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Abstract figure legend Summary of the study where simulated recordings (left) were used to characterise the effect of
incomplete detection on mini (mPSC) analysis. Recording noise levels (red) determine the detected event amplitude
and frequency, while true changes in amplitude can be misrepresented as detected frequency changes (purple). This
study presents a method for estimating the event detection limit (blue) and provides recommendations for robust data
analysis.

Abstract Patch-clamp recording of miniature postsynaptic currents (mPSCs, or ‘minis’) is used
extensively to investigate the functional properties of synapses. With this approach, spontaneous
synaptic transmission events are recorded in an attempt to determine quantal synaptic parameters
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or the effect of synaptic manipulations. However, at the majority of brain synapses these events are
small, with many undetectable due to recording noise. The effects of incomplete detection were
well appreciated in the early years of synaptic physiology analysis, but appear to be increasingly
forgotten. Here we sought to characterise the consequences of incomplete detection on the inter-
pretability of mini analysis, using simulated mPSC data to give full control over event parameters.
We demonstrate that commonly reported measures such as mean event amplitude and frequency,
are misrepresented by the loss of undetected events. Probabilistic loss of small events results in
detected event amplitude distributions that appear biologically complete, yet do not reflect the under-
lying synaptic properties. With both simulated and experimental datasets, we demonstrate that
specific changes in event amplitude are primarily detected as changes in frequency, compromising
classical biological interpretations. To facilitate more robust data analysis and interpretation, we
detail a means for experimental estimation of the event detection limit and provide practical
recommendations for data analysis. Together, our study highlights how mini analysis is prone
to falsely reporting synaptic changes, raising awareness of these considerations, and provides a
framework for more robust data analysis and interpretation.
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Key points

¢ ‘Mini analysis’ (patch-clamp recording of miniature synaptic currents, mPSCs) is widely used to
assess synaptic function, relying on detection of spontaneous synaptic events.

e Detection of mPSC events is almost inevitably incomplete, as event amplitudes are close to the
level of recording noise — a limitation that was well recognised in earlier literature but is often

overlooked today.

e Using in silico simulated datasets, this study characterises how incomplete detection distorts
reported parameters and the distributions of detected events.

o These effects can routinely compromise biological interpretation of mPSC data, particularly the
interpretation of amplitude and frequency changes.

e We present a method for experimental estimation of the detection limit and make practical
recommendations for maximally careful interpretation of mini data.

Introduction

Synaptic transmission is the primary means of inter-
cellular communication in our brain. Across the central
nervous system, synapses are highly diverse, with
specialised properties at different connections for distinct
signalling functions (Jonas & Spruston, 1994; O’Rourke
et al.,, 2012; Salin et al., 1996). In addition, individual
connections are highly plastic and able to change strength
in response to neuronal activity. This is a potential means
for information storage in the brain (Bliss & Collingridge,
1993; Lisman & MclIntyre, 2001; Martin et al., 2000; Nicoll,
2017). For these reasons, research has been performed
for decades to determine the functional properties and
molecular mechanisms of synaptic transmission.
Synaptic transmission is quantal, occurring through
release of discrete packets (vesicles) of neurotransmitter

across the synaptic cleft. These properties were first
identified at the neuromuscular junction, where large
‘endplate potentials’ were shown to be made up of smaller
‘quanta’ of defined size (del Castillo & Katz, 1954; Fatt &
Katz, 1952). These ideas were extended to central synapses
of the spinal cord (Kuno & Weakly, 1972), where the
properties of synaptic transmission are more complex
(Edwards et al., 1976a; Jack et al., 1981; Redman, 1990;
Redman & Walmsley, 1983). Recordings from individually
stimulated axons demonstrated key properties that we
know today: that quantal size and release probability vary
between individual synapses (Edwards et al., 1976b; Jack
et al., 1981; Walmsley et al., 1987), and even between
individual release sites of the same cell pair (Edwards et al.,
1976a; Redman & Walmsley, 1983). These findings were
applied to hippocampal synapses, where discrete synaptic
quanta can be observed, but with substantial variability in

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

85U80|7 SUOWIWOD 3AeaID 3|l [dde 8Ly Aq peusenob e sejolie YO ‘SN JO Se|nJ Joj ArIqIT8UIUO 48] 1M UO (SUORIPUOD-PUe-SWB/W0o" A3 | ARelq 1 BUl|UO//:SANY) SUORIPUOD pUe SIS 1 8y} 89S *[9202/T0/S0] Uo A%iqiTauliuo (1M BLISNveuReIyo0D Aq E8T88Zdr/ETTT OT/I0PAW0D A8 1M Aeiq 1 jpuluo-00sAyd)/sdny wouy pepeoumoq ‘Zz ‘520z ‘€626 T


mailto:jake.watson@ist.ac.at

J Physiol 603.22

the properties of transmission between connections (Hess
etal., 1987; Sayer et al., 1989, 1990).

Quantal analysis through stimulation of individual
axons remains the clearest means to determine the
properties of synaptic transmission, yet is technically
challenging to achieve. For this reason, recording
spontaneous synaptic events has become a much more
widely used approach to determine functional synaptic
properties. Using whole-cell patch-clamp of individual
neurons spontaneous synaptic input occurring anywhere
across the dendritic tree can be recorded to provide
an ensemble measure of synaptic properties on a given
cell (Bekkers et al.,, 1990; Brown et al., 1979; Isaacson
& Walmsley, 1995; Malgaroli & Tsien, 1992; Zhang
& Trussell, 1994). Spontaneous events (spontaneous
postsynaptic currents (sPSCs)) are the result of action
potential-dependent neurotransmitter release from any
cell connected to the recorded neuron, whereas ‘minis’
(miniature PSCs/mPSCs: excitatory - mEPSCs, inhibitory
- mIPSCs) are recorded during action potential blockade
(typically through tetrodotoxin (TTX) application)
and occur by spontaneous release of individual pre-
synaptic vesicles (Kavalali, 2015). Given the ease of
patch-clamp recording from individual neurons m/sPSC
analysis is routinely employed by labs worldwide to
determine synaptic properties or synapse-level effects of
experimental manipulations (e.g. gene knockout (Matt
et al., 2018; Varoqueaux et al., 2002), synaptic protein
manipulation (Gutierrez-Castellanos et al., 2017; Watson
etal., 2017) or neuromodulatory action (Choy et al., 2018;
Smith et al., 2005)).

