
Article https://doi.org/10.1038/s41467-025-63852-x

Machine learning of charges and long-range
interactions from energies and forces

Daniel S. King1,4, Dongjin Kim 2,4, Peichen Zhong 1,4 & BingqingCheng 1,2,3

Accurate modeling of long-range forces is critical in atomistic simulations, as
they play a central role in determining the properties of material and chemical
systems. However, standard machine learning interatomic potentials (MLIPs)
often rely on short-range approximations, limiting their applicability to sys-
tems with significant electrostatics and dispersion forces. We recently intro-
duced the Latent Ewald Summation (LES) method, which captures long-range
electrostatics without explicitly learning atomic charges or charge equilibra-
tion. We benchmark LES on diverse and challenging systems, including
charged molecules, ionic liquids, electrolyte solutions, polar dipeptides, sur-
face adsorption, electrolyte/solid interfaces, and solid-solid interfaces. Here
we show that LES can reproduce the exact atomic charges for classical systems
with fixed charges and can infer dipole and quadrupole moments, as well as
the dipole derivative with respect to atomic positions, for quantum mechan-
ical systems. Moreover, LES can achieve better accuracy in energy and force
predictions compared to methods that explicitly learn from charges.

The accurate incorporation of long-range interactions in atomistic
simulations of materials and chemical systems remains a fundamental
challenge1. Early approaches to address this issue included the cluster
expansion formalism for crystalline lattices2, parameterization of
classical force fields with fixed charges3, and charge equilibration
schemes4, among others.

The proliferation of machine learning interatomic potentials
(MLIPs)5,6, which learn surrogate potential energy surfaces from
quantum mechanical reference calculations of atomic configurations,
has further emphasized the need for accurately accounting for long-
range interactions. Most established MLIP frameworks rely on short-
range approximations, assuming that the energy contribution of each
atom is determined by its local atomic environment. While this
assumption enables computationally efficient linear scaling with
respect to system size, it poses significant limitations for systems
where long-range interactions, such as electrostatics, play a critical
role. These limitations are particularly evident in systems involving
electrochemical interfaces7, charged molecular dimers8,9, ionic10 and
polarmaterials11, and scenarios involving varying charge states or long-
range charge transfer12.

One option is to predict effective partial charges of each atom,
which are then used to determine long-range electrostatics12–17. For
example, the third-generation HDNNP (3G-HDNNP)12 contains elec-
trostatic interactions based on local environment-dependent char-
ges represented by atomic neural networks. To improve upon that,
the fourth-generation high-dimensional neural network potentials
(4G-HDNNPs)12 predict the electronegativities of each atom and then
use a charge equilibration scheme18 to assign the charges. 3G-
HDNNPs and 4G-HDNNPs are trained directly to reproduce atomic
partial charges from reference quantum mechanical calculations,
although partial charges are not physically observable and their
values depend on the specific partitioning scheme used15. Another
approach is to learn the maximally localized Wannier centers
(MLWCs) for insulating systems: the deep potential long-range
(DPLR) model10 computes the long-range electrostatics using sphe-
rical Gaussian charges associated with the nuclei and the average
positions of the MLWCs predicted via a Deep Wannier (DW) deep
neural network model based on the local chemical environment10.
The charges of these MLWCs are based on the number of valence
electrons of each element. A similar method is the self-consistent
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field neural network (SCFNN)14, which predicts the electronic
response via the position of the MLWCs.

There are a few other methods that do not explicitly learn the
atomic charges8,9,11,19–21. For example, the Ewald message-passing
method20 employs a learnable frequency filter in the reciprocal space
to generate a long-range message for each atom during the message-
passing step. RANGE22 creates global virtual nodes in message-passing
graph networks to aggregate and broadcast long-range information.
LODE8,9,23 computes the potential field generated by all the atoms in
the system in the reciprocal space via Ewald summation, and then
featurizes such field near a central atom up to some cutoff radius to
form the long-range descriptors. The density-based long-range
descriptor21 follows a similar procedure, but the global atomic density
itself is used instead of the field.

Recently, we introduced the Latent Ewald Summation (LES)
method24. LES decomposes the total potential energy into short-
range and long-range components. Hidden variables–interpreted as
latent charges–are predicted from local atomic features without
reference to specific charge definitions. These latent charges are
then used to predict the long-range potential via an Ewald sum-
mation. LES can be combined with any short-ranged MLIP archi-
tectures (e.g., HDNNP25, Gaussian Approximation Potentials
(GAP)26, Moment Tensor Potentials (MTPs)27, atomic cluster
expansion (ACE)28) and message passing neural networks
(MPNNs) (e.g., NequIP29, MACE30). We combine LES with Cartesian
atomic cluster expansion (CACE)31, and refer to the standard short-
ranged CACE as CACE-SR, and the combined long-range potential as
CACE-LR.

In this paper, we provide a comprehensive exploration of the LES
framework, detailing its theoretical foundation, possible extensions,
and application to a range of test systems. Importantly, we show that,
when limited to a single charge channel, the LES charges can be
interpreted as physical partial charges. In ref. 24, LES was compared to
other LR methods such as LODE8,9 and density-based long-range
descriptor21 that do not explicitly learn charges. Here, we further
compare LES to existing methods that incorporate long-range inter-
actions via explicit charge learning and show that LES achieves
superior performance.

Results
Theory
We first briefly recap LES24, and then make an explicit connection
between LES and physical charges. Finally, we briefly demonstrate how
different global charge states can be encoded in the LES framework.

Range separation. The total potential energy of a systemwithN atoms
is split into short-range (SR) and long-range (LR) components,
E =
PN

i= 1E
srðBiÞ+ E lr. The short-range energy is the sum of atomic

energies, each depending on local B features of atom i. The B features
can be local atomic environment descriptors such as ACE28,

or learned features in message passing neural networks
(MPNNs)29,32–34. For the long-range part, a multilayer perceptron with
parameters ϕ maps the invariant features of each atom i to a hidden
variable:

qi =QϕðBiÞ: ð1Þ

In general, q can be multi-dimensional to represent the general-
ized long-range interactions. When q is restricted to be one-dimen-
sional, it can be interpreted as the atomic charge as we discuss later.

Suppose that the potential-generating field by a single particle
with unity latent variable is proportional to u(r) = ∣r∣−p, with p being a
fixed exponent. Following the standard range-separation formalism35,
one can express short-range and long-range interactions by multi-
plying the interaction by a convergence function φ(r) with φ(0) = 1

decreasing rapidly to zero as r increases:

Ep = Esr
p � Eself

p + E lr
p

=
1
2

X
i≠j

qiqjr
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Both Esr
p and Eself

p are short-ranged in nature and can be described
by the short-ranged MLIP based on the local features.

Long-range energy. For p = 1, which corresponds to electrostatics,
one choice for the convergence function can be expressed as the
complementary error function φðrÞ= erfcð rffiffi

2
p

σ
Þ. For isolated systems

without periodic boundary conditions, one can compute the E lr
p term

directly in the real space based on enumerating pairwise distances
between atoms. For periodic systems, the corresponding long-range
electrostatics can be computed in the reciprocal space as

E lr
1 =

2π
V

X
0< k < kc

1

k2 e
�σ2k2

=2jSðkÞj2, ð3Þ

where the structure factor S(k) of the hidden variable is defined as

SðkÞ=
XN
i = 1

qie
ik�ri : ð4Þ

The omission of the k =0 term in Eq. (3) means the tinfoil
boundary condition is applied. The detailed derivations and the case
for p = 6 which corresponds to London dispersions can be found in
the Supplementary Information.

