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Abstract
Magnetotropic susceptibility is the thermodynamic coefficient that maps the curvature of free
energy with respect to an applied magnetic field orientation, providing a means to quantify the
magnetic anisotropy of a crystal. In this context, non-linear magnetic torque behavior has been
reported in FePS3, motivating the investigation of similar non-linear characteristics in its
magnetotropic susceptibility. In this work, we derive the non-linear magnetotropic susceptibility
expressions for FePS3 in both ac∗-and bc∗-planes using complementary approaches: by taking
the first derivative of torque and through the formal calculation of the magnetotropic
susceptibility. Higher-order terms in the magnetization are included, and the final equations are
obtained by applying symmetry constraints imposed by the C2h point group of the material. We
analyze the behavior of the resulting non-linear expressions and identify the contributions of
each parameter. Our theoretical results show good agreement with preliminary, unpublished
experimental data, offering meaningful guidance for ongoing and future experimental work.

Keywords: magnetotropic, susceptibilities, FePS3

1. Introduction

Two-dimensional (2D) materials have attracted significant
attention due to the emergence of novel physical phenomena
driven by their reduced dimensionality. Among these, mag-
netism in 2D has been a ‘talk of the town’ since the discov-
ery of graphene, offering prospects for next-generation spin-
tronics, magnonics, and quantum devices [1–4]. In particular,
the study of 2D materials with magnetic ordering is expected
to facilitate the development of spintronic devices and water
purification for clean water research. A key subclass of these
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materials is the layered transition metal (TM) trichalcogen-
ides (TMPS3, TM = Fe, Co, Mn, V, Zn, or Ni), where weak
van der Waals bonding between layers permits mechanical or
chemical exfoliation down tomonolayers, enabling the explor-
ation of true 2D magnetic behavior [1, 5–12]. These com-
pounds’ honeycomb structure comprises TM atoms/ions, each
connected to six trigonal-symmetric sulfur atoms. A dumb-
bell structure is created when the sulfur atoms connect with
two phosphorus atoms, one above and one below the honey-
comb structure. Although all these compounds are isostruc-
tural and the magnetic lattice has the 2D honeycomb structure
[13], their spin dimensionalities differ. For example, for FePS3

andMnPS3, the magnetization axis is perpendicular to the lay-
ers, while for NiPS3 it lies in the plane of the layers in the
ordered state. The spin dimensionality of FePS3, NiPS3, and
MnPS3 corresponds to the Ising type, XY (or XXZ) type, and
Heisenberg-type AFM systems, respectively [12]. In the para-
magnetic regime, while the susceptibility of MnPS3 is iso-
tropic and that of NiPS3 is weakly anisotropic, FePS3 exhibits

1 © 2025 The Author(s). Published by IOP Publishing Ltd
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highly anisotropic susceptibility. In this regard, new tools and
techniques could pave the way for an in-depth understanding
of these materials for fundamental physics and advancing their
potential use in spintronic applications.

FePS3 offers an interesting platform for symmetry-driven
physics. For example, a recently reported metastable mag-
netization state induced by nonlinear terahertz spectroscopy
reveals a change in the free energy landscape. The symmet-
ric free energy response in the absence of a specific phonon
mode excitation changes into an asymmetric shape after the
phonon mode is excited [14]. This signals towards the emer-
gent states induced by nonlinear physics having ties with the
structural properties and hence demands the mapping of free
energy curvature in the nonlinear regime.

Recent torquemagnetometry studies show non-linear beha-
vior in both angle and magnetic field dependent torque sig-
nal. The theoretical calculations successfully captured the key
features of the experimental torque behavior, considering non-
linearity in the off-diagonal elements of the magnetic suscept-
ibility tensor [15]. However, the systematic inclusion of non-
linearity in magnetization and susceptibility and its effect on
the free energy landscape are interesting areas to explore.