Due to the quantal basis of synaptic transmission,
mini analysis is often reduced to measurements of event
amplitude and frequency, interpreted respectively as post-
synaptic strength and presynaptic release dynamics. This
oversimplification will almost certainly drive incorrect
biological conclusions. Multiple factors give rise to the
distribution of recorded minis. First, the high variability
in synaptic properties between different connections will
be pooled in this ensemble measure (Bekkers et al,
1990; Edwards et al., 1976b). Second, events will be
strongly affected by their dendritic location and neuro-
nal properties, with cable filtering reducing the size and
slowing the kinetics of more distal synapses (Bekkers
& Stevens, 1989; Brown et al.,, 1981; Jack & Redman,
1971; Rall et al., 1967). Finally, biological changes
at both pre- and postsynapse can influence both the
amplitude and frequency of mPSCs. For example post-
synaptic unsilencing can increase event frequency with
no presynaptic change (Isaac et al, 1995; Liao et al,
1995); changes in vesicle content can determine quantal
size through presynaptic means (Shi et al., 2022); and
changes in vesicle-receptor alignment could change both
frequency and amplitude of synaptic events through
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co-ordinated pre-post mechanisms (Biederer et al., 2017;
Scheefthals & MacGillavry, 2018).

Not only can the biological interpretation of mPSC
data be easily mistaken, but empirical interpretation of
event distributions can be similarly misunderstood. At
the majority of brain synapses mini amplitudes are small
(0-50 pA) (Bekkers et al., 1990; Sayer et al, 1990)
and follow a positively skewed lognormal distribution
(Bekkers et al., 1990; Brown et al., 1979; Derkach et al,,
1983; Sahara & Takahashi, 2001; Zhang & Trussell,
1994). Patch-clamp noise levels are comparatively large
(typically 2-10 pA max to min values/1-5 pA standard
deviation when low pass filtered to 10 kHz), and as a
result many synaptic events lie beneath the noise (Brown
et al.,, 1979; Isaac et al, 1996; Malgaroli & Tsien, 1992;
Mennerick & Zorumski, 1995; Wang et al., 2024). The
resulting incomplete detection has serious consequences
for interpretation of synaptic properties. Despite being
acknowledged since the first recordings of miniature
events in hippocampal slices (Brown et al., 1979; Redman,
1990) and having been carefully considered in early years
of mini analysis (Diamond & Jahr, 1995; Manabe et al.,
1992; Mennerick & Zorumski, 1995; Yamada & Tang,
1993), with the widespread adoption of mini analysis for
synaptic physiology, awareness of these effects and their
importance has been increasingly forgotten.

Here using in silico mPSC simulations we explore
the influence of incomplete event detection on inter-
pretation of mini analysis data. Calculating and
considering the detection limit for mPSC events is
essential for correct interpretation of these recordings for
multiple reasons. First, we show that events below the
detection limit are probabilistically detected dependent
on their amplitude, giving rise to a ‘false’ distribution
that misrepresents modal values. Second, we show
that average event amplitude and frequency are not
discrete parameters. Changes in event amplitude are
predominantly represented as a selective change in mPSC
frequency. Finally, using experimentally recorded data
we demonstrate a method for estimating the detection
limit, allowing more reliable interpretation of recorded
data. Together this study characterises the major risk of
mPSC misinterpretation, facilitating more accurate future
investigation and re-examination of existing datasets.

Methods
Ethical approval

Experiments conducted in the UK are licensed under
the UK Animals (Scientific Procedures) Act of 1986
following local ethical approval. All procedures were
carried out according to institutional and national
guidelines, performed under project licence (PPL)

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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70/8135 in accordance with UK Home Office regulations
and approved by the institutional ethical review board.

Animals

C57BL/6JOlaHsd mice (Harlan/Envigo;
RRID:IMSR_ENV:HSD-057) were housed with food
and water ad libitum on a 12-h light/dark cycle at room
temperature (20°C-22°C) and 45%-65% humidity.
Animals were killed at postnatal day 6-8 by rapid
decapitation without anaesthesia, according to local
and national ethical approval.

mPSC event simulation

Event simulation and recording noise generation were
performed following Pernia-Andrade et al. (2012). All
simulated recordings were generated in MATLAB. mPSCs

A Simulated mPSC events

C Randomised event positions

J Physiol 603.22

were simulated as biexponential functions consisting of
a rising exponential (7,i) and a decaying exponential
(T decay) following the equation below:

mPSC:(l—eﬁ) X eﬁw fort >0

where t spanned 70 ms (Fig. 1A). Trise and Tgecay Were
randomly selected for each event from a lognormal
distribution of realistic possible values (T w@: 0.2,
0: 0.25 Tdecay i 1.7, 0: 0.4), with 7 constrained
between 0.3 and 2.5 ms and Tge.; between 1 and
25 ms. Resulting curves were scaled to peak amplitudes
randomly sampled from a lognormal distribution of
realistic peak amplitudes (peak u: 1.6, o: 0.8). For scaled
amplitude datasets, scaling factors (amplitude addition or
multiplication) were applied to target peak amplitudes
prior to curve scaling. To study the effect of kinetics
on event detection, Ty, and Tge, were fixed for all
events within each simulation condition, with a randomly
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Figure 1. Incomplete event detection misrepresents measured mini parameters due to loss of small

events

A, simulated miniature postsynaptic current (mPSC) events (red) were created from a biexponential function
(detailed), with randomised, realistic tyise, Tgecay and peak amplitudes. A sample of 300 events is depicted. B,
simulated recording noise was generated from white noise (upper left) by filtering at 1000 Hz (upper right) and
incorporation of a 1/f component (lower left). Both simulated noise traces and frequency power spectra are pre-

sented, alongside experimentally recorded patch-clamp

recording noise (lower right). C, events were randomly

distributed across a ‘time’ axis with controlled frequency (upper, 1 Hz) and embedded in simulated recording noise
(lower). An expanded view (right) depicts a single event from the wider recording (boxed). D, frequency distributions
of simulated events before noise embedding (actual) and those extracted by template fit event detection (detected)
demonstrate loss of small events after detection. Histogram bars have 1 pA bin width, and the continuous line

depicts a lognormal fit of binned data. The dashed line

indicates the estimated detection limit calculated using

the event scaling method (6.04 pA; see Methods). E, the detected mean mPSC amplitude was overestimated
(actual: 6.88 pA; detected: 9.79 pA), whereas event frequency was underestimated (actual: 1 Hz; detected: 0.58

Hz; simulated input was 1 Hz events for 1 h duration).

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

85U80|7 SUOWIWOD 3AeaID 3|l [dde 8Ly Aq peusenob e sejolie YO ‘SN JO Se|nJ Joj ArIqIT8UIUO 48] 1M UO (SUORIPUOD-PUe-SWB/W0o" A3 | ARelq 1 BUl|UO//:SANY) SUORIPUOD pUe SIS 1 8y} 89S *[9202/T0/S0] Uo A%iqiTauliuo (1M BLISNveuReIyo0D Aq E8T88Zdr/ETTT OT/I0PAW0D A8 1M Aeiq 1 jpuluo-00sAyd)/sdny wouy pepeoumoq ‘Zz ‘520z ‘€626 T



J Physiol 603.22

selected distribution of amplitudes as above. In this case,
t was extended to 140 ms to minimise clipping of events
with very slow kinetics.