Learning charges from energy and forces. When training the MLIP,
the total potential energy E, interatomic forces Fi = −∂E/∂ri, and
sometimes virial stress are fitted to the reference values from the
dataset. In LES, unlike methods that explicitly learn partial char-
ges, the hidden variables q are hypothesized to represent flexible
atomic charges when the physical electrostatic constant 1/4πϵ0 is
included. In particular, when LES is limited to a single charge
channel, we find that the charge used to compute the long-range
energy in Eq. (3) is physically meaningful and can be used to pre-
dict physical observables such as the dipole moment of gas phase
molecules and Born effective charges36. However, it is noted that
because the structure factor is squared in Eq. (3), the predicted
charges do not distinguish the charge parity, as the total energy
stays the same if all signs of the charges are flipped. In practice, it is
easy to unflip the signs of atomic charges based on the known
electronegativity of elements.

We note the success of the LES method in predicting charge
locally while computing energy globally. This choice reflects the gen-
erally nearsightedness of electron matter37. Additionally, as LES learns
the charges via the energy and forces, its learning isflexible to arbitrary
charge distributions (e.g., different oxidation states) as long as they
have an impact on the energy in the training set. Indeed, the LES
approach proves appropriate for a wide range of systems such as
electrolyte/electrodes, charged molecules, and doped surfaces, as we
will show in the examples. However, it is important to note that while
the local charge assumption works well empirically, it lacks theoretical
guarantees andmay encounter limitations in specific edge cases, such
as systems involving long-range charge transfer.

Charge neutrality condition. Empirically, in the examples below and
in previous work24 we have found it unnecessary to explicitly enforce
charge neutrality or fixed total charge state in the training process of
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LES. In practice, we have found that the sum of q is usually close to the
total charges for both neutral and charged systems without enforcing
neutrality. Additionally, any residual difference is treated as a uniform
background charge, which does not affect the total energy as the k = 0
term is omitted in the reciprocal space computation of electrostatic
interactions in Eq. (3). In all the examples we have tested, we did not
observe any loss of accuracy or artifacts due to the lack of charge
equilibration. In contrast, for the ML models that explicitly learn
charges such as 3G-HDNNP12, the lack of charge equilibration may
result in dramatically larger errors, and sometimes pathological
behaviors were observed for systems involving charge transfer and
change of charge states.

Different charge states. In a standard MLIP, the atomic features Bi
depend on the chemical elements and the coordinates of the atoms
surrounding atom i, and are agnostic to the charge or oxidation state.
This means that two systems with identical atomic positions but dif-
ferent net charges Q will have degenerate features. Although this
degeneracy does not affect the training or prediction for systems with
a fixed net charge, it can cause problems when handling systems with
varying charge states simultaneously. To resolve this, in training sets
containing multiple net charges (only one of the examples below,
Ag+

3 =Ag
�
3 ) we concatenate the total charge Q of the system with the

local atomic features Bi, Bi ⊕ Q, and use this combined feature as the
input for predicting short-range atomic energies and local hidden
variables. Note that this global charge embedding scheme can have
limitations, for example, when dealing with charged systems with
varying sizes.

Random charges
As an initial test, a gas of point charges was constructed. As shown in
Fig. 1a, each configuration consists of 128 atoms, with 64 carrying a
positive charge of +1e and the remaining 64 carrying a negative charge
of −1e. The atoms interact through the Coulomb potential and the
repulsive component of a Lennard-Jones potential. This benchmark
aims to evaluate the learning efficiency of the LES framework and
assess whether the correct atomic charges can be accurately learned.
Unlike in density functional theory (DFT), where the precise values of
partial charges depend on the chosen definition, the charges in this
system are unambiguously defined.

For the short-range component, we employed CACE with differ-
ent cutoff distances of rcut = 4Å, 5Å, and 5.5Å. For the long-range
interactions, we used a one-dimensional q with σ = 1 Å in the Ewald
summation, without enforcing a net charge constraint. Figure 1b pre-
sents the parity plot of the CACE-LR model with rcut = 4Å, comparing
the true and predicted charges (after unflipping the charge parity) for
various numbers of training samples. Remarkably, even with just 10
training configurations, the predicted charges are nearly exact.

Figure 1c illustrates the learning curves for the mean absolute
errors (MAEs) in energy, forces, and charges, using short-range (SR)
and long-range (LR) models with different cutoffs. The SR models
exhibit slow learning and significant errors for this dataset, with per-
formance improving as rcut increases. In contrast, the LR models
achieve errors more than an order of magnitude lower, with learning
efficiency improving as rcut decreases. This example highlights that,
unlike the typical behavior of SR MLIPs, long-range potentials achieve
more efficient learning with appropriately small rcut values.

Fig. 1 | Benchmark of the short-range and long-range models on the system of
point charges. a A configuration of gas made of point charges. The red and the
blue colors refer to particleswith +1e and -1e charges, respectively.bComparisonof
the true and the predicted charges for the Cartesian atomic cluster expansion

(CACE) long-range (CACE-LR) models with a cutoff radius rcut of 4Å and trained on
N configurations. c The mean absolute errors (MAEs) on energy (E), forces (F), and
charges for short-range (SR) and long-range (LR) models trained using different N
numbers of samples.
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Electrolyte solutions
Weconstructed a dataset of potassium fluoride (KF) aqueous solutions
with concentrations ranging from 0 to approximately 2mol/L. The
dataset includes both bulk electrolyte solution configurations and
electrolyte-vapor interfaces, as illustrated in Fig. 2. The reference
energies and forces were computed using the flexible SPC/Fw water
model (with oxygen carrying a charge of −0.8476e and hydrogen
carrying a charge of +0.4238e)38, alongside ions with fixed charges (K:
+1e, F: −1e)39. It is worth noting, however, scaled charge ionmodels are
typically better at capturing implicit effects of liquid-phase polariza-
tion and modeling electrolytes3,40,41, although this example aims to
demonstrate the learning ability of MLIPs rather than to accurately
model electrolytes. This electrolyte dataset is significantly more chal-
lenging than the random charge example, as it involves multiple spe-
cies with distinct atomic charges. Additionally, water acts as a

dielectric medium, and the presence of interfaces introduces diverse
screening effects that vary with depth from the surface.

Figure 2 b shows that theCACE-LRmodelwith rcut = 4.5Å is able to
recover the true charges after a couple of hundred training samples.
Figure 2c shows the learning curves for the MAEs on forces and char-
ges, and the MAEs on energies are all pretty small for all models
(< 0.3meV/atom for⪆ 100 samples).While a larger cutoff or amessage
passing layer (MP1) improves the SR model, the LR model with a
smaller cutoff rcut = 4.5Å achieves better learning efficiency. Adding a
message-passing layer to the LRmodel has little effect in this case. See
below in the Methods section, we also show the learning curves from
just the bulk or just the interfacial configurations. This electrolyte
example shows that the LR model is able to learn the charges and
energetics of systems involving different species and a dielectric
medium that screens electrostatics.

a b

c

Fig. 2 | Benchmark of the short-range and long-range models on bulk and
interfacial electrolytes. a A bulk electrolyte configuration (upper panel) and an
electrolyte-vapor configuration (lower panel) of KF in water electrolyte of 1 KF ion
pair and 233 water molecules, randomly selected from the training set.
b Comparison of the true and the predicted charges for the Cartesian atomic

cluster expansion (CACE) long-range (CACE-LR) models with a cutoff radius rcut of
4.5Å and trained onN configurations. c Themean absolute errors (MAEs) on forces
(F), and charges for short-range (SR) and long-range (LR) models trained using
different N numbers of samples. The MP1 indicates models using one message-
passing layer.
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Charged molecular dimers
We revisit an example from a molecular dimer dataset42 used to
benchmark LODE9 and LES24. This example consists of the binding
curve between two charged molecules of C3N3H

+
10=C2O2H

�
3 (shown in

Fig. 3a). The training set of this example is tiny: it consists of 10 con-
figurations of the dimer pair, with the internal coordinates of the
molecules frozen and only dimer separation distances varying
between ~5Å and 12Å. The test set includes 3 configurations with
separations between approximately 12Å and 15Å. The dataset includes
energy and force information calculated using the HSE06 hybrid DFT
with a many-body dispersion correction.

