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The recent classification of the onset of turbulence as a directed percolation
(DP) phase transition has been applied to all major shear flows including pipe,
channel, Couette and boundary layer flows. A cornerstone of the DP analogy is
the memoryless (Poisson) property of turbulent sites. We here show that, for
the classic case of channel flow, neither the decay nor the proliferation of
turbulent stripes is memoryless. As demonstrated by a standard analysis of the
respective survival curves, isolated channel stripes, in the immediate vicinity of
the critical point, age. Consequently, the one to one mapping between tur-
bulent stripes and active DP-sites is not fulfilled in this low Reynolds number
regime. In addition, the interpretation of turbulence as a chaotic saddle with
supertransient properties, the basis of recent theoretical progress, does not
apply to individual localized stripes. The discrepancy between channel flow
and the transition models established for pipe and Couette flow, illustrates
that seemingly minor geometrical differences between flows can give rise to
instabilities and growth mechanisms that fundamentally alter the nature of the

transition to turbulence.

Many stochastic processes are memoryless, i.e., the probability of an
event to occur is constant in time, as is the case for radioactive decay.
Fluid flows, however, are governed by deterministic equations, and in
principle, the flow state at an instant in time fully determines the entire
future evolution. It may therefore come as a surprise that the transition
to turbulence in a large number of flows is governed by memoryless
processes. This seemingly contradictory state of affairs is reconciled
by the sensitive dependence on initial conditions—a defining property
of deterministic chaos that equally applies to turbulent fluid motion.
The associated exponential amplification of even minute differences
makes long term forecasts of the dynamics impossible in practice, and
effectively erases the flow’s memory.

It is precisely this memoryless property that has paved the way for
a possible solution to the century-old puzzle surrounding the nature of
the transition to turbulence. More specifically, the transition in Couette,
pipe and related shear flows is characterized by the co-existence of
laminar and turbulent regions. Such patches of turbulence, although
frequently long-lived, are transient, and their decay is abrupt and
unpredictable—more precisely, memoryless. The underlying dynamical-

systems model is that of a chaotic saddle in phase space, characterized
by an exponential lifetime distribution'?, i.e., a constant escape rate?,
independent of age. This correspondence to a chaotic saddle**™ is
probably the best established property of transitional turbulence in
subcritical shear flows, and a large body of literature has been dedicated
to the dynamical-systems interpretation, including studies of the
underlying exact coherent structures*", the boundary crisis'®* that
gives rise to transient chaos, and the resulting edge state that mediates
the eventual escape from turbulence”?*. Corresponding transient
dynamics have equally been observed for turbulence in astrophysical
accretion discs®, in nonlinear fibre optics®, for the dynamo transition in
magnetohydrodynamic turbulence”, turbulence in pulsatile”® (e.g.,
cardiovascular) flows and surprisingly even extend to the generic case
of isotropic turbulence®.

In addition to the temporal dynamics, also the spatial prolifera-
tion, i.e., the seeding of new patches via a contact process (called ‘puff
splitting™ in pipes), turned out to be memoryless*. These combined
insights have not only allowed the determination of the critical point
for the onset of sustained turbulence®, but also confirmed an earlier
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more general conjecture by Pomeau® that the spreading of turbulent
fronts may be connected to directed percolation (DP). Unlike in the
original proposition, active sites were found to correspond to mac-
roscopic patches (puff or stripes) of turbulence, which, just like in
models of DP, can either decay or infect their neighbors®’, and the
probability for either event to take place does not depend on time.
Based on these insights, DP is believed to be the standard route to
turbulence for this entire class of flows* ™’

At first sight, channel flow perfectly complies with all of the
above criteria. In the transitional regime, turbulence appears in the
form of stripes, and simulations of such stripes in periodic boxes
confirmed the memoryless nature of decay and splitting of individual
stripes**%*., Like in other shear flows’**?, the critical point has been
approximated by comparing mean life and splitting times*°. However,
for channel flow these results have been obtained in numerical
simulations of flows in relatively small boxes with periodic boundary
conditions. Here stripes cannot take their natural, localized form but
instead the stripe ends merge via the periodic boundaries. While it is
not clear how such artificial conditions affect the transition in channel
flow, studies in Couette flow found memoryless lifetime statistics and
qualitatively similar proliferation dynamics for both periodic* and
fully localized stripes®. Studies of localized channel stripes in large
domains**™*® were usually limited to very few realizations, and con-
sequently a statistical analysis of neither stripe decay nor stripe pro-
liferation has been conducted. At the same time analogies to decay
and proliferation of transitional structures in pipe and Couette flow
are typically taken for granted and memoryless stripe dynamics are
assumed (e.g., Manneville and Shimizu*).

We will show in the following that stripe localization fundamen-
tally alters the proliferation and decay processes of turbulence. Unlike
for other shear flows, channel stripes become sustained via a periodic
(and hence deterministic) growth process, which involves the persis-
tent generation of streaks at the downstream tip. Below this threshold,
stripes can live for long times but eventually decay. Even for char-
acteristic time scales exceeding those of clearly memoryless cases in
other flows by an order of magnitude, the lifetimes of channel stripes
are not exponentially distributed. Following the standard classification
of survival functions, stripe decay instead is an aging process. In this
case, the probability of a stripe to decay/die increases in time. We
further show that above the critical point, with size, stripes are
increasingly likely to fracture into two or more pieces, a process that
intermittently gives rise to growing daughter stripes. Surprisingly, also
this stripe reproduction mechanism has an increasing hazard rate and
corresponds to an aging process.