Biologically relevant synaptic scaling was implemented
by multiplying individual peak amplitudes by a scaling
factor dependent on the initial amplitude. This scaling
factor followed an exponential decay relationship as
follows:

Potentiated amplitude = A (5.0.9A +1)

where A is the initial amplitude, and s is the scaling factor
of potentiation (varied between 0 and 3).

After their generation, events were assigned locations
on the recording trace with uniform randomness,
with the total number of assigned events determined
from the product of desired frequency and recording
length. This ‘noise-free’ trace was then embedded in
simulated recording noise. Events were simulated at 1 Hz
unless otherwise stated. Generation of random locations
or values was performed using MATLAB functions,
and scaled events were given the same position as
original events in a parallel recording, therefore creating
equivalent simulated recordings aside from scaling of
input events.

Recording noise simulation

Simulated patch-clamp noise was produced by first
generating ‘white noise’ of variable standard deviation
(SD) from normally distributed numbers centred on zero,
before inclusion of a 1/f ‘pink noise’ component and
Gaussian filtering of the resulting mixed noise at 1000
Hz (Fig. 1B). This analysis used existing ‘1D Gaussian
lowpass filter’ code (William Rose, 2006; MATLAB File
Exchange, File ID: 12 606), and pink noise was simulated
following Smith (2011). The resulting ‘mixed’ noise
has a comparable frequency spectrum to ‘real-world’
patch-clamp recording noise (Fig. 1B). The standard
deviation of final simulated noise was 2.08 pA for event
scaling analysis and 1.47 pA for kinetic analysis.

Event detection

Event detection employed a standard template search
approach, based either on Clampfit or on MATLAB.
MATLAB template detection employed the ‘minidet
function from the Biosig toolbox (Vidaurre et al., 2011)
based on Jonas et al. (1993). Detected events were
extracted from recordings or simulations and fit with a
biexponential function consisting of a rising and decaying
phase, and peak amplitude was taken as the minimum
of the curve fit. This approach prevents error in peak
measurement caused by recording noise, which is large

The influence of event detection on mini analysis conclusions 7193

for small events close to the noise level (e.g. mPSCs). The
equation of fitted curve was:

t—d __t=d
y=a- <—e’rr‘se +e ’W) fort >d
y=0 fort<d

where a is the peak scaling factor, and d is the event
onset time. mPSC frequency was calculated as the
number of events detected per unit time (Hz). The
fraction and properties of false-negative (‘missed’) events
were calculated by comparing detected event times with
encoded event times.

The detection limit was estimated by sampling datasets
of events recorded at either —70 mV (scaled by 1.29) and
—90 mV holding potentials with a sliding bin of 5 pA
width at a resolution of 0.1 pA (referred to as ‘event scaling
method’ in figure legends). Using the resulting frequency
curves, the —70 mV ., .q dataset was subtracted from the
—90 mV dataset, and the frequency difference was plotted
against the sliding bin lower limit. This graph was fit with
a ‘broken stick’ curve, where:

y=-—-mx+c forx <d
y=0 forx>d

and ‘d’ estimates the minimal amplitude at which no false
negatives are recorded or the ‘detection limit’

Organotypic culture

Organotypic slice cultures were made using the Stoppini
method (Stoppini et al., 1991), as described in Watson
et al. (2017). Hippocampi from P6-8 mice of either
sex were isolated in high-sucrose Gey’s balanced salt
solution containing (in mM): 175 sucrose, 50 NaCl,
2.5 KCI, 0.85 N3H2PO4, 0.66 KH2PO4, 2.7 NaHCO3,
0.28 MgSO4, 2 MgCl,, 0.5 CaCl, and 25 glucose at
pH 7.3. Hippocampi were cut into 300 pm thick slices
using a Mcllwain tissue chopper and cultured on Milli-
cell cell culture inserts (Millipore Ltd) in equilibrated
slice culture medium (37°C/5% COQO,). Culture medium
contained 78.5% Minimum Essential Medium (MEM),
15% heat-inactivated horse serum, 2% B27 supplement,
2.5% 1 m HEPES, 1.5% 0.2 M GlutaMax supplement,
0.5% 0.05 M ascorbic acid, with additional 1 mm CaCl,
and 1 mm MgSO, (all from Thermo Fisher Scientific;
Waltham, MA). Medium was refreshed every 3-4 days,
and recordings were performed at 10-12 days in vitro.

Electrophysiology

Hippocampal slices were submerged in room
temperature aCSF containing (in mM): 125 NaCl,
2.5 KCI, 1.25 NaH,PO,, 25 NaHCOs;, 10 glucose,
1 sodium pyruvate, 4 CaCl, and 4 MgCl, at pH

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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7.3 and saturated with 95% O,/5% CO,. Excitatory
events (mEPSCs) were isolated by addition of 1 uM
tetrodotoxin, 10 uM SR-95 531 (Gabazine) and 100 pM
D-(-)-2-amino-5-phosphonopentanoic acid (D-APV) (all
sourced from Tocris Bioscience).

Borosilicate pipettes (3-6 MQ tip resistance when filled
with intracellular solution) were filled with an intra-
cellular solution containing (in mM): 135 CH5SO;H, 135
CsOH, 4 NaCl, 2 MgCl,, 10 HEPES, 4 Na,-ATP, 0.4
Na-GTP, 0.15 spermine, 0.6 EGTA, 0.1 CaCl, at pH 7.25.
CA1 pyramidal neurons were recorded in the whole-cell
patch-clamp configuration. Signals were acquired using
a Multiclamp 700B amplifier (Axon Instruments) and
digitized at 10 kHz using a Digidata 1440 A inter-
face (Axon Instruments). Recordings were performed
with voltage clamp command potentials of —60 and
—80 mV. The liquid junction potential of the bath
solution relative to pipette solution was calculated to be
+10.1 mV using LJPcalc (RRID:SCR_025044) (Marino
etal., 2014). The holding potential values cited throughout
the results section are corrected for the liquid junction
potential using this value. Series resistance was constantly
monitored using a —10 mV pulse every 100 s. Recordings
during which the series resistance varied by more than
20% or exceeded 20 MQ were discarded. The mean
series resistance across the mPSC recording time period
was 129 £ 2.5 MQ and 14.1 £+ 2.9 MQ for —70 mV
and —90 mV datasets, respectively (range: 9.8-16.1 M2
(=70 mV), and 10.7-18.7 M2 (—90 mV)).

