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A parallel plate capacitor containing an electrolytic solution is the simplest model of a supercapacitor or
electric double-layer capacitor. Using both analytical and numerical techniques, we solve the Poisson-Nernst-
Planck equations for such a system, describing the mean-field charging dynamics of the capacitor, when a
constant potential difference is abruptly applied to its plates. Working at constant total number of ions, we
focus on the physical processes involved in the relaxation and, whenever possible, give its functional shape and
exact time constants. We first review and study the case of a symmetric binary electrolyte, where we assume the
two ionic species to have the same charges and diffusivities. We then relax these assumptions and present results
for a generic strong (i.e., fully dissociated) binary electrolyte. At low electrolyte concentration, the relaxation
is simple to understand, as the dynamics of positive and negative ions appear decoupled. At higher electrolyte
concentration, we distinguish several regimes. In the linear regime (low voltages), relaxation is multiexponential,
it starts by the buildup of the equilibrium charge profile and continues with neutral mass diffusion, and the
relevant timescales feature both the average and the Nernst-Hartley diffusion coefficients. In the purely nonlinear
regime (intermediate voltages), the initial relaxation is slowed down exponentially due to increased capacitance,
while bulk effects become more and more evident. In the fully nonlinear regime (high voltages), the dynamics of
charge and mass are completely entangled and, asymptotically, the relaxation is linear in time. We finally discuss
nonideal behavior in real capacitors and provide conditions for which mean-field is expected to hold.

DOI: 10.1103/p4dg-snqf

I. INTRODUCTION

In a wealth of physical systems, charged surfaces con-
fine a liquid containing ions. If the surfaces are conductive,
then a so-called electric double-layer capacitor (EDLC) is
formed, owing its name to the two layers of opposite charge
that build up at the interface between each surface and the
electrolytic solution. Compared to standard capacitors with
insulating dielectrics, the ability of EDLCs to store charge
and energy is enhanced by the local rearrangement of the
confined electrolyte and very large capacities per unit weight
can be reached when the conductive electrodes are made
of porous or fibrous materials, as this hugely increases the
surface area in contact with the electrolyte [1–3]. EDLCs
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of this kind can store more energy than common capac-
itors, can release it more rapidly than common batteries,
and last longer than devices based on chemical reactions.
These three characteristics, placing them precisely at the
border between capacitors and batteries [4], explain their
widespread usage as well as numerous potential applications:
from consumer electronics and wearable devices [5] to energy
production [6–8] and means of transportation, where large
power exchanges are needed to propel and halt electric vehi-
cles, harvest braking energy, or promptly activate emergency
devices [1].

The need to control the dynamics of charge and discharge
of EDLCs has motivated substantial interest in fundamental
sciences. Impedance spectroscopy experiments are routinely
used to measure the linear response of the system to os-
cillating fields [9,10]. Computer simulations have addressed
paramount questions concerning inter alia the effects of
electrode polarizability, ion and pore sizes, or electrostatic
correlations [11]. In parallel, analytical studies have proved
fundamental to inform experiments and simulations, empha-
sizing the role played by the molecular structure of the double
layer (not captured by usual mean-field approaches) in deter-
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FIG. 1. Cartoon representing a charged, planar EDLC. Red
cations and blue anions are treated at mean-field level, as suggested
by the color of the solution, representing charge density. Within
the mean-field approximation, for large-enough L and sufficiently
low applied voltage, the thickness of the electric double layer at
equilibrium is λD.

mining the EDLC capacitance [12,13]. Nonetheless, recent
works have highlighted the need to better understand the
dynamics of simple model systems, such as a planar capac-
itor in mean field, to clearly isolate the effect of geometry,
hydrodynamics and nonidealities in real devices [14–20] or
to develop strategies to speed up relaxation to equilibrium
[21–23]. Namely, the relaxation dynamics of a planar EDLC
subjected to a sudden change in the electric potential between
plates has been described by the seminal works [24,25] for the
simpler case of symmetric electrolytes and with particular at-
tention for the linear (low-voltage) regime, of which Ref. [25]
provided an exact solution.

The charging dynamics of an ideal EDLC, such as the one
presented in Fig. 1, is an interesting problem per se from a
physical perspective. Several length scales are involved: the
Bjerrum length lB, setting the distance between two ions at
which thermal energy becomes comparable with electrostatic
repulsion; the Debye screening length λD, setting the range of
the electrostatic potential; the point along z at which the elec-
trostatic potential vanishes, coinciding with the geometrical
center of the capacitor only for symmetric electrolytes; and,
last, the size of the system L. In strongly polarized situations,
a fifth length can in principle be relevant, the Gouy-Chapman
length, a signature of the less efficient screening occurring
when only counterions are in proximity of the plates. The
relaxation to equilibrium observed when an external voltage
is imposed can depend in principle on any of these lengths, as
well as on the diffusion coefficients of the ionic species and on
the applied voltage. These quantities can be combined in many
ways to give plausible relaxation times: Understanding which
of those are relevant for the dynamics, for different elec-
trolytes and at different times, is a challenge. Moreover, the re-
laxation is not simply exponential, as in many model physical
systems, and can be hard to solve and describe in closed form.

In this paper, and in its companion Letter [26], we present
a detailed study of the relaxation dynamics of an ideal,

planar EDLC in mean field. In Sec. II we recapitulate the
Poisson-Nernst-Planck formalism, within which we operate
throughout the whole paper using the numerical method de-
scribed in the Appendix. Then we present results concerning
the case where the two ions species have the same valence
and diffusion coefficients (fully symmetric case, Sec. III), the
case where the two species have the same diffusion coefficient
but different valences (partially asymmetric case, Sec. IV)
and the case where the two species have different valences
and diffusion coefficients (fully asymmetric case, Sec. V).
For each of these cases we vary electrolyte concentration and
applied voltage and we study the linear, purely nonlinear, and
depleted nonlinear regimes. The relaxation involves in general
more than one process, so that each regime features many
relaxation timescales, each of which may become relevant at
different times. We give a thorough characterization of this
complex phenomenon, focusing with more care on the cases
for which a simple analytical interpretation is possible. We
conclude by discussing the range of validity of our mean-field
results in Sec. VI.

II. MODEL

Our ideal EDLC (Fig. 1) is treated within the Poisson-
Nernst-Planck formalism [27]. We neglect hydrodynamic
effects and suppose purely Coulombic interactions between
ions and Coulombic and hard-core interactions between ions
and walls. No absorption phenomena are considered, so the
compact part of the electric double layer, usually called Stern
layer, is neglected. The two plates, distant 2L from each other,
are connected to a time-dependent ideal voltage source, im-
posing a potential difference 2V (t ) between them.

The salt is a strong binary electrolyte and is therefore
completely dissociated in the solvent: densities are denoted
n+ and n−, diffusion coefficients D+ and D−, and integer
ionic valences q̄+ = +q+ and q̄− = −q− (for instance, for
MgCl2, q̄+ = +2, q̄− = −1, and q+ = 2, q− = 1). Electrodes
are modelled as parallel, infinite, charged planes. Densities n±
and potential φ are functions of the sole spatial coordinate
z in the direction perpendicular to the planes and of time t .
Figure 1 shows a sketch of the system, with size 2L and z = 0
at the center of the capacitor.

We work in the canonical ensemble, i.e., with a fixed num-
ber of ion pairs per unit surface 2n0L, where n0 is the uniform
density of salt when the power source is off and the capacitor
at equilibrium. The initial density for each species is n0

± and
is such that q+n0

+ = q−n0
− = q+q−n0 by electroneutrality (the

last equality holding when q+ and q− are coprime). Choosing
to work in the canonical ensemble allows to avoid the question
of where exactly ions are injected into the system from the
reservoir during the dynamics, which in a real nanocapacitor
might depend on the size and the topology of the pores.
In addition, the constant ion number ensemble is a good
approximation for open systems where the electrodes have
large lateral dimensions and it takes a long time to ensure
the chemical equilibrium of the entire pore with the bath. In
fact, studying relaxation in the canonical ensemble reveals
precisely which timescales should be compared to chemi-
cal equilibration timescales to assess whether the system is
effectively canonical or grand canonical. Finally, there are
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regimes in which densities in the bulk solution (at the center
of the capacitor) remain approximately constant, at least to
first order, and the canonical ensemble is not quantitatively
different from the grand-canonical ensemble.

