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ABSTRACT

Context. γ Dor stars are ideal targets for studies of the innermost dynamical properties of stars, due to their rich asteroseismic spec-
trum of gravity modes. Integrating internal magnetism to the picture appears as the next milestone of detailed asteroseismic studies,
for its prime importance on stellar evolution. The inertial dip in prograde dipole modes period-spacing pattern of γ Dors stands out as
a unique window on the convective core structure and dynamics. Recent studies have highlighted the dependence of the dip structure
on core density stratification, the contrast of the near-core Brunt-Väisälä frequency and rotation rate, as well as the core-to-near-core
differential rotation. In addition, the effect of envelope magnetism has been derived on low-frequency magneto-gravito-inertial waves.
Aims. We revisited the inertial dip formation including core and envelope magnetism, and explored the probing power of this feature
on dynamo-generated core fields.
Methods. We considered as a first step a toroidal magnetic field with a bi-layer (core and envelope) Alfvén frequency. This configu-
ration allowed us to revisit the coupling problem using our knowledge on both core magneto-inertial modes and envelope magneto-
gravito-inertial modes. Using this configuration, we were able to stay in an analytical framework to exhibit the magnetic effects on
the inertial dip shape and location. This configuration allowed a laboratory to be set up that moves us towards the comprehension of
magnetic effects on the dip structure.
Results. We show a shift of the inertial dip towards lower spin parameter values and a thinner dip with increasing core magnetic
field’s strength, quite similar to the signature of differential rotation. The magnetic effects become sizeable when the ratio of the mag-
netic to the Coriolis effects is high enough. We explored the potential degeneracy of the magnetic effects with differential rotation.
We studied the detectability of core magnetism, considering both observational constraints on the periods of the modes and potential
gravito-inertial mode suppression.
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1. Introduction

Magnetic fields can be considered as a ubiquitous stellar
property that plays a key role in stellar dynamics at each
evolutionary stage (Mestel 1984; Donati & Landstreet 2009;
Brun & Browning 2017). Even so, obtaining a coherent pic-
ture of magnetic stellar evolution is extremely difficult, as in
its essence it is a multi-dimensional process, comprising a
wide range of lengths, timescales, and generation mechanisms
(Maeder 2009; Mathis 2013; Aerts et al. 2019). Arriving at a
deeper understanding of the evolution of internal magnetic fields
and evaluating the relative weights of each formation and sur-
vival scenario is a major task of modern stellar physics, and
could bring invaluable inputs on a wide number of topics:
internal angular momentum transport (e.g. Eggenberger et al.
2005, 2008; Cantiello et al. 2014; Eggenberger et al. 2019;
Takahashi & Langer 2021; Moyano et al. 2023, 2024) and chem-
icals distribution (Eggenberger et al. 2010, 2022), stellar age
estimation (Keszthelyi et al. 2019, 2020), compact objects for-
mation (Heger et al. 2005; Suijs et al. 2008; Lebreton & Goupil
2014; Petit et al. 2017), and gyrochronology (Barnes 2003;
Meynet et al. 2011; Réville et al. 2016) to name a few.

Asteroseismology stands out as a unique way to probe inter-
nal magnetic fields throughout stellar evolution. The alteration
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of the frequencies (Gomes & Lopes 2020; Mathis et al. 2021;
Bugnet et al. 2021; Bugnet 2022; Li et al. 2022; Dhouib et al.
2022; Lignières et al. 2024; Rui et al. 2024) or the amplitudes
(Fuller et al. 2015; Lecoanet et al. 2017; Rui & Fuller 2023) by
the action of the Lorentz force as an additional restoring force for
the oscillations allows pieces of information to be retrieved about
the magnetic field intensity, geometry, and topology. These the-
oretical breakthroughs have led to measurements at the red giant
branch (RGB) stage of magnetic field strengths from mixed-
mode asymmetries in an intermediate field amplitude regime
(Li et al. 2022, 2023; Deheuvels et al. 2023; Hatt et al. 2024),
where the asteroseismic probes are sensitive to the H-burning
shell region (Li et al. 2022; Bhattacharya et al. 2024; Das et al.
2024). In a strong field regime, lower limits for the inter-
nal field strength have been measured from mode suppression
(García et al. 2014; Stello et al. 2016b,b). From this magnetic
revolution on the RGB, it is now up to theorists to develop seis-
mic probes sensitive to internal magnetism, at various evolution-
ary stages and for the different types of stellar regions, to obtain
a dynamic view of the evolution of stellar magnetism across the
Hertzsprung–Russell diagram.

For these analyses to be pursued, intermediate-mass main
sequence (MS) stars showing gravity-mode pulsations (here-
after g-mode pulsators) stand out as unique targets. The astero-
seismic frequency spectrum of these MS stars is very rich and
probes the inner regions of the star. In addition, they are the
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progenitors of the RGB stars for which an internal magnetic
measurement is now available (Li et al. 2022; Deheuvels et al.
2023; Li et al. 2023; Hatt et al. 2024). For g-mode pulsators, a
unique observable is the period-spacing pattern (hereafter PSP),
the period spacing between modes of consecutive radial orders
but with the same horizontal structure that varies with the period
of the modes. In the classical non-rotating asymptotic theory, the
period-spacing is known to be constant (Tassoul 1980), result-
ing in a flat horizontal line for the PSP. The analysis of the
PSP has already provided unprecedented results for the mea-
surement of rotation in the near-core region of the radiative
envelope of γ Dor stars (Van Reeth et al. 2015; Ouazzani et al.
2017; Christophe et al. 2018) and SPB stars (Pápics et al. 2017;
Pedersen et al. 2021). The PSPs of gravito-inertial (hereafter g–
i) modes, which are g-modes modified by the Coriolis accelera-
tion, show a slope whose value is linked to the rotation rate in this
precise region in which the modes reach their highest sensitivity
in a differentially rotating radiative envelope (Van Reeth et al.
2018). Combining these results to a measurement of the rota-
tion at the surface layers by means of an analysis of the p-modes
in mixed δ Scuti–γ Dor pulsators (Kurtz et al. 2014; Saio et al.
2015) or rotational spot modulation (Van Reeth et al. 2018), one
can now access near-core to surface differential rotation in the
radiative zone. Differential rotation was proven to be limited,
with a surface to near-core differential rotation ranging from
0.97 to 1.02 in the latter study. The most complete state-of-
the-art sample of γ Dor stars’ PSPs was provided by Li et al.
(2020), comprising 611 stars analysed from the Kepler mission
(Borucki et al. 2010). It contains a wide range of rotation rates
and g–i mode series of different angular degree l and azimuthal
order m, prograde Kelvin modes PSPs being the most numer-
ous, complemented by the retrograde r-modes, and marginally
other types of modes, or modes for which the classification was
inconclusive.

As PSPs of g–i modes corrected for the effect of the Coriolis
acceleration in the frame co-rotating with the near-core region
would result in a flat baseline in the standard asymptotic theory,
any deviation from this pattern can hint towards a peculiar sup-
plementary process, such as mode trapping or mode coupling.
In the former case, modulations in the PSPs were found to be a
signature of strong thermal or chemical stratification gradients in
the radiative zone (see e.g. Miglio et al. 2008; Cunha et al. 2019,
2024 in a non-rotating case and Bouabid et al. 2013 in a rotat-
ing case), and can be used as a probe of the transition region
between the convective core and the envelope (Michielsen et al.
2019; Pedersen et al. 2021). On the latter, since the seminal work
of Ouazzani et al. (2020), a dip structure in the PSP has been
proven to result from the interaction of the envelope g–i modes
with core pure inertial modes restored only by the Coriolis accel-
eration in fast-rotating pulsators.

This inertial dip has gained significant interest over the last
few years, driven by its unprecedented probing power of the con-
vective core of intermediate-mass MS stars. Its shape and loca-
tion were proven to depend on (1) the core density stratifica-
tion, (2) the near-core stratification profile, and (3) the rotation
rate of the near-core region. Each of these parameters is influ-
enced by the age and mass of the pulsator (see Ouazzani et al.
2020; Saio et al. 2021; Galoy et al. 2024, for numerical com-
putations). Tokuno & Takata (2022, hereafter TT22) provided a
first analytical understanding of the interaction, later extended
in Appendix D of Galoy et al. (2024) to account for multi-
mode interactions from both sides of the convective-radiative
boundary. These works derived a Lorentzian shape of the dip
in the PSP, characteristic of this coupling mechanism compared

to periodic modulations created by strong gradients of thermal
or chemical stratification (Kurtz et al. 2014; Saio et al. 2015;
Schmid & Aerts 2016; Murphy et al. 2016; Pedersen et al. 2018;
Michielsen et al. 2019; Li et al. 2019; Wu et al. 2020). As ana-
lytical works remained in the framework of solid-body rota-
tion, and the numerical work of Saio et al. (2021) showed a
sensitivity of the dip location in the PSP to core rotation, our
aim in Barrault et al. (2025, hereafter BMB25) was to extend
Tokuno & Takata (2022)’s model to include a convective core
to radiative envelope differential rotation, and finely investigate
the variation of the dip structure, along with its location in the
PSP. We also investigated the potentiality of measuring this dif-
ferential rotation from an inversion of the dip structure using our
model in realistic Kepler data (BMB25). Results showed that for
most of the values of near-core stratification inferred from a sam-
ple of 37 γ Dor stars by Aerts & Mathis (2023), the convective
core rotation would be retrieved in the regime where the convec-
tive core rotates faster than the radiative envelope, as the inertial
dip is displaced towards low periods, in a region of the PSP less
affected by the observational noise.

Given the unprecedented sensitivity of the inertial dip to the
convective core structure and dynamics, and the importance that
a convective core magnetism measurement would bear on con-
straining the different scenarios of magnetic field generation, we
investigate in this work the sensitivity of the inertial dip to mag-
netism, both in the convective core and in the near-core region. In
the radiative zone, Dhouib et al. (2022), Lignières et al. (2024),
and Rui et al. (2024) have investigated the effect of a magnetic
field on the PSP of the g–i modes, from now on referred to as
magneto-gravito-inertial (m–g–i) modes because of their mod-
ification by the Lorentz force, with different magnetic topolo-
gies. All of the studies point towards an additional curvature
in the PSP compared to the sole impact of rotation. We place
ourselves in the framework of a toroidal field corresponding
to a bi-layer Alfvén frequency, with two uniform values in
the core and in the envelope. This framework, even if simpli-
fied compared to the complex magnetic configurations poten-
tially present from both sides of the boundary (Brun et al. 2005;
Featherstone et al. 2009; Augustson et al. 2016), can be seen as a
laboratory towards the fine comprehension of the effect of a mag-
netic field on the interaction between convective core magneto-
inertial and radiative envelope m–g–i modes. Building on the
previous analytical hydrodynamical results of BMB25, our
framework allows us to exhibit the region to which each mag-
netic probe, i.e. the inertial dip and the curvature of the PSP, is
sensitive.

The outline of this paper is as follows. In Section 2, we
expose the generation mechanisms and the expected charac-
teristics of the magnetic fields in both the core and the enve-
lope, and describe the models used in this work. In Section 3
we present the hypotheses and approximations required by our
model, and recall the structure of the envelope and core oscil-
lation modes in this context. In Section 4 we rewrite the cou-
pling problem exposed in TT22 in our magnetohydrodynamics
(MHD) framework and take profit of the analytical development
of BMB25, solving both numerically and analytically the cou-
pling equation. We discuss our results in Section 5, focusing on
a comparison between the purely hydrodynamical regime and
the regime of field intensities potentially accessible by an anal-
ysis of the inertial dip. We then conclude in Section 6 on this
new window on core magnetism, keeping in mind the simplifica-
tions and the hypotheses made in our model, and we give leads
for future studies on the inertial dips in the case of magnetic
stars.
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2. Magnetic framework and mode description

In this section, we first summarise the theoretical elements on
the theory of magnetic field generation and relaxation, both in
the radiative envelope and in the convective core, focusing on the
structure of the magnetic field awaited in different scenarios. We
then describe the magnetic model and the assumptions we choose
to adopt. We focus on our particular magnetic framework and
related hypotheses in Sect. 2.4, while we reserve considerations
common to the hydrodynamical study (BMB25) to Section 3.

2.1. Scenarios for the presence of magnetic fields in the
radiative envelope of intermediate-mass MS stars

Two main scenarios are generally considered for a generation of
magnetic fields in the radiative zone of an intermediate-mass MS
star evolving as a single star: an in-situ dynamo triggered by the
Tayler-Spruit instability, or a fossil field originating from a past
convective episode. The Tayler-Spruit dynamo mechanism, orig-
inating from the seminal papers Tayler (1973), Spruit (1999),
and Spruit (2002), originates from an interplay between differ-
ential rotation in a stellar radiative zone and magnetic fields.
When not frozen by the Lorentz force, differential rotation gen-
erates a strong toroidal magnetic field, which becomes unsta-
ble towards the Tayler instability. This instability generates 3D
motions of material, inducing an electromotive force which can
sustain a dynamo mechanism in the stratified layer. This type of
scenario has been extensively discussed in the literature since
then, with different saturation hypotheses (Braithwaite 2006;
Zahn et al. 2007; Gellert et al. 2008, 2011; Fuller et al. 2019).
Tayler-Spruit-like mechanisms very efficiently transport angu-
lar momentum from the core to the envelope thanks to mag-
netic torques, partially explaining the spinning down of the
cores of evolved stars, depending on the precise implementa-
tion (Cantiello et al. 2014; Fuller et al. 2019). Recent 3D simula-
tions (Petitdemange et al. 2023, 2024 for MS stars, Barrère et al.
2023 for proto-magnetars) show a remarkable versatility of
the dynamo settlement from MHD instabilities among different
regimes of diffusion and stratification. They point towards the
generation of a large toroidal magnetic field localised in the deep
radiative zone, while reaching an intensity at the surface com-
patible with the low surface magnetic fields intensities found in
90% of early-type stars (Petit et al. 2010; Blazère et al. 2016).

The fossil field scenario is the second main candidate for
the settlement of a large scale magnetic field in stellar radia-
tive zones. Due to the small magnetic diffusivity in stellar
interiors, a field generated by a dynamo mechanism in a past
convective layer could then relax into a stable, large-scale
field in the newly radiative region (e.g. Arlt & Rüdiger 2011;
Emeriau-Viard & Brun 2017), and contribute to the efficient
angular momentum transport in the radiative zone. Pure toroidal
of poloidal configurations have been demonstrated to be unstable
(Tayler 1973; Markey & Tayler 1973; Braithwaite 2006, 2007).
A number of works have computed stable magnetic configura-
tions either analytically (Broderick & Narayan 2007; Lyutikov
2010; Duez et al. 2010a; Akgün et al. 2013) or numerically
(Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006;
Kaufman et al. 2022; Becerra et al. 2022a).

A generation of a dynamo-originated stochastic field result-
ing in a fossil field can occur at various stages of stellar evo-
lution: during the pre main sequence (PMS) for all stars, and
in the core of intermediate-mass MS stars for stars with a mass
of M & 1.1M�. In the fossil field scenario, the radial magnetic
field strengths now measured in RGB stars (we refer to Li et al.

2022; Deheuvels et al. 2023; Hatt et al. 2024 for measurements
of field of intermediate amplitude and to Stello et al. 2016b for
lower limits of a strong field) would be the result of these past
convective episodes.

The two scenarios described here can compete with each
other, leading to a magnetic dichotomy: differential rotation trig-
gering the TS instability and a dynamo-generated field in stel-
lar radiation zones would be allowed by the presence of a low-
amplitude field, whereas a strong pre-existing field would flatten
the radial rotation gradient and favour a relaxation in a stable
fossil field (Spruit 1999). In this regard, strong differential rota-
tion and strong fossil magnetic fields are antagonists (see Moss
1982; Aurière et al. 2007; Gaurat et al. 2015; Jouve et al. 2020,
for works tackling this magnetic dichotomy).

2.2. Characteristics of core dynamo and further evolution in
radiative zones

The characteristics of dynamos are accessible through 3D MHD
simulations of core convection. Lecoanet & Edelmann (2023)
listed the different codes currently available and their own
specificities. Core dynamos departs from dynamo of convec-
tive envelopes in lower-mass stars by their different regimes:
the magnetic Prandtl number (Pm = ν/η, with ν the kine-
matic viscosity and η the magnetic diffusivity) is high for core
dynamo and low for envelope one, which changes the prevalence
of lengthscales, with more energy for large-scale structures in
the case of the envelope dynamo (see Fig.1 in Augustson et al.
2019). Furthermore, the kinetic energy is higher for a convective
core than for a convective envelope, due to the increased den-
sity. Additionaly, a convective core is almost adiabatic, whereas
a convective envelope displays a superadiabatic gradient.

Rotation has a strong influence on core convection, hence
dynamo. Convective motions that would mainly be dipolar in
the non-rotating case are organised in large columnar struc-
tures with rotation, with lengthscales perpendicular to the axis
of rotation much smaller than parallel ones (Davidson 2013).
This can be seen at first with an argument based on the Taylor-
Proudmann theorem, and it has been observed in realistic sim-
ulations (Brun et al. 2005; Featherstone et al. 2009 for a 2.0 M�
star, Augustson et al. 2016 for a 10 M� star). Importantly, the
level of equipartition of the magnetic field energy compared to
the kinetic energy has been proven to depend on the Rossby
number (Ro = Vconv/2ΩLconv, Vconv and Lconv being respectively
a characteristic velocity and a lengthscale of convection, and Ω
the rotation rate). At low rotation, hence high Rossby number, an
equipartition is found, whereas a magnetostrophic regime with
a superequipartition state is observed for high rotation rates, or
low Rossby numbers. Augustson et al. (2019) compiled several
results from MHD simulations with a range of Rossby numbers
and confirmed this enhancement of magnetic energy compared
to kinetic energy at a low Rossby number regime (we refer to
their Figure 4).

