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Abstract

Forany d > 2, we prove that there exists an integer no(d) such that there existsan n x n
magic square of dth powers for all n = ng(d). In particular, we establish the existence of
an n x n magic square of squares for all n > 4, which settles a conjecture of
Varilly-Alvarado. All previous approaches had been based on constructive methods and
the existence of n x n magic squares of d powers had only been known for sparse
values of n. We prove our result by the Hardy-Littlewood circle method, which in this
setting essentially reduces the problem to finding a sufficient number of disjoint linearly
independent subsets of the columns of the coefficient matrix of the equations defining
magic squares. We prove an optimal (up to a constant) lower bound for this quantity.

1 Introduction

Letn > 1 be an integer. A magic square is an n x n grid of distinct positive integers whose
columns, rows, and two major diagonals all sum to the same number. The number to
which all rows, columns and diagonals sum is known as the square’s magic constant.

Magic squares have a long and rich history. Legend has it that the earliest recorded
3 x 3 magic square was first observed by Emperor Yu on the shell of a sacred turtle,
which emerged from the waters of the Lo River [8, pp.118]. Since then magic squares
have appeared in various cultures, and have been an object of curiosity in art, philosophy,
religion and mathematics. The study of magic squares with additional structure is a topic
that has garnered great interest in both recreational and research mathematics.

The first 4 x 4 magic square of squares (Figure 1) was constructed by Euler, in a letter sent
to Lagrange in 1770. Though Euler did not provide any explanation of how he constructed
the square, he presented his method to the St. Petersburg Academy of Sciences the same
year; the construction is based on the observation that the product of two sums of four
squares can itself be expressed as a sum of four squares. This idea was used in 1754 by
Euler to make partial progress, which led Lagrange, in the same year as the letter, to the
first complete proof of the four square theorem: every positive integer is the sum of at
most four squares [5,19].
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Fig. 1 Euler's 4 x 4 magic square of squares with magic constant 8515

The search for a 3 x 3 magic square of squares was popularized by Martin Gardner in 1996
offering a $100 prize to the first person to construct such a square, though the problem had
already been posed by Edouard Lucas in 1876 and Martin LaBar in 1984 [5,19]. Despite
the great interest and efforts, the prize remains unclaimed (as do the €1000 and bottle of
champagne offered by Boyer [4] for the same problem). However, there are a number of
results making progress on this problem, for which a comprehensive list can be found in
[4]. A 3 x 3 magic square of squares gives rise to a rational point with nonzero coordinates
on a surface cut out by 6 quadrics in the space 8. A deep conjecture of Lang predicts that
this surface contains only finitely many curves of genus 0 or 1, and that outside of these
curves it has only finitely many rational points. The method of [6] establishes that indeed
this surface contains only finitely many curves of genus 0 or 1. In fact, we know the surface
contains curves of genus 0 or 1 which do not correspond to magic squares (for instance,
lines parametrising repeated entries). Therefore, it seems plausible that perhaps there are
no 3 x 3 magic squares of squares, or that they are remarkably rare.

An n x n magic square of squares corresponds to a rational point on a variety cut out by
2n quadrics in the space P~ In contrast to the 7 = 3 case, it is quite reasonable from
a geometric point of view that these spaces would carry many rational points for n > 5
[19]. This line of logic has led Virilly-Alvarado to make the following conjecture.

Conjecture 1.1 ([19, Conjecture 4.3]) There is a positive integer no(2) such that for every
integer n > no(2), there exists an n x n magic square of squares.

In the light of Euler’s example above, Varilly-Alvarado further suggested that the con-
jecture holds with np(2) = 4. We establish that this is indeed the case.

Theorem 1.2 For every integer n > 4, there exists an n X n magic square of squares.
In fact, we also establish a generalisation of the conjecture for higher powers.

Theorem 1.3 Let d > 3. There is a positive integer no(d) such that for every integer
n > no(d), there exists an n x n magic square of d™ powers.