For theCACE-LRmodel, hereweuse aone-dimensionalq, whereas
the original LES paper24 used a four-dimensional hidden variable, and
the model test errors are comparable. Figure 3b compares the pre-
dicted forces and dispersion curves for the LR and SR models. The SR
model has one message-passing layer, but as the two molecules can
have a distance beyond the cutoff of rcut = 5Å, the message-passing
scheme does not help. Figure 3c shows the predicted charge dis-
tribution. The total predicted charges on C3N3H

+
10=C2O2H

�
3 molecules

are +0.83e/ −1.08e, and +1.01 e/ −1.01 e after removing the mean
charge of each atom qi  qi �

PN
i qi=N. The reason why the mean

charge deviates from zero is due to the tiny training sizes. Never-
theless, the mean-adjusted charges are very close to the ground truth
of +1 e/ −1 e molecular charges, despite the fact that the MLIP training
is agnostic about these charge states. Even though the atomic charges
are not quantitative due to the minimal training set, the learned
charges are broadly consistent with chemical intuitions: The two
under-coordinated oxygen atoms in C2O2H

�
3 have the same strong

negative charge, while the rest of the molecule is positively charged.
The undercoordinated carbon in C3N3H

+
10 has a positive charge, while

the other atoms have smaller positive charges.

Polar dipeptides
Since atomic charges in quantum mechanics are not well-defined
quantities, a key question is whether the LES charges can be used to
predict physical observables such as dipole and quadrupolemoments.
To answer this question, we turn to the SPICE dataset43, which contains
DFT dipole and quadrupolemoments aswell asminimal basis iterative
stockholder (MBIS) charges44 for a wide array of drug-like molecules.
Specifically, we fit CACE-LR on a dataset of polar dipeptides, just by
learning from the energy and forces. Then we determine whether LES

is able to infer the DFT dipole and quadrupole moments on a holdout
test set of unseen polar dipeptides (illustrated in Fig. 4a). We compute
the predicted LES dipole via μ=

PN
i qiri and quadrupole via

Q=
PN

i qiri � ri where qi are the charges predicted by LES and ri are
the positions of atoms i. To make the comparison translationally
invariant, we additionally subtract the trace from the calculated and
DFT quadrupole moments (Q0 =Q� 1

3 TrðQÞI).
Figure 4b compares the charges predicted by LES to the MBIS

charges from SPICE. As is seen, the charges predicted by LES
correlate well with the MBIS charges, and agree with the usual
ordering of electronegativities (O > N > C > H). However, we note
that such agreement can only be qualitative (R2 = 0.87, MAE =
0.24). The reason behind this is that there is no rigorous defini-
tion of atomic charge45. To show this, we also compare between
different definitions of DFT charges (MBIS, Mulliken charges, and
Hirshfeld charges), as illustrated below in the Methods section.
Indeed, the extent of disagreement between the LES charges and
any definition of these DFT charges is similar to that between
different definitions of DFT charges.

To evaluate the quality of the LES charges quantitatively, Fig. 4c
compares the dipole moments (a well-defined experimental obser-
vable) derived fromLES to that fromDFT. Remarkably, wefind that the
derived dipoles from the LES charges are in excellent agreement with
those from DFT (R2 = 0.991), even though the LR model is not trained
explicitly on any charge or dipole information. In absolute terms, the
LES mean absolute error (MAE) for dipole moments is 0.089 e-Å,
comparable to the 0.063 e-Å MAE of MBIS charges derived directly
from DFT densities. Figure 4d compares the calculated quadrupole
moments to those of DFT. Again, we see good agreement of the LES
quadrupoles with the physical DFT values (R2 = 0.911).

Furthermore, we compared the Born effective charge (BEC)
tensor36, another well-defined physical quantity that corresponds to
the derivative to the dipole moment with respect to atomic positions,
i.e. Z *

iαβ =
∂μα
∂riβ

. Figure 4e and 4f compare the BECs predicted using the
LES charges to the DFT reference values, for both the diagonal
(R2 = 0.976) and off-diagonal (R2 = 0.838) BEC elements. There is again
good agreement between the LES BECs and the DFT values. Overall,
the agreement between DFT and LES dipoles, BECs, and quadrupoles
shows that LES is able to convincingly model observables of the
molecular charge density even though no charge information is
explicitly input into the model training.

+0.1

-0.1

a

b

c

q[e]

Fig. 3 | Benchmark of the short-range and long-range models on systems of
molecular dimer. a A snapshot of the molecular dimer configuration of
C3N3H

+
10/C2O2H

�
3 . b The comparison between the true and predicted force com-

ponents (left panel), and the binding energy curves (the energy difference between

the dimer and two isolated monomers) from short-range (SR) and long-range (LR)
models. c The predicted charges q from the long-range model. The color bar is in
linear scale.
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Again, we emphasize that DFT partial charges, such as MBIS,
Mulliken charges, and Hirshfeld charges, are not physical observables
– although there is significant disagreement between the such DFT
charges and LES charges (Fig. 4b), there are similar disagreement
between the different flavors of DFT charges. Nevertheless, they are all
good predictors of the observable molecular dipole and quadrupole
moments, as shown below in the Methods section. In other words, the
LES charges are just as physical as any definitions of DFT partial

charges. The ability of LES to infer dipole and quadrupolemoments as
well as BECs just from energies and forces strongly supports the thesis
that it is not necessary to explicitly learn a specific definition of DFT
charges or electronegativities.

Dataset with different charge states and charge transfer
Ko et al.12 compiled four datasets (C10H2=C10H

+
3 , Ag

+ =�
3 , Na8=9Cl

+
8 , and

Au2 onMgO(001), illustrated in Fig. 5) that specifically target systems in

Fig. 4 | Benchmarkof the latent Ewald summation (LES)modelon thedipeptide
test set. a Top: A snapshot of a dipeptide conformer from the test set. Bottom: The
predicted charge (q) distribution. The color bar is in linear scale. b The predicted
charges from LES compared to minimal basis iterative stockholder (MBIS) charges
in SPICE43. c The predicted dipole components computed from the LES charges
(μ=

PN
i = 1 qiri) compared to the density functional theory (DFT) dipole compo-

nents in SPICE. d The predicted traceless quadrupole components computed from

the LES charges (Q =
PN

i = 1 qiri � ri) compared to theDFTquadrupole components
in SPICE. e The predicted diagonal born effective charge (BEC, Z *

αα =∂μα=∂rα)
components compared to BECs calculated with the ωB97M-D3BJ DFT functional in
the Def2SVP basis. f The comparison for the off-diagonal BEC components
(Z *

αβ =∂μα=∂rβ). Squared Pearson correlation coefficients R2 are shown in each plot
where quantitative agreement is expected.
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different charge states or where charge transfer mediated by long-
range electrostatic interactions is significant. In Table 1, we compare
the CACE-LR errors with the values obtained with CACE-SR, 3G-
HDNNP and 4G-HDNNP12, as well as a charge constraint ACE model
through a local many-body expansion (χ+η(ACE))46. The comparison
between CACE and ACE is a rather direct one: their descriptors are
mathematically equivalent47. 4G-HDNNP and χ+η(ACE) both fit char-
ges explicitly, while CACE-LR only fits to energy and forces and no
total charge constraint was used. We used a 90% train and 10% test
split, consistent with ref. 12.