Another key question is if this core dynamo could estab-
lish a large scale structure for the magnetic field as in the case
of the solar dynamo, and what would be the geometry of such
a field. Featherstone et al. (2009) and Augustson et al. (2016)
found increased magnetic energy along large-scale columnar
structures of the velocity field caused by strong rotation. Inter-
estingly, Augustson et al. (2016) found a mean magnetic energy
of the toroidal component approximately 50 times higher com-
pared to the one of the poloidal component (see their Fig. 9).

This dynamo-generated field, advected by rising material
that mixes the core boundary, extends to the neighbouring
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Fig. 1. Magnetic star with a bi-layer Alfvén frequency, ωA,core in the
core,ωA,env in the envelope, and a bi-layer rotation rate, Ωcore in the core,
Ωenv in the envelope. The cavity for m–g–i modes lies between ra and rb
in the radiative zone. They become evanescent in the region [Rcore; ra]
when the TARM is applied. Magneto-inertial modes propagate in the
convective core below the location Rcore.

radiative zone, and stratification alters its characteristics.
Brun et al. (2005) and Featherstone et al. (2009) agree on a large
ribbon of toroidal field at this location. This was further seen in
the recent work of Ratnasingam et al. (2024), keeping in mind
the higher mass of the modelled star (M = 7 M�). The zone at
which the Brunt-Väisälä profile peaks is a shear layer that pro-
duces strong toroidal fields by an Ω-effect.

The transition from these dynamo fields displaying a broad
distribution of length scales to large-scale magnetic configura-
tion on the RGB has been tackled in Braithwaite & Nordlund
(2006), Cantiello et al. (2016), Bugnet et al. (2021) and
Becerra et al. (2022b) and their long-term stability questioned
(Kaufman et al. 2022). Interestingly, fields coming from differ-
ent origins or stellar stages can interact in a highly non-linear
way. As investigated in Featherstone et al. (2009), a case
in which an input fossil field is present around the core of
an A-type star shows a state of super-equipartition of the
magnetic-to-kinetic energy for its core dynamo. The magnetic
field reaches a strength of several hundreds of kG.

2.3. Modelled star and modes considered from both sides of
the boundary

The present study, as well as previous ones concerning the iner-
tial dip in the PSP, would apply to any intermediate- to fast-
rotating star presenting a structure with a convective core sur-
rounded by a radiative zone in which g–i modes can propagate
(see Fig. 1). From an observational point of view, the spectrum
of g–i modes must also contain many modes, so that the period
at which the interaction studied would occur is comprised in the
PSP, and the inertial dip can be analysed (Saio et al. 2021).

This is classically the case in two classes of pulsators: γ Dor
and SPB stars. In this study, we focus on the case of γ Dor stars,
as (1) their PSPs comprise a wider extent of radial orders com-
pared to SPBs and have been already used to infer radiative zone
properties with a great precision, allowing for more in-depth stud-
ies comprising the inertial dip and (2) the absence of an extended
convective envelope inhibits magnetic braking, thus γ Dor stars
are in general intermediate to fast rotators (Aerts & Tkachenko
2024), rotating faster than SPBs (Aerts & Mathis 2023). This
class of pulsators classically comprises zero-age main sequence
(ZAMS) stars of 1.5 M� to terminal-age main sequence (TAMS)
stars of 2.0 M�. However, the recent analyses of thousands of tar-
gets from Gaia (Prusti et al. 2016) data suggests that g-mode pul-
sators and especially γ Dor type ones span accross a much more
extended region of the Hertzprung-Russel diagram (See Fig.5 of
De Ridder et al. 2023).

We consider for our study 3 models computed with
MESA (version 23.05.1, Paxton et al. 2011, 2013, 2018, 2019;
Jermyn et al. 2023) in Mombarg et al. (2024)1, with different
rotation rates and age. We retain an intermediate value for the
overshooting parameter of fov = 0.02 in an exponentially dif-
fusive prescription (Freytag et al. 1996) and a solar metallicity
Z = 0.014 (Asplund et al. 2009).

To choose the models, we first consider that the frequencies in
the dip region of the PSP must not suffer from high uncertainties
due to the finite observing time. Second, the rotation rate at the
surface Ωsurf must not be too high compared to the surface criti-
cal rotation rate Ωcrit for TAR calculations to hold. Mathis & Prat
(2019) found this limit to be 40% of the surface critical rota-
tion rate, while Dhouib et al. (2021a,b) considered a more con-
servative limit of 20%. The latter limit appears as the most reli-
able, since it relies on non-perturbative calculations based on 2D
stellar models computed with ESTER (Espinosa Lara & Rieutord
2013). However, the impact of the centrifugal force is small on the
structure of g–i modes near the core, and the deviation in fast-
rotating stars from the frequencies obtained with the TAR was
proven to be small: as argued in Dhouib et al. (2021a), current
uncertainties, for example on rotational mixing and atomic diffu-
sion, would mask the effect of centrifugal deformation. We thus
choose to consider stars rotating up to 40 % of their critical sur-
face rotation rate, keeping in mind the potential improvement of
this model to the TAR in deformed stars.

We retain two ZAMS models (central H fraction XH = 0.70)
of 1.5 M� stars, with rotation rates Ω/2π = 2.29 c.d−1 (hereafter
f z model) and 1.22 c.d−1 (hereafter iz model), corresponding to
40 and 20% of their critical rotation rate, respectively. These
rotation rates correspond approximatively to the minimum and
maximum rotation rates in the sample of γ Dor harbouring iner-
tial dips analysed by Saio et al. (2021). As for older and higher-
mass stars, the critical rotation rate decreasing with evolution,
and the star breaking during the MS, we retain one model of a
1.8 M� with XH = 0.30, rotating at 1.14 c.d−1 corresponding to
42 % of the critical rotation rate (hereafter im model). A list of
the relevant physical quantities used in the present study for each
model can be found in Table 1.

g–i modes are of four different types: Poincaré, r-modes,
Yanai, and Kelvin. Descriptions of those modes are given in
Townsend (2003) and Mathis et al. (2008). In the magnetic con-
text, we refer to Section 4.2 of Mathis & De Brye (2011). In the
context of a differentially rotating envelope, each type of g–i
mode reaches its highest sensitivity to a different depth of the
star (Van Reeth et al. 2018).

1 The inlists used can be found on https://zenodo.org/records/
10629035
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Table 1. Relevant quantities used throughout the study for the three
considered models.

Model name f z iz im

XH 0.70 0.70 0.30
Ωnc/2π (c.d−1) 2.25 1.22 1.14
Ωsurf/Ωcrit (%) 40 20 42
Ωnc/Ωcrit (%) 3.6 2.0 2.4
Π0 (s) 4609 4623 4670
Nmax/2π (µHz) 544 496 1027
N̄/2π (µHz) 293 296 246
Rcore (R�) 0.141 0.142 0.165
ρ̄|Rcore (g.cm−3) 64.7 64.5 53.9
ρ̄|Rcore/2 (g.cm−3) 79.9 79.8 75.4
Bms|Rcore/2 (MG) 1.40 1.03 1.63
Bequi|Rcore/2 (kG) 75 76 151
Ro|Rcore/2 2 × 10−4 3.7 × 10−4 9 × 10−4

Notes. f stands for fast rotation, i for intermediate rotation, z for ZAMS,
and m for mid-MS. We refer to Appendix A for their definition.

Kelvin modes are of particular interest because of their high
occurrence rate in the most up-to-date γ Dor sample observed by
Kepler (Li et al. 2020), due to their high visibility. They possess
no equatorial node, their angular degree l equating the azimuthal
number m. They hence benefit from low surface cancellation.
They exist in both the sub-inertial and super-inertial regimes.
We focus on Kelvin modes in our study, as they propagate in the
sub-inertial regime in the convective core (Prat et al. 2018) and
become magneto-inertial (m−i) modes, as buoyancy is no longer
a restoring force. The geometry of the stellar layer in which m−i
modes propagate holds a great influence on their properties. In a
non-differentially rotating full sphere, in an inviscid and incom-
pressible framework, the configuration that we are interested in,
the spectrum is dense in the interval [−2Ω, 2Ω], Ω being the rota-
tion rate of the considered zone.

2.4. Magnetic configuration and the traditional approximation
of rotation and magnetism

We chose an azimuthal axi-symmetric magnetic field (see
Fig. 1) with a bi-layer Alfvén angular frequency ωA =
Bϕ

0/(
√
µ0ρ̄r sin θ), such that ωA = ωA,core in the convective core

and ωA = ωA,env in the radiative envelope, both assumed to
be uniform in their respective regions (see Fig. 2), with Bϕ

0
the toroidal background field and ρ̄ the background hydrostatic
density. We use µ0 the magnetic permeability of the vacuum,
corresponding to the one of the plasma in stars. This frame-
work allows us to understand the respective effects of rotation
or magnetism on the dip formation picture, building on the
previous analytical works of Malkus (1967) for the convective
core and Mathis & De Brye (2011) for the radiative envelope.
Even though being simplified compared to the topology and
geometry of magnetic fields hypothesised in both regions, this
configuration retains a toroidal component present in both the
scenarios of relaxed fossil field, and dynamo-generated field near
the core by a Tayler-Spruit like mechanism (see Section 2.1).
Additionally, we allow for different magnetic fields amplitudes
from both sides of the boundary, as different magnetic fields
formation mechanisms are at play in the two zones and can
lead to significantly dissimilar amplitudes (Featherstone et al.
2009). We point out the key importance of adopting this field
profile to maintain the analytical description of core modes in

Fig. 2. Magnetic field profiles of uniform Alfvén frequency, taking the
1.5 M� f z model, at the equator. As an example, a magnetic field profile
with a bi-layer Alfvén frequency corresponding to Lecore = 1.0 × 10−2

and Leenv = 2.0 × 10−2 would follow the blue profile in the core
(turquoise zone) and a red profile in the envelope (pink zone).

Section 3.3, while describing ways to consider more realistic
profiles in Section 5.5.

We adopt the traditional approximation of rotation and
magnetism in the radiative envelope: this approximation was
introduced in Mathis & De Brye (2011) and later used in
Dhouib et al. (2022) and in Rui et al. (2024). It consists, in a
highly stratified medium where [ωA, 2Ω] � N, with N the
Brunt-Väisälä (angular) frequency such that N2 = −ḡ(d ln ρ̄/dr−
1/Γ1 · d ln P̄/dr) with ḡ the background self-gravity, P̄ the back-
ground gaseous pressure and Γ1 the first adiabatic exponent,
to only retain the transverse component of both the Coriolis
acceleration and the Lorentz force, as transverse displacement
are prominent compared to radial ones in such regimes. As in
BMB25, we choose a bi-layer rotation profile, Ωcore in the con-
vective core, Ωenv in the radiative envelope. We provide a graphi-
cal summary of the hierarchy of relevant frequencies for both the
radiative envelope (upper part) and the convective core (lower
part) in Fig. 3. In each part, a green color bar indicates the con-
sidered local angular wave frequencies interval.

We verify that this regime of strong stratification is attained
even for the fast rotators considered here, showing the typi-
cal values of Brunt-Väisälä, rotation and Alfvén frequencies for
the f z model in parenthesis on the upper panel of Fig. 3. We
point out in this figure an orange zone in the frequency domain
for which an envelope g–i mode of this local wave frequency
would deviate appreciably from the TARM, and we refer to
Dhouib et al. (2022) for a discussion of this limit value of the
rotation rate compared to N (see their table 1).

We emphasise that we consider a regime of fields of inter-
mediate strengths, high enough for a perturbative treatment of
the Lorentz force not to be applicable (Rui et al. 2024), but
lower than a regime of magnetic mode suppression (|m|ωA,zone >
σzone). We discuss this further in Section 5.

3. Expressions of mode structures from both sides
of the boundary

In this section, we first set up in 3.1 the MHD framework that
we are using for both the convective core and the radiative enve-
lope. We further recall the results of Mathis & De Brye (2011)
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Fig. 3. Hierarchy of the characteristic angular frequencies hypothesised in this work. The quantities related to the envelope are specified in the
top panel, while the quantities related to the core are noted in the bottom panel. Values for the linear frequencies for the f z model are denoted
in parentheses. An Alfvén frequency of ωA,env ≈ 5 × 10−2µHz corresponds to an equatorial field strength of Bϕ

0 ≈ 9 × 104G at the bottom of the
radiative zone for the three considered models.

on envelope m–g–i modes in Sect. 3.2, then derive the structure
of these modes at the location of the convective core - radiative
envelope boundary by means of a JWKB analysis. As in TT22,
calculations differ if we consider a continuity or discontinuity
of the N profile at the core-to-envelope boundary. We further
give the structure of core m−i modes in Sect. 3.3, exploiting the
results of Malkus (1967). Relevant parameters and notations are
gathered and defined in Appendix B.

3.1. System of equations in the ideal MHD framework

As in BMB25, we place ourselves in a sub-inertial regime for
which the local angular wave frequencies in the two zones are
inferior to the inertial frequencies (2Ωcore, 2Ωenv). m−g−i modes
from the envelope can propagate in the core as m−i modes in this
framework.

We adopt an hypothesis of anelasticity in both the convec-
tive core and the radiative envelope. This filters out the high-
frequency acoustic waves. As we are interested in low-frequency
waves, the anelasticity is valid in the quasi-entire part of the
propagating cavity, and especially near the boundary where the
modified Lamb frequency S̃ is much higher than the frequency
of the mode, where S̃ 2 = Λm

k c2
S /r

2, with cS the sound speed
and Λm

k the eigenvalue of the Laplace Tidal Equation, defined
further in Section 3.1. This can be questionable near the outer
boundary of the cavity rb, as S̃ can be inferior to N there. For
the low-frequency modes we are interested in, we check that we
still have N < S̃ at rb (see Fig. D.1). This would not change fun-
damentally the results near the convective core, and would leave
an imprint as a curvature of the PSP in the co-rotating frame,
which is caused by a receding outer boundary rb of the m−g−i
modes propagation cavity with increased mode frequency (See
Appendix A of Tokuno & Takata 2022). We use as well the
Cowling approximation (Cowling 1941), as the series of Kelvin
modes found in γ Dors are of a high radial order (Li et al. 2020).
Additionally, these modes have a strongly oscillating character
near the core (see Fig.6 of Galoy et al. 2024).

We assume adiabaticity in the whole region of propagation of
both types of modes. We thus neglect heat, Ohmic, and viscous
diffusions.

We neglect the centrifugal force, as the rotation rate of the
most internal layers of the radiative zone is negligible compared
to the critical rotation rate (it is inferior to 4% of this critical
rotation in the f z model; see Appendix A). All the more, we
neglect the indirect effect of the magnetic field on the hydrostatic
equilibrium, as ωA,zone < Ωzone (see Appendix D). The gaseous
pressure is more significant than the magnetic pressure in such

internal layers: in our f z model, the magnetic pressure is ∼106

times lower than the gaseous pressure for a magnetic field of
1 MG.

With these hypotheses, we have to consider the same system
of equations as Mathis & De Brye (2011):

First, the ideal induction equation

∂tB = ∇ × (V × B) . (1)

Second, the inviscid momentum equation

DtV = −
1
ρ
∇P − ∇Φ +

1
ρ

[
1
µ0

(∇ × B) × B
]
. (2)

Then, the continuity equation

Dtρ + ρ∇ · V = 0 ; (3)

the heat transport equation in the adiabatic limit

1
Γ1

Dt ln P − Dt ln ρ = 0 ; (4)

and the Poisson equation

∇2Φ = 4πGρ (5)

is filtered out for the wave fluctuations because of the Cowling
approximation. We introduce V the velocity field, B the mag-
netic field, ρ the density, P the gaseous pressure, Φ the gravi-
tational potential, and G the gravitational constant. We consider
waves propagating in the bi-layer set-up presented in Sect. 2.4.
We introduce the background toroidal field Bϕ

0 and zonal flow
V0. Linear perturbations (b,u) around this large-scale quantities
are considered, with

B(r, t) = Bϕ
0 (r, t) + b(r, t) , (6)

V(r, t) = V0(r, t) + u(r, t) . (7)

Here t is the time and r = (r, θ, ϕ) the spherical coordinates with
the unit vectors {̂er, êθ, êϕ}.
The large-scale background quantities are

Bϕ
0 =

√
µ0ρ̄r sin θωA,zonêeϕ (8)

and

V0 = r sin θΩzonêeϕ , (9)
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with

ωA,zone =

{
ωA,core if r < Rcore

ωA,env if r > Rcore
, (10)

and

Ωzone =

{
Ωcore if r < Rcore

Ωenv if r > Rcore
. (11)

We thus consider the rotation frequency and the Alfvén fre-
quency to be discontinuous at the boundary between the core
and the envelope as in Fig. 1. We place ourselves in the interior
of each zone, in which we treat both quantities as being uniform.
As in BMB25, we quantify differential rotation with the param-
eter αrot such that

αrot = Ωenv/Ωcore. (12)

The method held to derive the momentum equation is similar
to the one provided in Mathis & De Brye (2011) and detailed for
consistency in Appendix C. We only highlight the expansion of
the relevant quantities here. All scalar fields X ≡ (ρ,Φ, P) are
expressed as a sum of an hydrostatic term X̄ and a fluctuation X̃,
with

X(r, θ, ϕ, t) = X̄(r) + X̃(r, θ, ϕ, t) . (13)

The scalar quantities X̃ and the vectorial fields x are expanded
as

X̃ =
∑
σin,m

X′(r, θ)ei(mϕ+σint) , (14)

x =
∑
σin,m

x′(r, θ)ei(mϕ+σint) , (15)

with σin the wave angular frequency in an inertial frame. We
also define as in BMB25 the Doppler-shifted local angular fre-
quencies σzone = σin + mΩzone and the spin parameters szone =
2Ωzone/σzone. We adopt the convention of m < 0 for prograde
modes and m > 0 for retrograde modes.

