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Abstract

For any d � 2, we prove that there exists an integer n0(d) such that there exists an n× n
magic square of dth powers for all n � n0(d). In particular, we establish the existence of
an n × nmagic square of squares for all n � 4, which settles a conjecture of
Várilly-Alvarado. All previous approaches had been based on constructive methods and
the existence of n × nmagic squares of dth powers had only been known for sparse
values of n. We prove our result by the Hardy-Littlewood circle method, which in this
setting essentially reduces the problem to finding a sufficient number of disjoint linearly
independent subsets of the columns of the coefficient matrix of the equations defining
magic squares. We prove an optimal (up to a constant) lower bound for this quantity.

1 Introduction
Let n � 1 be an integer. Amagic square is an n×n grid of distinct positive integers whose
columns, rows, and two major diagonals all sum to the same number. The number to
which all rows, columns and diagonals sum is known as the square’smagic constant.
Magic squares have a long and rich history. Legend has it that the earliest recorded

3 × 3 magic square was first observed by Emperor Yu on the shell of a sacred turtle,
which emerged from the waters of the Lo River [8, pp.118]. Since then magic squares
have appeared in various cultures, and have been an object of curiosity in art, philosophy,
religion and mathematics. The study of magic squares with additional structure is a topic
that has garnered great interest in both recreational and research mathematics.
The first 4×4magic square of squares (Figure 1)was constructed byEuler, in a letter sent

to Lagrange in 1770. Though Euler did not provide any explanation of how he constructed
the square, he presented his method to the St. Petersburg Academy of Sciences the same
year; the construction is based on the observation that the product of two sums of four
squares can itself be expressed as a sum of four squares. This idea was used in 1754 by
Euler to make partial progress, which led Lagrange, in the same year as the letter, to the
first complete proof of the four square theorem: every positive integer is the sum of at
most four squares [5,19].

123 © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-025-00671-5&domain=pdf
http://orcid.org/0000-0002-2953-1468
http://creativecommons.org/licenses/by/4.0/


   91 Page 2 of 18 N. Rome, S. Yamagishi Res. Number Theory          (2025) 11:91 

Fig. 1 Euler’s 4 × 4 magic square of squares with magic constant 8515

The search for a3×3magic squareof squareswaspopularizedbyMartinGardner in1996
offering a $100 prize to the first person to construct such a square, though the problemhad
already been posed by Edouard Lucas in 1876 and Martin LaBar in 1984 [5,19]. Despite
the great interest and efforts, the prize remains unclaimed (as do the e1000 and bottle of
champagne offered by Boyer [4] for the same problem). However, there are a number of
results making progress on this problem, for which a comprehensive list can be found in
[4]. A 3×3magic square of squares gives rise to a rational point with nonzero coordinates
on a surface cut out by 6 quadrics in the space P

8. A deep conjecture of Lang predicts that
this surface contains only finitely many curves of genus 0 or 1, and that outside of these
curves it has only finitely many rational points. The method of [6] establishes that indeed
this surface contains only finitely many curves of genus 0 or 1. In fact, we know the surface
contains curves of genus 0 or 1 which do not correspond to magic squares (for instance,
lines parametrising repeated entries). Therefore, it seems plausible that perhaps there are
no 3 × 3 magic squares of squares, or that they are remarkably rare.
An n×nmagic square of squares corresponds to a rational point on a variety cut out by

2n quadrics in the space P
n2−1. In contrast to the n = 3 case, it is quite reasonable from

a geometric point of view that these spaces would carry many rational points for n � 5
[19]. This line of logic has led Várilly-Alvarado to make the following conjecture.

Conjecture 1.1 ([19, Conjecture 4.3]) There is a positive integer n0(2) such that for every
integer n � n0(2), there exists an n × n magic square of squares.

In the light of Euler’s example above, Várilly-Alvarado further suggested that the con-
jecture holds with n0(2) = 4. We establish that this is indeed the case.

Theorem 1.2 For every integer n � 4, there exists an n × n magic square of squares.

In fact, we also establish a generalisation of the conjecture for higher powers.

Theorem 1.3 Let d � 3. There is a positive integer n0(d) such that for every integer
n � n0(d), there exists an n × n magic square of dth powers.

