nature plants

Article

https://doi.org/10.1038/s41477-025-02108-4

Gene body methylationregulates gene
expression and mediates phenotypic
diversity innatural Arabidopsis populations

Received: 21 February 2025

Accepted: 14 August 2025

Published online: 12 September 2025

Zaigham Shahzad ®'?
Jaemyung Choi', Gaélle Cassin-Ross ® *°, Hatem Rouached ® *°,
Matthew R. Robinson ® ® & Daniel Zilberman ®*?

, Elizabeth Hollwey ® 3, Jonathan D. Moore',

W Check for updates

Genetic variationis generally regarded as a prerequisite for evolution. In

principle, epigenetic information inherited independently of DNA sequence
canalso enable evolution, but whether this occurs in natural populationsis
unknown. Here we show that single-nucleotide and epigenetic gene body
DNA methylation (gbM) polymorphisms explain comparable amounts of
expression variance in Arabidopsis thaliana populations. We genetically
demonstrate that gbM regulates transcription, and we identify and

genetically validate many associations between gbM polymorphism and the
variation of complex traits: fitness under heat and drought, flowering time
and accumulation of diverse minerals. Epigenome-wide association studies
pinpoint trait-relevant genes with greater precision than genetic association
analyses, probably due to reduced linkage disequilibrium between gbM
variants. Finally, we identify numerous associations between gbM epialleles

and diverse environmental conditions in native habitats, suggesting that
gbM facilitates adaptation. Overall, our results indicate that epigenetic
methylation variation fundamentally shapes phenotypic diversity ina

natural population.

The neo-Darwinian or modern synthesis at the centre of evolutionary
biology’ posits that DNA sequence changes are the substrate for evolu-
tion, with mechanisms such as natural selection and genetic drift shap-
ing this variation to influence adaptation®*. Epigenetic information,
which canbe encodedindependently of the DNA sequence, is essential
for cell fate determination, development and environmental responses
ineukaryotes*”. Intheory, stably heritable epigenetic variation could
contribute to adaptation®'% Epiallelic variation in many angiosperm
genes, including Linaria vulgaris Cyc, tomato CNR and VTE3, maize
Spm, rice DI, oil palm MANTLED and Arabidopsisthaliana FWA, PAI2 and
IAA7,influences traits™". However, such epialleles are generally either

too unstable to influence a response to selection’®™ (such as Cyc”,
D1'*and MANTLED"), have an underlying genetic basis (such as PAI2"®
and/AA7**) or are artificial (such as FWA" and MANTLED") or evidence
is lacking that heritable epiallelic variation occurs in nature (such as
CNR?°, VTE3", Spm® and DI'®). Furthermore, disentangling the effects
of genetic and potentially epigenetic polymorphism in plant popula-
tions has proven difficult®*, with most polymorphism that might be
epigenetic instead attributed to local (cis) or distant (¢rans) genetic
polymorphism?. Thus, the extent to which epigenetic inheritance
mediates phenotypic diversity or influences evolutionary outcomes
within natural populations is presently unclear>%,
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DNA methylation can be epigenetically inherited over many
generations™” and occursin transposable elements (TEs) and bodies
of transcribed genes**, Plant TEs are methylated in all sequence
contexts—CG, CHG and CHH (H being A, T or C)"?*?*2, TE methyla-
tion induces silencing®, confers genome stability®** and can influ-
ence the expression of neighbouring genes'**% and its variation has
been associated with all known epialleles?°. Gene body methylation
(gbM) occurs only in the CG context?****°, although genes can also
feature TE-like methylationin all contexts (teM)***!, TeMis associated
with silencing®**°*, but the function of gbM has been extensively
debated*’. GbM is nearly ubiquitous in flowering plants**** and is
common in animals*?**, In both groups, gbM preferentially resides
in nucleosome-wrapped DNA within the exons of conserved, consti-
tutively transcribed genes®****°, Conservation and phenomenological
coherence suggest important functions®. Indeed, gbM is associated
with (small) gene expression differences within and between plant
species**°°"% represses aberrantintragenic transcripts**and appears
tobe under natural selection®*>*, Moreover, loss of methyltransferase
function causes developmental abnormalities in honeybees®, ani-
mals in which methylation is principally restricted to gene bodies™.
However, gbM alteration has not been causatively linked to changes
in gene expression in plants or animals®****?, leading to the proposals
that gbM is a non-functional and somewhat deleterious by-product
of TE methylation (in plants)®****®° or has functions unrelated to gene
expression (inanimals)*®. Thus, the functional and evolutionary impor-
tance of gbM has been mysterious and controversial.

The Arabidopsis population exhibits extensive variation in TE
methylation, gbM and teM***, Methylation levels of natural accessions
are associated with climate*’, suggesting that methylation variation
could contribute to adaptation. Furthermore, genetically induced
methylation polymorphism canaccount for theinheritance of complex
Arabidopsis traits®**, and methylation changes have been linked to
adaptation under artificial selection®®, Variation in TE methylation
and teM has been repeatedly linked to genetic variation?, but local
gbM variation is primarily epigenetic*-*® and, hence, is a potential
epigenetic mediator of phenotypic variation. However, natural methyl-
ation variation®, and gbM variation specifically*°, were concluded to
have limited contributions to gene expression variance in Arabidopsis.
Thus, the extent to which variation of gbM or any other type of
methylation underlies phenotypic diversity or drives the evolution of
complex traits in natural populations is unknown®.

Results

GbM and teM are independent phenomena

Analyses of natural DNA methylation polymorphismin plant popula-
tions have not always strictly distinguished between gbM and teM,
potentially motivated by the proposal that gbMis a by-product of teM*.
To evaluate the relationship between gbM and teM, we categorized
genes of 948 Arabidopsis accessions into three distinct epigenetic
states: unmethylated (UM), gbM and teM using published data*® as
previously described*. In brief, genes containing segments of only
CGmethylation (mCG) inagivenaccession were classed as gbMin that
accession, those containing non-CG methylation segments were classed
asteM and those containing neither and with sufficient sequence cov-
erage were classed as UM** (Supplementary Table 1 and Methods).
Genes substantially overlapping both kinds of methylation segment
(generally <1% of genes per accession) were classed as gbM and teM
and excluded from further analyses. Considering unambiguously
categorized genes, an accession contains on average 55% gbM genes,
33% UM genes and 12% teM genes (Fig. 1a). For example, the reference
Col-0 accession has 56.5% gbM, 33.7% UM and 9.8% teM genes. Due to
its variation, gbM is present in >90% of genes across the population
(Supplementary Table 1). Consistent with published results*®"', we
find that gbM conservation varies across genes, falling into three main
groups: gbM in >90% of accessions (41% of genes), gbM in <90% and

>10% of accessions (33%) and gbM in <10% of accessions (26%; Fig. 1b).
Genes with high gbM population frequencies exhibit higher gbM
levels that vary across a broader range (Extended Data Fig. 1a-d), as
expected from the self-reinforcing gbM epigenetic dynamics®. In
contrast to gbM, the vast majority of genes exhibit teM in <10% of
accessions (Fig. 1c), suggesting that teMis disfavoured in most genes,
probably due to its negative effects on expression*.

We find that the numbers of teM and gbM genes are very weakly
(negatively) correlated across accessions (Fig. 1d) and are similarly
weakly (positively) correlated under more restrictive definitions®® of
gbM and teM (Extended Data Fig. 1e). Genes with higher gbM conser-
vation tend to be long and are robustly and broadly transcribed®*%, the
latter manifesting as high Shannon entropy (Extended Data Fig. 1f-h).
By contrast, genes with higher teM conservation tend to be short
and exhibitlow expression and entropy (Extended Data Fig. 1f-h). TeM
is most frequent in genes with low gbM conservation (Extended Data
Fig.1li-n). Theseresultsindicate that gbM and teM are prevalent in dif*-
ferent types of genes and are not substantially associated. Consistently,
a mathematical model that contains only gbM epigenetic dynamics
accurately predicts gbM steady states and variation in Arabidopsis®®.
Using this model, we can precisely predict the distribution of gbM
levels within a core set of 6,736 gbM genes across the Arabidopsis
population, including the frequency at which genes are UM (Fig. 1e).
The model can even make the subtle distinction between genes with
100% gbM population frequency and those that are gbM in >99% but
<100% of accessions (Fig. 1f,g). In essence, we can computationally
recapitulate the epigenetic evolution of Arabidopsis gbM without
recourse to teM. These results do not support the hypotheses that
gbM originates as a by-product of teM* or that gbM promotes the
transition to teM®°. Instead, our data indicate that intragenic gbM and
teM are largely independent and should be treated separately, which
is consistent with many lineages having only TE methylation (fungi
and some land plants) or only gbM (many invertebrates)®* .

GbM and teM explain substantial amounts of gene

expression variance

A study attempting to partition expression variance attributable to
genome-wide methylation variation versus single-nucleotide poly-
morphisms (SNPs) within 135 Arabidopsis accessions found that
the effects of either methylation or SNPs could appear marginal®,
presumably due to linkage disequilibrium between genetic and methyl-
ation polymorphisms®. A recent maize study also found it difficult
to disentangle methylation and genetic variation?. To circumvent
such limitations, we leveraged a statistical framework that robustly
differentiates correlated variables’ to partition expression variance
attributable to common SNPs, gbM and teM mCG polymorphisms
within 625 Arabidopsis accessions for which methylation and expres-
sion data are available*.

We find that SNPs, gbM and teM explain substantial (and compa-
rable) fractions of expression variance: SNPs explain 23.5% on aver-
age, gbM 15.2% and teM 26.0% (Fig. 2a). The variance attributable to
SNPs is similar among genes with <90% gbM population frequency,
with somewhat less variance explained in >290% gbM genes (Fig. 2b).
By contrast, gbM explains considerably more expression variance as
its population frequency increases (Fig. 2¢). In genes with 100% gbM
frequency, the effects of gbM (18.6%) and SNPs (20.6%) are nearly equal
(Fig.2b,c). TeM effects are bimodal (Fig. 2d), probably because they can
belarge but affect only a subset of genes due to teM rarity (Fig. 1a), so
that teM expression effects are either substantial or effectively absent.