We further define magnetic local wave frequencies σM,zone
such that σ2

M,zone = σ2
zone − m2ω2

A,zone and magnetic spin param-
eters sM,zone = 2Ωzone/σM,zone, which reduce to the spin param-
eters in the absence of magnetic fields. We define the magnetic
pressure

PM =
B2

µ0
(16)

and its linear fluctuation

P̃M =
Bϕ

0 · b
µ0

, (17)

from which the total pressure fluctuation reads

Π̃ = P̃ + P̃M . (18)

We define the quantity

W̃ =
Π̃

ρ̄
+ Φ̃ . (19)

Mathis & De Brye (2011) derived the linearised momentum
equation

−Aξ′ + iB̂ez × ξ
′ = −∇W ′ +

ρ′

ρ̄2∇P̄ − Π′
∇ρ̄

ρ̄2 , (20)

where

A = σ2
M,zone = σ2

zone − m2ω2
A,zone , (21)

B = 2(Ωzoneσzone − mω2
A,zone) . (22)

This equation is further used for the convective core and the
radiative envelope. For a wave propagation in the presence of
a magnetic field, we need A = σ2

M > 0. The magnetic field
acts as a filter for low-frequency waves, highlighting our need to
work in the regime of an intermediate magnetic field so that m–
g–i modes propagate to the edge of the core. It is worth-noting
that this limit is different from the one derived in the case of the
Fuller et al. (2015) type mechanism. We further discuss this in
Section 5. We define the quantity

νM,zone = BA−1 = szone
1 − 2mszoneLezone

2

1 − m2Lezone
2szone

2
, (23)

where we have introduced the Lehnert number of the region

Lezone =
ωA,zone

2Ωzone
, (24)

which compares the relative strength of the Lorentz and Cori-
olis terms (Lehnert 1954). We show that the Lehnert number
is the main quantity governing the effect of magnetic fields on
the interaction between the convective core m−i modes and the
radiative envelope m–g–i modes. Even though νM was referred
to as the magnetic spin parameter in Dhouib et al. (2022), we
define it the magnetic structural parameter in this work, to avoid
confusion with other quantities.

We illustrate in Fig. 2 the background magnetic field profile
obtained with different Lehnert numbers in the core or in the
envelope for the fast-rotating ZAMS model. With a fixed Lehnert
number, due to the density profile of γ Dor stars, this field peaks
in the radiative envelope, near the convective core. Due to its
dependence in r, the field decreases approaching the centre of
the core, being null at the centre.

3.2. Envelope m–g–i modes

3.2.1. System of equations under the TARM

In the framework of a strongly stratified envelope (N � 2Ωenv),
the radial Lagrangian displacement is much smaller than the hor-
izontal one. We can thus neglect the latitudinal component of
the rotation vector, hence the radial component of the Corio-
lis acceleration. This allows us to operate a separation of the
radial and the horizontal dynamics. This is known as the tradi-
tional approximation of rotation (TAR), which has been exten-
sively used in geophysics and astrophysics for high stratification
regime (see e.g. Eckart 1960; Bildsten et al. 1996; Lee & Saio
1997). In a magnetic context, one can extend this approxima-
tion if N � ωA,env, and the latitudinal component of the Lorentz
force can also be neglected. Mathis & De Brye (2011) describes
this so-called traditional approximation of rotation and mag-
netism (TARM). Under the TARM, the horizontal structure of
m–g–i modes is treated by solving the Laplace tidal equation
(LTE)

LνM,env [Θm
k (µ; νM,env)] = −Λm

k (νM,env)Θm
k (µ; νM,env) , (25)
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with µ = cos θ, and the Laplace tidal operator

LνM,env =
d

dµ

 1 − µ2

1 − ν2
M,envµ

2

d
dµ


−

1
1 − ν2

M,envµ
2

 m2

1 − µ2 + mνM,env
1 + ν2

M,envµ
2

1 − ν2
M,envµ

2

 . (26)

Here Θm
k are the renowned Hough functions (Hough 1898). They

depend on two different integer numbers: m and k. They reduce
to a Legendre polynomial in the absence of rotation or mag-
netism, the angular degree l of the polynomial being related to
the index k in this case via k = l − |m| (Lee & Saio 1997). We
highlight that in this particular magnetic context, the quantity
νM,env holds the frequency dependence of the angular structure
of m–g–i modes. This is why we called this quantity magnetic
structural parameter. We can then expand the perturbations quite
similarly to BMB25 as

X′(r, θ) =
∑

k

X′k,m(r)Θm
k (µ; νM,env) (27)

and

ξ′r(r, θ) =
∑

k

ξ′r;k,m(r)Θm
k (µ; νM,env) . (28)

We see the influence of magnetism on the angular structure
of modes. Notably, the limit of the equatorial belt in which sub-
inertial g-i modes are trapped under the TAR is changed in the
magnetic case; this co-latitude is θc = cos−1(1/|νM,env|). The sys-
tem of radial ordinary differential equations that allows us to
obtain the radial dependence of m–g–i modes is derived using
the TARM following Mathis & De Brye (2011)

dW ′k,m
dr

=
N2

ḡ
W ′k,m+

1
r2 (σ2

M,env − N2)(r2ξ′r;k,m)

−
1
Γ1

d ln P̄
dr

P′M;k,m

ρ̄
, (29)

d
dr

(r2ξ′r;k,m) =

Λm
k (νM,env)

σ2
M,env

−
ρ̄r2

Γ1P̄

 W ′k,m

−
1

Γ1P̄
dP̄
dr

(r2ξ′r;k,m) +
r2

Γ1P̄
P′M;k,m . (30)

We here described the TARM in a the framework of a uniform
Alfvén frequency. The case of a field profile with a radially vary-
ing Alfvén frequency has been treated in Dhouib et al. (2022): the
Laplace tidal operator would hold a radial dependence, and so
would the generalised Hough functions obtained. We point out
that the Hough functions derived with this (uniform) Alfvén fre-
quency hypothesised in this work correspond to the ones com-
puted with the Alfvén frequency at the core-to-envelope bound-
ary in the more realistic field profile of Dhouib et al. (2022). In
other words, the dip formation mechanism is sensitive to the field
intensity at the base of the radiative envelope and does not depend
on the Alfvén frequency profile in the rest of the envelope.

3.2.2. JWKB analysis

We adopt the anelastic approximation, which acts as a filter on
the acoustic waves. We thus hypothesise that the frequency of
the sub-inertial waves never equates the Lamb frequency S̃ in the

propagation cavity, and both the upper and lower limits ra and rb
are defined by the condition σM,env = N. We verify this point
in Appendix A. For the Kelvin mode (m = −1), the frequency
is so low that we are always in the regime of σM,env � {N, S̃ }
in the cavity. This allows us to neglect in the system given by
Eqs. (29) and (30) the terms scaling as c2

S = Γ1P̄/ρ̄. Under this
approximation, we define the two following variables:

v = ρ̄1/2 σM,env√
Λm

k (νM,env)
r2ξ′r;k,m (31)

and

w =

[
ρ̄r2

N2

]1/2

W ′k,m . (32)

We can show, in a manner described in Press (1981) and
Unno et al. (1989), among others, that the two variables follow
the approximate equations:

d2v

dr2 + k2
r v ' 0 , (33)

d2w

dr2 + k2
rw ' 0 , (34)

with

k2
r =

 N2

σ2
M,env

− 1

 Λm
k (νM,env)

r2 . (35)

This wavenumber is similar to the one derived in the hydrody-
namical case (TT22; BMB25). It is slightly different due to the
anelastic approximation used ab initio in this work, whereas it
is applied later on in TT22. The imprint of magnetism is seen
in the dependence of the LTE eigenvalue Λm

k on the magnetic
structural parameter νM,env, reducing to the usual spin parameter
in the non-magnetic case, and on the frequency σM,env reducing
to σenv in the hydrodynamical one.

We now follow a JWKB analysis, provided that N and S̃
are much greater than σM,env in the propagation cavity, except
near the turning points. Calculations below are pursued in the
framework of a continuous N profile at ra, while they differ when
considering a discontinuous N profile. We further comment this
point in Section 4.4. We obtain for r � rb

v '
1
√
|kr |

(
3
2

∣∣∣∣∣∣
∫ r

ra

|kr |dr

∣∣∣∣∣∣
)1/6

[aAi(ζ1) + bBi(ζ1)], (36)

and for r � ra

w '
1
√
|kr |

(
3
2

∣∣∣∣∣∫ rb

r
|kr |dr

∣∣∣∣∣)1/6

[cAi(ζ2) + dBi(ζ2)] . (37)

Here Ai(ζ) and Bi(ζ) are the Airy functions of the first and sec-
ond kind, solutions to the differential equation:

d2y

dζ2 + ζy = 0 . (38)

Within this convention, Ai is exponentially decaying to −∞
while Bi is diverging (Unno et al. 1989). We introduced

ζ1 = sgn(k2
r )

(
3
2

∣∣∣∣∣∣
∫ r

ra

|kr |dr

∣∣∣∣∣∣
)2/3

(39)
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and

ζ2 = sgn(k2
r )

(
3
2

∣∣∣∣∣∫ rb

r
|kr |dr

∣∣∣∣∣)2/3

. (40)

Just as in TT22, the Lagrangian pressure perturbation (hence w)
should decay exponentially for r � rb, then we must impose
d = 0. Further, using Eq. (30) in the anelastic limit, and the
definitions of w and v given respectively in Eq. (32) and Eq. (31),
we have |krw| ' |dv/dr| for ra � r � rb. We thus derive the
matching conditions

a = −c sin B (41)

and

b = −c cos B , (42)

with

B =

∫ rb

ra

krdr −
π

2
'

∫ rb

ra

N
σM,env

√
Λm

k (νM,env)

r
dr −

π

2

=
π2sM,env

ΩenvΠ0,M
−
π

2
, (43)

where we have adopted the low-frequency limit of the vertical
wavenumber. The asymptotic period spacing modified by mag-
netism reads

Π0,M =
2π2√

Λm
k (νM,env)

(∫ rb

ra

N
dr
r

)−1

. (44)

First, the effect of magnetism arises directly through the depen-
dence of the eigenvalue of the LTE on the magnetic structural
parameter νM,env and no longer on the spin parameter senv as in
the hydrodynamical case. As Kelvin modes have have no lati-
tudinal node (k = 0, thus l = |m|), the azimuthal displacement
is dominant over the latitudinal one. One can show that this
hierarchy leads to the eigenvalue Λm

0 reaching asymptotically2

the value m2. The effect of the variation of Λm
0 with magnetism

will thus be limited for Kelvin modes of high spin parameter
that we are interested in. However, the effect is predominant
in other types of m–g–i modes for which the LTE eigenvalue
varies appreciably with the spin parameter (Townsend 2003,
2020). Second, magnetism acts indirectly through the potential
variation of the shape of N and the location of the lower and
upper turning point. Even though this effect could be sizeable
for highly magnetised stars, the regime of intermediate fields
considered in this analysis would not appreciably change the
structure of the star, since the background gaseous pressure P̄
is predominant over the magnetic one P̄M, except near the stel-
lar surface (Duez et al. 2010b). Likewise, a high intensity field
could result in an oblateness of the star due to the different mag-
netic tension at the pole and at the equator, but this effect is
underdominant compared to the one of rotation (Fuller & Mathis
2023), even in the case of stars with a strong magnetic field inten-
sity at the surface, which are not γ Dor pulsators.

2 This can be seen using equation (5) of Townsend (2020): if the
azimuthal displacement dominates the latitudinal one, then the brack-
eted term at the RHS side of the equation must be small, leading to
Λm

0 ≈ m2.

3.2.3. Approximated solutions near the core

We get an expression of k2
r near the lower end of the g-mode

cavity r = ra (see Fig. 1),

k2
r '

dk2
r

dr

∣∣∣∣
r=ra

(r − ra) '

Λm
k (νM,env)

r2σ2
M,env

dN2

dr


r=ra

(r − ra) (45)

if we consider that the gradient of N2 is predominant over the
other terms in the development of dkr/dr near ra.

We can define the same small parameter ε as in the non-
magnetic case

ε =

(
ra

4Ω2
env

dN2

dr

∣∣∣∣
r=ra

)−1/3

, (46)

which leads to

k2
r '

Λm
k (νM,env)s2

M,env

ε3r3
a

(r − ra) . (47)

The following calculations are just the same as TT22 (from
their Eqs. 24 to 26). We have to take a closer look at the equiva-
lent of their (27): in the low-frequency regime, for σM,env � N,
the magnetic pressure term in Eq. (30) is negligible compared to
Λm

k (νM,env)/σ2
M,envW ′k,m (see Appendix D).

Therefore, we obtain

d
dr

(r2ξ′r;k,m) =

Λm
k (νM,env)

σ2
M,env

 W ′k,m −
1
Γ1

d ln P̄
dr

(r2ξ′r;k,m) . (48)

With the definition of v, we get

W ′k,m =

 σM,env√
Λm

k (νM,env)ρ̄

 [dv
dr
−

(
1
2

d ln ρ̄
dr
−

1
Γ1

d ln P̄
dr

)
v

]
. (49)

From these expressions, we write

ξ′r;k,m

r

∣∣∣∣∣∣
r=ra

' QεXm
k (sM,env) (50)

and

W ′k,m|r=ra ' Qr2
aσ

2
M,envYm

k (sM,env) , (51)

where we have introduced very similarly to TT22 the following
functions:

Xm
k (sM,env) =Λm

k (νM,env)1/6s2/3
M,env

× sin
(
π2sM,env

ΩenvΠ0,M
−
π

6

)
(52)

and

Ym
k (sM,env) = αΛm

k (νM,env)−1/2s4/3
M,env

× sin
(
π2sM,env

ΩenvΠ0,M
−

5π
6

)
, (53)

with α ' 0.73, whose exact value is given in Appendix B. There
is a slight change in Q due to our different definition of w com-
pared to TT22 that does not matter in our calculations since Q is
a common linear multiplicative term.

The expressions for the linear perturbation to the Lagrangian
displacement and the total dynamical pressure are now deter-
mined through respectively Eq. (50) and Eq. (51) at the lower
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boundary of the m–g–i modes cavity. However, the coupling of
the envelope m–g–i modes and core m−i modes is happening at
Rcore. Nevertheless, due to the high value of the N gradient from
Rcore to ra, the core-to-envelope boundary is close to the lower
turning point of m–g–i modes: Rcore ≈ ra. In this case, the mode
structure at ra is close to the one at Rcore. We need to check this
affirmation, however. We thus adapt the estimation of the ratios
(34) and (35) of TT22 to the magnetised case: here N2|r=Rcore = 0
and N2|r=ra = σ2

M,env. Then

Rcore

ra
∼ 1 −

ε3

s2
M,env

(54)

and

v|r=Rcore

v|r=ra

∼ 1 + O

 ε2

s4/3
M,env

 . (55)

This expansion can be readily seen as follows: if the N gradient
at ra is small, hence ε is high, then at fixed sM,env, ra moves away
from Rcore. Conversely, at fixed ε, hence N gradient, the lower
the frequency of the mode in the frame co-rotating with the enve-
lope (thus higher sM,env), the lower the difference between ra and
Rcore. Summing up, using the expansion of v and w at ra for the
coupling at Rcore is only valid for low ε and high sM,env. We stay
in this regime for the rest of this work.

3.3. Core m−i modes: Derivation of Bryan solutions

We now consider convective core magneto-inertial (m−i) modes.
To get an analytical modeling of core m−i modes similar to
the Bryan solutions obtained in the hydrodynamical case (Bryan
1889) and stay in an analytical framework for core m−i modes,
we assume there a uniform core density. We point out the impor-
tance of this approximation, the core density stratification being
the main source of the variation of the spin parameter at which
the interaction occurs in the solid-body, non-magnetic study of
Ouazzani et al. (2020). As computed in Wu (2005), the pure iner-
tial mode spin parameter decreases with an increasing steepness
of the core density profile. Ouazzani et al. (2020) noticed this
effect, highly correlated to the age of the star on the MS: the
more evolved the star is, the steeper the gradient of core density,
decreasing the spin parameter of the pure inertial mode, hence
the location of the dip in period. However, we decided not to take
into account this effect in our study, focusing first on the effect
of magnetism only on the location and morphology of the dip.

We revert back to the momentum Equation (20) used before
further development using the TARM. In a non-stratified core,
the TARM drops and one has to consider the set of equations
with a full treatment of both the Coriolis acceleration and the
Lorentz force. We base our study on the one given in Malkus
(1967), adapting Bryan solutions to the case of our magnetic
set-up, with a uniform Alfvén frequency in the core. Literature
results such as the establishment of the linear system of equa-
tions and the main properties of core modes are only recalled in
the main text below, while being developed in detail in Appendix
C for readability.