The novel feature of our work, in comparison to prior work on magic squares in the liter-
ature, is that we are applying the Hardy-Littlewood circle method to a problem, for which
all previous results had been based on constructive methods (see Remark 1.4 regarding
the independent work by Flores [11]). In particular, our result is non-constructive. We
believe this is the first! instance, in the literature, of the circle method being applied to
study magic squares. Prior to our result, the existence of  x n magic squares of ™ powers
was only known for sparse values of n when d > 4 (for n = ¢ with ¢ > 2 and additionally

'Here we only mean in terms of magic squares with our definition. In a broader sense, as explained in Remark 1.4, it is
second to Flores’ paper which appeared on the arXiv on 12/6/2024 while our original version on 13/6/2024.
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for small values of # when 4 < d < 7), and the existence was also known for # in certain
congruence classes when d € {2, 3}, while we establish the result for all n > no(d). We
present a more detailed account of the progress on this topic in Section 1.1.

As it can be seen from the proof, the statement of Theorem 1.3 in fact holds with

4min{2%, d(d + 1)} + 20 if3<d<4,
nod) — | M5 A+ D) ‘ (1)
4[d(logd + 4.20032)] +20 ifd > 5.

It is worth mentioning that the smallest known example of magic squares of d™™ powers
was of size 29 for d > 8; therefore, we improve on the smallest size of magic squares of
d™ powers known to exist from 2% to no(d) as in (1.1) ford > 9.

The main challenge in applying the circle method to the equations defining magic
squares is that they define a variety which is “too singular” for the method to be directly
applicable; this is explained in Section 1.2. Though we can not apply the results for sys-
tems of general homogeneous forms by Birch [3] and Rydin Myerson [16], we can apply
the version available for systems of diagonal forms by Briidern and Cook [1]. However,
this result requires certain “partitionability” of the coefficient matrix, which amounts to
finding a sufficient number of disjoint linearly independent subsets of the columns of
the coefficient matrix; establishing this is the main technical challenge of the paper. We
prove an optimal (up to a constant) lower bound for this quantity in Theorem 2.4. In this
context, the circle method allow us to transform the problem of considerable complexity
of finding magic squares of d™ powers to a theoretically and computationally simpler
problem of finding disjoint linearly independent subsets of the columns of the coefficient
matrix. We expect that this lower bound will be particularly useful for studying other
variants of magic squares. We believe that our Theorems 1.2 and 1.3 are a significant step
towards the complete classification of the existence of # x n magic squares of ™ powers.

1.1 Progress on magic squares of powers

An n X n magic square is a d-multimagic square if it remains a magic square when all
the entries are raised to the i™ power for every i = 2,...,d. It is called a normal d-
multimagic square if it is a d-multimagic square with entries consisting of the numbers 1
up to #2. Clearly a normal d-multimagic square provides an example of a magic square of
d™ powers. The first published 2-multimagic squares, which were of sizes 8 x 8 and 9 x 9,
were obtained by Pfeffermann in 1890. The first 3-multimagic square was obtained in
1905 by Tarry. In fact, Tarry was the first to devise a systematic method of constructing 2-
mulitmagic and 3-multumagic squares [14]. Prior to our Theorem 1.3, all known examples
of magic squares of d™ powers for 4 > 8 in fact came from multimagic squares. For 2-
multimagic squares it was proved by Chen, Li, Pan and Xu [15] that there exists a 2 x 2m
normal 2-multimagic squares for all m > 4. There is also a result by Hu, Meng, Pan, Suand
Xiong [12] which establishes the existence of 16m x 16m normal 3-multimagic squares
for all m > 1. We refer the reader to the introductions of [15], [12] and [13] for more
detailed history on the progress regarding normal 2 and 3-multimagic squares. The most
general result regarding multimagic squares is given by Derksen, Eggermont and van der
Essen [9] who have proved that there exist # x n normal d-multimagic squares for any
n = g% with ¢ > 2. There is also a comprehensive list of various magic squares recorded
by Boyer [4] which includes the following:
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« n X n magic squares of squares for 4 < n < 7.
+ n x n2-multimagic squares for 8 < n < 64.
« number of magic squares of d™" powers for 2 < d < 7.

Thus we see that our Theorems 1.2 and 1.3 are the first result of this type and of different
nature compared to all the previous results on magic squares in the literature.