The Poisson-Nernst-Planck equation describes the change
in time and space of the ionic densities [27]: It consists of a
drift-diffusion model for ionic currents, complemented with a
continuity equation. The average current density jα (z, t ) for
ions of type α (∈ {−,+}), moving along z under the action of
a potential φ(z, t ), is

jα (z, t ) = −βDα nα (z, t ) q̄αe
∂φ

∂z
(z, t ) − Dα

∂nα

∂z
(z, t ), (1)

where β = 1/(kBT ) is the inverse temperature and e the el-
ementary charge. The first term represents a drift current,
obtained as the product of a mobility βDα (in agreement
with Einstein’s relation), a density and an electric force. The
second term is a diffusion current, described by Fick’s law.
We assume a diagonal diffusivity tensor, meaning that the
diffusion of a species is not influenced by the presence of
other species. In general, the microscopic potential depends
on the discrete positions of the ions. Within the Poisson-
Nernst-Plank approximation, the potential is assumed to be a
coarse-grained average of the microscopic potential, hence the
mean-field nature of Eq. (1). In the static case, currents vanish
and the Poisson-Boltzmann distribution is retrieved, with the
average density proportional to the exponential of an average
potential [27,28].

For currents jα (z, t ), the following exact continuity equa-
tion must hold, ensuring local ionic mass and charge
conservation:

∂nα

∂t
(z, t ) = −∂ jα

∂z
(z, t ). (2)

Substituting Eq. (1) in Eq. (2) yields

∂nα

∂t
(z, t ) = Dα

∂

∂z

(
nα (z, t ) βq̄αe

∂φ

∂z
(z, t ) + ∂nα

∂z
(z, t )

)
.

(3)

The potential is related to the density by the Poisson equa-
tion, also exact:

−∂2φ

∂z2
(z, t ) = ρ(z, t )

ε0εr
, (4)

where ρ = q+en+ − q−en− is the charge density, ε0 the
permittivity of vacuum, and εr the relative permittivity. Equa-
tions (3) and (4) constitute the Poisson-Nernst-Planck theory.

The fact that ions are confined within the two slabs of
the capacitor imposes the boundary condition of vanishing
currents at +L and −L. From the definition in Eq. (1):

−βnα (−L, t )q̄αe
∂φ

∂z
(−L, t ) − ∂nα

∂z
(−L, t ) = 0,

−βnα (+L, t )q̄αe
∂φ

∂z
(+L, t ) − ∂nα

∂z
(+L, t ) = 0. (5)

We will focus on the situation where the EDLC is at equi-
librium, with zero applied potential for times t < 0, and is
subject to a potential difference 2V0 for times t > 0. The elec-
tric potential must be continuous between slab and solution,

TABLE I. List of units of the nondimensional quantities used.
Note that they do not form a coherent system of units: for instance,
the units of distance, volumic density, and surface density are not
related by simple powers.

Observable Symbol Unit

Time t, τi
LλD

D

Inverse time s, si
D

LλD

Distance z L

Volumic ion density n± n0

Volumic charge density ρ 2en0

Electric potential φ, V 1
βe

Electric field E 1
βeL

Surface density σ
ε0εr
βe2L

= 1
4π lBL

so that

φ(±L, t ) = ±V (t ), with V (t ) =
{

0 for t < 0
V0 for t � 0 . (6)

The zero of the potential is arbitrary.
In the following, we solve the Poisson-Nernst-Planck

equation analytically, when possible, and numerically, with
a flux-conservative method whose details are given in
the Appendix. The results of our numerical scheme were
successfully compared to those of constant-potential lattice-
Boltzmann electrokinetics [16], where lattice-Boltzmann is
coupled with an iterative resolution of the Poisson equation.

III. FULLY SYMMETRIC CASE: q+ = q−, D+ = D−

We focus first on the case of a symmetric binary electrolyte,
whose species have valences q− = q+ = q = 1, and diffu-
sivities D+ = D− = D. The problem of studying relaxation
in this case has been previously addressed in Refs. [24] and
[25], with particular focus on the linear regime. For the sake
of completeness, we reobtain here some of the results from
Ref. [25] following a simpler approach. In the linear regime,
the relaxation is multiexponential. We then seek a clear char-
acterization of the nonlinear regime, building on Ref. [24].

A. Linear regime

Linearizing Eqs. (3) around the initial densities n0
+ = n0

− =
n0 and taking the difference of the two equations for the two
species, yields, together with Eq. (4), the Debye-Falkenhagen
equation for the charge density ρ:

∂ρ

∂t
= D

(
∂2ρ

∂z2
− λ−2

D ρ

)
. (7)

Here we defined the Debye length λD as a constant in terms
of the initial density n0 by λ−2

D = 2n0βe2/(εrε0) = 8π lBn0,
where lB = βe2/(4πεrε0) is the Bjerrum length.

We proceed by making the equations nondimensional, ac-
cording to the mapping described in Table I. The system is
completely described by the two dimensionless parameters,

ε = λD

L
and v = βeV0, (8)

that we will keep using throughout the rest of the paper. Note
that ε can be, but need not be, a small quantity, while, as long
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as we deal with the linear regime, v has to be much smaller
than unity.

In these units, Eq. (7) is readily rewritten as

ε
∂ρ

∂t
= ε2 ∂2ρ

∂z2
− ρ (9)

and the Poisson equation (4) reads

−ε2 ∂2φ

∂z2
= ρ. (10)

The boundary condition in Eq. (5) can be written in terms of
the charge density upon linearization:

−∂ρ

∂z
(±1, t ) − ∂φ

∂z
(±1, t ) = 0. (11)

Finally, the boundary condition in Eq. (6) reads

φ(±1, t ) = ±V (t ). (12)

We make the ansatz that the potential φ(z, t ) and the elec-
tric charge density ρ(z, t ) relax to equilibrium as

φ(z, t ) = v
sinh

(
z
ε

)
sinh

(
1
ε

) + v

∞∑
i=0

bi(z)esit (13)

ρ(z, t ) = −v
sinh

(
z
ε

)
sinh

(
1
ε

) + v

∞∑
i=0

Bi(z)esit , (14)

for t > 0. The time-independent terms correspond to the
only solutions of the steady-state Debye-Falkenhagen equa-
tion allowed by symmetry: Indeed, φ and ρ must be odd
with respect to z and v. Additionally, by Eq. (10), we have
Bi(z) = −ε2b′′

i (z). We suppose si < 0, so that the characteris-
tic relaxation times are 1/|si|. Substituting Eq. (14) in Eq. (9)
and enforcing an odd charge density gives

Bi(z) = ci sinh

(√
1 + εsi

ε
z

)
. (15)

This expression can be integrated to obtain the correspond-
ing bi(z). Fixing the gauge φ(0) = 0 and imposing boundary
conditions Eq. (11), one finds

bi(z) = −ci

[
sinh

(√
1+εsi

ε
z
)

1 + εsi
+ z

si cosh
(√

1+εsi

ε

)
√

1 + εsi

]
. (16)

At this point, Eq. (12) gives, for any i, either ci = 0 or

1 + si

√
1 + εsi coth

(√
1 + εsi

ε

)
= 0. (17)

This equation is exactly equivalent to the one solved in
Ref. [25] to obtain relaxation times. An alternative solution,
consistent with our notation, was independently derived in
Ref. [22]. The modes characterizing the linear response can
also be considered in the frequency domain via the impedance
of the cell (see, e.g., Refs. [29,30] for symmetric electrolytes).

