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Abstract

This thesis investigates the interplay between algebraic and topological meth-
ods and combinatorial problems, focusing on approximate graph colourings
and mass partitioning. The unifying theme throughout the dissertation is the
use of continuous maps and symmetry constraints to extract combinatorial

insights.

We first explore approximate graph colouring problems and more generally
promise constraint satisfaction problems. Using tools from equivariant
topology in combination with the general theory of polymorphism of a

promise constraint satisfaction problem, we establish hardness for specific
types of approximations.

In the second part, we address mass partitioning problems, where one
seeks to divide geometric objects or measures in Euclidean space into parts
of equal size using hyperplanes. Employing techniques from topological
combinatorics (configuration space/test map setup and Borsuk-Ulam type
theorems), we both obtain a new equipartitioning result in the and provide a
fast algorithm for computing equipartitioning of point sets in 3D.
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CHAPTER

Introduction

Since its inception, topology has been used as a powerful tool to approach
problems in a variety of different fields; ranging from analysis to algebraic
geometry and anything in between. Furthermore, algebraic topology has
developed into a vast and rich research field in its own right, with powerful
techniques suitable to study a wide breath of problems throughout math-
ematics. Despite the early influence of combinatorics in the development
of algebraic topology, not many ideas during the early days of algebraic
topology were employed in discrete mathematics.

The focus of this work will be on two different applications of tools from
topology to different areas of discrete mathematics and combinatorics: graph
theory and partitioning of geometric objects (point sets, convex bodies or
mass distributions).

Arguably, the catalyst that jump-started the use of algebraic topology in graph
theory was the seminal work of Lovasz on the chromatic number of Kneser
graphs [Lov78]. Since then, a wide variety of results have been established
via topology,including topological lower bounds for the chromatic number of
graphs and hypergraphs (see , e.g. [MZ03, BK07]), evasiveness of monotone
graph properties [KSS84, Yao88], topological lower bounds and impossibility
results for distributed computing (see e.g. [HKR14]).

Additionally, the construction of the neighbourhood complex at the under-
lies Lovasz’ proof has been generalized and studied extensively (see e.g
[BKO7, Matl7, DS23]). Here, our focus will be on how to use topological
tools, in particular the concept of homomorphism complex, in the study of
approximate graph colouring problem and other promise constraint satisfac-
tion problems; see chapter 2, for a more detailed introduction and further
background on this class of problems.

Furthermore, topology has been a foundational tool for the study of mass
partitioning problems, see, e.g. the survey [RS21]. In particular, the well
known Ham-Sandwich theorem was proven (by Banach in 1938 in the three
dimensional case and Stone and Tuckey in the general case) by a direct
application of the Borsuk-Ulam theorem (see [RS21] for more details on the
early history of the Ham-Sandwich theorem).
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1. INTRODUCTION

Since then, a lot of effort has been invested in studying how partitions of the
standard Euclidian space R4 split families of measures (in the continuous
setting) or points (in the discrete setting). In Chapter 6, we will give a more
thorough introduction to this more general class of questions and present
our contributions.

1.1 Overview

We briefly describe the content of the remaining chapters. This work is
roughly split in two general topics; focussing first on topological methods in
promise constraint satisfaction problems, then on the mass equipartitioning
problem both from a theoretical and an algorithmic point of view.

In Chapter 2, we briefly discuss approximate graph colouring problems and
the more general context of promise constraint satisfaction problem and give
a short presentation of the needed notions.

In Chapter 3, we will give an high level presentation of the proof structure
for the main complexity results claimed in Chapter 2. Chapters 4 and 5 will
be dedicated to filling in the more technical details needed for the argument;
the presentation of this topic is based on [AFO*25, FNO*24].

Chapter 6 is dedicated to introducing mass partitioning problems and
presenting our contribution in this context. Chapter 7 will discuss the
existence result we obtained while Chapter 8 will focus on presenting the
algorithm for finding a eight partition of points in the 3D euclidian space.
The presentation is based on [ABR*24].



CHAPTER

Promise Constraint Satisfaction
Problems

2.1 Introduction

Deciding whether a given finite graph is 3-colourable (o1, in general, k-
colourable, for a fixed k = 3) was one of the first problems shown to be NP-
complete [Kar72]. Since then, the complexity of approximating the chromatic
number of a graph has been studied extensively; in particular, it is known
that the chromatic number of an n-vertex graph cannot be approximated in
polynomial time within a factor of nl=¢, for any fixed & > 0, unless P = NP
([Zuc07]).

However, this inapproximability result only applies to graphs whose chro-
matic number grows with the number of vertices; by contrast, the case of
graphs with bounded chromatic number is much less well understood. For
instance, given an input graph that is promised to be 3-colourable, what is
the complexity of finding a colouring of G with some larger number k > 3
of colours? Khanna, Linial, and Safra [KLS00] proved that this is NP-hard
for k = 4 (see also [GK04, BG16]), and only quite recently Bulin, Krokhin,
and Oprsal [BKO19] showed NP-hardness for k = 5. On the other hand, the
currently best polynomial-time algorithm for colouring 3-colourable gragghs,
due to Kawarabayashi, Thorup, and Yoneda [KTY24], uses k = O(n0-19747)
colours, where # is the number of vertices of the input graph.

In general, it is believed that colouring c-colourable graphs with k colours
is NP-hard for all constants k > ¢ = 3. However, the best results known
to date (apart from the above) are NP-hardness for ¢ = 4 and k = 7 (Bulin,
Krokhin, and Oprsal [BKO19]), and for ¢ > 5 and k = {L c,cfzj} — 1 (Wrochna

and Ziﬂs.rnjF [WZ20]). Moreover, conditional hardness results — assuming
different variants of Khot's Unigue Games Conjecture — have been obtained
for all k = ¢ = 3 by Dinur, Mossel, and Regev [DMR09], Guruswami and
Sandeep [GS20], and Braverman, Khot, Lifshitz, and Minzer [BKLM22].

One of the main question studied in this thesis is a generalisation of this
question. A graph homomorphism f: G — H between two graphs is a map

3




2. Promise CONSTRAINT SATISFACTION PROBLEMS

f: V(G) — V(H) between the vertex sets that preserves edges, i.e., (u,v) €
E(G) implies (f(u), f(v)) € E(H); we write G — H if such a homomorphism
exists. Throughout thiswork, we assume all graphs to be finite and undirected
and we treat them as symmetric binary relational structures, i.e., we view
the edge set E(G) as a subset of V(G) x V(G) that satisfies (u,v) € E(G)
if and only if (v, u) € E(G), and we allow loops, i.e., edges of the form
(v,7). A graph homomorphism f: G — H is also called an H-colouring
of G since a k-colouring of G is the same as a homomorphism from G to
the complete (loopless) graph K on k vertices. Vastly generalising the fact
that k-colouring is NP-hard if k = 3, and in P if k < 2, Hell and NeSetfil
[HN90] proved the following dichotomy: For every fixed graph H, deciding
whether a given input graph admits an H-colouring is NP-complete, unless
H is bipartite or has a loop, in which case the problem is in P. Analogously
to approximate graph colouring, it is natural to consider the complexity of
the following promise graph homomorphism problem: Fix two graphs G and
H such that G — H. What is the complexity of H-colouring graphs that
are promised to be G-colourable? More precisely, we consider the decision
version of this problem, denoted by PCSP(G, H): Given an input graph I,
output YESif I — G and NO if I /& H (no output is required if neither is the
case). Brakensiek and Guruswami conjectured [BG21, Conjecture 1.2] that
PCSP(G, H) is NP-hard for all non-bipartite, loopless graphs G and H (i.e.,
unless the problem is guaranteed to lie in P by the Hell-Nezetfil dichotomy).

As a first step towards the Brakensiek-Guruswami conjecture, Krokhin and
Oprsal [KO19] showed that PCSP(G, K3) is NP-hard for every 3-colourable
non-bipartite graph G. Their proof was based on ideas from a ;ebtalc to -:-l-
ogy; this topological intuition was formalised by Wrochna and Zivny [W
(and in the joint journal version [KOWZ23]). We extend this to 4- colourlng
(IAFO*25]):

Theorem 2.1.1. Let G be a non-bipartite 4-colourable graph. Then PCSP(G, Ky) is
NP-hard.

More generally, graph colouring is a special case of the constraint satisfaction
problem (CSP), which has several different, but equivalent formulations. For
us, the most relevant formulation is in terms of homomorphisms between
relational structures. The general formulation of the constraint satisfaction
problem is then as follows (see Section 2.2.1 for more details): Fix a relational
structure A (e.g., a graph, or a uniform hypergraph), which parametrises the
problem. CSP(A) is then the problem of deciding whether a given structure
X allows a homomorphism X — A. One of the celebrated results in the
complexity theory of CSPs is the Dichotomy Theorem of Bulatov [Bull7]
and Zhuk [Zhu20], which asserts that for every finite relational structure A,
CSP(A) is either NP-complete, or solvable in polynomial time.

The framework of CSPs can be extended to promise constraint satisfaction
problems (PCSPs), which include approximate graph colouring. PCSPs were
first introduced by Austrin, Guruswami, and Hastad [AGHI7], and the
general theory of these problems was further developed by Brakensiek and
Guruswami [BG21], and by Barto, Bulin, Krokhin, and Opr3al [BBKO21].

4



2.1. Introduction

Formally, a PCSP is parametrised by two relational structures A and B such
that there exists a homomorphism A — B. Given an input structure X, the
goal is then to distinguish between the case that there is a homomorphism
X — A, and the case that there does not even exist a homomorphism
X — B (these cases are distinct but not necessarily complementary, and no

output is required in case neither holds); we denote this decision problem by
PCSP(A, B).

PCSPs encapsulate a wide variety of problems, including versions of hyper-
graph colouring studied by Dinur, Regev, and Smyth [DRS05] and Brakensiek
and Guruswami [BG16]. A variant of hypergraph colouring that is cloself{
connected to approximate graph colouring and generalises (monotone™)
1-in-3-SAT is linearly ordered (LO) hypergraph colouring. A linearly ordered k-
colouring of a hypergraph H is an assignment of the colours [k] = {1,...,k}
to the vertices of H such that, for every hyperedge, the maximal colour
assigned to elements of that hyperedge occurs exactly once. Note that for
graphs, linearly ordered colouring is the same as ordinary graph colouring.
Moreover, LO 2-colouring of 3-uniform hypergraphs corresponds to (mono-
tone) 1-in-3-SAT, by viewing the edges of the hypergraph as clauses. In the
present work, we focus on 3-uniform hypergraphs: whether such a graph
has an LO k-colouring can be expressed as CSP(LOg) for a specific relational
structure LOy with one ternary relation (see Section 2.2.1). In particular,
1-in-3-SAT corresponds to CSP(L0O,).2

The promise version of LO hypergraph colouring was introduced by Barto,
Battistelli, and Berg [BBB21], who studied the promise 1-in-3-SAT problem.
More precisely, let B be a fixed ternary structure such that there is a homo-
morphism LO; — B. Then PCSP(LO;, B) is the following decision problem:
Given an instance X of 1-in-3-SAT, distinguish between the case that X is
satisfiable, and the case that there is not even a homomorphism X — B. For
structures B with three elements, Barto et al. [BBB21] obtained an almost
complete dichotomy; the only remaining unresolved case is B = LOj3, i.e., the
complexity of PCSP(LOgz, LO3). They conjectured that this problem is NP-
hard, and more generally that PCSP(LO,, LOy) is NP-hard for allk > ¢ > 2
(see Reference [BBB21, Conjecture 27]). Subsequently, the following conjec-
ture emerged and circulated as folklore (first formally stated by Nakajima
and Zivny [NZ23a]): PCSP(LOy, B) is either solved by the affine integer pro-
gramming relaxation, or NP-hard. (See Ciardo, Kozik, Krokhin, Nakajima, and
Zivnjf [CKK™*23] for recent progress in this direction.)

Promise LO hypergraph colouring was further studied by Nakajima and
Zivnjf [NZ23b], who found close connections between promise LO hyper-
graph colouring and approximate graph colouring. In particular, they provide
a polynomial time algorithm for LO-colouring 2-colourable 3-uniform hyper-

n the present work, we will only consider the monotone version of 1-in-3-5AT, i.e.,
the case where clauses contain no negated variable, and we will often omit the adjective
“monotone” in what follows.

2Observe that this notion corresponds exactly to the notion of Unigue Maximum Colour-
ing [CKP13] —however, in the context of promise CSPs these were first identified by [BBEB21],
and thus we follow their terminology. We thank Démétdr Palvilgyi for informing us that
LO colourings were also studied under this name.
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2. Promise CONSTRAINT SATISFACTION PROBLEMS

graphs with a superconstant number of colours, by adapting methods used for
similar algorithms for approximate graph colouring, e.g., [Blu94, KT17]. The
number of colours used was then reduced by Histad, Martinsson, Nakajima
and Zivnjf [HMNZ24] to log,(n). In the other direction, the NP-hardness of
PCSP(LOg, LO,) for 4 < k < ¢ follows relatively easily from the NP-hardness
of the approximate graph colouring PCSP(Kk-1, Kc-1), as was observed by
Nakajima and Zivny and by Austrin (personal communications).?

Our resultwithin this body of work is the following, which cannot be obtained
using these arguments.

Theorem 2.1.2. PCSP(LOs3, LOy) is NP-complete.

The proof of both Theorems 2.1.1 and 2.1.2 are structurally very similar and
mirror the argument in [KOWZ23], however they require both more sophisti-
cated tools from algebraic topology and significantly different combinatorial
arguments to obtain the claimed results. The outline of the proofs, as well as
a more precise comparison with the topological approach of [KOWZ23] will
be presented in detail in Chapter 3.

2.2 Preliminaries

We use the notation [n] for the n-element set {1, ..., n}. We identify tuples
a € A" with functions a: [n] — A, and we use the notation g; for the ith
entry of a tuple. We denote the identity function on a set X by 1x.

2.2.1 Promise CSPs

We start by recalling some fundamental notions from the theory of promise
constraint satisfaction problems, following the presentation of [BBKO21] and
[KO22].

A relational structure is a tuple A = (A ;R‘f‘, . Rf}, where A is a set, and
R‘?‘ c A*R) 5 a relation of arity ar(R;). The signature of A is the tuple
(ar(R1), ...,ar(Ry)). For two relational structures A = (A; R, .. .,Rﬁ} and
B = (B;RE, ..., RE) with the same signature, a homomorphism from A to B,
denoted h: A — B, is a function k: A — B that preserves all relations: for
eachi € [k]anda e Rf‘, if we let hi(a) denote the componentwise application
of i on the elements of a, then hia) RF. To express the mere existence of

such a homomorphism, we will use the notation A — B. We denote the set
of all homomorphisms from A to B by hom(A, B).

Note that graphs fit in the general framework of relational structures. In fact,
a graph can be interpreted, in this language, as a relational structure with a
single relation of arity 2 (that is symmetric since we focus only on unoriented

graphs).
3To see why, observe that (LOy, LO,) promise primitive-positive defines (K;_;, K._,); in

particular, we can define x # y by 3z - R(z, z,x) A R(z,z, y) A R(x, y, ). We then see that if
R is interpreted in LOy, then the required z exists if and only if x # y, as required.

6



2.2. Preliminaries

The other type of relational structures we will focus on is structures with
a single ternary relation R: pairs (A :R*) with R* € A% Moreover, most
structures in this context have a symmetric relation, where the relation R? is
invariant under permuting coordinates. Such structures can be also viewed
as 3-uniform hypergraphs, keeping in mind that edges of the form (4, a, b)
are allowed.

Definition 2.2.1 (Promise CSP). Fix two relational structures such that
A — B. The promise CSP with template (A, B), denoted by PCSP(A, B), is a
computational problem that has two versions:

¢ In the search version of the problem, we are given a relational structure
I with the same signature as A and B, we are promised that I — A, and
we are tasked with finding a homomorphism h: I — B.

¢ In the decision version of the problem, we are given a relational structure
I, and we must answer Yes if | — A, and No if I /& B. (These cases are
mutually exclusive since A — B and homomorphisms compose.)

The decision version reduces to the search version; thus for proving the
hardness of both versions of problems, it is sufficient to prove the hardness
of the decision version of the problem — and in order to prove tractability of
both versions, it is enough to provide an efficient algorithm for the search
version.

To complete this section, we define the relational structure LOy. that appears
in our main result. Let k € M, k = 2. Then the domain of LOy is [k], and LOy
has one ternary relation, containing precisely those triples (a, b, c) which
contain a unique maximum. In other words, (a,b,c) € RLOx if and only if
a=b<cora=c<b,orb=c < a,orall three elements a, b, ¢ are distinct.
For example, (1,1, 2) or (1,2, 3) are triples of the relation of LO3, but not
(2,2,1).

2.2.2 Polymorphisms and a hardness condition

Our proof of Theorem 2.1.1 uses a hardness criterion (Theorem 2.2.1 be-
low) obtained as part of a general algebraic theory of PCSPs developed by
[BBKO21], which we will briefly review.

Definition 2.2.2. Given a structure A, we define its n-fold power to be the
structure A" with the domain A" and

RM ={(a1, ..., aary) | (1)), - .., aaqr,)(f)) € R* for all j € [n]}
for each i.

An n-ary polymorphism from a structure A to a structure B is a homomorphism
from A" to B. We denote the set of all polymorphisms from A to B by pol(A, B),

and the set of all n-ary polymorphisms by pol'{"}{A, B)4

“Untraditionally, we use lowercase notation for polymorphisms to highlight that we are
not considering any topology on them contrary to the homomorphism complexes introduced
below.



2. Promise CONSTRAINT SATISFACTION PROBLEMS

Congcretely, in the context of graphs, a n-ary polymorphism from G to H
is amap f: V(G)" — V(H) such that (f(u, ..., un), f(v1,...,va)) € E(H)
whenever (u1, 1), ..., (n, vn) € E(G).

Similarly, in the special case of structures with a ternary relation, a poly-
morphism is a mapping f: A" — B such that, for all sequences of triples
(11,01, w1), . .., (tn, Un, wn) € R®, we have

(f(ug, ..., up), f(o1,...,00), f(w1,...,w,)) € RE.

Letm: [n] — [m], and let A and B be sets. The r-minor of a function f: A" —
B is the function f™: A™ — Bgivenby f™(x1,...,%u) = f(Xr), . .., Xx(m) for
all xy,..., x, € A (equivalently, if we view elements of x € A" as functions
x: [n] — A, then f™(x) = f(x o m)). A subset of the set of all functions
{f: A" — B,n > 0} that is non-empty and closed under taking minors is
called a function minion. For example, it is easy to see that pol(A, B) has
this property whenever A and B are relational structures such that A — B.
Abstracting from this, we arrive at the following notion:

Definition 2.2.3. An (abstract) minion 4 is a collection of non-empty sets
A" where n > 0isan integer, and mappings

7 ﬁ[“}_yﬁ[m};

for : [n] — [m], which satisfy 7 0 0% = (mo0)* whenever mogo is defined,
and (1(4)* =1 4. We will often write f™ instead of v (f), and call this
element the T-minor of f.

A minion homomorphism from a minion .# to a minion .4 is a collection of
mappings &, : AP — ) that preserve taking minors, i.e., such that for
each mt: [n] — [m], &y o ¥ = ¥ 0 &,. We denote such a homomorphism
simply by &: ## — W, and write £(f) instead of &,(f) when the index is
clear from the context.

Given a minion .#, an element f € .# ") is said to have essential arity at most k
if it is a minor of an element g € .#*). If there is a bound N, such that every
element of .# has essential arity at most N, .# is said to have bounded essential
arity. Anelement f € A" is constant if all its minors coincide, i.e., ff=f°
for all m > 0 and m, o: [n] — [m]. For example, in function minions, being
constant coincides with the usual notion of being a constant function, and
if a function f: A" — B depends only on a subset of variables with indices
{i1, ..., i}, then f(x1,...,xn) = g(xi, ..., x;), so f is of arity at most k. In
the proof of hardness for PCSP(Cy, K4) we rely on the following hardness
criterion.?

Theorem 2.2.1 ([BBKO21, Proposition 5.14]). Let G and H be two graphs such
that G — H. If there exists a minion homomorphism

&: pol(G,H) — %

for some minion 9B of bounded essential arity which does not contain a constant,
then PCSP(G, H) is NP-complete.

SHere stated in the graph case, but the result holds for general relational structures.
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An important example is the minion of projections denoted by 2°. Abstractly,
it can be defined by ") = [n] and n” = m. Equivalently, and perhaps more
concretely, 9 can also be described as follows: Given a finite set A with at
least two elements and integers i < n, the i-th n-ary projection on A is the
function p;: A" — A defined by pi(x1, ..., xs) = x;. The set of coordinate
projections is closed under minors as described above and forms a minion
isomorphic to 2. In particular, 2 is also isomorphic to the polymorphism
minion pol(LOz, LOz).

Itis clear that any function in a function minion isomor phic to 2 has essential
arity 1, therefore we immediately get the following corollary:

Theorem 2.2.2 ([BBKOZ21, corollary of Theorem 3.1]). For every promise template
(A, B) such that there is a minion homomorphism &: pol(A, B) — 9, PCSP(A, B)
is NP-complete.

This will be the hardness criterion we use to prove Theorem 2.1.2.

2.3 Topology and Homomorphism Complexes

We review a number of topological notions that we will need in what follows,
in particular the notion of homomorphism complexes, awell-known construction
in topological combinatorics that goes back to the work of Lovisz [Lov78]. We
refer the reader to [Hat02] and [Mat08] for accessible general introductions
to algebraic topology and topological combinatorics, respectively, and to
[Koz08] for an in-depth treatment of homomorphism complexes.

Simplicial sets In applications of topological methods in combinatorics
and theoretical computer science, topological spaces are often specified com-
binatorially as simplicial complexes. For our purposes, it will be convenient
to work instead with simplicial sets, which generalize simplicial complexes
in a way analogous to how directed multigraphs generalize simple graphs.
Simplicial sets are a somewhat less common notion in topological combina-
torics, but play an important role in homotopy theory, see [Fril2] for a gentle
combinatorial introduction.

Similarly to a simplicial complex, a simplicial set is a combinatorial description
of how to build a space from vertices, edges, triangles, and higher-dimensional
simplices. Informally speaking, we view the vertex set of each n-dimensional
simplex as totally ordered (equivalently, labelled by {0, 1,...,n}) and we
are allowed to glue simplices together by linear maps between them that
are given by (not necessarily strictly) monotone maps between their vertex
sets. On the one hand, this permits more general glueings than in simplicial
complexes (which allows constructing spaces using fewer simplices): for
instance, we may glue both endpoints of an edge to the same vertex (creating
a loop), or glue the endpoints of multiple edges to the same pair of vertices,
or we may glue the the boundary of a triangle to a single vertex, forming a
2-dimensional sphere $2. On the other hand, the description is still purely
combinatorial and, moreover, retains the information about the ordering

9
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of the vertices of each simplex before the glueing. This yields a natural
notion of products of simplicial sets and will play an important role in the
combinatorial arguments below.

Definition 2.3.1. A simplicial set X is given by the following data: First, a
collection of pairwise disjoint sets X, X1, X2, . .. ; the elements of X, are called
the n-simplices of X. Second, for every pair of integers m, n > 0and every (not
necessarily strictly) monotone map a: {0,...,m} — {0,...,n}, thereisa
map a®: X, — X, such that lﬁ-] ..my = 1x, and such that (a o )X = pXoaX
whenever the composition is defined.

Every simplicial set X defines a topological space | X|, the geometric realization
of X, which is obtained by glueing geometric simplices together according
to the combinatorial data in X; we refer to [Fril2, Section 4] for a precise
definition. We say that a simplicial set X is a triangulation of a topological
space T if | X| is homeomorphic to T. A k-simplex ¢ € X} is called degenerate
if 0 = a®(7) for some 7 € X,, and a: {0,...,k} — {0,...,m} with m < k.
In the geometric realization, degenerate simplices are collapsed down to
lower-dimensional simplices, and | X| is the disjoint union of the interiors of
non-degenerate simplices;‘s however, degenerate simplices play an important
role in specifying the glueings and the combinatorial data keeps track of
them. All simplicial sets we will use have only finitely many non-degenerate
simplices; this is equivalent to |X| being a compact space. The dimension of a
simplicial set X is defined as the maximum dimension of a non-degenerate
simplex of X.

A simplicial map f: X — Y between simplicial sets is a collection of maps
fu: Xn — Yy, n > 0, such that fi o aX = a¥ o fn for all monotone maps
a:{0,...,m} — {0,...,n}. Every simplicial map f: X — Y defines a
continuous map |f|: |X| — |Y|. An isomorphism of simplicial sets X and Y is
a simplicial map f: X — Y with a simplicial inverse g: Y — X (fy is inverse
to gy for all n > 0).

Products The product X XY of two simplicial sets X and Y is the simplicial
setwhose n-simplices of X XY are ordered pairs (o, 7),i.e., (XxY), = X, xY,),
and a®¥ (g, 1) = (a®(0), a*(1)). On the level of geometric realizations, this
corresponds to the usual product of topological spaces, i.e., | XxY| = | X|x|Y],
under some mild conditions on X and Y that are satisfied for all simplicial sets
we work with (e.g., if both X and Y are countable, see [Fril2, Theorem 5.2] for
a general statement). The nth power of a simplicial set X is X" = X x ... x X
(the product of n copies of X).

Group actions  Various objects we work with in this thesis (graphs, relational
structures, simplicial sets, topological spaces, etc.) have a natural symmetry
given by an action of a cyclic group (either Z when working with graphs or
Z3 when dealing with the arity 3 relational structures), which is described
by a structure-preserving automorphism (of order 2 or 3 depending on the

fIn more technical terms, | X| is a CW complex with one k-cell for each non-degenerate
k-simplex of X.