We consider the momentum equation assuming a uniform
density:

−Aξ′ + iB̂ez × ξ
′ + ∇W ′ = 0. (56)

Along with this hypothesis of mean density in the core, the
anelastic approximation which is assumed for both the core and

the envelope reverts back to an hypothesis of incompressibility in
the convective core. In an incompressible framework, we retrieve
the Bryan solutions (Bryan 1889), which consists in solutions
separated in ellipsoidal coordinates (Wu 2005). The correspond-
ing expressions at the boundary of the core are

ξ′r;l,m(r)

r

∣∣∣∣∣∣
r=Rcore

∝ Cm
l (1/νM,core)Pm

l (µ) (57)

and

W ′l,m(r)|r=Rcore ∝ R2
coreσ

2
M,corePm

l (1/νM,core)Pm
l (µ) . (58)

We defined Cm
l as in Ouazzani et al. (2020) and BMB25:

Cm
l (x) = x

(
dPm

l (x)
dx

−
m

1 − x2 Pm
l (x)

)
. (59)

We consider isolated m−i modes, that we further make interact
with m–g–i modes. For m−i modes, the condition of ξ′r = 0 at
the core boundary, translates into Cm

l (1/νM,core) = 0. This is an
eigenvalue problem that sets the values of νM,core for each iso-
lated (l,m) m−i mode, ν∗M,core.

We see that with the considered magnetic configuration, the
MHD problem is very similar to the hydrodynamical one: the
spin parameter controlling the frequency dependence of the vari-
ables of interest is replaced by the magnetic structural parameter.
The critical latitudes at µ = 1/score in the hydrodynamical case,
typical of inertial modes, are shifted by the additional influence
of the Lorentz force in such a configuration, appearing now at
latitudes µ = 1/νM,core. We see that as in the case of the TARM in
the radiative envelope, the parameter νM,core specific to the core
controls the angular structure of the m−i modes, hence advocat-
ing for our denomination as the magnetic structural parameter.
Then the whole solution of the variables of interest near the core
is the following sum:

ξ′r
r

∣∣∣∣
r=Rcore

=
∑

l

blCm
l (1/νM,core)P̃m

l (µ), (60)

and

W ′|r=Rcore = σ2
M,coreR2

core

∑
l

blPm
l (1/νM,core)P̃m

l (µ) (61)

with P̃m
l the normalised Legendre polynomial

P̃m
l ≡

√
(2l + 1)(l − m)!

2(l + m)!
Pm

l (x) , (62)

and bl constant factors.

3.4. Impact of the Alfvén frequency profile

The field configuration taken throughout this work of a toroidal
field with bi-layer Alfvén frequency is a strongly simpli-
fied modelling of the reality. MHD simulations of convec-
tive cores have shown mixed toroidal-poloidal character for
the dynamo-generated magnetic fields, on an extended range
of spatial scales (Brun et al. 2005; Featherstone et al. 2009;
Augustson et al. 2016). We chose to consider a simpler config-
uration to remain analytical, keeping in mind that the seismic
probe would be sensitive to the largest spatial scales of the mag-
netic fields due to the low degree of the inertial mode. Consid-
ering a core magnetic field of varying Alfvén frequency would
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break the analytical character of the obtained solutions. Terms
composed of the gradient of the Alfvén frequency appear at the
RHS of Eq. (56). The solutions become non-separable in ellip-
soidal coordinates. No analytical solution can be derived and the
equation must be solved numerically. The condition of null radial
Lagrangian displacement at the boundary evolves from the one
given by Eq. (59), resulting in a different eigenvalue problem and
a ν∗M,core shifted from the one obtained with a constant Alfvén
frequency in the core.

Numerical work is then needed to solve the eigenvalue prob-
lem in the presence of a radially varying Alfvén frequency, and
derive the angular structure of the isolated m−i mode in a more
realistic magnetic field configuration. This can be done by using
a spectral code, for instance DEDALUS (Burns et al. 2020),
using its eigenvalue solver. When both ν∗M,core and the angular
structure of the mode are obtained, we can rewrite the quantities
of interest on the basis of Legendre polynomials, as suggested
by TT22 to treat a non-uniform density in the hydrodynamical
case. Eqs. (57) and (58) are then respectively replaced by

ξ′r
r

∣∣∣∣
r=Rcore

∝
∑

l

gl(νM,core)P̃m
l (µ) (63)

and

W ′|r=Rcore ∝ σ
2
M,coreR2

core

∑
l

hl(νM,core)P̃m
l (µ). (64)

The reasoning could then be pursued with this numerical solu-
tions. However, we choose to stay in the framework of Bryan
solutions for this work as it is our present aim to set up an analyt-
ical laboratory for the comprehension of the effect of magnetism
on the dip profile.

4. Coupling equation and approximate analytical
profiles for the dip structure

Having now derived the core and envelope oscillation modes
structure, we consider in this section their coupling through
the core-to-envelope boundary. We here recall that all rele-
vant parameters and notations are regrouped and explained in
Appendix B.

4.1. Matching quantities in the magnetic set-up

Compared to the hydrodynamical, solid-body rotating case, the
matching of the quantities at the interface leading to mode cou-
pling would rigorously comprise an influence of the background
Lorentz force. This point is discussed in Appendix D. Since
we neglected the non-sphericity of the hydrostatic background
as in Mathis & De Brye (2011), for consistency we consider
dP̄tot/dr ' −ρ̄ḡ, −ḡ̂er being the local self-gravity acceleration.

The Lagrangian perturbation of the total pressure is written:

δPtot = P′tot +
dP̄tot

dr
ξ′r (65)

= ρ̄W ′ − rρ̄ḡ
(
ξ′r
r

)
. (66)

We ensure the continuity of ξ′r and δPtot. If the background den-
sity ρ̄ is continuous at the boundary, the continuity of δPtot is
equivalent to the one of W ′, the Eulerian dynamical pressure per-
turbation.

The matching equations at Rcore equivalent to those of
BMB25 are the following:∑

k

akεXm
k (sM,env)Θm

k (µ; νM,env)

=
∑

l

blCm
l (1/νM,core)P̃m

l (µ) (67)

and:

σ2
M,env

∑
k

akYm
k (sM,env)Θm

k (µ; νM,env)

= σ2
M,core

∑
l

blPm
l (1/νM,core)P̃m

l (µ) . (68)

We project Eq. (67) on the Hough functions basis. We get

akεXm
k (sM,env) =

∑
l

blCm
l (1/νM,core)ck,l , (69)

where we have defined

ck,l =

∫ 1

−1
Θm

k (µ; νM,env)P̃m
l (µ)dµ . (70)

After projecting Eq. (68) on Hough functions, we obtain the
matrix equation

[M(sM,env, νM,core) − εN(sM,env, νM,core)]b = 0 , (71)

b being the column vector of the terms bl. The matrices are
defined as

[M]k,l = ck,lσ
2
M,envYm

k (sM,env)Cm
l (1/νM,core) (72)

and

[N]k,l = ck,lσ
2
M,coreXm

k (sM,env)Pm
l (1/νM,core) . (73)

For b not to be trivial, we have the following condition:

det[M(sM,env, νM,core) − εN(sM,env, νM,core)] = 0 . (74)

In a similar manner to the one adopted in TT22 and BMB25,
we consider only the under-dominant term of order O(ε) in this
determinant, corresponding to a core m−i mode of index (l,m)
interacting with a series of m–g–i modes of index (k,m). We refer
to BMB25 for the extended reasoning behind this approxima-
tion. Appendix D of Galoy et al. (2024) tackles a more rigorous
multi-mode interaction extended to the non-negligible geomet-
rical factors, in the case of a non-magnetic uniformly rotating
star. We let the application of this method to the magnetic case
for future studies, while verifying a posteriori in Section 5.3.1
that the geometrical factor for the dominant mode interaction
considered here does not vary appreciably in the range of Lehn-
ert number contrasts explored in this work. Isolating the inter-
acting under-dominant term leads to the following simplified
condition:

σ2
M,envYm

k (sM,env)Cm
l (1/νM,core)

σ2
M,coreXm

k (sM,env)Pm
l (1/νM,core)

' ε . (75)

We identify the similarity in the structure of this coupling equa-
tion to Eq. (28) in BMB25. This is not a coincidence, as the
choice of a toroidal field in our set up makes the Lorentz force
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having a similar mathematical form as the Coriolis accelera-
tion. In the framework of a solid-body rotating model with
a continuous Alfvén frequency, the coupling equation simpli-
fies to

Ym
k (sM)Cm

l (1/νM)
Xm

k (sM)Pm
l (1/νM)

' ε . (76)

Even though this equation holds similarities with the hydro-
dynamical counterpart (Eq. 56 in TT22), we emphasise here
the difference between the magnetic structural parameter νM,
controlling the frequency dependence of the Hough functions
and the eigenvalue of the LTE Λm

k in the TARM as well as
the Bryan solutions, and the magnetic spin parameter sM. This
is a key distinction with the work of TT22, even in the case
of uniformly rotating stars with continuous Alfvén frequency.
The non-magnetic equivalent of both the magnetic structural
and spin parameter is the hydrodynamic spin parameter. This
is where the formalism of BMB25 is mandatory to use, as
even in this simplified magnetic case the quantities to match
in the coupling equation do not depend on the same frequency
variable.

Reverting back to the general case, we define

Fm
l (νM,core) ≡ −

Cm
l (1/νM,core)

Pm
l (1/νM,core)

. (77)

Using this definition and those of Xm
k and Ym

k given by Eqs. (52)
and (53) in the coupling equation Eq. (75), we obtain

Fm
l (νM,core)

√
3

2
α

Λm
k (νM,env)2/3 s2/3

M,env

σ2
M,env

σ2
M,core[

cot
( π2sM,env

ΩenvΠ0,M
−
π

6

)
+

1
√

3

]
' ε . (78)

We further seek to retrieve the inertial dip profile in the
magnetic case assuming approximations that are close to the
ones made in BMB25, to get a better understanding of the
effects of magnetism. The coupling Equation (78) is completed
by relations linking the magnetic spin and structural param-
eters sM,zone and νM,zone based on the unicity of the frequen-
cies in the inertial frame from both sides of the boundary
and the knowledge of the rotation rates Ωzone and the Alfvén
frequencies ωA,zone. We define for this purpose the following
functions:

ucore : sM,core 7→ νM,core , (79)

uenv : sM,env 7→ νM,env , (80)

and

GM : sM,core 7→ sM,env . (81)

These functions are computed by ensuring the constant value of
the frequency in the inertial frame σin. In the general magnetic,
differentially rotating case, the equations linking the magnetic
structural parameters and spin parameters are quadratic, whereas
in the non-magnetic case the equation senv = G(score) was linear,
and an analytical expression for G could be derived. Practically,
we compute these functions and their gradients numerically. In
the limiting case of differential rotation without magnetism, GM
simplifies to the function G used in BMB25.

4.2. Derivation of analytical profiles for the dip structure for
the uniform and bi-layer cases

We further consider in this section derivations of the dip profile
in a uniformly rotating star with a uniform Alfvén frequency, a
case that can be considered as the simplest extension of TT22’s
model. The magnetic field would be strong enough to completely
suppress differential rotation in the convective core (Brun et al.
2005) and in the radiative zone (Ferraro 1937; Gaurat et al. 2015;
Moyano et al. 2023). It would also perfectly connect the con-
vective core and the radiative envelope: Augustson et al. (2016)
(see their Fig. 6), have clearly established that compared to a
hydrodynamical case, taking into account a magnetic field would
result in a nearly solid-body rotating star.

We consider as well the more general differentially rotating,
bi-layer Alfvén frequency model, which can be seen as a gener-
alisation of BMB25’s model. The field would be strong enough
to inhibit differential rotation in the two zones, but would not
perfectly connect the core and the envelope, leading to a discon-
tinuity in the rotation rate and the Alfvén frequency.

4.2.1. Case of solid-body rotation and uniform Alfvén
frequency

We treat first the case of a solid-body rotating star with a uni-
form Alfvén frequency, highlighting the impact of the most sim-
ple magnetic configuration when compared to the non-magnetic
case treated by TT22. We refer in that case to the function u
without subscript, linking νM to sM. In this case, the coupling
equation reads

Fm
l (νM)

√
3

2
α

Λm
k (νM)2/3 s2/3

M

[
cot

( π2sM

ΩΠ0,M
−
π

6

)
+

1
√

3

]
' ε .

Let us expand the prefactor around the zero of Fm
l , the magnetic

structural parameter of the m−i mode ν∗M:

Fm
l (νM)

√
3

2
α

Λm
k (νM)2/3 u−1(νM)2/3 'dFm

l

dνM

√
3

2
α

(Λm
k (νM))2/3 (u−1(νM))2/3


ν∗M

(νM − ν
∗
M) . (82)

Defining the structure factor with solid-body rotation and uni-
form Alfvén frequency VM as

VM = −

dFm
l

dνM

√
3

2
α

(Λm
k (νM))2/3 (u−1(νM))2/3


ν∗M

, (83)

we can make the comparison with the non-magnetic, solid-body
rotating structure factor V of TT22:

VM/V =

(u−1(νM)
νM

)2/3
ν∗M

. (84)

We define the magnetic control parameter ΓM =
3πε

4ΩVM
. The

coupling equation with VM reads

−VM(νM − ν
∗
M)

[
cot

(
π2sM

ΩΠ0,M
−
π

6

)
+

1
√

3

]
' ε .
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The same reasoning that in BMB25 or TT22, detailed in
Appendix E, leads to

1
∆PM

−
1

Π0,M
'

ΓM

π

du
dsM

∣∣∣∣∣
s̄M((

PM − P∗M
) du

dsM

∣∣∣∣∣ s̄M+s∗M
2

+
ΓM
√

3

)2

+ Γ2
M

, (85)

with PM = πsM/Ω, P∗M = πs∗M/Ω = πu−1(ν∗M)/Ω.

4.2.2. General solution: Bi-layer rotation rate and Alfvén
frequency

We move now to a case in which the magnetic fields are of sig-
nificant strength from both sides of the boundary to ensure a
bi-layer rotation, but are discontinuous at Rcore. This configura-
tion is a first analytical model that allows different magnetic field
strengths in both zones, as would be the case if different gener-
ations and sustaining mechanisms were at play in the convec-
tive core and the radiative envelope, respectively a convective
dynamo-generation in the core and a Tayler-Spruit mechanism
or a fossil field in the envelope. This case of a discontinuous
Alfvén frequency would be favoured if a strong core dynamo
field would reduce the amount of core-to-envelope boundary
mixing: the fields would be connecting on a length scale lower
than the local wavelength of the mode, which would effectively
probe a discontinuous drop of the Alfvén frequency.

In this case, the coupling equation reads

Fm
l (νM,core)

√
3

2
α

Λm
k (νM,env)2/3 s2/3

M,env

s2
M,core

s2
M,env

α2
rot

×

[
cot

(
π2sM,env

ΩΠ0,M
−
π

6

)
+

1
√

3

]
' ε . (86)

We recall αrot = Ωenv/Ωcore. Expanding Fm
l around its zero in

νM,core

Fm
l (νM,core)

√
3

2
α(GM ◦ u−1

core(νM,core))2/3

Λm
k ((uenv ◦GM ◦ u−1

core)(νM,core))2/3

×
u−1

core(νM,core)2α2
rot

(GM ◦ u−1
core(νM,core))2

'

 dFm
l

dνM,core

√
3

2
α(GM ◦ u−1

core(νM,core))2/3

Λm
k (uenv ◦GM ◦ u−1

core(νM,core))2/3

×
(u−1

core(νM,core))2α2
rot

(GM ◦ u−1
core(νM,core))2

]
ν∗M,core

(νM,core − ν
∗
M,core) , (87)

◦ being the composition operator. We define in this case the
structure factor VM,, as

VM,, = −

 dFm
l

dνM,core

√
3

2
α(GM ◦ u−1

core(νM,core))2/3

Λm
k (uenv ◦GM ◦ u−1

core(νM,core))2/3

×
(u−1

core(νM,core))2

(GM ◦ u−1
core(νM,core))2

α2
rot

]
ν∗M,core

. (88)

The correction to the solid-body rotating, non-magnetic case is

VM,,/V =

 Λm
k (νM,core)

Λm
k (uenv ◦GM ◦ u−1

core(νM,core))

2/3

×

(
GM ◦ u−1

core(νM,core)
νM,core

)2/3

×

(
u−1

core(νM,core)
GM ◦ u−1

core(νM,core)

)2

α2
rot


ν∗M,core

. (89)

The coupling equation is

−VM,,(νM,core − ν
∗
M,core)

[
cot

( π2sM,env

ΩenvΠ0,M
−
π

6

)
+

1
√

3

]
' ε . (90)

Defining in that case the magnetic control parameter ΓM,, =
3πε

4ΩenvVM,,
, we get after some calculations detailed in

Appendix E the following expression:

1
∆PM

−
1

Π0,M
'

ΓM,,

π

ducore ◦G−1
M

dsM,env

∣∣∣∣∣
s̄M,env(PM − P∗M)

ducore ◦G−1
M

dsM,env

∣∣∣∣∣ s̄M,env+s∗M,env
2

+
ΓM,,
√

3

2

+ Γ2
M,,

. (91)

Here PM = πsM,env/Ωenv and P∗M = πs∗M,env/Ωenv = π(GM ◦

u−1
core)(ν∗M,core)/Ωenv.