For ε = λD/L � 1, relaxation modes turn out to be of
order −επ2(i + 1/2)2; the dominant (slowest) mode is s0 ∼
−επ2/4, corresponding to a dimensional relaxation time τ0 ∼
4L2/(π2D). For ε = λD/L � 1, the dominant relaxation rate
results exactly from the solution of the equation

tanh

(
Z

ε

)
= −Z

ε
(Z2 − 1), (18)

with Z = √
1 + εs0. In physical units (adopted from now on

for characteristic timescales), this corresponds to a time

τ0 	 LλD

D
− λ2

D

2D
. (19)

The scaling LλD/D was pointed out in Ref. [24] and pre-
viously reported in Refs. [31–33], while the second term
represents the exact finite-double-layer correction as com-
mented in Refs. [16,22,25]. The timescale from Eq. (19) is
visible in Fig. 2(a), which shows numerical solutions of the
ion density at contact with the electrode ρ(−1, t ) and of the
electrode surface charge density σ (t ).

Note that assuming a monoexponential relaxation in
Eqs. (13) and (14), for ε � 1, still leads to a surprisingly good
approximation for the dominant relaxation rate [22].

The exact relaxation profile can be obtained by an analysis
of Eqs. (9)–(12) in the Laplace domain [22,25], allowing to
identify ci and write

ρ(z, t ) = −v
sinh z

ε

sinh 1
ε

+ v

∞∑
n=0

2(1 + εsi )

3 − s2
i

sinh z
√

1+εsi

ε

sinh
√

1+εsi

ε

esit .

(20)

A cumbersome computation shows that this equation, that we
report for its perhaps more readable shape, is equivalent to
Eq. (40) in Ref. [25].

As proposed in Ref. [24], when ε = λD/L � 1, it is pos-
sible to establish an analogy between the EDLC and a simple
RC circuit of the first order. We summarize this analogy here
because it will prove useful in the following. Each double
layer can be identified with a planar capacitor, opposing the
charge of the electrode with an equal and opposite charge in
the solution, distributed over a distance ∼λD. Its capacitance
per unit surface reads

C = ε0εr

λD
. (21)

Along the same spirit, the bulk, of length 2L − 2λD, carries an
electric resistance according to Drude’s model of conduction.
For some applied potential difference 
V , the current density
can be expressed as

j = 2n0e2βD

V

2L − 2λD
. (22)

The electric resistance of the bulk times unit surface (i.e., the
inverse conductance per unit surface) is then

R = 
V

j
= L − λD

n0e2βD
. (23)

The circuit results as a series of a capacitance C, a resis-
tance R, and a second capacitance C. Being the equivalent
capacitance C/2, the characteristic time of the circuit turns out
to be

τ = R
C

2
= L − λD

2n0
βe2

ε0εr
λDD

= LλD

D
− λ2

D

D
. (24)

This simple circuit analogy reproduces the dominant relax-
ation rate from Eq. (19)—the correction of order λ2

D/D is not
exact but has the right scaling.
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v = 0.001 v = 0.1 v = 1

v = 10 v = 40 v = 100

(a) (b) (c)

(d) (e) (f)

FIG. 2. Logarithmic plots of the quantities defined at the top left, where ρ±L = ρ(−L, t ) = −ρ(L, t ) is the charge density in the solution
at contact with the electrode, σ (t ) is the surface charge density of the electrode, and ρ±L

eq and σeq are their respective values at equilibrium.
Here, time t is in units of L2/D, ε = 0.01 and v increases progressively, as indicated at the top right of each panel. When the curves shown are
linear, their slopes correspond to exponential relaxation rates. s0 corresponds to a relaxation time λDL/D = 0.01 L2/D and s′ of L2/(π 2D) 	
0.10 L2/D. At v = 0.001 (a), only the double layer formation process is visible with its rate s0 (unless too close to t = 0, where other rates si

can play a role). At v = 0.1 and 1 [(b) and (c)], the first slope corresponds to the buildup of the double layer, while the second slope reflects its
reorganization as the bulk is depleted from ions. The system is in the purely nonlinear regime at v = 1 and the double layer builds up in a time
τPNL ∝ cosh (v/2), as defined in Eq. (35) in Sec. III C. At v = 10 (d) the system is partially depleted at equilibrium, as discussed in Secs. III C
and III D [see Fig. 3(c)] but continues to relax with a time τPNL. At v = 40 and 100 [(e) and (f)], the system is fully depleted (Sec. III D): The
early-time curves represent ion migration (for these parameters, the relaxation is not yet linear in time, but not perfectly exponential either); the
late-time part represents relaxation of the counterionic double layers, in a time ∼μ2

nen/D. Insets show |(ρ±L − ρ±L
eq )/ρ±L

eq | and |(σ − σeq )/σeq|
in linear scale.

B. Depletion

In the nonlinear regime, it is impossible to write a Debye-
Falkenhagen equation for the charge density and it is harder to
make analytical predictions on the dynamics. The first clearly
visible nonlinear effect is depletion. We define depletion as
the decrease in the bulk population from the initial value n0

to some smaller final value. As v increases, more ions are
attracted to the oppositely charged electrode than are repelled
by the like-charged one. Since the total number of ions (the
integral of the ion densities) must be conserved, this calls
for a decrease in the bulk density. Indeed, in the symmetric
electrolyte case, Eq. (3) is not invariant under the transforma-
tion (n± − n0 → n0 − n±, z → −z, q̄± → q̄∓)—only valid
for asymptotically small voltages—meaning that exchanging
the two ion species cannot be reduced to a simple flip of their
excess densities about their initial values. More intuitively,
if the applied potential is sufficiently high, then all positive
ions condense on the negative electrode and all negative ions
condense on the positive electrode: In this extreme case the
bulk of the capacitor is basically empty and we have full
depletion, as described in Sec. III D. In this section, we focus
on depletion in the linear regime v � 1, as a weakly nonlinear
effect. The phenomenon has a clear signature on the relax-
ation dynamics and it introduces a purely diffusive timescale,

that, at least in the ε � 1 range, is slower than the dominant
relaxation time τ0 from Eq. (19), related to the electric double
layer formation.

To quantify depletion, we introduce a quantity, inspired by
the Dukhin number [34,35], that quantifies the fraction of ions
that remains in the bulk after relaxation:

Dun = n+(0,∞)

n0
= n−(0,∞)

n0
. (25)

This quantity is 1 when there is no depletion and 0 when
ions are completely absent at the center of the capacitor. We
say that the system is weakly depleted when 0.9 < Dun < 1,
depleted when Dun < 0.9 and fully depleted when Dun 	 0.

We perform a weakly nonlinear analysis of the Poisson-
Nernst-Planck equations. Indeed, in the linear regime, the
magnitude of the corrections to ρ and φ are orders of mag-
nitude below the dominant process (the formation of the two
double layers), but a new depletion-related timescale appears,
slower than the previously mentioned ones. We expand ionic
densities, charge density and potential—that we already know
up to linear order in v—and consider small terms of order v2

and v3. Since ρ and φ must be odd functions of v, we write

n±(z, t ) = n(0)
± + vn(1)

± (z, t ) + v2n(2)
± (z, t )

+ v3n(3)
± (z, t ) + O(v4) (26)
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ρ(z, t ) = vρ (1)(z, t ) + v3ρ (3)(z, t ) + O(v5) (27)

φ(z, t ) = vφ(1)(z, t ) + v3φ(3)(z, t ) + O(v5), (28)

where all quantities are dimensionless and ρ = n+−n−
2 accord-

ing to the units in Table I.
Introducing the above expansions in the Poisson-Nernst-

Planck equation (3) and collecting O(v0) terms, we find that at
order 0, n(0)

± = n0. From O(v1) terms, we find that at linear or-
der, φ(1)(z, t ) is given by Eq. (13) and ρ (1)(z, t ) = ±n(1)

± (z, t )
by Eq. (14). Then, introducing these results into the equa-
tion for O(v2) terms, we obtain