Remark 1.4 1t is important to mention the very nice work by Flores [11] here. It was
completely unknown to us that he was simultaneously working on an adjacent problem
until his preprint appeared on the arXiv on 12/6/2024 which prompted us to post our
original version on 13/6/2024. Flores established the existence of n x n “non-trivial” d-
multimagic squares forall n > 2d(d +1)+1 also using the circle method. Strictly speaking,
however, his non-trivial multimagic square is not a magic square in the sense of Conjecture
1.1, because it allows repeated entries; this is an important distinction for us, because for
example 3 x 3 magic squares of squares with repeated entries are known to exist while the
big open problem is regarding the existence of one without. Though it is not dealt with
in his paper, there is no doubt that Flores’ work can be adapted to deal with multimagic
squares without repeated entries as well.

1.2 Application of the Hardy-Littlewood circle method
Let us label the entries of the # x 1 magic square of 4™ powers as follows:

d d
X711 *1n
d d
X1l *nn

Let p be a positive integer. The system of equations defining the # x n magic square of
d™ powers with magic constant y is equivalent to

d d
xn,1+~~~+x,w = U
d d

xl’l +"'+xn71 =M

d d
X1,n—1 + +xn,n—1 =pn

Ayt b=
x’f,n+---+xz,1 =W

which we denote by Fyo(xp) = p. A priori the system of equations defining the # x n magic
square of d™ powers with magic constant 1 requires 2z 4 2 equations; however, it can be
verified that there is one degree of redundancy (the 2n — 1 equations corresponding to n
rows and # — 1 columns imply the equation corresponding to the remaining column?).

2 Theassertiontha'wcf’1 +-- <+xfn =pu(1<ign andx{j+- . <+x‘ij =pu(l<<j<n-1) implyxfn-i-- . -+x‘,{n =un
follows from the identity

n n

d d _ d d
in,l ot = le,j to
i=1 j=1
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Therefore, this is a system of equations defined by Rp = 21 + 1 degree d homogeneous

polynomials in Ny = #?

variables. Since the number of variables Ny grows quadratically
with Ry, it may seem reasonable at first to expect that the known results regarding the
Hardy-Littlewood circle method readily apply to this system. As it turns out, the system
(1.2) is “too singular” for this to be the case.

A seminal result by Birch [3] establishes the existence of a non-trivial integral solution
to a general system of equations Fi(x) = --- = Fr(x) = 0 defined by R homogeneous
polynomials of degree d in N variables. For d = 2, this was greatly improved by Rydin
Myerson [16]. An important quantity in these results is the dimension of the singular
locus of the pencil

or(F) = max dim{x € AN : .VF(x) = 0},
BeRR
where F = (F, . .., Fg). The required bound for o (F) isN > or(F)+ (d — 1)29-1R(R+1)
for Birch’s result to be applicable, while N > ogr(F) 4+ 8R for Rydin Myerson’s result.
However, it can be verified that
Ry —1

or(Fo) = n* —n= Ny — -

which is far too large to make use of either of the mentioned results. Both of these
results are for general systems of homogeneous polynomials; however, the system (1.2)
consists only of diagonal polynomials and there are results in this direction as well. Let us
now suppose that F, ..., Fr are diagonal polynomials. The system of diagonal equations
Fi(x) = - -- = Fp(x) = 0 was first studied by Davenport and Lewis [10, Lemma 32]; their
result required

|9R?d log(3Rd) ] if d is odd,
[48R%d3 log(3Rd?)| ifd > 4 is even,

to establish the existence of a non-trivial integral solution. Since Ny = (Ro — 1)2/4, we
can not hope to directly apply this result to (1.2). By incorporating the breakthrough
on Waring’s problem by Vaughan [20], Briidern and Cook [1] improved the number of
variables required to be

N > 2dR(logd + O(loglog d)).

We remark that both of these results require a suitable “rank condition” on the coeffi-
cient matrix. Since the time of these two papers, there has been great progress regarding
Waring’s problem (for example, by Wooley [21], [22] and more recently by Wooley and
Briidern [7]) and also the resolution of Vinogradov’s mean value theorem (see the work by
Bourgain, Demeter and Guth [2], and by Wooley [23,24]). By incorporating these recent
developments, the required number of variables may be further improved. Though this
technical procedure is mostly standard, we present the details in our separate paper [17]
and the result applied to the system (1.2) is summarised in Theorem 2.2.