TeM explains more expression variance as gbM frequency
decreases (Fig. 2d). Because we could only successfully model genes
with low teM population frequencies (generally <3%; Supplementary
Table1), thiseffectis not due to differential cisteM prevalence. Instead,
we find that teM explains more expression variance as Shannon entropy
decreases (Fig. 2e), whereas gbM shows the opposite trend (Fig. 2f).
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Fig.1|GbM and teM are independent phenomena. a, Frequency distributions
ofthe number of genes classified as teM (blue), gbM (yellow) and UM (black) in
835 Arabidopsis accessions with >70% of genes called. b,c, Frequency distribution
of gbM (b) and teM (c) conservation across 948 accessions within 24,465 genes
with epigenetic state calls in >70% of accessions. d, Pearson’s correlation analysis
between the number (V) of gbM and teM genes across accessions. e-g, Simulated
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(grey) and actual (green) mCG levels of all modelled genes (N = 6,736; e), genes
with gbM frequency >99% and <100% in 740 accessions with global gbM similar
to Col-0% (N=1,273; f) and genes with 100% gbM frequency (N = 2,942; g), across
the 740 accessions or 740 simulation iterations, so that e, for example, shows the
distribution of -5 million (6,736 x 740) empirical and -5 million simulated mCG
data points.

We observe this even in genes with high gbM population frequencies
(Fig.2g,h), meaning that the trend is caused primarily by trans effects:
gbM is more important for gene networks that regulate broadly and
constitutively expressed genes, whereas teM is more important for
networks regulating tissue-specific and inducible genes.

Although we find that teM and gbM explain substantial fractions
of expression variance, the implications differ. Many trans genetic
polymorphisms have been found to influence teM***%%7'72 and teM
variation has been repeatedly linked with local genetic variation®*%*,
especially structural variation (SV; insertions or deletions) caused
by transposition. Hence, the extent to which teM variation is fun-
damentally epigenetic is unclear: much of it may be a readout for
genetic variation. By contrast, although transfactors influence global
gbM, local gbM variation is primarily caused by stochastic epige-
netic fluctuations®. Consistently, gbM levels of individual genes are
weakly associated with global gbM levels across accessions (R*< 0.1
for -80% genes; Extended Data Fig. 10). Therefore, our gbM results
indicate that much of the transcriptional variation in the Arabidopsis
populationis attributable to epigenetic inheritance.

Local intragenic methylation polymorphism is associated

with transcriptional variance

The above analyses (Fig. 2) indicate that gene expression variance
is influenced by methylation in natural populations, but do not
distinguish cisand trans effects. Toidentify functional cisgbM and teM
epialleles, we analysed associations between mCG and mRNA levels
of individual genes. We identified 614 +eQTLE* genes (eQTL stands
for expression quantitative trait locus) that show a positive associa-
tion between gbM and gene expression and 148 —eQTLe genes that
exhibitanegative association ata conservative significance threshold
(Bonferronia = 0.05); more eQTLs wereidentified at less stringent thres-
holds (Fig. 3a, Extended Data Fig.2a and Supplementary Tables 2 and 3).

The dominance of positive associations between local gbM and expres-
sion variation (Extended DataFig. 2b,c) is consistent with findings from
previous studies®**°53, We find that eQTL&® genes are more likely to
have had gbM before the speciation of A. thaliana than non-associated
gbM (NA®™) genes® (Extended Data Fig. 3a,b), suggesting that they
are under selection to retain gbM. CG dinucleotide composition
and length—hallmark features of gbM genes®’—are similar between
eQTLeMand NA®®Mgenes (Extended Data Fig. 3c-h), as are methylation
patterns within and outside the genes (Extended Data Fig. 3i-n).
However, gbM levelsareslightlylower in +eQTL®genes (Extended Data
Fig. 3i,1), which also show lower expression (Extended Data Fig. 3e,h),
suggesting that gbM may have more pronounced positive effects
on gene expression when transcription is lower. In contrast to gbM,
teM associations with expression are (as expected*®*) overwhelm-
ingly negative (Extended Data Fig. 2c,d and Supplementary Table 2),
consistent with teM and gbM exerting different effects on transcription.

Given that genetic and epigenetic variation can be linked in the
population”, we investigated whether methylation variants influ-
ence expression independently of cis-acting DNA sequence changes.
We identified cis SNPs associated with expression of the eQTL&M/tM
Bonferroni genes, and retained eQTLE™*M if significant associations
between methylationand expression variation persisted after account-
ing for cis SNPs associated with expression (Supplementary Fig. 1).
Nearly all-eQTL*were retained, as were >80% of +eQTL™, and >60%
of —eQTLe®™ and +eQTL*M (Extended Data Fig. 4a,b and Supplemen-
tary Table 4). To account for residual confounding effects of SNPs,
we defined SNP-invariant haplogroups for these genes and detected
significant associations between mCG and gene expression for most
eQTL®™ and -eQTL*M (Extended Data Fig. 4c—e and Supplementary
Tables 5 and 6). Furthermore, we found the effects of known SV’* on
eQTLE™ to be negligible (Extended Data Fig. 4f), whereas eQTL"*™
are more often lost after accounting for SV (Extended Data Fig. 4g),
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Fig.2| GbM and teM explain substantial amounts of gene expression variance.
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N=1,935), and the proportion of expression variation explained by teM (e) and
gbM (f) is plotted. g,h, GbM genes (gbM population frequency 290%) were split
by Shannon entropy (<3.6, N=427;3.6-4.4,N =1,854; >4.4,N=1,564) and the
proportion of expression variation explained by teM (g) and gbM (h) is plotted.
Superscript letters after mean values in all panels signify P < 0.01 using the
non-parametric Kruskal-Wallis test followed by pairwise comparisons using the
Wilcoxon rank-sum test with Bonferroni correction for multiple testing. Groups
sharing the same letter are not significantly different.

consistent with the known association between teM variation and TE
SV*73%4 Inaddition, we find that many (47.4%) retained eQTL*“™ genes
are affected by trans (presumably genetic) polymorphism (Extended
DataFig. 5a—c), whichis consistent with published results*>*-%772 By
contrast, trans genetic variation accounts for only 1% of gbM variance
within eQTL8*™ (Extended Data Fig. 5d—-fand Methods). These findings
supportthe conclusion that epigenetic gbM variation explains substan-
tial gene expression variance in the Arabidopsis population, whereas
teMvariationis often areadout for cis or trans genetic polymorphism.
This distinction highlights theimportance of analysing gbM variation
for understanding expression diversity within plant populations.

Loss of gbM quantitatively affects the expression of
eQTLMgenes

To determine whether intragenic DNA methylation directly affects
gene expression, we analysed published RNA sequencing (RNA-seq)
datafrom metI mutants and wild-type (WT) controls across 16 natural
Arabidopsis accessions”. Inactivation of the METI methyltrans-
ferase causes complete loss of gbM and nearly complete loss of mCG
throughout the genome”. WT methylated Bonferroni—eQTL"™ genes
are strongly overexpressed in met1 (Extended Data Fig. 6a), consist-
ent with the established repressive activity of teM***%*!, As expected
from the associations, Bonferroni+eQTLE™ genes are modestly down-
regulated (expressed at ~-88% of WT compared with NA2® controls),
whereas -eQTL&" genes are modestly upregulated (expressed at-109%
of WT compared with NA®®M controls; Fig. 3b). Analysis of additional
Col-0 metl seedling, leaf** and inflorescence’” RNA-seq datasets
produced analogous results for —eQTL*™ and +eQTL&"M genes, but
-eQTL®™ expression differences are not significant (probably due to
the low number of these genes; Fig. 3¢ and Extended Data Fig. 6b-e).

Analysis of genes that passed less stringent significance thresholds
produced similar results, albeit with decreased effect sizes (Extended
Data Fig. 6f-i). Furthermore, +eQTL®™ genes with higher mCG show
stronger downregulation in metI RNA-seq data, whereas —eQTLe™
genes with higher mCG exhibit stronger upregulation (Fig. 3d and
Extended Data Fig. 6j,k), indicating that gbM quantitatively affects
gene expression. The quantitative relationship between WT gbM and
metl expression remains after removal of genes with methylationin the
putative promoter (Extended Data Fig. 61,m). Although METIinactiva-
tion could influence gene expression by altering non-CG methylation
and histone modifications’, these chromatin features are not signifi-
cantly changed in any relevant gbM gene category (Supplementary
Fig.2) and, thus, cannot explain our results.

The prevalence of gbMin constitutively expressed genes has moti-
vated the proposal that gbM stabilizes gene expression by reducing
transcriptional noise****%7°5% so that gbM effects onmRNA levels could
beinterpreted as a secondary consequence. To test this, we analysed
interreplicate variance within the metI and WT RNA-seq data from
16 Arabidopsis accessions”. As expected, there is a strong negative
correlation between transcriptional variability and gbM prevalence,
but this remains the case in met1 (Fig. 3e and Supplementary Fig. 3a).
Variability is elevated in met1, but this effect is strongest in genes with
low gbM, and decreases with gbM prevalence, including in eQTL&™
genes (Fig. 3e,fand Supplementary Fig. 3). Given our observation that
teM effects on expression also decrease with gbM prevalence (Fig.2d),
higher transcriptional variability in metI is probably caused by teM
disruption. Therefore, any potential effects of gbM on transcriptional
variability are low enough to be masked in metI data, whereas we can
robustly detect gbM effects on steady-state mRNA levels in the same
data (Fig. 3b,d and Extended Data Fig. 6f,g,j—m).
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Fig. 3| GbM quantitatively affects gene expression. a, GbM level and expression
of AT5G53010 across accessions. Per cent expression variance explained (PVE)

by gbMisindicated. Pearson’s correlation analysis was used to assess the
association between the two variables. FPKM, fragments per kilobase of
transcript per million mapped reads. b,c, Expression in met1 seedlings compared
with WT of Bonferroni (= 0.05) retained eQTLE genes across 16 accessions

(b) and across Col-O tissues (leaf, seedling and inflorescence; c¢). Numbers of
unique genes within each group are noted above the plots, means are indicated
by ‘+’ and noted below the plots. Sample medians are shown by centre lines, and
box edges represent the 25th and 75th percentiles. Whiskers extend to 1.5 times
theinterquartile range. Pvalues were calculated using a two-tailed Student’s
t-test to compare the indicated eQTL group with non-associated (NA) genes.

d, Relationship between gbM levels of retained +eQTL®™ and —eQTL# genes in

WT plants across 16 accessions and log, fold expression change in met1 compared
withthe WT of that accession. Genes were grouped by gbM levels. R and

Pvalues correspond to Pearson’s correlation. e, Relationship between the gene
expression coefficient of variation (CV) across biological replicatesin WT (blue)
and met1 (purple) and WT gbM level across 16 accessions. Genes were grouped
by gbM levels in WT. p and Pvalues correspond to Spearman’s rank correlation
coefficient. f, Relationship between the log, fold CV change in met1 compared
with WT and the gbM level across 16 accessions. R and Pvalues correspond to
Pearson’s correlation. g h, Expression in hImetI*" (g) and hImetI”* (h) compared
with hl of Bonferroni (a = 0.05) retained (R) or lost (L) eQTL&M genes that are
either demethylated (Demeth.) or keep methylation. Box plotsasinbandc.