In this paper, a recently reported technique, resonant torsion
magnetometry [16], is used to study the Ising antiferromagnet
FePS3. This technique measures the magnetotropic susceptib-
ility, a thermodynamics coefficient equivalent to the curvature
of free energy with respect to applied magnetic field orienta-
tion (k= ∂2F

∂θ2 ). This technique has been employed for RuCl3
in search of a quantum spin liquid state [17]. The complic-
ated interactions in RuCl3, such as Kitaev, Gamma, and Ising
exchange, make it hard to explicitly study the AFM Ising
interaction and the role of monoclinic structure in magnetic
properties. FePS3 is isostructural with RuCl3 and provides
an interesting platform for exploring the magnetic behavior
entangled with structural properties, thanks to its strong mag-
netoelastic coupling [18–20]. By calculating the magneto-
tropic susceptibility [21], we provide some results report-
ing how this quantity can be derived from the first derivat-
ive of torque, and where considering the correct magneto-
tropic equation from [21] is inevitable. We study how the
magnetotropic coefficient (k) behaves under linear and non-
linear regimes by simplifying the magnetotropic equations
using symmetry and group theoretical considerations arising
from the monoclinic crystal structure and the C2h symmetry
of FePS3.

2. Results and discussion

Figure 1 shows the positions of the Fe atoms in the crys-
tal structure for three different planes with the corresponding
angle definitions following the same arrangement as given in
[15], where the ab-plane corresponds to the hard plane while
the c∗-axis corresponds to the easy axis perpendicular to the
plane. The c index refers to the c∗-axis and not to the crystal-
lographic c-axis unless otherwise stated.

To understand the implications of structure on the magnetic
properties, we use the magnetotropic susceptibility, which is
proportional to the magnetic susceptibility (χ). It is the second
derivative of free energy (F), or first derivative of torque, with
respect to magnetic field angle k= ∂τ/∂θ = ∂2F/∂θ2 [21]
where θ is the angle between the magnetic field and c∗ -axis.
It is defined in [21] as,

k= (n×B) · (n×M)− (n×B) ·χ (B) · (n×B) (1)

where n is the axis of rotation, B is the external magnetic
field [16, 21], M is the magnetization, and χ is the magnetic
susceptibility. The magnetization and magnetic susceptibility
are related via Mi = χ ijBj or χ ij =

∂Mi
∂Bj

where i, j, k, are the
coordinate axes defined when picking a frame of reference. In
our case, these are the a-, b-, and c∗-axes.

In the linear regime, the magnetization (M) is linearly pro-
portional to the magnetic field (B), while the linear magnetic
susceptibility (χ 0

ij) remains independent of the magnetic field
(B). We can use equation (1) to obtain the linear magnetotropic
susceptibility equations, only considering the diagonal mag-
netic susceptibility tensor, in the principal crystal directions
for magnetic susceptibility. Alternatively, magnetotropic sus-
ceptibility is also defined as the slope of torque (k= ∂τ/∂θ).
So, we can arrive at the magnetotropic susceptibility equations
by differentiating the equations for torque from [15],

kac (θ) = (χ cc−χ aa)B
2cos(2θ) for ϕ = 0◦ (2a)

kbc (θ) = (χ cc−χ bb)B
2cos(2θ) for ϕ = 90◦ (2b)

where χ aa, χ bb, χ cc are considered as the principal mag-
netic susceptibilities. The calculated curve from the above two
equations has the form shown in figure 2(a). where a clear
cos(2θ) dependence indicates a linear response regime where
k∝ B2 is evident from figure 2(b). We do not show kbc curves
since kbc ≈ kac considering isotropic behavior in the ab-plane
from reported SQUID measurements [19].

The plots in figure 2 resemble those of magnetic torque
[15], with the peaks occurring along the principal axes rather
than at 45˚, a direct consequence of measuring the slope of
the torque. This approach yields maximum amplitude along
the principal crystal axes, at least in the linear regime, unlike
conventional torque measurements, which vanish along these
directions.