The C10H2=C10H
+
3 set contains carbon chains terminated with

hydrogen atoms in the neutral or positively charged state. With and
without the added proton on the right-hand side of Fig. 5a, the atoms
in the left half of themolecule can have almost identical environments

but different atomic charges, which results in high fitting errors in 3G-
HDNNP12 due to the contradictory information.

The Ag+ =�
3 example illustrated in Fig. 5b contains Ag trimers in

two different charge states. As the system size is small such that there
areno long-range interactions,weusedonly a short-rangedCACEMLIP
with embedded charge states. Since the energies dependon theoverall
charge states of the clusters, this causes the degeneracy issue between
atomic structures and potential energy surfaces, leading to the poor
performance of the 3G-HDNNP and the charge-agnostic ACEmethods.
Both the charge constraint χ+η(ACE) model and the charge-state-
embedded CACE lift such degeneracies, leading to drastically
improved descriptions.

The Na8=9Cl
+
8 set (Fig. 5c) contains the ionic Na9Cl

+
8 clusters and

Na8Cl
+
8 when a neutral Na atom is removed. This is also an example

Table 1 | Test rootmean squared errors (RMSE) energies (E) inmeV/atom, forces (F) inmeV/Å are reported for differentmodels
with cutoffs rcut

ACE χ + η(ACE) 3G-HDNNP 4G-HDNNP CACE-SR CACE-LR

rcut 6Å 6Å 4.23 Å 4.23Å 4.23Å 4.23Å

C10H2=C10H
+
3 E 0.76 0.75 2.045 1.194 1.27 0.73

F 37.22 35.16 231.0 78.00 91.0 36.9

rcut 6Å 6Å 5.29 Å 5.29Å 5.29Å -

Ag+ =�
3

E 809.62 0.21 320.2 1.323 0.162 -

F 285.81 23.10 1913 31.69 29.0 -

rcut 6Å 6Å 5.29 Å 5.29Å 5.29Å 5.29Å

Na8=9Cl
+
8

E 1.55 0.71 2.042 0.481 1.58 0.21

F 41.72 12.35 76.67 32.78 48.8 9.78

rcut 6Å 6Å - 4.23Å 5.5Å 5.5Å

Au2-MgO(001) E 2.56 1.63 - 0.219 2.25 0.073

F 88.70 50.27 - 66.00 59.3 7.91

The3G-HDNNPand4G-HDNNPvaluesare from ref. 12. The values for the atomiccluster expansion (ACE)model and thechargeconstrainedmodel (χ +η(ACE)) are fromref. 46.CACE-SRandCACE-LR

stand for short-ranged and long-ranged Cartesian atomic cluster expansion (CACE) models. Short-ranged CACE with embedded charge states was used for the Ag+ =�
3 system.

Fig. 5 | Illustrations and analyses of the four systems taken from ref. 12 with
different charge states and charge transfer.Atom colors are as follows: H (white),
C (gray), O (red), Na (purple), Mg (dark green), Cl (light green), Ag (silver), and Au
(gold). a The C10H2=C10H

+
3 set. b The Ag+ =�

3 set has Ag trimers in positive or
negative charge states. c The Na8=9Cl

+
8 set. d The Au2-MgO(001) set has a wetting

(left) or unwetting (right) Au2 on the doped (left) or undoped (right) MgO(001)
surface. e Potential energies for the Au2 cluster adsorbed at the MgO(001) substrate
for the non-wetting geometry for the Al-doped and undoped cases. SR and LR stand

for short-range and long-range models. The equilibrium density functional theory
(DFT) bond lengths, DFT energy and the associated minimum energies are denoted
in black symbols. The Au-O bond length is theminimum distance between Au and O
atoms. f The atomic charges (q) from the underlying DFT data (left), and the pre-
dicted atomic charge fromCartesian atomic cluster expansion long-range (CACE-LR,
right) for the nonwetting Au2 cluster adsorbed on the doped MgO(001) substrate.
gThe change of atomic charges (Δq) due to doping, from the DFT data (left), and the
predicted atomic charge from CACE-LR (right). The color bars are in linear scale.
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where global charge transfer is present. CACE-LR achieves the lowest
errors in this case.

The Au2 − MgO(001) set (Fig. 5d) has a diatomic gold cluster
supported on the MgO(001) surface with two adsorption geometries:
an upright non-wetting orientation of the dimer attached to a surface
oxygen, and a parallel wetting configuration on top of two Mg atoms.
Moreover, three Al dopant atoms were introduced into the fifth layer
below the surface (the gray atoms in the left panel of Fig. 5d). Despite
having large distances of more than 10Å, the dopant atoms have a
major influence on the electronic structure and the relative stability
between the wetting and the non-wetting configurations.

In this example, CACE-LR achieves errors that are approximately
an order of magnitude smaller than those of the other methods
compared. As an additional test, we performed geometry optimiza-
tions of the positions of the gold atoms, with the substrate fixed, for
both doped and undoped surfaces. The results were compared to
reference DFT calculations and previous results using the 4G-HDNNP
method12. Note that the referenceDFT results have beenupdatedusing
tighter convergence settings of the geometry optimization, as per-
formed by the authors of ref. 12. For the pure MgO substrate, the non-
wetting configuration is energetically favored, whereas doping stabi-
lizes the wetting geometry. The energy differences between the wet-
ting and non-wetting configurations for both doped and undoped
substrates are presented in Table 2. Short-range models, such as 2G-
HDNNP and CACE-SR, predict nearly degenerate energy values for
these configurations, as expected. In contrast, CACE-LR delivers highly
accurate predictions, closely matching the reference results. Con-
sistent with findings in ref. 12, we also present the potential energy
surface for the non-wetting geometry on doped and undoped sub-
strates as a function of the distance between the bottom Au atom and
its neighboring oxygen atom, shown in Fig. 5e. Equilibrium bond
lengths and energies derived fromDFT aremarkedwith black symbols.
Notably, CACE-LR accurately resolves the distinct equilibrium bond
lengths, with a slight shift in the potential energy surface likely attri-
butable to differences in DFT convergence settings.

We rationalize why the CACE-LR method delivers significantly
more accurate predictions compared to other long-range methods
that explicitly fit atomic charges. In Fig. 5f, we compare the atomic
charge distribution from the underlying DFT data, obtained via
Hirshfeld population analysis12,48, with the charges predicted by CACE-
LR. The charges from CACE-LR are generally much smaller in magni-
tude and are primarily localized on the Au dimer and the dopant. In
contrast, the DFT charges show sharp positive values for metal atoms
and sharp negative values for oxygen atoms in the substrate. We
hypothesize that explicitly modeling such DFT-derived charges for
metals and oxygen is unnecessary for accuratelypredicting energy and
forces. Short-ranged MLIPs are already well-suited to describe bulk
oxides without dopants due to the screening effects that diminish the
influence of these charge extremes. In Fig. 5g, we plot the changes in
atomic charges resulting from doping, by taking the atomic charge
difference for each atom from relaxed doped and doped structures,
which shows a clear correlation between DFT and CACE-LR results.
This example suggests that the charges predicted by CACE-LR can be
interpreted as response charges rather than DFT partial charges,
focusingon the aspects of charge redistribution relevant to energy and
force predictions.