P, two-tailed Student’s t-test.

To further evaluate the directimpact of gbM loss on gene expres-
sion, we analysed a plant that is heterozygous for met1 (metI”") and
has relatively normal TE methylation and limited gbM loss**. This plant
also contains loss-of-function mutations in two histone H1 genes™;
therefore, expression was analysed with respect to hI-mutant controls.
We analysed only +eQTL&M genes, as we lacked statistical power for
the smaller number of -eQTL& genes. Retained +eQTLEM genes dem-
ethylated in this plant have significantly decreased (-35%) expression
compared with retained +eQTLE*™ genes that maintain gbM (Fig. 3g),
specifically linking gbM loss with reduced expression. To validate these
findings, we isolated six hlmetI”* progeny of himetI”". These plants
exhibit mosaic demethylation of gbM genes, whereas TE methylation
is comparatively normal (Supplementary Fig. 4). Retained +eQTL&™
genes demethylated in hAlImetI"" plants display significantly reduced
(-25%) expression compared with retained +eQTL&*™ genes that keep
gbM (Fig.3h). Altogether, we find that gbM loss consistently influences
the expression of eQTLE™ genes, regardless of the genetic background,
tissue (seedlings, leaves or inflorescence), presence of functional
METI, or the extent of global teM or gbM perturbation. Therefore,
ourresults establish gbM as a quantitative gene expression regulator.

GbM variation enables efficient identification of new
functional genes

We find that methylation polymorphism explains a substantial amount
of natural expression variance and directly affects gene expression
(Figs. 2 and 3). This implies that methylation epialleles should drive
trait variation in natural populations. To uncover how DNA methyla-
tion shapes natural phenotypic diversity, we performed epigenome-
wide association (epiGWA) analyses between gbM or teM poly-
morphism and the variation of complex traits: relative fitness under
different conditions®, 9 flowering time-related traits®” and the accu-
mulation of 18 mineralsinleaves®’. We identified 1 QTL& for fitnessin
Madrid (hot climate) under low rainfall and high-density population
growth (MLP), 8 QTLE™ for flowering time traits and 19 QTLE*™ for leaf
minerals (Supplementary Figs. 5-10, Supplementary Tables 7-13 and
Methods). We also identified one QTL*Mfor fitness in MLP conditions
and six QTL™ for mineral accumulation (Supplementary Figs. 5, 6
and 10 and Supplementary Tables 8 and 13). With the notable excep-
tion of two extensively studied flowering time genes—FLC and FRI**—
there was virtually no overlap between QTLE®*M and genetic QTLs
(Supplementary Figs. 6, 9 and 10 and Supplementary Tables 13-15),
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suggesting distinct contributions of methylation variation to
phenotypic diversity. Nonetheless, we found linkage disequilibrium®’
(r=0.725,D’=0.824,P < 0.0001) between FRIgbM and SNPs, suggest-
ing that FR/epigenetic and genetic QTLs are redundant, and therefore
we excluded FRI/from further analyses.

We focused special attention on FLC (QTL®™) and the two
MLP fitness QTLs—Proline Transporter 1 (PROTI; AT2G39890; QTLEM)
and ATIG19410 (QTL*M)—because we identified FLC and PROTI as
+eQTLEM and ATIGI19410 as a —eQTL*M (Supplementary Table 3).
Because multiple FLCSNP and SV alleles affect flowering time or vernali-
zationresponse®***¢ we defined 13 FLC haplotypes that were invariant
for SNPs and known SVs™ (Supplementary Table 16), 12 of which contain
gbMand UM accessions (Fig. 4a), suggesting complex gbM evolution
at this locus. GbM accessions display significantly delayed flowering
(flowering time at 16 °C, FT_16 °C) within five haplotypes (delay of
>18 days in three haplotypes; Fig. 4a), and significantly higher FLC
expressioninthree of these haplotypes (Fig. 4b). These results suggest
that gbM promotes FLC expression, as expected for a +eQTLE*M, and
are consistent with the known function of FLCin delaying flowering®*.
Although upstream teM has been linked to FLC expression and flow-
ering time®, exclusion of the relevant teM accessions does not alter
our results, and in general we find that upstream teM is uncorre-
lated with FLC expression or flowering time (Supplementary
Figs.11-13). FLCis downregulated in metI regardless of WT methylation
status (Extended Data Fig. 7a), suggesting indirect effects of global
methylation loss.

For PROTI and AT1G19410, we found consistent associations
between mCG, fitness, and expression after accounting for SV in the
entire population, as well as in haplogroups invariant for SNPs and
SVs (Extended Data Fig. 7b and Supplementary Table 16). As expected
fora+eQTLEM, PROT1is downregulated by 38% in metI as determined
by quantitative reverse transcription PCR (qRT-PCR; Extended
DataFig.7cand Supplementary Table17) and is downregulated in met1
RNA-seqdatafromaccessionsinwhich PROTI1is methylated (Extended
Data Fig. 7d). ATIG19410 teMis lost in plants that lack DRM and CMT
methyltransferases (Extended Data Fig. 7e), and in such ddcc mutants®®
ATIG19410 expressionincreases about sevenfold (Extended DataFig. 7f
and Supplementary Table 17), consistent with a—eQTL"*™,

The positive associations between fitnessand mCG in PROTI and
AT1G19410 make clear predictions about the effects of gene inactiva-
tion: PROTI (+eQTL2®) inactivation should reduce fitness, whereas
AT1G19410 (-eQTL*M) inactivation should enhance fitness. Genetic
inactivation of PROTI indeed caused ~35% fitness reduction under
joint heat and drought stress (Fig. 4c and Extended Data Fig. 8a).
PROTI-mutant plants produced less biomass and had decreased sur-
vival to fruit, but had the same fecundity (seed set) as WT (Fig. 4d and
Extended Data Fig. 8b-d). Consistently, PROTI gbM is specifically
associated with survivalin MLP conditions (Extended Data Fig. 8e-g).
Inactivation of ATIG19410resulted inaslight (-13%) but non-significant
increase in relative fitness under heat and drought stress (Extended
Data Fig. 9a,b). However, AT1G19410 mutants have greatly enhanced
(>2-fold) fitness under heat stress alone, with >2-fold increased
fecundity and significantly increased fertility (percentage of flow-
ers developing siliques), but no major effect on survival or biomass
(Extended DataFig. 9b-f). Therefore, we named AT1G19410 ANAHITA
(ANH) after the ancient Persian goddess of fertility and water. Notably,
the association of ANH teM is stronger with fecundity than survival
in MLP conditions (Extended Data Fig. 9g-i). Thus, although both
genesinfluencerelative fitness, PROTI specifically influences survival,
whereas ANH affects fecundity.

To more broadly examine the validity of epiGWA mapping,
we analysed the six additional flowering time QTL®M genes, and
ten QTLE™ genes associated with accumulation of the most easily
quantifiable minerals—potassium (K), magnesium (Mg), manganese
(Mn) and zinc (Zn)—using T-DNA insertion mutants. We focused on

gbM QTLs because these are much more numerous and because gbM
variation is unambiguously epigenetic. Mutants in all flowering time
QTLe™genes except AT3G43860 showed significantly altered FT 16 °C
(Fig. 4e), and mutants in nine mineral QTLE*™ genes displayed sig-
nificant changes in the accumulation of relevant minerals (P< 0.07,
eight genes with P< 0.03; Fig. 4f-i). Thus, we validated nearly 90%
(16/18, including the published ic flowering phenotype®) of QTL# via
mutationsin genes where gbM is associated with the trait. Acompara-
tive analysis of Arabidopsis SNP-based GWA studies across 48 diverse
traits with 57 validated genes (Supplementary Table 18) revealed that
the SNP with the lowest P value is located within the validated gene
in only ~54% of cases (Fig. 4j). The high frequency of epiGWA pin-
pointing the trait-relevant gene is probably due to gbM epimutation
rates exceeding genetic mutation rates by ~10°-fold®**°~*2, Such turn-
over should rapidly disrupt linkage between gbM polymorphism, so
that only gbM in the causative gene is associated with trait variance.
Given that the associations obtained with GWA and epiGWA analyses
rarely overlap (Supplementary Figs. 6, 9 and 10), gbM-based epiGWA
mapping presents a powerful and broadly applicable gene discovery
tool, as we illustrate by identifying 15 new genes affecting six distinct
phenotypes (MLP fitness, flowering time and accumulation of K, Mg,
Mnand Zn).

GbM variation may facilitate local adaptation

Arabidopsis grows in abroad range of natural environments and shows
extensive local adaptation®. As we find that gbM polymorphism
explains substantial gene expression variation, we tested whether
gbM may facilitate adaptation by performing epiGWA analyses for
171 environmental variables’*. We detected 571 associations between
232 genes and 115 of these variables, with 77% of these associations not
colocalizing with SNP associations (Extended Data Fig.10a and Supple-
mentary Table19). Notably, gbM variationin 57 genesis associated with
atleast three environments, and P values for these genes are strongly
correlated for associated environments (Fig. 5a,b and Supplementary
Tables19-21), suggesting that multiple correlated environmental condi-
tions impose selection on epiallelic states of individual genes.