The novel feature of ourwork, in comparison to priorwork onmagic squares in the liter-
ature, is that we are applying the Hardy-Littlewood circle method to a problem, for which
all previous results had been based on constructive methods (see Remark 1.4 regarding
the independent work by Flores [11]). In particular, our result is non-constructive. We
believe this is the first1 instance, in the literature, of the circle method being applied to
studymagic squares. Prior to our result, the existence of n×nmagic squares of dth powers
was only known for sparse values of nwhen d � 4 (for n = qd with q � 2 and additionally

1Here we only mean in terms of magic squares with our definition. In a broader sense, as explained in Remark 1.4, it is
second to Flores’ paper which appeared on the arXiv on 12/6/2024 while our original version on 13/6/2024.
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for small values of n when 4 � d � 7), and the existence was also known for n in certain
congruence classes when d ∈ {2, 3}, while we establish the result for all n � n0(d). We
present a more detailed account of the progress on this topic in Section 1.1.
As it can be seen from the proof, the statement of Theorem 1.3 in fact holds with

n0(d) =
⎧
⎨

⎩

4min{2d, d(d + 1)} + 20 if 3 � d � 4,

4�d(log d + 4.20032)� + 20 if d � 5.
(1.1)

It is worth mentioning that the smallest known example of magic squares of dth powers
was of size 2d for d � 8; therefore, we improve on the smallest size of magic squares of
dth powers known to exist from 2d to n0(d) as in (1.1) for d � 9.
The main challenge in applying the circle method to the equations defining magic

squares is that they define a variety which is “too singular” for the method to be directly
applicable; this is explained in Section 1.2. Though we can not apply the results for sys-
tems of general homogeneous forms by Birch [3] and Rydin Myerson [16], we can apply
the version available for systems of diagonal forms by Brüdern and Cook [1]. However,
this result requires certain “partitionability” of the coefficient matrix, which amounts to
finding a sufficient number of disjoint linearly independent subsets of the columns of
the coefficient matrix; establishing this is the main technical challenge of the paper. We
prove an optimal (up to a constant) lower bound for this quantity in Theorem 2.4. In this
context, the circle method allow us to transform the problem of considerable complexity
of finding magic squares of dth powers to a theoretically and computationally simpler
problem of finding disjoint linearly independent subsets of the columns of the coefficient
matrix. We expect that this lower bound will be particularly useful for studying other
variants of magic squares. We believe that our Theorems 1.2 and 1.3 are a significant step
towards the complete classification of the existence of n× nmagic squares of dth powers.

1.1 Progress onmagic squares of powers

An n × n magic square is a d-multimagic square if it remains a magic square when all
the entries are raised to the ith power for every i = 2, . . . , d. It is called a normal d-
multimagic square if it is a d-multimagic square with entries consisting of the numbers 1
up to n2. Clearly a normal d-multimagic square provides an example of a magic square of
dth powers. The first published 2-multimagic squares, which were of sizes 8×8 and 9×9,
were obtained by Pfeffermann in 1890. The first 3-multimagic square was obtained in
1905 by Tarry. In fact, Tarry was the first to devise a systematic method of constructing 2-
mulitmagic and 3-multumagic squares [14]. Prior to our Theorem1.3, all known examples
of magic squares of dth powers for d � 8 in fact came from multimagic squares. For 2-
multimagic squares it was proved by Chen, Li, Pan and Xu [15] that there exists a 2m×2m
normal 2-multimagic squares for allm � 4. There is also a result byHu,Meng, Pan, Su and
Xiong [12] which establishes the existence of 16m × 16m normal 3-multimagic squares
for all m � 1. We refer the reader to the introductions of [15], [12] and [13] for more
detailed history on the progress regarding normal 2 and 3-multimagic squares. The most
general result regarding multimagic squares is given by Derksen, Eggermont and van der
Essen [9] who have proved that there exist n × n normal d-multimagic squares for any
n = qd with q � 2. There is also a comprehensive list of various magic squares recorded
by Boyer [4] which includes the following:
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• n × nmagic squares of squares for 4 � n � 7.
• n × n 2-multimagic squares for 8 � n � 64.
• number of magic squares of dth powers for 2 � d � 7.

Thus we see that our Theorems 1.2 and 1.3 are the first result of this type and of different
nature compared to all the previous results on magic squares in the literature.

Remark 1.4 It is important to mention the very nice work by Flores [11] here. It was
completely unknown to us that he was simultaneously working on an adjacent problem
until his preprint appeared on the arXiv on 12/6/2024 which prompted us to post our
original version on 13/6/2024. Flores established the existence of n × n “non-trivial” d-
multimagic squares for all n � 2d(d+1)+1 also using the circlemethod. Strictly speaking,
however, his non-trivialmultimagic square is not amagic square in the sense ofConjecture
1.1, because it allows repeated entries; this is an important distinction for us, because for
example 3×3magic squares of squares with repeated entries are known to exist while the
big open problem is regarding the existence of one without. Though it is not dealt with
in his paper, there is no doubt that Flores’ work can be adapted to deal with multimagic
squares without repeated entries as well.

1.2 Application of the Hardy-Littlewood circle method

Let us label the entries of the n × nmagic square of dth powers as follows:

xd1,1 . . . xd1,n
...

...
...

xdn,1 . . . xdn,n

.