4.3. From magnetic variables to quantities in the co-rotating
frame

Equations (85) and (91) are respectively quite comparable to
Eqs. (65) of TT22 and (37) of BMB25. However, these expres-
sions are written using the magnetic variables PM and ∆PM, and
need further manipulation to account for envelope magnetism
and revert back to P and ∆P, respectively the period and the
period-spacing of the modes in the frame co-rotating with the
envelope. For a mode of radial order n and of magnetic period
PM,n, the period in the co-rotating frame is

Pn =
PM,n√

1 +

(
mωA,envPM,n

2π

)2
. (92)

Differentiating this relation, to retrieve a modified dip profile,
this holds approximately for the period-spacing:

∆Pco =
∆PM1 +

(
mωA,envPM

2π

)23/2 . (93)

Envelope magnetism, in this particular configuration, adds a cur-
vature to the PSP. Particularly, the hydrodynamic spin parameter
s∗env of the pure inertial mode in the frame co-rotating with the
envelope is further shifted by the envelope magnetism towards

s∗env =
s∗M,env√

1 + m2Le2
envs∗2M,env

. (94)
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4.4. Summary of the expressions

Our calculations were pursued in the framework of a continuous
N at the core boundary. If the wavelength of the m−g−i mode is
superior to the lengthscale at which N varies at the boundary, a
formalism treating N as being discontinuous is more relevant, as
discussed in both TT22 and BMB25. We did not treat this case in
the core of the text in this work for conciseness. Calculations are
similar to the former case, except for some specificities detailed
in Appendix F.

We provide for readability in Appendix G the Table G.1,
which gathers the expressions for the coupling equation to
solve numerically as well as expressions for the approximate
Lorentzian profile derived in the cases of (1) solid-body rota-
tion and uniform Alfvén frequency and (2) solid-body rotation
and bi-layer Alfvén frequency, in the framework of a continuous
N in the region [Rcore, ra]. The same is also given in Table G.1 in
the framework of a discontinuous N at Rcore.

5. Results and discussion

We consider for the following discussion and examples the inter-
action between (k = 0,m = −1) envelope m−g−i modes and the
(l = 3,m = −1) m-i modes, except in Section 5.4. This enve-
lope Kelvin mode series is the most frequent in the spectrum of
γ Dor analysed by Li et al. (2020), and this particular interaction
creates dips in a range of spin parameters observable with the
4-years long baseline of the Kepler mission. Dips observed by
Saio et al. (2021) resulted from this interaction. For this particu-
lar case, Fm

l reads

F−1
3 (ν) = −

ν2 − 10ν − 15
(ν + 1)(ν2 − 5)

, (95)

and the magnetic structural parameter of the core mode is
ν∗M,core ' 11.3245.

5.1. Effect of magnetism on the morphology of the dip

5.1.1. Case 1: Model with uniform rotation rate and Alfvén
frequency

First, we study the case 1 where the star is in solid-body rotation
with uniform Alfvén frequency. We take a closer look at the cou-
pling equation Eq. (82), an we compare it to Eq. (57) of TT22.
With the magnetic variables sM and νM, the two equations dis-
play the same structure. The difference lies in the dependence of
the angular structure of the modes (Hough functions for enve-
lope m–g–i modes, Legendre polynomial for the Bryan solution
of core m−i modes) on the magnetic structural parameter νM,
and not on the magnetic spin parameter sM, while without mag-
netism, the two quantities both revert back to the hydrodynamic
spin parameter s.

For the considered mode interaction, the equations determin-
ing the spin parameter of the mode in the core evolved from
the hydrodynamical case to the magnetic one: the condition
ν∗ = 11.3245 leads to a reduced hydrodynamical envelope spin
parameter s∗ of the pure inertial mode. We plot in Fig. 4 iner-
tial dips in the frame co-rotating with the envelope obtained by
solving numerically the coupling equation Eq. (82), for a fixed
value of the coupling parameter ε and different Lehnert num-
bers. The dip is effectively brought to lower periods due to mag-
netism. In this figure, the additional curvature brought by enve-
lope magnetism is retrieved, as explained in subsection 4.3, and
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Fig. 4. PSPs containing inertial dips obtained by solving Eq. (82), from
a situation with no magnetic fields (black) to a Le = 2 × 10−2. The
coupling parameter is fixed at ε = 1.5 × 10−2, the buoyancy travel time
at Π0,M = 4670s, the rotation rate at Ω = 2π × 1.14 c.d−1, parameters
adapted to the im model.

modelised in more complex magnetic topologies (Dhouib et al.
2022; Lignières et al. 2024; Rui et al. 2024).

This additional curvature of the period-spacing further brings
the dip to lower periods in the co-rotating frame, or spin param-
eters. The problem is thus to disentangle the core magnetic field
contribution in this dip shift.

5.1.2. Model with uniform rotation rate and bi-layer Alfvén
frequency

We move to the case of a bi-layer Alfvén frequency, to finely
exhibit the contribution of core and envelope magnetism, respec-
tively. We stay in the framework of a solid-body rotating star, to
isolate the magnetic effects from the one of the Doppler shift
brought by differential rotation, highlighted in BMB25.

We show the evolution of the dip shape and location for a
fixed envelope Lehnert number Leenv = 10−3 with values of
ε, Ωenv and Π0,M adapted to the im model, and an evolving
Lecore ∈ {1×10−2, 3×10−2, 5×10−2, 7×10−2, 1×10−1} in Fig. 5.
These Lehnert numbers corresponding to magnetic field mid-
core values of {0.29, 0.86, 1.4, 20, 29}MG at the equator. We plot
the numerical solutions of the coupling equation (86) as dots, and
superimpose Lorentzian profiles described by Eq. (91). We first
verify the compliance of the Lorentzian profile with the numeri-
cal computation for a small ε. If ε becomes non-negligible, terms
of order ε2 that are neglected in our derivation of the dip profile
play a role and make the dip profile shallower than the numeri-
cally computed dip, as already seen in TT22. For this envelope
Lehnert number, chosen to avoid the regime where the enve-
lope m–g–i modes are suppressed, the magnetic curvature seen
in Fig. 4 is indistinguishable from a flat baseline.

The dip is shifted to lower envelope spin parameters, which
is due to the already mentioned fact that s∗M,env decreases from a
fixed value ν∗M,core with core magnetism. The dip is getting thin-
ner as the core magnetism increases. This is comparable to the
differentially rotating, hydrodynamic case analysed in BMB25.
This can be seen physically if we analyse the variation of the
function G−1

M , the contrast between sM,core and sM,env as a func-
tion of the Lehnert numbers of both the core and the envelope.
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Fig. 5. Inertial dips overplotted for different core Lehnert number for
a fixed envelope Lehnert number Leenv = 10−3 and coupling parame-
ter ε = 1.5 × 10−2, in a uniformly rotating star, in the framework of a
continuous N at ra. The dots are obtained by solving Eq. (82), and the
continuous line by applying the dip profile given by Eq. (86).

In the case of a uniformly rotating star, this reads

sM,core = G−1
M (sM,env) =

sM,env√
1 − m2(Le2

core − Le2
env)s2

M,env

. (96)

Given that the envelope modes are equally spaced in magnetic
spin parameter sM,env, we can see that the action of a magnetic
field stronger in the core than in the envelope (Lecore > Leenv)
is to increase sM,core from sM,env. From the core magnetic frame
where the magnetic frequency variables are used, the spacing
between the m–g–i modes is increased with enhanced magnetic
contrast. This is absolutely relatable to the differentially rotat-
ing, hydrodynamical situation (BMB25) in which the Doppler
shift decreases the density of g-i modes seen from the frame co-
rotating with the core.

Differentiating Eq. (96), we get the following expression for
the density of m–g–i modes seen in the core magnetic frame:

dsM,core

sM,core
=

dsM,env

sM,env
×

1
1 − m2(Le2

core − Le2
env)s2

M,env

. (97)

We see that this magnetic Doppler shift is thus decreasing the
density of the envelope modes seen from the core magnetic
frame. The core m−i mode can couple significantly with fewer
modes in its vicinity. The dip with increasing Lecore for a fixed
Leenv thus contains fewer modes, and is deepened, with only a
few modes influenced by the core m−i mode.

One can see considering Eqs. (96) and (97) that the magnetic
effects are only significant if the product Le2

zones2
M,zone is inferior to

1, but not negligibly small. This translates to ω2
A,zone being lower,

but non-negligible compared to σ2
zone: the lower the mode fre-

quency, the stronger the magnetic effect. Since the m−i mode has
a fixed value of ν∗M,core, its frequency is increasing for faster rotat-
ing stars. This means that the magnetic effects will be noticeable
on the interaction for a lower magnetic field amplitude for slower
rotators. We further discuss this point in Section 5.3.1.

5.2. Core magnetic field measurability from the study of
the dip

We present the evolution of the envelope (hydrodynamical) spin
parameter at which the core m−i mode appears, s∗env, as a func-

tion of Lecore in Figs. 6, 7, and 8, corresponding to respectively
the f z, iz, and im models. While the morphology of the dip is
modified by an envelope magnetism, as it makes the density of
m–g–i modes vary around the period at which the m−i mode
appears, s∗env is unsensitive to envelope magnetism and provides
a window on the core only: regardless of envelope magnetism,
if m–g–i modes of spin parameters around s∗env are present in the
PSP, then they can interact with the magneto inertial mode. In
the model considering a continuous N at the core-to-envelope
boundary, we have s∗env , senv,min, the spin parameter at which
the dip reaches its minimum, the latter depending on envelope
magnetism and stratification.

Degeneracy with core-to-envelope differential rotation put
aside (later discussed in Section 5.3.1), the inference of a con-
vective core magnetic field from the study of the inertial dip can
be hindered by two processes: (1) a non-significant shift of the
dip structure due to magnetism compared to a solid-body rotat-
ing, hydrodynamical situation, and (2) a suppression of m–g–i
modes close to the core due to a strong magnetism. These two
processes limit the range of core and envelope magnetism poten-
tially inferred from the dip study to a regime in which core mag-
netic fields are sufficiently strong to have a significant impact on
the envelope spin parameter s∗env at which the core m−i mode
would appear, and envelope magnetic fields lower than the limit
at which they would suppress m–g–i modes. We show in Figs. 6,
7 and 8 an estimate of the extent of these ranges for the three
considered models as a dotted region. In each figure, the consid-
ered ranges of core and envelope Lehnert numbers are translated
to respectively the mid-core value and the near-core equatorial
values of the magnetic field.

5.2.1. Non-significant shift of the dip due to weak core
magnetic field

For each figure, we estimate a lower limit on the difference
between s∗env and the solid-body, non-magnetic value of 11.3245
that could be considered significant enough in data. This corre-
sponds to the horizontal dashed lines in the figures. Above, the
difference is considered high enough for a significant deviation
from the solid-body, non-magnetic model. The main uncertainty
hindering this inference is the one on the near-core rotation rate,
estimated by fitting the PSP in the inertial frame with the TAR.
An estimation of this uncertainty is made using an average of
the uncertainties derived by Li et al. (2020) in a range of near-
core rotation rates Ωnc surrounding the one of the models, by
±0.1Ωnc.

5.2.2. Suppression of m−g−i modes by strong envelope
magnetic field

We then aim to estimate a limit in the envelope magnetic field
above which the vertical propagation would be inhibited. In this
situation, the m–g–i waves would be suppressed before reaching
the core and would not form modes seen in the PSP. In our model
with a pure toroidal field, we saw that the m–g–i mode become
evanescent is σenv < ωA,env. The envelope Alfvén frequency
would thus be the relevant cut-off frequency in our framework.
However, we seek to give more accurate limits on a potential
cut-off frequency, by considering a suppression mechanism by
the radial component of the field the modes are most sensitive
too, explored by Rui & Fuller (2023).

In both the field generation mechanisms that we described,
i.e. the fossil field scenario and the Tayler-Spruit mechanism,
a radial field should be present alongside a toroidal field, even
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Fig. 6. Ranges of core and envelope magnetism for which a measurement of core magnetic field is considered accessible from the dip study, for
model f z, represented as a dotted region in the {Lecore,Leenv} parameter space. The figure is coloured by the value of the envelope hydrodynamic
spin parameter corresponding to the pure inertial mode, s∗env. The core and envelope Lehnert numbers are respectively related to the half-core
magnetic field and to the magnetic field at the outer core-to-envelope boundary. Above the hatched line, the variation of the s∗env is considered
significantly deviating from its value in the solid-body, hydrodynamic case. To the right of the orange line, the hatched region shows the parameter
space for which modes at s∗env could be suppressed. The red continuous line shows the locus of equal Lehnert numbers in both zones. The white
horizontal line shows an estimation of the magnetic field in the magnetostrophic regime obtained from the MESA model. The super-equipartition
regime does not appear for the range of considered Lecore.
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Fig. 7. Same as Fig. 6, but for model iz.
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Fig. 8. Same as Fig. 6, but for model im. The black continuous horizontal line shows an estimation of the magnetic field in the super-equipartition
regime obtained from the MESA model.
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though the toroidal component can dominate. Braithwaite (2009)
stated that the ratio between the energy in the poloidal compo-
nent over the total energy has to be superior than 105 for a fossil
field to be stable, and Petitdemange et al. (2024) exhibit a ratio
of 10−2 to 10−1 of the radial component of the field compared to
the toroidal one. However, we saw in Fig. D.1 that in γ Dor inte-
riors N/ωA,env > 103. The negligibility of ωA computed with
the toroidal field in our framework means that the frequency
at which the modes are suppressed by a Rui & Fuller (2023)’s
like mechanism, ωB =

√
NωA,r (with ωA,r the Alfvén frequency

computed with the radial component of the field), is still superior
toωA given the toroidal-to-radial component ratios considered in
both mechanisms.

To give a conservative estimate of the limit envelope mag-
netic field that would lead to m–g–i mode suppression, we thus
choose to consider the frequency ωB =

√
N̄ωA,env, with N̄ a

mean value of N probed by the m–g–i modes in the JWKB limit
given in Appendix A. If s∗env exceeds 2Ωenv/ωB, it means that
the mode would be suppressed in a situation where the radial
component of the magnetic field has the same amplitude as the
toroidal one. This limit is marked by an orange line on the three
figures. One could also consider the maximum value of N, Nmax
reached close to the core-to-envelope boundary. This value devi-
ates more from the averaged value as the star ages, because of the
receeding convective core. It is unclear if the m–g–i mode energy
would actually be completely tamed by the local N spike near the
core, or if it would result in only a partial suppression, as seen
observationally in the case of RGB stars (e.g García et al. 2014).
For these reasons, as well as the previously explained uncer-
tainty on the suppression mechanism when a dominantly toroidal
magnetic field is considered, this line should be considered with
care, and can only be regarded as a rough estimate of this limit
field.

We see that in none of the models, the line of Lecore = Leenv
lies in the dotted region: a magnetic field with uniform ωA which
would have a detectable shift of s∗env would imply a suppression
of m–g–i modes by the envelope magnetic field.

5.2.3. Comparison to expectations for core and envelope
magnetic fields

In Figs. 6, 7 and 8, we plot in horizontal lines an estimate of the
core field strength obtained in a magnetostrophic regime, where
the Lorentz force balances the Coriolis acceleration. Given the
fast rotation of the γ Dors we are interested in, the Rossby num-
bers of the convective flow are very low, of the order of 10−4 to
10−3 in all the considered models. This advocates for a regime of
super-equipartition, with the ratio of magnetic to kinetic energy
densities scaling as a + bRo−1. This relation is considered in
several simulations listed in Augustson & Mathis (2019). How-
ever, we note that their minimal Rossby number is superior
to the Rossby numbers estimated in our case, using the Mix-
ing Length Theory from our MESA models. Featherstone et al.
(2009) found a magnetic energy density of 10 times the kinetic
energy density in the case of a 2.0 M� star rotating 10 times
slower than the slowest of our cases. We thus retained this esti-
mate for a lower limit on the core dynamo-generated magnetic
field to be expected. This limit is too low to appear on Figs. 6
and 7 but plotted as a black vertical line in Fig. 8. The mid-
core magnetic field amplitude in the regime of equipartition
Bequi is given in Table 1. With the strong rotation rate at play
in the considerd γ Dors, core dynamo should reach the regime
of magnetostrophy, with flows heavily structured by rotation and

magnetism. We retain this field Bms as an order-of-magnitude
estimate of the dynamo-generated magnetic field in our
models.

A magnetostrophic regime would correspond to a s∗env of
10.26 in the f z model, of 9.63 in the iz model, of 8.41 in the
im model. We see that even though the magnetostrophic field is
higher for the fast-rotating model, it would be harder to probe
than in the intermediate-rotating model, as we showed that the
magnetic effect is depending on the Lehnert number: fast rota-
tion requires a strong field for the magnetic effects to be notice-
able. At comparable rotation rates, the im model shows a more
noticeable effect of magnetism on s∗env due to the increased con-
vective velocities computed in the MLT for its core.

As for the envelope, an estimation of Tayler-Spruit gener-
ated toroidal magnetic fields is uneasy to get from first prin-
ciples, as it is a highly non-linear process. In MHD simula-
tions, Petitdemange et al. (2023) obtained a toroidal magnetic
field of the order of 40 kG for a set of parameters in a weakly
stratified layer N/Ω ≈ 1.24, centred at the middle of their
modelled radiative zone. In a strongly stratified regime, with
N/Ω ≈ 50, the magnetic field could reach 2 MG close at the
core-to-envelope boundary, but for a high Rossby number inap-
plicable to our situation. Petitdemange et al. (2024) showed that
a number of simulations showed a magnetostrophic regime of
the dynamo, i.e. the ratio of the magnetic energy on the kinetic
energy scales as the inverse of the Rossby number. Given the
rotation rates of the three models, we hypothesise that the Tayler-
Spruit generated magnetic field is stronger for the f z model
compared to the iz and the im. From the point of view of
the mode suppression, stars with intermediate rotation stand as
the best target for the inertial dip study. We prefer, however,
not to state on the establishment of this dynamo in our mod-
elled stars and on the field amplitude expected in their radiative
zone.