∂n(2)
±

∂t
= ε

∂2n(2)
±

∂z2
− 1

ε

cosh 2z
ε

sinh2 1
ε

+
∞∑

i=0

esit fi(z) +
∞∑

i=0

∞∑
j=0

e(si+s j )t gi j (z) (29)

where the exact form of the functions fi and gi j , which can
be expressed in terms of the Bi and bi given in Eqs. (15) and
(16), are in fact not relevant for the present analysis. Indeed,
we look for relaxation modes slower than the purely linear
one [s0, as determined by Eq. (17)] for large t , so that the last
two terms can be neglected. Imposing mass conservation in
the form

∫ 1
−1 n(2)

± (z, t ) dz = 0 and requiring n(2)
± to be even in

z to respect symmetry, one obtains

n(2)
± (z, t ) = − ε

4
coth

1

ε
+ cosh 2z

ε

4 sinh2 1
ε

+ A cos(πz)es′t + o(es′t ), (30)

with A constant and s′ = −π2ε. It can be checked that the
first two terms in the right-hand side correspond to a particular
solution of Eq. (29), while the last one is the standard solution
for the corresponding homogeneous diffusion equation sat-
isfying the symmetry and boundary conditions. In physical
units, this corresponds to a diffusive timescale,

τ ′ = L2

π2D
. (31)

This second-order correction to the ionic density represents
depletion in the ε � 1 regime (where s′ is indeed slower than
s0 and (30) makes sense). In this case, the equilibrium density
in the bulk (i.e., at |z| � 1 − ε), which in our units is nothing
but Dun, reads to second order

n±(z,∞) 	 n±(0,∞) = Dun = 1 − v2 ε

4
coth

1

ε
. (32)

Figure 3(a) compares numerical results with our analytical
approximation, showing that Eq. (30) well predicts late-time
density profiles as a function of z and t . In this figure, similar
for this symmetric case to Figs. 8(a), 9, and 10 (top right) in
Ref. [24], the time-damped cosine shape is visible outside the
double layer (light green curves). The depletion phenomenon
emerges as a (neutral) mass diffusion of both species from the
center of the EDLC toward the boundaries of the bulk region:
Ions to constitute the double layer are initially recruited from
the regions close to the electrode, leaving a nonuniform mass
distribution in the bulk [light blue curves in Fig. 3(a)]. The

(a)

(b)

(c)

FIG. 3. (a) Mass as a function of z (in units of Table I), at
different times (here in units of L2/D), for ε = 0.01 and v = 2. In
these units, the electric double layer formation occurs on a timescale
∼0.02 L2/D. At much shorter times (dark blue) the system has
not moved yet. At later times (lighter greens) the double layer has
formed already and the mass diffusion process manifests itself, with
a relaxation timescale τ ′ 	 0.1 L2/D: the sinusoid of Eq. (30) is
visible. At times much larger than τ ′ (dark green) the system is at
equilibrium at a new value of bulk density, predicted by Eq. (32).
Dotted lines indicate the analytical predictions for later times as per
Eq. (30), where the parameter A was set to 0.006 for all curves.
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corresponding potential across the capacitor is shown as a
function of time in Fig. 3(b).

The mass imbalance then evens out with a purely diffusive
process on a length scale L rather than 2L (ions move from
the center to the borders and not from one border to another).
This explains the absence of the diffusive mode 4L2/(π2D)
for symmetric electrolytes, otherwise legitimate. As shown
in Fig. 3(c), Eq. (32) predicts values of Dun in the weakly
nonlinear regime.

Finally, the rate s′ can be proven to emerge naturally also
in ρ (3)(z, t ) and φ(3)(z, t ). This is why the relaxation rate s′
is visible in late-time profiles of ρ(−1, t ) and σ (t ), plotted in
Figs. 2(b) and 2(c), for ε = 0.01.

To summarize, the linear regime features two processes:
double layer formation and, at higher order, depletion. The
double layer forms at a dominant rate s0. During this process
the bulk stays electroneutral but becomes inhomogeneous as
for mass density: The bulk region closer to the electrodes
becomes less populated than the central region. A slower
process, at least for ε < π−2 	 0.1, then onsets with rate s′:
This is a mere diffusion of neutral excess mass within the
bulk, with positive and negative ions moving together from
the center toward the double layer boundaries. The diffusive
depletion process is asymptotically absent at v → 0, but its
relative importance compared to the double layer formation
process grows with v (see the upwards shift of late-time lines
in Figs. 2(b) and 2(c).

A last word of caution concerns the quantity λD defined
after Eq. (7), and its dimensionless equivalent ε = λD/L. This
“reservoir” Debye length is defined in terms of the initial
concentration n0, but it is important to note that the physically
relevant Debye length in the capacitor, defined for instance
in terms of the depleted midpoint salt concentration, can be
much larger than λD.

C. Purely nonlinear regime

Figure 3(c) shows that for ε � 1 depletion occurs as soon
as v � 1, so it is impossible to tell apart the purely nonlinear
effects, the ones that would appear even in a grand-canonical
formulation of the problem, from the strictly canonical effects
of depletion. In this case, we say that no purely nonlinear
regime exists: Upon increasing v, the system goes directly
from the linear regime to a depleted nonlinear regime, which
we will describe in Sec. III D. On the contrary, for ε � 1,
more ions are available and depletion is only observed at
voltages significantly higher than 1: This makes purely non-
linear effects visible at intermediate voltages, starting from
v 	 1. These consist in a clear asymmetry, for a given species,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(b) Potential as a function of z, at different times (here in units of
L2/D), for ε = 0.01 and v = 2. The inset is a zoom close to the
left electrode, while the arrow indicates the point of null potential
(see Sec. IV B), which in the present case is z0 = 0. (c) Points show
Dun as a function of v, for different values of ε, as extracted from
numerical solutions of the Poisson-Nernst-Planck equation. Smaller
Dun represent stronger depletion. Solid lines are a guide to the eye.
The curves at ε = 100 and 1000, not shown here, coincide with the
ε = 10 curve. In dotted lines, the prediction from Eq. (32).

between left and right double layer at equilibrium; however,
the total number of ions is much larger than the number of
ions involved in the double layers, so that the bulk population
stays almost unaffected (no depletion).

In this purely nonlinear regime, the linear analysis of the
relaxation times from Sec. III A is not valid and the double
layer formation does not happen anymore at a rate s0. How-
ever, it is possible to understand the change in the rate of
formation of the electric double layer by using the Grahame
equation [27,28]. In the units of Table I, this equation reads

|σ (∞)| = 2

ε
sinh

(v

2

)
(33)

and is exact in the ε → 0 limit, even for v > 1. The following
differential capacitance emerges:

∂|σ (∞)|
∂v

= 1

ε
cosh

(v

2

)
. (34)

If this capacitance is used in the circuit model, replacing the
one of Eq. (21), then the relaxation time in Eq. (24) becomes

τPNL = λDL

D
cosh

(v

2

)
, (35)

where PNL denotes purely nonlinear. The same scaling ap-
pears already in Refs. [24,36] and is in quantitative agreement
with our numerical calculations (see Fig. 2(d) and Fig. 2 in
Ref. [26], where timescales extracted from numerical simula-
tions are summarized).

The Grahame Eq. (33) also allows us to estimate for what
values of v and ε depletion starts to become relevant, de-
termining a boundary between the purely nonlinear and the
depleted regimes for small ε. We introduce the Dukhin num-
ber

Du = |σ (∞)|
2n0L

, (36)

giving information on the maximum surface charge neutral-
isable by the ions [34,35]. We define a system as depleted
when Du 	 0.1, in a manner conceptually equivalent to the
previously employed Dun < 0.9. Using Eq. (33), this condi-
tion reads

Du = 2ε sinh
(v

2

)
	 0.1. (37)

This relation can be used to identify the limit between purely
nonlinear and fully depleted nonlinear regime in a (v, ε)
diagram, as we do in Fig. 3 of Ref. [26], showing that it is
consistent with numerical results.