Electrolyte/solid interfaces
As example applications to electrolyte/solid interfaces, we selected two
sets of systems. The first is the Pt(111)/KF(aq) interface dataset from
ref. 49,whichdescribes the Pt electrodewith the (111) surface formingan
interface with K and F ions in water solutions. For training the MLIP,
ref. 49 used a DPLR model: the short-ranged part is a standard Deep
Potential (DP) model with a cutoff of 5.5Å, and the long-range electro-
statics is computedusing spherical Gaussian charges associatedwith the
nuclei (i.e., 6 e, 1 e, 9 e, 7 e, and 0 e for O, H, K, F, and Pt atoms, respec-
tively) and the average positions of the MLWCs10 with a total charge of
−8 e associated with each O, K, and F atom. Note that such MLWC
schemes are not applicable to conductors, so ref. 49 used the classical
Siepmann-Sprik model4 to describe the Pt electrode in MD simulations.

The second dataset from ref. 50 is for modeling the anatase TiO2

(101) surface in contactwithNaCl-water electrolyte solutions at various
pHs. This dataset comprehensively spans the configurational space of
bulk anatase TiO2, water, and various aqueous electrolyte solutions
(NaCl, NaOH, HCl, and their mixtures), as well as anatase (101) inter-
faceswith eachof these liquids. ref. 50 trained a standard short-ranged
DP and a DPLR MLIP. The LR part in the DPLR model is also based on
the electrostatics of spherical Gaussian charges associated with the
ions (nuclei + core electrons) and the valence electrons. More specifi-
cally, 4 e, 1 e, 6 e, 9 e, and 7 e for Ti, H, O, Na, and Cl ions, and each O,
Na, and Cl ion has four WCs each carrying -2e.

We fitted the CACE-SR and CACE-LR models, without message
passing. The results are presented in Table 3. We speculate that the
improved performance of the CACE models compared to the DP
models can be attributed to two reasons: First, the DP descriptors are
restricted to two-body and three-body terms,while theACE framework
can include higher-body-order interactions and in this case we trun-
cate to four-body terms. The inclusion of higher-body termsmakes the
model more expressive and helps alleviate the degeneracy problem51.
Second, the LES scheme allows each atom to carry a flexible learned
charge, in contrast with the fixed charge in the DPLR method.

To showcase the effect of long-range interactions on the struc-
tures of the electrolyte and the electric double layer (EDL), we per-
formed MD simulations at 600K for 5 ns on a large system of anatase
TiO2 surface and NaCl in water solution (illustrated in Fig. 6). This is
also a test that was performed in ref. 50. Figure 6b shows the ion
distributions obtained from the MD simulations using the CACE-SR

Table 2 | Energy difference (Ewetting − Enonwetting) in meV between the wetting and nonwetting configurations for doped and
undoped substrates

DFT 2G-HDNNP CACE-SR 4G-HDNNP SevenNet 3-layers SevenNet 4-layers CACE-LR

Doped -66.9 375 431 -41 141 8 -70.6

Undoped 934.8 375 431 975 721 898 931.3

The density functional theory (DFT), 2G-HDNNP and 4G-HDNNP values are from ref. 12. The SevenNet results are from ref. 74. CACE-SR and CACE-LR are our Cartesian atomic cluster expansion
(CACE) short-range and long-range models.

Table 3 | Test root mean squared errors (RMSE) are reported
for energies (E) in meV/atom, forces (F)in meV/Å for different
models with cutoffs rcut

DPSR DPLR CACE-SR CACE-LR

rcut - 5.5Å 5.5Å 5.5Å

Pt(111)/KF(aq) E - 1.305 0.863 0.309

F - 75.00 58.6 34.1

rcut 6Å 6Å 5.5Å 5.5Å

TiO2(101)/NaCl
+NaOH+HCl(aq)

E 0.88 0.79 0.721 0.435

F 124 119 103 70.5

The DPLR results for the Pt(111)/KF(aq) set are from ref. 49, and DPSR and DPLR results for the
TiO2(101)/NaCl+NaOH+HCl(aq) set are from ref. 50. CACE-SR and CACE-LR are our Cartesian
atomic cluster expansion (CACE) short-range and long-range models.
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and CACE-LR models. In reality, the solution should recover its bulk
properties in the central region that is away from the interface and
have equal densities of Na+ and Cl− ions. However, the SR model,
lacking long-range electrostatic interactions, imposes no energy pen-
alty for unphysical charge imbalances. Consequently, the MD

simulation predicts an excess Cl− density of approximately 0.05mol/L
in the center of the box. In contrast, incorporating long-range inter-
actions with the CACE-LR model eliminates this artifact and alters the
ion distributions within the EDL. These effects, including the correc-
tion of charge imbalance and modified EDL structures, were also
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Fig. 6 | Illustration and analysis of the electrolyte/solid interface system of the
anatase TiO2 (101) surface and NaCl in water solution. a A representative snap-
shot of the anatase TiO2 (101) surface andNaCl inwater solution, randomly selected
from the training set. Atom colors are as follows: H (white), O (red), Na (purple), Cl

(green), and Ti (gray). b, c Plane-averaged ion density ρ (b) and predicted latent
Ewald summation (LES) charges q on atoms (c) along the z-direction (normal to the
surface) for the TiO2-NaCl solution interface obtained from short-range (SR) and
long-range (LR) machine learning interatomic potential MD simulations at 600 K.
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reported in ref. 50. Notably, the CACE-LRmodel predicts a significantly
lower second Na+ density peak near the interface compared to ref. 50.
Figure 6c shows the predicted LES charges on atoms at different
positions. Mostly notably for oxygen (red symbols) and titanium (gray
symbols), the magnitude of these charges are dependent on whether
the atoms are in the bulk region or at the interface. Such variance can
be understood as coming from the difference of polarization envir-
onments. andmay help capture the complex electrostatic interactions
in interfacial systems.

Solid-solid interface
Atomistic modeling of solid-solid interfaces is essential in under-
standing material synthesizability52. The heterogeneous nature of
these interfaces requires long-period structures, particularly in cases
involving charge transfer, which necessitates long-range descriptions
beyond standard MLIPs. To evaluate the predictive accuracy of our
models, we conducted a benchmark study comparing CACE-SR and
CACE-LR using the LiCl(001)/GaF3(001) interfacial system53. The
training dataset includes bulk and interfacial configurations in the LiCl-
GaF3 chemical space with corresponding DFT-calculated energies and
interatomic forces. To assess model uncertainty, we trained an
ensemble of four SR/LRmodels and used their predictions to estimate
force uncertainties (see Methods). For in-distribution (ID) test set
performance, CACE-SR and CACE-LR models achieve RMSEs of
78.8meV/Å and 67.8meV/Å, respectively.

To evaluate model transferability, we constructed an out-of-
distribution (OOD) test set using a large solid-solid heterostructure
relaxed with DFT calculations (~30Å in the z-direction, Fig. 7a). This
extended structure, containing eight Ga layers and four Li layers,
represents a more realistic interface with much reduced finite-size
effects compared to the training configurations. On this OOD set, the
LR model demonstrates improved predictive accuracy with a force
component error of 40.5meV/Å compared to 116.3meV/Å for the SR
model. The atomic-resolved force errors are visualized in Fig. 7c, d,
which were computed from the square root of the sum of force
component errors in x, y, z-directions.