Let μ be a positive integer. The system of equations defining the n × n magic square of
dth powers with magic constant μ is equivalent to

xd1,1 + · · · + xd1,n = μ (1.2)
...

xdn,1 + · · · + xdn,n = μ

xd1,1 + · · · + xdn,1 = μ

...

xd1,n−1 + · · · + xdn,n−1 = μ

xd1,1 + · · · + xdn,n = μ

xd1,n + · · · + xdn,1 = μ,

which we denote by F0(x0) = μ. A priori the system of equations defining the n×nmagic
square of dth powers with magic constant μ requires 2n+ 2 equations; however, it can be
verified that there is one degree of redundancy (the 2n − 1 equations corresponding to n
rows and n − 1 columns imply the equation corresponding to the remaining column2).

2 The assertion that xdi,1+· · ·+xdi,n = μ (1 � i � n) and xd1,j +· · ·+xdn,j = μ (1 � j � n−1) imply xd1,n+· · ·+xdn,n = μ

follows from the identity
n∑

i=1
xdi,1 + · · · + xdi,n =

n∑

j=1
xd1,j + · · · + xdn,j .
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Therefore, this is a system of equations defined by R0 = 2n + 1 degree d homogeneous
polynomials in N0 = n2 variables. Since the number of variables N0 grows quadratically
with R0, it may seem reasonable at first to expect that the known results regarding the
Hardy-Littlewood circle method readily apply to this system. As it turns out, the system
(1.2) is “too singular” for this to be the case.
A seminal result by Birch [3] establishes the existence of a non-trivial integral solution

to a general system of equations F1(x) = · · · = FR(x) = 0 defined by R homogeneous
polynomials of degree d in N variables. For d = 2, this was greatly improved by Rydin
Myerson [16]. An important quantity in these results is the dimension of the singular
locus of the pencil

σR(F) = max
β∈RR

dim{x ∈ A
N : β.∇F(x) = 0},

where F = (F1, . . . , FR). The required bound for σR(F) isN > σR(F)+ (d−1)2d−1R(R+1)
for Birch’s result to be applicable, while N > σR(F) + 8R for Rydin Myerson’s result.
However, it can be verified that

σR(F0) � n2 − n = N0 − R0 − 1
2

,

which is far too large to make use of either of the mentioned results. Both of these
results are for general systems of homogeneous polynomials; however, the system (1.2)
consists only of diagonal polynomials and there are results in this direction as well. Let us
now suppose that F1, . . . , FR are diagonal polynomials. The system of diagonal equations
F1(x) = · · · = FR(x) = 0 was first studied by Davenport and Lewis [10, Lemma 32]; their
result required

N �

⎧
⎨

⎩

�9R2d log(3Rd)� if d is odd,

�48R2d3 log(3Rd2)� if d � 4 is even,

to establish the existence of a non-trivial integral solution. Since N0 = (R0 − 1)2/4, we
can not hope to directly apply this result to (1.2). By incorporating the breakthrough
on Waring’s problem by Vaughan [20], Brüdern and Cook [1] improved the number of
variables required to be

N � 2dR(log d + O(log log d)).

We remark that both of these results require a suitable “rank condition” on the coeffi-
cient matrix. Since the time of these two papers, there has been great progress regarding
Waring’s problem (for example, by Wooley [21], [22] and more recently by Wooley and
Brüdern [7]) and also the resolution of Vinogradov’s mean value theorem (see the work by
Bourgain, Demeter and Guth [2], and by Wooley [23,24]). By incorporating these recent
developments, the required number of variables may be further improved. Though this
technical procedure is mostly standard, we present the details in our separate paper [17]
and the result applied to the system (1.2) is summarised in Theorem 2.2.

Notation

Wemake use of the standard abbreviations e(z) = e2π iz and eq(z) = e
2π iz
q . Given a vector

a = (a1, . . . , aR) ∈ Z
R, by 1 � a � q we mean 1 � ai � q for each 1 � i � R.
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2 Magic squares of powers
Let μ be a positive integer. Let M0 be the coefficient matrix of the system (1.2), which is
given by (5.1). We define

I = {0} ∪ {(i1, j1; i2, j2) : (i1, j1) 	= (i2, j2), 1 � i1, j1, i2, j2 � n}.