D. Fully depleted nonlinear regimes

Upon increasing v at ε � 1, depletion becomes more and
more important. The Dukhin number Dun correspondingly
decreases [Fig. 3(c)] and the late-time line representing de-
pletion in Figs. 2(b) and 2(c) gradually shifts upwards. At the
same time, still for ε � 1, the timescale related to charging
increases as per Eq. (35). In terms of Fig. 2, the slope of the
early-time curve gradually decreases as v increases. Eventu-
ally the two processes (double layer charging and depletion)
become indistinguishable and the system gradually enters the
fully depleted nonlinear regime. A similar thing happens at
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ε � 1, where depletion coincides with nonlinearity, as dis-
cussed above. The transition to this new fully depleted regime
is not abrupt and defines a band on the (ε, v) diagram where
depletion is only partial (say, 0.1 < Dun < 0.9 or Du ∼ 1).
Such a band is relatively narrow: Figure 3(c) shows that the
passage from Dun = 1 to Dun = 0 happens in no more than
a decade of v, for all probed values of ε (see also Fig. 3 in
Ref. [26]).

For parameters at which depletion is fully achieved, the
“bulk” ionic concentration at equilibrium n±(0,∞) can be
orders of magnitude lower than the initial one n0. In this case,
all positive ions are concentrated in proximity of the negative
electrodes and vice versa. At long times, the double layer
contains only counterions, so that the equilibrium distribution
is governed by a sort of Gouy-Chapman length for either
subsystem made of one electrode and its counterions. Such
subsystem is in general not electroneutral (it cannot be so if
Du > 1): the Poisson equation shows that its Gouy-Chapman
length reads, in physical units, μnen = (2πqlBσres)−1, where
σres = |σ (∞)| − 2n0L is the unscreened residual part of the
electrodes’ surface charge (where “nen” denotes nonelec-
troneutral and “res” denotes residual). After the counterionic
double layers have formed, it is reasonable to think that the
last dynamic phenomenon to happen is a rearrangement of
each double layer on the smallest length scale available, μnen;
this would correspond to a relaxation time μ2

nen/D. In the
following we show how to predict σ (∞) and thus μnen, and
what dynamics leads to the formation of the counterionic
double layers.

We take a look at the large voltage asymptotics to simplify
the problem. We suppose v to be so high that even when
equilibrium is reached, ions have negligible impact on the
potential profile between the electrodes: the electric field, at
any time, is approximately V0/L everywhere, except possibly
within a very small distance from the electrodes. We will
verify later when this assumption is correct. As soon as the
power source is switched on, ions, of valence q = 1, move by
electric drag with a constant velocity ν = βDeV0/L = vD/L,
directed toward the oppositely charged electrode. Once the
ions reach the electrode, we suppose the latter to be so highly
charged that a very thin double layer is formed, of negligible
size compared to L. If the number of ions reaching the dou-
ble layer is somehow proportional to the density at contact,
then we expect n±(∓L, t ), ρ(±L, t ) and, more rigorously,
the double layer charge

∫
EDL ρ(z, t ) dz to grow linearly with

time, approaching their final value in a time t∗. Such time is
easily computed, in physical units, as the time needed for the
furthermost ion to reach the oppositely charged electrode, a
distance 2L away:

t∗ = 2L

ν
= 2L2

Dv
. (38)

Figure 4 confirms that ρ(−L, t ) is linear in time from t = 0
until t∗.

This allows us to compute the time evolution of σ . By defi-
nition, integrating the electric field to get the electric potential
across a half-capacitor (from −L to 0) for 0 < t < t∗, one

FIG. 4. Ratios of |σ (t )| (black) and |ρ(±L, t )| (gray) versus their
equilibrium values, as a function of time. Here ε = 0.1 and v = 200.
The blue dashed lines represent the ideal linear evolution of ρ and
the theoretical prediction for σ from Eqs. (38)–(41).

must obtain the potential difference V0. In physical units:

V0 = e|σ (t )|
ε0εr

L − e

ε0εr

∫ 0

−L
dz

∫ z

−L
dz′

×
(

2n0L
t

t∗ δ(z′ + L) + n0h(z′, t )

)
︸ ︷︷ ︸

ρ(z′,t )/e

(39)

with

h(z′, t ) =
{

I(−L, −L+νt )(z′) if 0 < t < t∗
2

I(−L, L−νt )(z′) if t∗
2 < t < t∗ , (40)

where I(z1, z2 )(z′) is the gate function, equal to 1 if z′ ∈ (z1, z2)
and to 0 otherwise. In Eq. (39), the inner integral represents
the electric field in z due to the ions between −L and z.
The first term in parenthesis represents positive ions that
have adhered to the wall in z = −L at time t ; we make the
drastic choice of a δ-function distribution, but this is not
crucial, as long as ions stay confined within a length � L.
The second term in parenthesis is the charge density at point
z′ in the rest of the solution, whose functional shape Eq. (40)
is determined by the following observation. For t < t∗/2,
the nonzero charge density is due to negative ions leaving
the region (−L, 0) at velocity ν from left to right, while the
concentration of positive ions stays constant in this half of the
capacitor (though not at −L); for t > t∗/2 all negative ions
have left the region and the last positive ions approach the
negative electrode with velocity ν from right to left. Solving
Eq. (39) for 0 < t < t∗ gives, in dimensionless units,

|σ (t )| = v + 1

ε2

(
2t

t∗ − t2

t∗2

)
. (41)

The electrodes’ charge when the double layer formation
is concluded (t = t∗) is then |σ (t∗)| = v + ε−2. This is of
straightforward interpretation, since, in our units of surface
charge density, 2n0L reads ε−2: The surface charge developed
by the electrodes to maintain a field v across the EDLC is in-
deed v + ε−2, because exactly ε−2 of its charge is screened by
the counterions stuck at the electrode. Agreement of Eq. (41)
with numerical data is shown in Fig. 4. This parabolic time de-
pendence of the surface charge density is also consistent with
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the linear current derived in Ref. [37] for the fully symmetric
case considered in this section.

For times t > t∗, we expect to observe the fast relaxation
mentioned at the beginning of this section, on a timescale
μ2

nen/D. Now the residual surface charge to be used in μnen

is nothing but σres 	 |σ (t∗)| − ε−2 = v. This corresponds to
a relaxation time

τ = 4L2

Dv2
, (42)

which is indeed observed at sufficiently high voltages, for
all values of ε (see Fig. 2 of Ref. [26]). This exponential
relaxation and corresponding timescale were not reported in
Ref. [37]. We note that in the latter reference, the authors
argued for a power-law current with exponent −3/4, which
seem supported by the experimental results of Ref. [38]. Here
we did not attempt to give scaling laws: The system transitions
to the unscreened regime in a complex fashion, even more
complex for asymmetric electrolytes (see Secs. IV and V),
and, at least within the range of parameters that we can probe,
it is hard to find scalings that work for the whole regime or to
neatly separate sub-regimes.

We made so far the crucial assumption that ions do not
affect the linear potential profile through almost all the ca-
pacitor. A necessary condition for this to happen is that
the electrodes’ surface charge be larger than the integrated
density of ions, meaning |σ (t )|/(2n0L) > 1. Imposing this to
Eq. (41), we obtain

v >
1

ε2
. (43)

This defines the unscreened fully depleted nonlinear regime
and was used to delimit such a region in Fig. 3 in Ref. [26].

There is a transition region from the purely nonlinear
regime to the (unscreened) fully depleted regime we just
described: The transition region is the area that comprises
approximately between the curve (37) and the curve v = 1/ε2

(see Fig. 3 in Ref. [26]). We call this the partially screened
fully depleted nonlinear regime. In such region, the relaxation
process gradually changes from exponential, with a well-
defined relaxation time given by Eq. (35), to linear in time, as
in Eq. (38), due to depletion. At equilibrium, the electric field
generated by the electrodes is reduced (partially screened) to
a fraction of v in the fully depleted zone at the center of the
capacitor: double layers are indeed sufficiently populated to
screen a non-negligible fraction of it. In addition, the electric
field, as a function of z, changes with time, as more and
more ions reach the electrodes. As a consequence, analytical
examination is hard and the functional time dependence of
relaxation processes had to be retrieved numerically. Numeri-
cal results [Figs. 2(e) and 2(f)] show anyway the presence of
a late-time relaxation on a fast scale ∼μ2

nen/D, that, as v in-
creases, converges to the one (42) predicted for the unscreened
fully depleted nonlinear regime (see Fig. 2 in Ref. [26]).