Statistics, data analysis and visualisation

All data were analysed in MATLAB (R2022), plotted
in GraphPad Prism 9 and presented using Affinity
Designer 2. Box and whisker plots present median (line),
25-75 percentiles (box) and 10-90 percentiles (whiskers),
overlaid with a symbol at the mean value. Bar plots
depict mean values. Values were reported as mean =+
SD as specified. Experimental data were presented as
individual data points with paired relationships between
recordings from the same cell. Statistical comparisons
for experimentally recorded datasets were made using
Wilcoxon matched-pairs signed-rank test with exact
P-values displayed on figures. Statistical comparisons were
performed using GraphPad Prism 9.

Results

To determine the effects of the detection limit on recorded
mPSC distributions we simulated mPSC recordings
with realistic patch-clamp noise (see Methods). Using
simulated data allows full control of both mPSC properties
and recording noise levels. We first sought to determine

J Physiol 603.22

the effect of event amplitude on detection around
the detection limit. mPSC events were simulated with
varying rise time constants, decay time constants and
peak amplitudes following a lognormal distribution,
approximating real-world data (Fig. 1A-C) (Bekkers &
Stevens, 1989; Brown et al., 1979; Pernia-Andrade et al,,
2012; Sahara & Takahashi, 2001; Zhang & Trussell,
1994). These events were randomly positioned across a
simulated recording (1 Hz event rate) and embedded
in mixed noise (Fig. 1C). We next detected events in
these simulated recordings using a standard, template-fit
algorithm (Clements & Bekkers, 1997; Jonas et al,
1993). The amplitude of detected events also followed
a lognormal-like distribution; however a large number
of events were not detected (Fig. 1D). Unsurprisingly,
undetected events were of small amplitude, hidden in
recording noise. As logically expected due to loss of small
events, the mean mPSC amplitude was overestimated
by detection through recording noise (Fig. 1E, actual
mean event amplitude: 6.88 pA; detected mean amplitude:
9.79 pA), whereas mPSC frequency was underestimated
(Fig. 1E, actual frequency: 1 Hz; detected frequency:
0.58 Hz). With complete detection the mode (peak)
of mPSC distributions has been suggested to represent
synaptic quantal size (Gordleeva et al., 2023; Sahara
& Takahashi, 2001). Variability in synaptic properties
and dendritic filtering will likely preclude this possibility
(described thoroughly in Redman (1990)). In addition
to this, the detected modal value in our example was
more than twofold overestimated (actual mode: 2.65 pA,
detected mode: 5.92 pA). Therefore, incomplete detection
produces mPSC datasets that misrepresent underlying
physiological parameters.

We next modulated the detection limit by increasing
the standard deviation of simulated noise. This caused a
shift in the distribution of detected mPSCs (Fig. 2A and B)
and increased the misrepresentation of both mean mPSC
amplitude and frequency (Fig. 2C). Strikingly, just a 0.6
PA increase in the standard deviation of recording noise
caused a 21% increase in the measured mean amplitude
(9.9 to 12.0 pA mean amplitude) and a 30% decrease in
recorded frequency (0.57 to 0.40 Hz frequency) (Fig. 2C).
By calculating which simulated events were missed, we
determined the association between mPSC amplitude
and its likelihood of detection (Fig. 2B). Event detection
falls away probabilistically with decreasing amplitude,
following a sigmoidal relationship. This probabilistic
detection of small events shapes the rising phase of
the detected event histogram (Fig. 24). Despite missing
over a third of events, detected event histograms had
a lognormal-like distribution, reminiscent of a complete
distribution (Fig. 2A). To demonstrate that this curve
shape is independent of the input distribution we detected
events from a uniform distribution of simulated mPSCs

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(Fig. 2D), which also demonstrated a gradual loss of
mPSCs as their amplitude fell to 0 pA. Due to the
overabundance of small events, errors in measured
event amplitude and frequency were much larger for a
lognormal than a uniform input distribution (Fig. 2E).
Therefore the nature of synaptic properties unfortunately
lends itself to more noise-affected analysis. Crucially, the
level of recording noise has a dramatic effect on the
observed synaptic parameters. In real-world recordings,
noise is not just a result of recording set-up, but it can
vary depending on the cell type, cell state, or even within
and between individual recordings due to cell health, seal
integrity, and recording quality. Therefore it is essential to
assess the recording noise of all cells across datasets when
comparing experimental groups with mini analysis.

The influence of event detection on mini analysis conclusions
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Detecting changes in synaptic properties

We next sought to determine how changes in mPSC
properties are observed through the lens of recording and
detection. Theoretically, a pure effect on event amplitude
would produce a shift or scaling of the amplitude
distribution along the x-axis, whereas frequency
changes would induce a scaling of the distribution in
y (Fig. 3A). Therefore in theory, visualising recorded
event distributions should allow simple understanding
of underlying synaptic changes. Indeed this is certainly
the case when all events are detected, for example large
events which occur well beyond the detection limit (e.g.
action potential-dependent EPSCs at the cochlear nuclei
or Calyx of Held (Sahara & Takahashi, 2001; Zhang &
Trussell, 1994). However at the majority of synapses, and
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Figure 2. Probabilistic detection of small events gives rise to a ‘false’ lognormal event distribution
A, increasing SD of noise (o) decreased the proportion of detected events (upper, example traces; lower, histograms
of actual and detected events, with 1 pA bin widths). Detected event distributions showed a lognormal-like

distribution regardless of the fraction of actual events d

etected. B, event detection follows a sigmoidal relationship,

with a probabilistic decrease in event detection for smaller event amplitudes. The fraction of events found was
fit with a sigmoidal relationship. Symbols and errors depict mean and SD of three simulation repeats. C, higher
recording noise increased the mean detected event amplitude (actual, 6.8 pA; ‘o = 1.47', 9.9 pA,; ‘o = 2.08’,
12.0 pA; ‘o =2.72', 14.1 pA) while decreasing frequency (actual, 1 Hz; ‘o = 1.47', 0.57 Hz; ‘o = 2.08’, 0.40 Hz,
‘0 =2.72',0.29 Hz). D, detection of events from a uniform distribution of simulated input amplitudes demonstrates
probabilistic detection of small events rather than a strict cut-off. Increasing recording noise shifts this distribution
of detected events to higher amplitudes. Tested input amplitudes ranged from O to 30 pA, but graphs depict
values between 0 and 15 pA for maximal visibility. Plotted histograms use a 1 pA bin width. £, with higher noise
mean event amplitudes increase and frequencies decrease, but to a lesser extent for uniform than lognormal event
distributions, due to the high abundance of small events for lognormal input distributions (mean amplitudes; actual,
15.0 pA; ‘o = 1.47', 17.4 pA; ‘o = 2.08", 18.2 pA; ‘o = 2.72', 19.3 pA. Frequency; actual, 1.00 Hz; ‘o = 1.47’,