10
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Figure 2.1: The simplicial set ¥

context). For instance, a Z»-action on a simplicial set X is given by a simplicial
map v: X — X that satisfies v =vov=1y (thus, v is necessarily a simplicial
automorphism). We mainly work with actions that are free, which for actions
of Z; or Z3 simply means that v has no fixed points. If (X, vx) and (Y, vy)
are simplicial sets with Z;-actions, then a simplicial map f: X — Y is called
equivariant if it preserves the Z;-symmetry, i.e, f ovy = vy o f.

Zi-actions on relational structures (by isomorphisms) or on spaces (by
homeomorphisms), and the notions of equivariant homomorphisms and
equivariant continuous maps, etc., are defined analogously.

Relational simplicial sets Most simplicial sets we take into consideration are
of the following special form, which we call relational (a non-standard term):
The set X of vertices (0-simplices) is a finite set, and X, C (Xo)"lisan (n+1)-
ary relation, i.e., every n-simplex of X is an ordered (n + 1)-tuple [up, . .., un]
of vertices (we use square brackets as a reminder that we view these (n +1)-
tuples as simplices, and we identify each element u € Xp with the singleton
tuple [u]). Moreover, for ever; monotone map a: {0,...,m} — {0,...,n},
the map a* is defined by a*([u,...,un]) = [1a(0), - - - s Ua(m)]- To get a
simplicial set this way, the collection of relations X, n > 0, needs to be closed
under the operations aX, e, ifcisa simplex of X, then any tuple obtained
from ¢ by omitting and/ or repeating vertices without changing their order
is a simplex as well.

Example 2.3.1 (Zp-symmetric triangulations of spheres). We define a relational
simplicial set T2 that defines a triangulation of the 2-dimensional sphere
52, together with a natural Z>-action that corresponds to the antipodal map
x +— —x on $%. The vertex set of £2 is Eﬁ = {+,*} (which we think of as a
pair of antipodal points in 52), and Eﬁ is the set of all (n + 1)-tuples of + and
*’s with at most 2 alternations. Thus, e.g., [+, ¢, ¢, -] is a 3-simplex of r?
but [e, -, », ] is not. The Z;-action on £? is given by the simplicial map that
swaps the two vertices.

This construction naturally generalises to yield a sequence of simplicial sets
£ c £ c 2 c ..., such that Z* (whose simplices are tuples with entries in
{+,*} and at most k alternations) is a triangulation of Sk A simplex of rkis
degenerate if and only if it contains two consecutive vertices of the same color.

11
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Thus, the only non-degenerate simplices of L0 are the two vertices », «; I!
additionally has two non-degenerate 1-simplices [, - | and [+, #] connecting
these two vertices (geometrically, this corresponds to two distinct paths
between a pair of antipodal points, each following half of an equatorial circle
clockwise); £2 adds two non-degenerate triangles [+, », -] and [e, +, »] which
corresponds to glueing the northern and southern hemisphere, respectively
(see Figure 2.1); £ adds two non-degenerate 3-simplices; etc.

Observation 1. If X is a (relational)’ simplicial set then a simplicial map
X —» Xlis completely described by a 2-colouring of the vertex set X
with colours yellow or blue. Conversely, a 2-colouring f of X, defines a
simplicial map if and only if there is no 3-simplex [uy, uy, u3, u3] of X such that
[f{uﬂ}rf{u‘l ), f(“z}ff(“{’.]] has three alternations {15 equal to either [.r I ]
or [+,#,,#]). Moreover, if Zy-acts on X by a simplicial involution v, then
such a 2-colouring defines an equivariant map if and only if u and v(u) have
different colours for every vertex u of X.

Figure 2.2: The simplicial set o2,

Example 2.3.2 (Z3-space ©@?). The standard sphere 5? does not admit any free
Z3 action on itself. Therefore we need to define a new space that will play
the same role when dealing with Z3: Such space is the relational simplicial
set @2 together with a natural Z3-action.

The vertex set of @2 is E‘% = {+,#,#} (which we can think as an orbit of points
that are moved around by a cyclic permutation « + e, » + ), and ©? is the
set of all (n + 1)-tuples of -, #’s and #’s with at most one cycle. Thus, e.g.,
[+, e, e, ] is a 3-simplex of ©?, but [, -, ®, ] is not. The Z3-action on ©? is
given by the cyclic permutation previously described.

The simplicial set ©* has a very similar property as L2 regarding (equivariant)
map with itself as a target:

"The claim is true for arbitrary simplicial set X; it is only required that £2 is relational.
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Figure 2.3: The simplicial set I'y5.

Observation 2. If X is a (relational)® simplicial set then a simplicial map
X — @?is completely described by a 3-colouring of the vertex set X with
colours yellow, blue or red. Conversely, a 3-colouring f of Xy defines a
simplicial map if and only if there is no 3-simplex [u0, 11, u2, uz] of X such
that [f(uo), f(u1), f (uz2), f(u3)] has has more than a cycle (e.g. f(uo) = f(u3)
and f(u1), f(u2) are the other two colours). Moreover, if Zz-acts on X by a
simplicial automorphism v, then such a 3-colouring defines an equivariant
map if and only if u, v(u) and vz(u} are coloured in the correct cyclic order
for every vertex u of X; e.g if u is coloured red, then v(u) is blue and vi(u) is
yellow.

Order complexes of posets Another important example of relational simpli-
cial sets are order complexes: Given a finite partially ordered set (poset) P, the
order complex A(P) is the simplicial setwhose n-simplices are weakly monotone
chains, i.e., (n + 1)-tuples [ug, ..., u,] € P" with up < -- - < u,; moreover,
for every monotone map a: {0,...,m} — {0,...,n}, a®PNug, ..., u,] =
[Ua(), - - -, Ua(m)] as above. Note that monotonicity of & is crucial here to
ensure that chains are mapped to chains. An n-simplex [u, ..., uy] of A(P)
is non-degenerate if and only if ugp < --- < up.

Any monotone map f: P — Q between posets naturally extends component-
wise to chains and hence to a simplicial map f: A(P) — A(Q) between order
complexes.

Example 2.3.3. Let L be a positive integer divisible by 4. Define a partial
order < onZ = {0,1,...,L -1} by a < b if and only if a is even, b is odd,
and a —b = £1 mod L. We define the simplicial set 'z as the order complex
of this poset,

['L=AZL, <)

The simplicial set I'r. is a triangulation of 51 see Figure 2.3 (as a digraph,
it is a cycle of length L with edges oriented alternatingly). Moreover, the
mapZr = Zr, x — x + L/2 defines a simplicial involution I't — I that
corresponds to the antipodal involution on st

The previous example can be modified to build a simplicial triangulation of
§1 that is equivariant with respect to the standard Zz-action instead:

5The claim is once again true for arbitrary simplicial set X it is only required that 8% is
relational.
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Example 2.3.4. Let L be a positive integer divisible by 6. Define a partial
order £ onZ; = {0,1,...,L — 1} asin example 233 by a < b ifand only if a
iseven, bisodd, and a — b = £1 mod L. We define the simplicial set E; as
the order complex of this poset,

EL = AMZL, <)

The simplicial set Z; is again a triangulation of st

The difference is now that the map Z; — Zj, x + x + L/3 defines a simplicial
automorphism Z; — Z; of order 3 that corresponds to the rotation by 27t /3
on S1.

Note that the only difference in the two construction is the order of the
simplicial automorphism and thus the group acting on Sl: 75 in the case of
I't, Z3 in the case of 2.

Example 2.3.5. Let n be a positive integer. Define a partial order < on [n] xZ;
by (i, @) < (j, p) if and only if i < j. Define the simplicial set L,, as the order
complex of this poset,

Ly, =A([n] xZ3, <)

Furthermore, the map [n] x Z3 — [n] X Z3, (i,a) — (i,a + 1) defines a
simplicial automorphism of order 3 on L, that is free.

If P and Q are posets and if we consider the product P x QQ with the
componentwise partial order (p, q) < (¢/,q") ifand only if p < p’and q < ¢,
then A(P x Q) and A(P) x A(Q) are isomorphic simplicial sets. In particular,
bothI] =1y x.--x Iy and Zf = Z X --- X E are triangulations of the n-
dimensional torus T" = §1 x - .. x §1. Note also that in both cases the vertices
are n-tuples # € Z!', and k-simplices are (k + 1)-tuples of vertices [uy, .. ., 2]
such that #;+1 is obtained from u; by choosing a subset of coordinates of u;
all that are even and changing each of them by +1 modulo L.

Homomorphism complexes Given two relational structures A and B,
the homomorphism complex Hom(A, B) is a simplicial set capturing the
structure of all homomorphisms A — B. Following [Mat08, Section 5.9],
we define homomorphism complexes as order complexes of the poset of
multihomomorphisms from A to B.? By definition, a multihomomorphism is a
function f: A — 2B\ {0} such that, for all relational symbol R and all tuples
(a1,...,ar) € R4, we have that

f(a1)x -+~ f(a) € RE.

We denote the set of all multthomomorphisms by mhom(A, B). Multihomo-
morphisms are partially ordered by component-wise inclusion: f < g if and
only if f(a) C g(a) for alla € A.

“We remark that in [Mat08] order complexes are defined as simplicial complexes,
but the two definitions are equivalent. There are several other alternative definitions of
homomorphism complexes that lead to topologically equivalent spaces.
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Figure 2.4: The simplicial sets Hom(K3z, C3) and I'12 (see Example 2.3.6).

Definition 2.3.2. Let A and B be relational structures. The homomorphism
complex Hom(A, B) is the order complex A(mhom(A, B), <) of the poset of
multihomomorphisms.

Multihomomorphisms can be composed in a natural way: if f € mhom(A, B)
and g € mhom(B, C), then (go f)(a) = Ubef{a) 2(b) is a multthomomorphism
from A to C. In particular, every homomorphism f: B — C induces a
simplicial map f.: Hom(A, B) — Hom(A, C) defined on vertices by mapping
a multihomomorphism m € mhom(A, B) to the composition f o m.

In what follows, we will focus on two special cases: graphs and symmetric
relations of arity 3.

Graph homomorphism complex: When dealing with graphs, we will focus
on Hom(K2, G); a common tool in the study of graph colourings. Note that
a multimorphism m from Kz to a graph G corresponds to an ordered pair
of subsets m(1), m(2) C V(G) such that any pair of vertices v1 € m(1) and
v2 € m(2) are connected by an edge. If G has no loops, then m(1) and m(2)
are disjoint and induce a complete bipartite subgraph of G. The natural
Zp-action on K3 that swaps the two vertices induces an induces an action on
multihomomorphisms m: K2 — G, namely swapping the two sets m(1) and
m(2), which in turn induces a Zz-action on the simplicial set Hom(K3z, G);
this action is free provided G has no loops. Moreover, it is easy to check
that for every graph homomorphism f: G — H, the induced simplicial map
fo: Hom(K;, G) — Hom(Kj3, H) is equivariant.

The following two examples will play an important role in the proof of
Theorem 3.1.1.

Example 2.3.6. For every odd integer { = 3, Hom(K3, Cy) is isomorphic to the
simplicial set I'yy defined above; moreover, this isomorphism is equivariant,
i.e., it preserves the Zp-action.

Example 2.3.7. The simplicial set Hom(K3, K4) is a triangulation of a sphere
52 itis depicted in Figure 2.5 which shows two hemispheres of this sphere
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Figure 2.5: The simplicial set Hom(Kj3, K4); see also Example 2.37.

that are glued together along their boundary. The homomorphisms/edges
are explicitly labelled (the edge (u, ) is labelled by uv) to highlight the global
structure, and a few multihomomorphisms are labelled (where 3|01 denotes
the multihomomorphism 0 + 3 and 1 — {0, 1}, etc.) to explain how the
triangles are constructed.

Lemma 2.3.1. There exists an equivariant simplicial map

t: Hom(Kz2, Kg) — ¥,

Proof. By Observation 1, such a map is given by a suitable 2-colouring
of the vertices of Hom(K2, K4). One suitable 2-colouring is depicted in
Figure 2.5. O

Homomorphism complex of relations of arity 3: In this context, we work
instead with the homomorphism complex Hom(R3, A) where the role of
K3 is played by R, the structure with 3 elements and all rainbow tuples, i.e.,
tuples (a, b, ¢) such that a, b, and ¢ are pairwise distinct.

Note that a homomorphism h: R3 — A can be identified with a triple
(h(1), h(2), h(3)) € RA; conversely, every triple (a, b, c) € R* also corresponds
to a homomorphism as long as RA is symmetric. Similarly, a multthomo-
morphism m can be identified with a triple (m(1), m(2), m(3)) of subsets of A
such that m(1) x m(2) x m(3) C RA.

Moreover, consider the action of Z3 that acts on Rz by cyclically permuting
elements. This action induces an action on multthomomorphisms h: R3 — A
by pre-composition, and it extends naturally to an action of Zz on Hom(R3, A).

It is not hard to show that the induced action on Hom(R3, A) is free as long
as A has no constant tuples: If a multthomomorphism m is a fixed point of a
non-trivial element of Z3, then m(1) = m(2) = m(3), and since m(1) £ 0 and
m(1) x m(2) x m(3) € RA then R contains a constant tuple (a, a, a) for any
a € m(1). Consequently, we may observe that the action does not fix any face
of the complex.
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Figure 2.6: The simplicial set Hom(R3, LO3) and the embedded Z1s.

For every homomorphism f: A — B, the induced simplicial function
fo: Hom(R3,A) — Hom(R3, B) (defined on vertices by mapping multi-
homomorphism m to the composition f o m) is equivariant; as remarked
above, we will often identify f. with the corresponding continuous map
between the underlying spaces.

Unfortunately, the simplicial sets Hom(R3, LO3) and Hom(R3, LO4) are not
as easily described as it was the case for graphs; however it is still possible to
show some important properties.

Lemma 2.3.2. The simplicial set Hom(R3, LO3) contains an equivariant simplicial

subspace isomorphic to Eqg.

Progf. Consider the cycle in Hom(R3, LO3) given by the vertices!?

(2,1,1)—-(2,1,3) - (1,1,3) = (1,1,2) = (1, 3,2)
—(1,3,1)—(1,2,1)—(3,2,1) = (3,1,1) = (2,1,1).
This cycle is highlighted in Figure 2.6. Observe that it is invariant under the

Z3 action. Thus we see that there is the desired Z3-equivariant embedding
218 — Hom(R3, LO3). O

In general, while the equivariant homotopy type of Hom(R3, LO; ) can be hard
to understand, for our purposes it is enough to show it can be (equivariantly)
mapped to a sufficiently simple space.

Lemma 2.3.3. There is a Z3-map Hom(R3, LOyg) — @2,

"To be precise, every edge fo — fi of the cycle as it is written is not an edge of the
complex, but it “goes through” the vertex corresponding to the multihomomorphism
m: i+ foli) U f1li). For ease of readability, these vertices have been suppressed from the
notation.
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Proof. In order to provide the required equivariant map, we will first provide
an equivariant simplicial map to the barycentric subdivision of L3, then we
build an equivariant map L3 — ©2.

In general, the definition of barycentric subdivision for general simplicial
set requires some technical care (e.g., see [May92]). However, in the case of
order complexes it is possible to simplify it: The set #x of non degenerate
simplices in an order complex X is by itself a poset ordered by inclusion.
Then, the barycentric subdivision of X is just the order complex of Fx, (see
[Mat08, Definition 1.7.2]).

Denote by F = ¥, the poset of non-empty simplices of L3 ordered by
inclusion. To obtain the first of the claimed simplicial maps it suffices to give
a monotone equivariant map from mhom(R3, LOy4) to F.

First, we define an auxiliary function h: hom(R3, LO4) — [3] X Z3 by

h(f) = (max f(j) - 1, ™™= /0)),
1

Note that h respects the Za-action.
We extend h to a map ¢ : mhom(R3, LOy) — F as follows:

¢(m) = {h(f) | f € hom(R3, LOy), f < m}.

We need to check that ¢ is well-defined, i.e., that ¢(m) is a chain in F for
each m € mhom(Ra, LOy4). For a contradiction assume that f, g < m are
homomorphisms such that k(f) and h(g) are incomparable. This means that
max f = max g but the maximum is attained at distinct points; say max f =
f(1) = g(2) = max g. The function f’ < m defined by f'(1) = f(1), f'(2) =
2(2), f'(3) = f(3) is thus not a homomorphism — since (f’(1), f'(2), f'(3))
does not have a unique maximum — which yields a contradiction with the
fact that m is a multthomomorphism.

It is straightforward to check that ¢ is monotone, and equivariant.

The second equivariant map is much easier to explicitly build: By Observa-
tion 2, it is enough to provide an equivariant 3-colouring that avoids cyclic
colourings. One such colouring is shown in Figure 2.7. m|

Homotopy Two continuous maps f, ¢: X — Y between topological spaces
are homotopic, denoted f ~ g, if there is a continuous map h: X x [0,1] = Y
such that h(x,0) = f(x) and h(x, 1) = g(x); the map h is called a homotopy
from f to g. Note that a homotopy can also be thought of as a family of
maps h(-, t): X — Y that varies continuously with t € [0, 1]. In what follows,
X and Y will often be given as simplicial sets, but we emphasize that we
will generally not assume that the maps (or homotopies) between them are
simplicial maps. Two spaces are homotopy equivalent if there are continuous
maps f: X = Yand g: Y — X suchthat fog~1yand go f ~ 1x.

These notions naturally generalize to the setting of spaces with group actions:
Two equivariant maps f, g: X — Y between spaces with Z-actions are
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Figure 2.7: Equivariant colouring of Lj.

equivariantly homotopic, denoted by f ~z, g, if there exists an equivariant
homotopy between them, i.e.,, a homotopy h: X x [0,1] — Y such that all
maps h(-,t): X — Y are equivariant. We denote by [X, Y]z, the set of all
equivariant maps X — Y up to equivariant homotopy, i.e.,

[X,Y]z, ={[f]| f: X — Y is equivariant},

where [f] denotes the set of all equivariant maps g s.t. f ~z, g.
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CHAPTER

Outline of the arguments

Comparison with earlier work The topological approach in [KOWZ23]
for proving hardness of PCSP(Cy, K3), on which our work builds, required
understanding the structure of the set equivariant maps from T" to st up to
equivariant homotopy. Such maps can be classified by much more elementary
arguments using fundamental groups and winding numbers, which show
that [T", S']z, is isomorphic to the affine space of maps Z" — Z of the form
(x1,...,xn) = };aixi, where a; € Zand };a; = 1 mod 2 (this implicitly
exploits the fact that slis already an Eilenberg-MacLane space, i.e., has
trivial higher homotopy groups).

Moreover, bounding the essential arity of such maps that arise from graph
homomorphisms is also relatively simple: by considering suitable simplicial
embeddings of |Ty| = S! into T", the sum ¥;|a;| of absolute values of
coefficients in such a map can be read of as the winding number of a
simplicial map T'yy — 1 hence O(f).

By contrast, the more careful counting argument required in the case of
PCSP(Cy, Ky), although elementary in hindsight, was elusive for several
years.

At the same time, the case of PCSP(LO3;LOy) requires a relatively simple
observation on the total structure of pol(LOs, LOy) and thus itwas the context
where the more advanced topological ideas first bore fruit.

3.1 Outline - Hardness of PCSP(G, Ky)

We present a detailed overview of the proof of Theorem 2.1.1. Every non-
bipartite, loopless graph G contains a cycle C; of odd length { > 3. In
particular, there exists a homomorphism C; — G, hence every Cy-colourable
graph is G-colourable. This yields a trivial reduction from PCSP(Cy, Ky) to
PCSP(G, Ky). Thus, Theorem 2.1.1 follows from the following:

Theorem 3.1.1. For all odd integers { = 3, the decision problem PCSP(Cy, Ky) is
NP-hard.
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We will prove this using Theorem 2.2.1; to this end, we need to construct
a minion homomorphism from pol(Cy, K4) to a minion 9 that contains no
constant and is of bounded essential arity.

Informally speaking, as mentioned in Section 2.2.2, the general philosophy of
the algebraic approach to PCSPs is that in order to understand the complexity
of a problem, we need to get a good-enough understanding of the structure
of its polymor phisms, in our case, the structure of all graph homomorphisms
C;’ — K4, n > 0, i.e.,, 4-colourings of powers of an odd cycle. Prima facie,
such colourings do not seem to have any apparent structure, so we use
topology to simplify the problem and reveal more information. In the
first step, using homomorphism complexes, we pass from the problem of
understanding graph homomorphisms to the problem of understanding
equivariant homotopy classes of equivariant continuous maps T" — S2. This
provides an approximation of the structure of polymorphisms, nevertheless
classi?'ing such continuous maps is still difficult (this is connected to the
fact S* has many non-trivial higher homotopy groups me(59), k = 3). Thus,
in a second step, we replace 52 by a “topologically simpler” space Y. We
can then quite explicitly describe, in a third step, the set of [X, Y]z, in terms
of a suitable (equivariant) cohomology group (using equivariant obstruction
theory); this yields a minion homomorphism ¢ from pol(Cy, K4) to a minion
#; (defined precisely below). The fact that all maps and homotopies are
equivariant ensures that the minion #; does not contain any constants;
however, it is still not of bounded essential arity. In a fourth step, we then
argue that the image of ¢ actually is of bounded essential arity, for which
we use some of the previously neglected combinatorial structure. We now
describe these steps in more detail:

Step1 If X and Y are simplicial sets with Zz-actions, then the set of of all
equivariant simplicial maps X" — Y, n > 0, is closed under taking minors,
i.e., it forms a minion, which we denote by spol(X, Y) (this follows easily
from the definition of products of simplicial sets).

In the first step of the construction, we use homomorphism complexes to
associate with every graph homomorphism f: C’E — Ky an equivariant
simplicial map p(f): ]": ¢ T2, where Iy and L¢ are the simplicial sets
described in Examples 2.3.3 and 2.3.1, respectively. The simplicial map u(f)
is defined as a composition f o f, o i,:

I}, = Hom(Ka, Cp)" — Hom(Ka, Cy) 5 Hom(Kz, Kg) — X2,

where f,: Hom(Kj, CI') — Hom(Kjy, Ky) is the simplicial map induced by f,
t: Hom(Kz, K4) — Eé is the simplicial map from Lemma 2.3.1, the isomor-
phism F:t = Hom(K3z, C¢)" is given by the isomorphism from Example 2.3.6,
and the simplicial map 1, is given by the special case G = Cy of the following
fact:

Lemma 3.1.1. For every graph G and n = 1, there is an equivariant simplicial map
tn: Hom(K2, G)" — Hom(Kz, G").
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Proof. Givenan n-tuplem = (my, ..., m,)of multhomomorphisms m;: K; —
G, we can view m as a multthomomorphism tn(m): K2 — G" by setting
ta(m)(u) = my(u) X --- X myu(u) for each vertex u of Kz. This yields a map
tn: mhom(Kz, G)" — mhom(Kz, G") that is monotone and equivariant and
hence extends to the desired simplicial map.l O

The assignment f + p(f) defines a map u: pol(Cy, Ky) — spol(T'y,, L?) that
preserves arity. The map u does not strictly speaking preserve minors, i.e.,
for a general function m: [n] — [m], the simplicial maps u(f)™ and u(f™)
need not be equal, but it is not hard to see that the induced continuous maps
are equivariantly homotopic. Thus, if we denote by [u(f)] € [T", S*], the
equivariant homotopy class of the map |u(f)]: T" = |[,| — |Z2| = S?, then
[(f)™] = [u(f™)] (see Lemma A.2.3).

Step 2 Determining the set of equivariant homotopy classes of maps
[T",S%}, is a difficult problem (and closely related homotopy-theoretic
questions regarding maps X — S? for spaces of dimension dim X > 4 are
algorithmically undecidable [CKM+13]}. We circumvent this difficulty by
enlarging |Z?| = S? to a larger Zp-space Y that is “homotopically simpler”
(in technical terms, Y is an Eilenberg—MacLane space), which makes [T", Y]z,
much easier to compute.

Given a simplicial map g: I'j, — 22, we define n(g) € [T", Y]z, as the
equivariant homotopy class of the composition of the geometric realization
|g]: T" — S% with the inclusion map j: S* < Y. It is easy to show that
n preserves minors, and hence defines a minion homomorphism from
spol(T'y, T2 to the minion hpol(Sl, Y) of equivariant homotopy classes of
equivariant maps, i.e., the minion with hpol™(§!,P) = [T", P]z,, where
T" = (Sl)“, and minors defined in the natural way.

By considering the composition ¢ = 1o u with the map constructed in Step 1,
we get the following:

Lemma 3.1.2 (Chapter A). There are minion homomorphisms ¢: pol(C¢, K4) —
hpol(S!, Y) and 1: spol(Ty, L?) — hpol(S!, Y) such that im ¢ C imn, i.e., for
each polymorphism f: C}' — Ky, there is a simplicial map g: T}y, — L2 with
o(f) =n(3)

Step3 Next, we give an explicit description of the sets [T", Y]z,. This descrip-
tion is by the means of functions f,: Zo" — 7o of the form fa(x1,...,xn) =
Z:'zl aix;, where a = (a1,...,an) € E; and ¥ a; = 1 (mod 2). For a fixed
n, the set of such functions forms an affine space, which we denote by
.“2,"2!"], and together, these sets form a function minion Z3. Below, we will
often identify an affine function f, with the corresponding n-tuple a € Za"
of coefficients, i.e., we will often view Zz as an abstract minion, with
Z" = {ae": ¥;ai=1mod2}.

't is easy to see that 1, is injective, though generally not surjective, and it is known
[Koz08, Proposition 18.17] that 1, defines an equivariant homotopy equivalence between the
spaces |Hom(K;, G)|" and |Hom(K3, G")|, but we will not need this fact in what follows.
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Proposition 3.1.1. Foreach n > 0, there is a bijection
Vo [T", Y], — .%'2{"}.

Moreover, these bijections preserve minors, hence they form a minion isomorphism
) hpol{Sl,P) — F.

The proof of this proposition has two parts. One the one hand, using
equivariant obstruction theory, we can prove the following:

Lemma 3.1.3. The set [T", Y|z, has cardinality 2" 1.