Force uncertaintieswere quantifiedusing ensemble variance from
the four trained models. The SR model exhibits lower uncertainties
(Fig. 7e), indicating a good parametrization on the ID training set. In
contrast, the LR model shows elevated uncertainties (Fig. 7f), effec-
tively identifying OOD atomic environments in the heterostructure.
The correlation between the absolute force errors (RMSE against DFT)
and uncertainties is shown in Fig. 7b, where green dots specifically
highlight the relationship between SR model errors (poor prediction)
and LR model uncertainties (OOD detection). Interestingly, the LR
model identifies regions of SR model failure (green dashed circle in
Fig. 7b), which are further evidenced by the spatial correspondence in
Fig. 7c, f. These results suggest that despite the SR MLIPs achieving
adequate ID performance for this system, they lack the mathematical
framework to capture long-period structure features that are essential
for electrostatic interactions. In contrast, the LR models with LES
overcome this limitation with improved transferability. More gen-
erally, the enhanced OOD detection capabilities are essential for
robust uncertainty quantification in broader applications such as
materials property predictions and generation54. While our current
implementation relies on computationally intensive ensemble var-
iance, the LES framework is compatible with various uncertainty
quantification methods, including Gaussian mixture models55, Monte
Carlo dropout56, and deep evidential regression57.

Discussion
The LES framework is highly interpretable in physical terms: the hidden
variable q, when restricted to one dimension for computing electrostatic
long-range potentials, corresponds to the partial charges for describing
electrostatic interactions. In cases such as random charges and

electrolyte solutions, where the underlying potential energy surfaces are
described by classical forcefields with fixed charges, LES accurately
recovers those charges. For quantum-mechanical systems, such as those
described using DFT, the LES-derived partial charges can be understood
as a coarse-grained approximation of the net electrostatic effect of
electron density polarization. This approximation has also been rationa-
lized and applied to parameterize scaled charges in classical forcefields3.

Notably, atomic charges in quantum-mechanical systems are not
physical observables. In DFT, there exists a wide variety of methods to
assign local atomic charges given the global charge density, each pro-
viding different frameworks and values45,58. These include Mulliken
population analysis that relies on the overlap of atomic orbitals59,
shareholdermethods suchasHirshfeldpopulation analysis48 andMBIS44,
fitted atomic charges to the electrostatic potential with restraints60, and
parameterizations based on these schemes45. For polar dipeptides, as
shown in Fig. 4, LES charges are correlated with, but not equivalent to,
several definitions of DFT charges such as MBIS charges, Mulliken
charges, and Hirshfeld charges. Meanwhile, similar levels of discrepancy
exist between the different flavors of the DFT charges. Yet, despite this
imperfect correlation, LES charges reproduce DFT dipoles and quadru-
poles with remarkable accuracy. Moreover, the LES charges are able to
reproduce the Born effective charges, which are physical quantities that
measure how atoms in the system respond to an external electric field36.
This free lunch–predicting dipole, quadrupole moments, and BECs
without explicitly learning the multipoles or charges – highlights the
physical interpretability embedded in the LES framework.

Indeed, the ambiguity of DFT partial charges suggests that
directly learning such charges may not be necessary for – or may even
be a detriment to – constructing accurate interatomic potentials. This
insight is supported by results for four challenging systems involving
different charge states and charge transfer (C10H2=C10H

+
3 , Ag+ =�

3 ,
Na8=9Cl

+
8 , and Au2 on MgO(001)), where CACE-LR outperformed both

4G-HDNNP12 and χ + η(ACE)46, which explicitly learn charges and
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Fig. 7 | Illustration and analysis of the system of the LiCl(001)/GaF3(001)
interface. a A density functional theory (DFT)-relaxed structure of the LiCl(001)/
GaF3(001) interface. b Correlation between force errors and uncertainties com-
puted from ensemble predictions. SR and LR stand for short-range and long-range
models. Blue: SRmodel error vs. SRmodel uncertainty; Orange: LRmodel error vs.
LRmodel uncertainty; Green: SRmodel error vs. LR model uncertainty. The circled
region corresponds to the high-error region in (c) from Cartesian atomic cluster
expansion (CACE) short-range (CACE-SR) and high-uncertainty region in (f) from
CACE long-range (CACE-LR). c−f Atomic-resolved force errors (left panels) and
uncertainty estimates (right panels) for SR (top) and LR (bottom) models.
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perform charge equilibration (see Table 1). For interfacial systems,
such as Pt(111)/KF(aq) and TiO2(101)/NaCl +NaOH+HCl(aq), CACE-LR
also achieved greater accuracy compared to DPLR, which learns the
positions of Wannier centers (see Table 3).

One can further speculate that the improved performance of LES
compared to the other methods stems from the fact that LES does not
directly learn from charges. For instance, in the Au2-MgO system, LES
achieves an error an order of magnitude lower than 4G-HDNNP12 and
χ+η(ACE)46. This likely results from LES capturing the response charge-
changes in atomic charges due to doping-rather than the sharply peaked
andmethod-dependent DFT charges, as illustrated in Fig. 5f,g. While our
test uses simple metal oxides, the response charge formalism is parti-
cularly relevant for complex ionic systems, such as transition metal
oxides. Previous studies have shown that materials with localized
d-electrons exhibit self-regulating response in DFT61, where the system
maintains constant local charges on transition metal atoms by minimiz-
ing external perturbations through rehybridization62. Given this com-
plexity and the fact thatDFTcharges varydependingon thecomputation
method, directly inferring them introduces inefficiencies in resolving
their ambiguous components63. The strong performance of LES suggests
that the detailed prediction of atomic charges is less critical; instead, the
primary focus should remain on accurately predicting physically obser-
vable quantities, such as energies and forces. Moreover, by avoiding the
direct learning of charges, LES circumvents the need for explicit charge
equilibration, thereby reducing the associated computational overhead.

Omitting long-range interactions can result in severely inaccurate
predictions for many systems. For example, standard short-ranged
MLIPs fail to predict the binding curve of a charged molecular dimer
(Fig. 3), cannot distinguish the different adsorption behaviors of Au
dimers on doped and undoped MgO substrates (Table 2 and Fig. 5e),
and even produce a charge imbalance in the bulk region of the TiO2-
NaCl(aq) solution interface (Fig. 6). Alarmingly, the commonly used
ensemble uncertainty quantification method was unable to detect the
large errors of SR MLIPs in out-of-distribution cases, such as the solid-
solid LiCl(001)/GaF3(001) interface. This highlights that standard SR

models can yield unphysical results in certain systems, and these
errors may go unnoticed when relying solely on conventional uncer-
tainty quantification techniques.

In summary, we thoroughly benchmarked the LES method, a
physics-informed approach that learns long-range interactions directly
from energies and forces, without requiring explicit charge labels or
additional input. We show that LES can achieve better accuracy in
energy and force predictions compared to methods that explicitly
learn from DFT partial charges. Moreover, LES is able to learn the true
underlying electrostatics: for classical systems with fixed charges, LES
can reproduce these exact charges; for quantum mechanical systems,
LES can infer dipole, quadrupole moments, and BECs. The framework
consistently provides superior accuracy in modeling long-range
interactions compared to existing MLIPs. We thus demonstrate LES
to be a versatile and efficient tool for addressing a wide range of
challenging systems where long-range interactions play a critical role,
such as electrolyte interfaces, chargedmolecular complexes, and ionic
solutions. In the future, we will incorporate LES into general-purpose
MLIPs that are applicable for many systems across the periodic table.

Methods
Details on the MLIP training
Randomcharges. The dataset contains a total of 1000 configurations,
and each configuration has 64 atoms with +1e charge and 64 atoms
with -e charge. The set was collected from NPT simulations at 4000K
and zero external pressure. We performed the NPT simulations and
computed the energy and forces in LAMMPS, using the Nose-Hoover
thermostat and barostat. The standard deviations in energy and forces
are 0.17 eV/atom and 2.0 eV/Å, respectively.