Our analysis identified several notable gbM associations with a
plausible functional link to environmental adaptation (Fig. 5c-e and
Extended DataFig.10b-d) that do not overlap with genetic associations
(Supplementary Table19). GbM variation in CCS, which mediates heat
stress responses®, is associated with summer insolation, with gbM
epialleles more prevalent in high insolation environments (Fig. 5¢).
GbMin CHY1,whichisinvolvedin cold signalling and promotes freezing
tolerance®, is associated with spring minimum temperature, with gbM
epialleles rare in environments where temperature drops below —4 °C
(Fig.5d). GbMin HUP9, aregulator of flooding stress response?”, is asso-
ciated with annual precipitation (Extended Data Fig. 10b). PYRI gbM
variationis associated with soil excess salts, with high-salt soils almost
exclusively featuring gbM epialleles (Extended DataFig.10c). PYRIis an
abscisic acid receptor®, and abscisic acid is a central regulator of plant
salt stress responses’”. GbM variation in the calcium sensor SOS3'°°
associates with soil salinity and sodicity (Extended DataFig.10d), which
includes calcium carbonate (CaCO;) and gypsum (CaSO,-2H,0). Nearly
allaccessions from high-salinity and high-sodicity soils have UM SOS3
epialleles (Extended Data Fig.10d). These findings suggest that natural
gbM variation facilitates local adaptation in native habitats.

The most striking association we discovered is between FLC
gbM and springtime concentration of nitrogen dioxide (NO,), with
UM FLC alleles prevalent in high-NO, environments (Fig. 5e and Sup-
plementary Table 22). Because UM FLC accessions flower early (Fig. 4a),
thisassociation predicts that accessions from high-NO, environments
should flower early. Indeed, flowering time (FT_16 °C) of laboratory
grown Arabidopsis accessionsis more strongly correlated with atmos-
phericNO, in native environments than with any other environmental
variable (Fig. 5fand Supplementary Table 23). NO, levels vary regionally
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Fig. 5| GbM variation is associated with geoclimatic variables. a,b, Correlation
(R? matrices of epiGWA Pvalues (a) and environmental variables (b) for 57 genes
identified in at least three epiGWA analyses. Associations between epiallelic
states (UM and gbM) of genes and environmental variables were examined

using amixed linear model. Supplementary Tables 20 and 21 list individual
environment labels in order. c-e, Associations between gbM and environmental
data for CCS (c), CHYI (d) and FLC (e).f, Pearson’s correlation between

Spring NO, (billion MOL mm)

Spring NO, (billion MOL mm2)

springtime atmospheric NO, (billion molecules (MOL) per mm?) and flowering
time (FT_16 °C) of individual accessions. g, Average (+s.e.m.) FT_16 °C and NO,
concentrations in Sweden (SWE, number of accessions (V) =187), Russia (RUS,
N=47),Italy (ITA, N=48), Spain (ESP, N=170), USA (N = 41), France (FRA, N=37),
UK (N =56) and Germany (GER, N=102). h, Prevalence of FLCUM epiallele asa
function of NO,. R?and Pvalues indicated in g and hare derived from Pearson’s
correlation test.

andareindicative of air quality inurban and industrial centres'”. We find
that average concentrations of NO, across countries show a remark-
ablelinear correlation (R* = 0.67) with flowering time in the laboratory
(Fig. 5g), suggesting that earlier flowering is advantageousin higher-NO,
environments. Prevalence of the FLC UM epiallele in countries is also
strongly correlated with NO, (R? = 0.68; Fig. 5h). These findings suggest
FLC gbM variation is selected to adapt flowering time to atmospheric
NO, (or an unevaluated correlated environmental factor).

Discussion

Our findings reveal that gbM and teM are independent phenomena
(Fig. 1) that explain substantial amounts of gene expression varia-
tion in the Arabidopsis population (Fig. 2). GbM is most important
for broadly and constitutively expressed genes (Fig. 2f,h), consistent
with its enrichment in such genes®”*®, whereas teM is most relevant
for genes with narrow or inducible expression (Fig. 2e,g). We also find
that gbM directly and quantitatively affects gene expression (Fig. 3),

Nature Plants | Volume 11| October 2025 | 2084-2099

2091


http://www.nature.com/natureplants

Article

https://doi.org/10.1038/s41477-025-02108-4

and that its natural variation can be used to identify many new genes
that influence a range of complex traits (Fig. 4). There is a great deal
of gbM variation: just the core gbM genes analysed in Fig. 1e contain
299,679 polymorphic CG sites, compared with the 920,998 common
SNPs across the Arabidopsis genome used in our analysis (Fig. 2).
Thus—as for SNPs—many small effects can accumulate within gene
networks to substantially influence gene expression (Fig. 2a—c). Overall,
our results indicate that epigenetically variable gbM patterns are a
major source of functional polymorphism in Arabidopsis.

Because DNA methylation is mutagenic'®?, and its presence in
coding sequences probably incurs a fitness cost*, the widespread
conservation of gbM in plants and animals has presented a mystery.
A potential explanation is that gbM variation can rapidly generate a
range of gene expression epialleles, thereby accelerating adaptation
to new or changing environments. The association between atmos-
pheric NO,, flowering time and FLC gbM (Fig. 5e-h) presents an illus-
tration of how this might occur. Natural genetic variation at FLCis a
major determinant of flowering time®**>% and is associated with over
20 environmental variables that are (or may plausibly be) related to
flowering, including latitude, temperature and precipitation, but not
NO, (ref. 94). The majority of atmospheric NO, (>75%) is produced by
recent human activity, especially the burning of fossil fuel'®>, Therefore,
Arabidopsis populations have had to adapt to NO, concentrations (ora
correlated unexamined environmental variable) changing over a few
decades. Geneticadaptation at FLCapparently hasnotyet occurredin
responsetosuchrapid environmental alteration, or at least is too weak
for detection. However, epigenetic gbM variation at FLCis significantly
associated with atmospheric NO, (Fig. 5e-h), but not other environ-
mental variables (Supplementary Table 22), which is consistent with
our observation that FLC gbM and sequence variation are indepen-
dent (Fig.4a). Therefore, gbM variation at FLC has probably facilitated
adaptationtoanthropogenic NO, increases, whereas genetic variation
hasbeeninvolvedin adaptation to environmental conditions that vary
overlonger timescales. Thisinterplay between epigenetic and genetic
adaptation is consistent with evolutionary models’™ and may be a
generally important component of environmental adaptation.

Methods

Methyl-C seq data analysis

Bisulfite sequence reads were accessed for the 1001 methylomes*°
experiments from the Sequence Read Archive (SRA) under acces-
sion number GSE43857. Sequencing reads of 948 non-redundant
Arabidopsisaccessions were aligned to the Arabidopsis TAIR10 genome
reference sequence'®, using BSMAP'® with default parameters, and
known SNPs and indels®” were masked. Genes and transposons were
annotated using the Araportll annotation'’®. Methylomes were seg-
mented into UM, gbM and teM segments as previously described**.
The result of this segmentation is that gbM segments contain mCG
anywhere between the annotated transcriptional start and termi-
nation sites of genes (and can span exons and/or introns) and lack
non-CG methylation, teM segments contain non-CG methylation and
UM segments lack methylation. Methylation of each CG site was called
by comparing the counts of aligned reads indicating methylated and
unmethylated status at the site. Fisher’s exact test was used to deter-
mine whether there was sufficient read coverage at the site to distin-
guish the site from a fully unmethylated site with an error rate similar
to the methylation rate observed in the chloroplast of the sample in
question (as an estimate of bisulfite conversion inefficiency), or from
a fully methylated site with a similar error rate. For sites where these
tests indicated coverage was sufficient, a binomial test was used to
identify sites with significantly more methylated reads than expected
atanunmethylatedsite. Sites with significantly more methylated reads
than would be expected for an unmethylated site, but with less than
45% reads methylated, were classified as partially methylated and
generally treated as missing data. A gene was classified as gbM, teM,

both (gbM and teM), UM or indeterminate in each accession, based
on overlapping methylome segments. Genes overlapped by a gbM
segment three or more CG sites long, with at least one CG site called
methylated by abinomial test, were classed as gbM genes, unless they
are also overlapped by a teM segment at least 25% as long as the gbM
segment, in which case they were classified as both. Genes overlapped
by a teM segment three or more CG sites long were classified as teM
genes, unless they are also overlapped by a gbM segment at least 25%
aslongastheteM segment, in which case they were classified asboth.
Genes not overlapped by gbM or teM segments and that span at least
threesites called unmethylated by abinomial test were classified as UM.
The remainder of genes were classified as indeterminate. Ambiguous
genes (classed as ‘both’ or ‘indeterminate’) were discarded from fur-
ther analysis. The mean CG methylation level of gbM or teM genes was
calculated for each gene by summing the number of CGssitesidentified
asmethylated and dividing by the total number of CG sites classified as
either methylated or unmethylated, as determined by abinomial test.

Estimation of prevalence of teM across gbM conservation bins

The number of genes having gbM or teM epigenetic states was deter-
mined in 948 Arabidopsis accessions. Pearson’s correlation analysis
for the number of gbM and teM genes was performed using accessions
withmore than 60% sequencing coverage of genomes. Conservation of
epiallelic states of genes was analysed as a fraction of accessions having
gbM or teM and the total available calls (that is, excluding accessions
where the gene could not be called). Average prevalence of teM within
gbM conservation bins was estimated infour gbM categories (0; >0% but
<10%;10-90%; and >90%), decile gbM bins and percentile gbM bins. To
compareour results with published findings, identical analyses were per-
formed usingavailable data®® withrestrictive definitions of gbMand teM.

Methylation level distribution

Simulation of steady-state gbM was previously described®®. In brief,
genic regions were refined by excluding sequences not methylated
in the population or containing high levels of histone H2A.Z, which
is known to antagonize DNA methylation'”. This resulted in a single,
continuous methylatable region per gene for 7,980 genes®®. Further
stringent filtering removed genes with a methylatable region cover-
ing less than 80% of the annotated gbM segment, refining the dataset
t0 6,736 genes. GbM within these loci was simulated from an entirely
unmethylated starting state for 100,000 generations®. To ensure
robust comparison with natural variation, 740 iterations of the simu-
lation were performed to produce a distribution of gbM levels for
comparison with the empirical distribution over 740 accessions with
global gbM levels similar to Col-0°°. Loci were grouped into percentiles
by their gbM conservation level, with multiple data points for eachgene
showing mCG levels in different accessions or simulationiterations.