For each σ = (i1, j1; i2, j2) ∈ I \ {0}, we denote xσ to be x0 with xi2 ,j2 removed and
Fσ (xσ ) = μ the systemof equations obtained by substituting xi2,j2 = xi1 ,j1 intoF0(x0) = μ.
We then denote byMσ the coefficientmatrix of this system, which is obtained fromM0 by
adding the ((i2−1)n+ j2)-th column to the ((i1−1)n+ j1)-th column and then deleting the
((i2 − 1)n+ j2)-th column (here ((i − 1)n+ j)-th column corresponds to the xi,j variable).
For σ ∈ I ,B ⊆ N and X � 1, we introduce the following counting function

Nσ (B;X,μ) = #{xσ ∈ (B ∩ [1, X])n
2−ε(σ ) : Fσ (xσ ) = μ},

where

ε(σ ) =
⎧
⎨

⎩

0 if σ = 0,

1 if σ ∈ I \ {0}.
Then the number ofmagic squares, whose entries are restricted toB, withmagic constant
μ is given by

N (B;X,μ) = N0(B;X,μ) + O

⎛

⎝
∑

σ∈I \{0}
Nσ (B;X,μ)

⎞

⎠ . (2.1)

In this expression, the sum in the O-term is the contribution from squares whose entries
are not distinct. We estimate these counting functions using the Hardy-Littlewood circle
method forB = N and

A (X, Xη) = {x ∈ [1, X] ∩ N : prime p|x implies p � Xη}

for sufficiently small η > 0. The optimal lower bound for n0(d) in Theorem 1.3 will come
from using smooth numbers for most choices of d, while for d ∈ {2, 3, 4} it will come from
the natural numbers instead.

Definition 2.1 Let σ ∈ I . We define �(Mσ ) to be the largest integer T such that there
exists

{D1, . . . ,DT },
where eachDi is a linearly independent set of 2n + 1 columns ofMσ andDi ∩ Dj 	= ∅ if
i 	= j. We let Tσ be a non-negative integer such that

�(Mσ ) � Tσ .

By applying the circle method to the system of diagonal equations (1.2), we obtain
the following as a direct consequence of [17, Theorems 1.4 and 1.5]. Here, we present a
simplified version of the result (see [17, Tables 1 and 2] for more accurate values and also
[17, Remark 2.3]).



N. Rome, S. Yamagishi Res. Number Theory           (2025) 11:91 Page 7 of 18    91 

Theorem 2.2 LetB = N orA (X, Xη) with η > 0 sufficiently small. Suppose

min
σ∈I Tσ �

⎧
⎨

⎩

min{2d, d(d + 1)} + 1 if 2 � d � 4 andB = N,

�d(log d + 4.20032)� + 1 if d � 5 andB = A (X, Xη).

Then there exists λ > 0 such that

N0(B;X,μ) = CBSIXn2−(2n+1)d + O(Xn2−(2n+1)d(logX)−λ),

where

CB =
⎧
⎨

⎩

1 ifB = N,

c(η) ifB = A (X, Xη),

c(η) > 0 is a constant depending only on η, the singular seriesS and the singular integral
I are defined in (3.1) and (3.3), respectively. Furthermore,

max
σ∈I \{0}Nσ (B;X,μ) � Xn2−(2n+1)d−1.

The next step is to establish lower bounds forS and I which are independent of X . We
present the details of the following proposition in Section 3.

Proposition 2.3 Given any X � 1 sufficiently large, there exists μ = μ(X) ∈ N such that

SI > cn,d ,

where cn,d > 0 is a constant depending only on n and d.

Finally, in order to establish the existence of magic squares of dth powers with magic
constant μ, it remains to establish a lower bound for Tσ . The following is the main
technical result of the paper, which we prove through Sections 4–6.

Theorem 2.4 Let n � 8. Then

T0 �
⌊n
4

⌋
− 1.

We suspect that the constant 4 appearing in the denominator of this inequality is not
optimal. By combining these results collected in this section, we obtain Theorem 1.3 as
an immediate consequence.

Proof of Theorem 1.3 It follows from Theorem 2.4 that

min
σ∈I \{0}Tσ � T0 − 2 �

⌊n
4

⌋
− 3.

Therefore, by combining this estimate, Theorem 2.2 and Proposition 2.3 with (2.1), we
obtain that Theorem 1.3 holds with

n0(d) =
⎧
⎨

⎩

4min{2d, d(d + 1)} + 20 if 2 � d � 4,

4�d(log d + 4.20032)� + 20 if d � 5.
(2.2)


�
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In order to establish Theorem 1.2 we need to deal with smaller values of n.

Proof of Theorem 1.2 It follows from the proof of Theorem 1.3 above that there exists an
n×nmagic square of squares as soon as n � 36. Since the statement is already known for
4 � n � 64, in fact explicit examples have been discovered and listed in [4], this completes
the proof. 
�

3 Singular series and singular integral: Proof of Proposition 2.3
We let Col(M0) denote the set of columns ofM0. Let JacF0 denote the Jacobian matrix of
F0 and F = R or Qp for any prime p. A crucial fact we make use of in this section is that
given any z ∈ F \ {0}, we have

JacF0 (z, . . . , z) = dzd−1M0,

which in particular is of full rank. Therefore, if F0(z, . . . , z) = μ, then it is in fact a non-
singular solution.
Let

S(q, a) =
∑

1�x�q
eq(axd).