For the CACE representation, we used 6 Bessel radial functions
with c = 12, ‘max = 3, νmax = 3, Nembedding = 3, no message passing, and
different cutoff of rcut = 4.5Å, 5Å, or 5.5Å. For the long-range com-
ponent, we used a 1-dimensional q, σ = 1 Å, and a maximum cutoff of
kc = 2π (dl = 1Å in the CACE LES syntax) in the Ewald summation.

Electrolyte solution. The dataset of KF aqueous solution contains
both bulk electrolyte solution configurations (1206 configurations
with 64 water molecules and 0–5 ion pairs), and electrolyte-vapor
interfaces (603 configurations with 225 water molecules and 1, 2, or 10
ion pairs). We performed NVT MD simulations at 370K to collect
snapshots using the Nose-Hoover thermostat in LAMMPS, employing
SPC/Fw water38 (O has charge −0.8476 e, H has charge +0.4238 e), and
ions with fixed charges (K has charge +1e, F has charge -1e) and
Lennard-Jones interactions39. The standard deviations in energy and
forces are 0.074 eV/atom and 0.9 eV/Å, respectively.

For the CACE representation, we used 6 Bessel radial functions
with c = 12, ‘max = 3, νmax = 3, Nembedding = 4, no message passing (T =0)
or one message passing layer (T = 1), and different cutoffs of rcut = 4.5
Å, or 5.5Å. For the long-range component, we used a 1-dimensional q,
σ = 1Å, and a maximum cutoff of kc =π (dl = 2Å) in the Ewald
summation.

In Fig. 8we show the learning curves from learning using only bulk
electrolyte solution configurations, or only electrolyte-vapor inter-
facial configurations. Interestingly, the learning efficiency for forces is
almost identical for the two sets, but the charges are more difficult to
learn from the interfacial systems.

Charged molecular dimers. The LODE molecular dimer dataset
includes energy and force information calculated using the HSE06
hybrid density functional theory (DFT) with a many-body dispersion
correction. We used the molecular pair with id 0.

The CACE representation uses a cutoff rcut = 5Å, 6 Bessel radial
functions, c = 8, ‘max = 2, νmax = 2, Nembedding = 3, and one message
passing layer (T = 1). The long-range component Elr employed
a 1-dimensional hidden variable computed from the same CACE

Fig. 8 | Learning the efficiency of Cartesian atomic cluster expansion
(CACE) long-range (CACE-LR) models trained only on bulk electrolyte
solution or electrolyte-vapor interfacial configurations of potassium
fluoride (KF) aqueous solution. Themean absolute errors (MAEs) on forces (F)
and charges (q) are shown for CACE-LR models. Both panels display the model
performance as a function of training set size (N) for each configuration type.
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B-features and utilized Ewald summation with σ = 1Å and a k-point
cutoff of kc = 2π/3 (dl = 3Å).

Polar dipeptides. The dataset of polar dipeptides was taken from the
SPICE dataset developed by Eastman et al.43. The dataset contains
energies and forces for a large number of drug-like molecules,
including a complete set of dipeptides formed from 26 amino acid
variations. The subset used in Fig. 4 consists of dipeptides with one
positively charged amino acid (arg, lys, or hip) and one negatively
charged amino acid (glu or asp), resulting in a total of 12 dipeptides
(with both ways of bonding together two amino acids included, e.g.,
glu-arg or arg-glu) with 50 conformers each. We retain the conformers
of one of the 12 dipeptides as a test set and 10% of the remaining
structures as a validation set. Borneffective charges are not available in
SPICE and so were calculated with the same functional (ωB97M-
D3BJ64,65) in PySCF66 version 2.8.0 with version 0.1.0 of the properties
module using the smaller Def2SVP basis67.

Table 4 shows the RMSEperformanceof bothCACE-LR andCACE-
SR in determining the energies and forces of these dipeptides. CACE-
LR provides slightly better forces and errors than CACE-SR as well as
better generalizability to the conformers of the unseen dipeptide (glu-
arg). For the CACEmodel, we used rcut = 4.0 Å, 6 trainable Bessel radial
functions, c = 12, ‘max = 4, νmax = 3, one message passing layer (T = 1),
and different embeddings of sender and receiver nodes with
Nembedding = 4. For LES, we used σ = 1.5Å and the long-range energy
from Eq. (2) was computed in real space as the configurations are with
aperiodic conditions.

Figure 9 a and b compare LES charges to different partial
charges derived from DFT on the validation set, including MBIS
charges, Mulliken charges, and Hirshfeld charges. MBIS charges
are taken from SPICE while Mulliken charges derived from meta-
Löwdin atomic orbitals and Hirshfeld charges were calculated in
PySCF in a smaller Def2SVP basis. As is seen, although there is a
good correlation between all partial charges, the agreement is
purely qualitative. Nevertheless, all partial charges show good
agreement with the DFT dipoles and quadrupoles (Fig. 9c, d).

Additionally, Fig. 10 shows the performance of CACE-LR in pre-
dicting dipoles andquadrupoles on the 55-configurationvalidation set.
As is seen performance on the validation set is similar to that on the
holdout test set (Fig. 4).

4G-HDNNP dataset. The four datasets (C10H2=C10H
+
3 , Ag+ =�

3 ,
Na8=9Cl

+
8 , and Au2 − MgO(001)) are from ref. 12.

For C10H2=C10H
+
3 , we used rcut = 4.23 Å (8 Bohr) which is the same

as the cutoff in ref. 12, 6 Bessel radial functions, c = 8, ‘max = 3, νmax = 3,

Table 4 | Performance of Cartesian atomic cluster expansion
(CACE) short-range (CACE-SR) and CACE long-range (CACE-
LR) on the validation and test sets of the 12 polar dipeptides

CACE-SR CACE-LR CACE-SR CACE-LR
Val Val Test Test

E 1.97 1.29 2.35 1.88

F 58.82 53.15 72.43 61.13

Errors are reported via root mean square error (RMSE) in meV/atom for energy (E) and in meV/Å
for forces (F).

Fig. 9 | Comparison of latent Ewald summation (LES) and density functional
theory (DFT) charges, molecular dipole and quadrupole moments.
a Comparison of minimal basis iterative shareholder (MBIS) charges to Mulliken,
Hirshfeld, and LES charges on the dipeptide validation set. b Matrix of Pearson R2

correlation (lower triangular) and mean absolute error (MAE) (upper triangular)

between different partial charges. c The predicted dipole components computed
from different partial charges (μ=

PN
i = 1 qiri) compared to the DFT dipole com-

ponents in SPICE43. d The predicted traceless quadrupole components computed
from the MBIS charges (Q=

PN
i = 1 qiri � ri) compared to the DFT quadrupole

components in SPICE.
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Nembedding = 2, no message passing, 1-dimensional hidden variable,
σ = 1Å, and kc =π (dl = 2Å).

For Ag+ =�
3 , we used rcut = 5.29Å (10 Bohr), 6 Bessel radial func-

tions, c = 8, ‘max = 3, νmax = 3, Nembedding = 1, no message passing, total
charge state embedding, and no long-range component.

For Na8=9Cl
+
8 , we used rcut = 5.29Å (10 Bohr), 6 Bessel radial

functions, c = 8, ‘max = 3, νmax = 3, Nembedding = 2, no message passing,
1-dimensional hidden variable, σ = 1.5Å, and kc = 2π/3 (dl = 3Å).

For Au2-MgO(001), we used rcut = 5.5Å, 6 Bessel radial functions,
c = 12, ‘max = 3, νmax = 3, Nembedding = 4, no message passing,
1-dimensional hidden variable, σ = 1Å, and kc =π (dl = 2Å).