Partitioning expression variance attribution between gbM,
teM and SNPs

RNA-seq data for 625 Arabidopsis accessions were retrieved from
Gene Expression Omnibus (GEO): GSE80744 (ref. 1). Genes without
detectable expressioninleaves of >50% of accessions were discarded.
To avoid confounding by low allele frequencies, we selected gbM and
teM genes having at least one mCG site in >20% of accessions. This
yielded aset 0f 10,206 genes with gbM polymorphismand 1,442 genes
with teM polymorphism. From the imputation version of the 1001
genome SNP panel*, we selected common SNPs (frequency 15% and
above), giving 920,998 SNPs. We then modelled the expression of each
gene, y; (a vector of length 625 accessions), as dependent upon the
jointeffects of gbM, X,y (a matrix with 625 rows and 10,206 columns),
teM, Xim(amatrix with 625 rows and 1,442 columns) and the SNPs, X,
(amatrix with 625 rows and 920,998 columns), with the model

Y= ngMbng + XteMbteM + Xsnpsbsnps +€,
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where by, beew and by are regression coefficient vectors of length
10,206,1,442and 920,998 of the jointly estimated effects of gbM, teM
and the SNPs, respectively, on the expression values of genej. Each
regression coefficientis modelled as coming from a mixture of normal
distributions and a Dirac delta spike at zero. We fit this model using
software for methylation data analysis that has been used extensively
in human studies’. GbM, teM and SNP effects are modelled as three
independent groups withindependent priors, where the total pheno-
typic variance attributable to each component is estimated from
the data. Note that, while the groups have independent priors, each
effect is modelled conditional on all other effects in the same
group and all other groups. Altogether, we modelled 14,000 genes
(genes need not have cis gbM or teM variance to be modelled, as the
expression of each gene is modelled using the entire set of gbM, teM
and SNPs). We checked convergence of the parameters across 5,000
posterior samples, discarding genes for which the analysis was highly
divergentand retaining those (7,339; Supplementary Table 1) for which
all parameters were estimated in a stable manner that was repeatable
across multiple runs of the algorithm. Frequency distributions of
the partitioned expression variance were generated via the kernel
density estimation functioninR.

Associations of intragenic DNA methylation with gene
expression levels

RNA-seq data for 625 Arabidopsis accessions with gene-specific mCG
levels were retrieved from GEO: GSE80744 (ref. 40). Genes showing
no detectable expression in leaves of any of these accessions were
discarded from association analyses. Furthermore, to avoid confound-
ing by low allele frequencies, these analyses were performed using
gbM and teM genes having at least one mCG site in more than 10%
Arabidopsis accessions. This allowed us to examine associations
between mCG levels and gene expression for 18,679 gbM and 1,442
teM genes. Expression levels of genes were regressed on mCG levels
in alinear model. Association P values for Pearson correlation were
estimated using SigmaPlot 14.0.

Bonferroni (a = 0.05) or 0.05and 0.1 false discovery rate'°® (FDR)
corrections were implemented to account for multiple tests. The
percentage of expression variance explained by intragenic DNA
methylation was calculated as

_ (B Vo)

P

PVE

where V,,; is the variance of mCG, V, corresponds to phenotypic
(expression) variance and S effects for each association test were
calculated as

ﬁ:RX(U:PCG)

where Ris Pearson’s correlation coefficient, g, corresponds to standard
deviation of gene expression and o, is standard deviation of mCGin
the population.

Gene feature annotation

CG (CGG or CGT or CGC or CGA) sites were enumerated by scanning
annotated genes'’ within the Col-0 reference sequence'®* with
a three-base window and step size of one base. Gene lengths were
obtained from the Col-0 annotation'*®. Then, CG dinucleotide frequen-
cies were calculated by normalizing the number of CG sitestoagene’s
annotated length. The mean expression level of each gene was calcu-
lated across 625 accessions. Shannon entropy data for 25,707 genes'”,
ancestral genic methylation states®, and H3K9me2 and non-CG meth-
ylation data for metI-mutant plants compared with WT”® were obtained
from published sources.

Pipeline to account for SNP effects on the expression

of eQTLE™ M genes

To disentangle the effects of intragenic methylation on expression
from cis-acting DNA sequence changes, we performed GWA analyses
for the expression of 765 eQTL™ and 217 eQTL™™ Bonferroni genes
using 1001 genomes SNP** datainanaccelerated mixed model™. Colo-
calization of each cis eQTL (eQTL*¥) significant at Bonferroni threshold
(= 0.05) with epigenetic eQTL was determined. The eQTLE®*Mgenes
for which no colocalized cis eQTLS"" were detected are considered to
affect gene expression variation independently of genetic variation
(retained eQTLE*™*M) (Extended Data Fig. 4a,b and Supplementary
Fig.1).In cases where eQTLs8*™ M colocalized with eQTLs", the origi-
nal population of accessions was separated into two nested popula-
tions, each fixed for the GWA SNP (Supplementary Fig.1). Associations
between intragenic DNA methylation and expression of these genes
were reexamined within nested populationsto account for the effects
of SNP variation on expression. The genes that exhibited significant
association betweenintragenic DNA methylationand expressioninat
least one nested population were also classified as retained eQTLEM/tM,
Genes withoutsignificant associations betweenintragenic DNA meth-
ylation and gene expression in nested populations were considered
probably confounded by linked SNPs in the population. Accordingly,
these eQTLE™ M were classified as lost eQTLEM M genes. To account
for GWA SNP effects on expression variance, the per cent variance
explained by methylation was calculated in nested populations as
described above.

Analysis of published met1 RNA-seq data

RNA-seq data for metl mutants were retrieved from PRJEB54036
(ref. 75) for 16 different accessions of Arabidopsis (Aa-0, Baa-1, Bs-1,
Bu-0, Col-0, Com-1, Cvi-0, Ei-2, Est-1, MAR2-3, Nok-3, Pi-0, Ste-0, Tscha-1,
Tsu-0 and Uk-1). Reads were mapped to the genome using HiSat2, and
changesin expressionin comparisonwith WT across annotated genes
(Araportll) identified using feature counts and DESeq2". Independent
alleles of met1 were analysed separately. Variability of these samples
was calculated using the coefficient of variation of the TPM across
three biological replicates separately for WT and met1. Only genes
with detected reads in all biological replicates were used. Genes with
no change in expression were additionally identified using DESeq2,
selecting genes with an adjusted P value >0.05 and log, expression
change between -1 and 1. Methylation levels for these accessions
were extracted from the 1001 methylomes dataset*’, and gbM genes
with mCG >5% spanning the transcription start site between -100 bp
and 250 bp were excluded from expression analyses. Additional
Col-0 datasets®*”” were retrieved from GSE93584 and GSE122394
for inflorescence, leaf and seedling, then aligned, and log,FC was
calculated as above.

Haplotype analyses

Toaccount for allelic heterogeneity, associations between methylation
and expression were examined within haplotypes. SNPs withinand 4 kb
upstream and downstream of genes were extracted from animputed
version of the 1001 genome SNP panel®. Sequences were aligned, and
the accessions invariant for SNPs over the entire region for each gene
were classified into a haplogroup. Haplogroups comprising fewer than
15accessions were discarded from association analyses. Associations
of mCG with gene expression or phenotypes were examined within
haplogroups to fully account for the effects of local SNP variation on
expression or phenotypic variation.

Accounting for SV effects on epigenetic QTLs

Structural variants were identified within epigenetic QTLs and 4 kb
upstream and downstream using published TE polymorphism data
in Arabidopsis accessions’™. Associations between structural poly-
morphism and expression were examined using a linear model and
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the effects of structural variants on epigenetic QTLs were accounted
through analysis in populations invariant for TE polymorphism™.

EpiGWA studies for relative fitness

EpiGWA analyses for relative fitness were performed using published
relative fitness data® of 412 Arabidopsis accessions with sufficient
mCG information. Common garden experiments had been performed
in two climatically distinct field stations in Madrid (M) and Tiibingen
(T)®'. Madrid presents a climate that transitions between Mediter-
ranean and semi-arid climates and Tiibingen is characterized by a
temperate climate with no dry season and warm summers. High (H)
and low (L) rainfall conditions typical of Tibingen and Madrid had been
simulated during these experiments. To mimic low- and high-density
populations in nature, individual (I) or multiple plants (P) had been
grownin pots. EpiGWA analyses were performed using alinear model
toassess associations between gbM or teM levels of genes and relative
fitness. For these analyses, we focused on genes having gbM or teM
conserved in more than 10% of Arabidopsis accessions. Linear model
association mapping analyses may detect excessive significant marker-
trait associations due to underlying population structure. We,
however, detected only two associations (PROTI and AT1G19410) at
0.05 FDR for relative fitness in MLP (Supplementary Table 8). In addi-
tion, gbM variationin one gene MuDR (AT1G64255) is associated with
relative fitness in MLI at 0.1 FDR. We next used quantile-quantile
(QQ) plots and genomic control inflation factor A (ref. 113) to assess
confounding of association statistics (Supplementary Fig. 5 and
Supplementary Table 7). A was calculated using unlinked markers as

_ Median X2 observed P
Median X 2expected P’

where X?is the chi-square and Pis the Pvalue.

Avaried between phenotypes and ranged from 0.91 (relative fitness
MHP (Madrid, High rainfall conditions, multiple Plants per pot)) to
1.48 (relative fitness TLI (Tiibingen, Low rainfall conditions, Individual
plants per pot)) (Supplementary Table 7). To control for confounding
effects of population stratification, association statistics were
corrected using A, and the genome-wide significance threshold was
recalculated using corrected P values. Both PROTI and AT1G19410
associations were significant at 0.05 FDR; however, MuDR was not
significant at 0.1 FDR. Associations between intragenic DNA methyla-
tionand fitness significant at 0.05FDR'*® are called epigenetic QTLs in
this study. Tripartite associations between mCG levels, gene expression
and relative fitness in MLP for PROTI and AT1G19410 were analysed
using alinear model.

EpiGWA studies for flowering-related traits

Threetypes of epiGWA mapping were performed for flowering-related
traits to identify the best model to account for confounding effects
of population structure. A linear model was employed using mCG
levels of genes, and two models, a generalized linear model (GLM) and
amixed linear model (MLM), were used for epiGWA using epiallelic
states (UM or gbM; UM or teM) of genes. The methods for determina-
tion of epiallelic states of genes are described in the ‘Methyl-C seq data
analysis’section. The numbers of Arabidopsis accessions used for these
epiGWA analyses are listed in Supplementary Table 9.