We define the singular series

S =
∞∑

q=1
A(q), (3.1)

where

A(q) = q−n2
∑

1�a�q
gcd(q,a)=1

∏

c∈Col(M0)
S(q, a.c) · eq

(

−μ

2n+1∑

i=1
ai

)

.

We have the following lemma regardingS which is [17, Lemmas 4.1 and 4.2].

Lemma 3.1 Suppose T0 > 2d. Then

A(q) � q− T0
d +1+ε , (3.2)

for any ε > 0 sufficiently small, where the implicit constant is independent of μ, and the
series (3.1) converges absolutely. In fact,

S =
∏

p prime
χ (p),

where

χ (p) = 1 +
∞∑

k=1
A(pk ).

We establish the desired lower bound forS for special values of μ.

Lemma 3.2 Let μ = npd0 , where p0 is a prime number sufficiently large with respect to n
and d. ThenS > cn,d , where cn,d > 0 is a constant depending only on n and d.
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Proof An application of (3.2) yields

|χ (p) − 1| �
∞∑

k=1
pk(−

T0
d +1+ε) � p− T0

d +1+ε .

Therefore, there exists P > 0 such that

∏

p>P
χ (p) >

1
2
.

We remark that P is independent of μ. The standard argument shows that

χ (p) = lim
m→∞

νμ(pm)
pm(n2−2n−1)

,

where νμ(pm) is the number of solutions to the congruence F0(x0) ≡ μ (mod pm). Since
μ = npd0 with prime p0 sufficiently large and p0 is invertible modulo p for p � P, it follows
that

νμ(pm) = νn(pm).

We know that x0 = (1, . . . , 1) ∈ Z
n2
p is a non-singular solution to the system of equations

F0(x0) = n. Thus it follows from Hensel’s lemma that

χ (p) = lim
m→∞

νμ(pm)
pm(n2−2n−1)

= lim
m→∞

λn(pm)
pm(n2−2n−1)

> 0

for p � P. Therefore, we obtain

S >
1
2
∏

p�P
χ (p) � 1,

where the implicit constant is independent of μ. 
�

Let

I(β) =
∫ 1

0
e(βξd)dξ .

We define the singular integral

I =
∫

R2n+1

∏

c∈Col(M0)
I(γ .c) · e

(

− μ

Xd

2n+1∑

i=1
γi

)

dγ . (3.3)

We have the following lemma regarding I which is [17, Lemmas 4.3]

Lemma 3.3 Suppose T0 > d. Then the integral (3.3) converges absolutely.

We establish the desired lower bound for I for special values of μ.

Lemma 3.4 Let ε0 > 0 be sufficiently small. Suppose μ = nζ dXd with ζ ∈ [ε0, 1 − ε0].
Then I > cn,d,ε0 , where cn,d,ε0 > 0 is a constant depending only on n, d and ε0.
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Proof It follows by the standard argument as in [18] that

I = lim
L→∞

∫

[0,1]n2

2n+1∏

i=1
�L(F0,i(x0) − μX−d)dx0,

where

�L(η) =
⎧
⎨

⎩

L(1 − L|η|) if |η| � L−1,

0 otherwise.

Furthermore, since μX−d = nζ d with ζ ∈ [ε0, 1 − ε0], we see that x0 = (ζ , . . . , ζ ) is
a non-singular solution to the system of equations F0(x0) = μ. It then follows by an
application of the implicit function theorem as in [18, Lemma 2] that I > 0. In particular,
since ζ ∈ [ε0, 1 − ε0], the lower bound is independent of μ. 
�
Let ε0 > 0 be sufficiently small. By the prime number theorem, for any X sufficiently

large there exists a prime p0 satisfying

ε0X < p0 < (1 − ε0)X.

Then for μ = npd0 we see that Lemmas 3.2 and 3.4 hold, from which Proposition 2.3
follows.

4 Linear equations
In this section, we record a simple result regarding certain systems of linear equations
which we will need in the following Section 6.1. Let 1 � i1 < m < m + 1 < i2 � n. We
denote by Ln(i1;m; i2) the system of 2n linear equations

xi + yi = 0 (1 � i � n)

xi+1 + yi = 0 (i 	= i1 − 1, i1, i2 − 1, i2, m)

xi2 + yi1−1 = 0

xi2+1 + yi1 = 0

xi1 + yi2−1 = 0

xi1+1 + yi2 = 0

ym = 0,

where xn+1 is identified as x1.

Lemma 4.1 Suppose 1 < i1 < m < m + 1 < i2 < n. Then

{(x, y) ∈ R
2n : (x, y) satisfies Ln(i1;m; i2)} = {0}.

Proof Consider the system of equations Ln(i1;m; i2). By substituting ym = 0 into the
equation xm + ym = 0 and following through with the consequences, we obtain

xi = yi = 0 (i ∈ [i1 + 1, m]).