Results

Experiments are carried out in a large aspect ratio channel, con-
siderably exceeding domain sizes of most earlier studies. Specifically,
the channel’s dimensions are (L, Ly, L,) = (4000h, 2h, 490h), where L,
Ly and L, are lengths in the streamwise, wall-normal and spanwise
directions, respectively. Quantities are non-dimensionalized with the
length scale h (half-gap) and 1.5 times the bulk velocity U, (where 1.5U,
corresponds to the centreline velocity in case of laminar flow). In
keeping with numerical and theoretical studies, we define the Rey-
nolds number as Re=1.5U,h/v, where v is the kinematic viscosity.
Unless perturbed, the flow stays laminar over the entire Reynolds
number range investigated. We used two protocols to obtain isolated
stripes. Stripes were created either by perturbing the flow across a
certain width (=20h in the spanwise direction) or a stripe was thus
created at a higher Re, followed by a quench to the target Re. The latter
mechanism was found to be more efficient at lower Re, at which the
former creates stripes only sporadically. At Re where both mechanisms
work well, results are qualitatively the same regardless of the pertur-
bation type, provided that the created stripes are of comparable size.

Onset of stripe expansion

Turbulent stripes are investigated in the range 600 <Re<900. For
each Re, around 1000 individual stripes are generated near the chan-
nel entrance. As they advect downstream, they are monitored by
multiple cameras along the channel until they eventually exit the
setup. More details are available in the Methods section. Given that
stripes travel with a speed close to the bulk velocity, the total obser-
vation time permitted in our 4000/ long channel (following conven-
tion, time is non-dimensionalized by h/(1.5Up)) corresponds to 6000
advective units. Stripes are typically allowed to develop over the first
1500h (measured from the inlet) and measurements focus on the
downstream region (see the Methods section for details). In all the
experiments reported in the present study, stripes remained at a dis-
tance of at least 50h from the lateral boundaries to avoid interactions,
stripe advection velocities and tip speeds remain unchanged up to this
distance. Overall more than 10,000 stripes are tracked in order to
obtain reliable statistics and the total observation time exceeds 5 x 10’
advective time units. The resulting images are analysed to extract
various quantities of interest. In particular, the area occupied by tur-
bulence is determined as a function of time and used to compute the
mean growth rate of turbulence (see the Methods section for details).
Note that this analysis is independent of the actual proliferation
mechanisms (e.g., stripe extension, broadening, stripe splitting,
branching etc.) and only determines if the overall fraction occupied by
turbulence either increases or decreases. For each Re ~1000 mea-
surements were carried out, starting from individual stripes of varying
length (stripe length varied between 120h and 240h approximately,
see SI Fig. S1 for typical stripe size distributions), hence sampling a
wide range of different initial conditions. In this context it has been
shown previously in simulations** of isolated stripes that growth rates
(as well as the stripe survival) depended on the initial stripe length if
lengths were <110h but became length independent for larger values
and this effect hence does not play a role for the stripes considered in
the present study. The growth rates obtained in our experiments are
shownin Fig. 1. For Re$650, growth rates are negative, while above this
Re, the growth rate becomes positive and continues to increase
with Re.

We propose that once individual stripes proliferate also turbu-
lence as a whole will eventually cease to decay, and hence the critical
point for channel flow can be estimated to be Re, ~ 650. This estimate
neglects stripe interactions and more precisely provides a lower bound
for the critical point (see also Avila et al.*°, Hof * for analogous argu-
ments). In any case, our experiments suggest that the critical point is
considerably lower than that reported by Sano and Tamai*, an
observation that is in qualitative agreement with direct numerical
simulations (DNS) of channel flow, where persistent stripe growth has
been reported from Re ~ 660***", a value slightly larger than the
experimental estimate. Another recent numerical study* estimated a
value of Re ~ 700 for the onset of sustained stripes, but it is note-
worthy that here a different Reynolds number definition has been
used, which is based on the centreline velocity of laminar flow of equal
frictional drag, and therefore in the presence of turbulence, generally
results in higher values.

Stripe lifetimes and categories of survival curves
As is customary for turbulent shear flows, we investigate the transient
nature of turbulent structures below the critical point via a lifetime
analysis. At a given Reynolds number, we hence determine the stripes’
survival probability as a function of time. Based on ample studies in
shear flows, the resulting survival curves are expected to have expo-
nential tails, as is characteristic for a memoryless, non-aging process.
However, more generally, survival curves can fall into different
categories; in population ecology three standard types are commonly
distinguished*®. As illustrated in Fig. 2a, for type 1, the decay rate is

Nature Communications | (2025)16:8447


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63044-7

02} 4 g{ 1
0.1 1
2 s ® o §
L ¢ ®
o - — - - - - - - - - - - - - -
g ®
S
(O}
01t 1
-
0.2} < £ % 1
600 650 700 750 800 850 900
Re

Fig. 1| Transition from shrinking to expanding turbulent stripes. The mean
growth rate of turbulent regions is plotted as a function of Re. Error bars indicate
the standard deviation across different experimental runs. The first 4 points are
fitted by a straight line to estimate the Re at which the growth rate first becomes
positive, which is Re ~ 650. Above this Re, individual stripes grow, while below,
they eventually decay, as seen in the insets showing a sequence of flow visualization
images.