In [15], the off-diagonal components of the magnetic sus-
ceptibility tensor are taken as non-linear where χ ca = χ 0

caB
2
c

and χ ac = χ 0
acB

2
a, which modifies the torque in the ac-plane

as,

τac =
1
2
(χ cc−χ aa)B

2sin(2θ)+
1
4

(
χ 0
ca−χ 0

ac

)
B4sin2 (2θ) .

The theoretically calculated curves from this equation
nicely reconcile with the experimentally measured torque
curves as reported in [15]. We can arrive at an equation for
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Figure 1. An overview of the crystal structure of FePS3 with only Fe atoms by looking from (a) b-axis, (b) c∗-axis (perpendicular to the
ab-plane), and (c) a-axis (arrows not to scale).

Figure 2. (a) Plot of k vs θ, (b) k vs magnetic field B where ∆χ = 0.004 emu ·mol−1 ·Oe−1. Data for χ taken from [15].

magnetotropic susceptibility by differentiation of the above
equation,

k(τ)ac =
∂τac
∂θ

= (χ cc−χ aa)B
2cos(2θ)

+
1
2

(
χ 0
ca−χ 0

ac

)
B4 sin(4θ) . (3)

The obtained calculated curve from equation (3) is shown in
figure 3(a), which is compared with the available experimental
curve shown in figure 3(b) [22]. Equation (3) cannot produce
the features shown in figure 3(b) (see also figure A1 in the
appendix). There is an apparent difference between the non-
linear curve obtained from torque and experimental results.
Hence, we conduct a systematic derivation for the non-linear
magnetotropic equation using equation (1). In what follows,
we study the behavior of k as the off-diagonal components are
introduced in the ac∗-plane (same as the ac-plane), i.e. consid-
ering that the a- and c∗- axes may not be the principal axes for
magnetic susceptibility. Furthermore, we derive the form of
the non-linear term by considering the expansion of the mag-
netization in terms of the magnetic field. Before proceeding
with the formal expansion of the magnetization and magnetic
susceptibility, we consider a full magnetic susceptibility tensor

χ in its complete form in the linear regime, represented as:

χ =

 χ aa χ ab χ ac

χ ba χ bb χ bc

χ ca χ cb χ cc



where we remind the reader that the c index corresponds to the
easy c∗-axis and not to the crystallographic c-axis.

To properly consider the susceptibility tensor that respects
the symmetry of the crystal, we resort to the crystal structure
of FePS3, which has a broken mirror symmetry in the ac∗-
plane, shown in figure 1(a), which comes from the monoclinic
structure of the crystal. Taking account of this symmetry, we
are left with the following,

χ ′ =

 χ aa 0 χ ac

0 χ bb 0
χ ca 0 χ cc

 .

Solving equation (1) for this complete magnetic susceptib-
ility tensor and the ac∗-plane of rotation (i.e. n= b) where the
magnetic field vector is confined to the ac-plane of rotation

3
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Figure 3. (a) Sample curve of k(τ)ac (equation (3)) where C= 1
2

(
χ 0
ca−χ 0

ac

)
= 0.2∆χ at B = 4 T and ∆χ = 0.004 emu ·mol−1 ·Oe−1 (b)

Experimentally measured curve at T = 105 K and B = 10 T [22].

(B⃗=
(
Ba 0 Bc

)
) gives,

kb (θ, B) = (χ cc−χ aa)B
2 cos(2θ)+ (χ ac+χ ca)B

2 sin(2θ) .
(4)

Plotting the above equation provides clear information on
the role of off-diagonal magnetic susceptibility elements. The
trend has been explored for different values of the diagonal
(∆χ = χ cc−χ aa) and off-diagonal susceptibilities (χ ac+
χ ca = 2χ ca), which appear as the coefficients of the cos(2θ)
and sin(2θ) terms in the above equation, respectively.