0.82 Hz; ‘o =2.08’, 0.76 Hz; ‘"0 = 2.72', 0.71 Hz).
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Figure 3. Specific increases in event amplitude are primarily detected as changes in frequency due to
emergence of events from below the detection limit

A, theoretical changes in miniature postsynaptic current (mPSC) amplitude distributions for pure changes in
frequency (orange) or amplitude (purple). B, example traces of simulated mPSC recordings, with increasing event
amplitudes (+2 pA or +4 pA). C, simulated input events demonstrated an expected x-axis shift by increasing all
event amplitudes, whereas distributions of detected events did not display x-axis shifting despite pure amplitude
modification. Histograms use a 2 pA bin width; continuous lines present lognormal fit of binned data, and the
dashed line indicates calculated detection limit using the event scaling method (7.28 pA; see Methods). D, mean
detected event amplitudes were not altered when increasing the amplitude of input events (mean amplitudes; ‘+0
pA’, 11.5 pA; '+2 pA’, 11.2 pA; '+4 pA’, 11.6 pA), whereas large changes in frequency were observed (right; ‘+0
pA’, 0.38 Hz; '+2 pA’, 0.59 Hz; ‘+4 pA’, 0.80 Hz). E, schematic (left) and model (right) of biologically inspired
scaling rule, where small synapses were more strongly increased than larger synapses. Tested scaling factors (s) are
depicted, where s = 0 corresponds to the unmodified distribution. £, representative event simulations, depicting
embedded events (upper), and simulated recording (lower) demonstrating basal (s = 0) and scaled recordings
(s =3). G, input event distributions are shown (left). Detected events from simulated recordings (right) showed an
increase in the distribution peak at low scaling (s = 1), before x-axis shifts were also observed with strong scaling
(s = 3). Histograms use a 2 pA bin width; continuous lines present lognormal fit of binned data, and the dashed line
indicates calculated detection limit (7.28 pA). H, mean detected mPSC amplitude only increased substantially for
strong scaling factors, whereas observed mPSC frequency increased across all datasets (mean amplitude: ‘s = 0’,
12.1pA; 's=1',12.4 pA; 's=2', 13.9 pA; 's = 3', 16.0 pA; observed frequency: 's = 0’, 0.4 Hz; 's = 1', 0.64 Hz;
‘'s=2',0.80 Hz; ‘s = 3', 0.87 Hz).
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for almost all single-vesicle-induced mPSCs, this is not
the case.

We repeated our mPSC simulations, but modified
the event template to increase the peak amplitude of
every event either by 2 or 4 pA before noise embedding
(Fig. 3B). This manipulation simulates a specific scaling
in mPSC amplitude, independent of original synaptic
weight. As expected, distribution histograms for simulated
events shift along the x-axis (Fig. 3C). Histograms of
detected events, however, do not. We instead observe a
stretching of the event distribution along the y-axis, which
is reminiscent of a pure increase in mPSC frequency
(Fig. 3C). Despite simulating a pure increase in mPSC
amplitude, the frequency of detected events increased,
whereas mean amplitudes were comparable (Fig. 3D).
Due to incomplete detection, small events emerge from
the noise both to increase the detected frequency and
counteract the amplitude increase of previously detected
events. Our data demonstrate that mPSC frequency and
amplitude are not independent variables when working
close to the detection limit. As a result, specific effects on
either mPSC frequency or amplitude cannot be reliably
reported, and definitive conclusions can only be made
from datasets with complete event detection or through
analysis of recorded distributions.

We sought to corroborate these findings using a more
biologically realistic scaling model. Events were scaled by

A Input events

Simulated recording

The influence of event detection on mini analysis conclusions 7197

a factor inversely proportional to their initial amplitude,
simulating saturating potentiation and maximal effects on
small synapses, as observed in biological systems (Kaneko
etal., 2011) (Fig. 3E and F). With weaker scaling, specific
changes to detected event frequency again were observed
(Fig. 3G and H). Only with more robust scaling was a
shift in the detected event distribution towards higher
amplitudes evident (Fig. 3G), yet this was accompanied by
a >2-fold increase in mPSC frequency (Fig. 3H). These
results further confirm the interdependence of mPSC
frequency and amplitude for noise-embedded events,
as well as the strong sensitivity of mPSC frequency
measurements to underlying changes in amplitude.

Detecting changes in event frequency

To complete this analysis we applied controlled changes
in mPSC frequency (Fig. 4). We simulated mPSC
recordings with frequencies of 1, 2, and 3 Hz. Despite
the limits of detection, both event distributions and
observed frequencies reflected the change in input, albeit
strongly underestimating true frequencies (Fig. 4D). Mean
mPSC amplitudes showed little change. Although these
data confirm that pure mPSC frequency changes can
be reliably followed, such effects cannot be concluded
from ‘real-world’ data, as observed changes in mPSC
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Figure 4. Specific changes in event frequency are correctly represented as detected frequency changes
A, example traces from simulated input at increasing miniature postsynaptic current (mPSC) frequency (1-3 Hz).
B, input event histograms skewed purely in the y-axis with increasing frequency. C, detection of mPSC frequency
changes was not distorted by detection. Histograms use a 2 pA bin width; continuous lines present lognormal fit
of binned data, and the dashed line indicates calculated detection limit using the event scaling method (7.28 pA).
D, input frequency change produced specific changes in detected frequency (right; ‘1 Hz', 0.4 Hz; ‘2 Hz', 0.8 Hz;
‘3 Hz', 1.1 Hz), and little change in detected amplitude (left, mean amplitude: ‘1 Hz', 11.7 pA; ‘2 Hz', 12.0 pA; '3

Hz', 12.6 pA).
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frequency could occur through biological changes in
either amplitude or frequency.

Event kinetics influence detection

In addition to amplitude and frequency, event kinetics
will vary between experimental and biological conditions.
Changes in synaptic receptor properties, dendritic
location of input events, and series resistance of
patch-clamp recordings may all determine recorded
event kinetics. We simulated recordings using event
distributions with a range of amplitudes but fixed kinetics,
slowing T and Tgeay in tandem between conditions
(Fig. 5A and B). This manipulation mimics the kinetic
filtering of either dendritic location or altered series
resistance. Despite equivalent distributions of input event
amplitudes (Fig. 5C), we observed large differences in
detected event distributions (Fig. 5D). Smaller events,
close to the detection limit, were detected better with fast
than slow kinetics. The loss of small, slow events led to
an increase in the mean detected event amplitude and a
decrease in observed frequency for slower 7 5. and 7 gecay

A  Variation in kinetics

B Trise, Tdecay- 1, 15 ms

J Physiol 603.22

conditions (Fig. 5E). Although the magnitude of this
effect will be dependent on the event detection method
employed, these results demonstrate that even pure
differences in event kinetics can cause changes in detected
event amplitude and frequency, further compromising
biological interpretation.