One the other hand, every a € -?2{“} corresponds to a square-free monomial
[1ie1 zi of odd degree in the variables zy, .. ., zy, where I = {i € [n]: a; = 1}.
If we view S! = {z € C: |z| = 1} as the unit circle in the complex plane
then each such monomial gives rise to an equivariant map T" = (1" — st
given by (z1,...,z,) = [lie zi- By composing first with a fixed equivariant
inclusion S! < §2 (e.g., the one given by the inclusion Il ¢ £2) and then
with the inclusion j: 5¢ < Y, we can also view each such monomial []; z;
as an equivariant map m,: I'" — Y. Using a geometrically defined set
of Zp-valued invariants deg,, 1 < i < n, we will show in Section 4.2 that

these maps are pairwise non-homotopic; in fact, we will see that the map
Yu: [T, Y}z, — Z defined by y,([f]) = (deg,(f), ..., deg, (f)) satisfies
Ynlmg) = a. Thus, y, is surjective, and hence bijective, by Lemma 3.1.3;
therefore, every equivariant map T" — Y is equivariantly homotopic to a
unique monomial map m, with a € .%'2{"}. Moreover, we will show that the
maps y, reserve minors, hence they form a minion isomorphism.

Step 4 Finally, we show (Theorem 5.1.1) that for every equivariant sim-
plicial map f: I'j, — L2, the equivariant homotopy class n(f) € [T", Y]z,
corresponds to an odd monomial map [];ez; with |I| = O(f%). This is
proved by a combinatorial averaging argument, using the structure of the
triangulation Iy, the fact that simplicial maps to T2 correspond to vertex
2-colourings without alternating 3-simplices, and the geometric definition of
the invariants deg;. Thus, the image of pol(I'y, 2) under 1, and hence the
image of pol(Cy, K4) under ¢, has bounded essential arity. This concludes
the proof of Theorem 3.1.1.

3.2 Outline - Hardness of PCSP(LO3, LOy)

The structure of the proof of theorem 2.1.2 is rather similar to the argument
just outlined in the previous section. Here, we will present the main point
where it diverges.

Here, we will use the second hardness criterion (theorem 2.2.2) provided
by the algebraic theory of polymorphisms in [BBKO21]. Therefore, our
overall goal is to provide a minion homomorphism from the polymorphism
minion pol(LO3, LO4) to the minion of projections & (which is incidentally
isomorphic to the polymorphism minion of 3-SAT).
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Similarly as in the graph case, the first step replaces hypergraphs with
topological spaces that are now endowed with a natural Z3 action using
homomorphism complexes and translates the problem of understanding
their polymorphisms into understanding (equivariant) homotopy classes
of continuous maps Hom(R3,LO3)" — Hom(R3,LOy4). As was the case
before, classifying continuous maps up to (equivariant) homotopy remains
an daunting task, therefore in a second step, we further simplify the spaces
involved by substituting Hom(R3, LO3) with a circle 5! and Hom(Ra, LOy)
with a “topologically simpler” space P.

By using the same ideas from obstruction theory, we can describe the set
[T", Plz, explicitly in terms of the corresponding equivariant cohomology
group; we are thus left with a minion homomorphism x from pol(LO3, LOy)
to a minion #3 (defined precisely below).

The final step is significantly different from the graph case: By directly
studying the polymorphisms of the pair (LO3, LO4) we are able to show that
the image of y misses everything except the minion of projections 9 (which
is a subminion of #3).

We now explore these steps in more detail:

Step 1: As it was the case with graphs, we can use the Hom-complex
construction to translate polymorphisms f : LO; — LOy into simplicial
maps f, : Hom(R3, LO;") — Hom(R3, LOy) that are Z3-equivariant (since
R; has an intrinsic order 3 symmetry).

Following the same approach as before, we can define a simplicial map
u(f) =to fios wheret : Hom(Rs, LO) — ©? the simplicial equivariant
map given in Lemma 2.3.3

Once again, the assignment u : pol(LO3, LO4) — spol(Hom(R3, LO3), e?)
respects minors only up to equivariant homotopy; that is, if [u(f)] €
[Hom(R3, LO1)", Hom(R3, LOy4)}z, denotes the equivariant homotopy class
of |u(f)|, we have that [u(f™)] = [u(f)™] for any general function rt : [n] —

[m].

Step 2: To avoid the complexity of trying to determine all possible maps up
to equivariant homotopy between |Hom(R3, LO3)| and |[Hom(R3, LOy)|, we
simplify considerably by replacing the spaces |Hom(R3, LO3)| and |L4| with
spaces X and P that allow equivariant maps to and from, resp., these spaces,
and are better behaved from the topological perspective.

We choose X so that X — |Hom(Rj3, LO3)|, and its powers are topologically
simple but non-trivial. A natural choice is the copy of S which can be
seen as an equivariant subspace of |Hom(Rj, LO3)| (Lemma 2.3.2). The
action of Z3 on the circle can be then equivalently described as a rotation by
2m/3. Consequently, the powers of this space are n-dimensional tori T" with
component-wise (diagonal) action of Z,.

Additionally, we enlarge |®?| to a “homotopically simpler” space P (once
again, an Eilenberg-MacLane space) in order to simplify the computation
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of [T", P], and obtain a minion homomorphisms ¢ : pol(LO;, LOy) —
hpol(S!, P), n : spol(Hom(R3, LO3), ®%) — hpol(S!, P) withim ¢ C imn as
in Lemma 3.1.2.

Step 3: Next, we give a very similar description of the sets [T", Pz, in
terms of functions f, : Z7 — Z3 of the form falx1, ..., xy) = ¥; a;x;, where
a=(ay,...,ay)€Zzand };a; =1 mod 3.

The set 2‘;"] and the function minion #3 are defined analogously as the
previous case.

Proposition 3.2.1. Foreach n > 0, there is a bijection
Vn: [T",Plz, — .“2,";"}.

Moreover, these bijections preserve minors, hence they form a minion isomorphism
y: hpol(S', P) — Z;.

The proof of this proposition follows the same blueprint as the corresponding
Proposition 3.1.1. We first show, via equivariant obstruction theory, that:

Lemma 3.2.1. The set [T", Pz, has cardinality 3",

Then we assign to each a € 2‘;"} a continuous map mg: 1" — P. We then
define the analogous notion of deg;, now a set of Zz-valued invariants, so

that the corresponding maps y,, : [T", Plz, — .."4_‘,';"} preserve minors and are
such that y,([m,]) = a, providing the desired isomorphism.

Step 4: Finally, we show that the image of the “complete” minion homo-
morphism y : pol(LOs, LOy) — Z3 avoids all the affine maps except of
projections. This is done by analysing binary polymorphisms from LOj3 to
LOy.

We use the notion of reconfiguration of homomorphisms to achieve this.
Loosely speaking, a homomorphism f is reconfigurable to a homomorphism
g if there is a path of homomorphism starting with f and ending with g
such that neighbouring homomorphisms differ in at most one value. (For
graphs and hypergraphs without tuples with repeated entries this can be
taken as a definition, but with repeated entries there are two sensible notions
of reconfigurations that do not necessary align.) The connection between
reconfigurability and topology was described by [Wro20], and we use these
ideas to connect reconfigurability with our minion homomorphism &.

We show that any binary polymorphism f: LD% — LOy is reconfigurable
to an essentially unary polymorphism. In particular, we show that there is
an increasing function h: LO3 — LOy4 such that f is reconfigurable to the
map (x, y) — h(x) or to the map (x, y) — h(y). Further, we show that if f
and g are reconfigurable to each other, then x(f) = x(g). Overall this means
the image of x2: hp-:-lm(Sl,r P)— .""t,"f} omits an element. More precisely, we
have the following lemma, where 583 denotes the minion of projections on a
three element set (which is a subminion of #3).
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Lemma 3.2.2. For each binary polymorphism f € polm(Lﬂg, LOy), x(f) € .@f )

This lemma is then enough to show that the image of x omits all affine maps
except projections.

Corollary 3.2.1. yx is a minion homomorphism pol(LO3, LOy) — 5.

Proof. We show that if a subminion .# C Z3 contains any non-projection
then it contains the map g: (x,y) — 2x +2y. Let f € A1) depend on
at least 2 coordinates, and let f(xy,...,x,) = a1x1 +--- + ayx,. Observe
that aq,...,a, € {0,1,2}, and also }; a; = 2 (else f does not depend on
at least 2 coordinates). Hence there exists S C [#n] such that },csa; = 2.
Since } . a; = 1 (mod 3), it follows that } ;45 @; = 2 (mod 3). Hence,
letting m: [n] — [2] be defined by n(S) = 2 and n([#] \ S) = 1, we have
f™(x,y) =2x +2yie, f = g. So 4 cannot contain any non-projections.

Finally, the image of y is a subminion of #3, and since it omits g and every
subminion of Z3 contains 5%, it is equal to 9% which yields our result. O

As mentioned before, the above corollary combined with Theorem 2.2.2
provides the desired result, the NP-completeness of PCSP(LO3, LO4) (Theo-
rem 2.1.2).
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CHAPTER

Equivariant Obstruction theory

4.1 Equivariant topology

In this section, we describe how to construct, starting from 52 (or |E')2|},
a Zp-space Y [Zg,-sg)ace P) that is homotopically simpler, together with an
equivariant map S* — Y (@% — P).

The spaces Y and P will have the property that all of their homotopy groups
mu(Y) and mu(P) for n > 2 are trivial (which is not the case for neither 52 nor

1©7)).

Moreover, the lower-dimensional homotopy groups m;(Y') (m;(P)) for i > 2
are isomorphic to those of 5? (|@?|); thus, both spaces are Eilenberg—MacLane
spaces, i.e., they have only one non-trivial homotopy group, namely m2(Y) =
n2(5?) = Zand my(P) = my(|@?) = Z S Z.

The homotopy classes of maps from a complex X to an Eilenberg-MacLane
space are in bijection with the elements of a suitable cohomology group of
X [Hat02, Theorem 4.57]. An analogous statement is also true in the equiv-
ariant setting; this will allow us to determine both [T", Y]z, and [T", P}z, by
computing a suitable ec&uivariant cohomology group, specifically the Bre-
don cohomology group Hz (T"; 15(5%)) and Hz (T"; 112(©?)) respectively(see
Definition 4.1.1), which will allow us to prove Lemmas 3.1.3 and 3.2.1.

Throughout this Section, we assume some familiarity with fundamental
notions of algebraic topology such as homotopy, homology and cohomology.
We refer to [Hat02] for background on the more basic non-equivariant setting,
and to May et al. [MCC*96, Chapters I and II], [tom87], and [Bre67] for more
details on equivariant homotopy and cohomology of spaces with group
actions (all the definitions and constructions we use are special cases of the
general theory described in these standard references).

If X is a topological space with a Zg-action (given by a continuous automor-
phism of the correct order v: X — X), we will simply refer to X as a Zy-space,
and we use the multiplicative notation v - x instead v(x).
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4.1.1 Construction of the equivariant Eilemberg-MacLane
spaces

Construciton of Y: There are several different but ultimately equivalent
ways of constructing the space Y; here (following [Hat02, Example 4.13]),
we will use a simple inductive construction that starts with the sphere 52
and achieves triviality of the higher homotopy groups m;(Y), i > 2, by
successively glueing the boundaries of higher and higher-dimensional disks
along non-trivial elements of the corresponding homotopy group. The formal
description of this construction uses the notion of CW complexes.

A CW complex is a space X together with a increasing sequence of subspaces

(called a filtration)
Xo€X1€X2¢C---CX,

with the following properties: Xj is a discrete set of points (called vertices
or O-dimensional cells) and Xy is constructed by attaching a set of (i + 1)-

dimensional discs Di¥! to X; along their boundary via continuous maps
Qa: BD&“ = 5! — X;. Thus

) i+1
X|'+1 = (Xl H ]E[ Da ,)--"""m

where ~ identifies g,(x) € X; with x € dD!. Finally, the topology on
X =J, X, is the so-called weak topology (i.e., a set L C X is open if and only
if X N X; is open in X; for every i). The subspace X; is called the i-dimensional
skeleton of X.

We say that X is Z-CW complex if, for each i = 0, Zz acts on the set of

i-simplices and the attaching maps respect the action. As remarked above,
the geometric realization | X| of simplicial set X is a CW complexes, and if X
has a simplicial Z-action, then | X| is a Z,-CW complex.

Lemma 4.1.1. There exists a Z2-CW complex Y such that

1. my(Y) = ma(S?);
2. mi(Y)=0forall i # 2;and

3. thereisaZy-map j: S* — Y that induces an isomorphism m(j): m2(5%) —
n2(Y) of groups with a Zy-action.

Proof sketch. The sphere 52 can be viewed as a Zp-CW complex with the
antipodal action (we can, e.g., take the geometric realization of the simplicial
set EEJ. Starting with this Z-CW complex, we construct the i-skeleton Y; of
Y as follows:

1. We set Y, == §2.

2. For i > 2we create a space Y; as follows: Start with Y;—1 and for every
generator a of 7;(¥;-1) we attach two (i + 1)-dimensional discs Dy, Dy.o
by identifying dD, with a and dD,., with v - a. We then extend the Z
action in the natural way by “swapping” the paired discs Dy and Dy.,.
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3. Finally, we take Y = | 5, ;.

It is not hard to check (see [Hat02, Example 4.13]) that the Z,-CW complex Y
satisfies 77;(Y) = 0 for i > 3 and m;(Y) = m;(S?) for i < 2. Further, j: 5 = Y
is defined as the inclusion of the 2-skeleton Y> = $%into Y. O

Construciton of P:  The process to build P is a nearly identical inductive
construction starting from |©?| and iteratively gluing discs along non trivial
elements of the corresponding homotopy groups.

In particular, by mimicking the proof of Lemma 4.1.1 with the exception that
on step 2. we glue three discs instead of two, we obtain the following result.

Lemma 4.1.2. There exists a Z3-CW complex P such that

1. ma2(P) = 2(0%);
2. n;(P)=0forall i #2; and

3. thereis a Za-map j: ©% — P that induces an isomorphism 1t2(j): 72(@%) —
n2(P) of groups with a Za-action.

4.1.2 Equivariant cohomology: A primer

We now introduce the Bredon cohomology that will help us classify equiv-
ariant maps. Since the theory and the necessary computations are basically
identical for both cases we are interested in (i.e. Zz and Z3 free actions), in
this section we will work with spaces with a free Z -action (with generator v)
and specify k = 2 or k = 3 only when needed.

Prescribing a Z;-action on an Abelian group M is the same as giving M the
structure of a module over the group ring Z[Z; ] (which is isomorphic to the
the quotient Z[v]/(vF — 1) of the polynomial ring by the ideal (v* — 1)). In
particular, if Y is a space with a Z;-action, then this action naturally induces
a Zp-action on every homotopy group 7i(Y) and hence turns m;(Y) into a
Z[Zk ]-module. In what follows, we will mainly use the terminology of Z[Zy |-
modules (rather than speaking of abelian groups with Z¢-actions). We are
now ready to recall the definition of equivariant homology and cohomology
groups.

Definition 4.1.1 (Equivariant homology and cohomology). Let X be a Z;-CW
complex. Its d-dimensional chain group C4(X) has a natural structure of
Z[Zi ]-module with multiplication given on a cell o by

k-1

k-1
(Z nivi)o = Z ni(vi- o)
i=0

=0

and extended linearly. Since the all the boundary maps commute with the
action, these are Z[Zi |-module homomorphisms, and hence Co(X) can be
viewed as a chain complex of Z[Zk ]-modules. We denote this chain complex
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by ch (X). The homology associated to this chain complex is the equivariant
homology of X, denoted by H* (X).

Fix a Z|Zi -module N, and consider the equivariant cochain complex:
Ck (X; N) = Homgpz,)(C7*(X), N)

with the standard coboundary maps. The cohomology of this cochain
complex is the Bredon cohomology, denoted by Hik (X;N).

The key result we will need is the following equivariant version of the classical
Brown representability theorem:

Theorem 4.1.1 ([tom87, Theorem I1.3.17]; see also [MCC*96, Chapter II]).
Let Z be a Zy-CW complex which is an Eilenberg—MacLane space whose unique
non-trivial homotopy group is w;(Z) (we assume that m1(Z) is abelian if i = 1).
Then, for every Zy-CW complex X such that there is a Zy-map X — Z, the set
[X, Zlzy of Zi-equivariant homotopy classes of equivariant maps is in bijection with
HIZ& (X; mi(Z)).

We will apply Theorem 4.1.1 in the case where X = T" (with the diagonal
action) and, for k = 2, Z = Y is the Eilenberg-MacLane space constructed
in Lemma 4.1.1 while Z = P when k = 3 (Lemma 4.1.2). The last remaining
ingredient for the proof of Lemmas 3.1.3 and 3.2.1 is the following result on
the Bredon cohomology of the torus T", which we will prove in Section 4.1.3
below:

Proposition 4.1.1. Let M be a Z|Zi|-module generated by a single element such
that Ann(M) = 3 the ideal generated by the element (1 + v + .. .v5 1) € Z[Z].
Foralln,d = 1,

n-1
Hgk (T": M) = zi*-”.

This immediately implies Lemmas 3.1.3 and 3.2.1 given the following obser-
vaton:

Lemma 4.1.3. Both t2(Y) and ma(P) are generated by a single element as Z[Zz]
and Z[Za)-modules with annihilators (1 + v) and (1 + v + v?) respectively.

Proof. The second homotopy group m2(5?) is isomorphic as a Z[Z; ]-module
to 3- = Z where the multiplication by v is v - n = —n; in particular it is
generated by 1 and its annihilator is the ideal generated by 1 + v in Z[Z].

On the other hand, since ®7 is simply connected, by Hurewicz theorem
[Hat02, Section 4.2], there is an isomorphism between ﬂg(@i) and H,(©%)
that is an isomorphism of Z[Z3]-modules.

By direct computation, it is easy to show that the chains §; = d;—d;j+1 € Cﬂ@i]
(where dy = [e, e, ] and v - d; = d;41, see Figure 2.2) are cycles and any two
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out of {[Bi]}o<i<2 form a basis for Hy(©%) = Z @ Z. Fix [fg] and [B1], then the
multiplication by v is

v-[Bo]l = [v- fo] = [B1]
v-[B1] = [v-B1] = [B2] = =[Bo] = [B1],

Therefore, 2(P) is generated over Z[Z3] by m = (}) and A € Ann(m2(P)) if
and only if Am = 0; hence, if A = no + n1v + nzvz, then

=) )+ (D) = (222

Therefore, Am = 0if and only if nop = n1 = mpifand only if A € (1 +v+ vi). m|

Proof of Lemmas 3.1.3 and 3.2.1. In the case k = 2, by combining Theorem 4.1.1
and Proposition 4.1.1 and specializing to d = 2, we get the following bijection:

[T", Y}, = HE, (T"; ma(S) = 237
Thus, [T", Y]z, has 2"~! elements, as we wanted to show.
Similarly, when k = 3, we get the bijection:

[T, Pla, = H3,(T"; ma(P)) = 73~

Thus, [T", Y]z, contains 3"~! elements. O

4.1.3 The equivariant cohomology of the torus

This section is devoted to proving Proposition 4.1.1. We begin with two
technical lemmas that are useful for computing the equivariant cohomology
of spaces with a free action.

Lemma 4.1.4. If the action on X is free and cellular, then ck (X) is a chain complex
of free Z|Zy |-modules.

Proof. For every orbit of d-cells in X choose a representative o, and observe
that the module C4(X) is freely generated by the set of these representatives.
O

The above lemma implies that the functor Hc-mz[zk](Cdz" (X), -) is exact for
all free Zx-CW complexes X and d = 0. Therefore, if we have a short exact
sequence of Z[Z ]-modules

osaSmb oo

there is a corresponding short exact sequence of cochain complexes
- & - -f'
0— Czk (X;M) — Czk (3; ) — CE& (X;Q)—0
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and thus a long exact sequence in cohomology

.- — Hi (X;3) — HE (X;9M) — HE (X;9Q) D

5 HE109) — HEOGT) — -

Note that Z always admits a structure of Z[Zi ]-module: v - 1 = 1; in which
case the action is trivial and we denote such module as 3.

Define 3 = (1+v+---+vF1)Z[Z;] theideal generated by 1+v +---+vk~1 and
€ the module Z¥ where the action is v(ny, ..., m_1) = (mp_1, no, .. ., nx_2),
i.e., it shifts the coordinates cyclically. Then, we have the following diagram
of Z|Zy } module:

e ML

f ]
C —— Z[Zk]

The maps in this diagram are defined as: d(n) = (n, ..., n), 1 is the inclusion,
d(n) =n(l+v+---+ vk_l}, and ¢a(no, ..., ng-1) = Ho+ MV +-- -+ np_1vEL
Moreover, note that ¢ and ¢» are isomorphisms of Z[Zy |-modules, hence
the corresponding induced cochain maps

(¢1).: C3, (X; 34) = Cg, (X;9) (1) @ proa
(¢2).: C3,(X;€) — C3, (X Z[Zi]) ($2)e: @ > dpoa

are isomorphisms of cochain complexes.

Assume now that X is a CW complex with a free cellular Z;-action, and let
p: X — X [Z; be the projection map that maps each element of X to its orbit.
We have two isomorphisms of chain complexes of Abelian groups:

hy: C*(%/z,;2) » C3.(X;34)  M(a): o - a(p(0))
hy: C*(X;Z) — Cz,(X;C) ha(@): o — {“(Vi'”)]uqu'

Lemma 4.1.5. Let X be a CW complex with a free Zy-action, then the following
diagram commutes

C*X,2) —5 C3,(630) — 5 C3,(69)

J'p' h l’d' (®2). J'L
C*(X;Z) —— C3,(X;6) — C3, (X;Z[Z4])

Moreover, as already noted, all the horizontal homomorphisms (i.e. h; and (o;).) are
isomorphisms of cochain complexes.

Proof. The right square commutes by functoriality of Cik (X;-), therefore it

is enough to show that the left square commutes, i.e., that, for any d > 0 and
any a € C*(X /Zi; Z), ha(p*(a)) = du(h1()):
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We have, for all 6 € C2*(X),

ha(p*(@))(0) = (p*(@)(v' - 0)ocick = (a(p(v' - 0)))oeicx = (a(p(0)))
= (hi(a)(0), hi(a)(0))oci<k = de(h1())(o)

as claimed. m|

The last ingredient we will need is to determine what the projection map p*
does on the level of cohomology. While it is possible to compute p* directly,
it is easier to view the action on the torus from a different perspective to
simplify the calculations:

Lemma 4.1.6. Let X be the torus T" C C" with the diagonal Zy-action given
by the multiplication with a primitive k-root of unity wy (i.e., v - (z1,...,2n) =
(W21, ..., @kzn)). Let Y be the same torus but with Zy. acting only on the first
coordinate (i.e., v-(z1,...,2y) = (Wr21, Z2, . . ., 2y)). Then there is a Zy-equivariant
homeomorphism X — Y.

Proof. Themaps h: X — Y and h": Y — X defined by

hi(z1,...,20) — (21, zflzz, .. .,zflz,.}

B(z1,...,20) & (21,2122, . .., 2120)

are clearly continuous and mutually inverse. We will show that i preserve
the actions involved, and hence that k is an equivariant homeomorphism:

h(v-x (z1,...,2n0) = Bwkz1, ..., 0kzg) = (mkzl,zflzz, .. .,z,.z;l}
=v-yh(z1,...,20) O

Remark 1. If we view the torus T" as the quotient of " by the standard lattice
Z", then Lemma 4.1.6 shows that factoring out the action is the same as
factoring out the lattice generated by { %E-l, €,...,ey}. Hence, topologically,
the quotient is still a torus.

Thus, for the remaining (co)homological calculations, we can assume that
Zk acts on T" by changing only on the first coordinate. Using this sim-
plified action on the torus it is much easier to compute the quotient map
p*: H*(T" [Z;) — H*(T"). To achieve this objective, it is necessary to fix a
basis for the cohomology of the torus. The ideal choice would be a basis
that is “easy” to evaluate on homology classes in order to compute easily the
image of p*.

In the case of the torus, a direct application of the universal coefficient theorem
[Hat02, Section 3.1] show that homology and cohomology in dimension 1 are
dual to each other; hence we can choose as basis for the firstcohomology group
the dual of a suitable basis for the first homology group. In particular, let
{xi} be the basis for H1(T") corresponding to the standard coordinate cycles
in C1(T") (i.e., x; corresponds to the (non-equivariant) inclusion S — T",
z+(0,...,0,2,0,...,0) in the ith coordinate, 1 < i £ n), and denote by
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{x'} the dual basis in H lf]" ") = Hom (H,(T"), Z); analogously, define bases
{qi} of Hi(T" |Zx) and {q'} of HY(T" /Z). Then

kxl ifi=1
x! otherwise.

ﬂ@ﬁ={

The ring structure on cohomology (see [Hat02, Section 3.2]) of the torus
allows us to build a convenient basis for all the other -::-::-ht::-Irlt::-lt;:-g],F groups
out of {x'}. In fact, elements of the form x! = x — ... — x% where
I=(iy,...,ig) and iy < --- < ig, form a basis for H¥(T"). Let 4' denote the
analogous basis for H d(Tn /Z3). Since p* is a ring map, it commutes with the
cup product, hence it can be explicitly computed on such a basis. We have
that, for all 4,

kx!  if i1=1
xf else.

Paa) = piq") — - — pilg™) = [
In particular, p* is injective for all d > 0 and, in this choice of basis, p* is the
diagonal matrix with (;j] k's and {"El} 1's on the diagonal.

We are finally ready to compute the equivariant cohomology group of the
torus T" and prove Proposition 4.1.1.