initially zero and increases with time, which corresponds to the stan-
dard aging process (positive aging). Type 2 is the previously discussed
memoryless case with a constant hazard rate. Type 3 conversely is
characterized by a decreasing hazard rate and is also referred to as
negative aging. All three cases are generally modeled by Weibull dis-
tributions, where the survival probability is given by

S(ty=e" " 6))

Type 1 is defined by k > 1, type 2 by k = 1 (the exponential dis-
tribution) and type 3 by k < 1. The characteristic time scale 7 typically
increases rapidly (superexponentially) with increasing Reynolds
number. The expected qualitative trend with increasing Re is indicated
in Fig. 2a for the customary type 2 memoryless case and for the con-
trasting type 1 aging case.

The measured survivor curves for channel flow are shown in
Fig. 2b for three Reynolds numbers, 600, 620 and 630. Based on the
estimated value of the critical point in our experiment, Re. ~ 650, this
corresponds to reduced Reynolds numbers (relative distance to the
critical point) €= (Re — Re,)/Re, of -8%, -5% and -3%. For comparison,
we show three survival curves measured previously for pipe flow" at
-15%, -9% and -8% from critical. While as expected, the pipe curves
(red) are of type 2 and hence non-aging (memoryless), for channel flow
(shown in black) this is surprisingly not the case. Despite having longer
characteristic lifetimes (see Table 1), which underline the proximity to
the critical point, the survivor curves are of type 1: fitting Eq. (1) we
obtain k values ranging from 6 to 9 (see Table 1 for details), marking
stripe decay as an aging process. When stripes are young, their survival
probability is essentially one and decays are absent. As stripes grow
older, the first decays are encountered until at late times, the survival
probability drops faster than exponential, and the remaining survivors
decay in rapid succession, which practically sets a maximum life
expectancy. As the critical point is approached the characteristic life-
time increases (see Table 1).

The circumstance that young stripes do not decay makes it
practically impossible (given experimental constraints) to determine
characteristic lifetimes for Re>630, i.e., even closer to the critical
point. This is in stark contrast to pipe flow where excessively long
lifetimes can be obtained in comparably short pipes using censored
data. In such cases single puffs are not monitored from birth to death
but instead typically just for a few hundred advective time units (e.g.,
Peixinho and Mullin®, Kuik et al.*®), shorter than the several thousand

advective time units realized in the present study. While data censor-
ing works extremely well for memoryless cases, it practically fails for
type 1 survivor curves.

Stripe lifetimes and decay in direct numerical simulations

The survival curves measured in our channel experiment not only
fundamentally differ from those in pipe and Couette flows’*?, but
surprisingly also from computations of channel flow in small domains.
As discussed above, stripes in such small computational boxes cannot
fully localize and are found to be memoryless'**°. An example of such
non-aging channel stripes*® is shown in Fig. 2c¢ (red data points). The
Weibull fit (Eq. (1)), like in the case of the pipe distributions (Fig. 2b),
results in a value of k close to 1 (see Table 1 for details).

Given the fundamental difference to the experimental distribu-
tions (Fig. 2b), and that no comparable numerical study exists for fully
localized stripes, we conducted DNS at Re=620 in a much larger
domain size of (400h, 2h, 400h). Here stripes fully localize and assume
their natural shape. As shown in Fig. 2¢ (blue circles), stripe localization
causes survival curves to change from type 2 to type 1. The Weibull fit
(Eq. (1)) results in a value of k close to 9, defining it as an aging process
and confirming the experimental finding. While the simulations are
qualitatively in excellent agreement with the experiments, small shifts
in absolute values remain, which may be attributed to the differences
in boundary conditions.

In order to obtain some insight into the origin of stripe aging, we
consider the time evolution of the stripes’ turbulent kinetic energy,
shown in the upper panel of Fig. 2d. In this case, the energy gradually
decreases with time. This is qualitatively different from memoryless
cases, such as puffs or localized stripes in Couette flow*’, where the
energy is expected to fluctuate around a constant mean during the
lifetime of turbulence until the decay sets in and the energy sharply
drops. An example of the latter memoryless case is shown in the lower
panel of Fig. 2d (light grey curves) for periodic stripes computed for
the same domain size as in Gomé et al.*’ at Re =750. Here, decays can
occur with equal probability at any time and the eventual decay pro-
cess takes ~200 advective time units.

Following recent studies’®>” we reanalyse the fully localized
stripes and decompose the velocity field into small and large scale
flows (see Sl for details). The small scales correspond to the turbulent
fluctuations (streaks and streamwise vortices), while the large-scale
flow corresponds to a circulation around the stripe, which has more
recently been shown to drive an inflectional instability at the stripe’s
downstream tip*>. Whereas the large-scale contribution decreases
continuously (see SI Fig. S3), the small-scale flow, when normalized by
the stripe area (see curves in color in the lower panel of Fig. 2d), initially
fluctuates around a constant level until finally the viscous decay sets in.
This final steep decay of energy takes about 200 advective time units,
and hence matches the eventual collapse of the periodic memoryless
stripes (light grey curves in same panel). These observations suggest
that the small scales, i.e., the local vortices and streaks that make up
turbulence, remain intact during the stripe’s lifetime (as should be the
case). Conversely, the decreasing magnitude of the large scale (SI
Fig. S3) is associated with the aging process.