Notation

2mwiz

2miz
We make use of the standard abbreviations e(z) = e and e;(z) = e 7 . Given a vector

a:(al,...,aR)GZR,bylgangemeanl <a;<qgforeachl <i <R
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2 Magic squares of powers
Let 1 be a positive integer. Let My be the coefficient matrix of the system (1.2), which is
given by (5.1). We define

F = {0} U {(in, j1; 02 j2) & (1, j1) # (i, j2) 1 < in,ju o j2 < m).

For each 0 = (i1, j1;i2,j2) € & \ {0}, we denote X, to be xo with x;, ;, removed and

F; (xo) = p the system of equations obtained by substituting x;, j, = %;;j; into Fo(xo) = .

We then denote by M, the coefficient matrix of this system, which is obtained from My by

adding the ((iy — 1)n+j2)-th column to the ((i; — 1)n+j1)-th column and then deleting the

((iz — 1)n + j2)-th column (here ((i — 1) + j)-th column corresponds to the x;; variable).
Foro € .#,% C Nand X > 1, we introduce the following counting function

Ny (B X, 1) = #{x, € (BN [LX])" @ E,(x,) = p),

where

0 ifo =0,
1 ifo e #\{0}.

€(o) =

Then the number of magic squares, whose entries are restricted to 8, with magic constant
W is given by

N(®B:Xu) = No(B; X, )+ 0| D No(BiXp) | (2.1)
oe7\{0}

In this expression, the sum in the O-term is the contribution from squares whose entries
are not distinct. We estimate these counting functions using the Hardy-Littlewood circle
method for 6 = N and

A (X, X" = {x € [1, X] NN : prime p|x implies p < X"}

for sufficiently small > 0. The optimal lower bound for n¢(d) in Theorem 1.3 will come
from using smooth numbers for most choices of 4, while for d € {2, 3, 4} it will come from
the natural numbers instead.

Definition 2.1 Leto € .#. We define W(M,) to be the largest integer T such that there

exists
{@1; LIS ] QT}’

where each D; is a linearly independent set of 2# + 1 columns of M, and ©; N D; # @ if
i # j. We let T, be a non-negative integer such that

V(M) 2 T

By applying the circle method to the system of diagonal equations (1.2), we obtain
the following as a direct consequence of [17, Theorems 1.4 and 1.5]. Here, we present a
simplified version of the result (see [17, Tables 1 and 2] for more accurate values and also
[17, Remark 2.3]).
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Theorem 2.2 Let B = N or o/ (X, X) with n > 0 sufficiently small. Suppose

d<4andB =N,
5and B = o/ (X, X").

, min{2%, d(d + 1)} + 1 if2 <
min T, >
= [d(logd + 4.20032)1+ 1 ifd >
Then there exists A > 0 such that
No(B3 X, 1) = Cs &IX" ~ @D 1 o= n+1d (jog X)),

where
1 ifB =N,
c(n) ifB = XX"),

Cy =

¢(n) > 0 is a constant depending only on n, the singular series S and the singular integral
J are defined in (3.1) and (3.3), respectively. Furthermore,

max N, (B; X, 1) < X" ~nhd=1,
oces\ (0}

The next step is to establish lower bounds for G and J which are independent of X. We

present the details of the following proposition in Section 3.

Proposition 2.3 Given any X > 1 sufficiently large, there exists p = u(X) € N such that
ST > ¢y

where ¢, 5 > 0 is a constant depending only on n and d.

Finally, in order to establish the existence of magic squares of 4™ powers with magic
constant u, it remains to establish a lower bound for T,. The following is the main
technical result of the paper, which we prove through Sections 4—6.

Theorem 2.4 Letn > 8. Then

We suspect that the constant 4 appearing in the denominator of this inequality is not
optimal. By combining these results collected in this section, we obtain Theorem 1.3 as

an immediate consequence.

Proof of Theorem 1.3 1t follows from Theorem 2.4 that

min T, >To—2> FJ -3
oe.7\(0} 4

Therefore, by combining this estimate, Theorem 2.2 and Proposition 2.3 with (2.1), we
obtain that Theorem 1.3 holds with

4min{2%, d(d + 1)} + 20

if2
no(d) =
4Td(logd + 4.20032)] +20 ifd

<d <
(2.2)
> 5.



91

Page 8 of 18 N. Rome, S. Yamagishi Res. Number Theory(2025)11:91

In order to establish Theorem 1.2 we need to deal with smaller values of 7.