We can then deduce that

0 = xi1+1 = yi2 = xi2 = yi1−1 = xi1−1,
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which further implies that

xi = yi = 0 (i ∈ [1, i1 − 1]).

Therefore, the system becomes

xi1 + yi1 = 0 xi2+1 + yi1 = 0

xm+1 + ym+1 = 0 xm+2 + ym+1 = 0
...

xi2−2 + yi2−2 = 0 xi2−1 + yi2−2 = 0

xi2−1 + yi2−1 = 0 xi1 + yi2−1 = 0

xi + yi = 0 xi+1 + yi = 0 (i ∈ [i2 + 1, n]).

By substituting x1 = 0, we obtain

xi = yi = 0 (i ∈ [i2 + 1, n]).

which further implies that

0 = xi2+1 = yi1 = xi1 = yi2−1.

Finally, by substituting yi2−1 = 0 into the remaining system, we see that

xi = yi = 0 (i ∈ [m + 1, i2 − 1])

as desired. 
�

5 Preliminaries
Let In denote the n× n identity matrix and define Ĩn to be the (n− 1)× nmatrix obtained
by removing the last row from In. Then the (2n+ 1)× n2 coefficient matrix of the system
(1.2) is

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
0 0 · · · 0
...
...

...
...

0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
1 1 · · · 1
...
...

...
...

0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

· · ·

⎡

⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
0 0 · · · 0
...
...

...
...

1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎦

Ĩn Ĩn · · · Ĩn[
1 0 · · · 0
0 0 · · · 1

] [
0 1 · · · 0 0
0 0 · · · 1 0

]

· · ·
[
0 0 · · · 1
1 0 · · · 0

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)

We shall denote by ci,j the ((i − 1)n + j)-th column ofM0, for each 1 � i, j � n. The first
subscript i will always satisfy 1 � i � n, but for the second subscript j, to simplify our
exposition, we will consider it modulo n, that is

ci,j+mn = ci,j ,

for any 1 � j � n andm ∈ Z.

Definition 5.1 We shall refer to the set {ci,1, . . . , ci,n} as the i-th block for each 1 � i � n.
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GivenB ⊆ Col(M0), we define

B[i] = {1 � j � n : ci,j ∈ B} (5.2)

for each 1 � i � n.
Let

S = S1 ∪ S2,

where

S1 = {c1,1, c2,2, . . . , cn−1,n−1, cn,n}
and

S2 = {c1,n, c2,n−1, . . . , cn−1,2, cn,1} \ S1.

The columns inS1 are precisely the ones with 1 in the 2n-th entry andS2 the ones with
1 in the (2n + 1)-th entry that are not contained inS1. We remark that

#S2 =
⎧
⎨

⎩

n if n is even,

n − 1 if n is odd.

Let us define

ε(n) =
⎧
⎨

⎩

1 if n is even,

0 if n is odd,
(5.3)

and

N = n − 1 + ε(n)
2

− 2. (5.4)

For each 0 � � � N , we define

B̃� = {c1,1+2�, c2,2+2�, . . . , cn,n+2�}
⋃({c1,1+(2�+1), c2,2+(2�+1), . . . , cn,n+(2�+1)} \ {cn−2�−1,n}

)
.

This set contains precisely one column of the form c∗,n, which is cn−2�,n, a column whose
entries between (n+ 1)-th and (2n− 1)-th position are all 0. We will use these sets B̃� to
construct the collection of pairwise disjoint sets of 2n + 1 linearly independent columns
ofM necessary to complete the proof of Theorem 2.4.
By (5.4) it follows that

B̃� ∩ B̃�′ = ∅ (0 � � < �′ � N ). (5.5)

Lemma 5.2 Given any 1 � � � N, we have

B̃� ∩ S =
{
c n+1−ε(n)

2 −�, n+1−ε(n)
2 +ε(n)+�

, cn−�,�+1
}
.

Proof SinceS1 ⊆ B̃0, it follows from (5.5) that

B̃� ∩ S1 = ∅.

Therefore, if B̃� ∩ S 	= ∅, then there exist ε ∈ {0, 1} and 1 � i, j � n such that

(i, i + 2� + ε + m(i, �, ε)n) = (j, n + 1 − j),
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where

m(i, �, ε) =
⎧
⎨

⎩

0 if 1 � i + 2� + ε � n,

−1 if n < i + 2� + ε � 2n.

It follows that i = j and

j + 2� + ε + m(j, �, ε)n = n + 1 − j,

or equivalently

j = n + 1 − ε

2
− � − m(j, �, ε)n

2
.

Supposem(j, �, ε) = 0. Then it must be that ε = 1 if n is even and 0 if n is odd. Thus we
see that

c n+1−ε(n)
2 −�, n+1−ε(n)

2 +ε(n)+�
∈ B̃� ∩ S ;

here we note that 1 � n+1−ε(n)
2 + ε(n) + � � n.