Tip instability and streak generation

Instead of energy, which is not readily measurable in experiments, we
next consider the stripe size and position as illustrated in Fig. 3. A
peculiar feature of channel stripes is that they do not simply advect
downstream but they move diagonally across the channel. This span-
wise motion is caused by the aforementioned instability at the stripe’s
downstream tip* and the resulting continuous creation of streaks, see
Fig. 3c and Supplementary Movie for illustrations of this process.
Unlike for growth processes in other shear flows, in particular unlike
for stripes in Couette flow***, here streaks are created at a constant
rate (Fig. 3d) and this process is hence deterministic. From our
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Fig. 2 | Types of survival functions. a The three types of survival curves, type 1
(positive) aging, k>1in eq. (1). Here the decay rate is initially zero and monotonically
increases in time. Type 2 non-aging, k = 1. The decay rate is constant. Type 3 negative
aging, k<1. The decay rate is largest at ¢ = 0 and decreases with time. Arrows indicate
the trend for increasing 7 for type 1 and type 2, the cases relevant to the present
study. b Survival probabilities for the channel stripes in experiments are given by the
black symbols for Re = 600, 620 and 630. Error bars indicate 95% CI. In all cases the
data is accurately matched by a Weibull fit (Eq. (1)) and the resulting k values are
considerably larger than 1 (see Table 1), marking stripe decay as a type 1 aging
process. For comparison three survival curves for puffs' are shown in red. In this
case, as expected the Weibull fit results in values of k that are close to one confirming
the memoryless nature of puffs. ¢ Comparisons between survivor curves in channel
simulations. In red for periodic stripes computed in small domains, where k is close

Time (advective units)

to one and hence the decay memoryless, and in blue for fully localized stripes
computed in large domains where k = 8. Error bars indicate 95% CI. Hence, while
periodic channel stripes are of type 2, non-aging, localized stripes are of type 1, aging.
d Evolution of turbulent kinetic energy of stripes in DNS. The top panel shows the
total kinetic energy which continuously decreases in time. The bottom panel shows
the energy of the small scale flows (see SI), normalized by the stripe area. This
quantity reflects the local magnitude of streaks and vortices, which fluctuate around
a constant value while the stripe is alive and eventually drop when the stripe decays.
For the memoryless periodic stripes in light grey (computed at Re=750) it is the total
energy (shown per unit area) that fluctuates around a constant mean, and no
decomposition is needed in this case. In both cases the average value of the
respective plateaus has been set to one.

experiments, it becomes apparent that above the critical point (Fig. 3a
at Re =655) the streak creation and hence the stripe’s spanwise speed
is constant; below critical (Fig. 3b at Re = 620) this process slows down.
During the initial phase, i.e., while the stripe is young, the streak
creation is fully intact and streaks are created at the same rate as for the
sustained case (compare blue dashed lines in Fig. 3a,b). However, at
the lower Reynolds number, at some point the tip speed begins to slow
down. While this now older stripe is still alive, new streaks are created
at a decreasing rate and cannot balance the streak detachment, which
as we will discuss in more detail below, occurs at the upstream tip.
Consequently, the stripe shrinks.

We would like to recall at this point that the tip instability is driven
by the large-scale circulation around the stripe®> and hence the

Table 1| Weibull fits to lifetime curves
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Re k T Figure
Channel (experiment) 600 5.9 1085 2(b)
Channel (experiment) 620 9.5 1490 2(b)
Channel (experiment) 630 8.1 2300 2(b)
Channel (DNS) (fully localized stripes) 620 8.7 1055 2(c)
Pipe 1740 1.3 55 2(b)
Pipe 1860 1.1 445 2(b)
Pipe 1880 12 900 2(b)
Channel (DNS) (non-localized stripes) 730 1.1 385 2(c)
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Fig. 3 | Deterministic stripe expansion and streak creation. a Consecutive

positions of a stripe at Re = 655. The downstream tip moves at a constant velocity
diagonally across the channel as indicated by the dashed blue line, and laminar fluid
is entrained at a constant rate. b Below the critical point, at Re = 620, the tip initially
moves with the same velocity as the stripe at Re = 655 but slows down in time and
eventually the stripe decays. ¢ Snapshots of the wall normal velocities in the region

300 600

Time
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around the downstream tip of the stripe at Re = 655, obtained from DNS, showing a
pair of streaks are created every =18 advective time units. To more easily follow the
addition of streaks, the streaks emerging in the first snapshot (¢ = 0, arbitrary time
origin) are shown with an arrow in all the subsequent snapshots. d The time interval
between the addition of successive streaks shown as a function of time for Re = 655.

observation in experiments of a slowdown of the streak creation
matches the observed slowdown of the large-scale flow; both these
processes go hand in hand and comprise the aging aspect of stripes.
While stripes shrink the interior turbulent motion, i.e., the existing
streaks and vortices, remain unaffected by this process. This in turn
also rationalizes the fundamental difference to other flows and speci-
fically why fully localized stripes in Couette flow are memoryless. The
latter do not rely on a tip instability to stay intact but instead new
streaks are created throughout the stripe®.