Figure 4 shows that the curve’s peak appears along the prin-
cipal axis (dark blue curve) in the absence of the magnetic
susceptibility tensor’s off-diagonal elements (2χ ca = 0). The
peak gradually shifts along the θ-axis as the contributions from
the off-diagonal elements are switched on and increased pro-
gressively to half, equal, three halves, twice, and five halves
the value of the amplitude (∆χ ) as shown in figure 4, with a
red dashed arrow as a guide to the eye. This is what is expec-
ted from the sin(2θ) term of equation (3) that causes a peak
shift due to the non-zero off-diagonal susceptibility elements
while also contributing towards the magnitude of the peaks.
Hence, we identify the peak shift as a marker of deviation from
the principal axis configuration. This shift arises from the off-
diagonal susceptibility elements when the experimental geo-
metry is misaligned with the true principal axes.

So far, we have only considered the linear response regime
where the magnetization grows linearly with the applied mag-
netic field (Mi = χ ijBj).We now consider the natural extension
to the linear regime by adding terms proportional to higher
powers of B in the magnetization. This will give us the higher-
order term in the magnetotropic equation. We start with the
expansion of magnetization to higher-order terms,

Mi = m(1)
ij Bj+m(2)

ijk BjBk+m(3)
ijklBjBkBl+ . . . .

Figure 4. A plot of k vs. θ considering the full linear magnetic
susceptibility tensor in the ac-plane of rotation for the sum of the
off-diagonal susceptibility equal to 0, 1

2∆χ , ∆χ , 3
2∆χ , 2∆χ ,

5
2∆χ in the units of emu ·mol−1 ·Oe−1 at B = 4 T. The Red dashed
arrow is a guide to the eye.

Since the crystal is centrosymmetric, we require thatm(2)
ijk =

0. Whence,

Mi = m(1)
ij Bj+m(3)

ijklBjBkBl.

We only retain two terms. It can also be shown that m(1)

is the linear magnetic susceptibility tensor χ (0) and m(3)
ijkl =

1
3!χ

(2)
ijkl is a fourth rank tensor having 81 components, where

χ
(2)
ijkl =

(
∂3Mi

∂Bj∂Bk∂Bl

)∣∣∣
B=0

.

The fourth rank tensorm(3)
ijkl can be taken as symmetric with

respect to any permutation of j, k, and l due to its contraction
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withBjBkBl. Furthermore, using energy considerations, we can

show thatm(3)
ijkl is also symmetric in the exchange of the i index.

Hence, we may take m(3)
ijkl to be symmetric in all four indices,

m(3)
ijkl = m(3)

jikl = m(3)
jkil = m(3)

kilj = . . . .

This reduces the number of independent components to 15.
Due to the Cb2 rotation symmetry, only even combinations of
b indices are allowed, further reducing the number of inde-
pendent components to 9. This exhausts all the constraints
enforced by the crystal symmetry. With the expansion of M,
the equation for magnetotropic susceptibility becomes,

kn (B) = (n×B) ·
(
n×

(
M(0) +M(1)

))
− (n×B) ·

(
χ (0) +χ (1)

)
· (n×B) .

WhereM(0)
i = m(1)

ij Bj,M
(1)
i = m(3)

ijklBjBkBl, χ
(0)
µν = m(1)

µν , and

χ
(1)
µν = 3m(3)

µνklBkBl. In the last case, we have used χµν =
∂Mµ

∂Bν

from which we have χ (1)
µν =

∂M(1)
µ

∂Bν
. After separating the linear

and non-linear terms, we arrive at,

kn (B) = k(0)n (B)+ k(1)n (B) . (5)

Where,

k(0)n (B) = (n×B) ·
(
n×

(
M(0)

))
− (n×B) ·

(
χ (0)

)
· (n×B) (6a)

k(1)n (B) = (n×B) ·
(
n×

(
M(1)

))
− (n×B) ·

(
χ (1)

)
· (n×B) . (6b)

Elaborating equation (6b) in the ac∗-plane (or ac-plane)
results in,

k(1)ac (B) =
(
10m(3)

aaac− 6m(3)
ccca

)
B3
aBc

+
(
18m(3)

ccaa− 3m(3)
aaaa− 3m(3)

cccc

)
B2
aB

2
c

+
(
10m(3)

ccca− 6m(3)
aaac

)
B3
cBa+

(
m(3)
aaaa− 3m(3)

ccaa

)
B4
a

+
(
m(3)
cccc− 3m(3)

ccaa

)
B4
c .