On the other hand, supposem(j, �, ε) = −1. Then

j = n + 1 − ε

2
− �.

In particular, it must be that ε = 1. Thus we see that

cn−�,�+1 ∈ B̃� ∩ S .

Finally, we have c n+1−ε(n)
2 −�, n+1−ε(n)

2 +ε(n)+�
	= cn−�,�+1, since

1 � n + 1 − ε(n)
2

− � � n
2

− � < n − �.


�

As a consequence of this lemma, there are precisely two columns in B̃� whose last two
entries are not 0. In the next section,we replace these two columns from B̃� with appropri-
ate columnswhose last two entries are 0 such that the resulting set is linearly independent.
Finally, we complete the sets by adding two columnswhose last two entries are not 0which
preserve the linear independence.

6 Proof of Theorem 2.4
Let n � 8 and 1 � � � N , where N is defined in (5.4). Our goal is to replace the two
columns in B̃� from Lemma 5.2 in a suitable manner so that all columns have 0 for the
last two entries. Let us denote

i1(�) = n + 1 − ε(n)
2

− � and i2(�) = n − �,

where ε(n) is defined in (5.3). Then the two columns we need to replace are

c n+1−ε(n)
2 −�, n+1−ε(n)

2 +ε(n)+�
= ci1(�),i1(�)+2�+ε(n) and cn−�,�+1 = ci2(�),i2(�)+2�+1.
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We shall modify B̃� as follows

B� = B̃� \
(
{ci1(�),i1(�)+2�, ci1(�),i1(�)+2�+1}

⋃
{ci2(�),i2(�)+2�, ci2(�),i2(�)+2�+1}

)

⋃
{ci1(�),i2(�)+2�, ci1(�),i2(�)+2�+1}

⋃
{ci2(�),i1(�)+2�, ci2(�),i1(�)+2�+1},

that is we first remove the two columns in B̃� from the i1(�)-th and i2(�)-th block and then
add back in two columns from each of these blocks with switched positions. We remark
that we know there are two columns in B̃� from the i1(�)-th and i2(�)-th block, because

1 < i1(�) < n − 2� − 1 < n − 2� < i2(�) < n. (6.1)

It is clear that given 1 � � < �′ � N we have

{i1(�), i2(�)} ∩ {i1(�′), i2(�′)} = ∅. (6.2)

Therefore, the two blocks of B̃� which get modified to constructB� are unique to �. Let
us also recall the notation (5.2) and record the relations

B�[i1(�)]={i2(�)+2�, i2(�)+2�+1} and B�[i2(�)]={i1(�)+2�, i1(�)+2�+1} (6.3)

for each 1 � � � N .

Lemma 6.1 Given 1 � � � N such that

� 	=
⎧
⎨

⎩

�n/4� if n is even,

�n/4�, �n/4� + 1 if n is odd,

we have

{ci1(�),i2(�)+2�, ci1(�),i2(�)+2�+1}
⋂

S = ∅

and

{ci2(�),i1(�)+2�, ci2(�),i1(�)+2�+1}
⋂

S = ∅.

In particular, every column ofB� has 0 for the last two entries.

Proof Let ε ∈ {0, 1}. Since it can be verified that

i1(�) + i2(�) + 2� + ε ≡ n + 1 − ε(n)
2

+ ε 	≡ n + 1 (mod n)

and

± (i1(�) − i2(�)) ≡ ±n + 1 − ε(n)
2

	≡ 2� + ε (mod n),

the result follows. 
�

LetZ ⊆ {1, . . . , N } be a set with the following property: given anym, � ∈ Z , we have

n + 1 − ε(n)
2

	≡ 2(m − �) + δ (mod n) (6.4)

for any δ ∈ {−1, 0, 1}.
Let us define

R =
⋃

�∈Z
B̃�.
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Lemma 6.2 Given � ∈ Z , we have

B�[i1(�)] ∩ R[i1(�)] = ∅

and

B�[i2(�)] ∩ R[i2(�)] = ∅.

Proof First we recall the relations (6.3). Let us suppose

{i2(�) + 2�, i2(�) + 2� + 1}
⋂

R[i1(�)] 	= ∅.

Then there existsm ∈ Z such that

i2(�) + 2� + ε ≡ i1(�) + 2m + ε′ (mod n)

for some ε, ε′ ∈ {0, 1}. Since the congruence is equivalent to
n + 1 − ε(n)

2
≡ 2(� − m) + ε − ε′ (mod n),

we reach contradiction by the definition ofZ .
Similarly, let us suppose

{i1(�) + 2�, i1(�) + 2� + 1}
⋂

R[i2(�)] 	= ∅.