Proof of Theorem 1.2 1t follows from the proof of Theorem 1.3 above that there exists an
n X n magic square of squares as soon as # > 36. Since the statement is already known for
4 < n < 64, in fact explicit examples have been discovered and listed in [4], this completes
the proof. O

3 Singular series and singular integral: Proof of Proposition 2.3

We let Col(Mp) denote the set of columns of M. Let Jacg, denote the Jacobian matrix of
Fo and F = R or Q, for any prime p. A crucial fact we make use of in this section is that
given any z € F \ {0}, we have

Jacg,(z ...,2) = dz? 1My,

which in particular is of full rank. Therefore, if Fo(z, .. .,z) = u, then it is in fact a non-
singular solution.
Let

S(g a) = Z eq(axd).

I N
We define the singular series
(o)
& =) Alg) (3.1)
q=1

where

2n+1
2
Alg) =q" Z l_[ S(gac)-e4 (—u Z ai>.
1<a<gg ceCol(My) i=1
gecd(g,a)=1

We have the following lemma regarding & which is [17, Lemmas 4.1 and 4.2].
Lemma 3.1 Suppose Ty > 2d. Then
T
Alg) < g~ 41, (3.2)

for any ¢ > O sufficiently small, where the implicit constant is independent of |1, and the
series (3.1) converges absolutely. In fact,

&= [] xo

p prime

where
x(p) =1+ 3 AGH)
k=1

We establish the desired lower bound for & for special values of .

Lemma 3.2 Let p = npg, where py is a prime number sufficiently large with respect to n
and d. Then & > ¢, 4, where ¢, 5 > 0 is a constant depending only on n and d.
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Proof An application of (3.2) yields
ad T T
x() — 1] < Zpk(—7°+1+s) < p—70+1+£'
k=1

Therefore, there exists P > 0 such that

[Txe) > 5

p>P

We remark that P is independent of p+. The standard argument shows that

xp) = lim )

m—> 00 pm(n2 —2n—1) ’

where v, (p™) is the number of solutions to the congruence Fo(xo) = p (mod p™). Since
nw= npg with prime pg sufficiently large and py is invertible modulo p for p < P, it follows
that

Vu (Pm) = Vn(Pm)'

We know thatxg = (1,...,1) € ZZZ is a non-singular solution to the system of equations
Fo(xg) = n. Thus it follows from Hensel’s lemma that

x@) = lim 20y A7)

m— 00 pm(n2—2n—1) T om0 pm(nz—Zn—l)

>0

for p < P. Therefore, we obtain

1
p<P

where the implicit constant is independent of u. O
Let
! d
1) = [ elpeide.
0

We define the singular integral

m 2n+1
J= /R N R (—ﬁ ; y,') dy. (3.3)

ceCol(My)

We have the following lemma regarding J which is [17, Lemmas 4.3]
Lemma 3.3 Suppose Ty > d. Then the integral (3.3) converges absolutely.
We establish the desired lower bound for J for special values of x.

Lemma 3.4 Let g9 > 0 be sufficiently small. Suppose 1 = nz®X? with ¢ € [go, 1 — &o).
ThenJ > ¢, 4, Where ¢, g5, > 0 is a constant depending only on n, d and eo.

91
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Proof 1t follows by the standard argument as in [18] that

241
J = lim f @1 (Fo,i(x0) — nX~¥)dxo,
L—oo [0,1]”2 ll:! :
where
LA —Lln) iflnl <L,
&r(n) =

otherwise.

Furthermore, since uX % = n¢? with ¢ € [eo, 1 — &g], we see that xg = ({,...,¢) is
a non-singular solution to the system of equations Fo(xg) = u. It then follows by an
application of the implicit function theorem as in [18, Lemma 2] that J > 0. In particular,
since ¢ € [gg, 1 — &o], the lower bound is independent of u. O

Let g9 > 0 be sufficiently small. By the prime number theorem, for any X sufficiently
large there exists a prime py satisfying

80X < po < (1 - 80))(.

Then for u = npg we see that Lemmas 3.2 and 3.4 hold, from which Proposition 2.3
follows.