And the full magnetotropic equation is of the form,

kac (B) = (χ cc−χ aa)B
2 cos(2θ)+ (χ ac+χ ca)B

2 sin(2θ)

+CacB
4sin3 (θ)cos(θ)+DacB

4sin2 (θ)cos2 (θ)

+EacB
4cos3 (θ)sin(θ)+FacB

4sin4 (θ)

+GacB
4cos4 (θ) (7)

where Cac = 10m(3)
aaac− 6m(3)

ccca , Dac = 18m(3)
ccaa− 3m(3)

aaaa−
3m(3)

cccc,Eac = 10m(3)
ccca− 6m(3)

aaac , Fac = m(3)
aaaa− 3m(3)

ccaa , Gac =

m(3)
cccc− 3m(3)

ccaa. We see from equation (7) that Dac =
−3(Fac+Gac).

In the bc∗-plane, we get the same result as the ac∗-plane
with index a replaced by index b. Hence,

k(1)bc (B) =
(
10m(3)

bbbc− 6m(3)
cccb

)
B3
bBc

+
(
18m(3)

ccbb− 3m(3)
bbbb− 3m(3)

cccc

)
B2
bB

2
c

+
(
10m(3)

cccb− 6m(3)
bbbc

)
B3
cBb+

(
m(3)
bbbb− 3m(3)

ccbb

)
B4
b

+
(
m(3)
cccc− 3m(3)

ccbb

)
B4
c .

However, only an even number of b indices are allowed.
Causing the B3

cBb and B
3
bBc terms to vanish,

k(1)bc (B) =
(
18m(3)

ccbb− 3m(3)
bbbb− 3m(3)

cccc

)
B2
bB

2
c

+
(
m(3)
bbbb− 3m(3)

ccbb

)
B4
b+

(
m(3)
cccc− 3m(3)

ccbb

)
B4
c .

And the complete equation in the bc∗-plane becomes,

kbc (B) = (χ cc−χ bb)B
2 cos(2θ)+DbcB

4sin2 (θ)cos2 (θ)

+FbcB
4sin4 (θ)+GbcB

4cos4 (θ) . (8)

Where, Dbc = 18m(3)
ccbb− 3m(3)

bbbb− 3m(3)
cccc, Fbc = m(3)

bbbb−
3m(3)

ccbb, Gbc = m(3)
cccc− 3m(3)

ccbb, Dbc =−3(Fbc+Gbc).
An alternate way of simplifying the magnetotropic

equations k(1)ac (B) and k(1)bc (B) is using the symmetry proper-
ties ofC2h and its irreducible representations. The components
of the total magnetic field (B⃗) reduce inside a FePS3 crystal
and transform in a way that respects crystal symmetry, as
shown in table A1 (appendix).

In the C2h group, Bb transforms as Ag, whereas Ba and Bc
transform as Bg. The multiplication table for these irreducible
representations is shown in table A2 (appendix).

We know that we have kn (B) on the left side of the
equations, which has the dimension of energy, which is Ag in
the language of irreducible representation. Hence, the terms
on the right-hand side should have an identical representa-
tion required by the dimensional consistency of equations. The
magnetic field (B) is an axial vector that is even under inver-
sion. Due to this, the multiplication table (table A2) shows that
the terms B3

bBc and B
3
cBa will give an inconsistent representa-

tion (i.e. Bg) and hence are not allowed by the symmetry.
Plots of kbc (equation (8)) are presented in figure 5(a). We

see that Gbc characterizes the magnitude and sign of the cent-
ral portion (easy axis), while Fbc characterizes the edges (hard
plane). The wings are produced due to the Dbc term. There is
a point of intersection between the curves at±30˚ and±150˚.
A comparison with the linear curves (figure 2) shows that the
period is still 180˚ with the curves being symmetrical about 0˚.
The inclusion of the non-linear terms results in the manifesta-
tion of additional peaks or wings not found in the linear case.
The same remarks could be repeated in the case of kac due to
the formal similarity of the coefficients, i.e., Dac and Dbc, Fac
and Fbc, Gac, and Gbc. Figure A2 (appendix) shows the curve
behavior for different values of coefficients Fbc and Gbc.