Electrolyte/solid interfaces. The Pt(111)/KF(aq) interface dataset from
ref. 49 was computed at the PBE-D3 level of theory, and it contains 4687
configurations covering bulk KF/water electrolytes, KF/water
electrolyte-vapor interfaces, and KF/water electrolyte-Pt(111) interfaces.

We used a random train/valid/test split of 3318/369/1000 con-
figurations for training the CACE-SR and CACE-LR models. The CACE-
SR model uses rcut = 5.5Å, 6 Bessel radial functions, c = 12, ‘max = 3,
νmax = 3, Nembedding = 5, and no message passing. The LR model uses a
one-dimensional hidden variable, σ = 1Å, and kc =π (dl = 2Å).

The TiO2(101)/NaCl+NaOH+HCl(aq) dataset from ref. 50 contains
a total of 30103 configurations and spans a comprehensive range of

Fig. 10 | Results on the dipeptide validation set. a The predicted charges from
latent Ewald summation (LES) compared to minimal basis iterative stockholder (MBIS)
charges in SPICE43 on the validation set. b The predicted dipole components computed
from the LES charges (μ=

PN
i= 1 qiri) compared to the density functional theory (DFT)

dipole components in SPICE on the validation set. c The predicted traceless quadrupole

components computed from the LES charges (Q=
PN

i = 1 qiri � ri) compared to theDFT
quadrupole components in SPICE on the validation set. d The predicted diagonal born
effective charge (BEC, Z *

αα =∂μα=∂rα) components compared to BECs calculated with
the ωB97M-D3BJ DFT functional in the Def2SVP basis on the validation set. e The
comparison for the off-diagonal BEC components (Z *

αβ =∂μα=∂rβ) on the validation set.
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gas phase water, bulk solutions, and TiO2, and interfacial configura-
tions. The dataset was computed at the SCAN DFT level of theory and
was collected through an active learning approach.

We used a random train/valid/test split of 24393/2710/3000
configurations for training the CACE-SR and CACE-LR models. The
CACE-SR model uses rcut = 5.5Å, 6 Bessel radial functions, c = 12,
‘max = 3, νmax = 3,Nembedding = 5, and nomessage passing. The LRmodel
uses a one-dimensional hidden variable, σ = 1Å, and kc =π (dl = 2Å).

To perform the MD simulation of the TiO2(101)/NaCl(aq) system,
we used the same system setup as ref. 50: The periodic system, illu-
strated in Fig. 6, consisting of a five-layer (3 × 9) anatase (101) slab (540
TiO2 units) in contact with a 67Å thick layer of aqueous electrolyte
(2376 water molecules and 18 NaCl ion pairs). We used NVT ensemble
at 600K with the Nose-Hoover thermostat. The timestep was set to
1 fs, and we modified the hydrogen mass to 10. The total length
was 5 ns.

Interphase of LiCl-GaF3. To generate the training dataset, we used
Bayesian force fields implemented in the Flare package68 to sample
the atomic configurations with on-the-fly (OTF)MD simulations of the
interface structures of LiCl(001)/GaF3(001), which were generated
with the CoherentInterfaceBuilder in pymatgen package69. The
DFT calculation was called when the uncertainty threshold is higher
than std_tolerance_factor=-0.04 in Flare. OTF-MD in the NVT
ensemble was initiated from each strained configuration by heating
from 0 K to the target temperatures (T = 600/1200K). The DFT cal-
culations were performed with VASP in the generalized gradient
approximation (GGA) with PBE functional70, using a k-point mesh of
1000 per reciprocal atom and a plane-wave energy cutoff of 520 eV.
The calculations were converged to 10−6 eV in total energy and the
DFT-D3 method of Grimme was used to include Van der Waals
corrections65. In total, 3339 DFT-calculated atomic configurations
were collected and split into training/validation/test sets with a
ratio of 8:1:1.

For the CACE representation, we used 6 Bessel radial functions
with c = 8, ‘max = 3, νmax = 3, Nembedding = 3, one message passing, and a
cutoff of rcut = 5.5Å. For the long-range component, we used a one-
dimensional q, σ = 1Å, and a maximum cutoff of kc =π (dl = 2Å) in the
Ewald summation.

The atomic-resolved force uncertainty was calculated as the root
sum of variances along the Cartesian coordinates:
σðFÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðFxÞ+ σ2ðFyÞ+ σ2ðFzÞ

q
. For each directional component, the

variance σ2(Fi) was computed across the ensemble of N = 4 models
using σ2ðFiÞ= 1

N

PN
j = 1 ðFj

i � �FiÞ
2
, where Fj

i represents the force predic-
tion from the j-th model in direction i ∈ {x, y, z}, and �Fi denotes the
ensemble-averaged force in that direction.

Implementation
We implemented the LES method using PyTorch, and the code is
available in https://github.com/BingqingCheng/cace. The raw pre-
dicted hidden variables should be scaled by a factor of 1/9.48933 to
obtain the LES charges for e.g. dipole moment prediction, due to the
internal normalization factor used (1/2ϵ0 = 1).

In the current work, we have optimized the LES part of the code in
the CACE repository: we now first add up the short-range and the long-
range energies using a FeatureAdd module and then apply the
autograd of the total energy with respect to atomic positions to obtain
forces. For comparison, the previous implementation uses two auto-
grad operations to obtain short-range and long-range forces sepa-
rately and then sums up the forces24. The elimination of one autograd
operation significantly reduces computational cost. Additionally, we
made the current CACE model fully compatible with TorchScript,
facilitating future deployment and integration in various platforms.

To test the inference speed of the updated implementation, we
benchmarked on water MLIPs with the samemodel parameters as our

previous benchmark24. Namely, the CACE model uses rcut = 5.5Å, 6
Bessel radial functions, c = 12, ‘max = 3, νmax = 3, Nembedding = 3, and no
message passing (T =0). The LR part uses a one-dimensional hidden
variable, σ = 1Å, and kc =π (dl = 2Å). The MLIPs are trained on the
liquid water dataset from ref. 71. Figure 11 compares the speed of the
two MLIP models (SR and LR) for MD simulations of liquid water on a
single NVIDIA L40S GPU with 48 GB of memory. Figure 11 shows
that the computational overhead of including long-range interactions
is minimal using the updated implementation (red curve), and
the performance becomes comparable to that of the SR model
(blue curve). Moreover, all models show favorable scaling. The SR
model here supports simulations with up to approximately 40,000
atoms on a single GPU, while the LR model supports up to around
13,000 atoms.

Notes on charge equilibration. Although in all the examples we tes-
ted, charge equilibration was not needed, we want to note that it is
possible to fix the total charge while avoiding the charge equilibration.
One possibility is to add the following penalty term to the total
potential energy E:

Eλ = λ Q�
XN
i= 1

qi

 !2

, ð5Þ

where the positive constant λ can be understood as a Lagrangian
multiplier, andQ is the referenced total charge of the system. Although
we do not use this scheme in any of the examples, we provide it here
for future use cases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training sets, training scripts, MD input files, and trained CACE
potentials are available at https://github.com/BingqingCheng/cace-lr-fit;
see ref. 72. Source data for all figures are provided with this
paper. Source data are provided with this paper.

Fig. 11 | Computational performance benchmarks ofmolecular dynamics (MD)
simulations. Timing of MD simulations of bulk liquid water for different system
sizes (N) using different Cartesian atomic cluster expansion (CACE)models with no
message passing (T =0) was performed on an NVIDIA L40S GPU. SR and LR denote
short-range and long-range models. Both axes are shown on a logarithmic scale.
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Code availability
The CACE package is publicly available at https://github.com/
BingqingCheng/cace; see ref. 73. The code is released under the MIT
license. The long-range method is implemented as an Ewald module.
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