). In
particular, we can freely extend the summation over o € N (o) )k in(5.18)toa € ([N ]2)]‘
and combine the latter two summations in (5.18) into }_,,, 4-

Now, for the third order cumulant terms, we aim to control

N3/2 Z i (ar, @2, 03)E(dq, 0,y 0as | RIP)|

o],002,03

which, after employing the Leibniz rule, can be broken up into terms of the form
(B3R)|RIP~Y, (3, R)(B2R)|R|P~2, and (3, R)*| R|P~3. To further ease the notation, here
and in the following, we neglect the difference between R and R, as these will be esti-
mated in a completely analogous way.

1 To be precise, note some of the p+ L resolvents in the error term €2, are actually resolvents of the random
matrix W) = AWIN(QO) + Wl[N]Z\N(DtO) (recall (5.5)) and we need to guarantee their boundedness as

well, uniformly in A € [0, 1]. We perform a resolvent expansion of GM = A+ W? — ! up to some
order /i € N around G (1) whose boundedness is known. For each G, the m™ order term in this expansion
can be bounded by N 8 Nm(B—1+v) with the aid of Lemma 5.3 (to bound GV isotropically) and using the
norm estimate | W a7 o) Il < N~ w.v.h.p. forany v > 0, which is a consequence of Assumption 2.3 (ii).
By a simple norm bound || G» I < rfl, the last truncation term in the resolvent expansion admits the bound
NeN ’7’(5*/””)7/*1. Therefore, since n depends at most polynomially on N and ;& > § + v for some v > 0
small enough, the resolvent expansion can be truncated at finite order, leaving us with the bound N 3 for every
matrix element of GV employed in (5.17), uniformly in A € [0, 1].
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We begin with the terms of the form (83 R)|R|P~!, which requires the bound (2.8) in
Assumption 2.3 (i). Writing (GB) = N~! Zj (GB)jj and identifying o; = (a;, b;) €
[N]3, we aim to estimate (ignoring the |R|” —L_factor)

N3/2 Z k(er, 02, @3)G jay Gpray Gpras (GB)py

Jra1,02,03

=N " k(e @2, @3)Ghyay Groay (GBGpaay |-

o],02,03

For both G4, and Gp,a; We write Gpy = Mpy + (G — M)p, and use ||[M || < 1 for the
M-term and the bound (5.11) for the (G — M)-term. In particular (recalling the notation
(5.9)),

N7 (@ @2, 63)Mpyay (G — M)pyay (GBG)pg,
«,002,03
< NTS/2 NEHE DY Z Ik (1, 02, @3)| [(GBG)psq, |

o],02,03

SNTPRNFHED W) 3 je(@r, a2, @3) (GBB*G )by |GG )ayay 112

o],02,03
; 3
(GG BEA1I2 < N [LE X N
- m N

D Gk, g, )]
(5.19)

@
with very high probability. In the second step, we used the Schwarz inequality. In the
penultimate inequality, we employed (2.6) and used

5 Né+(£+1)v \p(nl)Z

N2> " (GBB*G*)pp, = (GG*BB*) and

az,b3
_ (IG) _ p(E +in)
N7 (GG ayay = < = W),

with very high probability, where in the second relation we additionally used a Ward
identity and the already established isotropic law in the form (IG)e,e; S (SM)eje; S
p(E +1inp). Finally, in the ultimate step, similarly to (4.18), we used (2.6), the Ward
identity, the spectral decomposition of B B*,and (5.11) together with (IM)yy < p (EHin)
by (4.1), to obtain

1 N p(E +in))
(GG*BB*) = N PR GI TS Tanﬁs, (5.20)
J

and used § « & by (3.3), and the fact that v > 0 is arbitrarily small. Note that the
small factor N9 in the last line of (5.19) is balanced by an additional N & We stress
that here and in the following we estimate p(E +iny)/n; < N®p(E + ino)/no in order
to conveniently use that (o (E + ing)/n0)Stinal < N % as discussed below (5.14). The

terms with (G — M)p 4, Gpray and (G — M)p,a, (G — M)p, 4, are treated analogously
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and we are thus left with the M}, 4, M}, 4;-term. Here, using the [« [|5" norm from (2.8),
we estimate

N2 Z Kk(or, a2, a3)Mp,a, Mpyays (GBG)pya,
1,002,003
_ 12
< N Yl IMIPIGBG Ins < 1, /N—mwGBIse*)”2 (5.21)

< N p(E +ing) N3 ,
1Mo Nni

with very high probability. In the penultimate step we used the definition of || - ||us
together with a Ward identity and the trivial bound |G| < nfl; in the last step we
employed (5.20) and 19/n; < N° together with monotonicity of n — np(E + in) and
8 <« &. Hence, by two Young inequalities , we thus find

N3/2 Z Koy, @, a3)E[ (9, aa28a3R)|R|P_l]

o],02,03

- 3\ P
< (1 +N—25M> []E|R|” + (11:[]—) } , (5.22)

70 m

where we overestimated N ~°/p/ng < 1+ N2 p/nq.
Next, we turn to terms of the form (BaR)(BD%R)|R|P’2. Similarly to (5.19), using
(2.6) for k = 3, we find

N_7/2 Z K (o, @z, 0[3)Gja1 Gblaz(GB)szGka3(GB)b3k

Jok.ara,a3
SN2 3" Jk(an, 02, @3)| (GBG)pyas | [(GBG)pya |
a1,02,03
_ p(E +in1)
SN2 Z lic (@1, o2, 03)[ [(GBG)psas| v/ (GBB*G*)p,p,
n o1,02,03
< n-T/2 p(E +in) 2 (T
SN2 == lells | Y (GBGpyas > |y (GBB*G*)p,
n b3,az byaz
E +inp)!/? E +i N¥\?
< PEFII T s 6p36BY) 2 (36BBY 2 < NF | PEFI0) ,
~ 2 2 ~ N
N<ny 10 mn
(5.23)

with very high probability. To go to the third line, we used a Schwarz inequality and
the estimate (GG*)g,0; < p/m1 w.v.hop. (as follows by a Ward identity and (5.11)).
In the penultimate step, we again used several Ward identities. In the last step we used
(SGBIGB*) < (IGBB*)/n; and (5.20) together with 19/ < N°, monotonicity
of n = np(E +1in), and § K & by (3.3). Hence, again by Young’s inequality and
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overestimating N ~°./p/no <1+ N~ p/no, we find

N7 ke(ar, @2, 03)E[ (3 8y R) (33 R) [ RIP ]

ay,02,03

E +i N6 P
< (1 +N—2‘3w> E|R|? + N& <—> . (5.24)
N0 N

Finally, we estimate terms of the form (3¢ R)?|R|P—3, which are the most critical
ones, since they necessarily contribute the N~2%p/n factor as we estimate B by its
Hilbert—Schmidt norm || B||s . For terms of the form (3, R)?|R|?~3, similarly to (5.19)
and (5.23), we find

N2 Z k(ar, a2, a3)G ja, (GB)p, jGrary (GB)pyk Gras (G B)pse

J.klay,an,a3

_gpp P(E +in1)
N 9/ZT||B|| > k(@i a2, 03)| [(GBG)byay| [(GBGpas]

o],02,03

p(E +in1) p(E +in)?
<N 9/2n—”B”|”K|H3 > (GBG)w|” < 7/2n—”B"”B“hs
a,b 1

<N- 25 P(E +ino) <N3‘§)

0 Nnj
(5.25)
To go to the second line, we used that
p(E +iny)
(GBG)ap| < II1BIV(GG*)aa(GGppy S IIBIITn, (5.26)

by a Schwarz inequality, a Ward identity and (5.11). In the third line we estimated

Np(E +1n1)
> 1GBGw[ = N epaesy s MEHM pp - (509)

ab 1 ’11

with very high probability, by means of Ward identities and (5.20). To go to the fourth line,
we used || B|| < +/N||Bl|ns and the fact that § < & by (3.3), together with no/n; < N°
and monotonicity of n — np(E +in).