4 Linear equations
In this section, we record a simple result regarding certain systems of linear equations
which we will need in the following Section 6.1. Let 1 < iy <m <m+1 < ip < n. We
denote by IL,,(i1; m; iz) the system of 2x linear equations

x+y, =0 (1<i<n)

Xi+1 +yl =0 (l#ll _Lil)iZ_LiZ)m)

Xiy + Y1 =10
Xip+1 + i =0
Xip +Yip—1 =0
Xip+1+yi, =0

Ym =0,

where x,,11 is identified as x;.

Lemma 4.1 Supposel <ij <m <m+1<iy <n Then
{(x,y) € R?" : (x,y) satisfies L, (i1; m; i2)} = {O}.

Proof Consider the system of equations L, (i1; m; i2). By substituting y,, = 0 into the
equation x,, + ¥, = 0 and following through with the consequences, we obtain

xi=y;=0 (ielii+1m]).
We can then deduce that

0=%i41 =Y, = %iy = Yi1—1 = Xi;—1
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which further implies that
x=y=0 (e[li—1]).

Therefore, the system becomes

X 9 =0 Xipy1 4+, =0

Xl T V1 =0 Xpa2 +Ymyr1 =0

Xiy—2 + Yi,—2 =0 X1 +yi,—2=0
Xiy—1 + Yi,-1 =0 x5 +¥i,-1 =0
X% +yi=0 xp1+y =0 (i€lia+1n]).

By substituting x; = 0, we obtain
x=y=0 (i€liz+1n)
which further implies that
0=%i4+1 =i, =% =Yip—1-
Finally, by substituting y;,—1 = 0 into the remaining system, we see that
x=y,=0 ({e[m+1iy—1)])
as desired. ]

5 Preliminaries
Let I, denote the n x n identity matrix and define T, to be the (n — 1) x n matrix obtained
by removing the last row from I,,. Then the (211 + 1) x n? coefficient matrix of the system

(1.2) is
[T11..-17 [oo0---0 [00---07 |
My = [ 00---0] |00---0 (111" (5.1)
1, 1, 1,
10---0 01---00 00---1
00---1 00---10 10---0

We shall denote by c;; the ((i — 1)z + j)-th column of My, for each 1 < j,j < n. The first
subscript i will always satisfy 1 < i < n, but for the second subscript j, to simplify our

exposition, we will consider it modulo #, that is
Cij+mn = Cijs
foranyl <j<mandm € Z.

Definition 5.1 We shall refer to the set {c;1, ..., c;,} as the i-th block foreach 1 < i < n.
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Given B C Col(My), we define

Blil={1<j<n:cje B} (5.2)
foreachl <i < n.
Let
S =AU,
where
S ={c,1,622 -+ Cu—1,n-1 Cpn}
and

S ={CLm Cou—1, - -» Cu—1,2 €1} \ 1.

The columns in .7 are precisely the ones with 1 in the 2x-th entry and .# the ones with
1 in the (27 4 1)-th entry that are not contained in .#7. We remark that

n if  is even,

n—1 ifnisodd

#SH =

Let us define
1 ifniseven,
e(n) = (5.3)
0 ifnisodd,
and
n—1+€(n)

N=-—Pp— -2 (5.4)

For each 0 < £ < N, we define

By = {c1,1420 €2,2+20 - - -» Cru+20} U ({e1,14e4+1) €2,2+@e41) - - -» Cante41)} \ {Cn20-1,n}) -

This set contains precisely one column of the form c, ,, which is ¢,y ,, a column whose
entries between (1 + 1)-th and (2# — 1)-th position are all 0. We will use these sets %@ to
construct the collection of pairwise disjoint sets of 2# + 1 linearly independent columns
of M necessary to complete the proof of Theorem 2.4.

By (5.4) it follows that

B NBy=0 0<L<t <N) (5.5)
Lemma 5.2 Givenanyl < £ < N, we have
%g Ny = [c%_e(m%%_e(mﬂ(m%; Cn—é,@ﬂ}.
Proof Since .1 C %0, it follows from (5.5) that
By N.7 = 2.
Therefore, if %g N . # &, then there exist € € {0, 1} and 1 < i,j < n such that

Gi+28+e+m@ben)=@Gn+1—)),
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where

0 if1<i+20+e<n
m(i, 4, €) =
<

-1 ifu<i+20+e .