5.2.4. Impact of uncertainties on envelope stratification

It remains to discuss if one can actually measure s∗env, due to
uncertainties on the near-core stratification. First, as shown in
Table G.1 and already discussed in the hydrodynamical case by
BMB25, a continuous N profile at the boundary induces a phase
shift of the m–g–i mode compared to a discontinuous N, which
makes the location of the minimum of the dip shifted from this
value s∗env. In the case of a discontinuous N, we have ra = Rcore
and the minimum of the dip is at s∗env. If one aims to measure s∗env,
there is thus an uncertainty coming from an indetermination of
the near-core profile of N. Second, chemical modulations present
in the PSP has an impact on the dip fitting procedure in a way
described in Appendix G of BMB25. A precise determination
of s∗env would then benefit from a precise modelling of radiative
zone’s features and properties.

5.3. Degeneracy between differential rotation and magnetism

5.3.1. Effect on the spin parameter of the dip

We saw in Section 5.1.2 that the effect of a bi-layer Alfvén fre-
quency is quite comparable to the signature of differential rota-
tion. The local magnetic frequency of the m−i mode is increased
in the envelope compared to the core if Lecore > Leenv, which
is comparable to a Doppler shift brought by increased rotation
in the core compared to the envelope. To give further perspec-
tive, we compare the expression of GM to its hydrodynamical
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Fig. 9. Red: Variation of s∗env in the hydrodynamic differentially rotating
case with respect to the amount of differential rotation. Blue: MHD bi-
layer Alfvén frequency case with respect to the core Lehnert number.
The considered core Lehnert numbers translate to mid-core magnetic
fields range from 0.5 to 5 MG in the f z model, and 0.25 to 2.5 MG
in the im model. The horizontal thin lines represent the value of s∗env
expected for each of the models in the magnetostrophic regime. In the
im model, a mid-core equatorial magnetic field in the magnetostrophic
regime of 1.63 MG, corresponding to Lecore = 5.6×10−2, would shift the
dip to s∗env = 8.41 in a solid-body rotating magnetic model. This is the
same effect as a differential rotation of αrot = 0.951 in the differentially
rotating hydrodynamic model.

equivalent G used in BMB25,

sM,env = GM(sMcore) =
sM,core√

1 + m2(Le2
core − Le2

env)s2
M,core

(98)

and

senv = G(score) =
αrotscore

1 + m
2 (αrot − 1)score

, (99)

with αrot = Ωenv/Ωcore. The key difference is that at the zeroth
order in respectively (Le2

core − Le2
env)s2

M,core and (αrot − 1)score,
sM,env ∝ sM,core, while senv ∝ αrotscore. This implies that shifts
due to a limited rotation contrast are only mimicked by a strong
magnetic contrast, if the magnetic field is high enough to ensure
that Le2

cores2
M,core is non-negligibly small compared to unity.

We investigate the degeneracy of the signature of differential
rotation and magnetism, beginning first with the sole effect on s∗env,
the hydrodynamical envelope spin parameter at which the m−i
mode (or pure inertial mode in the hydrodynamical case) appears.
In Fig. 9, we plot this quantity, invariant with Leenv, as a function of
the amount of differential rotation in the hydrodynamical model,
and of the core Lehnert number. As expected with the qualitative
reasoning previously held, the signature of a core magnetic field
would be only significant for relatively high amplitudes: 1 % of
core-to-envelope differential rotation would have the same effect
as a Lehnert number of 2.2×10−2, which corresponds to an equa-
torial mid-core magnetic field of 1.1 MG in the f z model, 600 kG
in the iz model, and 620 kG in the im model.

Due to the competition between magnetism and the establish-
ment of differential rotation previously explained, it is unlikely
that a differential rotation of about 10% between the core and
the envelope will be present at the same time as a core magnetic

field at a MG scale. In MHD simulations of a 2.0 M� A-type
star, Featherstone et al. (2009) found a core-to-envelope differ-
ential rotation of less than 1 %. Considering the expected shift
in s∗M,env given for the three models, this amount of differential
rotation would make the detection of magnetic fields uncertain
in the case of the f z model: the magnetic effect would be of the
same order of magnitude as the differential rotation effect for the
estimated core magnetic field in the magnetostrophic regime, and
underdominant for a super-equipartion regime. In the im model,
the magnetic effect would be on the contrary predominant over
the differential rotation effect in a magnetostrophic regime.

We conclude by verifying one of the hypotheses inherent to
our model: the non-negligibility of the geometrical factor ck,l
defined in Eq. (70). For the range of Lecore considered and a low
envelope Lehnert number Leenv ≈ 10−3 required for the modes
not to be suppressed by the radial component of the magnetic
field, the envelope magnetic structural parameter controlling the
angular part of Bryan solutions for m–g–i modes varies in the
interval ν∗M,env ∈ [6.2, 11.2] for Lecore ∈ [10−2, 10−3]. These val-
ues are included in the interval of s∗env controlling the angular
part of Bryan solutions in the hydrodynamical case analysed in
BMB25. The reasoning held in their Appendix F thus holds for
the present study and ck,l in our present situation is not negligibly
small compared to unity either.

5.3.2. Possible constraints from dip shape

So far, we have only considered the variation of s∗env, the enve-
lope spin parameter corresponding to the core mode, in the uni-
formly rotating, bi-layer Alfvén frequency framework, and in the
bi-layer rotating, hydrodynamical one. We saw that an uncer-
tainty on the near-core stratification translates into an uncertainty
on the measurement of s∗env, and that there is a strong degeneracy
between the hydrodynamical and the MHD cases, that we can try
to alleviate considering the antagonist effect of strong magnetic
fields and differential rotation.

The position of the minimum of the dip senv,min, offset from
s∗env in the continuous N framework, and equal to it in the dis-
continuous framework, is not the only observable related to the
dip structure. As we saw in Section 5.1.2, the dip gets thinner
with increasing Lecore, so a decrease of the half-width of the dip,
∆senv,1/2 can be a hint for an increase of Lecore. However, both
an increase of core magnetism and core rotation compared to
the envelope, have a similar effect on this half-width, as it is
the case on s∗env. One has also to consider the effect of the cou-
pling parameter ε, an increase of which would widen the dip
and displace it towards low spin parameters. This latter effect
is nevertheless underdominant compared to differential rotation,
as argued in BMB25. The latter work studied the potential mea-
surement of both the differential rotation αrot and the coupling
parameter ε from the dip study. We see that magnetism here com-
plicates the study and adds an extra-layer of degeneracy. A way
to partially lift it is to provide constraints on this parameter ε by
stellar modelling, as done by Aerts & Mathis (2023) for a sample
of γ Dor and SPB stars. However, ε measured this way suffers
from the propagation of uncertainties on stellar modelling such
as the core-to-envelope boundary mixing, which would change
the shape of N near-core, key parameter for the mode interac-
tion throughout the boundary. Uncertainty also comes from the
use of either a continuous or a discontinuous N at the boundary
in our models (BMB25). Due to the receding convective core
during the MS evolution leaving a strong gradient of near-core
molecular weight and hence a sharp increase of N near-core, the
latter model would be more applicable for stars approaching the
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Fig. 10. Half-width of the dip ∆senv,1/2 and its minimum spin parame-
ter senv,min for Lecore ∈ [10−2; 10−1] and a fixed Leenv = 10−3. ε varies
between 6 × 10−3 and 6 × 10−2, values that are small enough to allow
us to use the Lorentzian profile derived for this analysis. The thick lines
are iso-ε in the uniformly rotating magnetic case. The dashed lines are
the same obtained from the hydrodynamic differentially rotating model.

TAMS, so both models would not be equally favoured during the
evolution, but an uncertainty would still remain.

We plot in Fig. 10 a map for which the dip’s minimum senv,min
and its half-width ∆senv,1/2 are plotted and coloured by their core
Lehnert number in the interval Lecore ∈ [10−2; 10−1], for a fixed
value Leenv = 10−3. In this regime, the envelope magnetic field
would not likely cause m–g–i mode suppression. Lines of iso-ε
are overplotted as thick black lines on this figure. We retrieve the
fact that at equal ε, both the half-width and the minimum of the
dip decrease with increasing core magnetism. This behaviour is
the same as for differential rotation (see Fig.4 of BMB25). We
overplot on this figure the same lines of iso-ε obtained in the
differentially rotating hydrodynamical framework from BMB25
as dashed lines, with αrot ∈ [0.90; 1] and the same range of ε
as for the magnetic case. We see that even though these lines
are not overlying, which is expected due to the different expres-
sions of senv,min and ∆senv,1/2 in the MHD or the hydrodynamical
framework, the whole region of (senv,min,∆senv,1/2) obtained with
the magnetic model is spanned by the hydrodynamical model. If
no constraint is given on ε, a complete degeneracy is observed:
the (senv,min,∆senv,1/2) given by some combination (αrot, εrot) in
the hydrodynamical model can be obtained by a combination
(Lecore, εM) in the MHD model. Even if a constraint is given on ε,
the uncertainty on its determination would be too high to safely
exclude one of the models. As there would be an additional
uncertainty due to the core density stratification not considered
in the present model, and an uncertainty on the continuity of N
at the boundary, we can state that differential rotation and core
magnetism in the considered toroidal configuration are insepara-
ble from a study of the inertial dip between (l = 3,m = −1) core
m−i mode and the (k = 0,m = −1) envelope Kelvin mode series.

5.4. Lifting degeneracies from the study of additional g–i
mode series

We foresee a promising lead in using inertial dips appearing for
different envelope mode series than the (k = 0,m = −1) one

extensively analysed in the present work. Galoy et al. (2024)
analysed two other types of inertial dips for (k = 0,m = −2)
and (k = 1,m = 0) series appearing at spin parameters poten-
tially observable in γ Dor stars: around senv,min = 8.5 for the
former and senv,min = 2.2 for the latter one. Especially, a dip
in the (k = 0,m = −2) mode series would be a prime target
for our purposes: we saw that the effect of magnetism scales as
m2, whereas the effect of differential rotation scales as m only.
This property has already been used in the context of RGB stars
(Loi 2020; Bugnet et al. 2021; Mathis et al. 2021; Li et al. 2022;
Mathis & Bugnet 2023; Das et al. 2024): magnetism provokes
asymmetry in the rotational triplets of mixed modes, an effect
that can only be attributed to the magnetic field if one considers
the first-order effect of rotation. In a similar manner, integrating
two dips in the study would contribute to a lift of the degener-
acy between differential rotation and core magnetism. From the
study of one inertial dip in the (k = 0,m = −1) mode series, we
saw that there is degeneracy with a value of αrot in the hydro-
dynamical model, and a value of Lecore in the MHD one. From
the study of the dip in (k = 0,m = −2) mode series, there would
be an other degeneracy between an αrot and a Lecore. Due to the
difference between the differential rotation effect, doubled from
the m = −1 to the m = −2 mode series, and the magnetic effect
quadrupled between the same series, only one model will be con-
sistent with both observations.

However, no detection of dips in the (k = 0,m = −2) mode
series has ever been made. The number of detection of dips
in (k = 0,m = −1) mode series, the most frequent PSP pat-
tern found in γ Dor stars (Li et al. 2020), is expected to grow.
The sample consists as for now of 16 stars visually selected by
Saio et al. (2021), without systematic study of the most extended
up-to-date Li et al. (2020)’s sample. We hereby point the interest
in analysing both mode series when available: 42 % of the stars
analysed by Li et al. (2020) containing a (k = 0,m = −1) PSP
contain as well a (k = 0,m = −2) one (see their Fig.7).

5.5. Limitation of the scope

5.5.1. Limitations shared with the hydrodynamic case

This model shares the limitation exposed in Section 4.7 of
Barrault et al. (2025). We neglected in both works the varia-
tion of the buoyancy travel time Π0,M, we considered only the
dominant mode interaction and thus stayed in the framework
of low ε values and disregarded the variation of the geomet-
rical parameter ck,l. We hypothesised a sphericity of the core
and of the entire star. These hypotheses taken in the hydrody-
namical model are consistent with the presence of magnetism,
as the magnetic field strengths taken in this work give rise to
Lorentz forces only weakly influencing the equilibrium struc-
ture, especially in the core and the inner radiative zone (see
Appendix D). This is less true for outer regions, for which a
magnetic field could displace the upper turning point of the m–
g–i modes rb from their non-magnetic equivalents. The over-
all sphericity of the outer regions of the star could be attained,
leaving an imprint on the angular structure and spectrum of m–
g–i modes (Dhouib et al. 2021a). This effect would be negligi-
ble, however, compared to the flattening due to the centrifugal
acceleration (Duez et al. 2010b), which itself has no impact on
the coupling problem due to the concentration of the g−i mode
energy at the base of the radiative envelope, but would induce a
small shift in the g−i mode frequencies (Dhouib et al. 2021a).
Additionally, contrary to their chemically peculiar equivalent
Ap stars, γ Doradus likely possess a weak surface field, still
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undetected up-to-date (Henriksen et al. 2023), which would not
change the geometry of the outer layers of the star.

5.5.2. Limitations due to the considered field

The profile and geometry of the field taken stand out as an obvi-
ous limitation of our model. The toroidal field with bi-layer
Alfvén frequency is taken in this work as a laboratory towards
the comprehension of the magnetic effects and their resem-
blance, or dissemblance with differential rotation. The toroidal
hypothesis is in line with a domination of the toroidal compo-
nent in the dynamo-generated core magnetic field due to fast
rotation, as well as for the mainly toroidal field hypothesised
in the Tayler-Spruit mechanism. However, a radial component
of the magnetic field will supposedly have a stronger effect than
the toroidal component on the envelope m–g–i mode, since their
displacement is mainly transverse. Second, the geometry of the
dynamo-generated core magnetic field would be far more com-
plex, and the influence of a poloidal component would have to
be studied. Our study would still be useful in the framework of
a realistic field by providing an estimate of the impact of its
toroidal component. We expect the impact of a complex field
on the dip structure to be qualitatively in line with our findings
based on this simple field profile, as what has been shown for
the magnetic shift of g−i modes with more complex geometries
(Rui et al. 2024; Lignières et al. 2024) than the purely toroidal
one (Dhouib et al. 2022).

We nevertheless adopted this strongly simplified radial pro-
file especially to maintain the analytical character of the core
m−i modes in the form of Bryan solutions. As argued in
Section 3.3, computing the eigenfrequencies and the structure of
core m−i modes in a more general magnetic configuration and
core density gradient, with a (supposedly columnar) differential
rotation would require the use of a spectral code. It would allow
for a fine comprehension of the contributions of each effects
along the aging of the star, which builds up an increasing core
density gradient. The subsequent integration in the model devel-
oped in this work would be the scope of an entire separate semi-
analytical work, while our present study aims at providing an
analytical comprehension of the dip formation.

As for the hypothesis of constant Alfvén frequency in the
envelope, this could be lifted in future works by considering
m–g–i modes in the more general framework of Dhouib et al.
(2022) applying a TARM with a radially varying profile of
the Alfvén frequency, or model m–g–i modes with a different
magnetic field, taking the recent works of Rui et al. (2024) and
Lignières et al. (2024) as a start.

5.5.3. Potential of direct numerical calculations

The efforts to better understand the inertial dip and its intricate
dependences will also come the refinements of stellar oscillation
code, as done by Ouazzani et al. (2020), Saio et al. (2021), and
Galoy et al. (2024) in a hydrodynamic framework. The extension
of the codes used in these works to a MHD framework shows a
great potential that will allow us to probe more realistic field
geometries and topologies.

Improvement is also expected in the treatment of the tran-
sition region from the core to the envelope. As TT22 argues
based on Saio et al. (2021), overshooting with a radiative gra-
dient in the transition zone would result in a multiplicity of dips,
whereas convective penetration with an adiabatic gradient would
not. In a magnetic context, this would be the precise zone where

field lines from the core and the envelope might connect, and the
dip could show probing power of this poorly constrained phe-
nomenon, as well as some hint on the type of transport at play in
this intermediate zone.

5.6. Best targets for measurements of core or envelope
magnetism

From our work, the measurement of core magnetism by the dip
study and envelope magnetism by the curvature of the PSP and
the suppression of modes appear difficult to perform at the same
time. The inertial dip in the (k = 0,m = −1) Kelvin mode series
appears at relatively high spin parameters (s∗env > 8 for a real-
istic magnetic field in the im model, see Fig. 9). The PSP thus
needs not to be cut at high mode periods by the action of an
envelope magnetic field on g-i modes. This results in an undis-
tinguishable signature of the envelope magnetism on the PSP
curvature in Fig. 5. On the other hand, envelope magnetism will
be most detected if the PSP is curved and cut at an unusually
low spin parameter in the PSP, in this case the dip would not
appear in the PSP. Additionally, we saw that realistic core mag-
netic fields most likely leaves an imprint on the dip in the im
model, aged and with intermediate rotation. The more the star
ages on the MS, the more modulated the PSP is, due to the build-
ing of chemical stratification. The measurement of an additional
curvature due to envelope magnetism will be made uneasy in
a PSP with modulations. Moreover, an aged star will present a
higher near-core N due to a strong molecular weight gradient
left by the receding convective core. The coupling parameter ε
would be lower for such stars compared to ZAMS ones, thus the
dip would be deeper and more distinguishable.