Hence, (5.25) together with Young’s inequality implies that

N7 3" E[(3; R) (00 R) (3 R) RIP ]

o],00,03

. 3\ P
< (14 N-2LEXN Fp i (NN (5.28)
no Nm

For the higher order terms in (5.18) withn = k + 1 > 4 we aim to estimate

NN K(otl,...,otn)IE[Bal...aan|R|p]‘.
O yenes
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In case that the n derivatives are distributed on k € [n] factors of R, we find that, for

. px . A
ne € N with Yy_, ng = n and identifying (a;)iepn) = ((ag;, bei))ie[ng],ée[k]’

k
NN S K(al,...,an)]_[(Gm]Gbg]agz...sznz_l%(GB),,KW)
Jleeos ik Q15eesOln =1
k
SNTENTE YT k(@ e an) [ [ [(GBG)y, a |
A,...,0p =1
gk (PEFINDNTE
SNTAN "(—) (1] S T CTR A
m Al,...,0p

(CBG) | [(GBGs |

(5.29)
To go to the second line, we performed all the j summations and estimated all the
other resolvents without a j index by (5.11); to go to the third line, we used (5.26) for
k — 2 of the k factors and used a simplified notation for the indices a, b, which agree
with some ag;, bg;. The two factors of GBG are kept separately, since we aim for an
estimate in terms of Hilbert—Schmidt norm || B||ys of the observable B; otherwise the
whole argument for the higher order terms would be a simple power counting. However,
now we distinguish two cases: (i) k < n — 2, and (ii) k € {n — 1, n}. In the less critical
case (i), we use a Schwarz inequality to estimate | (GBG)g; ’ < \/(GBB*G*)EI; p/n,
similarly to (5.26). Then, we continue to estimate (5.29) as

k-1
B _x [ P(E+iny) -
N-2N k(T> (1] e Y I COR
o

1s--sQn

JGBB* Gy (GBB*GY) 5,

. - (5.30)
o (PCE+in) ! _
< NN k(—) IBI*liclly Y (GBB*G*)aa
m b
[ PCE+inD\F _ p(E +in)\*
SN? "/2(—) IBI* 1Bl S (———) -
Nm Ny

While in the second step, we used (5.20), the final step follows from || B|| < VN IBllns <
VNandk <n—2. y

For case (ii), we first note that necessarily (ay, b1) = (a1, b1) = o1, and similarly for
index 2, up to permutation of the arguments of « in (5.29). This simply follows, since
n > 4 derivatives hitting each of k € {n — 1, n} factors at least once, means that at least
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two of them are hit exactly once. Therefore, we can continue estimating (5.29) as

. k=2
_ _k [ P(E +iny) _
N2y k(T IBI*=2 3" k(@i o @) [(GBG)pya) | (GBG)pya, |

[0 RPN o

gk (PEFINDNTE 2
< ok (LEEID ) 2, 3G 5G|
ab

k
< Nk- n>/2< ) PE+in) _ 25 p(E +img) (N
N n 10 N

(5.31)
Note that for k = n this estimate truly contributes the critical N —2 p(E +1ing)/no factor.
Here, in the second step, we used (5.27) together with || B|| < \/NHB s < V'N; the
final step follows from 79/n; < N°® together with monotonicity of  — np (E +in) and
§ K &by (3.3).
Hence, by Young’s inequality, combining (5.30) and (5.31), we deduce

.....

E +i N3§ p
< <1 +N—2‘3w> E|R|? + <—) . (5.32)
10 N
Therefore, combining (5.18) with (5.22), (5.24), (5.28), and (5.32), we obtain (5.13).
This finishes the proof of Proposition 5.5. O

5.3.2. Isotropic case

Proof of Proposition 5.4. Similarly to the proof of Proposition 5.5, after applying Itd’s
Lemma and a cumulant expansion, we find

‘_E|Sv|p

ZZ 2 zﬁiiff)/fi‘ [0y 3| Ss17 ]| + W) . (5.33)

k=2 o1 aeN(ar)k

for some large enough L.
Employing the same notational simplifications as explained below (5.18), we again
first estimate the third order cumulant terms, given by

N2 k(o o, @3)E [ O 0us | SIP]| -

o],02,03

Distributing the derivatives according to the Leibniz rule, we need to estimate various
terms of the forms (32 $)[S|7~, (8,5)(32 $)|S|P~2, and (3,5)*|S|”~3. In contrast to
the average case treated in the proof of Proposition 5.5, there is no term in the camulant
ex]p/%nggon producing the most critical N~2%p/n factor; instead we get N%./p/n =
Nty
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We start with estimating the first type of terms. In this case, identifying o; = (a;, b;) €
[N1? and using Lemma 5.3 together with a Ward identity and Assumption 2.3 (i), we
find

N_3/2 Z K(Ol] , 02, 053)Gxa| Gblaz Gb2a3 Gb3y
o1,02,03
SNTPNP N k(e @2, @3)| [Gray | Gyl
ar,a2,03
1/2 1/2 .
_ p(E +ino)
S NN ikl ( > |Gxu.|2> (Z |Gb3y|2> < N””N—,71

ay,b az,bs

(5.34)
with very high probability. Completely analogously we obtain

N32
< N1/ (P(E+1770)> /

N7 k@, @2, @3)Gray GoyyGoras Giras Gy N

o],02,03

(5.35)
and

N2 3" k(@y, 02, @3)Gxa; Gy yGxay oy Gras Gy

o],02,03

Ny

: 2
< N1/2+40 (M) ,

(5.36)
again with very high probability. Hence, combining (5.34), (5.35), and (5.36) with
Young’s inequality and additionally using that n +— p(E + in)/n is monotonically
decreasing, we infer

NN x(al,az,a3>E[aalaazaa3|S|P]|

1,002,003
S NYESW)[EIS)P + W(n)?]  w.vhp.

Next, we turn to the higher order terms, where we aim to estimate

1\/7’1/2 Z K(alv (RS an)E[aal"'aan|S|p] . (537)

Distributing the n derivatives on k € [n] factors of S, we find that, for n, € N
with ZL] ne = n and (wlo.g.) ny < ny < ... < ng, and identifying (;)ien) =
((agi, bfi))ie[ng] el (5.37) can be rewritten as (ignoring the factor |S|”_k)

(5.38)

k
N2 Z k(oy ..., Q) 1_[ (Gxa[I Gb/il“fz ...Gb[w_la% Gblnﬂ’)

(e FRTH ap =1

If n, = 1, since there are now at least two factors of S hit by a single derivative, we find
that (similarly to (5.31) in the proof of Proposition 5.5, cf. also [24, Egs. (8.82)—(8.85)])

(5.38) S NTANCHDcl, Y 1Gra Gyl
a,b

S NPTENCHEEDN Gyt < [NV (o) [ W ()
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with very high probability. If n, > 1, we find, analogously to (5.30) in the proof of
Proposition 5.5 (cf. also [24, Egs. (8.86)—(8.87)])

(538) S NT"ANCHFDcll, S 1Gral® S NPTAN W ()
a,b

< NENEHR=OmDE2 () w ()" 72 S [NVHW (0g0) | W ()"

with very high probability. Here, to go to the second line, we used that N ~1/2+6/2 <
W (o) < W(n1). In the ultimate step, we used W(n;) < 1 and that, since np > 1 and
ny <nz < ... <ng,wehave n > k + 2. Therefore, using Young’s inequality, we infer

N2 3 k@1 s ) E [0y 00, 1S17]| S NYZP0 o) [EISIP + W ()],
UL,y Oy

(5.39)
with very high probability, and thus, combining (5.34), (5.35), and (5.36) with (5.39),
and including the W (n;)? term from (5.33), we obtain (5.8). This finishes the proof of
Proposition 5.4. O

6. Local Law Outside the Support of the scDOS

In this section, we prove Theorem 2.9, that is, the absence of spectrum inside the gaps
in the support of pr of size A7 > N—3/45¢ where ¢ > 0 is the exponent from (3.2).
Recall our choice of the terminal time 7 ~ N—§/4 from (3.22).

The characteristic flow was used to exclude outliers near a regular square-root edge
for Dyson Brownian motion with general 8 and potential in [1, Section 4]. In [24,
Section 8.1], the approach was used at the edge of non-Hermitian i.i.d. matrices, which
corresponds to a cusp-like singularity of the hermitization. We present a modified version
of the proof that allows us to avoid moment-matching arguments, used in [24] to remove
the order one Gaussian component.

6.1. Time-evolution of the gaps. First, we analyze the dynamics of the gaps in the
support the scDOS corresponding to the time-dependent MDE (3.16). For all ¢ €
[0, T'], define the density p; : R — Ry via the Stieltjes inversion formula, p;(x) :=
a1 lim (IM, (x +in)).

n—+0

Definition 6.1 (Endpoints of a Gap). For a continuous probability density function p on
R, we say that e, e* are left and right end-points of a gap in the support of p if and
onlyife, et € d{x e R: p(x) > 0} and p(x) =0 forall x € [e™, ¢"].

Once Theorem 3.2 is established, the proof of Theorems 2.8 and 2.9 reduces to
considering gaps in the support of p7 with at least one end point satisfying dist(er, Z) <
cm /4, where er € {e, e}}, 7 is the set of admissible energies defined in (2.10), and
cy > 01is the constant from Assumption 2.5. We then distinguish between two relevant
cases:

(i) The final gap size A7 = ¢} — ¢ < cp/4,
(11) AT > CM/4.
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We focus on the more challenging case (i), which, in particular, includes all cusp-like
singularities in the set of admissible energies. In this case, by Lemma 4.1, the solution
M; (z) remains bounded in and around the gap for all times 0 <t < T.

In the simpler case (ii), it is straightforward to verify that the singularity at the endpoint
¢; := ¢ r(er) is a regular edge-point for all 0 < ¢ < T, where ¢; r is the flow map
defined in (3.19). Consequently, there is no need to track the precise behavior of the
opposite endpoint of the gap, and the analysis in Section 6 holds with A; replaced by
1. The definition of the sub-scale domain Df“b (see (6.8) below) must be adjusted by
the condition ¢ (z) := dist(e;, z) < cp/8+ C'(T —t), where C’ ~ 1 is an appropriate
constant (e.g., from Lemma 3.5). The rest of the proof then follows verbatim. Therefore,
for the remainder of this section, we assume that A7y < ¢y /4.