Linear model epiGWA mapping was performed to examine asso-
ciationsbetween mCG levels of genes (>10% gbM or teM conservation)
and flowering time data (flowering time at 10 °C (FT_10 °C) and 16 °C
(FT_16 °C))*. Association statistics for these epiGWA analyses were
highly confounded (1 =4.50for FT_10 °Cand A =4.52for FT_16 °C; Sup-
plementary Fig. 7 and Supplementary Table 10). Around 7,500 genes
showed significant associations between mCG levels and flowering
time at 0.05 FDR (Supplementary Fig. 7). Applying uniform A correction
for association P values in such cases is unsatisfactory for correcting

population structure at genes with strong differences in mCG levels
across subpopulations and can also result in a loss of statistical
power at genes with uniformly distributed mCG levels"*'". Given the
correlation of flowering with geographicregions, similar confounding
of association statistics hasbeen reported for flowering-related traits
in Arabidopsis GWA studies™. Strong confounding of Pvalues renders
linear model epiGWA using mCG levels inappropriate for association
mapping instructured populations.

Next, we used binary epiallelic states of genes to perform GLM
and MLM epiGWA mapping using FT_10 °C and FT_16 °C flowering
time phenotypes and seven additional flowering-related phenotypes™®
(number of days for inflorescence stalk to reach 1 cm, number of days
to the opening of first flower, number of cauline leaves, number of
rosette leaves, cauline branch number, primary number of inflores-
cencebranches andlength of primary inflorescence stalk). GLMimple-
mented in TASSEL" is a fixed-effects linear model that we used to test
associations between epiallelic states and phenotypes. Association
Pvalues for several of the flowering phenotypes deviated significantly
from expected distribution of P values, as indicated by QQ plots
and A estimates (Supplementary Fig. 8 and Supplementary Table 11).
Hence, GLM using epiallelic states is also inappropriate for epiGWA
mappinginstructured populations. Next,an MLM" thatincludes both
fixed and random effects was used to correct population structure.
MLM can be presented as

Y=pX+Zu+e,

where Yrepresents the vector of phenotypes,  denotes the vector
containing fixed effects including genetic markers and population
structure (Q matrix), u captures variance due to relatedness between
individuals (kinship (K) matrix), X and Z are the design matrices and
e captures variance due to the environment. The Q matrix of popula-
tion membership estimates was derived from principal component
analysis of epiallelic states. The K matrix accounts for epigenome-wide
patterns of relatedness between the individuals and was estimated
using the identity-by-state method"”. QQ plots and A estimates based
on MLM epiGWA showed no significant deviation of distribution of
association Pvalues from null distributions (Supplementary Fig. 8 and
Supplementary Table 11). MLM was thus used to dissect the epigenetic
architecture of flowering-related phenotypes. Genes having methyla-
tion calls in <10% accessions were removed.

Theassociationbetween epiallelic states and expression levels of
eight flowering epiQTL genes was analysed using MLM epiGWA map-
ping. To examine associations between gene expression and pheno-
types, flowering phenotypes were regressed on quantitative variation
of gene expression in a linear model. Associations between epiallelic
states and flowering or gene expression phenotypesin nested popula-
tions were tested using MLM epiGWA analyses.

EpiGWA studies for leaf mineral accumulation

Data for accumulation levels of 18 mineral elements® in leaves of 934
Arabidopsis accessions were used for epiGWA analyses to identify
gbM and teM variants associated with the diversity of these traits.
EpiGWA analyses were performed using MLM implemented in Tassel"”
asdescribed above. Wefiltered out rare (minor allele frequency (MAF)
<5%) gbM and teM variants. FDR 0.05 correction'*® was implemented
to account for multiple tests and identify significant associations.

EpiGWA studies for geoclimatic variables

Data for 171 geoclimatic variables™ were used for epiGWA analyses
to identify gbM variants associated with environmental variation in
the native range of Arabidopsis accessions. EpiGWA analyses were
performed using MLM implemented in Tassel” as described above.
We filtered out rare (MAF <5%) gbM variants. FDR 0.05 correction'®®
was implemented to account for multiple tests and identify significant
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associations. The density and distribution of FLC, CHY1, CCS, HUP9,
SOS3 and PYR1 UM and gbM accessions was determined across the
range of environmental variables.

Genome-wide association studies for relative fitness,
flowering and mineral phenotypes

GWA analyses were performed for relative fitness in eight climates®,
nine flowering-related phenotypes®>""° and levels of 18 minerals®* using
the same accessions as for epiGWA analyses. GWA mapping was car-
ried out using 1001 genomes SNP data® with an accelerated mixed
model"’implemented in PyGWAS, a Python library for running GWAS
(version1.7.4). The accelerated mixed model has been shown to work
well in previous studies for flowering and other phenotypes'*"18,
SNPs with MAF >5% in the population were considered. An FDR cor-
rection of 0.05 (ref. 108) was implemented to account for multiple
tests and identify genetic QTLs.

Genome-wide association to account for effects of trans QTLs
on methylation variation

GWA analyses were performed for mCG levels of retained Bonferroni
eQTLEM*M GWA mapping was carried out as described above toiden-
tify trans genetic QTLs that are significant at the Bonferronithreshold.
These analyses were performed in three Arabidopsis populations:
worldwide populations that we used for association mapping for gene
expression and phenotypes, 133 accessions of the Swedish panel, in
which strong trans effects were found for around 1,300 gbM genes™,
and arandom non-Swedish worldwide population of equal size to the
Swedish panel (Extended DataFig. 5d-f). The percentage of mCG or epi-
geneticstate variance explained by trans genetic QTLs was estimated as
the ratio of sum of square of SNP markers (after fitting all other model
terms) to the total sumof squares. If we consider only the 133 Swedish
accessions, we find strong trans effects, with on average 37.9% of gbM
variance explained at 11.5% of eQTL&*™ (4.4% gbM variance explained
overall; Extended Data Fig. 5d-f). However, when we consider all 625
worldwide accessions, these trans effects nearly disappear; 9.7% of
genes have significant trans QTLs, which on average explain 10.5% of
gbM variance, with trans genetic variation accounting for only 1% of
gbM variance over all tested eQTL®™ (Extended Data Fig. 5). Notably,
apanel of133 randomly chosen worldwide accessions (same size as the
Swedish panel) produced results that are almost identical to those of
the Swedish panel and significantly different fromthe entire worldwide
panel (Extended DataFig. 5d-f). Thisindicates that estimates of trans
effects on gbM variation are inflated in analyses of small populations,
aphenomenon known as the Beavis effect*'°,

RNA and bisulfite sequencing analysis of h1 and
hImetl mutants
Total RNA was extracted from 4-week-old A17" and h1”;met” leaves
using Trizol (Invitrogen, cat. no.15596026). To remove genomic DNA
(gDNA) from samples, 1 mg of RNA was treated with the DNA-free DNA
removal kit (Thermo, AM1907). Then, 100 ng of gDNA-depleted total
RNA was used to construct RNA-seq libraries with Ovation RNA-seq
systems1-16 for the model organism Arabidopsis (Nugen, cat.no. 0351).
To investigate the association of intragenic DNA methylation with
expression level in hI7";metI”" plants, we first defined demethylated
gbMgenes as ones withmore than10% CG methylation, lose more than
5% CG methylationin hI” ;met1” versus hI”" plants and haveless than
5% CG methylationin h1”;met1”". The gene expression fold changein
h17;metI” plants (versus h1”" plants) was calculated using DeSeq2™.
To analyse the association between gene expression and gbM change,
we compared the average expression fold change of demethylated
gbM genes and gbM genes that retain intragenic DNA methylation
inh1”;metI” plants.

For h1”";metI"* plants isolated from segregating h1”";metI"",
100-700 ng of DNA-depleted leaf RNA was used to construct RNA-seq

libraries (Illumina, cat. no. 20020610 and 20019792) following the
manufacturer’smanual. As segregating plants showed aberrant non-CG
hypermethylation over gbM genes, we filtered out genes that gain
non-CG methylation (average mCHG or mCHH>0.01). GbM genes
that either lose or keep methylation were identified as described
for h17;met1”".

For bisulfite sequencing analysis of h1”";metI*"* plants, we
extracted gDNA from 4-5-week-old plant leaves. Then, 500 ng gDNA
was sheared to100-1,000 bp using Bioruptor Pico (Diagenode). gDNA
libraries were constructed using NEBNext Ultra Il DNA library prep
kit for Illumina (New England Biolabs, cat. no. E7645). We performed
bisulfite conversiontwice (QIAGEN, cat.no.59104) with ligated libraries
and amplified libraries by PCR. Sequenced reads were mapped with the
bs-sequel pipeline (https://zilbermanlab.net/tools/).

RNA-seq and DNA methylation data are deposited in GEO with
accession GSE183785.