Proof of Proposition 41.1. Fix n = 2. By hypothesis, we have a short exact
sequence
0—=3I=2Z[Z;)] —M—0

which induces short exact sequence of cochain complexes
0— CE: (T";3) — CE: (T"; Z[Zy]) — CE: (T"; M) —0
Using Lemma 4.1.5, we get that the following short sequence is also exact
0—c* (T, ) & ) — C3, (T;m) — 0

This short exact sequence induces the following long exact sequence in
cohomology

= H (T, ) Pay Hé Ty — HE. (T m) B

o
L)H‘”l (T’L,—zk) Zd pra+l (T") — ...
Since p; is injective for any d > 1, by exactness we have that ng (T";9M) =
coker p;. Finally,
- n-1
coker p* = 7(a) /im Py = Ei‘“
which yields the desired result. O
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4.2 Monomial Maps, Degrees, and [T", Y]z,

The goal of this section is to prove Proposition 3.1.1.

To this end, we will define, for every equivariant continuous map f: T" — Y,
a sequence of numbers deg,(f) € Z;, 1 £ i £ n, that are invariant un-
der equivariant homotopy. As we will see below, these numbers satisfy
Y ieqdeg.(f) = 1 mod 2. Thus, by assigning to every equivariant homotopy
class[f] € [T", Y ]z, the sequence y,([f]) = (deg,(f), ..., deg, (f)) € Z", we
get a well-defined map y,: [T", Y]z, — _"t,"z{").

To define the invariants deg; and throughout this section, we assume some
familiarity with fundamental notions of algebraic topology, including ho-
motopy, CW complexes, simplicial and cellular approximation theorems,
and simplicial and cellular homology and cohomology; we refer to [Hat02]
for general background, and to [MCC*96, Chapters I and II],[tom87], and
[Bre67] for more details on the equivariant setting,.

We will use the fact that the space Y is is a CW complex constructed from
I2 by attaching higher-dimensional cells (see the proof of Lemma 4.1.1 in
Section 4.1.1); in particular, the 1-dimensional and 2-dimensional skeleta of
Y are &l and £2, respectively.

For a CW complex X, let C,(X) and C*(X) denote the cellular chain and
cochain complexes of X with Z,-coefficients, respectively (since we work with
Zp-coefficients, i-dimensional cochains correspond to subsets of i-dimensional
cells of X, and i-dimensional chains correspond to finite subsets); in the
special case that X is a simplicial complex or simplicial set, Co(X ) and C*(X)
are isomorphic to the simplicial chain and cochain complex of X, respectively.

To motivate the following definition, consider the torus T2 = |]"%| and and
equivariant map f: T? — Y. Consider a loop in T? that wraps around the
first coordinate direction, say the circle x1 = {(z1,1): z1 € 51} = Sl c T2,
Note that the circle x1 is triangulated by a subcomplex of 1"2,r but it is not
fixed under the Zp-action on T2. If f = my,g) is the monomial map given by
(z1,z2) =+ j(z1), then f maps the circle x1 to the 1-skeleton Tl of Y, which
is a circle as well, and as a map between circles, f has degree 1; thus, there is
an odd number of edges [v, w] in the triangulation of x; that satisfy f(v) = e
and g(w) = «. If f is merely equivariantly homotopic to myy g), however, then
this need no longer be the case: Intuitively, we can visualize the homotop
as “moving” the image of the edges of the torus through the discs in L%,
therefore potentially changing the parity of the degree we are interested in.
The homotopy has to be equivariant, however, and thus has to modify each
antipodal edge in the opposite way. As a consequence, a 2-dimensional band
connecting the circle x1 and its antipodal circle v - x1 has to be “dragged”
around over the discs of £% and thus, while the degree might change along
equivariant homotopies, this difference will be registered in the behaviour of
the connecting band. We will now formalize this geometric intuition.

Definition 4.2.1. Let L, L be two positive integers divisible by 4, and consider
the 2-dimensional torus T? = | x I's|. Let e? € C1(Y) and d° € C%(Y) be
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os(v|-zq)

V- X1 ﬂ-:_}::-{"_:'

‘EJl

X -

Figure 4.1: Coordinate cycle and band in T? and T°.

the dual of ep = [e, ] € C1(£%) = C1(Y) and dp = [, +, ®] € C2(X2) = Ca(Y)
respectively (i.e., e'([+,]) =0and e[, *]) =1, similarly for d%). Moreover,
let x1 € Z1(I'L X I'tr) be the “first coordinate cycle” in |I'p x I'p/| = T2 (ie.,
X1 = Zi;é[{k, 0)k +1,0)] € Z1(TL x '), and let by € Co(I'L x ['1/) be the
“band” connecting x1 with v - x; (i.e., db; = x1 + v - xq; see Figure 4.1). Let
f:|TL xTs| — Y be an equivariant map. By the (equivariant) cellular
approximation theorem, f induces an equivariant cochain map f*: C*(Y) —
C*(I'L x I'1/) (i.e., equivariant homomorphisms f*: C'(Y) — C'(X) that
commute with the coboundary map). We define

degy(f) = (f'(e”)x1) + £ (d°)(b1)) mod 2

Crucially, this notion of degree is invariant under equivariant homotopies:

Lemma 4.2.1. Fix positive integers L, Ly and L, divisible by 4. Let f: [T xT'p| —
Y and f1: |T x| — Y be equivariant maps that are equivariantly homotopic.
Then deg, (fo) = deg, (f1).

Proof. Assume first that Ly = Ly. By the cellular approximation theorem
again, there is an equivariant cochain homotopy between the induced cochain
maps fg, f;: C*(Y) — C*(X ), i.e., there exist equivariant homomorphisms
h: C{(Y) — C™1(X) satisfying

fo+ fr=0h+ho.

Therefore, on the cochains of dimension 1 we have:

£ 1) + £(e%(x1) = (0h(e®))(x1) + (h(e))(x1) = 0 + h(d° + d)(x1)

where the second equality is obtained by using the fact that dx1 = 0 and
5e? = d% + 41,

On the 2-cochains we have:
F(d®)(b1) + f(@)(b1) = (5h(d”))(b1) + (h6(d"))(b1) = h(d”)(x1 +v-x1) + 0

where we use that db; = x1 + v - x1 and &d4° = 0.
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Moreover, h is equivariant, hence h(d°)(v - x;) = h(v - d°)(x;). Summing
everything together, using this fact and that v - d" = d1, we obtain that

degy(fo) + deg; (f1) = (f(e®)(x1) + £(€)(x1)) + (f5(@°)(b1) + £7(d°)(b1))
= h(d® + d")(x1) + h(d®)(x1 + v - x1)
= h(d®)(x1 +v-x1 +x1 + V- x1)
= h(d®)(2x1) = 2k(d°)(x1) =0 (mod 2).

If Ly # Ly, suppose without loss of generality that Ly < L;. Then I'y X I7, is
a subdivision of I'y x I'y,, and the equivariant chain map t: C,(I't x I';) —
Co(I'L x I't,) that maps every i-cell o of I't x I't, to the sum of i-cells of
I't x I, that are contained in ¢ is a chain homotopy equivalence. Thus, by
the previous case deg, (fo) = deg, (f1 o ) and from the definition of degree,

deg,(f1 o 1) = deg,(f1). |

We can now define deg;(f) of an equivariant map f: T" — Y as deg;(f“')
for a suitable 2-minor f°: T2 — Y (see Figure 4.1):

Definition 4.2.2. Let L a positive integer divisible by 4, and let f: |[I}| — ¥
be a Zz-equivariant map. For i € [n], we define o;: [1#] — [2] by 0i(i) = 1
and oi(j) = 2 for j # i. Then the i-degree of f is defined as

deg,(f) = deg; (') = ((f © 00)"(e°)(x1) + (f © 0;)'(d°)(1)) mod 2

An immediate consequence of Lemma 4.2.1 is the invariance of the i-degree
under equivariant homotopies:

Corollary 4.2.1. Let fo, fi: |I]| = Y be equivariant maps that are equivariantly
homotopic. Then deg;(fo) = deg,(f1) for all i € [n].

Proof. Since fp and fi are equivariantly homotopic, so are their minors fu"'
and fla'. O

It will be convenient to extend the notation for monomial maps to general
integer coefficients. As before, let us view S! = {z € C: |z| = 1} as the unit
circle in the complex plane. Given an n-tuple of integers a = (a1,..., an)
with }; @i = 1 mod 2, we get an equivariant map from T" to S1 defined by
(21,00, 2n) 2 2702y

By composing this map first with a fixed equivariant inclusion Sl ey 52
and then with the inclusion j: 52 — Y, we get an equivariant monomial map
mg: T" — Y given by

Moz, ..., 2a) = jlz9" - 2")

Remark 2. It is not hard to observe that the assignment a + m, preserves
minors when a is interpreted as a function f: Z" — Z. While we implicitly
use this minion homomorphism, this is not the minion homomorphism
we are looking for — importantly, #7 is not a subminion of the minion of
tuples @ € Z" with } @; = 1 (mod 2) since, e.g., the unary minor of (1, 1, 1)
disagrees in the two minions.
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Since monomial maps form a minion, we can easily compute the degree of
any of them.

Lemma 4.2.2. Let &« € Z" such that ¥; a; = 1 (mod 2). Then

deg;(ma) = a; mod 2

Proof. Let ¢; the minor used to define deg,. Then m,' = mg with f =
(i, 2 j#i j) e 72, Since the image of mg is contained in the 1-skeleton,
ﬂIE(th) = 0. Moreover, (mg).(x1) = @;ep + a;e;, hence e“((mlg).(xl}} = a; and
thus deg,(m,) = deg(mg) = a; + 0 mod 2. O

Corollary 4.2.2. Let a, p € 2‘;”}. Then m, and mg are equivariantly homotopic if
and only if @ = B.

Proof. If @ = p then m, and myg are identical as maps. Conversely, if m, and
mg are equivariantly homotopic, then deg;(m.) = deg;(mg) for all i € [n], by
Corollary 4.2.1. Thus, by Lemma 4.2.2, a; = 8, forall i € [n]. O

We are now ready to prove Proposition 3.1.1:
Proof of Proposition 3.1.1. For every n 2 1, consider the map y,: [T", Y]z, —

Z," given by
Vu([f]) = (degy(f), . .., deg,(f))
By Corollary 4.2.1, this mapping is well-defined. Moreover, by Lemma 4.3.3,

ifae i"é"}, then the homotopy class [m,] € [T", Y]z, of the corresponding
monomial map satisfies y,([m,]) = a, ie, the homotopy classes [m,],

a € 2‘%”}, are pairwise distinct, and by Lemma 3.1.3, they account for all
elements of [T", Y'},, i.e,, every equivariant map f: T" — Y is equivariantly
homotopic to m, for a unique a € .“2,"2!"]. It follows that y,([f]) € f*_‘,'é"} and
that y is a bijection.

Furthermore, if @ € Z" with ¥, a; = 1, and n: [n] — [m] then

Yul[ma]) = (@1 mod 2, ..., ay mod 2)

by Lemma 4.3.3, hence yu([ma])™ = B, where fj = (Zien-1(j @i) mod 2.
Furthermore, mT = Mg where ,8; = Lien-1(j) @i- Consequently,

Ym([ma]™) = p = :"'m([m;rr])

hence
ym([Ma]™) = yu([ma])™,

Thus, the maps yy preserve minors for homotopy classes of monomial maps.
Since these account for all homotopy classes, the maps y, define a minion
isomorphism y: hpol(Sl, Y) — % |

Finally, we show non zero degree guarantees a colour swapping edge, result
that we will use in the final combinatorial step of our proof of Theorem 2.1.1.
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Lemma 4.2.3. Let f: Ty x Ty — L2 a simplicial equivariant map such that
deg,(f) = 1. Then there is an horizontal color swapping edge, that is there is a
vertex (v1, v2) € I'L X I' such that f(v1, v2) = eand f(v1 +1,v2) = ».

Proof. Suppose, by contradiction, that every horizontal edge is monochrome.
Therefore, the image of the horizontal coordinate cycle is constant so that
f*(eo)(x1) = 0. Additionally, the image of a triangle is non degenerate if
and only if it is alternating (i.e., f([u,v,w]) = [e,+,#] or [+, 9, ]); since
we are assuming that every horizontal edge is monochrome, there are no
alternating triangles and therefore f*(d”)(b1) = 0. The total degree is then

deg;(f) = f*(eo)(x1) + f*(d°)(b1) = 0 O

4.3 Monomial Maps, Degrees, and [T", P|z,

The goal of this section is to show the minion isomorphisms claimed in
Proposition 3.2.1.

We start with describing the corresponding Zs-equivariant version of the
Zp-monomial maps defined in the previous section. In particular, each
n-tuple (@1,...,ay) € % with })@; = 1 mod 3 induces a Z3-equivariant
map T" — Sl These maps are then composed with a fixed embedding
S! — P (the choice of a concrete embedding is irrelevant since P is simply
connected) to obtain an equivariant map T" = (S1)" — P.

Definition 4.3.1. Fix an embedding t: S! — P (e.g. the inclusion of the
I-skeleton), and let n = 1. We assigns to each tuple a € Z" with };a; =1
(mod 3), a monomial map m,: T" — P, defined by

Malz1, ..., 2n) = 27" 2"

It is straightforward to check that each m, is equivariant, indeed

Ma (V- (21,...,2n0) = Mg (VZ1,...,VZs)
= L(]_Ij-v“fz;r’r) = (v I_Ij z? = w(]_lj- zf})

=v-malz1,...,2n)

where the third equality used that pIktl — g

Remark 3. Asitwas previously observed in the case with Z2-monomial maps,
it is not hard to observe that the assignment a + m, preserves minors when
o is interpreted as a function f: Z" — Z. As it was the case previously we
implicitly use this minion homomorphism it is not the one we are looking
for since #3 is not a subminion of the minion of tuples @ € Z" with } a; =1
(mod 3).

The overall goal is now to build the algebraic machinery needed to show that
the Z3-monomial maps are all non-homotopic; that is the following result.

Lemma4.3.1. Let o, f € 2‘;"}. If mg is equivariantly homotopic to mg, then a = p.
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The proof of this lemma is build on a similar informal geometric intuition as
before, but adapted for the Z3-equivariant case.

By cellular approximation, a homotopy between two maps fo, fi: T" — P
“drags” around the image of any of the coordinate circles (i.e., the image
of ¢j: §S! — T" defined by ci(x) = b where b; = x and b; is constant for
each j # i) of the torus along some 2-disc in P. However since it has to
be an equivariant homotopy, it has to drag in the same way the rest of the
orbit of the coordinate cycle equivariantly along the other discs in the image.
Therefore the number of times a coordinate cycle wraps around can only
change by a multiple of 3.

The formalization of this idea follows a similar blueprint as the previous case.

Definition 4.3.2. Let e/ € C1(P) and d/ € C?(P) be the dual of ej and d;
respectively (i.e., e/(e;) = 0if i # j, and el(e;) = 1if i = j). Denote by
x; € C1(T") the i-th coordinate cycle in T" and b;, B; € C(T") fillings for
xi—v-x;jand x; — 12 - x; respectively.

Then, the i-degree of an equivariant map f: T" — P is

deg;(f) = (f*(e")(xi) + f*(@)(by) + f*(d")(B;)) mod 3
A key observation is that this quantity does not change along equivariant
homotopies:
Lemma 4.3.2. Let fy, fi: T" — P equivariant maps homotopic via an equivariant
homotopy h. Then for all i € [n], deg.(fo) = deg,(f1).

Proof. On the cochains of dimension 1 we have:
fo(eo)(xi) = f(eo)(xi) = (1 (%) (xi) + (H6())(x;) = 0+ h(d® +d" + d?)(x;)

where the second equality is obtained by using the fact that dx; = 0 and
6e¥ = d% + d! + 4%

On the 2-cochains we have:
f3(@)(B:) = £(@) (i) = 6k (@°))(bi) + (H6(d))(b:) = B (@) xi —v - x;) +0
fo@)(B) - £;(@")(By) = (81" (@)(B;) + (h*6(d")(B;) = h*(d°)(x; = v* - x;) +0
where we use that db; = x; — v - x;, dB; = x; — v? - x; and 64° = 0.
However, since the homotopy is equivariant, it has to commute with the
action and thus h*(d%)(v - x;) = h*(v - d%)(x;). Summing everything together,
using this fact and that vi.d% = @' we obtain that
deg,(fo) — deg;(f1) = h(d® + d* + d®)(x;) + B*(d°)(x; — v - x;) + B (@) (x; =2 - x;7)
= }I(du} (i +v-xi + vE. xi)+ (xi=v-xi)+ (xi— vE. xi))
= 1*(d")(3x;) = 3h*(d")(x;)) =0 (mod 3). O
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Furthermore, we can show the following which will be used to prove that the
mapping u is injective, and also (later) to show that its “inverse” is a minion
homomorphism.

Lemma 4.3.3. Let a € Z" such that 3 ;a; = 1 (mod 3). Then deg;(m,) =
a; mod 3.

Proof. Since the image of m, is contained in the 1-skeleton, m}(d“) = 0.
Moreover, (m,).(x;) = a;eg + aje; + ajep, hence e®((m,).(x;)) = a; and
deg.(m,) = a; mod 3. O

We can now conclude the proof of Lemma 4.3.1 which follows immediately
from the above.

Proof of Lemma 4.3.1. If a # B, then they differ in at least one coordinate, i.e.,
aj # p; for some i. Then deg;(m.) # deg;(mg) by Lemma 4.3.3, and therefore
mg and mpg are not equivariantly homotopic by Lemma 4.3.2. m|

Before, we progress further, let us discuss one more consequence of Lemma4.3.1,
namely, the following,

Lemma 4.3.4. The mapping y: hpol(S!, P) — Z; defined by

?([f]} = (degl(f)r Ty deg,, (f))

satisfies, foreach a € Z" with 3; ai = Land m: [n] — [m], y([ma]™) = v([ma])™.
i.e., it preserves minors when restricted to classes of monomial maps.

Proof. Note that y is well-defined since the degrees do note depend on the
choice of representative (Lemma 4.3.2). Further, using Lemma 4.3.3, we have
that

v([mgy]) = (a1 mod 3, ..., a, mod 3)

and hence y([ma])" = p where j = (¥cp1;) @) mod 3. Furthermore,
mp = g, where ,Ei; = Dien-1(j) @i, and consequently

y([ma]™) = y([mz]) = B = y(ma). O

Putting everything together, we can now provide the required isomorphism
of minions %3 and hpol(S!, P).

Proof of Lemma 3.2.1. We show that u and y are mutually inverse minion
homomorphisms. Recall that u is injective by Lemma 4.3.1 and it is surjective
by Lemma 3.2.1.

The above, in particular, means that p,: _‘*2,";"} — hpol["](ﬁl, P) is onto,
and hence a bijection. Consequently, ¥ is a minion homomorphism by
Lemma 4.3.4 since every class in [T", P}z, contains a monomial map. Observe
that i o y is the identity map by Lemma 4.3.3, which implies that y is the
inverse of the bijection u.
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Finally, an inverse of a bijective minion homomorphism y is a minion
homomorphism since, for all @ € #3,

u(a™) = p(y(u(@)™) = u(y(u(a)™) = y(a)™.

This concludes that y and y are the required minion isomorphisms. m|



CHAPTER

The combinatorics of

polymorphisms

5.1 Bounding Essential Arity of Maps induced by
Graph Polymorphisms

We prove the key technical result that bounds the essential arity of simplicial
maps from ]"E to £2,

Theorem 5.1.1. Let L > 4 be an integer divisible by 4, let f: T — X2 be an
equivariant simplicial map such that the composition with the map L — Y is
equivariantly homotopic to the map given by the monomial ;e zi; equivalently,
deg.(f) = Lifand only if i € I. Then |I| < O(L?).

We recall (Observation 1) that equivariant simplicial maps f: I] — r?
correspond bijectively to 2-colourings of the vertices of FE with the following
two properties: The colouring is equivariant (i.e., every pair of antipodal
vertices of ]"E have distinct colours), and no 3-simplex [ug, 11, u2, u3] is
coloured with alternating colours. We will show that this is impossible if
|| is large; more precisely, we will show that if i € I, then there are many
edges [#, v] such that the colours of # and v are different and u and v differ
only in the ith coordinate (note that the difference in this coordinate is 1
by the definition of I'). This is then used to show that we need to have an
alternating simplex of dimension proportional to the size of I.

To present the details of the argument, we need a number of definitions. We
recall the description of ]"E: Its vertices are the n-tuples u = (1, ..., u,) € Z{ ;
edges (1-simplices) are pairs [u, v] of vertices such that v is obtained from u
by choosing a non-empty subset of coordinates of # that are all even, and
changing each of them by +1 modulo L; and the k-simplices are (k + 1)-tuples
[#0, 211, .. ., 2] such that [:1).-_1, uj] is an edge for 1 < j < k. We define the
height ht(x) of a vertex u = (11, ..., uy) as the number of coordinates i € [n]
such that u; is odd; moreover, we define the height of an edge [u, v] as the
height of u. Note that every edge [u, v], we have ht(u) < ht(v). A special role

45




5. THE COMBINATORICS OF POLYMORPHISMS

will be played by edges [u, v] such that ht(v) = ht(x) + 1, or equivalently, such
that # and v differ in exactly one coordinate; we call such edges coordinate
edges. More precisely, we say that an edge [u, v] is in coordinate direction i if u
and v differ exactly in the ith coordinate. For i € [n], we denote the set of all
edges in coordinate direction i by E;, and denote by E := E; U --- UE, the
set of all coordinate edges. We will also need the following more refined
classification: For i € [n] and 0 < h £ n - 1, let E;(h) denote the set of all
edges in E; of height h, and let E(h) = E1(h) U --- U E,(h) denote the set of
all coordinate edges of height i (note that the height h of a coordinate edge
determines the heights & and & + 1 of both endpoints).

Given a 2-colouring of the vertices of I'}, we say that edge [u, v] of I is
colour-swapping if u and v have different colours. We now state a key lemma
used in the proof of Theorem 5.1.1. The lemma shows that, if f depends on
the coordinate i (up to homotopy), then some fraction (independent from the
arity of f) of edges in coordinate direction i is colour-swapping.

Lemma5.1.1. Let f: IT — .2 be an equivariant simplicial map such that deg,(f) =
Land let 0 < h < | 251 |. Then a fraction of at least C—ig of the edges in E;(h) U
Ei(n — 1= h) are colour-swapping, where C > 0is a suitable constant.

We postpone the proof of the lemma, and first show how it implies Theo-
rem 5.1.1.

Proof of Theorem 5.1.1 assuming Lemma 5.1.1. We first observe that the theo-
rem reduces to the case that n is odd and I = [n]. To see this, let m = |I|, and
choose any function 7: [n] — [m] that is injective on I. Then the minor f7 is
an equivariant simplicial map f™: I7" — L* that is equivariantly homotopic
to the monomial map [];ep)2i, by Lemma A.2.5.

Thus (by replacing f by f™ and n by m), we may assume without loss of
generality that n is odd and I = [n], i.e., deg;(f) = 1 for all i € [n]. Now,
consider a non-degenerate n-simplex ¢ = [uy, ..., u,] of I'} chosen uniformly
at random among all such n-simplices of I'7. For 0 < h < n — 1, define the
random variable X (o) as 1 or 0 depending on whether the edge [uy, 141] is
colour-swapping or not. Then X(o) := E;;a Xj(0o) equals the total number of
times the colour of f(u;) changes as we traverse the vertices of ¢ in their given
order. Observe that, forevery 0 < h < n—1, the edge [uy, 1p41] of the random
simplex o is distributed uniformly among all edges of E(h) (this is since the
simplicial automorphisms of FE act transitively on E(h)). Thus, the expected
value E[Xp(0)] is the probability that a uniformly random edge in E(h) is
colour-swapping. Moreover, by Lemma 5.1.1 and summingover 1 < i < n,
we get that forevery 0 < h < Lﬂglj,the fraction of edges in E(h)UE(n—1-h)
that are colour-swapping is at least F}_.I Hence, by linearity of expectation,
E[X3,(0)] + E[X,_1_n(0)] = L5 for0 < h < L%J Consequently,

= (L2
= n—-1. 1
E[X(0)] = RZ:;E[X.._I_;,(G)] > | =5
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Thus, there exists some n-simplex o = [ug, ..., u,] of ]"E such that the colour
of f(u;) changes at least k times, where k = | "EIJ . é, i.e., ¢ contains some
k-simplex [u;,, u;, . .., 1;, ] whose colours alternate. Since f is a simplicial
map to T2 this implies that k < 2 as noted above, and therefore L":,.;IJ < 2CL?,

hence |I| = n = O(L?). O

The rest of this section is dedicated to proving Lemma 5.1.1.

In this proof, we will use Lemma 4.2.3 in combination with another averaging
argument over a special family of triangulated 2-dimensional tori I't X I'z,,
which we call slices, that are simplicially (and equivariantly) embedded in
the triangulation I7.

To simplify notation, let us fix a coordinate direction, say i = 1, and write
I x FE‘I. The archetype of a slice is the following standard slice: Consider
the diagonal embedding diag: T} — FE‘I given by diag(y) = (v, ..., y). This
is an equivariant simplicial map, which induces an equivariant simplicial
embedding sgjag: [1 X I < I'] given by sgiy = 15, X diag, e, sdiag(x, y)=
(x, v, ..., ).

More generally, let L’ be an integer divisible by 4, and let C: I'r — ]"E_l
be an equivariant simplicial map; we call C a generalized diagonal if its
geometric realization ||, seen as an equivariant embedding S' — T},
is equivariantly homotopic to the diagonal embedding S' — T"! (here,
we implicitly fix equivariant homeomorphisms |T/| = §! = |T.|). Given a
generalized diagonal C, we call the induced equivariant simplicial embedding
sg: I xTp — I} givenby s, = Ip;, XCa slice. Moreover, we say that s; is
an h-slice if every vertex of ]"E_l in the image of C is at height horn —1- h,
or equivalently, if every edge of ]"E that lies in both E; and the image of s¢
belongs to E1(h) UE1(n — 1 - h).