For any ¢ € [0, T'] and any z := E + in with E lying inside the gap [¢; , ¢/ ] in the
support of p;, the scDOS p;(z) satisfies (see Remark 7.3 in [10])

U
(5 (2) + MV2(A¢ +54(2) + ) 1/6°

pi(z) ~ 2(z) = dist(E, &F).  (6.1)

In the following lemma, we collect the necessary properties of the quantities e?t, Ay,
2 (z;) along the flow (3.18), that we later use in the proof of Proposition 6.6. Recall
that the terminal time is small, 7 ~ N~§/4 « 1 by (3.22), and the final gap is also
sufficiently small Ay < ¢y /4.

Lemma 6.2 (Characteristic Flow near Small Gaps). For any time0 <t < T, lete, , e,+
be the left and right end-points of a gap in the support of p, with size 0 < A; < 1, then

~

forany 0 < s <t, there exist a gap in the support of ps with endpoints ¢ , ¢} and width
Ay = el — e, that satisfy
Ag~ A+ (1 — )32, (6.2)
1
det = —Eesids — (M (eD))ds. (6.3)

s

Pick an E; € (¢, ,¢f) and ny S N™VA; for some v > 0. Let z; = Es +iny :=
@s.: (E; +1n;), as defined in (3.19), then

ns SNTV2As, Ese(e;.eh), 0<s<rt. (6.4)

Moreover, for any 0 < s < t, recall »;(z) := dist(Nz, eét), and assume that »,(z;) 2
NVn;, then

ny Vo (zs) 2 saz), 0<s <t (6.5)

Finally, there exists a constant ¢ > 0, such that forany 0 <t < T, if E; € (¢; , ¢}) and
Nt S N7Vs¢4, then zg = @5+ (E; +1ny) satisfies

Vo @s) = Vo @) + et — )50, (6.6)

We defer the proof of Lemma 6.2 to Appendix A.
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0<t<T

Fig. 4. Shaded in blue is the illustration of the time-dependent domain D‘?“b, defined in (6.8), at three distinct
times: the initial time r = O (left), an intermediate time 0 < ¢t < T (center), and the terminal time t = T
(right). The domain D?bv at the corresponding time ¢ is indicated with crosshatching in the zoomed-in insert,
with its boundary indicated by a dashed line in the main plot. The zoomed-in insert also depicts the distance
f(t), defined in (6.7), between the edge of the support of p; and the corresponding horizontal cut-off of the
domain Df”b. The graph of the scDOS py is superimposed in black on each panel (not to scale)

6.2. Absence of spectrum inside small gaps. Proof of Theorem 2.9. In the sequel, we
always assume that the final gap satisfies A7 > N~3/4+5¢ Recall the constant & from
(3.2), and define the function f = f; by

N~ ™4 o(T = 1)

2
e VN m,z], ni=NTBAP relo, T,
2A,

f@) = fe) = [

(6.7)
where we chose the constant v satisfying 1 < v < ¢ (where ¢ is the constant from (6.6))
to be sufficiently small such that f(¢) < %At. This is indeed possible, since it follows
from (6.2) that Atz/3 pe AZT/3 + (T — 1), and AZT/3 > N-1/2 by assumption on the final
gap size.
Fix a tolerance exponent 0 < ¢ < 1(1)—05, where £ is the exponent from (3.22), and
define the time-dependent sub-scale domain Df”b by (see Fig. 4)

D =Di*(e, ¢) == {z:= E+in e H: () = f(0), N> < p(@)Nn < N°},
(6.8)
where we recall s (z) = dist(Nz, e?t). In the sequel, we omit the arguments ¢, ¢ of the
domain D§® from the notation.

Definition 6.3 (Exclusion Estimate). Let H, be a random matrix depending on some
parameter'”> u € U, and let M, be the solution to the MDE (2.3) with the data pair
(EH,, S,), where S, is the self-energy operator corresponding to H, via (2.2). For all
u € U, let D, be a subset of C, and let { > 0. We say that the resolvent G,(z) :=
(H, — z)~ ! satisfies the exclusion estimate, with data (D,, ¢, 2) uniformly inu € U, if
and only if the bound

—¢
< 9
~ NSz

‘(Gu(n - M, (2)) (6.9)

holds uniformly in z € D, and in u € U, on the event 2.

The goal of the present subsection is to deduce the following claim.

12' Ag in Definition 3.1, the parameter u will typically be time and the set I/ will be a bounded subinterval
of R.
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Claim 6.4. If a random matrix H satisfies the assumptions of Theorem 2.8, then for any
0<¢ < ﬁé}, the resolvent G(z) = (H — z)™! satisfies the exclusion estimate (6.9)

with data (DSTUb, 2¢, Q2) for some very-high-probability event Q2.
Then, using Claim 6.4 as an input, we conclude (2.15) using the following lemma.

Lemma 6.5 (Eigenvalue Exclusion). Fix a timet € [0, T], with the terminal time T as
in (3.22), and let H be a random matrix satisfying EH = A, and Sy = S;, where Sy is
the self-energy corresponding to H via (2.2). Assume that for some tolerance exponent
v > 0and ¢ € Nwith v K £, the resolvent G(z) :== (H — )~} satisfies the exclusion
estimate (6.9) with data (D{*®, ¢ — £v, Q), then

spec(H) N [e] + f(1),¢f — f()] =¥ on Q. (6.10)

We defer the proof of Lemma 6.5 to Appendix A.

Proof of Theorem 2.9. Choose & = 16, & = %8 and ¢ < ﬁf- It follows from

Claim 6.4 that G(z) := (H — z)~! satisfies the exclusion estimate (6.9) with data
(D5, 2¢, Q) for some very-high-probability event 2, where D := DP(e, ) is
defined in (6.8). Hence, (2.15) follows immediately from (6.10) of Lemma 6.5, since
f(T) := f.(T) > N* nj(eo) by definition (6.7). This concludes the proof of Theo-
rem 2.9. O

To prove Claim 6.4, we augment the Zigzag induction of Section 3 with the following
propositions. Recall that the relations (3.3) between the fixed tolerance exponents ¢, &, €
from (3.2), (3.22) and (6.8), respectively.

Proposition 6.6 (Zig Step below the Scale). Fix k € {1,..., K}, and recall the def-
inition of t from (3.23). Let G;(z) be the time-dependent resolvent defined in (3.27).
Assume that for some v > 0 and £ € N with £v <K ¢, the resolvent G, satisfies the ex-
clusion estimate (6.9) with data (D,SUb, £ —Lv, Q) at time t = ty_y, for some very-high-
probability event Q2. Then the resolvent G, satisfies the exclusion estimate (6.9) with data
(D‘?“b, . — L+ 1)v, Q) uniformlyint € [ty_y, tr], for some very-high-probability event
Q' cq

Proposition 6.7 (Zag Step below the Scale). Fixk € {1, ..., K}, and let G*(z) be the
time-dependent resolvent defined in (3.28), and let s := s(aty) be as defined in (3.14).
Assume that for some v > 0 and £ € N with £v <K ¢, the resolvent G*(z) satisfies the
exclusion estimate (6.9) with data (ka“b, ¢ — 4Ly, Q) at time s = si, for some very-high-
probability event 2, and the isotropic local law in (3.1) with data (Dg{b", &+Lv) uniformly
in time s € [0, s¢]. Then the bound G* (z) satisfies the exclusion estimate (6.9) with data
(’D,Sk“b, ¢ — (L + v, Q) uniformly in time s € [0, s¢], for some very-high-probability
event Q' C Q.

Proof of Claim 6.4. Claim 6.4 follows by induction in k as in Sect. 3 using the tandem
of Propositions 6.6 and 6.7, and using the global law of Proposition 3.3 for Hy as the
initial estimate at step k = 0. This is indeed sufficient, since for all z ;= E +in € D(S)ub,
Nn = NV4=¢/4 Indeed, (6.1), (6.2), (6.7) and (6.8), together with the assumption
A7 > N73/45¢ imply that

Ni~ N p@INn @) 2AN 2 | N1=e2 =134 520 > s =c4 - 6.11)



253  Page 38 of 60 L. Erd” os, J. Henheik, V. Riabov

Hence, the right-hand side of (3.5b) satisfies

N3€ 1+ N —1/8+3&+¢/8 N7§
N3$\IJ( ) pO(Z) 77 < (6.12)
V V n

This concludes the proof of Claim 6.4. O

Proof of Proposition 6.6. The proof is essentially analogous to that in Sect. 4, hence we
only outline the key differences.

It follows from (3.18) that z; 1= @5 /(z,) € DS forall z; € Df"P and all 0 < 5 < 1.
Moreover, using (6.1), we conclude that

~ 3/4
— < ('L) P @ONSZ SN~ ze DM, 6.13)
#5(2) #5(z)

Therefore, it follows from (6.6) that for all z; € D,S“b, the trajectory z; := @5;(2;)
satisfies

#5(25) — f(5) = (J%s(zs) + \/f(s)> <\/zs(zs> - \/f(s))
was(zs);%/z, 0<s<t, (6.14)

where, in the second step, we used (6.6) and (6.7) to estimate /s (z5) — +/ f (5).
Let tinit := tx—1 and tgna) := tx. Define the stopping time t by

T::inf{tinh<t§tﬁnal: sup |Nr;,(G,(z)—M,(z)>|zN“(“1)”}. (6.15)
zeDsub

Statement (6.10) of Lemma 6.5 then implies that on the event 2 := {r < 7}, the resolvent
G; satisfies the norm bound

3z sub
G () < , z€DM. (6.16)
’ (@) — £()* +(Q2)2 ’

Therefore, computing the quadratic variation of the martingale term in (4.2) with B = 1
similarly to (4.5) yields

. fza“” B
- /W (3Gy)?) i < /W (3Gy) s s
B Tinit B Linit N?