Stripe fracturing and reproduction

In contrast to the deterministic and constant growth at the channel
stripe’s downstream tip, the dynamics at the tail (i.e., upstream tip) is
stochastic. Stripe segments of varying size detach from the tail at
irregular intervals. Some examples are marked by the red circles in
Fig. 3a,b. The detached pieces typically dissipate. However, longer
pieces occasionally survive and form a new stripe upstream and par-
allel to the parent stripe (see SI Fig. S2 for an example). To distinguish
this process from stripe splittings in Couette® and small domain
channel*® simulations we will in the following refer to this process as
stripe fracture. The key difference between the two processes is that
during a split a gap opens along the stripe parallel direction, whereas
for fractures the gap forms perpendicular to the stripe®. Conse-
quently, splits depend on the stripe width, whereas fractures require
stripes of sufficient length. In the vicinity of the critical point, channel
stripes (unlike their Couette counterparts®) do not split according to

above definition but new stripes are exclusively created by stripe
fracture. We first investigate the parent stripe’s probability to fracture.
For this analysis, we disregard the frequent detachment of small seg-
ments but focus on fractures larger than 20h. As previously mentioned
such large stripe segments occasionally grow and persist. For now our
focus is solely on the parent stripe. Its fracture probability is deter-
mined irrespective of the further development of the daughter stripe.

The ability to fracture ultimately stems from the parent stripe’s
continuous extension, driven by the downstream tip instability. This
constant growth rate between fracture events can be used to convert
the stripe’s length into a time, which may be interpreted as the intrinsic
age of a stripe, where ¢ = 0 corresponds to the extrapolated time where
the stripe length is zero. The fracture statistics are shown in Fig. 4a,
where the probability of a stripe to stay intact (i.e., not fracture) is
shown as a function of length of the stripe. Stripes shorter than 200h
have a fracture probability close to zero. However, as time proceeds
and their lengths continue to increase, stripes appear to lose their
structural stability and the probability to fracture increases. The faster
than exponential decrease of the survivor function (Fig. 4a), with a
value of k= 5.7 (see Table 2) which is obtained by fitting (Eq. (1)), attest
that also the fracture probability of the parent stripe is not memoryless
but an aging process.

We further illustrate the coupling between stripe extension and
stripe fracture in Fig. 4b. Triggered close to the inlet, the stripe’s length
increases as it advects downstream. This growth is determined by the
streak creation at the downstream tip and results in a close-to-constant
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fracture (see (a)). ¢ Growth and fracturing sequences of a stripe. Since stripes grow
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growth of a stripe in the absence of fracturing, while the colour gradient illustrates
the increasing probability for it to fracture. The horizontal and vertical arrows
indicate fracturing events which reset a stripe’s length and effective age. The black
curve highlights the evolution of one stripe, for which numbers have been added to
clarify the sequence of fracturing/reset events - see the main text for details. Note
that here only fracturing of stripe segments larger than 20h are shown for clarity.
To compare the dynamics of stripes in our experiment to those in earlier compu-
tational studies we analysed the data from Shimizu and Manneville* (supplemental
movie at Re =725) and the stripe length evolution for a representative time interval
(=5000 advective units), shown in red. d Reproduction probability, i.e., the frac-
turing probability, only counting events at which daughter stripes grow and sur-
vive. Error bars indicate 95% CI. The corresponding survival curve (red) is of type 1,
aging, whereas the puff splitting curve shown for comparison’ is of type 2,
memoryless.

length increase. With length, the fracture probability increases (see
Fig. 4a). Eventually, once the stripe approaches a length of 400k, a
substantial part of its tail detaches. While the original stripe is now
shortened, the streak creation at the upstream tip is unaffected, and
hence the stripe length increases again until the next fracturing event
occurs. Consequently, the coupling between the growth of a stripe and
its fracture probability leads to a cyclic process which can be visualized
(Fig. 4c) by interpreting the stripe length as an effective age (assuming
growth from zero length). The length evolution is depicted for several
randomly chosen stripes (grey curves) at Re=710. A representative
stripe is highlighted in black. Starting from point 1, it initially grows at a
fixed rate (diagonal line in Fig. 4c), and this slope is dictated by the
streak creation rate at the downstream tip. With the stripe’s length also
its probability to fracture increases (shown by the color gradient) and
in this case fracturing eventually occurs at point 2. This event resets
this stripe to a shorter length (point 3) and hence a younger effective
age, and the growth resumes until the next fracture occurs (point 4).
The stripe is reset to point 5, and grows until point 6, at which point it
exited the test section. Corresponding cyclic dynamics (light grey

curves) are exhibited by all stripes regardless of initial conditions. The
interplay between stripe elongation and fracture causes the overall
proliferation of turbulence to be two dimensional.