Quantitative real-time PCR

Transcript levels of PROTI were quantified in Col-0 and met1-6'"" with
plants grown in a chamber with cycles of 16 h light (120 pE m™2s™) at
27 °Cday and 16 °C night temperatures without humidity control, and
shoots of 3-week-old plants were harvested. Each sample was a pool of
five plant shoots, and samples were harvested from six independent
experiments. For quantification of ATIG19410 (ANH) mRNA levels,
Col-0 and ddcc® plants were grown for 10 days as described above,
thenal2-hcold treatment (4 °C) was applied toinduce and detect the
expression of ANH™'. ANH transcript abundance was analysed from
fiveindependent experiments with 25 plant shoots pooled per experi-
ment. Total RNA was extracted using the SV Total RNA Isolation System
(Promega, cat. no. Z3101). One microgram of total RNA was used for
first-strand cDNA synthesis using SuperScript IV Reverse Transcriptase
(Invitrogen,18090050) and Oligo(dT)15 Primer (Invitrogen, 18418012)
in a final volume of 25 pl, according to the manufacturer’s instruc-
tions. For qRT-PCR, 25 ng of first-strand cDNA was used as template.
qRT-PCRwas performedintriplicate using the CFX Connect Real Time
PCR Detection System (Bio-Rad). cDNA amplification was monitored
using SensiFAST SYBR No-ROX One-Step Kit (Biolone, Bio-72005) at
an annealing temperature of 60 °C. UBQ10 (AT4G05320) was used
as aninternal control. The primer sequences used for the analysis of
PROTI1,ANH and UBQI0 are listed in Supplementary Table 17. Relative
transcriptlevels (RTL) of genes of interest (GOI) compared with UBQ10
were determined using the equation RTL = [(E) ]°Y/[(E)“]UBQ©,

Analysis of methylation upstream of FLC

Methylation was analysed upstream of FLC in reference to previously
described regions ‘X’ and ‘'Y’®” (Supplementary Fig. 11a). The borders
of region X were set as 3,180,248-3,180,730 and the borders of region Y
as 3,181,100-3,181,451. Region X was split into two separate regions (X1:
3,180,248-3,180,350 and X2: 3,180,351-3,180,730), as methylation of
these regions showed different patterns of variation within the popula-
tion (Supplementary Fig.11a-d). Methylation levelsin each region were
calculated per accession. Only accessions with mean coverage over a
given region of at least five reads per CG site and three reads each per
CHGand CHHsite wereincluded for subsequent analysis. We identified 18
accessions methylated at X2 inall three contexts (>30% mCG, >5% mCHG
and >1% mCHH; Arabidopsis accession IDs: 6092, 6102, 6111, 6136, 6137,
6145,6150,6907,7430,8247,9524,9703,9759,9777,9790, 9839,9850 and
9900). Of these, 13 belonged to haplogroups with multiple accessions
(Supplementary Table 16). Flowering times and expression of FLC were
available for 9 of these accessions (Supplementary Figs.12e and 13e).

Quantification of minerals in plant samples

WT and mutant plants were grownin four biological replicates to ana-
lyse the accumulation of minerals in the shoots. Oven-dried samples
(-15 mg) were placed in a vessel (Environmental Express, cat.no. SC415)
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with 1 mlof nitric acid 65% (EMD Millipore cat. no.1.00456.2500) and
hydrogen peroxide 30% (Sigma-Aldrich cat. no. H3410-1L) and left at
roomtemperature overnight. The samples were then digested usingan
Environmental Express Hotblock digestion system (cat. no. SC196)
set at 80 °C for 8 h. Microwave-induced plasma optical emission
spectrometer 4210 (MP-AES Agilent Technologies) coupled with an
autosampler SPS4 (Agilent Technologies) was used to quantify K, Mg,
Mn and Zn at 769.897 nm, 280.271 nm, 403.076 nm and 202.548 nm,
respectively. Standard curves for each element were used to determine
mineral concentrations in samples.

Plant materials, growth conditions and phenotyping
Forrelative fitness phenotyping under drought and heat stress, seeds of
Arabidopsis Col-0 accessions and homozygous T-DNA insertion mutant
lines for PROTI (protI-1; SALK_030711Cand prot1-2; SALK_018050C) and
ANH (anh-1; SALK_098287C and anh-2; SALK_036488C) were obtained
from Nottingham Arabidopsis Stock Centre. Seeds were stratified at
4 °C for 7 days and germinated in 9-cm pots containing vermiculite.
Each pot contained four plants. Plants were grown in a chamber with
cycles of 16 h light (120 pE m™2s™) and 8 h dark, with 16 °C night and
27 °C day temperatures to induce heat stress. For well-watered condi-
tions soil water content (SWC) was maintained at 60%, and 25% SWC
was used for drought stress. Each pot was weighed daily to adjust SWC.
Survival to fruit for Col-O WT plants and protI and anh mutant plants
was scored before harvesting under heat or joint heat and drought
stress. The number of seeds produced by surviving plants was recorded
as ameasure of fecundity. The fitness of each genotype under heat or
combined heat and drought stress was calculated as a product of per
centsurvival and average fecundity during each experiment. The rela-
tive fitness of protl and anh was estimated with respect to the average
fitness of Col-0 within each condition. To understand the phenotypes
that could contribute to differences in relative fitness of protl and
anh mutant plants, the three genotypes were phenotyped for shoot
biomass and fertility. Shoot biomass for Col-0, prot1 and anh plants
was measured as shoot dry weight at maturity. Fertility was scored as
apercentage of flowers producing siliques.

For flowering time phenotyping, seeds of Arabidopsis Col-0
accessions and homozygous T-DNA insertion mutant lines ATIG51820
(at1g51820-1; SALK 208927 and at1g51820-2; SALK_055952),AT1G18210
(at1g18210-1; GABI_826B09 and at1g18210-2; SALK__075633), AT3G43860
(at3g43860-1; SALK_201540 and at3g43860-1; GABI_129G07),
AT3G09530 (at3g09530-1; SALK_034560 and at3g09530-2;
SALK_023893), AT1G26795 (at1g26795-1; SALK 124311 and at1g26795-1;
SALK_124319) and AT4G33560 (at4g33560-1; SALK_133653) were
obtained from Nottingham Arabidopsis Stock Centre. T-DNA inser-
tion mutant lines (AT1G09725 (atlg09725; CS821762), AT4G18370
(at4g18370-1; SALK_099162C and at4g18370-2; SALK_036606C),
AT4G02550 (at4g02550-1; SALK_136283C and at4g802550-2;
SALK_028806C), ATIG70920 (atig70920; CS863888), ATSG61850
(Ify-1and Ify-9), AT2G16200 (at2g16200; SALK_082813), ATIG50470
(at1g50470;SALK_200371C),AT2G13570 (at2g13570; SALK_085886C),
AT4G22910 (at4822910-1; SALK_083656C and at4g22910-2;
SALK_101689C), AT1G28650 (at1g28650; SALK_010911C); AT2G40815
(at2g40815-1; SAIL_138_E02 and at2g40815-2; SALK_023214C) and
AT1G28135 (at1g28135; SALK_017094)) for mineral content analysis
were obtained from Arabidopsis Biological Resource Center. Seeds
were stratified at4 °Cfor 7 days and germinated in 9-cm pots contain-
ing vermiculite, with each pot containing three plants. Plants were
growninachamber with cycles of 16 hlight (120 pE m2s™) and 8 hdark,
with 16 °C constant temperature. The flowering time of each genotype
was scored as the number of days to the appearance of the first flower.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Newly generated RNA-seq and bisulfite sequencing data from plants
with mosaic gbM are available at GEO under accession number
GSE183785. In addition, previously published datasets were used
as follows: GSE43857: 1001 genomes project bisulfite sequencing
data*’; GSE80744:1001genomes project RNA-seq data’’; PRJEB54036:
RNA-seq met1 mutant data from sixteen Arabidopsis accessions’;
GSE122394: RNA-seq metl mutant data from Col-0 leaf and seedling*;
and GSE93584:RNA-seq met] mutant data from Col-0 inflorescence”.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig.1| GbM and teM in Arabidopsis. (a-d) Distribution of gbM
levels across 948 accessions for genes with 100% gbM population conservation
(gbMin all accessions; N =1884;a), gbMin 290 and <100% of accessions

(N =8119; b), gbMin >10 and <90% of accessions (N =10,165; c¢), and gbM
in<10% of accessions (N = 4973; d). Only genes with >20 CG sites are included.
(e) Pearson’s correlation analysis between the number (N) of gbM and teM
genes inaccessions using published definitions of gbM and teM®. (f-h)

Characteristics of genes binned by their gbM (gold) and teM (blue) frequencies:

mean lengthinbp (f), median expressionin Col-0 leaf RNA-seq data** (g) and
Shannon entropy'” (h). Alinear model was used to associate gbM or teM
population frequencies with the gene characteristics. P-values are for compa-
risons of gbM vs. teM associations using a two-sided F-test. (i-k) Conservation
of teM epialleles in published®® gbM conservation categories (i, four gbM
classes; j, decile gbM bins; k, percentile gbM bins). Analysis across three gbM
conservation bins (<10%,10-90%, and >90%) led to the published conclusion

that teM frequency increases with gbM frequency®’. However, we noted that the
published <10% category contains only UM genes. Categorizing the published
data® in various ways (i-k) shows that teM prevalence decreases with increasing
gbM. These results are broadly consistent with those obtained with our gbM and
teM definitions: (I four gbM classes), (m; decile gbM bins), and (n; percentile
gbM bins). The numbers above box plots indicate the number of genes in each
category, center lines represent sample medians, and plus signs correspond

to means. Box limits indicate the 25th and 75th percentiles; whiskers extend

to 1.5times the interquartile range. Note that the numbers of genes in gbM
conservation bins in panels land m are different from those in Fig. 1b because
only genes with epigenetic state calls in >70% of accessions are included in Fig. 1b,
whereas this cutoffis not applied here. (0) Frequency distribution of correlation
(R?) between gbM levels of individual genes and global gbM levels of accessions.
Alinear modelis used to estimate R”.

Nature Plants


http://www.nature.com/natureplants

Article

https://doi.org/10.1038/s41477-025-02108-4

a
AT1G62670 AT1G09910 AT1G09420
300 2000 4000
. PVE=29.8% PVE=27.4%
. . 1600 P=1.48E-49 P=4.34E-45 .
’ 3000 <.
200 : ..
1200 °s
2000
800
100
= i 400 1000
E A % ;'.o- o PVE=29.8%
0T % . P=1.14E-46
£ o " 0 0
% 0 025 05 0.75 1 0 025 05 0.75 1 0 01 02 03 04 05
P AT5G16990 AT4G21326 AT2G39890
= 3000 3000 2500
S . PVE=27.6% . e
2 . P=1.45E-45 .
o .. ce. 2000
3
LLi 2000 .
1500 -*%
1000
1000
500
PVE=27.0% .
PVE=12.9%
. P=4.09E-44
Ty ! P=2.14E-2
0 0 0 0
0 01 02 03 04 0 025 05 0.75 1 0 02 04 06 038
gbM levels (mCG fraction)
b ¢ 614 148 15 202 9
0.7 0.3
0.6 §
=60
0.5 2
> X >0.2
2 o 2
04 o 40 )
=] [&] =}
503 5 g
- 0.2 %20 & 0.1
==
0.1 0
0 2 2 3 3 0
2RI2°283888¢8 222 g 2289332°288338R
% variance explained g ¢ % % % variance explained
+ 1