22 2 2
N7 N5 (3 — f(s))" +n2

/’l‘/\f 1
<
i N2GPATVO (AT =92+ 557 A 02)

ds 6.17)

1 AT 1
S 2,32 A—1/6 / 2 1/3 2 ds
N*4sx e (EAT —8)°+ %t/\r A At iAT

Hipr Dine
1 1 < 1 Nint N~¢

~ 3/2 A—1/6 —1/2 . 1/6 2.2 ~ 2.2 0
N? I/<TAIA‘L'/ %t/\r/ Azﬁrnm NN #int N=niae
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abbreviating G := G4(25), ns := Sz, and s¢5 1= 3¢,(z5). In (6.17), to go to the third
line, we used (6.1), (6.14) and (6.15), while in the last line we used the fact that n; > ,,
»s 2 2, Ay 2 Ay and 1/2 Ay Jle pe %,1/2 1 forall s < t, that follows from (3.18),
(6.1), (6.2), (6 5) and (6. 6)

The remainder of the proof follows analogously to Sect. 4. O

Proof of Proposition 6.7. Note that by choosing the constant ¢’ ~ 1 in (3.21) small
enough, we can guarantee that forany ¢ € [0, T] and any z := E +in € Dls“b, the point
E+in(E) lies in D, where n(E) is defined implicitly via n(E) o, (E+in(E)) = N~1*¢.
Indeed, we only need to check that p; (E +in(E))~'n(E) > ¢/(N~'*¢+T —r). However,
it follows from (6.1) and the definition of f(z) in (6.7) that p,(E + in(E))"'n(E) >

NS??;/,z Ay 1, Together with A, > A7 > N~3/4+5 this immediately implies

that the inclusion E +in(E) € D®" for sufficiently small ¢’ ~ 1.

Since throughout the proof the time #; remains fixed, for the remainder of this section,
we drop the superscript #; from Dabv, Dsub, Pr» ., Ay, and My, .

First, using a monotonicity estimate analogous to Lemma 5.3 (see (A.10) and (A.11)
in Remark A.1), we conclude from the isotropic local law in (3.1) for G®(z) that, uni-
formly in z € D, ina, b € [N] andin s € [0, s¢],

N¢ N¢
|(;‘sGS)aa|§N—n, |(G* — M)a,,|<— |(GHap| 1, w.vhip. (6.18)

Moreover, note that for all z := E +in € D, we have the estimates (recall (6.11))

As in Sect. 5, we conduct the proof along the vertical truncations of the domain Dsub,
defined as

DY =D = {ze D™ =D : 3z= N}, 0<y <L (6.20)

I,y

In particular, we assert that if for some constant y > 0, the resolvent G* satisfies the
estimate

P36 @) £ r@, (6.21)

with very high probability uniformly in z € D;gb U D" and in time s € [0, s], then

the estimate (6.9) holds uniformly in z € psub

i forany fixed y1 < yo — (£ A %M), and
uniformly in time s € [0, s;] with very high probability.

To this end, we show that the quantity Rs(z) := (G*(z) — M (z)) satisfies

N3¢ Nt \P
1+ E|R,(2)|” + , Db, 6.22
< m)[ G <N|Sz|) ] ee by (022

where aty := t; — t;_1 and #; are defined in (3.23). Note that N3¢ \/arx < N¥T1/2 <
N~¢, using that T ~ N~%/* from (3.22).

’—EIR @17 <
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The proof of (6.22) is analogous to that of Proposition 5.5. The main difference is
that for the most critical term (5.21), we use the bound

N7 k(e 0. 03) Mpyay Mbyay (G G sy | < N7 I3 1M1 G G s

ap,a,03
5
sy 1/2 -t 2 —¢ % ¢ N2°
(G2 _ N N _N N¥  _NEN ’
Np3/2 ™ Ny s AAVRZ ™Y Ny T — 4~ N /sty (6.23)

where we used (6.21) together with the monotonicity of the map n — n{(IG*(E +1in))
for any fixed E € R to assert that (3G*(z)) < N?¢p(z) with very high probability,
uniformly in z € DS‘fb.

The remainder of the proof follows analogously to Sect. 5 using the estimates (6.18)
instead of the respective bounds in (5.2) and (5.11). O

6.3. Improved Local Laws away from the Spectrum. Proof of Theorem 2.8.

Proof of Theorem 2.8. Let ¢ := min{%so, %50} and & = %8. Let z € C be a spectral
parameter satisfying N*0ns(E) < dist(z, suppp) < C. Without loss of generality, we
assume that ||x|| = ||y|| = | Bllns = 1, and that z := E +in with n > 0.

First, consider the case dist(z, suppp) < 21, then it is straightforward to check using
the universal shape of the density p (see, e.g., Remark 7.3 in [10]) that p(z) Nn 2 N°®.
Therefore, in this regime, Theorem 2.8 follows from Theorem 3.2 and Proposition 3.3.

It remains to consider the regime dist(z, suppp) > 2n. Clearly, E lies outside of the
support of p. Let ¢~ and ¢* be the left and right end-points of the gap that contains
E. The assumption dist(z, suppp) > 27 implies that ¢ := dist(E, e*) > 7, hence
A=¢t—e" =2 NOn(E) = N~2/3+0 A1/9 and thus A > N—3/4+%0/8,

Define a local domain D" = D"(E) as

DM =DE):={ € C: [N — E| < 150, INZ| < 3¢}, s :=dist(E, ),
(6.24)
and observe that z € D°". Moreover, by Theorem 2.9 with 6y := %80, there exists a
very-high-probability event €2, such that spec(H) N D" = (J on Q.
Therefore, on the very-high-probability event 2, the matrix-valued map z’ — G(z')—
M (Z') is analytic in the interior of D°". Using the Cauchy formula, we obtain the contour
integral representation

1 N _ M /
6 - M@ = 7= § Tz (6.25)

where I' C D" is the contour tracing the boundary of a rectangle centered at z with
width }‘% and height %%. Note that |7/ — z| = s for all 7’ € T. Using a monotonicity
estimate analogous to Lemma 5.3 (see (A.11), (A.13) in Remark A.1), we conclude
from Proposition 3.3 and Theorem 3.2 that on a very-high-probability event Q' C £,
the resolvent G(z') satisfies

&

1
(G —M@H)B)| < ot (G- M),

~ NISZ
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7 & 1
<ne [LED N1 (6.26)
NIJZ|  NISZ|

uniformly in 7z’ € T', where the alternative »~! bound follows from the norm-bound on
IG (2"l and (2.15).

Plugging the bounds (6.26) into the representation (6.25) and using the comparison
relation (6.1), we obtain (2.14b) and (2.14a) at the point z. Here we used (6.1) and
7 > N®n;(E) to assert that

p(2) 1 1
\V Ny ~ N\ NAATR X N (6.27)

Therefore, the local laws (2.14a) and (2.14b) hold for dist(z, suppp) < C.
In the complementary regime dist(z, suppp) > C, similar contour integration to-
gether with the global law (3.5b), can be used to obtain the faraway laws

&
N{z)2

- )
x

S UN@? Xl iyl

(6.28)
in the regime dist(z, suppp) € [C, N P] for some sufficiently large positive C ~ 1. Note
that for such z, the proof requires only the global laws of Proposition 3.3 as an input,
and is conducted without the use of the Zigzag dynamics. This concludes the proof of
Theorem 2.8. o

(G - M(z>)3)‘ < 1B ‘(G(z) - M@),,

7. Global Laws: Proof of Proposition 3.3

We prove Proposition 3.3 in two steps. First, in Sect. 7.2, we prove the isotropic local
law (3.5a). Then, in Sect. 7.3, we conclude the proof of Proposition 3.3 by proving the
averaged law (3.5b), using the isotropic law (3.5a) as an input. Before proceeding with
the proof, we collect some preliminary bounds on the stability operator and define the
appropriate norm for proving the isotropic local law.

7.1. Preliminaries for the global law. First, for any z € C, the stability operator 3(z) :
CN*N . CN*N is defined by its action on X € CN*V,

B)[X]:=X —M@)S[XIM(2). (7.1)

We control the inverse of the stability operator 5 using the following lemma.

Lemma 7.1 (Proposition 4.4 in [11]). Let M(2) be the solution to the MDE (2.3), and
let T be the set of admissible energies defined in (2.10). Then the stability operator 3(z),
defined in (7.1) satisfies, for all 7 € C with dist(Nz, T) < %CM,

S1+8@7Y B@ = p@%+p@Io @] +p) 3z,

HB_I(Z) =1~
(7.2)

+| ]

hs—hs
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where the function'® o (z) is defined as

o(z) = <sign($ﬁU(z))(p(z)I%U(Z))3>,

SM)~'2RM)SM) ™2 +i

N [(SM)~'2RMY(IM)~1/2 z € H. (7.3)

Note that by definition of D2°" in (3.4), the stability factor satisfies f(z) > N—/4
for all 7 € Delob,

Remark 7.2 (Local Laws in the Stable Domain). In Sect. 7 we only use the bound B(z) >
p(z)” 1|\sz| However, by Remark 10.4 in [10], there exists a function ,8(z) satisfying
B(2) < ,3(z) < B(z), such that the map n — ﬂ(E + in) is non-decreasing in n > 0
for any fixed E. Therefore, the global domain, defined in (3.4), can be replaced by the
stable domain, defined as

DY = {z:= E+ineH : |E| < NP, N™'** < < NP, B(z) > N¥/4),
(7.4)
with our proof of Proposition 3.3 naturally extending to the larger stable domain. In
particular, the stable domain extends down to the level n > N~'*¢ in the bulk of
spectrum, where p(E) 2, 1. Therefore, we provide an independent proof of the local laws

in Theorems 2.1 and 2.2 of [35] under the Assumptions 2.1-2.5 without the complicated
graphical expansion machinery.