It follows that i = j and
j+2l+e+m(leyn=n+1—j

or equivalently

, ntl—e m(j, £, €)n
j=E———— - — ——.
2 2
Suppose m(j, £, €) = 0. Then it must be that ¢ = 1 if n is even and 0 if # is odd. Thus we
see that
S %@ n.%;

Cn+1;e(n) —, n+1;e(n) +e(n)+0

here we note that 1 < %_E(”) +en)+¢<n
On the other hand, suppose m(j, £, ) = —1. Then

1—¢
— L.

j=n+
In particular, it must be that € = 1. Thus we see that
Cute+1 € By NS

Finally, we have Cn+lgé(n) gl 4 )1 # Cy—g,0+1, Since

1<——€<g—£<n—£.

O

As a consequence of this lemma, there are precisely two columns in B, whose last two
entries are not 0. In the next section, we replace these two columns from B with appropri-
ate columns whose last two entries are 0 such that the resulting set is linearly independent.
Finally, we complete the sets by adding two columns whose last two entries are not 0 which
preserve the linear independence.

6 Proof of Theorem 2.4
Letn > 8 and 1 < £ < N, where N is defined in (5.4). Our goal is to replace the two
columns in %z from Lemma 5.2 in a suitable manner so that all columns have 0 for the
last two entries. Let us denote

+1—e€(n)

mw:%—e and ir(€) = n— ¢,

where €(n) is defined in (5.3). Then the two columns we need to replace are

Cotlcln) g mtlen) 4 ()4 ¢ = Cir(0ia (O)+2¢+e(m) and  Cy_ge41 = Ciy(e),in(¢)+20+1-
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We shall modify B as follows
By = By \ <{Ci1((i),i1(z)+2b Ciy (€)1 (0)+2¢+1} U{Ciz(é),i2(€)+2£: Ci2(£),i2(€)+2£+1})

Uteawaor20 i @21t UCawnwr2e cowa@raei b

that is we first remove the two columns in %g from the i1 (¢£)-th and i> (£)-th block and then
add back in two columns from each of these blocks with switched positions. We remark
that we know there are two columns in %g from the i (¢€)-th and iy (¢£)-th block, because

1<) <n—20—1<n—-20<ir(f) <nm (6.1)
It is clear that given 1 < £ < ¢/ < N we have
{i1(0), i2(0)} N {ir (£), in(¢')} = . (6.2)

Therefore, the two blocks of %g which get modified to construct B, are unique to £. Let
us also recall the notation (5.2) and record the relations

B li1(0)]={ia(€)+2¢, ir(£)+2€+1} and  B,[ia(0)]={i1(€)+2¢, i1(£)+2¢+1}  (6.3)

foreachl < £ < N.
Lemma 6.1 Given 1 < £ < N such that
[n/4] if n is even,
ln/4], |n/4) +1 ifnisodd,
we have

(Chiw+20 a1} [ S =2

and

(i (0120 Corin+2er1} |7 = 2.

In particular, every column of B, has 0 for the last two entries.

Proof Lete € {0, 1}. Since it can be verified that

W) +is(0) + 20+ € = %_E(MH £n+1 (mod n)
and
£ 00— @) =+ sy e mod )
the result follows. ]

Let Z C {1,..., N} be a set with the following property: given any m, £ € 2, we have
n+1—e(n)
2
forany § € {—1,0,1}.
Let us define

#£2m—4€)+35 (mod n) (6.4)

"= B

ez
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Lemma 6.2 Given { € %, we have
Bl (O] NR[L1(0)] = &
and
B [i2(O)] NR[i2(0)] = 2.
Proof First we recall the relations (6.3). Let us suppose
{i2(£) + 26, ix(0) + 20 + 1} (| R0 (0)] # 2.
Then there exists m € Z such that
i)+ 20 +e=i1(0) +2m+€  (mod n)

for some ¢, €’ € {0, 1}. Since the congruence is equivalent to

n+1—e€(n)

5 =20 —m)+e—¢€ (mod n),

we reach contradiction by the definition of Z.
Similarly, let us suppose

{i1(0) + 26, 12(0) + 20 + 1} (| R[i2(0)] # 2.
Then there exists m € £ such that
@) +20+e=iy(0)+2m+€ (mod n)

for somee, € € {0, 1}. From this congruence, we may reach contradiction in the same way
as above. O

Lemma 6.3 We have
B, NBy =
for any distinct £, 0 € Z.