We observed that in our magnetic set-up, a core magnetism
would be degenerate with a core-to-envelope differential rota-
tion. A curvature in the PSP would not help to distinguish mag-
netic fields from differential rotation either, as it would not have
a sizeable imprint on the PSP if the inertial dip is observed.
This means that the results on the measurement of differential
rotation by Saio et al. (2021) could be reinterpreted in light of
these elements. This work derived a differential rotation by fit-
ting a numerically computed PSP with a dip profile to 16 stars
observed by Li et al. (2020), with different hypotheses on the
core-to-envelope overshooting. From our results, the differential
rotation rates observed could be upper limits, as core magnetism
would further shift the dip towards low periods.

We hypothesise that core magnetism could be an explana-
tion for stars having unusually high core-to-envelope differential
rotation detected (see Fig. 14 of Saio et al. 2021). This is the case
of KIC05985441 with a detected αrot = Ωenv/Ωcore = 0.85 in the
model without overshooting and an inertial dip at senv,min ≈ 5.6
and KIC04390625 with αrot = 0.92 in the model without over-
shooting and an inertial dip at senv,min ≈ 6.6. We can evalu-
ate an upper limit on the magnetic field that would result in
such shifts with our solid-body rotating, magnetic model. For
KIC05985441, the dip was expected with solid-body rotation
from Saio et al. (2021)’s calculations at senv,min ≈ 9.9. To reach
the observed senv,min, our magnetic model with uniform rotation
requires a mid-core equatorial magnetic field of Bϕ0,max|Rcore/2 ≈

5.2 MG. This can be considered as an upper limit, since differen-
tial rotation was not considered. If now we hypothesise a differ-
ential rotation of αrot ≈ 0.93, which would make KIC05985441
join the bulk of stars of this evolutionary stage analysed by
Saio et al. (2021), the magnetic field required to shift the dip
to the observed value with the combined effect of differential
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rotation would be Bϕ0 |Rcore/2 ≈ 2.8 MG. As for KIC04390625, the
observed spin parameter of the dip would be reached from the
solid-body estimation of senv,min ≈ 8.6 with a magnetic field of
Bϕ0,max|Rcore/2 ≈ 3.3 MG.

Of course, these estimations cannot be taken as measure-
ments and are only presented as examples for the application
of the model developed in the present work. Pursuing a data-
based study demands further developments integrating with an
ab initio approach all the effects responsible for a shift of the dip
structure with a more realistic magnetic topology, whereas our
computations only considered the non-magnetic effects through
the calculations of Saio et al. (2021) with their specific grid of
models.

6. Conclusion

In this study, we explored for the first time the coupling
between envelope and core modes in intermediate- to fast-
rotating γ Doradus stars in the case where magnetism is taken
into account. In this framework, sub-inertial envelope magneto-
gravito-inertial modes can propagate to the convective core, with
a magneto-inertial character. The interaction with core modes
leaves an imprint on the period-spacing pattern of envelope
modes, creating an inertial dip with a Lorentzian shape. We built
on the previous analytical works of Tokuno & Takata (2022) and
Barrault et al. (2025) to exhibit the dependences of the dip loca-
tion and shape on both core and envelope magnetism. Having
a window on core magnetism with the inertial dip study would
give an unprecedented view on the innermost magnetic activity
of intermediate-mass stars, which is the key to better understand-
ing angular momentum transport throughout the evolution of the
star, chemical mixing, compact objects formation, among other
uncertainties in modern stellar physics.

In this first work on the inertial dip formation in a magnetic
framework, we stayed within an analytical framework to provide
a fine understanding of the magnetic effects, comparing them to
core-to-envelope differential rotation previously explored with
the same model. To achieve this, several hypotheses needed to
be applied that make the model depart from the most realistic
cases. We thus highlighted that this first study can be understood
as a laboratory towards the fine comprehension of the influence
of magnetism on the inertial dip formation. We especially con-
sidered a toroidal field with a bi-layer Alfvén frequency in this
work, creating a contrast of magnetic field strengths from both
sides of the convective core–radiative envelope boundary, and
allowing us to build on previous analytical works of Malkus
(1967) for the core and Mathis & De Brye (2011) for the enve-
lope.

We show that while envelope magnetism adds an addi-
tional curvature to the period-spacing pattern, as already investi-
gated in more realistic configurations by Dhouib et al. (2022),
Lignières et al. (2024), and Rui et al. (2024), core magnetism
tends to lower the spin parameter at which the inertial dip
appears and to make it deeper and thinner with increasing
strength. We draw a parallel to the effect of differential rotation,
as the magnetic field induces a frequency shift of modes from
both sides of the boundary comparable to a Doppler effect. How-
ever, the effect of differential rotation is noticeable for a few per-
centage points of core-to-envelope rotation contrast, while the
magnetic effect only arises if the Lorentz force is non-negligible
compared to the Coriolis acceleration. Thus, at fixed magnetic
field strength, the effect of magnetism is more important on the
inertial dip if the rotation rate is lower.

We estimated the shift of the spin parameter of the iner-
tial dip for three different models belonging to the γ Doradus
instability strip, varying the rotation rate and the mass, hence
evolutionary stage, since the low-mass end of the instability
strip gathers young stars and the high-mass end gathers evolved
stars on the main sequence (Bouabid et al. 2013). We estimated
that core fields in a typical magnetostrophic regime expected
could be probed by the inertial dip for the intermediate rotators,
while the effect for the fast rotator would be hard to disentangle
from a small amount of differential rotation still to be expected
from realistic MHD simulations (Featherstone et al. 2009). We
constrained a range of envelope fields for which this interac-
tion could occur by estimating a limit from which the envelope
field would suppress gravito-inertial modes before they reach the
core: about 50 kG for intermediate rotators and 110 kG for the
fast rotator.

This range of allowed envelope fields would leave a small
imprint on the curvature of the period-spacing pattern of gravito-
inertial modes. The effect of the core magnetic field is found
to be degenerate with the effect of differential rotation from the
study of the inertial dip in the (k = 0,m = −1) gravito-inertial
mode series, which is not surprising due to the similar mathemat-
ical nature of the Lorentz force and the Coriolis acceleration in
this framework. We foresee that the study of inertial dips in the
(k = 0,m = −2) series would help to lift the degeneracy, due to
the quadratic dependence of the magnetic effect on the azimuthal
number m, compared with the linear effect of differential rota-
tion. As in the case of mixed pressure-gravity modes in red giant
branch stars (Das et al. 2024), the dip study would benefit from a
multi-mode analysis, which would be an even more difficult task
than in the latter case due to the scarcity of dip detections in the
(k = 0,m = −1) mode series, let alone the non-detection of them
in the (k = 0,m = −2) series.

This study, together with Barrault et al. (2025), which
focuses on differential rotation, can be understood as an explo-
ration of different magnetic regimes. Barrault et al. (2025)
explored the regime of magnetic field low enough to allow a
significant core-to-envelope differential rotation to occur. The
rotation effects would then be prominent on the inertial dip. The
present work investigates the regime of intermediate field, which
is strong enough to inhibit largely differential rotation. The mag-
netic effect can then be prominent over the differential rotation
effect. However, this study does not tackle the regime of mag-
netic field strong enough to suppress modes from both sides of
the boundary. While this mechanism in the envelope has been
theoretically investigated (Rui & Fuller 2023) and successfully
applied to infer a lower limit on the radial field strength in the
SPB star HD 43317 (Lecoanet et al. 2022), it would benefit from
the study of predominantly toroidal configurations expected in
the context of a generation by a Tayler-Spruit mechanism. As for
the convective core, no study has been made to our knowledge on
the potential conversion of inertial waves to slow Alfvénic waves
in a strong field regime. Based on the field strength required
for such a phenomenon, the dip region in which gravito-inertial
modes penetrate the core would appear as a gap in the period-
spacing pattern. We leave this promising study for future works
that will allow us to complete our exploration of the field regimes
expected in the interior of γ Doradus stars.

This work marks only the beginning of the exploration of the
magnetic effects on inertial dips formation. From a theoretical
point of view, we need to integrate the influence of core density
stratification contributing in the shift of the dip’s spin parameter
to low periods (Ouazzani et al. 2020), and a multi-mode interac-
tion developed in Appendix D of Galoy et al. (2024). Significant
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developments will also arise from the use of numerical calcu-
lations as explored in Ouazzani et al. (2020), Saio et al. (2021),
and Galoy et al. (2024), with an extension to more realistic mag-
netic configurations. From a data-oriented point of view, a sys-
tematic search of inertial dips in gravito-inertial mode series of
intermediate to fast γ Doradus stars is now desirable, to build
on the first sample of Saio et al. (2021). All in all, the study of
the inertial dip is still at its infancy, and holds great promise for
future inference of convective core properties, in a manner quite
comparable to the discovery of mixed pressure-gravity modes in
red giants, which has allowed our understanding of their inner-
most layers. In the long term, detections of internal magnetic
fields on the main sequence from the dip study will be integrated
with measurement in their evolved counterparts to form a coher-
ent picture for the evolution of internal magnetism along the age-
ing of intermediate-mass stars.
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Appendix A: Relevant physical quantities of the
considered models

Table 1 summarises the physical parameters relevant to the study
for the three considered models. We here give the precise defi-
nition of all the listed quantities. We introduce Nmax the value
of the near-core Brunt-Väisälä near-core. It depends on the pre-
scription of core-to-envelope boundary mixing. We define N̄ an
average value of the Brunt-Väisälä angular frequency experi-
enced by g-i modes such that

N̄ =

∫ rb

ra

N
r

dr∫ rb

ra

dr
r

. (A.1)

In the same manner, we define Ωnc the rotation rate probed by
g-i modes in the JWKB limit:

Ωnc =

∫ rb

ra

Ω
N
r

dr∫ rb

ra

N
r

dr
. (A.2)

This value is heavily weighted by the rotation rate at the base
of the radiative envelope due to the near-core spike in N and the
denominator in r. This corresponds to Ωenv in our bi-layer model.

We estimate the core magnetic field using different hypothe-
ses on the force balance at play in stellar interiors. First, if
the Lorentz force balances the Coriolis acceleration, the magne-
tostrophic regime is reached. An order of magnitude reasoning
requires to estimate lB, a typical distance of variation of the mag-
netic field. If the dynamo-generated magnetic field shows small
structures determined by convection, then this distance lB should
equate the typical variation lengthscale of the velocity field
(Augustson & Mathis 2019). However, we hypothesised in our
framework a large-scale background magnetic field in the core.
A precise computation of the Lorentz force (see Appendix D)
leads to this type of field at the equator to lB = r/2, r being the
distance from the centre of the star. The magnetic field in the
magnetostrophic regime thus reads

Bms '
√
µ0ρ̄rΩcorevconv . (A.3)

Second, in an equipartition regime in which the magnetic energy
density equates the kinetic energy density:

Bequi '
√
µ0ρ̄vconv . (A.4)

We provide an estimate of those fields, along with a computation
of the Rossby number Ro =

vconv

2Ωcorelconv
at mid-convective core

in Table 1.

Appendix B: Notations and conventions used in
this work

We provide for readability in Table B.1 a list of all of the sym-
bols used throughout this manuscript. In panel 2 of this table, the
subscript ’zone’ is either ’core’ or ’env’ depending on the con-
sidered zone, respectively the convective core and the radiative
envelope. All variables in the panel "Parameters of the interac-
tion" have their tilde counterpart when considering a discontin-
uous N at the boundary.

Appendix C: Envelope and core modes derivation

C.1. Linearisation of the equations and general considered
system

We assume for the rest of this derivation that the background
magnetic tension and pressure is small compared to the back-
ground gaseous pressure (Duez et al. 2010b). Additionally, the
effect of the centrifugal acceleration is low in the internal layers
we are interested in (Ballot et al. 2010). Under these conditions,
the deformed magneto-hydrostatic equilibrium arising from the
action of both the Lorentz force and the centrifugal acceleration
reverts to the radially symmetric hydrostatic equilibrium. All the
quantities X are then expressed as a sum of an hydrostatic term
X̄ and a fluctuation X̃:

X(r, θ, ϕ, t) = X̄(r) + X̃(r, θ, ϕ, t) . (C.1)

As for the velocity, its fluctuation reads (Unno et al. 1989):

u = ∂tξ + (V0 · ∇)ξ − (ξ · ∇)V0 = (∂t + Ω∂ϕ)ξ . (C.2)

The linearised induction equation is written

b = ∇ ×
(
ξ × Bϕ

0

)
. (C.3)

Due to the nearly incompressible character of low-frequency
anelastic modes, this holds:

b =
√
µ0ρ̄ωA∂ϕξ . (C.4)

The linearised momentum equation is

(∂t + Ω∂ϕ)
[
(∂t + Ω∂ϕ)ξ + 2Ω̂ez × ξ

]
= (C.5)

−
1
ρ̄
∇Π̃(r, t) − ∇Φ̃ +

ρ̃

ρ̄2∇P̄ +
FTe
L

(ξ)

ρ̄
, (C.6)

with Ω̂ez the rotation vector where êz = cos θêr − sin θêθ.
We define the total pressure fluctuation, composed of the mag-
netic and the gaseous terms:

Π̃ = P̃ +
Bϕ

0 · b
µ0

. (C.7)

Using Eq. (C.4), the wave magnetic tension force is

FTe
L

(ξ) =
1
µ0

[
(Bϕ

0 · ∇)b + (b · ∇)Bϕ
0

]
(C.8)

= ρ̄ω2
A

[
∂ϕ2ξ + 2êz × ∂ϕξ

]
. (C.9)

In this framework, the continuity, and Poisson’s equations read

ρ̃ + ∇ · (ρ̄ξ) = 0 , (C.10)

∇2Φ̃ = 4πGρ̃ . (C.11)

Finally, the energy equation is written in the adiabatic limit:(
P̃

Γ1P̄
+
ρ̃

ρ̄

)
+ ξ ·

(
1
Γ1
∇ ln P̄ − ∇ ln ρ̄

)
= 0 . (C.12)

We adopt the same expansions and conventions as in
Mathis & De Brye (2011):

X̃ =
∑
σin,m

X′(r, θ)ei(mϕ+σint) , (C.13)
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Table B.1. Meaning of the symbols used throughout this work.

Physical background quantities
Bϕ

0 Background toroidal magnetic field
V0 Background velocity field
ρ̄ Background density
P̄ Background gaseous pressure

P̄M Background magnetic pressure
N Brunt-Väisälä angular frequency
S̃ Lamb angular frequency modified by rotation
cS Sound speed
ḡ Local gravity acceleration

Constants
G Gravitational constant
µ0 Vacuum permeability
Γ1 First adiabatic index
α 31/3Γ(2/3)/Γ(1/3) ≈ 0.73

Angular frequencies and related quantities
Ωzone Rotation rate of the considered zone
ωA,zone Alfvén angular frequency in the zone
σin Wave angular frequency in an inertial frame
σzone Wave angular frequency in an frame co-rotating with the zone
σM,zone Wave magnetic angular frequency in a frame co-rotating with the zone

szone Hydrodynamic spin parameter of the zone
sM,zone Magnetic spin parameter of the zone
νM,zone Magnetic structural parameter of the zone

PM Modified magnetic period
P Period in the frame co-rotating with the envelope

Pin Period in an inertial frame
∆PM Modified magnetic period-spacing
∆P Period-spacing in the frame co-rotating with the envelope

∆Pin Period-spacing in an inertial frame
αrot Differential rotation, Ωenv/Ωcore

Lezone Lehnert number of the considered zone, ωA,zone/2Ωzone
GM sM,env = GM(sM,core)
uzone νM,zone = uzone(sM,zone)

Angular structure quantities
l Angular degree of the mode
m Azimuthal order
k l − |m| in a non-rotating star
µ cos θ

Θm
k Hough function

Λm
k Eigenvalue of the Laplace Tidal Equation

Pm
l Legendre polynomial

P̃m
l Normalised Legendre polynomial

Cm
l x

(
d
dx
−

m
1 − x2

)
Pm

l (x)

ck,l Geometrical factor
Fm

l Phase function of pure inertial modes
Parameters of the interaction (continuous N)

ε Coupling parameter
V Structure factor with solid-body rotation and no magnetism

VM Structure factor with solid-body rotation and uniform Alfvén frequency
VM,, Structure factor with bi-layer rotation and Alfvén frequency
ΓM Magnetic control parameter with uniform Lehnert number

ΓM,, Magnetic control parameter with bi-layer Lehnert number
Magnetic fields estimate

Bms Estimate of the core magnetic field in a magnetostrophic regime
Bequi Estimate of the core magnetic field in a equipartition regime
Ro Rossby number
vconv Typical convective velocity given by the MLT
lconv Typical convective length scale given by the MLT
lB Typical length scale of magnetic field variation
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x =
∑
σin,m

x′(r, θ)ei(mϕ+σint) . (C.14)

We introduce the local wave pulsations, related to the pulsations
in the inertial frame by

σzone = σin + mΩzone . (C.15)

Under this convention, we have for the velocity field

u′ = iσzoneξ
′, (C.16)

and for the magnetic perturbation

b′ = im
√
µ0ρ̄ωA,zoneξ

′ . (C.17)

The momentum equation is then (20), which we recall:

−Aξ′ + iB̂ez × ξ
′ = −∇W ′ +

ρ′

ρ̄2∇P̄ − Π′
∇ρ̄

ρ̄2 . (C.18)

Here A = σ2
M,zone = σ2

zone − m2ω2
A,zone and B = 2(Ωzoneσzone −

mω2
A,zone).