Next, for a fixed spectral parameter z € pelod (&, D), and a fixed pair of vectors x
y € CN, define a family of sets of vectors,

Vo =Wo(@) = {ea}, Ulx, y),
Vi=Vj(@):=V;.1U {Mu, Kc((Mu)a, -b), /cd((Mu)a, b.) cueVj1,a,be [N]},
jefl, ..., J},
(7.5)

where M := M(z), and J is an integer satisfying J > 2/&. We use the corresponding
isotropic norm (Section 5.1 in [35])

Xl

J .
Xl = 11X 15Y7 = SN X+ N2 m
1], = X3 > NTT X ey ol

=0

Xuv
I X1l¢jy := max | |
ueV; |ullflv]

(7.6)

Note that the cardinality of the sets V; is bounded by N €7 hence we can take the
maximum of very-high-probability bounds over these sets.

Finally, recall that for all z with %1z in the set of admissible energies Z from Assump-
tion 2.5, M (z) satisfies the bound

IM@) < (z)7 " (7.7)

13 Roughly speaking, the quantity |o (z)| measures how close z is to a possible almost cusp, in particular,
if x is an exact cusp of the density p(x), then o (x) = 0.
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7.2. Proof of the isotropic bound in Proposition 3.3.

Proof. (Proof of the isotropic law in (3.5a)) Recall the definition of the domain pelob

from (3.4). We conduct the proof iteratively along vertical truncations D)g,k)b of the
domain D#l°_ defined as

D§1°b ={z:=E+ine pEb -y > NIy S 0. (7.8)

Once the local law (3.5a) is established in the domain Df,(l)‘)b for some yg > 0, a sim-
ple monotonicity argument analogous to Lemma 5.3 (see the proof of Lemma 5.3 in
Appendix A) implies that the following bounds on the resolvent G (z),

G@u| SN, [(3G@),,] 5N€+3<p(z)+Nin), w.vhp., (7.9)

hold uniformly in z € D%Ob forany y; > yo—4 with§ < 21—05 , and for any deterministic
u, v with ||u|| = ||v]| = 1. Therefore, the key step in the iteration is going from estimates
on the resolvent G(z) to a bound on (G(z) — M (z))xy, that is, using the bounds (7.9) as

an input to prove the isotropic local law (3.5a) in the domain D)g,i()b.
This crucial step is based on the following gap in the possible values of |G — M ||,.

Lemma 7.3 (Gap in the Values of G — M). Fix a spectral parameter z € D;";ll()b, with

some y1 > 0 such that (7.9) holds on D)%Ob, then

1GGz) — M@, SN wrhp, = [IG2) — M@, < NSW () wrhp.
(7.10)

We initialize the iteration in the domain D%Lo&b. Indeed, owing to the very high prob-

ability bound | Hyy| < N2 for any v > 0, we have, for any deterministic u, v with
lull = [lvl =1,

IGI <@ |(36@),,| < G P, ze DEY, wvhp. (7.11)
Note that the bound |G (z) — M (2)|l, < N~§ holds trivially for all z with Jz > NE.
After Lemma 7.3 is established, the proof of (3.5a) follows the standard continuity
argument on a fine grid (see Section 5.4 in [35]).

This concludes the proof of the isotropic law in (3.5a). O

The remainder of this subsection is devoted to the proof of Lemma 7.3. A local law for
random matrices with slow correlation decay away from the cusps was already proved
in [35] and [11]. We present an independent proof under the Assumptions 2.1-2.5. We
utilize the minimalistic cumulant expansion, that was used previously in [52] and [26].
This allows us to avoid the complicated graphical expansions.

Proof of Lemma 7.3. Since z := E +in is fixed, we omit the argument of G, M, ¥, p, 8,
and B. Assume the very-high-probability bound

IG— M|, SN5. (7.12)

~

It suffices to show that |G — M|, < N £ with very high probability. Assume that for
a deterministic control parameter v/, the quantity W ~! |G — M|, satisfies

v G- M|, <y, wvhp. (7.13)
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By definition of the resolvent G := (H — z)~ ! and the MDE (2.3), we difference
G — M satisfies

G—-—M=-MWG+MS[G — M]G, (7.14)
where the matrix'* WG is defined as
WG .= WG + S[G]G. (7.15)

Therefore, subtracting MS[G — MM from both sides and the inverse of the stability
operator B, defined in (7.1), yields the equation

G- M=-B'[MWG]+B '[MSIG - MI(G — M)], (7.16)

Observe, that for any X € CV*V, (Eq. (5.4¢c) in [35])

5710 ) = 1X1Gy + (nMn2 IS+ 11 sy |~ HhHhS) Xl

SIXNGy+ (1+ 87N Xl o) - (7.17)
where in the last step we used (7.2). Here we denote
NS = IS lmax—s - V IS Ths— . - (7.18)

To control the norm |G — M|, we first bound the [|-||(; individually, and then
estimate the contribution coming from the last summand in (7.6) later. Fix an index
Jj €1{0,...,J} and fix a pair of vectors u, v € V;. We compute the p-th (for even p)
moment of

—J
S; =5 = N2 (G — M. (7.19)

using the equation (7.16) for a single factor,
-, - _
E[|8;1"] < E[N27 (B~'[MWGI),,S;15;1"*]
= _
+]E[N 2J (B‘l[MS[G - M](G — M)])quj|Sj|”_2]. (7.20)

First, we estimate the size of the second term on the right-hand side of (7.20). We
observe that ( Eq. (5.5a), (5.5b) in [35])

IMSIXIX |y S cll5® 1M min{ XM ¢y » \/NIIXII«»} X - (7.21)

We only use the second mode of the min bound (i.e. use min{A, B} < B) when j = J.
Combining (7.12), (7.17) and (7.21) (in particular, leading to the subscript (1) instead
of (0) at the (1 + ,8_1)||G — M||1)-term), we deduce that

Qj:=N 27 (B~'MSIG — MI(G — M)))

uv

14" The underline WG is a renormalization of W G for renormalization of general products f(W)Wg(W),
see Section 4 in [25].
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satisfies

IG — Mn*

HQjH(j)N
(2) N21

(\G Mljs1y1j<s +VNIG — Ml Ljzy + (1 + B~ )||G—M||<1>)

SNTE T (147 )Y, whp, (7.22)

where in the last step we used the estimate (7.2), _the definition of Dg°b in (3.4), assump-

J
tions (7.12-7.13), and the bound [ X||(;y < N 27 | X], that follows from the definition
of |||, in (7.6).
Next, we estimate the first term in (7.20). Forany j € {0, ..., J}andany u, v € V;,
using the multivariate cumulant expansion formula from Proposition 5.2, we obtain

‘ E[(MWG)u»S;1S;1P 7]

I —
< 'E[ﬁ 3N MuuGpor(ab, ar)da, {S515;17 2}} ‘

ab o

k(ab, o) — _
|:Z Z N(k+1)/2k!a“{Gb”Sj|Sj|p 2}:H

ab aeN (ab)k

+N%|sz;ffz|. 723

Similarly to (5.17), we can choose L large enough such that [Q; 7| < (\I/ [|ee]| || v ||)p. We

note that the N ﬁ factors in (7.19) are only relevant for the quadratic term Q ; estimated
above, therefore, we do not follow it in the sequel. Moreover, we drop the norms ||u||
and ||v|| for brevity.

First, we estimate the term involving second-order cumulants on the right-hand side
of (7.23). Here we estimate the contribution coming from the cross part of the second
cumulants ., the estimate for the direct part x4 is completely analogous. Ignoring the
difference between S; and S_J and dropping the overall |S;|? =2 factor, we obtain the
bound

> ke((Mu)b, a1b1)Gua, ||Gpy Gyl

at

1
3>

TN bby
S N Y kee (Mu)s, o)1l 11G o117

S lelEONS*2 w2 wvhp.