Real-world mPSC data contain hidden distributions

Although simulated data are valuable for testing mPSC
analysis in a controlled system, we sought to assess
the reliability of mPSC detection using experimentally
recorded mPSCs. Many pharmacological manipulations
are known to enhance synaptic transmission, but due to
the complexity of this system it is difficult to confidently
change transmission amplitude without frequency effects.
However this can be achieved electronically. Recording
mPSC datasets from the same neuron at two holding
potentials allows specific and calculable modification
of mPSC amplitude by increasing the driving force
for ion flow across the membrane, in theory without
influencing mPSC frequency. This approach has been pre-
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Figure 5. Small events with slower kinetics are more likely to be lost in recording noise

A, simulated miniature postsynaptic current (mPSC) events with equivalent amplitudes but differing rise and decay
kinetics were generated. One hundred example events with fast (left) and slow (right) kinetics are depicted. B,
events with five kinetic profiles were embedded in simulated recording noise for detection (e 1, 2, 3, 4 or 5 ms
and t4ecay 15, 25, 35, 45 or 55 ms, respectively). Zoomed box depicts a single event across kinetic profiles. C, the
distribution of input event amplitudes was no different across conditions. D, detected event histograms showed
lower detection of small events for slower kinetic profiles. Histograms use 2 pA bin width and are overlaid with
a lognormal fit (continuous line). E, the mean detected event amplitude increased with slower kinetic profiles
(mean amplitude: ‘rise 1": 10.6 pA, ‘rise 2": 10.6 pA, ‘rise 3": 11.1 pA, ‘rise 4": 11.9 pA, ‘rise 5: 13.1 pA), whereas
the frequency of detected events was lower for slower kinetic profiles due to the loss of small events (detected
frequency: ‘rise 1': 0.54 Hz, 'rise 2': 0.56 Hz, ‘rise 3": 0.53 Hz, ‘rise 4": 0.49 Hz, ‘rise 5': 0.44 Hz).
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viously employed as an experimental control (Malgaroli
& Tsien, 1992; Manabe et al, 1992) and to dissect
synaptic parameters (Chen et al., 2015). We performed
mEPSC recordings from CAl pyramidal neurons in
mouse organotypic slice cultures at both —70 mV and
—90 mV holding potentials (—60 mV and —80 mV
command potentials corrected for —10 mV liquid
junction potential). These recordings were performed
in the presence of 1 pM tetrodotoxin to block action
potential generation, 10 uM SR-95 531 (Gabazine) to iso-
late mEPSCs and 100 uM D-APV to isolate the AMPAR
current (Fig. 6A). Given the variability in real-world
synaptic data, we sampled equal length recordings of
mEPSCs at both holding potentials from every included
cell and proceeded with mEPSC detection and analysis.
The difference in holding potential should cause a 1.3-fold
scaling in mEPSC amplitude. However, we observed no

The influence of event detection on mini analysis conclusions
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change in mean mEPSC amplitude and instead observed
an increase in mEPSC frequency (Fig. 6C). Event
distributions showed y-axis scaling as expected from
a frequency change, directly replicating our theoretical
analysis (Fig. 6B). We confirmed that there was no
difference in recording noise levels between conditions,
ensuring our conclusions were not affected by detection
variability (Fig. 6D). In addition, there was no sub-
stantial difference in series resistance between recording
groups, which could have potentially altered the profile
of recorded events, even in the absence of biological
changes (mean + SD of Ry: —70 mV, 12.9 £+ 2.5 MQ;
—90mV, 14.1 2.9 M2). These observations corroborate
our simulations, demonstrating that real-world mPSC
analysis is confounded by the detection limit, and that a
large number of mPSC events occur below the detection
limit at hippocampal CA1 synapses.
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Figure 6. Real-world mEPSC data show misrepresentative frequency increase in response to event

amplitude manipulation

A, example mEPSC traces recorded from CA1 pyramidal neurons at —70 and —90 mV holding potentials, where a
pure event amplitude change is expected. B, histograms of recorded events suggested an overall frequency increase
(lognormal fit, 1 pA bin width). C, observed mean event amplitudes were not affected by holding potential-driven
amplitude increase (mean + SD: —70 mV, 8.54 4+ 0.86 pA; —90 mV, 9.37 + 0.68 pA; n = 6 cells; Wilcoxon
matched-pairs signed-rank test, P= 0.0625), yet observed frequency was increased by 50% (mean + SD: —70 mV,
0.34 £ 0.07 Hz; =90 mV, 0.51 + 0.13 Hz; n = 6 cells; Wilcoxon matched-pairs signed-rank test, P = 0.0312). D,
there was no difference in the SD (o) of recording noise between conditions (mean + SD: —70 mV, 1.44 £+ 0.10
pA; =90 mV, 1.46 £ 0.13 pA; n = 6 cells; Wilcoxon matched-pairs signed-rank test, P = 0.844). E, scaling the
—70 mV dataset by 1.3 produced overlapping distributions at high amplitudes. These datasets were resampled by
a 5 pA-sliding bin at a resolution of 0.1 pA (right). £, plotting the difference between resampled datasets allowed
the determination of the amplitude at which events begin to be ‘lost” at —70 mV but not at —90 mV. The frequency
difference curve was fitted with a broken stick relationship, which approximated the detection limit (6.2 pA or 3.90
of highest recording noise (highest noise: 1.61 pA)). G, distribution of recorded mEPSCs after application of the
detection limit as a cut-off. Histogram bins start from the detection limit, with 1 pA bin width and a lognormal fit
(continuous line). No peak to event distribution was observed in the recorded range; therefore the modal event

amplitude lies beneath the detection limit.
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Experimental estimation of the detection limit

We have demonstrated the fallibility of mPSC analysis
for understanding and interpreting biological effects.
We next sought to determine a means to improve
the reliability of mPSC analysis through determination
of the event detection limit. Using holding potential
scaling we were able to ‘visualise’ mPSC events that
exist but were hidden beneath the detection limit when
recording at —70 mV. mEPSC distributions recorded
and detected using a —70 mV holding potential were
scaled to their expected amplitude at —90 mV (x1.3)
and plotted alongside our ‘ground truth’ —90 mV mEPSC
dataset (Fig. 6E). Although these distributions overlay
almost perfectly at high event amplitudes (away from the
detection limit), the —70 mV,.q dataset showed lower
frequency of small amplitude events. Our —90 mV dataset
was also likely to be incomplete at small amplitudes,
yet contained a more complete representation than that
recorded at —70 mV. Therefore the point at which these
two curves diverge is the amplitude at which mPSCs
begin to become undetected, i.e. the detection limit.
A sliding bin histogram of mPSC events was plotted
for —90 mV and scaled datasets (Fig. 6E). Calculating
the difference between these curves (subtraction of
—70 mVeq from —90 mV) produces a biphasic curve,
where high amplitudes can be fit with a y = 0 curve (no
difference in event detection), yet low amplitudes follow a
linear relationship with negative gradient (Fig. 6F). This
graph can be approximated with a ‘broken stick’ curve,
where the break point represents the lowest amplitude
at which zero false negatives are recorded: the ‘detection
limit" (Fig. 6F). In our dataset the detection limit was
estimated at 6.2 pA or 3.9 times the highest standard
deviation (o) of recording noise across all recordings (1.61
pA).