In figure 5(b), we have plotted equation (7) where we have
chosen χ ac+χ ca = 0 since we wish to capture the non-linear
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Figure 5. Plots of k vs θ for B = 10 T, ∆χ = 0.004 emu ·mol−1 ·Oe−1. (a) Variation of kbc at Fbc = 0.025∆χ as Gbc is changed to see its
effect on kbc. (b) Variation of kac with all coefficients being equal.

behavior. We can see that the curve becomes asymmetric at
about 0˚. Variations due to Cac and Eac can be seen explicitly
in figure A3. Figure A3 (a) shows the dependence of kac on
theCac term. The peaks at 0˚ and±180˚ remain fixed, whereas
the peaks at ±90˚ shift to the left, gradually approaching 60˚
and −120˚. The left wing progressively moves towards −60˚
while increasing in magnitude, whereas the right wing moves
towards 0˚ while shrinking. In figure A3 (b), we look at the Eac
term. Here, the ±90˚ peaks are fixed while the central peak
shifts to the right, gradually approaching 30˚. The left wing
moves towards −30˚ while still increasing in magnitude, and
the right wing moves towards 90˚ while decreasing in mag-
nitude.

Figure A4 shows the behavior of k if we consider the non-
linear terms in isolation. From figure A4(a), we see the beha-
vior of C; the region around 0˚ has a plateau, while the peaks
occur at±60˚ and±120˚. In figures A4(b) and (d), the contri-
bution of F and G to the region around the peaks at ±90˚ and
0˚, respectively, can be seen. Figure A4(c) shows the behavior
of the D term. It has a period of 90˚ compared with the rest
of the terms, which, on the other hand, show a period of 180˚.
In the term involving E plotted in figure A4e, the plateau is
around 90˚ while the peaks appear at ±30˚ and ±150˚.

Figure 6 presents the experimental magnetotropic suscept-
ibility curve (black) measured at T = 105 K and B= 10 T [22],
alongside the theoretical curve computed from our non-linear
expression (equation (7)). The values of the coefficients used
in the theoretical simulation are listed in table 1. Notably, the
experimental curve exhibits key features predicted by the the-
oretical model, including the characteristic angular dependen-
cies introduced by the non-linear terms. This qualitative agree-
ment supports the validity of our symmetry-based approach. It
suggests that the higher-order contributions we include play a
meaningful role in the physical behavior of the system. While
further experimental validation is needed, primarily through
systematic measurements across different field strengths and

Figure 6. Comparison of the experimental [22] and theoretical
curves (equation (7)) at T= 105K and B= 10T.

Table 1. Fitting coefficients used in the theoretical curve in figure 6.

Co-efficient Equivalent susceptibility Value used

∆χ χ cc−χ aa − 0.016
2χ ca Off-diagonal 0.003
C 10m(3)

aaac− 6m(3)
ccca 1.08× 10−4

E 10m(3)
ccca− 6m(3)

aaac −6.19× 10−5

F m(3)
aaaa− 3m(3)

ccaa −7.28× 10−6

G m(3)
cccc− 3m(3)

ccaa 8.88× 10−5

temperatures, the observed alignment between theory and
experiment offers promising initial confirmation and high-
lights the relevance of our phenomenological framework. We
note that multiple parameter sets can produce similar fits if the

6
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linear terms are included as free parameters. To ensure stabil-
ity, the linear terms should be fixed using data from the linear-
response regime before fitting the nonlinear terms. A full spe-
cification of the fitting procedure is left for future work.