C.2. Core modes

We hereby recall Malkus (1967)’s calculations starting from
(C.18), adapted to the core’s properties. With uniform density
and assuming isentropy, it reads

−Aξ′ + iB̂ez × ξ
′ + ∇W ′ = 0 . (C.19)

The anelastic approximation we use for both zones reduces to a
Boussinesq one for magneto-inertial modes in the case of con-
stant core density considered. In the continuity equation, this is
equivalent to incompressibility:

∇ · ξ′ = 0 . (C.20)

We take the divergence of (C.19)

∇2W ′ − iB̂ez · (∇ × ξ′) = 0 , (C.21)

and the curl

A(∇ × ξ′) + iB(̂ez · ∇)ξ′ = 0 . (C.22)

We then project (C.22) along êz and multiply it by B; we obtain

AB̂ez · (∇ × ξ′) + iB2̂ez ·
∂ξ′

∂z
= 0 . (C.23)

The projection along êz of (C.19) and the derivation with respect
to z reads

−Aêz ·
∂ξ

∂z

′

+
∂2W ′

∂z2 = 0 . (C.24)

Using (C.21), (C.23) and (C.24) we finally get

∇2W ′ −
B2

A2

∂2W ′

∂z2 = 0 . (C.25)

As in the case of m–g–i modes, we retrieve the magnetic struc-
tural parameter

νM,core =
B

A
=

2(Ωcoreσcore − mω2
A,core)

σ2
core − m2ω2

A,core

, (C.26)

and we rewrite it for consistency as

νM,core = score
1 − 2mscoreLecore

2

1 − m2Le2
corescore

2
, (C.27)

with the constant Lehnert number Lecore related to the core. In
this formalism, we thus retrieve the canonical Poincaré equation
for magneto-inertial waves, with the adapted parameter νM,core.
We define

Ψ =
1

σ2
M,core

W ′ . (C.28)

Equation (C.25) becomes

∇2Ψ − ν2
M,core

∂2Ψ

∂z2 = 0 . (C.29)

From the definition of Ψ, we get

Π′ = ρ̄σ2
M,coreΨ . (C.30)

As for the Lagrangian displacement ξ′, we start from the
momentum equation, written as

−ξ′ + i
B

A
êz × ξ

′ = −
1
A
∇W ′ . (C.31)

From the definitions ofA and νM,core we have

ξ′ − iνM,corêez × ξ
′ = ∇Ψ . (C.32)

Taking the dot and vectorial product by êz, we obtain

êz · ξ
′ =

∂Ψ

∂z
(C.33)

and

êz × ξ
′ − iνM,core (̂ez · ξ

′ )̂ez + iνM,coreξ
′ = êz × ∇Ψ (C.34)

or

iνM,core ξ
′ = −̂ez × ξ

′ + iνM,core
∂Ψ

∂z
êz + êz × ∇Ψ , (C.35)

respectively. Using (C.32), we get

iνM,core ξ
′ =

1
iνM,core

∇Ψ −
1

iνM,core
ξ′

+ iνM,core
∂Ψ

∂z
êz + êz × ∇Ψ , (C.36)

which we reorganise:

ξ′ =
1

1 − ν2
M,core

[
1 + iνM,core (̂ez×) − ν2

M,corêeẑez·
]
∇Ψ . (C.37)

Projecting this operator on êr, we get

ξ′r =
1

1 − ν2
M,core

[
∂

∂r
+

mνM,core

r
− µν2

M,core
∂

∂z

]
Ψ . (C.38)

This expression is equivalent to the one studied by Wu (2005),
with the magnetic structural parameter νM,core replacing the
hydrodynamical spin parameter score. We then retrieve Eqs. (57)
and (58), the expressions of respectively ξ′ and W ′ at the core
boundary.
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Fig. D.1. Propagation diagram for the f z model. The g-i mode cavity
is coloured in beige. The dashed horizontal line is the local angular
frequency of a typical mode with s = 10.

Appendix D: Hierarchy of the frequencies and
negligibility of the magnetic terms

D.1. Background rotational and magnetic deformation

We here verify the accuracy of our hypothesis of a low contri-
bution of both the centrifugal acceleration and the Lorentz force
compared to the local self-gravity at the bottom of the radiative
envelope. First, at the equator, close to the core, the centrifugal
acceleration reads acentr = RcoreΩ

2
env̂er, which needs to be com-

pared to ḡ = −GMcore/R2
corêer = −RcoreΩ

2
crit̂er, the Keplerian crit-

ical rotation rate at the edge of the convective core. As seen in
Appendix A, the ratio Ωenv/Ωcrit is at most 3.6% for the fastest-
rotating model. This ensures the negligibility of the centrifugal
acceleration in the background hydrostatic equilibrium.

As for the background Lorentz force, it reads

flor =
1
ρ̄µ0

((∇ × Bϕ
0) × Bϕ

0)

= − (r sin θωA)2
((

2
r

+
1
2

d ln ρ̄
dr

)
êr +

(
2 cot θ

r

)
êθ

)
. (D.1)

The term 2
r dominates over the background density variation

1
2

d ln ρ̄
dr close to the core, even in the N spike region in our mod-

els. An estimate of the background Lorentz force at the equator
close to the core is then flor ≈ −2Rcoreω

2
A,env̂er. We thus have∣∣∣∣ flor

acentr

∣∣∣∣ ≈ 8Le2
env. Given the Lehnert numbers considered in this

work, the effect of the Lorentz force on the background equilib-
rium can be as well neglected.

D.2. Magnetic pressure fluctuation

In the system of Mathis & De Brye (2011), some terms have
to be carefully taken care of if one has to work outside of the
anelastic approximation. The magnetic pressure perturbation can
be rewritten as

P′M =
Bϕ

0 .b
µ0

= imρ̄r sin θ ω2
A,env ξ

′
ϕ . (D.2)

If we write the magnetic pressure perturbation as function of the
total dynamical pressure perturbation:

P′M;k,m = −mρ̄
(
ωA,env

σM,env

)2

sin θHϕ
k,mW ′k,m . (D.3)

We see that in the frequency regime that we are interested in
(ωA,env � σM,env), the magnetic pressure perturbation is neg-
ligible compared to the gaseous one: P′M;k,m/ρ̄ � W ′k,m hence
P′M;k,m � P′k,m. The whole system can be thus rewritten in this
limit:

dW ′k,m
dr

=

(
N2

ḡ

)
W ′k,m +

1
r2 (σ2

M,env − N2)(r2ξ′r;k,m), (D.4)

d
dr

(r2ξ′r;k,m) =

Λm
k (νM,env)

σ2
M,env

−
r2

c2
S

 W ′
k,m

−
1

Γ1P̄
dP̄
dr

(r2ξ′r;k,m) . (D.5)

This allows us to derive a wavenumber using the same method
as in Press (1981) and Unno et al. (1989):

k2
r =

(σ2
M,env − N2)

(
σ2

M,env − S̃ 2
)

c2
Sσ

2
M,env

, (D.6)

which simpifies to (35) when adopting the anelastic approxima-
tion. We check the hierarchy of frequencies in a typical model
shown in Fig. D.1.

Appendix E: Derivation of the modified Lorentzian
profile

We start with the coupling equation Eq. (90):[
cot

(
π2sM,env

ΩenvΠ0,M
−
π

6

)
+

1
√

3

]
' −

ε/VM,,

νM,core − ν
∗
M,core

. (E.1)

For simplicity of notations, we drop the subscript env in the
frequency-dependent variables: sM,env → sM and νM,env → νM.
We write Eq. (90) for two neighbouring solutions νM,core,1 and
νM,core,2 (related respectively to the envelope quantities νM,1 and
s1, and νM,2 and sM,2 via the relations described in Eqs. (79),
(80), and (81) with νM,core,2 > νM,core,1). We assume that the
envelope m–g–i modes are closely spaced, so that only one m−i
mode is non-negligibly matching envelope m−g−i modes. For
this reason, the two solutions sM,1 and sM,2 are on two different
branches of the cotangent, and the function 1/(νM,core − ν

∗
M,core)

does not vary appreciably between those two solutions. There-
fore, we can consider that π2(sM,2−sM,1)

ΩenvΠ0,M
− π = 2x � 1. In the case

of νM,core,1 < ν∗M,core < νM,core,2 the solutions belong to the same
branch of the cotangent, as pointed out by TT22. We thus rewrite
Eq. (90) as

tan
(

π2sM

ΩenvΠ0,M

)
' −

1
1
√

3
+

ε/VM,,

νM,core−ν
∗
M,core

, (E.2)

and the solutions are on two different branches of the tangent.
Thus, in both cases

π2sM,1,2

ΩenvΠ0,M
−
π

6
=

π2 s̄M

ΩenvΠ0,M
−
π

6
±
π

2
∓ x, (E.3)
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with s̄M =
sM,1+sM,2

2 . The resulting system is thus, noting S̄ =
π2 s̄M

ΩenvΠ0,M
− π

6 and using a first order Taylor expansion:cot(S̄ ) − x(1 + cot2(S̄ )) + 1/
√

3 ' −
ε/VM,,

νM,core,1−ν
∗
M,core

cot(S̄ ) + x(1 + cot2(S̄ )) + 1/
√

3 ' −
ε/VM,,

νM,core,2−ν
∗
M,core

. (E.4)

Further manipulations lead to1 +
( ε/Vdiff

νM,core − ν
∗
M,core

+
1
√

3

)2


×

[
π2(sM,1 − sM,2)

ΩenvΠ0,M
− π

]
' −

ε

VM,,

νM,core,1 − νM,core,2

(νM,core − ν
∗
M,core)2 . (E.5)

We hereby aim to complement Appendix C of BMB25 stating
that we do not require νM,core − ν

∗
M,core � δνM,core in the deriva-

tion of this equation, with νM,core = (νM,core,1 + νM,core,2)/2 and
δνM,core = (νM,core,1 − νM,core,2)/2.3 We then rewrite Eq. (E.5)
exhibiting only dependences on the envelope magnetic spin
parameter, expanding the function ucore◦G−1

M at the middle points
sM and (s̄M + s∗M)/2, with s∗M = (GM ◦ u−1

core)(ν∗M,core), for the
numerator and the denominator of the RHS of Eq.(E.5), respec-
tively. This reads as follows:1 +

 ε/VM,,

s̄M − s∗M

ducore ◦G−1
M

ds

∣∣∣∣ s̄M+s∗M
2

−1

+
1
√

3


2

×

[
π2(sM,1 − sM,2)

ΩenvΠ0,M
− π

]
' −

ε

VM,,

sM,1 − sM,2

(s̄M − s∗M)2

ducore ◦G−1
M

dsM

∣∣∣∣ s̄M+s∗M
2

−1

(E.6)

×

ducore ◦G−1
M

dsM

∣∣∣∣
s̄M

 . (E.7)

This equation is finally rearranged to give Eq. (91).

Appendix F: Derivation of the coupling equation
and the dip shape for discontinuous magnetic
fields, rotation rates, and densities at the
core-to-envelope boundary

As argued in TT22 and BMB25, if the radial wavelength of the
m–g–i mode is higher than the typical length scale at which N
varies, a model treating a discontinuous jump of N is better
suited than the one considering a continuous N considered in
Section 4. This model would be favoured as the star ages and
its convective core recedes, leaving a strong near-core chemical
stratification. We parametrise the background density and the N
jump such that

lim
r→R−core

ρ̄ = ρ̄core

lim
r→R+

core

ρ̄ = ρ̄core + ∆ρ̄ = ρ̄env
(F.1)

and
lim

r→R−core

N = 0

N |Rcore = +∞

lim
r→R+

core

N = N0

, (F.2)

3 Performing the Taylor expansion of Eq. (E.2) from ν∗M,core holds the
same result for solutions such that νM,core,2 < ν

∗
M,core < νM,core,1.

where R−core and R+
core are respectively the lower and upper limits

of the core-to-envelope boundary. In this set-up, we can consider
either a first-order discontinuity of the background density, i.e.
∆ρ̄ , 0, or a second-order, i.e. ∆ρ̄ = 0 but N is discontinuous.

The vertical wavenumber at the upper edge of the boundary
is in the anelastic approximation,

k2
r =

Λm
k (νM,env)s2

M,env

4ε̃2R2
core

, (F.3)

where ε̃ =
Ωenv

N0
.

A JWKB analysis leads in the same way as computed by
TT22 to the following expressions for the terms in the expansion
of the Lagrangian radial displacement perturbation and the total
pressure perturbation,

ξ
′

r;k,m

r

∣∣∣∣∣∣
R+

core

' Qε̃X̃m
k (sM,env) (F.4)

and

W ′k,m
∣∣∣
R+

core
' QR2

coreσ
2
M,envỸm

k (sM,env) , (F.5)

where Q is a common linear multiplicating term and

X̃m
k (sM,env) = 2Λm

k (νM,env)1/4

× s1/2
M,env sin

(
π2sM,env

ΩenvΠ0,M
−
π

4

)
, (F.6)

Ỹm
k (sM,env) = −Λm

k (νM,env)−1/4

× s3/2
M,env cos

(
π2sM,env

ΩenvΠ0,M
−
π

4

)
. (F.7)

In this framework, ensuring the continuity of both the
Lagrangian perturbation of the total pressure and the Lagrangian
displacement is not equivalent to ensuring the continuity of the
Eulerian total pressure perturbation and the Lagrangian displace-
ment.

Neglecting again the centrifugal acceleration and the back-
ground Lorentz force, that would alter the sphericity of the
region, we use the expression of the local background self-
gravity ḡ = GMcore/R2

core. The expressions of the Lagrangian
total pressure from both sides of the boundary are

ρ̄env

∑
k

ak

[
σ2

M,envR2
coreỸm

k (sM,env)

−

(
GMcore

R2
core

)
ε̃X̃m

k (sM,env)
]
× Θm

k (µ; νM,env) (F.8)

from the envelope, and

ρ̄core

∑
k

bl

[
σ2

M,coreR2
corePm

l (1/νM,core)

−

(
GMcore

R2
core

)
Cm

l (1/νM,core)
]
× P̃m

l (µ) (F.9)

from the core.
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Those two quantities are made equal to ensure the continuity of
the total pressure perturbation. As for the Lagrangian displace-
ment, the continuity reads∑

k

akεX̃m
k (sM,env)Θm

k (µ; νM,env)

=
∑

l

blCm
l (1/νM,core)P̃m

l (µ). (F.10)

We obtain a similar matrix equation to Eq. (71)

[M̃(sM,env, νM,core) − ε̃Ñ(sM,env, νM,core)]b = 0, (F.11)

with

M̃ = ck,lσ
2
M,envρ̄envỸm

k (sM,env)Cm
l (1/νM,core) (F.12)

and

Ñ = ck,l

(
σM,coreρ̄coreX̃m

k (sM,env)Pm
l (1/νM,core)

+∆ρ̄
GMcore

R3
core

X̃m
k (sM,env)Cm

l (1/νM,core)
)
. (F.13)

Pursuing the same leading term analysis as before, the approxi-
mate coupling equation reads

σ2
M,env

σ2
M,core

(
1 +

∆ρ̄

ρ̄core

)
cot

(
π2sM,env

ΩenvΠ0,M
−
π

4

) [
sM,env

Λm
k (νM,env)1/2

]

× Fm
l (νM,core) ' ε̃

1 − ∆ρ̄

ρ̄core

GMcore

σ2
M,coreR3

core
Fm

l (νM,core)

 . (F.14)

We define

ṼM,, = −

(
1 +

∆ρ̄

ρ̄core

)
×

 dFm
l

dνM,core

α2
rot(GM ◦ u−1

core)(νM,core)
2Λm

k (uenv ◦GM ◦ u−1
core(νM,core))1/2

×

(
u−1

core(νM,core)
GM ◦ u−1

core(νM,core)

)2
ν∗M,core

. (F.15)

We expand Fm
l from its zero νM,core and use the expression of

ṼM,,:

cot
(
π2sM,env

ΩenvΠ0,M
−
π

4

)
+ ε̃

αrotG−1
M (sM,env)

2Ωenv

2
GMcore

R3
core

∆ρ̄

ρ̄env

×

2Λm
k (uenv ◦GM ◦ u−1

core(νM,core))1/2

α2
rot(GM ◦ u−1

core)(νM,core)

×

(
GM ◦ u−1

core(νM,core)
u−1

core(νM,core)

)2
ν∗M,core

' −
ε̃/ṼM,,

νM,core − ν
∗
M,core

. (F.16)

This is the equivalent of Eq.(53) in BMB25 in the magnetic case.
The correction of the structural factor ṼM,, from the solid-body,
non-magnetic case is

ṼM,,

Ṽ
=

α2
rot

(
GM ◦ u−1

core(νM,core)
νM,core

) (
u−1

core(νM,core)
GM ◦ u−1

core(νM,core)

)2

×

 Λm
k (νM,core)

Λm
k (uenv ◦GM ◦ u−1
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1/2
ν∗M,core

. (F.17)

After further manipulations of the cotangent, the dip profile is
obtained with the magnetic variables

1
∆PM

−
1

Π0,M
'

Γ̃M,,

π

ducore ◦G−1
M

dsM,env

∣∣∣∣∣∣
s̄M(PM − P∗M

) ducore ◦G−1
M

dsM,env

∣∣∣∣∣∣ s̄M,env+s∗M,env
2

2

+ Γ̃2
M,,

, (F.18)

having defined Γ̃M,, =
πε̃

ΩenvṼM,,

.

Appendix G: Summary of the expressions derived
in this work

We provide in Table G.1 a summary of the expressions for the
coupling equation, the correction of the structural factors and the
dip profile for both a continuous and discontinuous treatment of
N at the core-to-envelope boundary.
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