'— D> kelab, 1) MuaGpyde, S,

ab A1

(7.24)

In the ultimate step, we used (7.7) and (7.9) to assert that, with very high probability,

NGyl = v, (7.25)

(2)VN
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Next, we bound term involving third and higher order cumulants in (7.23). Consider,
for example,

k(ab, ay, ar)

N3/2 Muava(aozlSj)(aasz)

ab op,02

SN2 Y k(ab. arby, azb2) MuaGovGuay GoyvGua Goyo

ab aybiazby

5 N3E/2+75/2qj3”|x|”3’ WVhp (726)

Note that the structure of the term (7.26) is identical to that of (5.36). Indeed, the only
difference is that the resolvent Gy, is replaced by the deterministic approximation My,
(u and v in (7.26) play the role of x and y in (5.36)). Consequently, the summation over
a is bounded using

1/2 1 1/2 . o+
< E |Mua|2) <|IM| =< @ instead of (E |Gua|2) < NT Nu
z
a a

(7.27)

yielding a saving of a «/p/n factor in terms of the (p/n)-power on the right-hand side
of (7.26) compared to the bound in (5.36). All other terms in (7.23) with cumulant of
order three and higher are bounded analogously to their counterparts in the proof of
Proposition 5.4, with the additional saving of v/p/n coming from (7.27).
Therefore, using a weighted Young inequality to handle the separated |S;|” —* terms,
we deduce that for all j € {0, ..., J},
E[Nz_fj (B'IMWGI),, S;1S;1P72 ] < (N2 1+ p~hw)” + N=PE[|S;17].
(7.28)

It follows from (7.20), (7.22), (7.23), and (7.28) that

p
ElI17) < (8) (W45 NP NG 1)
(7.29)

1
Since J > 2/&, and 6 < £/20, we have (1 + 8~ 1)N_J £+ < N9 and we conclude
that

1S;1 S N W(NS/2(1+ g7 + N°y), w.vhp. (7.30)

Next, we estimate the contribution of the last summand in (7.6) to |G — M||,. We
fix a vector v € V; and compute a the p-th (for even p) moment of

S=8"=N"1(G-MLI?=N"((G-M*G-M),. (73]
Using the equation (7.14) for a single S factor, we obtain
E[ISI”] = N7 E[((G — M)*MWG), SIS|P~?] |

— 7.32
+ N E[((G — M)*MS[G — MIG),,SISI”]|. (732



Cusp Universality for Correlated Random Matrices Page 47 of 60 253

To estimate the term in the second line of (7.32), we note the following bound,
|(X*MSIX1Y), | < IXol 1M1 IS lmaxes -1 11X oy 1Yol (7.33)

Therefore, using (7.6), (7.12), (7.13), (7.25), and (7.33), we obtain the very-high-
probability bound

1 _
5 |G = M)*MSIG - MIG),, | ( IG — MIZ G S N~y

1
z)«/ﬁ
(7.34)

Next, we turn to estimating the first term on the right-hand side of (7.32) using the
multivariate cumulant expansion formula,

l|1|<:[((G — M)*MWG), SIS|”?]|

ZZK<ab 1) Gy Mea 9y {(G — M) S|S|P~2}
abe (7.35)
Z Sy KO e {Ghe(G — My SIsIP2)

(k+1)/2 |1
k 2" abc qaeN (ab)k N ke

v
+Q,

where for sufficiently large integer L, the error term ] admits the bound Q) < w2r
and is therefore negligible.

We bound the term involving the second cumulants in (7.35). First, for the term
containing dy, (G — M)} ., completely analogously to (7.24), we obtain

NZZ'Z ((Meo)b, a1b1) GGy, G o| S Il l5° NS 2202 wvhop.,
¢ 'baib;

(7.36)

where the additional summation over the index ¢ is compensated by the N~! prefac-
tor. Next, we estimate the terms arising from 9y, S. We focus on the term containing
((G — M)*9y, G)yy, other terms are estimated similarly. For the cross part «, we obtain
(ignoring the factor |S|”~2 temporarily)

Y ke((Meo)b, 01)Go(G — MY, ((G — M)*3y,G),,

N3
N ch o
1
S WZKG—M) (DS ZKC((Meab,albl)Gdal (GGl
bb
S N 50N w? 2Z|<c M):.(G — M)
cd
S ellENE*2W2 |G — M5 S Ikll5° N wty?, wvhp., (7.37)

where in the second step we used the bound analogous to (7.24) for each ¢, d, and in the
last step we used (7.13).
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Similar estimates hold for terms involving higher order cumulants in (7.35). For
example, identifying «; := (a;, b;),

NN k(ab, a1, 02)Mea(G — M)} (30, G),,, (G = M)* 30, G),,

abc a1,02

SNTY NG = M)y(G = M|
cd

>0 k@b, a1, @2)MeaGiay GoyoGay Gy

ab oy,

. 7.38
< Mells 1G — MI2 NEW2 < el N6 () 1wty 2, wvhip., (7.38)

Therefore, we obtain, using the very-high-probability bound S < %W by (7.13),
1 Sl o p—2 2p 88 5,2\
N| E[((G—M)*MWG), SISI"*]| < (V) (NSN + N~y ), (1.39)
hence, using (7.32) and (7.34), we deduce that with very high probability,
VS S NVW(NS/F 4 NIy, (7.40)
It follows from (7.6), (3.6), (7.30) and (7.40), that

UG — M|, Sy wvhp = W < N2 (4 g1 L NT/2y wvhop.
(7.41)

By iteration, this implies that W—! |G — M|, < N&/2H40+v(] 4 g=1) < N3E/4+4s+y
with very high probability, since g > N /% in Delob,
This concludes the proof of Lemma 7.3. O

7.3. Proof of the averaged bound in Proposition 3.3. We conclude this section by prov-
ing the averaged law in Proposition 3.3 using the isotropic law (3.5a), proved in Sect. 7.2
above, as an input.

Proof. (Proof of the averaged law in (3.5b)) Fix a deterministic matrix B and a spectral
parameter z € DElob and let R := ((G — M)B). Using the equation (7.16), we compute
the p-th (for even p) moment of R,

E[IRI"] < |B[(MSIG — MI(G — M)B|RIRI"?]| + [E[(MWGBIRIRI"]
(7.42)

where we denote B := ((B’l)*[B*])*. By (7.2) and Lemma 7.1, the observable B
satisfies

[Bllp < (1+87") 1Bl (7.43)
To bound the first term on the right-hand side of (7.42), we employ the polar decom-
position B = Zj ajvju;‘., where 0; :=0j(B) andu; := u;(B),v; := v;(B) are the

singular values and corresponding left and right, respectively, singular vectors of B. 1t
follows from (3.5a), (7.21), and (7.43), that with very high probability,

ujvj

~ 1
(MSIG = MIG - MB)| = > o l{(MSIG — MIG - M), , )|
j



Cusp Universality for Correlated Random Matrices Page 49 of 60 253

SNE(1+B7) W2 [Bllys - (7.44)

where W := W(z) is defined in (3.6).
Next, we bound the second term on the right-hand side of (7.42) using the multivariate
cumulant expansion formula from Proposition 5.2,

‘E[(Mmﬁ)ﬁwpz]

1 ~ _
< o] 35 £ X wtab,an(GBM) o0 [RiRI2) |

ab i

K (ab, a) ~ _ B
[ Z Z N D2 % {(GBM)baR|R|p 2}“
ab aeN (ab)k
+]Q7. (7.45)

Here, once again Qf is an error term satisfying |Qf| < (V@) /(NnW || Bllys)? for large
enough L, controlled similarly to (5.17). The terms involving second order cumulants
admit the bound (ignoring the common |R|” ~2 factor)

1 ~
~3 D D Klab, al)(GBM)baaalR‘

ab o

1 ~
< |53 22 D_K(ab,aibn(GBM), (GBG),

ab ayb;

(+, »)[(BB*3G6)"*(BB*3G)'/?

(z)
n\lﬂ IBllg, w.vhp., (7.46)

1
= (z)N2n2 ”'K
SNE(L+ 87Dkl

where in the second step we used the norm bound (7.7). Here, in the last step, we used
the established isotropic law (3.5a), the spectral decomposition of BB* and (7.43) to
assert that, with very high probability,

(BB*3G) 1 - N . =
T w7y 200w, Dt o+ 0 57

where o and u; are the singular values and left singular vectors of B. Similar bound
without the factor (1 + 8 ~12 holds for B instead of B. Note that, unlike for the isotropic
law (3.5a), for the current proof of the average law there is no need to split the second
order cumulant into direct and cross terms, the simpler bound (2.6) suffices.

Next, we estimate the terms in (7.45) involving third order cumulants. Consider the
term containing a single (3 R). Dropping |R|”~2, we obtain

‘ —5/22 Z k(ab, ay, az)(aalGBM)ba(aazR)‘

ab a1,02

< N2 M| max|ch|Z > |kab, @y, 00)|[(GBB*G*), , |'*(GBG),,

ab @12
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(BB*3IG) [(BB*3G) Ml
o SNE(L+ g7 B w B
Nn N-n Nn

(7.48)

< ()72

D le(ab, x, )|
ab

with very high probability, where we used (3.5a), (7.47), and the bounds

(GBM)w| < 1M1 |(GBB*GY),, |2

aa

1 1
5 NGB < 3 (BBG).
ab
(7.49)

The term containing (32 R) admits a completely analogous estimate.
For the term containing (d R)?, we obtain, dropping |R|?~3,

‘1\75/2 Z Z k(ab, ay, az)(GEM)ba(aalR)(aazR)‘

ab a1,02

SNTmax|(GBGY| Y ) [k, v, )l |(GBM),, (GBG),,|

%)
ab,ay o1

< NE(2)2 W2 || Bl

(BMM*B*3G) |(BB*3G)
D kG a1, )|

o]
—py Ml
<N%E(1+8 I)N_;(Z>3w4||3||gs, w.v.h.p., (7.50)

where we used the local law (3.5a) to assert that, with very high probability,

o~ o~
1B (3G) 1 (3G),,, S
S =2 S NS ()W Bl - (7.51)
VN Nn
Note that in estimating maxy|(G BG)y |, we need to use the operator norm || B|| since no
summation on indices is available. We convert it into || B, at a costs of an extra +/ N

factor, as || B|| < ~/N || B |ILs» but this is affordable since we collected sufficiently many
powers of N~1/2 in the third cumulant term.
Finally, we estimate the term with no (3 R), namely, dropping |R|?~!