Results from this section are summarized in Fig. 3 in
Ref. [26].

IV. PARTIALLY ASYMMETRIC CASE: q+ �= q−, D+ = D−

A. Linear regime and depletion

We now tackle the case of asymmetric valences: q+ �= q−.
This requires a redefinition of our proxy for ion concentration

λD, so that in the linear regime this equals the Debye length
[27]:

λ−2
D = 4π lB(q2

+n0
+ + q2

−n0
−), (44)

where n0
+ and n0

− are the initial concentrations of positive and
negative ions.

The linear regime exhibits the same dynamics as the
symmetric valence case, as shown by a linearization of the
Poisson-Nernst-Plank equation (3). For v > 0, depletion oc-
curs analogously to Sec. III B, with one difference: With
asymmetric valences, there is no reason to expect n(2)

± (z, t ) to
be even functions of z, nor to have any particular symmetry.
This invalidates the reason why depletion-related diffusion
took place on a length L rather than 2L in a system with
equal valences [Eq. (31)]. In an asymmetric-valence system,
the relaxation mode corresponding to a time

τ ′ = (2L)2

π2D
(45)

is then permitted. This characteristic time for depletion is
observed numerically (see Fig. 5) at long times; for some
parameter values (e.g., 1:10 case, λD/L = 0.01, v = 0.1), we
observe, however, that after the end of the double layer
relaxation and before the onset of this slower depletion mode,
the faster depletion mode L2/(π2D) is still visible.

B. Purely nonlinear regime

The nonlinear regime also deviates from the symmetric-
valence case: This is shown again in Fig. 5 (with numerical
results shown as symbols), which has to be compared to Fig. 2
in Ref. [26]. The exponential increase of the relaxation time
with the applied voltage at small ε, which in the symmetric-
valence case is explained by Eq. (35), is not valid anymore
in the general q+ : q− case. This is particularly evident in
the 1:10 case (Fig. 5, right panel), where the relaxation time
appears to be nonmonotonic with v: an initial slight decrease,
absent in the 1:1 case, is followed by an increase, steeper
than in the 1:1 case. An analytical estimate for this curve can
be obtained by a procedure analogous to the one leading to
Eq. (35), making use of the simple RC circuit analogy. In
the asymmetric valence situation, the Grahame equation (33),
used to compute the capacitance, can be rewritten as per
Ref. [39]. The equilibrium (infinite time) charge density of the
negative electrode, in the limit where the two double layers are
completely separated (ε → 0) reads:

|σ (∞)| =
√

n0

2π lB
(q−e−q+ψ− + q+eq−ψ− − (q− + q+))1/2,

(46)

where ψ− = φ(−L) − φ(0) < 0 is the potential of the nega-
tive electrode compared to the neutral bulk, in units of (βe)−1,
and n0 = n0

+/q− = n0
−/q+ is the salt concentration. If the

potential on the right electrode is ψ+ = ψ− + 2v > 0, then
the surface charge on the positive electrode reads:

|σ (∞)| =
√

n0

2π lB
(q+eq−(ψ−+2v)

+ q−e−q+(ψ−+2v) − (q+ + q−))1/2. (47)

This corresponds to Eq. (46), with the changes q± → q∓ and
ψ− → −ψ+. The charge densities on the two planes must
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1:2 1:10

FIG. 5. Relaxation times τ as a function of v, for the 1:2 case (left) and the 1:10 case (right); different colors correspond to different values
of ε = λD/L. Times are extracted from linear fits in logarithmic scale of σ , similarly to what shown in Fig. 2 for the symmetric case. When
two exponential relaxation times are visible from numerical data, one at short times and one at long times, they are both represented here (if
the same v and ε correspond to two symbols of the same color, the solid one represents early-time and the empty one late-time relaxation).
The dense dotted lines represent the purely nonlinear time obtained from Eqs. (51) and (52) and preceding ones; for comparison, we also plot
the time given by Eq. (35), relevant for the symmetric case and shown with sparser dots for ε = 0.01. The gray and black lines represent the
times given by Eqs. (55) and (59), respectively. We only present numerical results for exponential relaxation times here, so no data is shown
for the time-linear ion migration (gray line), which is described later in Fig. 8.

be equal in absolute value because of global neutrality. This
allows to equate Eqs. (46) and (47) to obtain ψ−. Assuming
until the end of this section that q+ � q− without loss of
generality, one can verify that the following is a solution:

ψ− = 1

q+ + q−

(
−2vq− + ln

q−
∑q+−1

m=0 e−2vm

q+
∑q−−1

m=0 e−2vm

)
. (48)

Note that ψ− = −v + O(v2) as v → 0, as it should, and
ψ− = − q−

q++q−
2v + O(1) as v → ∞.

The differential capacitance per unit surface of the negative
electrode is the derivative of Eq. (46) with respect to |ψ−|,
computed at the point determined by Eq. (48):

C− = ε0εr

λD

√
q+q−

2(q+ + q−)

−eq−ψ−+e−q+ψ−√
q−e−q+ψ−+q+eq−ψ−−(q+ + q−)

.

(49)

Analogously, for the positive electrode we have:

C+ = ε0εr

λD

√
q+q−

2(q+ + q−)

× eq−(ψ−+2v) − e−q+(ψ−+2v)√
q−e−q+(ψ−+2v) + q+eq−(ψ−+2v) − (q+ + q−)

.

(50)

Interestingly, for q−/q+ � 3.18, C− exhibits a nonmonotonic
behavior, reflected in the total capacitance per unit surface,

C =
( 1

C−
+ 1

C+

)−1
, (51)

which is represented in Fig. 6.
The resistance times unit surface of the equivalent RC

circuit for the general q+ : q− case, in analogy with Eq. (23),
reads

R = 2L − 2λD

βe2n0q+q−(q+ + q−)D
, (52)

which can be rewritten in terms of λD using the fact that
q+n0

+ = q−n0
− = n0q+q−. Multiplying this resistance by the

capacitance from Eqs. (51) and preceding ones, one obtains
an equivalent-RC-circuit timescale that is of order LλD/D at
small v and diverges exponentially with v. This time is repre-
sented by the densely dotted curves in Fig. 5 and well captures
the numerical results, both in the nonmonotonic behavior and
in the steeper ascent compared to the 1:1 case.

The loss of left/right symmetry in the composition of the
electric double layers and in the potential profile comes with a
shift in the zero of the potential, i.e., the point z0 on the z axis
where the solution is neutral. This point is at the center of the
capacitor (z0 = 0) when v → 0; upon increasing v it moves
toward the electrode producing the smaller voltage drop, i.e.,
the electrode of the same sign as the least charged species.
This is shown in Fig. 7. The shift appears linear in v at small
applied voltages. At high voltages (where depletion is present,
though), it seems to saturate at (q− − q+)/(q− + q+), thus

FIG. 6. Total capacitance per unit surface C, as a function of the
applied voltage v, for q+ = 1 and q− = 1, 2, 3, 5, 10. C is computed
from Eqs. (48)–(51). The vertical scale is logarithmic and the slope
of the obliquous asymptotes, for v → ∞, is q+q−/(q+ + q−).
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FIG. 7. Point of null potential z0, as a function of applied voltage,
in logarithmic scale. z0 is retrieved numerically as the point where the
charge density is zero. For both the 1:2 and the 1:10 cases, different
values of ε (10, 1, 0.1) are shown. Circles represent results from
a numerical solution of the nonlinear Poisson-Boltzmann equation,
for a grand-canonical system with Debye length εGCL = 0.1L; the
arrows highlight that depletion, absent in the grand-canonical ensem-
ble, pushes z0 toward the positive electrode. The dotted gray line is a
guide with slope 1. Numerical errors on z0/L are of order 10−3.

dividing the cell into two parts, whose sizes are in the same
ratio q−/q+ as the potential drops across the two electrodes.