While most earlier studies were performed in domain sizes
insufficient to capture such dynamics, recently two computational
studies®*” could accommodate stripe lengths comparable to those
observed in our experiments. Although neither the cyclic stripe
dynamics nor the dependence of fracturing on the stripe length have
been noted in either study, the available data allow to retrospectively
test some of these aspects. The simulation at Re =725 (supplemental
movie in Shimizu and Manneville®) is sufficiently close to our mea-
surements (Re =700) to directly compare the stripe dynamics. In order
to do so we determined the length evolution of turbulent stripes in this
computation and added the data to Fig. 4c (red lines). Like in our
experiments, stripes grow monotonically and they do so at the same
rate, i.e., following the same diagonal. Visual inspection confirms that
this deterministic growth, just like in the experiment, stems from the
continuous creation of streaks at the downstream tip. Once stripes
have reached a sufficient length their size abruptly reduces due to the
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Table 2 | Weibull fits to proliferation curves

Re k T Figure
Channel (fracturing) 710 5.7 1355 4(a)
Channel (reproduction) 825 4.2 2440 4(d)
Pipe (splitting) 2255 1.0 3090 4(d)

detachment of their upstream tail. At this Re such stripe fractures
appear to occur at slightly larger stripe lengths compared to our
experiments. Due to the periodic boundary conditions and limited
domain size of this simulation, fractured stripe pieces cannot separate
from the neighboring stripes and consequently interact, which leads to
the subsequent decay of either the daughter or the parent stripe.
Besides these computational domain restrictions, the dynamics of
individual stripes are in excellent agreement with our experiments,
and in both cases fractures occur at a similar rate.

To further test the agreement between experiments and simu-
lations we determined the distribution of size changes exhibited by
the computed stripes***’, specifically we sampled the data at intervals
of 100 advective time units and recorded the length change
encountered at each such step. As shown in SI Fig. S5 for all studies of
channel stripes, experiments as well as simulations, the corre-
sponding length distributions are distinctly asymmetric. The sharp
peak at small positive values results from the monotonic expansion
at the downstream tip. Conversely, at negative values the distribution
is flat and extends to very large sizes, and these events correspond to
the abrupt size drops caused by the fracture of the upstream tail.
These distributions hence capture the cyclic dynamics of channel
stripes, and this behavior is in stark contrast to size changes of
structures with memoryless properties in other flows, such as puffs in
pipe flow (SI Fig. S5d, for Re =2150). The latter shows symmetric (with
respect to zero) distributions as expected for structures fluctuating
around an average size.

While we have so far considered the fracturing probability irre-
spective of the fate of the daughter stripe, we next determine the same
probability but only considering those events where the daughter
stripe survives, which we will refer to as stripe reproduction (SI Fig. S2).
Since at Re =710 such productive fracturing events are rare (of order
1%), we carried out measurements at Re =825 where the rate of sur-
viving daughter stripes is far higher. As shown in Fig. 4d, also in this
case the survivor curve for 1 - P is not memoryless, hence also the
stripe reproduction is an aging process, in this case with k = 4. For
comparison, we plot the splitting probability (1 - P,;) for puffs in pipe
flow®, which is clearly memoryless (see Table 2 for the respective
values of k and 7).

Discussion

The key processes that determine the critical point and sustenance of
turbulence in channel flow, the proliferation and decay of stripes, are
not memoryless. Instead, stripe decay and proliferation probabilities
change in time, the shape of the respective distributions marks them as
type 1 survivor functions and hence aging processes. In both instances,
the temporal change of stripe properties is connected to the deter-
ministic growth at the stripes’ downstream tip. This is in contrast to
other shear flows such as pipe and Couette flow where decay and
splitting processes are memoryless. With respect to the recently pro-
posed analogy between the transition in shear flows and directed
percolation, our findings show that the central line of argument, i.e.,
that active sites with Poissonian statistics can be identified with indi-
vidual puffs®®*¢ (or stripes**), does not hold for channel flow. How-
ever, formally, this analogy only concerns the microscopic dynamics,
and discrepancies therefore do not automatically violate the DP con-
jecture. Yet, as has been demonstrated for simple models (e.g.,
Chantry et al’*%), even changes much more subtle than those

1500 mm

1400 mm

2000 mm

245 mm

Fig. 5 | Schematic of the experimental setup. Prior to entering the channel, the
water flows through a settling chamber (shown in grey) that smoothly converges
from a height of 90 mm to the 1 mm (=2h) channel height. The channel (2000 mm
in length and 245 mm in width) is illuminated via two LED lights (shown in black)
and the flow visualization images (see text for details of the visualization technique)
are recorded with cameras located along the channel.

uncovered here for channel flow can alter the universality class of the
transition. To eventually determine if channel flow violates the DP
conditions or if an analogy to DP different from that in other shear
flows may exist would require the resolution of aspect ratios and
dimensionless times far beyond those accessible in any shear flow
experiment or simulation to date.

Methods

Experiments

Experimental setup. The experiments are carried out in a large aspect
ratio channel which consists of two plates separated by a narrow gap of
2h=1+0.03 mm (Fig. 5). The bottom plate is a 10 mm thick, polished
aluminium plate, while the top is 10 mm thick float glass. The gap is
maintained by 1 mm thick steel strips, which are clamped between the
glass and steel plates and form the side-walls of the setup. The size of
the channel is (L, L, L,) = (4000h, 2h, 490h), where L,, L, and L, are
lengths in the streamwise, wall-normal and spanwise directions
respectively. The working fluid is water, supplied from a continually
overflowing reservoir, which is kept at the height of 21 m above the
channel. The water level in the reservoir is maintained within +2cm,
ensuring the pressure-head that drives the flow to be constant within
+0.1%. The excess pressure drop due to an isolated stripe is less than
0.2% of the total pressure head and hence the flow rate remains con-
stant during stripe decays or proliferation to within a fraction of a
percent.