Then there existsm ∈ Z such that

i1(�) + 2� + ε ≡ i2(�) + 2m + ε′ (mod n)

for some ε, ε′ ∈ {0, 1}. From this congruence, wemay reach contradiction in the same way
as above. 
�

Lemma 6.3 We have

B� ∩ B�′ = ∅

for any distinct �, �′ ∈ Z .

Proof Let Z = #Z and denote

Z = {�1, . . . , �Z}.

We shall prove by induction that

B�i

⋂(
B�1 ∪ · · · ∪ B�i−1 ∪ B̃�i+1 ∪ · · · ∪ B̃�Z

) = ∅

for each 1 � i � Z. The base case i = 1 follows easily from (5.5) and Lemma 6.2. Let us
suppose the statement holds for all values greater than or equal to 1 and less than i, for
some 1 < i � Z. Let i + 1 < j � Z. Then it follows from (5.5) and Lemma 6.2 that

B�i+1 ∩ B̃�j = (B�i+1 \ B̃�i+1

) ∩ B̃�j ⊆ (B�i+1 \ B̃�i+1

) ∩ R = ∅.
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Therefore, it remains to prove

B�i+1

⋂(
B�1 ∪ · · · ∪ B�i

) = ∅.

Since it follows from the inductive hypothesis that

B̃�i+1 ∩ B�s = ∅ (1 � s � i),

it suffices to prove
(
B�i+1 \ B̃�i+1

) ∩ B�s = ∅ (1 � s � i),

which in turn follows from

B�i+1 [i1(�i+1)] ∩ B�s [i1(�i+1)] = ∅ and B�i+1 [i2(�i+1)] ∩ B�s [i2(�i+1)] = ∅ (6.5)

for all 1 � s � i. Since the i1(�i+1)-th and i2(�i+1)-th block of B̃�s do not get modified to
constructB�s , which follows from (6.2), we obtain

B�s [i1(�i+1)] = B̃�s [i1(�i+1)] ⊆ R[i1(�i+1)]

and

B�s [i2(�i+1)] = B̃�s [i2(�i+1)] ⊆ R[i2(�i+1)]

for all 1 � s � i. Therefore, (6.5) and consequently the result follow from Lemma 6.2. 
�
Finally, we prove thatB� is a linearly independent set.

Lemma 6.4 Given � ∈ Z \ {�n/4�, �n/4� + 1}, we have

dim Span
R
B� = 2n − 1.

Proof Suppose we have the following linear combination of columns inB�:

0 =
∑

1�i�n
i 	=i1(�),i2(�)

(xici,i+2� + yici,i+2�+1) (6.6)

+xi1(�)ci1(�),i2(�)+2� + yi1(�)ci1(�),i2(�)+2�+1

+xi2(�)ci2(�),i1(�)+2� + yi2(�)ci2(�),i1(�)+2�+1,

with yn−2�−1 = 0 (because we have (6.1) and cn−2�−1,n /∈ B�). Our goal is to show
xi = yi = 0 for all 1 � i � n. Let us recall that cn−2�,n ∈ B� whose entries between
(n + 1)-th and (2n − 1)-th positions are all 0. Furthermore, this is the only column inB�

of the form c∗,n, which follows from the definition ofB� and (6.1). By the definition of ci,j ,
the vector equation (6.6) is equivalent to the following system of linear equations

xi + yi = 0 (1 � i � n)

xi+1 + yi = 0 (i 	= i1(�) − 1, i1(�), i2(�) − 1, i2(�), n − 2� − 1)

xi2(�) + yi1(�)−1 = 0

xi2(�)+1 + yi1(�) = 0

xi1(�) + yi2(�)−1 = 0

xi1(�)+1 + yi2(�) = 0

yn−2�−1 = 0.

It is clear that this system of equations is precisely L(i1(�); n − 2� − 1; i2(�)). Therefore,
the result follows from Lemma 4.1 since we have (6.1). 
�
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6.1 Final bound for T0
Let us set

Z =
{
1, . . . ,

⌊n
4

⌋
− 1
}
.

Then we have

|2(m − �) + δ| � 2
⌊n
4

⌋
− 3 � n − 6

2
for any m, � ∈ Z and δ ∈ {−1, 0, 1}, which implies that Z satisfies (6.4). Since every
column in B� has 0 for the last two entries, we obtain the following as an immediate
consequence.

Corollary 6.5 Let � ∈ Z and (a,b) ∈ S1×S2. ThenB�∪{a,b} is a linearly independent
set.

Since

#S1, #S2 � n − 1 � |Z | =
⌊n
4

⌋
− 1,

andB� are pairwise disjoint, we easily obtain �n/4� − 1 pairwise disjoint sets of the form

D� = B� ∪ {a�,b�},

where (a�,b�) ∈ S1 × S2. Thus we have established

T0 �
⌊n
4

⌋
− 1,

where T0 is from the statement of the theorem.
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