Lemma 5.1.2. Let f: I7 — Y2 be an equivariant simplicial map such that
degl(f} =1, and let s;: Iy x Iy — FE be a slice (respectively, an h-slice,
0 < h < n—1). Then the image of s; contains at least one edge in Ey (respectively,
in E1(h) U Eq(n — 1 — h)) that is colour-swapping.

Proof. The composition f ©34j,g is the same as the 2-minor ™ of f given by the
map 7: [n] — [2], m(1) = 1and n(j) = 2for 2 < j < n. Thus, deg, (f 05giag) =
deg,(f™) = degl(f ) = 1 by Definition 4.3.2. Moreover, by definition of
generalized diagonals, it follows that |f o s¢| and | f o sg;5g| are equivariantly
homotopicas maps T? = §'x S! — 2, hence deg; (f os¢) = deg; (f 05diag) = 1
(here, we use that the equivariant homeomorphism |I'p x I'/| = [T x I'| fixes
the two coordinate copies of S! in T?). Thus, the existence of the desired
colour-swapping edge follows from Lemma 4.2.3. |

The last puzzle piece we need to prove Lemma 5.1.1 (and thus to complete the
proof of Theorem 5.1.1) is the following lemma which constructs a generalised
diagonal of a special shape.
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P
T, Uy gy g g

Figure 5.1: A path starting with the point #j = (1, 0, 0, 0) shown as projection
on the first two (left) and last two coordinates (right).

Lemma 5.1.3. Let 0 € h < L"—EIJ Then there exists a generalised diagonal
Co: Tar — T! whose image contains only vertices of height h or n — 1 — h;
moreover, the vertices of height h and n — 1 — h alternate.

Proof. We start with constructing a simplicial map Co: I'st — ]"E_l, ie., a
cyclic path in I'"1 that contains only vertices of height hor n —1 - h.

We start with the vertex ug of the form ug = (1,...,1,0,...,0) where the first
h coordinates are 1, and construct a path from u; to its antipode in pieces of
length 3. The first three steps of the path have the following form (where the
first three blocks are of length h and the last block is of length n — 1 - 3h).

m=(1,...,1,0,...,0,0,...,0,0,...,0)
e — -"
h n—1-h
m=(@1,...,1,0,...,0,1,...,1,1,...,1)
o e o g
h h n—1-2h
m=2,...,20,...,01,...,10,...,0)

B P

h h h n—1-3h
w=(2,...,2,1,...,1,1,...,1,1,...,1)
— — 4
h n—1-h

In the first step, we increase the values in the last two blocks changing
h+(n—1-3h) = n-1-2hvalues. In the second step, we increase the value
in the first bloc and decrease the value in the last bloc, again changing the
same number of values. And in the third step, we increase the values in the
second and the last block. See also Fig. 5.1 for a visual representation of the
case n = 4 and h = 1. Note that the height of up and w2 is h and the height of
uy and u3 is n — 1 — h, and that u3 is ng shifted along the diagonal by 1.

We then repeat this pattern (until we return to 1p) by adding 1 to all coordinates
in each subsequent sequence of three steps, i.e.,

wg=1(2,...,2,1,...,1,2,...,2,2,...,2),
e -
h h n—1-2h

etc. It is easy to check that the height of ugk is k and the height of uk+1 is
n —1- h for all k, and that subsequent vertices are connected by an edge
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in ]"E_l. Furthermore, observe that w37 = 1 + %]l is the antipode of uy,
hence (p: 'y — FE‘I defined by Cp(k) = uy is an equivariant simplicial map.

Next, we prove that (pis a qeneralized diagonal. We view the geometric
realization of 'y as R/LZ = S*. Observe that every pointx = (x1,...,x,_1) €
T" 1 on the (geometric realization of the) path from wug to u3 = up + 1 satisfies
x;€[1,2])ifi < hand x; € [0,1]if i > h; thus, x € [1,2)" x [0, 1] 17", ie., x
lies inside a unit box. Since this box is convex, we can homotope the path
to the “straight” path from u to # + 1 inside the box, keeping the endpoints
fixed, by linear interpolation. By an analogous argument applied to each path
segment corresponding to a sequence of three steps from w3z to usk+3, we get
a homotopy between the embedding (o and a translated copy of the diagonal
that passes through up. Moreover, this translated copy to the diagonal is
homotopic to the diagonal itself, hence (p is a generalized diagonal (note that
translated copies of the diagonal are not simplicial embeddings in general,
which is why we use the more complicated construction). O

We may now finish the proof of Lemma 5.1.1 and, consequently, of Theo-
rem 5.1.1.

Proof of Lemma 5.1.1. Let us fix a coordinate direction, without loss of gener-
ality i = 1, and let f: ]"E — T2 be an equivariant simplicial map such that
deg,(f)=1.Let0< h < L%IJ

First, we prove that there exists a collection Z of generalised diagonals
that contain only vertices of heights h and n — h — 1 such that each vertex
of such a height appears in the same number of diagonals accounting for
multiplicity. This collection is constructed by shifting the diagonal o obtained
in Lemma 5.1.3 by some automorphisms of Ff_l. We consider only those
automorphisms that respect the winding direction in each coordinate, which
consequently the homotopy class of the diagonal. More precisely, consider
the subgroup A of automorphism group of l"f_l generated by automorphisms
of one of the following two types:

® ay, where m: [n — 1] — [n — 1] is permutation, which permutes the
coordinates of each vertex, i.e.,

ﬂn(u'[, . u,._ﬂ = (Hﬂn}, . un{ﬂ_l}};
* b;, where i € [n — 1], which shifts the coordinate i by 2, i.e.,

bi(ui, ..., up—1) = (11, ..., i1, (4i +2) mod L, wiy1, ..., tip—1).

Observe that A acts transitively on vertices of height h: for example, first
use b;’s to make all coordinates 0 or 1, and then use a; to permute them in
the first /i positions. In fact, the orbits of A are exactly sets of vertices of the
same height. Now, we let Z = {g o (o | g € A}. Since this family is invariant
under the action of A which, as we said, is transitive on vertices of height h
and of height n — h — 1, respectively, each such vertex appears in the same
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number of generalised diagonals in Z. Since the vertices of height & and
n —1 - h alternate in Cp, and consequently, they alternate in each of the shifts,
we also get the number of times a vertex of height h appears is the same as
the number of times a vertex of height n — 1 — h appears.

For each C € Z, the image of the corresponding h-slice s¢: It X I'syp — FE
contains 32 edges in Eq(h) U E;(n — 1 - k), and at least one of these edges
is colour-swapping, by Lemma 5.1.2. Moreover, the number of slices { € Z
whose image containa given edge in E;(h)UE;(n—1-h) does notdepend on the
edge. Thus, we can choose a uniformly random elementof E;(h)UE;(n—1-h)
by first choosing a uniformly random element C € Z, and then choosing
uniformly at random a vertex v € I'3; and an edge in coordinate direction
i which projects to {(v). Since the probability that we selected a colour-
swapping edge in the last choice is at least ﬁ, the overall probability that an
unifotmlgf random edge from E;(h) UE;(n — 1 = h) is colour-swapping is also
at least 577. O

5.2 Combinatorics of reconfigurations for

PDl(LOg, L04)

The goal of this section is a careful combinatorial analysis of the binary poly-
morphisms. In particular, we will describe how the minion homomorphism
&: pol(LOs, LOy) — 2° acts on binary polymorphisms. This is the key to the
argument that the image of £ is the projection minion and not the whole of
Fa.

We say that two polymorphisms f, g € p-:-l'{”:I (LO3, LOy) are reconfigurable one
to the other if a path between f and g exists within the homomorphism com-
plex Hom(LO3, LOy). (Note that every polymorphism is a homomorphism
LlﬂléI — LOy4, and hence a vertex of the homomorphism complex.)

We will use the following combinatorial criterion that ensures that two poly-
morphisms are reconfigurable to each other. The proof is subtly dependent
on some properties of the structure LOy.

Lemma 5.2.1. Let A be a symmetric relational structure. If f, g: A — LOy are
two homomorphisms such that f and g differ in exactly one value, i.e., thereis d € A
such that for all a € A\ {d} we have f(a) = g(a), then f and g are reconfigurable.

Proof. We first claim that under the above assumption, the multifunction
m: A — 204 given by m(a) = {f(a), g(a)} is a multihomomorphism. Assume
that (a, b, c) € R*. Observe that for any x € A \ {d} we have f(x) = g(x) and
hence m(x) = {f(x)} = {g(x)}. We now have cases depending on how many
times d appears in {a, b, c}.

d does not appear. In this case m(a) x m(b) x m(c) = {(f(a), f(b), f(c))} €
RO«
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d appears once. Suppose d = a,d # b,d # c; then m(a) x m(b) x m(c) =

{f(a), g(@)} x {f(b)} x {f(c)} = {(f(a), f(), f(c)), (g(a), g(b), g(c))} €
RIO¢ ag f(b) = g(b), f(c) = g(c).

d appears twice. Suppose d = a = b,d # c; then as (f(a), f(b), f(c)) =
(f(d), f(d), f(c)) € RLO* and likewise (g(d), g(d), g(c)) € R94, we have
f(d) < f(c)and g(d) < g(c) = f(c). Consequently, m(a)xm(b)x m(c) =
{f(d), g(.-;f]}2 x{f(c)} € RU, since every tuple has a unique maximum,
namely f(c).

d appears thrice. This case (i.e, d = a = b = c) is impossible, as A — LOy,
and thus A has no constant tuples.

Thus m is a multthomomorphism in all cases.

We can now define a path p: [0, 1] = Hom(LO3, LOy) by p(0) = f, p(1/2) =
m, p(1) = g, and extending linearly. O

We note, without a proof, if f and g are reconfigurable, then there is a
sequence f = fg, ..., fr = g such that f; and f;,; differ in exactly one point.
A polymorphism f € polli}(LD;a,, LOy4) has, as its domain, the set [3]2, and
thus it can naturally be represented as a matrix:

fLY) f(1,2) f(1,3)
f@2,1) f(2,2) f(23).
fG1) f3,2) f3,3)

When we speak of “rows” or “columns” of f this is what is meant.

We show the following lemma from which we will be able to derive that each
binary polymorphism is reconfigurable to an essentially unary one. (Recall
that a function f: A" — B is essentially unary if it depends on at most one
input coordinate.) The lemma is an analogue of the Trash Colour Lemma for
polymorphisms from K to Kzg_».

Lemma 5.2.2. For each f € polm(LD;:,, LOy) there exists an increasing function

h € polV(LOs, LOy), a coordinate i € {1,2}, and a colour t € [4] (called trash
colour) such that

fx1,x2) € {h(xi), £}
for all x4, x5 € [3].

Proof. Throughout we will implicitly use the fact thatif a < b and ¢ < d then
fla,c) < f(b,d),as ((a,c), (a,c), (b, d)) € RO,

First, we claim that every colour ¢ € [4] appears inside only one row or
only one column of f, i.e., that either there is a € [3] such that f(x,y) = ¢
implies x = a, or there is b € [3] such that f(x,y) = ¢ implies y = b.
For contradiction, assume that this is not the case, i.e., there are x, y and
x',y" € [3] such that f(x,y) = f(x’,y') = ¢, x # ¥/, and y # y'. The claim
is proved by case analysis as follows. First, observe that either x < x" and
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y > y',orx > x"and y < y’, since otherwise (x, y) and (x’, y’) are comparable,
and hence f(x,y) # f(x’,y'). Since the two cases are symmetric, we may
assume without loss of generality that x < x" and y > y’. Furthermore,
since ((x,y), (¥', /), (v, ') € RY%, and f(x,y) = f(x’,y) = ¢, we have
f(x,y") > c. Similarly, as x’ > x, y > y" we have that f(x",y) > f(x,y') > c.
This means that c € {1, 2}. We consider each case separately.

¢ = 1. Weclaim that x = v’ = 1sinceif x > 1, then f(1, ') < f(x,y) =1, and
similarly if y* > 1. Thisimplies that f(1, 1) > 1since((1, 1), (x, x"), (v, y')) =
((1,1),(1,y), (", 1) € RS and f (x, y) = f(x',y") = 1. As1< f(1,1) <
f(2,2) < f(3,3) < 4, wehavethat f(1,1) =2, f(2,2) =3,and f(3,3) = 4.
We now have three cases.

y = 3. We argue that f(1,2) has no possible value. First, the value 1
is not possible since ((1, 2), (x, ), (x", ¥')) = ((1,2),(1,3), (x", 1)) €
RLC'%, flx,y)=1and f(x’,y") = 1. f(1,2) = 2 is not possible since
((1,2),(1,1), (", y) = (1,1),(1,2), (', 1)) € R, and f (x', ) =
1, f(1,1) =2. f(1,2) = 3is not possible since ((1, 2), (2, 2), (x, y)) =
((1,2),(2,2),(1,3)) € ng, and f(x,y) = 1,f(2,2) = 3. Finally,
f(1,2) < f(3,3)=4,50 f(1,2) # 4.

x" = 3. Here the contradiction follows analogously to the previous case.

x’ = y = 2. We consider the pair of values f(1,3) and f(3,1). First,
we have f(1,3) > f(1,2) = f(x,y) = 1 and f(3,1) > f(2,1) =
fx,y) =1 As ((13),(1,1),("y)) = ((1,3),(1,1),21)) €
RLO3 and f(1,1) = 2, f(x", y') = 2wehave that (1, 3) # 2; symmet-
rically f(3,1) # 2. Wealsohave f(1,3) # 3since((1, 3), (x, y),(2,2)) =
((1,3),(1,2),(2,2)) € RL0% and f(1,2) =1, f(2,2) = 3; symmet-
rically f(3,1) # 2. Thus f(1,3) = f(3,1) = 4 However, then
(f(1,2), f(1,3), f(3,1)) = (1,4,4) ¢ RO, which is not possible, as
((1,2),(1,3),(3, 1) e RUD%, which yields our contradiction.

c=2. As f(x",y) > f(x,y') > c = 2, we have that f(x, ¥') = 3and f(x', y) =
4. Since f(x,y") = 3 then either x > 1 or y’ > 1, otherwise f(3,3) >
f(2,2) > f(1,1) = 3yields a contradiction. By symmetry it is enough to
discuss the case y’ = 2and y = 3. Finally, we have f(x,1) < f(x’,2) =2,
hence f(x, 1) = 1 which is in contradiction with

(1,2,2) = (f(x,1), f(x,2), f(x,3)) € R1O%,

Thus we get a contradiction in all cases, and hence each colour appears in
only one row or only one column.

We say that a colour ¢ € [4] is of column type if f(x, y) = c implies x = a,
for some fixed a. € [3], and is of row type if f(x, y) = c implies y = b, for
some b € [3]. Note that a colour can be both row and column type, in which
case we may choose either. We claim that there are at least three colours that
share a type — otherwise there are two colours of row type and two colours
of column type which would leave an element of LO% uncoloured. A similar
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observation also yields that there has to be three colours of the same type that
cover all rows or all columns, i.e., such that the constants a. or b. (depending
on the type) are pairwise distinct. Let us assume they are of the column type;
the other case is symmetric. Further, we may assume that the forth colour is
of the row type, since if two colours share a column, then one of the colours
appears only once, and can be therefore considered to be of row type.

We define h(a) to be the colour ¢ of column type with a. = a, then we have
f(x,y) € {h(x), t} where t is the colour of the row type. Finally, we argue
that I is increasing. This is since there are y < y' with y # by and y" # by,

and consequently
n(1) = f(Ly) < fQ,¥) = h(2) = f2,y) < f3,y) = h(3).

This concludes the proof of the lemma. m|
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Figure 5.2: Graph of reconfigurations of polli}(LOg., LOy).

Lemma 5.2.3. Every binary polymorphism f € polm(Lﬂg, LOy) is reconfigurable
to an essentially unary polymorphism.
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Proof. The proof relies on Lemma 5.2.2. We prove our result by induction
on the number of appearances of the trash colour. The result is clear if
the trash colour never appears; so assume it appears at least once. Thus
suppose without loss of generality that f(x, y) € {h(x), t} for some increasing
h € polP(LO3, LOy), and that in particular f(xg,yg) = f. Furthermore,
suppose that among all such pairs, (xg, yp) is the one that maximises xp.
We claim that f’(x, y), which is equal to f(x, y) everywhere except that
f'(x0, yo) = h(xg) is also a polymorphism, which gives us our inductive step.

Considerany ((x, y), (', '), &, y)) € RL9%;if (xo, y0) ¢ {(x, ), (<, ¥'), (&, ")},
then ((x, y), (', ), /", ") = ((x, y), fG',y'), f (", ") € REO%, so
assume without loss of generality that (x”, ¥”) = (xo, o). We now have two
cases, depending onwhere the unique maximum of (f (x, y), f(x’, '), f (xo0, yo)) €
RO« )]s,

f(x,y) is the unique maximum In this case, f(x,y) > f(xp, yo) = t and
flx,y) > f(x',y'). We must show that f’(xq, yo) = h(xp) # f(x, y).
Since we know that f(x, y) # f and thus f (x, y) = h(x), and furthermore
that I is increasing, this is the same as showing that x # xp. Suppose
for contradiction that x = xg; thus x* > x. If f(x",y) = h(x’) > h(x),
then f(x, y) would not be the unique maximum, so f(x’, y) = ¢. This
contradicts the choice of (xg, 1g), as x” > xp.

f(x',y") is the unique maximum This case is identical to the previous case.

f(xo, 1jp) is the unique maximum It follows that f(x, y) < t and f(x’, y') <
t, hence f(x,y) = h(x) and f(x’, y') = h(x"). Thus since (x, x", xg) €
R0: and h is increasing, it follows that (f’(x, y), f'(x’, v'), f'(x0, vo)) =
(h(x), h('), h(xo)) € REOs.

Thus we see that this f” is indeed a polymorphism, and contains one fewer
trash colour. Thus our conclusion follows. O

In Figure 5.2, we can see the reconfiguration graph of polm(LD;:,, LOy). This
shows how one can reconfigure all polymorphisms to essentially unary ones.
In the diagram, we show a polymorphism in its matrix representation.

It can be also observed that unary polymorphisms that depend on the same
coordinate are reconfigurable to each other. Moreover, since every connected
component of H-::rm(LO'z,r LOy4) contains a homomorphism, and hence a unary
one, we can derive from these observation that Ht::rm(LO'z,r LOy4) has at most
two connected components. We have shown in Section 4.3 that is has at least
two connected components (the two projections are not homotopic).

Finally, we conclude with the statement that we actually use in the proof,
which follows from well-known properties of homomorphism complexes.

Lemma 5.2.4. Let A, B, and C be three structures, G a group acting on A,
and assume that f, g € hom(B, C) are reconfiqurable. Then the induced maps
fe, g Hom(A, B) — Hom(A, C) are G-homotopic.
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5.2. Combinatorics of reconfigurations for pol(LO3, LOy)

Proof. First, observe that the composition of multthomomorphisms as a map
mhom(A, B) — mhom(B, C) — mhom(A, C) is monotone. This means that
the composition extends linearly to a continuous map

c¢: Hom(B, C) x Hom(A, B) — Hom(A, C)

(see also [Koz08, Section 18.4.3]). Since the composition is associative, we
obtain that the map ¢ is equivariant (under an action of any automorphism
of A on the second coordinate).

Finally, we have that f.(x) = c(f, x) by the definition of f,, and analogously,
2.(x) = c(g, x). Consequently, if h: [0, 1] - Hom(B, C) is an arc connecting
f and g, i.e., such that h(0) = f and h(1) = g, then the map H: [0, 1] x
Hom(A, B) — Hom(A, C) defined by

H(t, x) = c(h(t), x)

is a homotopy between f, and g.. This H is also equivariant since c is
equivariant. O

The following corollary then follows directly from the above and Lemma 5.2.3.

Corollary 5.2.1. For every binary polymorphism f € poltz}{Lﬂg, LOy), theinduced
map
fo: Hom(R3, LO3)* — Hom(R3, LO4)

is equivariantly homotopic either to the map (x, y) v i.(x), or to the map (x, y) —
i.(y) where i: LO3 — LOy is the inclusion.

This concludes the proof of Lemma 3.2.2 and the main theorem.






CHAPTER

Griinbaum mass partitioning
problem

Geometric methods for partitioning space, point sets, or other geometric
objects are a central topic in discrete and computational geometry. Parti-
tioning results are often proved using topological methods and also play an
important role in topological combinatorics [DLGMM19, Mat08, RS21]. As
anticipated in Chapter 1, a classical example is the famous Ham-Sandwich
Theorem, which goes back to the work of Steinhaus, Banach, Stone, and Tukey
(see [R521, Sec. 1] for more background and references). A “discrete” version
of this theorem asserts that, given any d finite point sets Py, ..., Pg in R4,
there is an (affine) hyperplane H that simultaneously bisects all P;, i.e., each
of the two open half-spaces determined by H contains at most |P;|/2 points,
1 < i £ d. This follows (by a standard limit argument, see [Mat08, Sec. 3.1])
from the following “continuous” version: Let uy, .. ., ug be mass distributions
in B4 ie., finite measures such that every open set is measurable and every
hyperplane has measure zero. Then there exists a hyperplane H such that
ui(H") = pi(H™) = %y;{l@.‘i] for1< i <d, where H" and H™ are the two open
half-spaces bounded by H.

In this paper, we are interested in another classical equipartitioning problem,
first posed by Griinbaum [Grii60] in 1960: Given a mass distribution (respec-
tively, a finite point set) in R4, can one find d hyperplanes that subdivide R4
into 24 open orthants, each of which contains exactly 1/ 29 of the mass (re-
spectively, at most 1/27 of the points)? We call such a d-tuple of hyperplanes
a 29-partition of the mass distribution (respectively, of the point set).

For d = 2, itis an easy consequence of the planar Ham-Sandwich theorem that
any mass distribution (or point set) in E* admits a four-partition; moreover,
the four-partition can be chosen such that one of the lines has a prescribed
direction (indeed, start by choosing a first line in the prescribed direction that
bisects the given mass distribution; by the Ham-Sandwich Theorem, there
exists a second line that simultaneously bisects the two parts of the mass on
either side of the first line). Alternatively, one can also show that there is
always a four-partition such that the two lines are orthogonal. Intuitively,

57




6. GRUNBAUM MASS PARTITIONING PROBLEM

the reason that we can impose such additional conditions is that the four-
partitioning problem in the plane is underconstrained: A line in the plane
can be described by two independent parameters, so a pair of lines have
four degrees of freedom, while the condition that the four quadrants have
the same mass can be expressed by three equations, leaving one degree of
freedom; either one of the additional constraints uses this extra degree of
freedom.

In 1966, Hadwiger [Had66] gave an affirmative answer to Griinbaum’s
question for d = 3 and showed that any mass distribution in R admits an
eight-partition; moreover, the normal vector of one of the planes can be
prescribed arbitrarily. This result was later re-discovered by Yao, Dobkin,
Edelsbrunner, and Paterson [YDEPS&Y].

Theorem 6.0.1 ([Had66, YDEP89]). Let u be a mass distribution on B, and let
v € 5%, Then there exists a triple of planes (Hy, Hp, Hz) that form an eight-partition
for u and such that the normal vector of Hy is v.

More recently, Blagojevi¢ and Karasev [BK16] gave a different proof for the
existence of eight-partitions and showed the following variant:

Theorem 6.0.2 ([BK16]). Let u be a mass distribution on R>. Then there exists an
eight-partition (Hy, Hy, H3) of u such that the plane Hy is perpendicular to both Hj
and Hg,.

Our first result is the following alternative version of eight-partitioning,
which to the best of our knowledge is new:

Theorem 6.0.3. Given a mass distribution i in R2 and a vector v € 2, there exists
an eight-partition (Hy, Hy, H3) of u such that the intersection of the two planes Hq
and Hj is a line in the direction of v.

As in the case of the Ham-5andwich Theorem, each of the three theorems
above also implies the existence of the corresponding type of eight-partition
for finite point sets, again by a standard limit argument (see Lemma B.1.1).

We remark that, in general, d hyperplanes in R4 are described by d? indepen-
dent parameters, while the condition that 24 orthants have equal mass can
be expressed by 2d _ 1 equations. For d = 3, this leaves 9 — 7 = 2 degrees of
freedom, which allows for any one of the additional conditions imposed in
Theorems 6.0.1, 6.0.2, and 6.0.3, respectively. On the other hand, for d = 5,
we have d? < 29 -1, so intuitively Griinbaum’s problem is overconstrained.
Avis [Avi84] made this precise and constructed explicit counterexamples
using the well-known moment curve y = {(t,+,...,19): t € R} in R?. The
crucial fact is that any hyperplane intersects the moment curve y in at most d
points ([Mat08, Lemma 1.6.4]). Thus, ford = 5, a mass distribution supported
on y admits no 2"'-partitic-n because any d hygerplanes intersect ¥ in at most
d? points, which subdivide y into at most d“ + 1 intervals, hence there are
always at least 27 — @2 — 1 > 0 orthants that do not intersect y and hence
contain no mass. The last remaining case d = 4 of Griinbaum’s problem,
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i.e., the question whether any mass distribution in R4 admits a l6-partition
by four hyperplanes, remains stubbornly open (see [BFH18], [DLGMM19,
Conjecture 7.2], [Mat08, pp. 50-51], and [RS21, Problem 2.1.4] for more
background and related open problems).

We now turn to the algorithmic question of computing eight-partitions in R3,

Problem 1. Given a set P of n points in R3 in sufficiently general position,
compute three planes Hy, Hz, H3 that form an eight-partition of the points.

As noted above, the corresponding problem of computing a four-partition
of a planar point set can be reduced to finding a Ham-Sandwich cut of two
planar point sets that are separated by a line. Megiddo [Meg85] showed that
this can be done in linear time.