Prior to entering the channel, the water passes through a settling
chamber including a porous barrier which breaks up large eddies. It
then enters the channel proper via a convergence with an area ratio of
90:1. Unless perturbed, the flow in the channel remains laminar over
the entire Reynolds number range investigated here.

The water temperature is measured just before the convergence
by a precision resistance thermometer. The viscosity of the water v is
then determined using a fit to standard temperature-viscosity tables
for water. The flow rate is measured by a magnetic flowmeter (ABB)
installed in the main supply pipe leading to the channel, from which
the bulk velocity U, is calculated.
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To permit comparison with earlier studies, quantities are non-
dimensionalized with the length scale h (half-gap) and 1.5 times the
bulk velocity Uy, where 1.5U,, corresponds to the centreline velocity of
a laminar flow with the same mass flow rate.

Perturbation techniques. To study the evolution of isolated turbulent
stripes, an effective mechanism to generate them is needed. For
Re >900, almost any standard perturbation mechanism (static obsta-
cle, moving obstacle, jets injected through one or more holes in the
channel wall) can efficiently trigger turbulence. Although for the lower
Re range studied here (600 < Re < 900), many of these do not work any
more, two methods were found to be efficient in generating isolated
stripes. In one, perturbing the flow over a certain minimum spanwise
(=20h) width successfully triggered stripe turbulence. In the present
study, we realized this by placing a ferromagnetic obstacle 100h
downstream of the inlet which can be actuated by impulsively moving
an externally placed magnet across the upper channel surface. This
extended perturbation generates a seed which evolves into a stripe.

In the other method, a stripe is generated at a Re higher than the
target Re, where stripes are easily generated by a localized or extended
perturbation (as described above). Next, the Reynolds number was
quenched to the target value. This was accomplished with a bypass
loop in the supply pipe leading to the channel, which was normally
closed by a solenoid valve. Prior to triggering the stripe, the flow rate is
adjusted to the target Re, with the bypass valve being closed. The valve
is then opened, reducing the resistance in the supply pipes, increasing
the flow rate and hence Re by around 100-150. After the stripe is
triggered at this higher Re, it is allowed to develop for a time of around
450. Subsequently, the solenoid valve is closed, quenching the flow
down to the target Re. Readings are taken after a further 375 to allow
the flow to adjust to the change in Re, and for any transients to die out.
In comparison to the quench, the generation of stripes by an extended
perturbation becomes increasingly inefficient for the lowest Re stu-
died here (Re <700).

Flow visualization. The channel is illuminated with the help of LED
lights installed parallel to the channel axis on both sides of the channel,
~1.4 m above it. The flow was visualized using reflective flakes 10-40um
in size (Eckart SYMIC CO0O1 reflective mica particles). These flakes tend
to orient along the shear and hence allows the distinction between
turbulent and laminar regions. The flow structures are monitored in
the test section with the help of three 4 MP cameras placed at a dis-
tance around 1.5 m above the channel. In order to allow time for the
quench or the decay of initial transients, the test section is located
some distance downstream of the channel entrance, and flows are
recorded from 15004 downstream of the channel entrance till 500h
before the channel exit. The combined view field of the three cameras
is 2000h x 490h. To monitor the evolution of a stripe, images are
captured by the cameras at a set frequency, with the three cameras
being simultaneously triggered each time by a TTL signal.

Image processing. The images of the three cameras are merged to
capture the flow field in the entire test section (Fig. 6a) and further
processed by subtracting images of the laminar background flow
(Fig. 6b). Images are next low-pass filtered using a Wiener filter with a
5x 5 pixel mask. This is sharpened using unsharp masking in order to
increase the contrast between the edges of the stripe and its sur-
roundings (Fig. 6c¢). This can be further used for extracting quantities
of interest. For instance, in order to determine the area occupied by
turbulence, a simple threshold is subsequently applied to create a
binary image, shown in Fig. 6d (in this example turbulence takes the
form of a single stripe). The pixel count of the black area is then the
area occupied by turbulence. For a reasonable range of parameters
used in the image processing (e.g., the threshold for binarizing the
image), there is only a minor variation in derived quantities such as the
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Fig. 6 | Image processing. a Raw image from the cameras stitched together
showing an isolated stripe. b Background subtracted image. ¢ Image after filtering
and sharpening. d Binary image after thresholding.

area of the turbulence. More importantly, such changes do not affect
the value of the critical point or the lifetime distributions.

The length of a stripe is determined using the binarized image.
The image is divided into horizontal (i.e., streamwise) strips, each with
a height of 5 pixels. For each of the strips that contains a part of the
stripe, the centroid of that stripe portion is determined. One then has a
series of points that mark the stripe segment’s center within each strip.
The distance between adjacent points is determined and summed over
to obtain the length of the stripe. Note that this is the actual length
along the stripe which takes into account any bends or curves and it is
not a projection onto a selected (inclined) orientation.

Determination of growth rate and Re_. The growth rate of turbulence
was estimated as follows. For each Re, around 1000 measurements are
carried out and in each case, the initial condition is a single stripe,
typically generated at higher Re and quenched to the target Re. At a
fixed time after the quench the length of the stripe is determined as
described in the previous section. Next, we obtained the ensemble
average over all measurements at that Re for the same time ¢ (relative
to the quench). This procedure was repeated for later times and in
each case the total length of the stripe in the channel was determined,
including shed stripe pieces and new stripes that may have originated
from stripe fracturing. In doing so we obtain the evolution of the stripe
length as a function of time. For each Re, this time variation can be
approximated by a linear fit, whose slope is the growth rate at that Re.