Finally, to determine the boundary between the purely non-
linear and the fully depleted regime, we extend our definition
of the Dukhin number in Eq. (36) to the asymmetric valences
case, where to a salt concentration n0 corresponds a maximum
charge of q+n0

+ = q−n0
− = q+q−n0:

Du = |σ (∞)|
2Lq+q−n0

. (53)

Using Eqs. (46) or (47), the condition Du 	 0.1 reads

ε

√
q+ + q−
2q+q−

(q−e−q+ψ− + q+eq−ψ− − (q+ + q−))1/2 	 0.1,

(54)

to be complemented with Eq. (48). Note that Eq. (54) reduces
to Eq. (37) when q+ = q−, as it should.

C. Fully depleted nonlinear regime

The unscreened fully depleted nonlinear regime, for
asymptotically high applied voltages, is now characterized by
the fact that the two ionic species have different velocities: A
constant electric field drags the negative species q−/q+ times
faster (or slower) than the positive one. The charge in the two
Debye layers grows linearly in time, like in the symmetric
case, but arrives at its final value at two different times. Com-
pared to Fig. 4, this means that the curve ρ(−L, t )/ρ(−L,∞)
has a different slope than the curve ρ(+L, t )/ρ(+L,∞),
which in turn translates to an abrupt change in curvature of
the σ (t ) curve.

In the quantitative analysis of this regime, we proceed as in
the symmetric case (Sec. III D). As said, the velocities of the
two species are now different: ν± = Dq±eβV0/L, assuming
again very large electric field and neglecting the effect of
the electrolyte distribution on the velocities. If each species
travels at its (constant) velocity, then the times at which the
furthermost ion of each species has reached the oppositely
charged electrode are as follows:

t∗
± = 2L

ν±
= 2L2

Dq±v
. (55)

After a time t∗
+, the total number of positive charges in the

system 2n′
0L (we define n′

0 = q+n0
+ = q−n0

− = q+q−n0) are
adsorbed on the negative electrode, and after a time t∗

−, the
same number of negative charges are adsorbed on the positive
electrode. As in Sec. III D, we assume that the electrolyte
density at contact with the electrodes grows linearly in time
and is localized in a region much smaller than the system size.
For simplicity, we take q− > q+, i.e., t∗

− < t∗
+. The analogous

of Eq. (39) for the asymmetric case, for 0 < t < t∗
+, is as

follows:

2V0 = 2e|σ (t )|
ε0εr

L − e

ε0εr

∫ L

−L
dz

∫ z

−L
dz′

(
2n′

0L
t

t∗+
δ(z′ + L) − 2n′

0L min

(
t

t∗−
, 1

)
δ(z′ − L) + n′

0h(z′, t )

)
︸ ︷︷ ︸

ρ(z′,t )/e

, (56)

with

h(z′, t )

=

⎧⎪⎪⎨⎪⎪⎩
I(−L,−L+ν−t )(z′) − I(L−ν+t,L)(z′) if 0 < t < tmeet

I(−L, L−ν+t )(z′) − I(−L+ν−t,L)(z′) if tmeet < t < t∗
−

I(−L, L−ν+t )(z′) if t∗
− < t < t∗

+

.

(57)

Again, I(z1, z2 )(z′) is the gate function. In Eq. (56), the first term
in parenthesis represents positive ions that have adhered to
the wall in z = −L at time t ; the second term in parenthe-

sis represents negative ions that have adhered to the wall in
z = L at time t (we write it for clarity, but this term does not
contribute to the integral, as the presence of adsorbed ions is
already encoded in the charge neutrality condition that sets
the electrodes’ field inside the capacitor); the third term in
parenthesis is the charge density at point z′ in the rest of the
system. It helps to think of two trains of ions rigidly moving
toward the oppositely charged electrodes, where the head of
each train continuously brings new ions to each corresponding
double layer. Outside the double layer, on the z < 0 side
of the capacitor, the nonzero charge density is initially due
to the negative ions leaving altogether toward positive z, while
the concentration of positive ions stays constant. The same
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FIG. 8. Ratios of σ (t ), ρ+L = ρ(+L, t ) and ρ−L = ρ(−L, t ) versus their equilibrium values, as a function of time. The electrode charge
density is piecewise parabolic. The blue dotted lines represent the ideal linear evolution of ρ(±L, t ) according to times (55), while the blue
dashed line represents Eq. (58). On the left: v = 200, ε = 0.1 and q+ : q− = 1 : 2, so that t∗

− = 0.005 and t∗
+ = 0.01; the curve for the electrode

charge density starts at v/[v + 2ε−2(q+ + q−)−1] = 0.75, as predicted by Eq. (58). On the right: v = 50, ε = 0.1, and q+ : q− = 1 : 10, so
that t∗

− = 0.004 and t∗
+ = 0.04; the curve for the electrode charge density starts at 0.73.

happens on the z > 0 side, with reversed roles. In other words,
as the tails of the two trains of ions travel at speeds ν+
and ν− toward the center of the electrode, they define three
regions of positive charge (no negative ions present), zero
charge (both species present) and negative charge (no positive
ions present). The two tails meet at t = tmeet: At this time
the neutral region has shrunk to a point. For tmeet < t < t∗

−,
the neutral region re-expands, this time because no ions are
present in the central region anymore. The two trains continue

to move until time t = t∗
−, when the fastest species (negative

ions) has reached the oppositely charged electrode. After that,
the right part of the bulk solution is neutral, whereas the left
part is still populated by positive ions that have not reached
the electrode yet. They do so at time t = t∗

+. After this time,
all ions are adsorbed and the whole bulk is neutral.

Solving the integral in Eq. (56) and nondimensionalizing,
one obtains the following surface charge as a function of time:

|σ (t )| =

⎧⎪⎨⎪⎩
v + 2

(q++q− )ε2

[
t
(

1
t∗−

+ 1
t∗+

) − 1
2 t2

(
1

t∗−
2 + 1

t∗+
2

)]
if 0 < t < t∗

−

v + 2
(q++q− )ε2

[
1
2 + t

t∗+
− t2

2t∗+
2

]
if t∗

− < t < t∗
+

. (58)

At equilibrium, the electrodes’ charge is |σ (t∗
+)| = v +

2/[(q+ + q−)ε2], as it should be, the second term representing
the final amount of charge adsorbed on either electrode (2n′

0L
in physical units). The simple t2 dependence observed in the
symmetric case is here split into two parts, each relevant
before or after the faster species has reached the electrode.
The two parabolas in Eq. (58) have different curvatures and
are centered at different times. Equation (58) agrees with
numerical data, as shown in Fig. 8.

As for the symmetric case, for times t > t∗
± we expect a

fast relaxation over the Gouy-Chapman lengths of the two
counterionic double layers. However, the relaxation of σ is
necessarily dominated by the relaxation of the slower dou-
ble layer. Since the double layers are coupled through the
electrodes’ surface charge (equal and opposite on the two
electrodes), the relaxation of the fast ions is limited by slow
changes in σ and therefore happens with the same timescale
as the slow double layer. Hence the exponential relaxation for
t > t∗

+ occurs in a time

τ = 4L2

Dv2q2+
, (59)

which is observed at sufficiently high voltages, for all values
of ε (see Fig. 5).

Again, to obtain Eq. (58), it was crucial to assume that ions
do not affect the linear potential profile through almost all
the capacitor. This happens if the change in electric potential
(or field) caused by their motion is small with respect to the
applied voltage. The analog of condition Eq. (43), determining
the phase-space boundary of the regime we just described, is
then

v >
2

(q+ + q−)ε2
. (60)

We also assumed that the distance an ion can travel by dif-
fusion in a time t∗

+ is much smaller than 2L, so that we
could neglect diffusion currents and only consider drift: This
amounts to v > 1/q−. In summary, the regime we just dis-
cussed, as for the symmetric case, is defined by Eq. (60) at
small ε and coincides with the nonlinear regime for large ε.