To characterize the complexity of Problem 1, we introduce the following
concept. A halving line (resp., halving plane) for an n-point set in R? (resp.,
F?) in general position is a line (resp., plane) that passes through two (resp.,
three) of the points and divides the remaining ones as equally as possible.
Let ha(n) (resp., ha(n)) denote the maximum number of halving lines (resp.,
planes) for an n-point set in B2 (resp., E%). The best known upper and lower

bounds for ha(n) are O(n*?), due to Dey [Dey98], and Q(ne Vies™) due to
Toth [Tot01], respectively. For hs(n), the best-known bounds are are O(n3/2),

due to Sharir, Smorodinsky, and Tardos [SST01], and Q(n%eV logm) "due to
Toth [T6t01].

By a result of Lo, Matousek, and Steiger [LM594, Proposition 2], a Ham-
Sandwich cut of n points in R? can be computed in time O*(h2(n)) = O* (n43)
(see also [H517]), where the O*(-)-notation suppresses polylogarithmic factors.
However, computing eight-partitions in R? appears to be significantly more
difficult. Unlike the planar four-partition problem, there is no known way of
reducing it to the computation of a Ham-Sandwich cut. In particular, given
two planes Hy and Hz that four-partition a finite point set P in R3 (in the
sense that every one of the four open quadrants determined by Hy and Hz
contains at most |P|/4 points), there generally need not exist a third plane Hj
such that Hq, Hy, H3 form an eight-partition.

We note that, for fixed dimension d > 3, the best known algorithm for
computing Ham-Sandwich cuts in R4 runs in time O(n*1-%) where ag > 0
is a constant depending only on d [LMS94]. When the dimension is part of
the input, a decision variant of the problem becomes computationally hard,
see, e.g., [KTW11].

A brute-force algorithm that checks everay triple of halving planes solves
Problem 1 in time comparable to O(h3(n)”) = O(n%/%). Yao et al. [YDEP89]
and Edelsbrunner [Ede86] gave a O (n®)-time algorithm that computes an
eight-partition (with a prescribed normal direction for one of the planes,
as in Theorem 6.0.1) by an exhaustive search, using the fact that only two
planes need to be identified. Fixing one plane and performing a brute-force
search for the remaininzg two would yield an algorithm with a running time
compatrable to O(ha(n)*) = O(n”).
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6. GRUNBAUM MASS PARTITIONING PROBLEM

Here, we present, to our knowledge, the fastest known algorithm for Prob-
lem 1. Roughly speaking, our algorithm runs in time near-linear in ha(n)
rather than quadratic init. Slightly more precisely, our algorithm runs in time
near-linear in nha(n), which is not known to be o(ha(n)), but for which the
best known upper bound is strictly stronger; see Theorem 8.2.1 and Fact 8.1.2:

Theorem 6.0.4 (Algorithm). An eight-partition of n points in general position
in B3, with a prescribed normal vector for one of the planes, can be computed in time
O*(nhy(n)), hence O*(n”/3); here, the O*(-)-notation suppresses polylogarithmic
factors.

Our algorithm can be seen as a constructive version of Hadwiger's proof
[Had66]. We start by bisecting the point set by a plane with a fixed normal
direction, which partitions the initial point set into two subsets of “red” and
“blue” points, respectively, of equal size. After that, our algorithm finds two
more planes that simultaneously four-partition both the red and the blue
points.

It remains an open question whether Theorem 6.0.2 or our own Theorem 6.0.3
can also be used to obtain an efficient algorithm for Problem 1. It would also
be interesting to decide whether there is an algorithm for Problem 1 with
running time o(nha(n)).
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CHAPTER

Eight-partitioning lines with a fixed
intersection direction

7.1 Notation and preliminaries

In what follows, it will often be convenient to assume that the mass distri-
butions we work with have connected support, where the support of a mass
distribution p is Supp(u) = {x € R* : u(B,(x)) > 0 for every r > 0} and
B,(x) denotes the ball of radius r > 0 centred at x.

By a standard limit argument (see Lemma B.1.2), the existence of eight-
partitions for mass distributions with connected support implies the existence
of eight-partitions for the general case. Hereafter, unless stated otherwise, we
assume, without loss of generality, that every mass distribution has connected
support.

We denote the scalar product of two vectors x, iy € R? byx.y:= Zf’zl xXiyi. A
vector v € R?\ {0} and a scalar a € R determine an (affine) plane

H=Hy@a):={xeR:x-v=a},

together with an orientation of H (given by the direction of the normal vector
v). We denote by —H := H_;(—a) the affine plane with the same equation as
H but with opposite orientation. The oriented plane H determines two open
half-spaces, denoted by

H ={xeR’:x.v>a} and H :={xeR®:x.v<a).

More generally, let H = (Hi, ..., Hy) be an ordered k-tuple of (oriented)
planes in R3, k < 3. In what follows, it will be convenient to identify the set
{+, -} with the group Z; (where the group operation is multiplication of
signs). Elements of {+, -}* = ZX are strings of signs of length k, and we will

denote by + = +-- - + the identity element of Z’Z‘

Fora = (ay,...,a;) € Z’Z‘ = {+, —}*, we define the open orthant determined by
H and @ as O := H{'n---nH;*. Given a mass distribution y in R?, we say
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that an ordered k-tuple H = (H, ..., Hy) of planes (k < 3) formsa 2%_partition
of u if every orthant contains 1/2% of the mass, i.e., u(0O%) = u(R3)/2* for
every a € {+, —}k. For k = 1,2, 3, this corresponds to the notions of bisecting,
four-partitioning, and eight-partitioning u as mentioned in the introduction.
Analogously, we say that H forms a 2% _partition of a finite point set P in R? if
|IPnO¥| < ]2%[ for all a.

We will parameterize oriented planes in R3 by 53, where the north pole ey
and the south pole —e4 map to the plane at infinity with opposite orientations.
For this we embed R? into R? via the map (x1, x2, x3) + (x1,x2,x3,1). An
oriented plane in B3 is mapped to an oriented affine 2-dimensional subspace
of R* and is extended (uniquely) to an oriented linear hyperplane. The unit
normal vector on the positive side of the linear hyperplane defines a point on
the sphere 53, Hence, there is a one-to-one correspondence between points
v in 5\ {eg, —e4} and oriented affine planes H, in R>. The positive side of
the plane at infinity is R? for v = ¢4 and 0 for v = —ey. Hence H*, = H; for
every v. Note that planes at infinity cannot arise as solutions to the measure
partitioning problem, since they produce empty orthants. Therefore we do
not need to worry about the fact that the sphere includes these.

We parameterize triples of planes (called plane configurations) in R? by (53)3,
and denote by H,, the triple corresponding to v € (5%). Given a mass
distribution u on ]R.3 for each v € (5% and a € Z, \ {+}, we set

Falo,1)= ) (-1P@huop*).
pez;

where p(a, ) is the number of coordinates where both a and  are —. The
functions F , were also utilized in the proof of Theorem 6.0.1 in [YDEP89].

As an example, with H = H, = (H;, Hz,H3)anda = - - + € Zg \ {+}, we

obtain

FooH,p)= ) (DPPuofy= > pOf- > wof
pez; PeZ3: pla,f)=0 peZ;: pla, f)=1

(}I{O )+ P(GH—) + .u( +) + F(OE{—})

- (O%) + pO%_) + WO + wOIL))
= wH nHY) + u(Hy nHy) — p(Hy N Hy) — u(H NHy).
When p is clear from context, we write F,(H) instead of F,(H, u). The

definitions of alternating sums for a pair of planes or a single plane are
analogous.

The alternating sums have the following properties which will play an
important role in the proof below.

Observation 3. Let u be a mass distribution and fix k = 2, 3.

(i) Let @ € Z;"1\ {+} and let H = (Hi,...,Hy) be a k-tuple of planes.
Then Fya(H) = Fal(Ha, . .., Hr)) (the equivalent statement holds for
any other entry of a k-tuple (a1, - - - , ax) instead of just for a1).
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(ii) A k-tuple H of planes 2*-partitions if and only if F () = 0 for every
a e T8\ {+}.

Proof. (i) Since every hyperplane has null measure it follows that, for any

JB € Ezk_l
Oy ™) = u(0%h) + wO%).

If & = +a then, from the definition of F, for any § € ng_l the two orthants
Gfé and Ofﬁ are counted with the same sign in the sum, therefore

FaH)= ) (0% +u0%))- 3 (WO +u(O%)) = Ful(Hy, . .., Hy)).

peZ k-1 peZy*-1
pla,f)=0 plaf)=1

((ii)) It is clear that, if H is a 2%-partition, then all the alternating sums are 0.
We will prove the other implication.

Suppose first that k = 1 and that H = H. The only alternating sum is
F_(H)= u(H*)— u(H™) and F-(H) = 0 implies that H bisects p.

Suppose now that k = 2 and that H = (Hj, Hz2). By ((i)) and the statement for
a single plane, F4—(H) = 0 and F—(H) = 0 imply that both H1 and H> bisect.
Therefore, if A = p{Gﬂ}, we have that

1 1
0= F-(H) = p(OF) +p(O™)-p(02)-p(O%) = A+A~(5-N)~(5-1) = 41-1;

hence A = 4 as desired.

Finally, suppose that k = 3 and that H = (Hi, H2,H3). By ((i)) and the
statement for single planes and for pairs of planes, we have that all planes

i bisect and all pairs (H;, H;) four-partition. Therefore, if A = w0 ,), we
have that

0=F __(H)= F(G+++)+F(G ) + u(O +}+F( +)
_F(G +} F( +}_F(G )_F(Gﬂ_)
Zfl+a’1+a’1+a’1—(4——f’L}—(E—A)—{E—A)—(E—A}ZSA—I;

hence A = %r as claimed. m|

7.1.1 The main topological result

Our goal is to prove the following result, which is a more precise statement
of Theorem 6.0.3:

Theorem 7.1.1. Given a mass distribution u and a direction u € 52 there exists a
triple H = (H1, Hz2, H3) of oriented planes that eight-partition u so that the oriented
direction of the intersection Hy N Hy is u.
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By Lemma B.1.2, it is sufficient to prove Theorem 7.1.1 for mass distributions
with connected support. We require the following technical lemma about
partitioning a mass distribution on 2, due to Blagojevi¢ and Karasev [BK16].
For completeness, the proof is given in Appendix B.1.2.

Lemma 7.1.1 (Four-partitioning a mass distribution in R? [BK16]). Let u* bea
mass distribution (with connected support) on R2 and v € S. Then there exists a
pair ({1, £2) of lines in B2 that four-partitions u* and such that v bisects the angle
between ¢ and .

Moreover, if we orient {1 and €, so that €y is in the first direction clockwise from v,
and {y is in the first direction counterclockwise, the oriented pair is unique and the
lines depend continuously on v.

Proof of Theorem 7.1.1. Without loss of generality, let u = (0,0, 1). Our proof
proceeds in two steps. In the first step, we construct a map @: S1x §° — R4
whose zeros codify eight-partitions of u; then we prove that @ is equivariant
with respect to a suitable choice of actions of G = Z4 X Z2 on the two

spaces. In the second step we show that any continuous G-equivariant map
W: S! x 5% — R* has to have a zero.

Step 1: The key step in constructing the map @ is to show that we can
parameterize pairs of planes that have intersection direction u and four-
partition u, by a vector in st

We project u onto u+, the plane orthogonal to u, to obtain a mass distribution
¥ on R2. Specifically, identifying the plane with R2,let A CR2andset AxR
to be the cylinder over A in the u-direction. Then p*(A) = u(A x R).

Let v € S! € R2. By Lemma 7.1.1, there are two oriented lines f1(v) and {2(v)
(that we can interpret as points (£}, £},a’) € 5%) in the plane u* such that
v bisects the angle between the two and {1, {2 four-partition the projected
measure p*. Define Hi(v) = (fl' (v), f{(zﬂ), 0,a'(v)) € S° to be £i(v) x R the
(oriented) span of {;(v) and u; the two planes now four-partition u and have
the desired intersection direction.

Now let g; be a generator of Zy X {+} € G and define its action on S! by a
counterclockwise rotation by 7. We use g - v to denote the action of g; on v.
Then, by the uniqueness in Lemma 7.1.1, we have that (see Figure 7.1):

h(g1-v)=b(v) and b(g -v) = —k(v). (7.1)

Using this construction, we can define a function §1 5 53 x g3 by v —
(Hy(v), H2()). It follows from eq. (7.1) that gy -v is mapped to (Ha(v), —Hi(v)).
Therefore, if we fix the corresponding action! of Z4 on 5% x §2, the map is
Zy-equivariant.

The group {e} X Z, acts by antipodality on S°; therefore, if G acts on
(5% x %) x §? component-wise, the map @: 5! x 5 — (5% x §?) x S defined
as ©(v, w) = (Hi(v), Hz(v), Hy) is G-equivariant.

'Formally, for any (x, y) € 57 % 5% the generator g1 of Zy X {+} C Gactsby g1 (x, y) =
(y, =x).
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£2(r) fi{qm - 1)

Figure 7.1: Example of the action of g1.

By construction, the first two planes are always a four-partition of the mass
distribution, therefore by Observation 3, a configuration ®(v, w) is an eight-
partition if and only if the four alternating sums with az = — (ie, a = ++—,
—+—,+——and———)arel.

To compute the action of G on the alternating sums, it is enough to specify
what happens on g1 (a generator of Z4 X {e}) and g, (the generator of
{e} x Zp). Recalling that g - ®(v, w) = (Ha(v),—Hi1(v), Hy) and applying
Observation 3((i)), we obtain

Fi(g1- ®(v, w)) = F+—((H2(v), —H1(v), Hw)) = F-((-H1(v), Hw))
= p(—Hi(v)" NHy) + p(—Hi(o)” NHy,) — p(-Hi(v)” NHg) — p(-Hi(v)" NHy)
= p(Hi(v)” NHg) + p(Hi(v)” NHy) — p(Hi(v)" NHy) — p(Hi(v)” N Hy)
= —F_+(®(v, w))

Similar computations imply that, if we act with g1, we obtain

F++—'[31 - ®(v,w)) = Fiy (D(v, w)),

F—+—(31 ) {D(Uf IU]) = F-I——{d){wf w}]! and

F__(g1-D(v,w)) = -F—(@(v,w)),
while acting with g, produces

Fii (g2- P(v, w)) = —F44—(D(v, w)),
F*_—{gz . q){'l?; w}] = _F—+—({D(Ur w)}.l"
F_, (g-®(v,w))=-F, _(®(v,w)), and
F___(g-®(v,w))=-F___(®(v,w)),

for every (v, w) € S1x 53,

Finally, we can choose a linear G-action on R? that is consistent with the
previous equations. In particular, if we define

31'{1';}{;3;”):(1;—3;}{;—“} and 32'{xfyfzfu]:(_xr_yf_zf_u]f
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then the map W' S1x 5% 5 RY given by

(v, w))

is G-equivariant, i.e. W(g1-v,w) = g1 - Y(v, w) and W(v, -w) = -W(v, w).
By Observation 3, the zeros of W are exactly the configurations of planes that
eight-partition the measure and have the desired intersection property.

('Ur w} - (F+-I—I:'Ur w)r F-I——I:'Ur w)r F—-I— (I‘:r w)r F

Step 2: Suppose now, for a contradiction, that W does not have a zero. This
means that it is possible to define a G-equivariant map W': §lxg3 583 by
a7 . Wiv,w)

Vo, ) = gy

Denote by W,, for a € 5!, the map W,: S° — S?, Wy(w) = W(a,w); this
function has two key properties:

(1) forany a € sl w is antipodal;

(1) for any a,b € SLlety:[0,1] — S'bea parametrization of the arc
between y(0) = a and y(1) = b. Then ¥; and W} are homotopic via
H: 8% [0,1] — 5% with H(t, x) = W, ().

For any n = 1, the group of orthogonal matrices O(#) contains exactly two
connected components, distinguished by the sign of the determinant. Since
the map g1 : 5% — 5% is induced by a matrix with determinant -1, it is
homotopic to any other orthogonal linear map with determinant —1. In
particular, it is homotopic to the reflection r along the last coordinate and,
thus, deg(g1) = deg(r) = —1. Combining everything together we have:

deg(\V,) = deg(W,,.;) = deg(g1 - V) = deg(g1) deg(W;) = — deg(V,).

Hence deg(¥W,) = 0, contradicting the Borsuk-Ulam theorem (see [Mat08,
Theorem 2.1.1]). O

Theorem 7.1.1, along with Lemma B.1.1, immediately implies the following.

Theorem 7.1.2. Let P C R be a finite set of points and p € S? a fixed direction.
Then there exists a triple H = (Hi1, Ha, Ha) of oriented planes that eight-partitions
P, so that the oriented direction of the intersection Hy N Ha is p.
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CHAPTER

An algorithm for eight-partitioning
points in 3D

8.1 Levelsin arrangements of planes

Let P C R*be asetof n points in general position. Specifically, we assume
that the points in P satisfy the following: no four in a plane, no three in a
vertical plane, and no two in a horizontal plane. Recall that a halving plane for
a point set in B3 in general position is a plane that passes through three of
the points and divides the remaining points as equally as possible; ha(n) is
the maximum number of halving planes for an n-point set in R3.

The duality transform maps points in B2 to planes in R? and vice versa.
Specifically, the point p = (p1, p2,p3) € R3 is mapped to the non-vertical
plane p*: z = p1x + p2y — pain RE', and vice versa. See [Har11, Chapter 25.2]
for standard properties of the duality transform.

Let H be a set of planes in B2 in general position. Specifically, we assume
that the planes are non-vertical, every triple of planes in H meets in a unique
point, and no point in R? is incident with more than three of the planes. The
planes in H partition E? into a complex of convex cells, called the arrangement
of H and denoted by A(H). The k-level in A(H) is defined as the closure of
the set of all points which lie on a unique plane of the arrangement and have
exactly k-1 planes below it. Note that the k-level is a piecewise linear surface
in > whose faces are contained in planes of H. The complexity of a level is
the total number of vertices, edges and faces contained in the level. When
k = [(|H| + 1)/2], the k-level is called the median level of the arrangement.

Duality, k-levels, and complexity of levels are defined analogously in R2.
Let g2(n) (resp. g3(n)) be the maximum complexity of any k-level in an
arrangement of n planes in k2 (resp., E3). It is well-known that hy(n) =
©(g2(n)) and that h3(n) = ©(gs(n)) (see [AAH"98, Theorem 3], [Ede87,
Theorem 3.3]).

The main object of interest in bounding the complexity of our algorithm
is the intersection of median levels of two arrangements of disjoint sets of
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planes. We first show that the complexity of this is proportional to hj(n), in
the worst case.

Fact 8.1.1. Let {(n) be the maximum complexity of the intersection of a level in
the arrangement A(R) and a level in the arrangement A(B) of disjoint sets R
and B of planes in B, with H := A U B in general position and n '= |H|. Then
t(n) = ©(h3(n)).

Proof. Let L be the intersection of level k of A(R) and level k’ of A(B). As
the planes of H are in general position, L is (a disjoint union of) a collection
of (open) edges and vertices in A(R U B). In fact, L is a collection of cycles
and bi-infinite curves so its complexity is asymptotically determined by the
number of its edges.

A point on an edge of L has the property that it lies on one plane of R and
one plane of B, and has exactly k + k" — 2 planes of R U B below it. Hence L is
contained in the (k + k' — 1)-level of A(R U B). It follows that the complexity
of L is bounded above by the complexity of a level in an arrangement of n
planes, implying £(n) < ga(n) = O(h3(n)). This proves the upper bound.

For the lower bound, suppose first that » is of the form 4k + 6 and let P C R?
be a set n/2 = 2k + 3 points in general position achieving the maximum
number h3(2k + 3) of halving planes. Let P’ be a copy of P translated by
a sufficiently small distance € > 0 in a generic direction. We then slightly
perturb the points of P U P’ to ensure general position. For a point p € P, we
denote by p’ its copy (or fwin) in P’. Consider the sets R* (red) and B* (blue)
of k points each obtained as follows: for each pair (p, p’), we assign one point
to R* and the other to B* uniformly and independently at random.

Recall that a halving plane is defined by a triple of points and divides the
remaining points as evenly as possible. Let 71 be a halving plane of P defined
by a triple (a, b, ¢), so that 1 has exactly k points of P on each side. Consider
theset S := {a, b,c,a’, V', c'}. We claim that, with constant probability, there
exists a plane m; that passes through a red point and a blue point of S that
are not twins, and has precisely one red and one blue point of 5 on each side.

As our perturbation € is arbitrarily small, 7, partitions the remaining points
of R* U B* in the same manner as 1y partitions P. Let R and B be the sets of
planes dual to points in R* and B*, respectively. In the dual, the plane m2
corresponds to a point ﬂ; on an edge of the arrangement A(R U B) that lies
on level k of A(R) and of A(B). Therefore it lies on the curve L of intersection
of two k-levels and this curve contains all the points 7}, (as we range over
halving planes m1 of P).

Since different halving planes correspond to partitioning P in different ways,
the planes m; partition P U P’ in different ways and, hence, points 1t} arising
from different halving planes of P lie on different edges of A(R U B). By
construction, the number of edges of L is Q(h3(n)) in expectation, completing
the lower bound proof for n = 4k + 6.

Finally, for a general n, we write n = 4k + 6 + ¢, for 0 < ¢ £ 5, we apply the
above construction to n — ¢ and, at the end, add ¢ planes in general position
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to the set R lying above all vertices of A(R U B). It is easily checked that this
addition does not reduce the size of L. O

Note, however, that in our application, the sets of points R* and B* are strictly
separated, which is not the case in the above lower-bound construction. We
show that, with this additional constraint, the complexity of L is O(nha(n))
and that there exist pairs of separated point sets R* and B* that achieve this
bound.

Fact 8.1.2. Let {*(n) be the maximmum complexity of the intersection of two levels in
A(R) and A(B) as in Fact 8.1.1, with the additional constraint that the dual sets R*
and B* are strictly separated by a plane. Then £*(n) = @(nha(n)).

Proof. Upper bound: Let L be the intersection of level k in A(R) and level k'
in A(B). Without loss of generality, we consider vertices of L that are the

intersection of one plane in R and two planes in B. Such a vertex has k — 1
planesofRand either k- 1ot k - 2planes of B below it.

We work with the dual point sets R* (red) and B* (blue), strictly separated by
the plane n. Here, a vertex as above corresponds to a plane passing through
one red point and two blue points, with k — 1 red pointsand k — 1or k — 2
blue points above it. We count all such planes o, passing through a fixed red
pointa € R*.

Let B’ be a set of points obtained by radially projecting points of B* onto 7t
with center a. Let {; be the line m N ;. Since R* and B* are separated by 7,
fa has k — 1 or k — 2 points of B’ on one side of it. Hence, the dual of {; is a
vertex on level k (or its complement) in the planar arrangement of the dual
of B’ in mt. Therefore, there are at most 2g2(|B’|) choices for the plane 0,4, and
at most |R| - 2g2(|B|) = O(nha(n)) such planes overall.

Planes passing through exactly one blue point and two red points are handled
symmetrically, completing the proof of the upper bound.

Lower bound: Once again, it is sufficient to make the argument for n of the
form 4k + 3 for a positive integer k; the general case is handled as in the
lower bound proof of Fact 8.1.1. Consider a set R* of 2k + 2 points realizing
hy(2k +2) lying in the xy-plane, scaled to fit in the rectangle (0, 1) x (0, €), for
a sufficiently small € > 0.

Let B* be a set of 2k + 1 points equally spaced on a unit circle in the plane
x = 0, centred at the origin, so that no point lies in the xy-plane. Note that
R* and B" are separated by the plane x = 6, for a sufficiently small 6 > 0.

By making e small enough, we can ensure that any halving line of R* passes
arbitrarily close to the origin. In particular, any pair of a halving line of R*
and a point of B* define a halving plane that passes through two points of R*
and one of B*, and has exactly 2k points of R* U B* on each side. The number
of such halving planes is (2k + 1)h2(2k +2) = Q(nh2(n)). Finally, the points of
R* U B can be perturbed to satisfy the general position assumption without
reducing this number.
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So we have constructed two separated sets of points R* and B* with the
property that there are Q(nh2(n)) halving planes spanned by three of the
points that simultaneously bisect both sets. The lower bound follows by
considering the dual sets R and B. O

8.2 The algorithm

We can deduce the existence of eight-partitions of a finite point set P C R3 of
a certain advantageous form from Theorem 6.0.1.

Observation 4. Letk = 0 be an integer and P C R3beasetofn =8k +7 points
in general position. Then, there exists a triple of planes (Hy, Hy, H3) that
eight-partitions P with the following properties:

(1) Hi is horizontal (i.e., parallel to the xy-plane) and passes through the
z-median point of P. From here on, we refer to the 4k + 3 points that lie
below (resp., above) Hj as red (resp., blue) points and denote the sets R
(resp. B).

(i1) Hy and Hj each contain exactly three points, and each open octant
contains exactly k points.

(111) Hp, H3 each bisect R and B, and the pair (H;, H3) four-partitions both R
and B. Furthermore, H; and Hj; contain at least one point of each color.

Proof. Since the set X := {(H1, H2, H3) : H1 is horizontal} ¢ (5%)? is compact,
by Theorem 6.0.1 and Lemma B.1.1, there exists a configuration He =
(H1,Hz2, H3) that eight-partitions the point set with Hy horizontal. Along
with the general position assumption, this implies that H contains only the
z-median point. This proves ((1)).

To see ((ii)), note that any eight-partition has at most k points of P in each of
the eight open octants, one point in Hy, and at most three points in each of
Hz and H3, by general position, for a total of at most8k+1+2.-3=8k+7=n
points. So, in fact, all the inequalities are equalities: there must be exactly k
points in each open quadrant and exactly three points of R U B in each of Hz
and Ha.