3. Conclusion

We have systematically calculated magnetotropic susceptib-
ility using equations from the first derivative of torque [15]
and proper derivation from the magnetotropic susceptibility
equation [21]. The linear magnetotropic susceptibility
equations agree with the linear torque curve except for a
peak appearance at the principal crystallographic axis expec-
ted from the magnetotropic equation. In the linear regime, it
was observed that the off-diagonal components of the mag-
netic susceptibility primarily result in a shift of the peak pos-
ition, without significantly altering the overall shape of the
curve.

The non-linear magnetotropic equation derived from the
first derivative of torque exhibits behavior that deviates from
the preliminary experimental curve. To address this dis-
crepancy, we performed a more systematic derivation of
the non-linear expression by expanding the magnetization
to include higher-order terms. The isolated effect of each
coefficient in the non-linear expression reveals features such
as additional peaks and asymmetric shifts in the angular
response. When compared with preliminary experimental res-
ults, the overall agreement with our phenomenological model
is encouraging, indicating that the approach may be applic-
able to other systems exhibiting similar non-linear magnetic
behavior.

We expect materials exhibiting magnetic exchange frustra-
tion, or more generally, systems with competing interactions,
to show non-linear magnetotropic behavior. From an exper-
imental standpoint, non-linear features may be more prom-
inently detected in the temperature regimes where the linear
magnetic susceptibilities tend to cancel each other. For FePS3,
this condition is more likely to be met in the vicinity of the
magnetic phase transition, particularly around T ≈ 110 K,
making that temperature range promising for probing non-
linear magnetotropic effects. In this regime, high magnetic
fields on the order of 10 T can also induce non-linear features,
which we expect to appear in both magnetotropic susceptibil-
ity and angle-dependent torque measurements. Materials with
low magnetic anisotropy may also meet the cancellation con-
ditionmore readily, but theymay have smaller non-linear coef-
ficients, which could make detection more challenging. Thus,
the relative suitability of low- and high-anisotropy systems
remains an open question. Finally, we note that non-linear

effects of the type discussed here may also arise in quadru-
polar magnetotropic susceptibility measurements, where the
free energy varies as the fourth power of the magnetic field.

4. Methods

The studies were performed by deriving the magnetotropic
equations using torque equations [15] as a starting point. The
same equations were counter-checked with equation (2) of
[21]. The obtained equations were simulated using MATLAB
and Mathematica. The magnetic susceptibility values were
taken from [15].
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Appendix

Figure A1. Variation of k(τ)ac (equation (3)) where C= 1
2

(
χ 0
ca−χ 0

ac

)
equal to (a) 0, (b) 0.5 ∗∆χ and (c) 0.8 ∗∆χ at B = 4 T where

∆χ = 0.004 emu ·mol−1 ·Oe−1.

Figure A2. (a), (b) Angular spreads of kbc for B = 10 T, ∆χ = 0.004 emu ·mol−1 ·Oe−1 (c) Response of kbc with increasing field at
various angles.

Figure A3. Plots of kac for B = 10 T, ∆χ = 0.004 emu ·mol−1 ·Oe−1. (a) Variation due to the Cac term (b) Variation due to the Eac term
(c) Response of kac with increasing field at various angles.
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Figure A4. Plots of k vs. θ considering the terms in isolation.
∆χ = 0.004 emu · mol−1 ·Oe−1 and B= 10 T for all the curves.

Table A1. A list of irreducible representations of the C2h group.

C2h B⃗ in C2h E C2 i σh
Ag Bb 1 1 1 1
Bg Ba and Bc 1 −1 1 −1
Au — 1 1 −1 −1
Bu — 1 −1 −1 1

Table A2. Multiplication table of C2h group irreducible
representation.

Ag Bg Au Bu
Ag Ag Bg Au Bu
Bg Bg Ag Bu Au
Au Au Bu Ag Bg
Bu Bu Au Bg Ag
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