Extended Data Fig. 2| Association between gbM, teM and expression of
Arabidopsis genes. (a) GbM and expression of six example genes across
accessions. Percent expression variance explained (PVE) by gbM and Pvalues
of Pearson’s correlation tests are indicated. (b) Frequency distribution of
percent expression variance of Bonferroni o = 0.05 and FDR 0.05eQTL genes
explained by mCG variation. The filled bars depict all eQTLE™ genes significant
atrespective thresholds, and the empty bars represent eQTLE™ genes showing

R*<0.1between local and global gbM levels. (c) Percent expression variance
explained by gbM or teM in Bonferroni eQTLE"*Mgenes. The number of QTLs
corresponding to each category is indicated. Center lines represent sample
medians, box limits indicate the 25th and 75th percentiles, whiskers extend to 1.5
times theinterquartile range. (d) Frequency distribution of percent expression
variance of Bonferroni eQTL*M genes explained by mCG variation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Characteristics of eQTL gbM genes. (a-b) Ancestral
methylation states of +eQTLE™, -eQTLE®™, and NA# genes using the Bonferroni
(a) or FDR 0.05 (b) classification. Ancestral methylation states were determined
by analyzing methylation states of Arabidopsis thaliana orthologs in Arabidopsis
lyrata and Capsella rubella and retrieved from®. Pvalues correspond to chi-
squared test. (c-h) Plots show CG dinucleotide frequency (c andf), gene length
(d and g), and gene expression (e and h) of Bonferroni (c-e) or FDR 0.05 (f-h)

eQTLeMgenes, NA®™™ (non-associated) genes, and genes with gbM in <10% of
accessions. Different letters signify P < 0.001, one-way ANOVA, Dunn’s test.
Numbers of genes within each group are indicated. (i-n) Methylation in the

CG (iandl), CHG (jand m) and CHH (k and n) contexts within and adjacent to
+eQTLE™M, -eQTLE™ and NA®*™ genes using the Bonferroni (i-k) or FDR 0.05 (I-n)
classifications.
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Extended Data Fig. 4| Most eQTLE®"*M gene expression effects are exponential regression. (d and e) Frequency of eQTLE™ (d) and eQTL*™ (e) genes
independent oflocal SNP variation. (aand b) Frequency of retained (R) or withasignificant association between mCG and gene expression in at least one
lost (L) eQTLE*™ (a) and eQTL'M (b) genes after accounting for expression GWA

haplogroup. Despite reduced statistical power (c) in SNP invariant haplogroups
SNPs. (c) Loss of statistical power for association analyses in haplogroups due due to smaller population sizes, significant associations between gbM variation
to decreasing population size. The -log,, P values for associations between and expression are detected for amajority of eQTLE genes. (fand g) Frequency
gbM/teM and gene expression exhibit an exponential increase with respect to the

of retained or lost eQTL®™ (f) and eQTL*™ (g) genes after accounting for
number of accessions in haplogroups. Indicated R*and Pvalues correspond to structural variation (SV) effects on expression.
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Extended Data Fig. 5| Trans genetic variation explains aminor fraction of
gbM. (a) Percentage of eQTLE™ M retained (R) genes that have trans genetic
QTLsassociated with the variation of gbM or teM. (b) Average effects ( + standard
error) of trans polymorphism on mCG variationinall retained eQTLE*™*M genes,
with number of QTLs indicated. (c) Effect sizes of trans polymorphism on mCG
variation of retained eQTLE°™'*M genes having trans QTLs. Center lines represent
sample medians, box limits indicate the 25th and 75th percentiles, whiskers
extend to 1.5 times the interquartile range. The number of QTLs corresponding to
each class isindicated above the plots. (d) Percentage of retained eQTLE™ having
trans QTLs in the entire worldwide population, a published Swedish population®°,

and arandom population of equal size to the Swedish population. Numbers
ofaccessionsin each panel are indicated. (e) Effect sizes of trans genetic
polymorphisms on gbM variation of retained eQTL# genes having trans QTLs in
worldwide, Swedish, and random populations. Box plots asin c. Different letters
signify P< 0.05, one-way ANOVA, Tukey'’s test. (f) Average effects ( + standard
error) of trans genetic variation on gbM variation of all retained eQTLE™ genesin
worldwide, Swedish, and random populations, with number of genes indicated.
Note the inflation of estimated trans effects in the smaller populations, a
phenomenon known as the Beavis effect"*'*°,
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Extended Data Fig. 6 | GbM quantitatively affects gene expression. (aandb)
Expression in metI compared to WT of Bonferroni (x = 0.05) eQTL* genes
retained (R) after accounting for genetic variation in seedlings across 16 acces-
sions” (a) and different tissues of Col-0 (leaf, seedling and inflorescence*”’; b).
(c-e) Expression in met1 compared to Col-0 of Bonferroni (a = 0.05) eQTLEM
genes retained (R) after accounting for genetic variation in either leaf (c),
inflorescence (d) or seedling (e). (fand g) Expression in metI compared to WT
seedlings of FDR 0.01 (f) and FDR 0.05 (g) eQTLE genes across 16 accessions.
(handi) Expressionin metl compared to WT of FDR 0.01 (h) and FDR 0.05 (i)
eQTLegenes in different tissues of Col-0 (leaf, seedling and inflorescence).
Center lines within box plots represent sample medians, plus signs correspond

gbM Levels (mCG fraction) gbM Levels (mCG fraction)

to means and are noted below the plots. Box limits indicate the 25th and 75th
percentiles, whiskers extend to 1.5 times the interquartile range. Numbers of
genes within each group are noted above the plots. P, two-tailed Student’s t-test
between indicated group and NA (non-associated) genes. (j-m) Relationship
between gbM levels of retained +eQTL and -eQTL genes using the FDR 0.01
(jand1) or FDR 0.05 (k and m) groups in WT plants across 16 accessions” and
log, fold expression change in met1 compared to WT of that accession. Genes
withmCG >5% and/or non-CG methylation >1% in the putative promoter

(2 kb upstream or up to the nearest upstream gene, whichever is shorter)
were excluded inland m. Genes were grouped by gbM levels. R and Pvalues
correspond to Pearson’s correlation.
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Extended Data Fig. 7| Methylation and expression of epigenetic flowering and
relative fitness QTLs. (a) FLC expression change in met1 lines of accessions with
either gbM or unmethylated (UM) FLC epialleles in wild-type (WT), assessed by
RNA-seq”. Numbers of accessions within each group are indicated. (b) Tripartite
association between intragenic DNA methylation (mCG), gene expression (GE),
and relative MLP fitness (rFMLP) in the entire population and after accounting
(acc.) for structural variation (SV). Associations between the three variables are
shownin two independent haplogroups of PROTI (PROT1-23 and PROTI1-4) and
ATIG19410 (AT1G19410-1and AT1G19410-21) before and after accounting for
SV.*P<0.05, Pearson’s correlation test. (c) Transcript levels of PROTI relative
to UBQ10in Col-0 and metI-6, assessed by qRT-PCRin six biological replicates.
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P, two-tailed Student’s t-test. (d) PROT1 expression change in met1 lines of
accessions with either gbM or UM PROTI epialleles in WT, assessed by RNA-seq”.
Numbers of accessions within each group are indicated. (¢) DRMand CMT
methyltransferases control teM of ATIG19410. Fractional methylationin CG,
CHG, and CHH sequence contexts is shown in indicated genotypes. (f) Transcript
levels of AT1IG19410 (ANH) relative to UBQIO in Col-0 and ddcc, assessed by
qRT-PCRin five biological replicates. P, two-tailed Student’s t-test. Center lines
within box plots represent sample medians and plus signs correspond to means.
Box limits indicate the 25th and 75th percentiles, whiskers extend to 1.5 times the
interquartile range.
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Extended Data Fig. 8| PROTI promotes fitness under heat and drought stress.
(a) Schematic representation of PROTI genomic regions with positions of the
T-DNA insertions. (b-d) Box plots showing survival to fruit (b), fecundity (c), and
fertility (% of flowers developing siliques; d) phenotypes of protI mutant and
Col-0 wild type plants under heat stress (red) or combined heat and drought
stress (purple). Numbers of independent experiments are indicated for survival

PROT1 gbM (mCG fraction)

PROT1 gbM (mCG fraction)

to fruit (b) and fecundity (c). Numbers of plants are indicated for fertility (d).
Box boundaries indicate the 25th and 75th percentiles, whiskers extend to 1.5
times theinterquartile range, center lines correspond to medians. Different
letters signify P< 0.05, one-way ANOVA, Tukey’s test. (e-g) Association of PROT1
gbMwith relative fitness (e), survival to fruit (f), and fecundity (g). Correlation
coefficients (R) and Pvalues of Pearson’s correlation test are indicated.
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Extended DataFig. 9| AT1G19410 (ANH) reduces fertility under heat stress. fertility (d) and shoot weight (f). Box boundaries indicate the 25th and 75th
(a) Schematic representation of ANH genomic region with positions of the T-DNA percentiles, whiskers extend to 1.5 times the interquartile range, center lines
insertions. (b-f) Box plots show relative fitness (b), fecundity (c), fertility (d), correspond to medians. Different letters signify P < 0.05, one-way ANOVA,
survival to fruit (e), and shoot dry weight (f) of anh mutants (two independent Tukey’s test. (g-i) Association of ANH teM with relative fitness (g), survival to
alleles) relative to Col-O under heat stress (red) or joint heat and drought stress fruit (h), and fecundity (i). Correlation coefficients (R) and P values of Pearson’s
(purple). Numbers of independent experiments are indicated for relative fitness correlation analysis are indicated.
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Fitting of a regression model - Trejo Banos et al., 2020
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Newly generated RNA-seq and bisulfite sequencing data are available at GEO under accession number GSE183785.
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Reporting on sex and gender no human data involved

Reporting on race, ethnicity, or no human data involved
other socially relevant

groupings

Population characteristics no human data involved
Recruitment no human data involved
Ethics oversight no human data involved

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size Published met1 and control WT RNA-seq data: 2 libraries for Col-0 inflorescence data, 6 libraries for Col-O leaf data, 3 libraries for Col-0
seedling data, 3 libraries for each accession.

Data exclusions  No datasets were excluded

Replication Two independent alleles of mutant plants were analysed separately where available. At least 2 biological replicates were used for RNA-seq
analyses of met1.

Randomization  Randomization is not appropriate for this study design because samples were not allocated into experimental and control groups

Blinding Blinding is not appropriate for this study design because it did not involve relevant group allocation
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