1
W|(GBG)ab|

‘N‘S/ZZ Y «(ab, a1, )Gy Gpyy (GBM),_|. (7.52)

ab 1,0

For both Gpq, and Gp,4,, we write G4 = Myp+(G — M) 4p and use the bound [Mgp| S
(z)_l, (G — M)ap| S NEW, w.v.h.p., that follow from (7.7) and (3.5a), respectively,
to estimate the contributions coming from the deterministic and the fluctuating part
separately. In particular, we obtain the very-high-probability bound,

‘N‘S/z > k(b ar, 02)(G — M)pay Mp,a, (GEM)

ab ai,02
DG ar, )|

o]

S@TINE (4B kW2 1B s -

bra

(7.53)

g N—1/2+§\I}(Z>—2 (GEE*G*)l/Z
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The contributions coming from Mp,, (G — M)p,a, and (G — M)pa, (G — M)p, 4, ad-
mit analogous estimates. Therefore, it remains to bound the contribution coming from
Mpa, Mp,q,. Using (2.8), we estimate

bra

‘N5/2 Z Z k(ab, ay, a2) Mpa, Mp, a, (G§M)

ab oj,0
) _ (7.54)
< N7 'Ikll3 1M |GBM||,,

SN2 (1+ B (@) AN V2 By, w.vhp.

Putting back the dropped | R| factors into the estimates (7.46), (7.48), (7.50), (7.53) and
(7.54) and using the Young’s inequality to separate these factors into an additive |R|?
term with a small multiplicative constant, we see that the second and third order cumulant
terms in (7.45) can be estimated by (N3/2(z)1/2(Nn)~1/2W ||B||,s)" + N=PS/4|R|P.
Here we used 8 > N ~¢/4 from (3.4).

Estimating the terms involving fourth and higher order cumulants using simple power
counting, similarly to (5.30)—(5.31), we deduce that

P
E[|R|"]s(N3E/2<z>1/2<Nm—1/2w ||B||hs) + N“PEAE[RIP]. (1.55)

This concludes the proof of (3.5b). |
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Appendix A. Technical Lemmas

In this appendix, we collect the proofs of several technical lemmas used throughout this
paper.

Proof of Lemma 3.4. Observe that for any s > 0 and any initial condition H, the distri-

bution of the random matrix S;ag[H ] satisfies

[H] £ BIH] +e2(H —EH) +/1 - =}*[Wg], (A1)

s
zag


http://creativecommons.org/licenses/by/4.0/
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where Wg is a standard GUE/GOE random matrix (in the same symmetry class as H)
independent of H. Moreover, if Xy > ¢Xg for some constant 0 < ¢ < 1, then there
exists a random matrix W with EW = 0, such that

S [We] £ W+ /e W, (A2)

where VNVG is a GUE/GOE matrix independent of W. Therefore,

~ d .
sl H S B + eyl —es W, H SE[H]+e/?(H-EH)+/1 e~ W,
(A.3)
where WG is independent of H. Hence, (3.13) follows immediately from (3.8) and
(A.3) for 9. ;(H) defined as

Des(H) :=¢/? (IEH +e W2 (H —EH)+V1 — es<f>VT/>, (A.4)

where the random matrix W independent of H satisfies (A.2), and s(¢) = s.(¢) is defined
in (3.14).

The estimate (3.15) is a direct consequence of (3.14). This concludes the proof of
Lemma 3.4. O

Proof of Lemma 3.5. Fix atime 0 <t < T and let z; denote the solution of (3.18) that
satisfies z; € be". It follows from (3.18) and (3.20) that for all s € [0, ¢],

d(nsps(z5)) = —1py(z5)*ds < 0, (A.5)

where we denote 1, := Jz;. A similar computation reveals that
d(ps(z0) ' ns) = —(ps(ze) "'y + 7)ds < —mds, (A.6)

since p; 1(2)3z = 0 for all z € C. Moreover, it follows from Assumption 2.5 that
|dz/ds| < C'forall 0 < s < T and all z; € DY, hence, using the estimates (A.5)
and (A.6), we deduce that z; € D?b" for all s € [0, ¢]. This concludes the proof of
Lemma 3.5. |

Proof of Lemma 4.1. Clearly, for terminal times 0 < T < 1, the solutions to (3.17)
satisfy |[A; — Ar|| S T—tand |S; — St llj = S T—t,forall0 < ¢ < T.Therefore,
for some sufficiently small threshold T, ~ 1, the first bound in (4.1) follows immediately
from Assumption 2.5 and the stability of the MDE against small perturbations of the
data pair, see Section 10 in [10]. Moreover, it follows from the fullness Assumption 2.4,
that, by possibly shrinking the threshold T, we can guarantee that S;[X] ~ (X) for any
Hermitian matrix X > 0. Hence, the second bound in (4.1) follows from Proposition
3.5 in [10] and the first bound in (4.1). This concludes the proof of Lemma 4.1. O

Proof of Lemma 5.3. Throughout the proof, we consider the time s € [0, sfpa1] to be
fixed, and drop it from the superscript of G*. The uniformity of all estimates in s follows
trivially from the assumptions of Lemma 5.3.

First, we prove the second estimate in (5.6). The map n +— n>/(x% +7?) is increasing
inn > 0 for any x € R, hence it follows by spectral decomposition of IG that

MIG(E +in1) < noIG(E +ino), (A7)
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in the sense of quadratic forms. Therefore, the second estimate in (5.6) follows imme-
diately from (5.2).

Next, we prove the first estimate in (5.6). Using the Schwarz inequality and the Ward
identity, we deduce that for all 0 < n < no,

|(3G(E +im),, (SG(E +im),,|'"*
n

d . 1o :

a(G(E +in)) | S S Fp(E +ino), (A.8)
where in the second step we used the monotonicity of the maps n — nIG(E +1in) and
n +— np(E +1in), and the second bound in (5.6) established above. Integrating the bound

(A.8) from 5 to 1o, we obtain
. . 1o .
(G(E +in),,| S |(G(E +ino)),, |+ Ep(E +1n9). (A.9)
Since p(E +ing) < 1, the first estimate in (5.6) follows immediately from (5.2) and

(A.9). This concludes the proof of Lemma 5.3. |

Remark A.1 (Local Laws below the Scale) Assume that p(E +in;)Nn; < N¢ and
p(E +ing)Nno = N°¢, in particular n; < 5. Using (A.7) with (3.1) at z := E +ing as
an input, we obtain the very-high-probability bound

3 &
< P(E +ino)Nno < N ‘
Nm Nm

~ . 10 .
(SG(E +in)),, < ap(E +ing) (A.10)

Using Lemma 7.1 and the identity dM (z)/dz = B~ (z)[M (z)?], that follows by taking
the z-derivative of (2.3), we conclude that [|[dM (z)/dz| < |p(z)/3z|. Hence, differen-
tiating (G(E +1in) — M (E +1in))yy With respect to n, similarly to (A.8), we can deduce
that

&

. . N
|(G(E +in1) — M(E +im)),,,| < N

Analogous reasoning also applies to averaged bounds. Indeed,

,  w.v.h.p. (A.11)

d . :
a((G(E +in) — M(E +in))B)

_ |RGE+in)sGE + inBB*)|"? + p(E +in) | Bllys

~ (A.12)
n
Therefore, by integrating (A.12) in n and using (3.1), we can deduce that
NS
((G(E +in) — M(E +in))B)| < IBllhs, Ww.v.h.p. (A.13)

Nm

These results show that the local laws (3.1) hold at z = E +iny, for any 0 < 1 < 1,
once they hold at E + ing with 5o satisfying p (E +ino) Nno = N°®.

Proof of Lemma 6.2. First, we prove (6.2). Let o; be function defined in (7.3), corre-
sponding to the solution M; of the time-dependent MDE (3.16). It follows from Lemma
5.5 in [10] that o; admits a uniformly 1/3-Holder regular extension H. Moreover, it
follows from Lemma 7.16 in [10] that |oy(¢; )| ~ |o:(e])] ~ Atm and it follows from

Theorem 7.7 (ii.b) in [10] that o;(e; ) < 0 and o;(¢]) > 0. Therefore, there exists a
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point x; € (o;(e; ), 0y (¢})) satisfying oy (x;) = 0. For any 0 < s <1, let x; := @5 ;(x7)
as defined in (3.19). It follows from (3.20) that o (xs) = O for any s € [0, ¢].
Furthermore, 1/3-Holder regularity of p, in ¢ implies that there exists ¢ ~ 1 such that

for times s satisfying0 <t —s < cAtl / 3, the density ps has a gap in the support around
x5 of size Ay > 0, let e and ¢! denote its endpoints. From 1/3-Hoélder regularity of oy,
we infer that dist(xy, e5) ~ A,.