It remains to show ((ii1)). By the preceding paragraph, it is straightforward
to see that (Hy, H3) four-partitions both R and B. By Corollary B.1.1, we have
that any pair (H;, H;) four-partitions P. Since (Hy, Hy) four-partitions P, each
quadrant formed by (Hy, H;) has at most [ (8k +7)/4] = 2k + 1 points. Hy has
4k + 3 points on each side. Hence, we obtain that H; bisects R and B, and, in
particular, contains at least one point of each color. A symmetric argument
shows that H; bisects both R and B, and contains at least one point of each
color. This completes the proof. O

Theorem 8.2.1 (Computation of an eight-partition). Let P C R? be a sef of
n > 0 points in general position and v € 5. An eight-partition (H1, H2, H3) of P,
with v being the normal vector of H1, can be computed in time O*(n + £*(n)).
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Remark 4. Since £*(n) = @(nhy(n)) = O(n7/3) by Fact 8.1.2, we can compute
an eight-partition in time O*(n”/3).

The rest of this section is devoted to the proof of Theorem 8.2.1. We assume,
without loss of generality, that v = e3 = (0,0, 1) is the vertical vector, so Hy
is required to be horizontal. If n < 7, the statement holds trivially — set Hy
to be the horizontal plane containing any point of P, and Hz, H3 to contain
at most three distinct points each, so that the octants do not contain any
points. From here on, we will assume that n = 8k + 7, for an integer k > 0. If
n is not of this form, we may add dummy points to P (in general position)
until the number of points is of the required form and run the algorithm.
Once the algorithm terminates, we discard the dummy points, resulting in
an eight-partition with at most k points in each octant.

We now describe the algorithm to construct an eight-partition of P satisfying
the properties in Observation 4. Let Hj be the horizontal plane containing
the z-median point of P, and, without loss of generality, identify Hy with the
xy-plane. Now consider the sets R and B of 4k + 3 points each lying below
and above, respectively, H1. We further assume, without loss of generality,
that B is contained in the half-space x < 0 and R is contained in the half-space
x > 0. Otherwise, since no point in R U B has z = 0 by the general position
assumption, there exists a plane H containing the y-axis and with sufficiently
small negative slope in the x direction such that all red points are below H
and all blue points are above H. Applying a generic sheer transformation (so
as not to violate the general position assumption) that fixes the x y-plane and
maps H to the plane x = 0, we obtain point sets with the required properties.

Let R* = {p* : p € R} be the set of red planes dual to points in R and set
A(R) := A(R") to be the arrangement formed by the set R*. The set of blue
planes B* and the blue arrangement A(B) are defined analogously. We will
write A = A(R U B) for the arrangement formed by the planes in R* U B*.
For a (dual) point p € R?, we set R}, R, € R to be the set of red planes lying
strictly above and below p, respectively. For a pair p, g of (dual) points, put

X(p,q) =R, nRY| - IRy nR_| =R, NR7| +|R, NR_|.
The sets B;, B; C B and the function Y'(p, q) are defined analogously for B".
Let L be the intersection of the median levels of A(B) and A(R). Let m be
the complexity, i.e., the number of vertices and edges, of L. By the following

lemma, we have that L is a connected y-monotone polygonal curve and is an
alternating sequence of edges and vertices of A terminated by half-lines.

Lemma 8.2.1. L is a connected y-monotone curoe.

Proof. Recall that B lies in the quadrant x < 0, z < 0 and R lies in the quadrant
x >0,z > 0. Hence, the dual planes in B* and R* have equations of the form
z =ax +by +cwitha <0and a > 0, respectively.

Consider the intersection of R* U B* with the plane I1s: y = d. The intersection
of the plane z = ax + by + c is the line z = ax + (bd + ¢), so planes in B*
correspond to lines with negative slope and planes in R* correspond to lines
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with positive slope. In particular, the median levels of lines corresponding to
B* and R* are graphs of piecewise-linear total functions that are decreasing
and increasing, respectively. It follows that the two curves intersect exactly
once. This intersection point corresponds to the intersection of L with the
plane I1;.

By general position, L is a union of vertex-disjoint cycles and bi-infinite paths
composed of edges and vertices of A, since incident to every vertex of A
contained in L are precisely two edges belonging to L. By monotonicity in y,
L must be a single bi-infinite chain. O

In fact, L can be computed efficiently using standard tools [AM95, Chal0],
which we outline now.

Lemma 8.2.2 (Computing the intersection of two levels [AM95, Chal0]). The
intersection curve L of the median level of A(B) and the median level of A(R) can
computed in time OF(n + m), where m is the complexity of the curve and O*(-)
notation hides polylogarithmic factors.

Proof. We use the standard dynamic data structure for ray-shooting queries

in the intersection of half-spaces; the currently fastest algorithm is due to
Chan [Chal0], see also earlier work of Agarwal and Matougek [AM95].

A starting ray of L can be computed by computing the intersection of the
median levels in the vertical plane I1;: v = d for a small enough d, defined as
in the proof of Lemma 8.2.1, in linear time, using an algorithm of Megiddo

[Meg85].

Consider a point p on the initial edge of L (infinite in the —y-direction). It
lies on one plane of m € B and one plane i’ € R. Let { be the intersection line
of m and 7/, and consider the half line p of { starting at p and infinite in the
+y-direction. The planes of B U R (besides it and ") are classified into those
lying above p and those lying below it. Call the first set LI and the second D.
We preprocess the intersection of the set of lower half-spaces defined by the
planes of LI and the intersection of the set of upper half-spaces defined by
the planes of D for dynamic ray shooting and shoot with p. The earlier of
the two intersections identifies the first plane m2 of (B UR) \ {n, '} that p
meets. This is the next vertex of A(B UR) on L; L turns here. If mz belongs to
B, L now follows the intersection line of 1z and n’. Otherwise it follows the
intersection line of m and m2. Past the intersection, the sets LI and D need to
be updated and we continue, following the next ray, until we trace all of L.

The only cost besides the initial computation of p are identifying U and D in
O(n) time, initializing the dynamic structure, in O*(n) time, and performing
two ray shots and O(1) updates on U and D per vertex of L, each at a cost of
O*(1). O

Note. As we construct L, we can store it as a sequence of vertices and edges.
Each edge is associated with the red-blue pair of planes containing it. An
endpoint of an edge is contained in an additional plane. For each consecutive
edge/vertex pair (e, v), in either direction, we record which new plane
contains v together with its color.
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We now return to the computation of the eight-partition (Hy, Hy, H3). By the
general position assumption, Hz and H3 cannot be vertical, so H2 and H3
correspond to vertices in A, by Observation 4. With the above setup, we can
reformulate the problem of computing Hz and H3 as follows.

Claim 1 (The dual alternating sign functions). Computing Hz and Hj is
equivalent to identifying a pair of vertices p, g € L such that Y(p,q) =
X(p,q)=0.

Proof. By Observation 4((i1)), the eight-partition (Hy, H2, H3) has exactly k
points in each of the eight open octants. Setting p = H; and g = H;, we
obtain that |[Ry NRF| = |By N BZ| = k for all combinations of signs. Therefore
Y(p,q)=X(p,q) =0, as claimed.

We now argue the other direction. Let p,q € L be vertices such that
X(p,q) =Y(p,q) = 0. Since p and g lie on L, H2 := p* and H3 = 4" bisect
both R and B and contain exactly three points each, at least one of each color.
Hence, it suffices to show that (Hy, H3) is a four-partition of both R and B, i.e.,
IRy N R, |By N BF| < k for all combinations of signs. Indeed, this implies
that each octant formed by (H1, H2, H3) contains exactly k points, completing
the proof.

Let a, = |RF N Ry|, b, = |R NR7|, ¢, := |R; NRY|, and 4, = |R; N Ry].
Define ay, by, cp, dp analogously for the blue planes. Without loss of generality,
for a contradiction, suppose a, > k.

We first consider the case a, = k + 2. Since p lies on the median level of
A(R), we have a, + by < |Rj| = 2k + 1, implying b, < k — 1. Similarly, since
g lies on the median level of A(R), we have ¢, £ k — 1. Recall that, by
assumption, X(p, q) = a, +d, —b, — ¢, = 0, implying d, = b, +¢c,—a, < k-4.
Hence, a, + b, + ¢, +d, < 4k — 4, so p and g together are contained in
4k +3 - (a, + b, + ¢, + d;) =2 7 red planes, contradicting the general position
assumption.

We may now assume a, = k + 1. Following the same reasoning we obtain
by <k, cr < k,and dy = by + ¢y — ar £ k—1. This implies a, + b, + ¢, + d, < 4k,
and, in particular, that p and g together are contained in at least 3 red planes.
Now consider the blue planes and note that ap + by + cp + dp < 4k — this is
clear if each of sets Bj N B:; contains at most k blue planes, otherwise it follows
by the same argument as above. Hence, p and g together are contained in
4k + 3 = (ap + by + cp + dp) = 3 blue planes.

By Observation 4((ii)), p and g are contained in at most 6 planes of R* U B*.
Combined with the argument above, this implies p and g together are
contained in exactly 3 planes of each color. It follows that a, + by + ¢, + dy =
ap +bp+ cp +dp = 4k, which, by the assumption a, = k +1, implies by = ¢, = k
and d, = k- 1. Since |R;| = 2k + 1 and b, + d, = 2k — 1, there are exactly 2 red

P
planes containing q below p. Similarly, since |[R7| = 2k +1and b, +d, = 2k-1,
there are exactly 2 red planes containing p below g. But then p and g are

contained in a total of 4 red planes, a contradiction.

This exhausts all possibilities and, hence, |Ry N R7|,|B; N B3| < k for all
combinations of signs, completing the proof. O
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To summarize, once we construct L in time O*(n + m), to compute an
eight-partition, it is sufficient, by Claim 1, to find two vertices p,q € L
satisfying X(p,q) = Y(p,q) = 0. In particular, it is possible to construct
an eight-partition by enumerating all the ©(m?) pairs of vertices in L; the
exact running time depends on how efficiently one can check candidate
pairs. Below, we describe how to reduce the amount of remaining work to
O((m + n) log m).

Speed up For simplicity of later calculations, we orient L in the y-
direction (which is possible by Lemma 8.2.1) and view it as an alternating
sequence of edges and vertices, starting and ending with a half-line. We
denote these elements by x1,x2,...,xm. Recall that the goal is to identify
i,j € [m] so that x;, xj are vertices and X(x;, xj) = Y(x;, x;) = 0.

We extend the definition of X, Y as follows. If x;, x j are both edges, we pick
arbitrary points p and g in the open edges x; and x jr respectively, and set
X(xi, xj) = X(p,q) and Y (x;, x;) := Y(p, q); the cases where x; is an edge or
xj is an edge, but not both, are handled analogously. Note that specifying the

(open) edges containing p and q is sufficient to determine X and Y, hence
the definition is unambiguous. Define 7: [m]*> — Z2 by

(i, ) = (X (xi, x)), Y (xi, ).

With this setup, our goal is to identify a point (i, j) € [m]? (corresponding to
a pair of vertices on L) such that n(i, j) = 0.

We define a grid curve C to be a sequence of points (i1, j1), . .., (it, j¢) in Z% such
that (if+1;jf+1) S {(Ifr}f )r (ile:l;rjf )r I:Ifr jf:l:l)} for each f € [f - 1] In WOIdS, a
grid curve is a walk in 72 which, at each step, does not move at all or moves
by exactly one unit up/down/left/right. A curve is closed if (i, j1) = (i, ji).
A grid curve is simple if non-consecutive points are distinct (we think of the
start and end points as consecutive) — so the curve does not revisit a point
after it moves away from the point.

To each grid curve C, we associate a piecewise linear curve CinR2, consisting
of line segments connecting consecutive points (iy, jg), (ig+1, je+1) of C for
each { € [t — 1]. For a curve C not passing through the origin 0, the winding
number w(C) about 0 is defined in the standard way. Slightly abusing
notation, we set w(C) := w(C). In particular, provided C misses the origin,

0 if C does not wind around 0,
w(C) = wlf} ={n >0 ifC windsaround 0 n times counterclockwise,

n <0 if C winds around 0 —n times clockwise.

We omit the rigorous definition of w(C) as a contour integral in the complex
plane since it does not add to the discussion and, instead, refer the reader to
[Kra99, Chapter 4.4.4].

Our algorithm proceeds as follows:
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Step 1 Set C :=T (see Definition 8.2.1). If (C) meets 0, then stop — we have

found a point that maps to 0 (see Lemma 8.2.4). Otherwise n(C) has
odd winding number, by Lemma 8.2.5.

Step 2 Construct two simple closed curves Cq, C; so that (a) C=C1+Cy, (b) at
least one of m(Cq), m(C3) has odd winding number (unless they meet
0), (c) the regions enclosed by Ciand C2 partition the region enclosed
by C, and (d) the area enclosed by each of C;, C; is a fraction of that
enclosed by C (see Lemma 8.2.7).

Step 3 If m(C1) or m(Cz) meets 0, then stop — we found a point that maps to 0,
by Lemma 8.2.4.

Step 4 Compute w(m(Cy)) and w(m(Cz)), and replace C with the one with the
odd winding number. Goto Step Step 2.

We now proceed to fill in the details, starting with the definition of the initial
curve T.

Definition 8.2.1 (The triangular grid curve T'). The simple closed grid curve
T traverses a triangular path defined as follows:

* Starting with the bottom horizontal side of the grid [m]?, T traverses
the points
(xlrxl)r (xirxl)r RN (xmr xl}r

* continuing along the right vertical side of the grid [m]* along the points
(xm, x1), (Xm, X2), . - ., (Xm, Xm),
* finally, traversing back diagonally along
(s Xm)s (m=1, Xm )y (Xm-1, Xmo1)y (Xm—s Xmo1)y -+, (%1, %2), (%1, X1).

Along the diagonal side of T, we are really only interested in points of the
form (xg, x;) with £ € [m]. However, since this doesn’t give a grid curve, we
“patch” it up by introducing intermediate points. Fortunately, this does not
change the desired properties of T

Lemma 8.2.3. If C is a grid curve, then n(C) is a grid curve. Moreover, if L has
already been computed, 1(C) can be computed in time O(n +|C|).

Proof. Consider a step in C from (x;, x;) to (x;41, x;), where x; is an edge of
L and x;;; is a vertex. Then x;,; is contained in the planes that contain x;
and one additional plane H. Suppose, without loss of generality, that H is
red. This means that the cardinality of one of the sets R;,': changes by one.
Hence, the cardinality of R N R7, for each combination of signs, changes by
at most one — if H contains g, nothing changes. It follows that the function
X changes by at most one, and the function ¥ remains unchanged.
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Note that, up to symmetry, only one such transition or its reverse occurs in a
single step of C. We've shown that each step causes either X or ¥ (but not
both) to change by at most one, and, hence, 7(C) is a grid curve.

The computation can be carried out in constant time per incident edge-vertex
pair of C, since L has been already computed, after a O(n)-time initialization
that computes X, Y at an arbitrary starting point of C by brute force. O

Lemma 8.2.3 immediately implies the following.

Lemma 8.2.4. If 1(C) meets 0, then some point of C is mapped to 0.

A key property of the triangular grid curve T is the following.
Lemma 8.2.5. If0 ¢ n(T), then w(T) is odd.

Proof. Let N = 4k + 2, and let H,V, D be the images (under ) of the
horizontal, vertical, diagonal sides of T, respectively. Note that n(T) is the
concatenation of H, V', and D in that order.

Observe that if p = q = x; with i € [m], then |[RF N R| = |R; NR7| = 0.
Hence, X(x;, x;) € {4k + 1, 4k + 2} depending on whether x; is contained
in one or two red planes. Similarly, Y(x;, x;) € {4k + 1,4k + 2}. Hence
n(xi, xi) € {(N,N),(N — 1, N — 1)} and, in particular, t(x;, x;) = (N, N) if x;
is an edge. Along with Lemma 8.2.3, this implies that the grid curve D is
a closed walk on the points in {N —=2,N = 1,N,N + 1}2\ {0} starting and
ending at the point (N, N).

Noting that x; and x,, are half-lines contained in the same red plane, and
that every red plane that lies above x; lies below x,, and vice versa, we obtain
(X, x1) = (—N, —N). Hence, H is a grid curve from the point (N, N) to
(~N,—-N) and V is a grid curve from the point (-N,-N) to (N, N).

The discussion above implies that w(T) is equal to the winding number of the
concatenation of V' and H. We argue below that V' is the image of H under a
rotation by 180° around the origin, i.e., the map (x, y) +— (—x, —y). Since, by
assumption, neither H nor V' contain 0, the concatenation of H and V has

odd winding number as claimed.
Specifically, we need to show that m(x;, x1) = —7t(xm, x;). Since 7 is symmetric
in the two arguments, it suffices to show that m(xy, x;) = —m(xm, x;). As

mentioned before, every plane that lies above x1 lies below x,; and vice versa.
That is, Rf, = R} and Ry, = R} , and similarly B} = B, and B}, = B} .
The claim is now obvious from the definition of the functions X and Y. O
Lemma 8.2.6. If w(r(C)) is odd, then there is a point (i, j) € Z? enclosed by C
with n(i, j) = 0.

Proof. A grid square S is a simple closed grid curve of the form
i), (+1,)),G+1,j+1),3Gj+1),(,j)
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Figure 8.1: Up to symmetries, the different possibilities for the image under
of a grid square 5, which is always always a grid curve in 72, by Lemma 8.2.3.
Note that the image cannot have odd winding number.

with (i, j) € Z2. A square is S for some grid square S. If there is a grid square
5 enclosed by C such that 11(S) meets 0, then we are done by Lemma 8.2.4.

Otherwise, note that m(C) is the sum of the images of the corresponding
squares. Hence, there is a grid square S with w(m(S)) odd. By Lemma 8.2.3,
n(S) is a grid curve. By enumerating all possibilities (see Fig. 8.1), we
conclude that w(mn(S)) cannot be odd. O

Next, we show how to decompose a curve C. We restrict our attention to
“trapezoidal” curves: Such a curve is the boundary of the intersection of the
region bounded by the initial triangle T with a grid-aligned rectangle. This
property is maintained inductively.

Lemma 8.2.7. Given a trapezoidal curve C whose image misses 0, with w(mn(C))
odd, we can construct two trapezoidal curves Cy and Ca so that

(i) the region R surrounded by C is partitioned into region Ry surrounded by Cq
and region Rz surrounded by Ca.

(ii) area(R1),area(Ry) < ¢ - area(R), for an absolute constant ¢ < 1.

(iii) either 0 is in the image of C1 and Cz or w(n(C)) = w(n(C1)) + w(m(C2)).

Proof. We already noted that the image of a grid square cannot have odd
winding number, therefore R is not a grid square. As long as R is at least two
units high, divide it by a horizontal grid chord into two near-equal-height
pieces (that is, the two parts have equal height, or the lower one is one smaller)
producing two regions Ry and R;. The curves C; and C; are the boundaries
of the regions (refer to Fig. 8.2). If the height of K is one, perform a similar
partition by a vertical chord into to near-equal-width pieces.

Property ((i)) is satisfied by construction. If the image of the new chord
misses 0, then both C; and Cz avoid 0 and property ((iii)) follows from the
properties of the winding number on the plane. Finally, an easy calculation
shows that, if the split height/width is even, then each part contains at most
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Figure 8.2: Curve C; the blue region is bounded by Cy, and the red by Cs,
with the horizontal dividing chord drawn dashed.

3/4 of the original area; this fraction can rise to 5/6 if R has odd width or
length (the extreme case is achieved at width/length of three), which proves

property ((ii)). o

Lemma 8.2.8. Given a simple closed grid curve C in [m)* we can determine whether
11(C) contains a zero. If not, we can compute w(m(C)), all in time O(|C| + n).

Proof. By Lemma 8.2.3, we can trace n(C) step by step and, in particular,
detect whether 0 € m(C). So suppose this is not the case.

Consider the (open) ray p from the origin directed to the right in Z2. To

determine the winding number of the curve 77(C) not passing through the
origin, it’s sufficient to count how many times the curve crosses the ray p. We

can compute the number of times 71(C) crosses p by computing 7 for every
vertex of C in order and counting the number of times (X, 0) occurs along it,
with X = 0.

As n1(C) may partially overlap p, we need to check whether 7(C) arrives at
(X, 0) with X > 0 from below the X-axis and (possibly after staying on the
axis for a while) departs into the region above X-axis, or vice versa. That
would count as a signed crossing. Arriving from below and returning below,
or arriving from above and returning above, does not count as a crossing.

All of the above calculations can be done in time O(1) per step of n(C), after
proper initialization, by Lemma 8.2.3. O

Running time We now analyze the running time of the algorithm we
described. We can traverse a length-O(m) closed grid curve C, compute its
image 71(C), and check whether it passes through the origin in time O(m + n)
by Lemma 8.2.3. One can check whether n(C) winds around the origin an
odd number of times by Lemma 8.2.8, also in time O(m + n).

The number of rounds of the main loop of the algorithm is O(log m), as the
starting curve cannot enclose an area larger than O(m?) and areas shrink by

78



8.2. The algorithm

a constant factor in every iteration, by Lemma 8.2.7. Combining everything
together, we conclude that L can be computed in O*(# + m) time, and the
algorithm can then identify the pair of vertices of L corresponding to an
eight-partition in at most O(log m) rounds, each costing at most O(m + n).
This concludes the proof of Theorem 8.2.1.






CHAPTER

Conclusions

In this dissertation we presented our work on two areas of theoretical
computer science and combinatorics. In the first half we established new
hardness results for approximate 4-colourings of graphs and 4-linearly
ordered 3-uniform hypergraphs by combining the general algebraic theory
of promise constraint satisfaction problems, combinatorial restrictions on the
simplicial structure of the Hom complex construction for graphs or relational
structures and the topological tools from equivariant obstruction theory.

However, we strongly believe that this is just the beginning of a much deeper
and fascinating connection between topology and the theory of promise
constraint satisfaction problems. One immediate approach that could lead to
new results is simply to adapt different hardness criterions (different from
the bounded essential arity criterion we use) from the algebraic theory to the
topological context. At the same time, another promising avenue is to use
more versatile construction rather than the Hom-complex to obtain a simpler
functorial translation of the algebraic notions in the topological language;
yet another possible direction is to use more advanced ideas from algebraic
topology (e.g. spectral sequence or higher levels of Postinkov towers) to
obtain the constraints on the polymorphisms required by the theory of PCSPs.

More concretely, a natural open question to explore next would be to try
and establish hardness for PCSP(G, Ks) whenever G is 5-colourable and
non-bipartite. However, trying to mimic the approached we used for the
K4-case can not work in this context as it is a simple homotopy argument
to show that any two Zz-equivariant map from Tf—> 53 are equivariantly
homotopic and thus simply considering maps up to homotopy as the target
minion will cause the appearance of constant maps, invalidating the hardness
criterion.

In general, it is worth investigating what kind of PCSP templates are amenable
to be studied via topology. Would it be possible to give a sufficient criterion
on the pair of structure so that the topological section of the argument
would go through directly? One example of such criterion for the graph case
is [KOWZ23, Theorem 1.4]: if (G, H) is such that Hom(Ky, H) — S, then
PCSP(G, H) is NP-hard. However, one interesting question would be to try
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rephrase this criterion in terms of graph properties of H without explicitly
invoking the Hom construction.

Note that, unlike the previous mention result of [KOWZ23], none of our
hardness proofs can be easily used to give any more general criterion since
Theorem 2.1.1 relies on the fact that Hom(K3, Cy) has a very specific simplicial
structure while Theorem 2.1.2 exploit the structure of the reconfigurability
graph of binary polymorphisms LD% — LO;y.

Furthermore, throughout our argument we constantly exploit the inherit
Zy or Z3 action that is given on the simplicial sets; however this is possible
because the structures we are interested in are inherently symmetric. Is it
possible to adapt the topological tools to work in the case of non-symmetric
structure, e.g. digraphs?

As we have briefly mentioned, most of the objects and constructions we work
with can be rephrased fully in general categorical terms [HJO25], however it
is not clear at this point in time if such a point of view can lead to fruitful new
insights in the study of the complexity of PCSPs. A natural line of research is
thus to use fresh categorical insights to establish new hardness results.

The second half of this work was dedicated to the Griinbaum mass partitioning
problem in 3D. In particular, we show a new existence result in three
dimension by showing that any “nice” measure can be eight-partitioned by
three planes, two of which intersect in a prescribed oriented direction. We
also give a new algorithm for computing an eight partition of a point set in
3D where one of the plane has a prescribed normal direction.

One very tantalizing question in this area is clearly the existence of 16-partition
for any nice measure in E4. Such question has a very rich history and it has
been extensively studied; however it remains stubbornly open to this day.
While from the euristic dimension counting, one would expect to have a one
dimensional space of possible equipartitions, it turns out that configuration
space/test map set up fails: In fact, it is possible to find equivariant maps
(54]4 — 515.

More generally, the Griinbaum-Hadwiger-Ramos problem asks for which
triples (n, d, k) it is possible to simultaneously Zk-partitiﬁn H Nice measure
in R? with k hyperplanes. By extending Avis’ argument [Avi84] for the
Griinbaum problem in dimension d = 5, Ramos [Ram96] showed that a
necessary condition for a triple (n,d, k) to be a solutionis d > (%)n. He
also conjectured that such condition is also sufficient:

Conjecture 9.0.1. Let n, d, k positive integers. The triple (n, d, k) is a solution
for the Griinbaum-Hadwiger-Ramos problem if and only if

21:

Ly

d2[(—

At the moment the best known bound is due to Mani-Levitska, Vreéica, and
Zivaljevi¢ [MVZ06]:
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Theorem 9.0.1. Let n, d, k positive integers and let a = |log,(n)]. Then the triple
(n,d, k) is a solution if
dzn+ (2 -1)2°

Furthermore, even when the a solution is known to exists, we have very little
information on the global topology of the solution space. Therefore a natural
problem to investigate is the following;:

Problem 2. Let (n, d, k) a triple that is a solution for the Griinbaum-Hadwiger-
Ramos problem and fix yy, ..., p, nice measures in R4, Define

Stquak) ={H € (S | H Zk-partitions all u;}.

Determine SH w)d,k) up to homeomorphism/homotopy /compute all the
homology groups...