The Re where the growth rate changes from negative to positive is
suggested as an estimate (lower bound) of the critical point. Hence,
similar in spirit to Avila et al.*° we assume that the point where stripes
begin to proliferate provides a close approximation of the actual cri-
tical point where turbulence first becomes sustained.

Numerical simulations

The numerical simulations in the present study are carried out using a
modified version of the hybrid (pseudo-spectral for the periodic
directions and finite differences for the wall-normal direction) code
openpipeflow”’, which was adapted to simulate channel flow* in a
rectangular box.
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x',y',z' are the streamwise, wall-normal and spanwise directions,
with the associated unit vectors being e, e, €, respectively. When
scaled with half channel height 2 and centreline velocity U, of the
parabolic profile with the same mass flux, the laminar base flow can be
expressed as U=(1—)?)e,, and the Navier-Stokes equations for the
fluctuating components (u, p) around base flow U take the form

%t (u-Vyu+u-VU+U-Vyu

L o2er. 102 2
= —Vp+ g VU+ 2 Vu+f(t),V-u=0.

Here, the Reynolds number is defined as Re=U_h/v, where v is
the kinematic viscosity of the fluid. f(t)=f(¢t)e, is a time-dependent
forcing term that represents an imposed streamwise pressure gra-
dient. The mass flux in the streamwise direction e,, is kept constant by
changing the amplitude of the forcing term at every time-step.

No slip boundary conditions are imposed on the domain walls

u(x, +1,2)=0. 3)

Computational domain. The computations are carried out in a rec-
tangular box shaped domain which can be tilted with respect to the
streamwise direction’®* at an angle 6, where 0°<6<90°.

The sides of the rectangular box x and z have associated unit
vectors e, and e, respectively. The usual streamwise, wall-normal and
spanwise directions have the following relation with the unit vectors
associated with the domain directions.

e, = cosfe, + sinfe,,
e, = —sinfe, + cosfe,, “4)
e, =e,.

A constant mass flux is maintained in the streamwise direction and
periodic boundary conditions are imposed on the faces normal to e,
and e,,

ux,y,z)=u(x+L,,y,z),

_ )
ux,y,z)=ux,yz+L,),

where L, and L, are lengths of the domain in the x and z directions,
respectively.

The solver uses Fourier modes in the two periodic directions and
finite-difference in the wall-normal direction. The velocity field is
decomposed as

K M

ux,y,z,t)= Z

ak,mo}l t)ei(akxx+ﬁm,z), (6)
k=—Km=-M

where k and m are Fourier modes in the x and z directions respectively,
a =2mn/L,, B =2m/L,. L, L, are the lengths of the domain in x and z
directions, respectively. The time integration is performed using a
second-order backward differentiation for linear terms and the
Adam-Bashforth method for the nonlinear terms.

The evolution of the stripes is monitored by defining a scalar
observable - perturbation kinetic energy E(¢) defined as

1 1 L, L, ,
E(t):m _1</O /0 '] dxdz>dy. @)

Large domain with 8 = 0°. A fully localized stripe can be simulated
only in a large enough domain. We studied the lifetimes of the stripes
at Re=620 in a square domain with no tilt, i.e., 8 = 0° with size
(L, Ly, L,) = (400, 2, 400) and resolution (Ny, N,, N,) = (1536, 64, 1536).

The resolution used is sufficient for the simulations at Re = 620.
The initial conditions for the lifetime study are uncorrelated snapshots
from simulations at Re=700 in the same domain. The lifetimes are

determined by setting an appropriate cutoff on the perturbation
kinetic energy. Once the perturbation kinetic energy falls below this
threshold, the stripe is considered to have decayed. However, unlike
the case of the partially localized stripes, there is no plateau in the
energy before the decay. Rather, the kinetic energy decays gradually
(Fig. 2d). Hence, the lifetimes depend significantly on the threshold.
The lifetimes for different threshold values are shown in SI Fig. S4.
Though the lifetimes do depend on the threshold, the qualitative
behavior remains the same, exhibiting a non-exponential decay of
survival probabilities.

Tilted domain. A partially localized stripe, i.e., a stripe localized only in
one direction and periodic in other direction, is simulated in a rec-
tangular domain tilted with respect to the streamwise direction at an
angle of 8 =45°. This tilt angle also corresponds to the stripe angle with
respect to the streamwise direction®® and the angle of tilt chosen here
agrees with the tilt angle of the stripes observed in the experiments
and reported in Tao et al.”.

The domain size is (Ly, L,, L;) = (30, 2, 100) with resolution
(Nx, Ny, N;) = (256, 49, 768). The initial conditions for the lifetime study
are taken from uncorrelated snapshots from simulations at Re = 600.
The stripe is considered to have decayed when the energy of fluctua-
tions drops below a selected cutoff value, e.g., E = 0.01. Due to the
rather clear plateau in energy before decay, the results do not strongly
depend on the cutoff chosen (see Fig. 2).

Data availability

Source data are provided with this paper.

Code availability
The numerical simulations were carried out using the open source
code openpipeflow”.
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