On the other hand, the map Ay : x — limy,_ 40 ps(x + in)_ln is also 1/3-Holder

regular, uniformly in s, hence hg (x5) ~ dist(x;, ef)l/zAim ~ A§/3 by (6.1). Along the

trajectories of (3.18), iy (xy) ~ hy(x;) + (t — s) for all 5 satisfying 0 < t —s < cA}/,

therefore (6.2) holds forall 0 <t — s < cA,l/3. In particular, A,_.A15 2 As + Atl/z,
which implies that (6.2) holds for all 0 < s < ¢. This concludes the proof of (6.2).

Next, we prove (6.3). A similar relation for the evolution of the gaps under the free
semicircular flow was studied in Section 5.1 of [36]. To keep the present paper reasonably
self-contained, we present a complete proof for the evolution under the characteristic
flow (3.18).

Observe that it follows immediately from (3.16) that the density pg(x) satisfies

ips(x) = i(fps(x) + (-‘RMs(x))ps(x)>, xeR, 0=<s=<t. (A.14)
dx dx \ 2

Consider the mass of p; that lies to the left of the point x;. Equation (A.14) implies that
d [
—/ ps(x)dx =0, 0<s<rt, (A.15)
ds J_o

where we used that ps(xy) = 0. Therefore, the mass of the band of p, to the left of ¢
is constant 0 < s < ¢. For any r > 0, define y,(r) implicitly by

ys(r) Xs
f ps(x)dx = / ps(x)dx —r. (A.16)

—00 —00

Note that by the definition of the edge point ¢, and the structure theorem [10, Theorem
7.2 (ii)] for py, there exists a constant ¢ > 0 such that ps(ys(r)) > Oforall0 < r < ¢
and all 0 < s < t. Moreover, y,(r) < ¢; < x,. Therefore, it follows from (A.14) that
(a similar equation for the free semicircular flow was obtained in Section 4.1 of [32])

d 1 ~
TN () = =23 — (M (5 (). 0=r<Z 0s<s=t. (A17)

The evolution equation (6.3) for ¢, follows by taking the limit » — 0 in (A.17). An
analogous argument that considers the mass of p; to the right of x; implies (6.3) for e!.

Next, we prove the first estimate in (6.4). By taking the imaginary parts of (3.18) and
(3.20), we obtain

ns ~n+p(t—s), ps~p, 0=<s=1t. (A.18)

Moreover, it follows form the comparison relation for p; from (6.1), that

_ _ 1/2 . —1/6
i~ i Ge + ) V(A + 54 4 ) O <A, (A.19)
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where we used 0 < 3¢, < A; and the assumption that , < N~VA,. Therefore, using
(6.2), (A.18) and (A.19), we obtain

s S ntI/ZAt_l/6(AI + (I _ s)3/2)2/3 S N—U/2A3/3A?/3 S N_U/ZAS, 0 <s<t,
(A.20)
hence the first bound in (6.4) is established. To prove the second relation in (6.4), observe
that it suffices to show that forall0 <s <randalln < N “V/ZA s, we have the bound

£R[F () — F-(+0)] > 0, F;"(n) := —%(e? +in) — (My(eg +in).  (A21)

Indeed, (A.21) implies that along (3.18), for all points at level n < N —V/2 A, above the
ends efﬁ of the gap, their projection onto the real line moves away from the gap, for
all times 0 < s < r. Hence no trajectory z; = Ej + in;, satisfying E; € (¢; , ¢f) and
n: < N7VA; can violate (6.4).

To see that (A.21) holds, note that the Stieltjes representation for (M, ) and the universal
shape (see, e.g., [36, Egs. (2.4a)—(2.4e)] for precise formulas)
of the density p; in the vicinity of its singularities ejt yields

2

1 —
0 = o] = 2 [ i (a22)

> CAS_I/6771/2 + O(A;5/3n2) +00*) >0,

where in the last line we used the assumption < N~"/2A; < N~"/2. The computation
for F; is completely analogous. This concludes the proof of (6.4).

Next, we prove (6.5). Using the comparison relations (A.18) for p; and o s, together
with the bound n; < N~™"/?Ay, and the assumption 54 (z;) > NV, , we deduce that

1/2 . 1/2
A
>min{1+ﬁ,}‘t_t} > 2 (A.23)

N¢ Nt ~ o

-2
g +({—s
1+25 o Pr Nt ( )

s A,l/3+(t — )12

which implies (6.5) immediately.

Finally, we prove (6.6). Without loss of generality, we can assume z; = ¢, + Yy + 17
with 0 < y; < (1 — C1)A; for some 1 < C; < 3/4. Considering the difference of the
real part of (3.18) and (6.3), we obtain

d 1 , _ _ _
ays + zys = SR(”’s(es ) — Ms(es +ys) + Ms(es +y5) — M (Zs)>
1 ps(ey +x)dx 5 1 ps(ey +x)dx
= _yS_ - N = 7)3_ 2 2\’
R x(x = y) 7 Jr (s — ) ((ys — )% + 1)

(A.24)
where in the second line we used the Stieltjes representation for (M, ). Using the universal
shape of the density p, near the singularities e;t, we conclude that uniformly in0 < s <
t<T,

n?

~ 6 .
A (s +15)3/2
(A.25)

_ 1/2
/ poley +x)dx _ w?
s
R

~Y ’ r’
x(x —yg) A§/6 *

/ ps(eg +x)dx
R (ys — x)((x — y)% +1?)
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Since ny < N /25 and s, < vs, we conclude from (A.24) and (A.25) that

12
d Vs
— < 2 A

which, together with (6.2), implies (6.6) for some constant ¢ > 0. This concludes the
proof of Lemma 6.2. O

Proof of Lemma 6.5. We restrict our considerations to the event £2 on which the assumed
bound (6.9) holds.

First, we prove (6.10). Assume, to the contrary, that there is an eigenvalue A of H such
that A € [¢; + f(r), ¢f — f(1)], then

1
(3G +im)= —, n>0. (A.27)
Nn

On the other hand, choosing  implicitly such that p;(A +in)Nn = N ¢ 2, implies that
A+in € Dts“b and n ~ (A)l/4n?/t4N_§/4 . Therefore, using the assumed bound (6.9)
with data (D$°, ¢ + €v, Q) yields

i - 4 —t/2
§p,(k+1n)Nn+N (logN) <N .

(;9G(A + 177)) N7 S

(A.28)

Therefore, we conclude by contradiction that (6.10) holds on 2. This concludes the
proof of Lemma 6.5. o

Appendix B. Polynomially Decaying Metric Correlation Structure

In this section, we verify the last condition in Assumption 2.3 (i) for the ensemble in
Example 2.6. More precisely, we show that (2.8) holds under the assumption that (recall
(2.11c) from Example 2.6)

(@1, @2, @3)| < C3 | | S ) (B.1)
- 1+d(e)*
e€ % min
for some! s > 2, where Ty is a minimal spanning tree in a complete graph with

vertices a1, o2, @3 and edge weights induced by distance d, defined in (2.11b). That is,
out goal is to show that, for all X, Y, Z € CV*V the estimate

N2 Jie(ern, @2, @3) || Xbyas | Yosas | | Zbsay |

o],002,03

S G UIXINYIIZIns . oj = (aj. b)), (B.2)

holds for some absolute implicit constant, where C3 is the constant from (B.1).

We estimate the contribution of the case when (1, ®3) € Tmin and d(ay, a3) =
lai — b3| + |b1 — a3 in full detail. It is straightforward to check that in all other cases,
using the trivial bounds | Xp,4,| < [IX|, [Ypya3| < Y || is sufficient. Indeed, since s > 2,

IS The estimate (B.2) below can be proved under the relaxed summability condition s > 3/2. However,
s > 2in (2.11c) is still necessary for (2.6)—(2.7).
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the indices b1, az, b, a3 can be summed up after using the norm bounds on X and Y;
then for the remaining (a1, b3) sum, we use N—3/2 Zal by | Zaiby | S N Z]lgs-
Therefore, it suffices to bound

|Zb3a1|
1+ (lay — b3| + b1 — a3])’

X =X(X,Y,Z) = C3N 3?2 Z

ay,03

X Y,
5 Z | Xb1a | 1 Ybyas | y (B.3)
1+ (la1 — a2| + b1 — bol)

o

where we assumed for concreteness that T i, = {(«1, @2), (o1, @3)} and d(aq, a3) =
la; — az| + |b1 — b>| (other cases are identical). First, we use the Schwarz inequality in
the b, summation, to obtain

[Ybyas 1
Z = S s—1/2 Z'Y”m'z
by

. 1+ (la — asl + by — bol)” ™ 1+ a1 — o]

- 17i

~ 1+ ay —ayls1/? (B.4)

Plugging (B.4) into the expression for X in (B.3) and performing the summation in a3,
we obtain the estimates

Zbrail 1
-3/2 § : | Zbsa, } : } :
%§C3 ”Y”N 1+|b3—a1|5—1 1+|a1_a2|s_1/2 |Xb|az|
az by

ay,bs

_ | Zb3a, | 1 (B.5)
<SG IX|IYIN! 3
~ 3 IXIY Z 1+|b3—a1|s_1 Z 1+ |a _azls—l/z
ay,bs a
S CIXITIY I IZ s »

where in the second step we used Schwarz inequality in b1, and in the ultimate step we
use the fact that s > 2 to first sum the convergent series in ay, and then apply Schwarz
in (ay, b3). This yields the desired (B.2).
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