Finally we used this knowledge to re-examine recorded
event distributions. We applied the estimated detection
limit as a cut-off for included events and replotted
recorded datasets with the minimum bin value beginning
at this cut-off (Fig. 6G). We were unable to fit a peak to
our real-world mEPSC dataset, demonstrating that the
modal event remains below the detection limit. Estimates
of quantal size or in-depth interpretation of distribution
changes would therefore not be possible from such
data.

Discussion

The properties of central synapses are highly diverse,
both across the brain and at the level of individual
neurons. For this reason, understanding the changes in
synaptic properties underlying brain function requires
robust methods for their study. Analysis of mPSCs has

J Physiol 603.22

the potential to provide information about heterogeneous
synaptic efficacies across the neuronal dendritic tree.
This approach is powerful and technically simple, but
the pitfalls of data analysis and interpretation are deep,
hidden, and currently not so widely appreciated. We
have demonstrated these issues using both simulated
and experimental datasets, suggesting analyses for careful
interpretation of recorded data. Although this manuscript
focuses on mini analysis (mPSCs), these concepts are
directly applicable to sPSC recordings or analysis of
any detected event that has close proximity to noise
levels.

Empirical interpretation of mPSC datasets

It would be logical to assume that measured changes in
mean event frequency represent underlying changes in
mean event frequency and, similarly, event amplitudes.
However our data reiterate that this is a false assumption.
When events are embedded in recording noise, changes
in mPSC amplitude are more robustly detected as changes
in frequency than mean event amplitude (Figs 3 and 6).
Therefore, even specific changes in observed mPSC
frequency could be caused by underlying changes in
either frequency or amplitude. This interdependence was
well appreciated in the early years of mini analysis, with
frequent references to this phenomenon in data inter-
pretation (Diamond & Jahr, 1995; Manabe et al., 1992;
Mennerick & Zorumski, 1995; Yamada & Tang, 1993).
Although this knowledge still exists with the more physio-
logically minded, widespread appreciation of the effect
often appears to be forgotten.

The effect of incomplete detection demonstrates the
importance of interpreting event distributions rather than
average values; however distributions can be similarly
misleading. If complete distributions are seen above the
noise level, interpreting mPSC changes is not an issue,
and even mean values will in some way reflect under-
lying biological changes. However for the majority of
brain synapses this is not the case. The most intensively
studied excitatory connections across the hippocampus
and cortex are weak and have many events buried in
noise. In our hands, the modal mEPSC of CA1 pyramidal
neurons lies beneath recording noise (<6.2 pA at —70 mV
holding potential).

Unfortunately the detection limit is not simply a sharp
cut-off. Small events are lost with increasing likelihood the
smaller they are, creating a false ‘peak’ to event amplitude
distributions. The resulting profiles strongly resemble
the lognormal-like shape expected from synaptic events,
giving false confidence that measured data fully represent
the underlying biology. Quantal analysis from miniature
or spontaneous PSC data is highly problematic unless
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either clear evidence of quantal properties is observed
(Paulsen & Heggelund, 1994), or the peak of the event
distribution can be unequivocally observed above the
detection limit. Even then, variability between individual
synapses, smearing of distributions by dendritic filtering,
and space-clamp problems will almost certainly preclude
simple interpretation of such results (Edwards et al.,
1976b; Jack & Redman, 1971; Malinow, 1991; Redman,
1990; Williams & Mitchell, 2008).

It is not only event amplitude changes that can be
difficult to interpret. Changes in event kinetics can occur
biologically through either differences in synaptic receptor
composition (Greger et al., 2017; Jonas & Spruston, 1994)
or aforementioned changes in input location on the
dendritic tree (Jack & Redman, 1971; Rall et al., 1967),
while also being sensitive to recording conditions such
as series resistance. Event kinetics also affect detection,
with small slow events less likely to be detected in our
analysis. Kinetic changes can therefore also misrepresent
mini analysis results, potentially appearing as changes to
synaptic event amplitudes or frequencies in post-detection
distributions. Evoked synaptic responses comprise
multiple small release events at variable and possibly
distributed dendritic locations; therefore considerations
of input location and dendritic filtering also have the
potential to misrepresent synaptic changes interpreted
from this method.

To facilitate data analysis, we present a means to
estimate the detection limit. Using different voltage
clamp holding potentials, electronically scaled mPSCs
can be compared to determine the amplitude at which
events reliably emerge from noise (Fig. 6). Space-clamp
problems will prevent this from being a perfect measure
(Williams & Mitchell, 2008), but the approach provides
an experimental estimate of the amplitude at which mPSC
analysis becomes unreliable for individual recording
set-ups and configurations. Event distributions can then
be attenuated so as to analyse only the events falling
above this point, preventing false peaks in amplitude
distributions. It is important to note that the detection
limit is not a strict value, as seen from the probabilistic
loss of small events in our analysis (see also (Clements &
Bekkers, 1997)). For practical reasons however, we define
the detection limit as the point at which events begin to be
lost. Our detection limit estimation from real-world data
is in line with previous estimates; Clements and Bekkers
predicted that 4 x o would eliminate false-negative
detection (Clements & Bekkers, 1997). Therefore where
empirical detection limit measurement is not possible, 40
of the noisiest included recording may be an appropriate
cut-off for mPSC analysis. Critically, when binning data
attenuated at a calculated detection limit (e.g. histogram
presentation), lower bin limits must start precisely at
the event cut-off, most likely requiring non-integer edge
values.