Proof Let Z = #2 and denote
& ={ly,..., Lz}
We shall prove by induction that
By, () (B, U UBy, , UBy, U UBy,) =0

for each 1 < i < Z. The base case i = 1 follows easily from (5.5) and Lemma 6.2. Let us
suppose the statement holds for all values greater than or equal to 1 and less than i, for
somel <i < Z. Leti+ 1 <j < Z. Then it follows from (5.5) and Lemma 6.2 that

By N %Z/ = (%Ziﬂ \ %ZH—I) N %fj < (%55+1 \ %Ziﬂ) nNR=go.

91
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Therefore, it remains to prove

By, m (%51 U--. U%gi) = .
Since it follows from the inductive hypothesis that

‘%zm NBy, =0 (1<s<i)

it suffices to prove
(B \ Be,y,) B, =2 (1<s<),
which in turn follows from
By 1)l N By [i1(6i1)] = @ and By, [i2(€iv1)] N By, [i2(€i1)] = T (6.5)

forall 1 < s < i. Since the i1 (€;41)-th and i2(€;41)-th block of %gs do not get modified to
construct By, which follows from (6.2), we obtain

By, [i1(ir1)] = Be,[i1(€i41)] € Rlia(Liy1)]

and
By, [i2(Cir1)] = B, lia(€i1)] S Rlin(Cig)]
for all 1 < s < i. Therefore, (6.5) and consequently the result follow from Lemma 6.2. O

Finally, we prove that By is a linearly independent set.

Lemma 6.4 Given t € &\ {|n/4], |n/4| + 1}, we have
dim Spang®B, = 2n — 1.

Proof Suppose we have the following linear combination of columns in B,:

0= > (iciipar +Yiciitari1) (6.6)
1<ikn
i1 (€),i2(€)

X1 (0)Ciy (£),i2(6)+2¢ T Vir (€)Ci (£),i2(6)+2€+1

Xy (0)Cin(£),1(£)+2¢ T Vin(€) Cin(€),i1(£)+20+15
with y,_9¢—1 = 0 (because we have (6.1) and c,—2¢—1, ¢ B¢). Our goal is to show
xi = y; = 0forall 1 < i < n Let us recall that ¢,,_3p, € B, whose entries between
(n 4+ 1)-th and (2n — 1)-th positions are all 0. Furthermore, this is the only column in B,
of the form c,, ;, which follows from the definition of B, and (6.1). By the definition of c;,
the vector equation (6.6) is equivalent to the following system of linear equations

xi+y =0 (1<i<n)
xit1+yi =0 (i #ia(€) —1i1(€),ia(€) — 1,i2(0), n — 26 — 1)
Xir(e) T Vi1 =0
Xir(0)+1 T Vi) =0
Xiye) + Vipe)-1 =0
Xiy(0)+1 T Vipe) =0
Yn—20-1 = 0.

It is clear that this system of equations is precisely L(i1(€); n — 2¢ — 1;i2(¢)). Therefore,
the result follows from Lemma 4.1 since we have (6.1). O



N. Rome, S. Yamagishi Res. Number Theory (2025)11:91 Page 17 of 18

6.1 Final bound for Ty
Let us set

Then we have

n
2m — ¢ 5<2L—J—3<
|2(m — £) + 8| 2 5

for any m, £ € 2 and § € {—1,0, 1}, which implies that 2 satisfies (6.4). Since every
column in B, has 0 for the last two entries, we obtain the following as an immediate
consequence.

Corollary 6.5 Letl € Z and (a,b) € ./ x .. Then B,U{a, b} is a linearly independent
set.

Since

4 E Sy e n—13 | Y| = [ZJ _1,

and B are pairwise disjoint, we easily obtain |#/4] — 1 pairwise disjoint sets of the form
D¢ =B U{ag b},

where (ag, by) € . x %. Thus we have established

where T is from the statement of the theorem.
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3A YouTube video “Magic Squares of Squares (are PROBABLY impossible)” of the Numberphile channel by Brady
Haran, in which Tony Vérilly-Alvarado appears as a guest speaker: https://www.youtube.com/watch?v=Kdsj84UdeYg.
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