Finally, many different algorithmic questions are still wide open, even just
in the setting of classical Griinbaum problem in 3D: Is it possible to give an
algorithm to compute an 8-partition with a different requirement, e.g. two
planes are orthogonal to the third or intersect in a prescribed direction?

More generally, is it possible to algorithmically compute solutions for the
Griinbaum-Hadwiger-Ramos problem when such solutions are known to
exists?

Another natural question is to try and speed up our algorithm: the bottleneck
for the approach described in Chapter 8 is the fact that we need to explicitly
compute the intersection of the two median levels of the separated points.
However, a priori it might be possible to give an implicit description of
the intersection curve that allows to update the alternating sums X and Y
without explicitly walking along the full curve.
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APPENDIX

Minion homomorphisms

The goal of this appendix is to construct construct all the minion homo-
morphisms we use in the proof of Theorems 2.1.2 and 3.1.1 and we prove
Lemma 3.1.2 (in bigger generality).

We will give here a very short presentation (based on [FNO*24]) of the
results we need; however it is worth noting that all the constructions here are
inherently categorical in nature and fit in a much more general framework
when seen in these lenses.

We will not discuss here the broader categorical approach in details, but we
refer to [HJO25] for a more thorough investigation.

A.1 Categories, functors, and natural
transformations

A category is a collection of objects and morphism, e.g., the objects of the
category of graphs are graphs, and morphisms are graph homomorphisms.
Analogously, we have a category of structures in a given signature together
with homomorphisms. We will also work with the category of (G-)simplicial
sets with (equivariant) simplicial maps, and with a category of topological
spaces. Formally, a category is defined as follows.

Definition A.1.1. A category Cat is a class (or a set) of objects, and a mapping
hom which assigns to each pair of objects A, B € Cat a set of morphisms
hom(A, B). We further require that these morphisms compose in the intuitive

way, and that the composition has units and is associative, i.e., we require
that:

* For each f € hom(A, B) and g € hom(B,C), there is a morphism
go f €hom(A,C).

¢ For all morphisms f, g, h where the composition makes sense,
(hoglof=ho(gof).
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* For each object A € Cat, there is a morphism 14 € hom(A, A) that
satisfies f o 14 = f for each f € hom(A, B) and 14 o f = f for each
f € hom(B, A).

Instead of identity between objects in a category, it is preferable to use a notion
of isomorphism — we say that a morphism f € hom(A, B) is an isomorphism
if there exists g € hom(B, A) such that go f =14 and f o g = 15. Let us fix
the few categories we will work with.

Example A.1.1 (The categories of sets and finite sets). The objects of the
category of sets are sets, and morphisms are mappings, i.e., hom(A4, B) =
{f | f: A — B}. Anisomorphism is a bijective mapping, i.e., two sets are
considered to be isomorphic if they have the same cardinality. Sometimes,
we will restrict the objects to include only finite sets, in which case, we will
talk about the category of finite sets. Note that each object in the category of
finite sets is isomorphic to [1] for some non-negative integer n.

Example A.1.2 (The category of graphs). Graphs together with homomor-
phisms form a category which we denote by Graph. The categorical notion of
isomorphism coincides with the usual notion of graph isomorphism.

Example A.1.3 (The category of relational structures with signature L).
Relational structures of a fixed signature L together with homomorphisms
form a category which we denote by Strz. In particular we will be interested
when the structures have one single relation of arity 3 that we will denote
by Str. The categorical notion of isomorphism coincides with structural
isomorphism.

Example A.1.4 (The category of equivariant simplicial sets). The objects of
this category are simplicial sets X endowed with a simplicial action of a
fixed finite group G. The morphisms from X to Y are then simplicial maps
f: X — Y that preserve the G-action, i.e.,, maps such that f(a(c)) = a(f(0))
for each @ € G and any ¢ simplex in X. The isomorphisms here are again such
equivariant simplicial maps that are bijective on simplices in all dimensions.

Example A.1.5 (The category of topological spaces with homotopy classes of
maps). This is one of categories whose objects are topological spaces. The
key idea is that we do not want to distinguish maps that are homotopic, and
consequently, we will not distinguish homotopically equivalent spaces. As
in the previous category, we will work with spaces that have an action of a
fixed group G.

The objects of the category hTops are topological spaces X together with
an action of G, and the morphisms from X to Y are then defined as the
equivariant homotopy classes of equivariant maps from X to Y, i.e,,

hom(X,Y)=[X,Y]c={[flc| f: X =Y, fa =af forany a € G}

where [f]c; denotes the class of all equivariant maps that are equivariantly
homotopic to f. If it is clear from the context that we are considering
equivariant classes, we will drop the index in [f]c.
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The composition in this category is defined as [f] o [g] = [f o g]. Itis
well-known, and not hard to prove, that the result does not depend on the
choice of representatives. The identity is simply the homotopy class of the
identity map. Finally, isomorphisms in this category are equivariant homotopy
equivalences, ie., [f] € [X,Y]c is an isomorphism if there is an equivariant
map g: Y — X such that f o g is equivariantly homotopic to 1y and g o f is
equivariantly homotopic to 1x.

We will work with polymorphisms in several categories — a polymorphism
from X to Y of arity n is a morphism from the n-th power of X to Y.
Therefore, in order to give a formal definition we need to define powers,
or more generally products. The intuition behind the abstract definition of
a products is the following observation about Cartesian products of sets:
There is 1-to-1 correspondence between mappings f: C — A x B and pairs
of mappingsa: C — Aand b: C — B. (Given f, we may definea=py o f,
and b = pg o f where p4 and pg denote the projection on the first and second
coordinate, respectively. In the other directions, given a and b, we define f

by f(c) = (a(c), b(c)).)

Definition A.1.2. Fix a category Cat and a positive integer n. LetX;,..., X, €
Cat, we say that an object P together with morphisms p; € hom(P, X;) for
i € [n] is a product of X3, .. ., X, if, for each object C € Cat and morphisms
¢; € hom(C, X;) for each i, there is a unique map ¢ € hom(C, P) such that
ci = pioc for all i € [n]. We denote the product P by X; x --- x X;,, and if
X; = X for alli € [n], we call P the n-th power of X1 and write P = X".

It is straightforward to check that a product is unique up to isomorphisms,
or more precisely, that if both P and C are products then the homomorphism
¢ given by the definition above is an isomorphism.

Definition A.1.3. Assume that Cat has all finite products (i.e., the product
exists for all n-tuples of objects as above), and let A, B € Cat. A polymorphism
of arity n from A to B is a homomorphism from A" to B.

A functor is a natural notion of a morphism between categories. A functor
F: Caty — Catp is a mapping between objects and morphisms that preserves
composition and identity morphisms. More specifically, we require that
F(A) € Caty for each A € Caty, and F(f) € hom(F(A), F(B)) for each
f € hom(A, B) where A, B € Cat.

Example A.1.6. We will view the assignment 9%: A — Hom(R3, A) as a
functor Str — hTop. This functor is defined on morphism by mapping
a homomorphism f: A — B to the class [f.] where f,: Hom(R3, A) —
Hom(R3, B) is the induced continuous map.

Example A.1.7. An abstract minion is a functor . : Fin — Set such that
A(n) 20 foralln £0.

Finally, natural transformations are morphisms between functors.
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Formally, a natural transformation n: & — & where F,€: Caty — Catp isa
collection 14 € hom(5 (A), €(A)) indexed by objects A € Caty. Such that for
each f € hom(A, B), the following square commutes:

F(4) —2% F(B)

"l |

©(A) —5> €B)

Example A.1.8. A natural transformation between two minions coincides with
the notion of minion homomorphism: a natural transformation n: & — 4
is a collection of maps n,, where n ranges through objects of Fin such that, for
each n, m € Fin and m € hom(n, m), the following square commutes.

(1) N M (m)

al L

It is easy to observe that this square commutes if and only if n preserves
MIinors.

In general, we will say that a map n4 that depends on an object A of some
category is natural in A if some square, obtained by varying A by a morphism
a: A — A’, commutes. Which square commutes is usually clear from the
context.

We can now define the notion of a polymorphism in any category with
products.

Definition A.1.4. Let Cat be a category with finite products, A, B € Cat be
two objects, and n = 0. We define a polymorphism from A to B of arity n to be
any element f € hom(A", B) where A" is the n-fold power of A.

In order to define the polymorphism minion pol(A, B) in such a category Cat,
we need a functor from Fin to Set that assigns to each n, the set hom(A", B).
An easy way to observe that such a functor can be always defined is to
decompose it as two contravariant (i.e., arrow-reversing) functors Fin — Cat
and Cat — Set: the first of which assigns to n the n-fold power A" of A, and
the second of which assigns to this A" the set hom(A", B).

Let us first observe that the assignment n +— A" can be extended to a
functor A™: Fin — Cat for each A € Cat. This can be relatively easily
observed in all concrete cases, e.g., if A is a structure A, then, for each
n: [n] — [m], the mapping A™: A™ — A" is defined by a + a o m whichis
clearly a homomorphism. To give a general definition, we use the universal
property of products. Let : [n] — [m] be a mapping. We want to define
a homomorphism p2: A" — A". Using the definition of the nth power, it
is enough to give an n-tuple of homomorphisms a;: A™ — A, i € [n]. We
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let a; = py;) where p; denote projections of the mth power of A. Finally,
it is straightforward to check that the assignment &(n) = p# preserves
compositions and identities.

The second of these assignments is known as contravariant hom-functor
hom(—, B). It maps an object A € Cat to the set hom(A, B), and a morphism
f € hom(A, A’") to the mapping — o f: hom(A’, B) — hom(A, B) defined by
g gof.

Remark5. If Cat = Set, then the functor A~ can be also described as a restriction

of the contravariant hom-functor hom(—, A) to Fin viewed as a subcategory
of Set.

Definition A.1.5. Let Cat be a category with finite products, and A, B € Cat
be such that hom(A, B) is non-empty. We define the polymorphism minion
pol._.(A, B) as the composition of functors A~ and hom(-, B). We will omit
the index Cat whenever the category is clear from the context.

Example A.1.9. The polymorphism minion in the category hTop coincides
with the minion of homotopy classes of polymorphisms, i.e., for all spaces
X,Y € hTop, we have pol, ,,,(X,Y) = hpol(X,Y).

Note that the definition of this polymorphism minion does not depend (up to
natural equivalence) on which of the realisation of the power functor A~ we
take. Finally, we recall the categorical definition of preserving products, which
ensures in particular that #(A)~ is naturally equivalent to the composition
of A~ and F.

Definition A.1.6. We say thata functor 5 : Cat; — Cata preserves finite products
if, for each Ay, ..., A, € Caty and their product (P, pi), (F(P), F(p;)) is a
product of F(A1), ..., F(An).

Lemma A.1.1. If a functor F preserves products, then F o A~ and F(A)™ are
naturally equivalent.

Proof. We define a natural equivalence : ¥ 0 A~ — F(A)” by compo-
nents as 17, : F(A") — F(A)" is defined as the map given by the n-tuple
F(p1), ..., F(pn): F(A") — F(A). Since 1, commutes with the projections
of the two products, it is an isomorphism by the same argument as we used in
showing that product is unique up to isomorphisms. Itis also straightforward
to check that 1 is natural using the universal property of the product. O

A.1.1 Two general lemmata

Given the definitions above, the first of the two lemmata (Lemma A.1.2) is
rather trivial. It claims that we can transfer polymorphisms through any
functor that preserves products. It was mentioned in the context of promise
CSPs in [W;ZD], although in different flavours it can be tracked down to
Lawvere theories.
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Lemma A.1.2. If a functor F: Caty — Caty preserves products, then there is a
minion homomorphism

£: pol(A, B) — pol(F(A), F(B))

forall A, B € Caty such that hom(A, B) # 0.

Proof. By definition pol(F(A), & (B)) is the composition of the functors & (A)~
and hom(-, (B)). Since the first functor is naturally equivalent to & o A~,

we may assume they are equal. We can then define a natural transformation
&: hom(A~, B) — hom(F(A™), F(B)) by

En(f) = 3:(}()

To show & preserves minors, observe that f™ is defined as f o pﬁ, and

consequently F(f™) = F(fopd) = F(f)oF (p2) = F(fleps W = #(f)". o

The second lemma is a direct generalisation of [BBKO21, Lemma 4.8(1)], and
the proof is analogous.

Lemma A.1.3. Let A, A’, B, B’ € Cat be such that hom(A, B) is non-empty. Then
every pair a € hom(A’, A) and b € hom(B, B’) induces a minion homomorphism

£: pol(A, B) — pol(A’, B).

Proof. First, observe that a induces a natural transformation A~ — (A')7,
which can be shown by using the definition of products. We will denote its
components by a" € hom(A", (A")"). The minion homomorphism is defined
by &n(f) = b o f oa". To show that £ preserves minors, observe that the
following diagram commutes.

(A —T5 An

| | &

(Aym —2y Am — B by g

Consequently, we have that £(f™) = bof™oa" = (bof Dﬂ"’}ﬂpn: =Lu(f)". O

A.2 Constructing the Minion Homomorphisms

The goal of this section is to construct the assignment y and show it is indeed
a minion homomorphism. As before, we will focus explicitly on the case of
graphs for simplicity, but the argument is identical (up to substituting Kz
with Rz and Zz with Z3) in the case of ternary relations.
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A.2.1 From Graphs to Simplicial Sets

We prove that the functor Hom(K3, —) (seen as a functor Graph = hTopg,)
preserves products in the categorical sense. Here, we focus of graphs for ease
of notation, but all the discussion is identical in the case of structures with
one relation of arity 3 by just changing K> to R3 and Z; to Z,.

Essentially, it follows by the same argument as the well-known fact that the
product of homomorphisms complexes is homotopically equivalent to the
homomorphism complex of the product (see, e.g., [Koz08, Section 18.4.2]). We
provide a bit more detailed proof to show that the homotopy equivalence can
be taken equivariant, and that the products are preserved in the categorical
sense which is a slightly stronger statement. Let us first prove that there is an
equivariant homotopy equivalence.

Let P, Q be posets. By definition, an n-ary poset polymorphism from P to Q is
amap f: P" — Q that is monotone (where the partial order on P is defined
componentwise). We use the usual notation pol["](P, Q) and pol(P, Q) and
the sets of polymorphisms.

Monotone maps between posets are naturally partially ordered: f < g if
fi(x) £ g(x) for all x. This allows us to relax the notion of minion homo-
morphism: Let .# be a minion, and P, Q posets. A lax minion homomorphism
A — pol(P, Q) is a collection of mappings A, : & (n) pol{"}(P, () such
that A,,(f™) < A,(f)". The following is a straightforward generalisation of
[MO25, Lemma 4.1].

Lemma A.2.1. Let G, H be graphs. There is a lax minion homomorphism
u’: pol(G,H) — pol(mhom(Kj3, G), mhom(Kj, H)).

Proof. Let f: G" — H be a homomorphism. We define

u'(f): mhom(Kz, G)" — mhom(Kz, H)
by setting u’(f)(m1, ..., my) to be the multthomomorphism

u {f(vy,...,vn) | vi € mi(u) for i € [n]}
where u € V(C). Itiseasy to check that u'(f)(my, ..., my) is a multihomomor-
phism using that all m;"s are multthomomorphisms and f is a polymorphism.
Now consideramap r: [n] — [k]and multihomomorphisms m; € mhom(C, G)
for j € [k]. For every vertex u of K2, we have
(Y, . ., i) ()

= Iu'(f}(mnﬂ}, ‘i p mn[,,}}(u)

={f(v1,...,vn) | vi € mp(y(u) foralli € [n]}

2 {f{z.:‘;rm, ey z.:‘;r[ﬂ}} | vie mi(u) for all j € [k]}

={f"(v},...,v) | 'U; € mj(u) for all j € [k]}

= I[I’(f”)(?ﬂl, “n g mk}(u)

Thus, ' (f)™ = w'(f™) as we wanted to show. Checking that u'(f) preserves
the Zp-symmetry is straightforward. m|
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By applying the monotone map pu'(f) elementwise to chains, it naturally
extends to a simplicial map

u'(f): Hom(Kz, G)" — Hom(Kz, H).
In this way, 4’ can be treated as a map
u': pol(G, H) — spol(Hom(C, G), Hom(C, H)).

In order to show that u’ preserves minors up to homotopy, we use the follow-
ing well-known result about order complexes (see, e.g., [Bj695, Theorem 10.11]
or [MO25, Lemma 2.3]):

Lemma A.2.2. If f,g: P — Q monotone are monotone maps between posets
such that f = g, then the induced continuous maps |f|,|g|: |A(P)| — |A(Q)] are
homotopic. Moreover, if Zy acts on both P and Q and f and g are equivariant, then
| f| and | g| are equivariantly homotopic.

Proof. Consider the poset P x {0,1} with the componentwise partial or-
der, where Z7 acts trivially on the first coordinate. Since f > g, the map
H: P x {0, 1} defined by H(p,0) = f(p) and H(p, 1) = g(p) is monotone and
equivariant. Further observe that |A(P x {0,1})| is Z;-homeomorphic to
|A(P)| x [0, 1], hence |H| induces an equivariant homotopy |A(P)| x [0,1] —
IA(Q)] with [H|(~, 0) = |f| and |H|(=, 1) = |g]. o

Using Lemma A.2.1 (applied with G = Cyand H = Ky), Lemma A.2.2, and the
equivariant simplicial map s: Hom(K3z, K4) — T2 described in Lemma 2.3.1,
we get the required homomorphism yu:

Lemma A.2.3. There is a mapping u: pol(Cy,Ks) — spol(Tay, £2) such that

\u(f™)| and |u(f)™| are Zy-homotopic for all polymorphisms f € pol™(Cy, Ky) and
m: [n] — [m].

Proof. Lets: Hom(Kj, K4) — L? be the equivariant simplicial map described
in Lemma 2.3.1. Then u is defined by u(f) = s o p’(f). We have p'(f™) <
1'(f)™, hence the geometric realisations of these two maps are equivariantly
homotopic by Lemma A.2.2. Composing with s preserves both minors and
equivariant homotopies. O

A.22 From simplicial sets to topological spaces

Here, we use the fact that geometric realisation preserves finite products
[Fril2, Theorem 5.12],! and hence, for any simplicial map f: X" — Y, we can
treat | f| as a function |X"| — |Y|. The following is then an instance of the
more general Lemma A.1.2.

'In our case, the simplicial sets are locally finite, hence the statement is true for the usual
product of topological spaces.
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Lemma A.2.4. Let X and Y be two simplicial sets, then the mapping
n': spol(X,Y) — hpol(|X], |Y])
defined by 1/ (f) = [| f|] is a minion homomorphism.

Proof sketch. After we have identified |X"| with |X|", there is not much
happening here. The functions |f|™ and |f™| agree on vertices since on
those they are both defined as f™. Similarly, they map each of the faces to
the same face. Finally, on internal points of the faces, they are both defined
as a linear extension of f™, and hence they are equal, and consequently, their
homotopy classes coincide. O

Combining the above with the relaxation lemma using the Zz-equivariant
continuous map 52 5 Y constructed in Lemma 3.1.2 below, we obtain the
desired minion homomorphism.

Lemma A.2.5. There is a minion homomorphism
1: spol(Ty, £?) — hpol(S!, Y).

A.2.3 From graphs to topological spaces

Finally, let us discuss the composition ¢ = 1 o u defined in Lemmas A.2.3
and A.2.5. The claim is the following.

Lemma A.2.6. The composition ¢ = 1 o u is a minion homomorphism
d: pol(Cy, Kg) — hpol(St,Y).

Proof. It is enough to show that the composition preserves minors. For that,
let f € pol™(Cy, Ky) and m: [n] — [m]. We have that u(f)™ and u(f™) are
Zp-homotopic by Lemma A.2.3. Furthermore,

O(f)" = (nu(f )™ = n(p(f)™) = qu(f™) = ¢(f7)

where the third equality uses the fact that i is constant on homotopy classes
(which is true since ) is a composition of 1’ and postcomposition with 52 — Y,
and 1’ is constant on homotopy classes by definition). O

This concludes the proof of Lemma 3.1.2.
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APPENDIX

Auxiliary Lemmas

B.1 Mass Partitioning

B.1.1 Limit arguments

We prove some standard facts using limit arguments.

Lemma B.1.1 (Limit argument for finite point sets). Let X C (5> }3 be a compact
subset such that, for all u mass distributions (with connected support) on B there is
a plane configuration H € X that eight-partitions u; then for any set P of points in
3, there is a configuration Hu € X that eight-partitions the point set.

Proof. Let n be the number of points in P. Let u; be the measure defined
as follows. At every pointin P, place a ball of radius ¢; = 21—, with uniform
density and total mass (1 — €;)/#; finally, add a normal Gaussian distribution
“on the background,” with total mass €;/n. Note that the total measure y; of
the complement of the union of balls is less than ;.

By choosing i large enough, we can assume that a plane can intersect a
collection of balls only if their centres are coplanar; hence, without loss of
generality, we can assume that this happens for i = 1.

By assumption, there is a plane configuration H; that eight-partitions the
mass y; for each i; by compactness of X, there is a subsequence ‘H,-j that
converges to some limit He; up to reindexing we can assume that the original
sequence ‘H; does. The obtained limit point eight-partitions the original
point set P: in fact, there is a ip big enough such that for every orthanta € Zg
and any m > iy, every point p € P N Gf ™ is “far away” (e.g., at least 1/2)
from the planes in the configuration H,,; hence

1-¢ 1
m|P ﬂog{ﬂ = Fm(()g-h) = g
Taking the limit in m we obtain the desired result. O

Corollary B.1.1. Let X and P as above. If Hx = (H1, H2, H3) is the configuration
constructed in the proof of Lemima B.1.1, then any plane H; in Hax bisects P and
any pair (Hi, H;j) four-partitions the points.

n
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Proof. For simplicity we show the result for the first plane H; and the pair
(H1,H2), all the other cases are identical. First, construct y; and H; =
(Hia,Hip2, Hiz) converging to the limit H, as in the proof of Lemma B.1.1.

Again, by choosing ip big enough we obtain that, for any m > i3 and any sign
a € Zy every pointp € PN Hl'sr is sufficiently far form H,, ; hence

1-

HY| < pm(Hy, 1) = 5

Similarly, for any pair of signs (a1, a2) € Z2, any point p € PN H{* N H? is
sufficiently far from both Hp,1 and Hy, 2, therefore

1—epm

nH “22)
By taking the limit we obtain the desired result. m|

Lemma B.1.2 (Limit argument for mass distributions with possibly discon-

nected support). Let X be a compact set in {53}3 such that, for any mass distribution
with connected support there is a conficuration H € X that eight-partitions the
measure. Let u be a “general” mass distribution. Then there is a plane arrangement
Heo € X that eight-partitions .

Proof. Define €; = % and let y; the measure defined, on a measurable set
A CR? as

pilA) = (1= €) p(A) + eiN(A),
where N is a normal Gaussian distribution on E2. Then, {i is a mass
distribution with connected support hence there is a configuration H; that
eight-partitions y;. By compactness, up to taking a subsequence, H; converges
to a configuration H,.

Now, for any a € Zg, we have that

(1- ) 0% < w(OF) = 5.

For any fixed measure i, the map H — p(ﬂ'ﬂ) is continuous; hence by taking
the limit in { we obtain that, for all « € Zz

w0 <

m||—=

However, since

Do) = p@) =1,
aeZ}

it follows that all the previous inequalities are equalities. m|
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B.1.2 Four-partitioning in the plane with a prescribed
bisector

This section is devoted to the proof of Lemma 7.1.1. For convenience, we
restate the lemma here. Both the lemma and proof are due to [BK16].

Lemma 7.1.1 (Four-partitioning a mass distribution in B2 [BK16]). Let u* bea
mass distribution (with connected support) on R2 and v € S. Then there exists a
pair (£, £) of lines in B2 that four-partitions u* and such that v bisects the angle
between {1 and {».

Moreover, if we orient {1 and {3 so that {1 is in the first direction clockwise from v,
and {7 is in the first direction counterclockwise, the oriented pair is unique and the
lines depend continuously on v.

Proof. Suppose, without loss of generality, that v = (0,1). We first prove
existence. Let a € [0, 71/2], and rotate v counterclockwise and clockwise
by angle a to obtain u, and w,, respectively. Then, since the measure has
connected support, there exist unique lines {, and m, that are perpendicular
to 1, and wy, respectively, and bisect u. Note that v bisects the angle between
£y and mi,.

The (oriented) lines £, and m, partition the plane into four octants, which we
label Py, Pg, Ps, Py (north, east, south, west) in the obvious manner. Since
both lines are bisecting, we have

u(Pn) = p(Ps) =x, u(Pw)=u(Pe) = pu®?)/2-x=y.

When a tends to 0, Py and Pr tend to empty sets and evidently x > y for a
sufficiently close to 0. When a tends to 7/2, Py and Ps tend to empty sets
and then x < y for a sufficiently close to 71/2. Since x depends continuously
on a, we must have x = y somewhere in between, by the intermediate value
theorem. Thus, we have existence.

We now show uniqueness. Assume we have a partition Py, P, Ps, Pw
with angle a and another partition On, Qr, Qs, Qw with angle a’. Assume
without loss of generality that a” < a. Moreover, since for a’ = a the partition
is defined uniquely, we may assume a’ < a. Let p = {3 N m, and consider
the following cases:

1. p € On: In this case Pyy C Oy and both sets have the same measure.
This contradicts connectivity of the set where the density is positive,
since the density is positive in (s and in Py, it must be positive
somewhere in Qy \ Py, implying u(Qy) > u(Py).

2. p € Qe: In this case Pw C Qw and we obtain a similar contradiction.

3. p € Qs and p € Qw are similar to considered cases.

Since the lines {,, m,, {4, and m, are distinct, this covers all cases. In each
case, we obtain a contradiction, hence, we have uniqueness.
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As for continuity, it follows from the standard fact that a map with compact
codomain and closed graph must in fact be continuous. The codomain is
compact since we are only interested in directions of the halving lines that
afterwards produce halving lines continuously, thus working with S1x Slas
the space of parameters. O
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