The influence of event detection on mini analysis conclusions 7201

Practical steps for minimising misinterpretation due
to recording conditions

Not only are mPSC frequency changes an unreliable
indicator of biological changes, but changes in mean
amplitude are more sensitive to the level of recording
noise than to actual underlying synaptic changes.
Without careful analysis of recorded noise levels between
conditions, misinterpretation of synaptic changes from
mini analysis is very likely. Recording noise is dependent
not only on set-ups but also on individual cells. The quality
of sealing and membrane integrity during whole-cell
recordings will influence the standard deviation of
noise, and event detection will be affected in turn. It is
important that analysed mPSC recordings have as low
noise as practically achievable. More important still is
that experimental groups have equivalent noise levels
between conditions to prevent differences in detection
from artificially resulting in detected changes. This likely
means that not all recorded cells will be included in final
analyses, and that higher noise recordings will need to be
discarded to ensure comparability between conditions.
When experimental groups have different levels of noise,
applying the detection threshold from the highest noise
dataset to all conditions may limit errors due to differences
in detection. To ensure maximal validity of experimental
conclusions it would be ‘best practice’ for the standard
deviation of noise between conditions to be presented
alongside any mini analysis dataset.

Series resistance is the second recording parameter
that can influence mini analysis results. Patch-clamp
recordings with higher series resistance will filter synaptic
events to have smaller recorded amplitudes and slower
kinetics (Armstrong & Gilly, 1992; Barbour, 2018). High
series resistance will also affect the quality of voltage
clamp, which, in turn, may compromise recorded data.
Therefore as with recording noise, it is also important both
to have as low series resistance recordings as practical,
and to ensure that the series resistance of recordings is
similar between compared datasets. Finally, temperature
has a strong influence on the properties of synaptic
transmission (Hardingham & Larkman, 1998; Thompson
et al., 1985). This too should be controlled and consistent
between recorded conditions.

We summarise these considerations in a nine-point
plan for improved mini analysis:

Before/during recording:

1 Ensure recording set-up is optimised with minimal
noise.

2 Assess series resistance continuously during data
acquisition. Typically with a 2-10 mV hyperpolarising
‘test pulse’ approximately every 30-60 s. This can also
be used to monitor input resistance and cell capacitance
for measures of cell properties and recording quality.
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Before/during data analysis:

3 Discard any recordings with poor series resistance or
where series resistance changes substantially during
recordings. Typically cut-offs of 20 MQ and a change
of <20% are appropriate limits to balance quality and
achievability.

4 Manually inspect all recordings for periods of
instability. These areas are likely to have higher
recording noise and the potential to introduce
false-positive events. These periods should be excluded.

5 Measure and present the standard deviation of base-
line noise for each recording and compare between
conditions. Ensure that the measured region/s are free
from visible mPSC events. Assess whether conditions
have equivalent noise levels before subsequent analysis.
Discard recordings with high or non-representative
noise levels that would skew comparisons.

Note: it should not be unusual to exclude a large fraction
of recorded cells where necessary to maintain high data
quality in subsequent analyses.

6 Determine the number of cells and analyse recording
duration for each condition. Analyse equivalent
recording duration for every cell so that datasets are not
skewed towards cells with longer recording duration.
Consider also plotting amplitude distributions with
equivalent number of events per cell, so that data are not
skewed to cells with higher mPSC frequency.

7 Detect events and apply detection limit cut-off.
Ideally the detection limit is estimated experimentally
using the event scaling method detailed here or,
alternatively, by 40 of the noisiest included recording.

mPSC amplitude change mPSC frequency change
- General - General
Synapse location on dendrite/ | Number of synapses (B)
distance to electrode (A)

- Presynaptic
Vesicle size (C)
Vesicle content (D)

- Presynaptic
Release probability (E)
Number of active zones (F)
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It is also recommended to visualise detected events to
confirm valid detection.

8 Plot event distributions starting from the detection
limit. Use the cut-oft selected above as the lower limit
of the first histogram bin to prevent an incomplete first
bin from creating an artificial peak in the resulting
distribution.

9 Interpret with care. Remember that many biological
and experimental factors give rise to the resulting
distributions.

Further practical considerations for recording
spontaneous events are discussed in Hartveit and Veruki
(2007).

Biological interpretation of mPSC changes

Interpretation of ‘mini data’ extends beyond just
numbers and distributions. As we understand more
about synaptic function it becomes clear that the historic
doctrine of ‘mPSC amplitude changes = postsynaptic’
and ‘mPSC frequency changes = presynaptic’ is an
oversimplification. Multiple biological factors of both
pre- and postsynapse can alter both mPSC frequency
and amplitude (Fig. 7). Changes in mPSC amplitude
could be caused postsynaptically by changes in neuro-
transmitter receptor abundance or conductance (Kessels
& Malinow, 2009; Malenka & Nicoll, 1999), but also
presynaptically or transsynaptically, through vesicle
properties or alignment (Scheethals & MacGillavry,
2018; Shi et al., 2022). Similarly, changes in the number
of active release sites could change mPSC frequency
(Malgaroli & Tsien, 1992), but postsynaptic unsilencing

Vesicle recycling rate (G)

- Postsynaptic

Receptor numbers (H)
Receptor conductance (l)
Receptor kinetics (J)
Synapse-dendrite coupling (K)
Dendritic properties

- Postsynaptic
Synapse unsilencing

Postsynaptic sensitivity 7//§4/

- Transsynaptic - Transsynaptic T/
Vesicle — receptor alignment (L) | Nanocolumn formation
~ 77

Vaw

Figure 7. Overview of possible factors influencing mPSC changes

Both miniature postsynaptic current (mPSC) frequency and amplitude may be altered by a range of pre (blue), post
(red) and transsynaptic (green) changes, in addition to more general properties (beige), complicating interpretation
of recorded observations. The factors presented here do not include differences in recording configuration, which

will also affect the conclusions drawn from final datasets.
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(Isaac et al., 1995; Liao et al., 1995) could enact a post-
synaptic change in event frequency. Neuronal properties,
such as dendritic event location and cable properties,
will also influence mPSC parameters (Jack & Redman,
1971; Rall et al, 1967), and should large changes in
cell parameters such as cell capacitance or membrane
resistance occur between compared conditions, their
effect on recording conditions should be considered.
Each of these factors can add significant complexity
to the distribution of synaptic events recorded from
across a neuron’s dendritic tree. Therefore interpreting
specific effects, in particular detailed changes such
as effects on synaptic nanoarchitecture, would need
both low noise recordings and particularly careful data
analysis.

Although minis are a simple means to acquire
functional synaptic data, it is important to note that
the synaptic mechanisms for spontaneous vesicle release
and action potential-dependent synaptic transmission
appear to be distinct (Peled et al, 2014; Sara et al,
2005). Therefore, compounded by the issues with
data interpretation highlighted above, translating mini
data into a mechanistic understanding of functioning
brain circuits will most likely require complementary
investigations of synaptic properties to be performed in
parallel.

‘Mini analysis’ has become widespread due to the
ease of single-cell recording to acquire synaptic insights.
Although powerful, simple, and widely employed, this
approach is prone to misinterpretation. We hope that this
study can aid robust data analysis, strengthening insightful
synaptic physiology and neuroscience research.
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