In the latter large-ε case, it is worth mentioning that the
asymmetric-valence phenomenology is richer than for sym-
metric valences: In the ε � 1 regime, ions of different valence
are depleted in different proportions (Fig. 9). This can give
rise to a hybrid behavior in terms of relaxation rates that, how-
ever, covers a substantial range of voltages v only for large,
nonrealistic valences. For small ε, between the purely non-
linear regime at v > 1/q− (nondepleted) and the unscreened
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,

,

FIG. 9. Dukhin number Du±
n = n±(0, t = ∞)/n±(0, t = 0),

quantifying depletion, for q+ : q− = 1 : 2 (top row) and 1:10
(bottom row). At large ε = λD/L (left column), depletion sets in at
lower voltages for the large-valence negative ions (blue) than for
the small-valence positive ones (red). In the 1:10 case, there exists
a range of voltages at which one species is fully depleted while the
other is almost nondepleted. This does not happen in the symmetric
valences case [Fig. 3(c)].

nonlinear regime described by Eq. (60) (fully depleted), we
have what we called in Sec. III D a partially screened fully
depleted regime. At such intermediate v, the initial relaxation
is neither exponential nor polynomial in time. However, the
relaxation can be divided in two parts, similarly to what hap-
pens in the unscreened regime: a first part before migration
and depletion are completed and a second part concerning
relaxation inside the two counterion-only double layers. The
latter process cannot but happen on the same timescale as
in Eq. (59). This intermediate regime is in the asymmetric
valence case even more complex, because at a given applied
voltage the two species present two different levels of deple-
tion.

V. FULLY ASYMMETRIC CASE: q+ �= q−, D+ �= D−

A. Linear regime

We finally consider the fully asymmetric case, with ions
of different valences q+ �= q− and diffusivities D+ �= D−. In
the linear regime, we solve the Poisson-Nernst-Planck equa-
tions analytically in the Laplace domain, as done for the fully
symmetric case [22,24,25]. Since Eqs. (3) and (4) are coupled
PDEs, two successive nontrivial diagonalizations, one in the
time domain and one in the Laplace domain are needed, lead-
ing to solvable uncoupled equations for linear combinations of
the ion densities. In summary, the first transformation aims to
diagonalize drift currents. After passing to the Laplace domain
and diagonalizing a second time, the diffusion equation in
space can be solved. Once time and space derivatives do
not appear anymore, a cumbersome calculation leads back to

the original basis {̂n+(z, s), n̂−(z, s)} (Laplace transforms of
the ion densities) and boundary conditions can be imposed
(potential at the electrodes, no flux through the electrodes,
electroneutrality). As in the symmetric case, the modes char-
acterizing the linear response can also be considered in the
frequency domain via the impedance of the cell (see, e.g.,
Refs. [40–43] for partially asymmetric electrolytes with op-
posite valences but unequal diffusivities).

The nonzero poles of these functions represent the relax-
ation rates of the system and can be analyzed numerically.
In the following, we take as reference ρ̂(−L, s), the Laplace
transform of the charge density at contact ρ(−L, t ). This
quantity depends on ε, on the valences, and on the additional
dimensionless parameter,

δ = D+
D−

. (61)

We assume here that the positive species is the slower one, so
that δ � 1. A numerical analysis of ρ̂ reveals, for any δ < 1,
the presence of new poles that did not exist in the case δ = 1.

For large ε, ρ̂ has twice as many poles (and zeros). The
number of poles (and zeros) stays infinite, but each pole from
the δ = 1 case splits into two poles and a zero as soon as δ <

1. The poles can be classified into two independent hierarchies
of diffusive timescales: one, {τ+,i}, for the positive species and
one, {τ−,i}, for the negative species. While their exact values
can be retrieved numerically, these times are well described
by the following equation:

τ±,i 	 4L2

(2i + 1)2π2D±
, with i = 0, 1, 2 . . . , (62)

asymptotically exact for ε → ∞. Still assuming that posi-
tive ions are slow compared to negative ones, the slowest
timescale, i.e., the dominant one at large times, is τ+,0 =
4L2/(π2D+). Note that the valences of the two species do
not enter in the expression for the relaxation times τ±,i; they
do play a role, though, in determining the importance of each
mode (e.g., the weight of positive modes increases with q+).

For small ε, the picture changes and the slowest timescale
approaches

τNH = 4L2

π2DNH
, with DNH = (q+ + q−)D+D−

q+D+ + q−D−
, (63)

featuring the so-called Nernst-Hartley diffusion coefficient
DNH [44]. Its presence reflects the fact that ions diffuse to-
gether under the action of an internal electric field that pulls
the slowest species, while slowing down the fastest one [44].
The scaling of the relaxation time is shown in Fig. 10(a) for
the equal-valence case. Figures 10(b) and 10(c) show instead
how the slowest relaxation time τ0 transitions from τ+,0 at
large ε [Fig. 10(b)] to τNH at small ε [Fig. 10(c)], for the 1:2
and 2:1 cases, at any δ.

The pole corresponding to Eq. (63), the closest one to the
origin, is, however, not the one with the largest residue. This is
important because the residue of a pole is proportional to the
weight of its corresponding mode in the time domain: a weight
larger than the slowest mode’s weight allows a fast mode to be
visible, at least at short times. A fast, but large-weight mode
represents a relaxation phenomenon that is dominant for a
certain time and eventually fades out giving way to slower
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1:2 2:1(a) (b) (c)

1:2 2:1

1:2 2:1

FIG. 10. (a) Slowest relaxation time τ0 extracted numerically from the analytical ρ̂(−L, s) in units of its asymptotic value from Eq. (63),
as a function of δ, for small values of ε. The dotted horizontal line represents Eq. (63). q+ : q− = 1 : 1. [(b) and (c)] Same quantity, in units of
its large-ε value τ+,0 from Eq. (62) (b), and in units of its small-ε value from Eq. (63) (c). Continuous lines are for a 1:2 electrolyte, dashed
lines are for a 2:1 electrolyte.

processes. Returning to the RC-circuit analogy, one can esti-
mate what the time with the largest weight τw might look like,
assuming that it represents double layer charging. Recomput-
ing the electric resistance times unit surface of Eqs. (23) and
(52) for a bulk with asymmetric diffusivities gives

R = 2L − 2λD

βe2n0q+q−(q+D+ + q−D−)
. (64)

Using a capacitance per unit surface ε0εr/λD for each elec-
trode, one finds the characteristic time

τRC = LλD − λ2
D
2

Dave
, with Dave = q+D+ + q−D−

q+ + q−
, (65)

where the factor 1/2 in front of the λ2
D term was added ad hoc

so as to match the fully symmetric case [Eq. (19)].
This expression contains an average of the diffusion co-

efficients weighted by ion valences, Dave, rather than the
Nernst-Hartley diffusivity of Eq. (63). It explains results both
from the numerical analysis of ρ̂ [Fig. 11(a)] and from solu-
tions of the Poisson-Nernst-Planck equations (Fig. 12, small
v and small λD/L). An analysis of the weights of the mode
τw 	 τRC and of the slowest mode τ0 	 τNH is presented in
Fig. 11(b); τw has a larger weight on the whole range of δ.

For δ → 1, the weight of τ0 goes to 0—the time τNH is indeed
absent from the linear analysis of the symmetric valence case.

In summary, at large ε the relaxation is fully described
by Eq. (62), with positive and negative ions decoupled as
in the fully symmetric case. At small ε, the double layer
charging occurs at early times with a timescale τw 	 τRC, de-
scribed by Eq. (65). Subsequently, the purely diffusive mode
from Eq. (63) sets in, featuring the Nernst-Hartley coeffi-
cient and signaling that positive and negative ions diffuse
together. An inspection of the curves for n±(z, t ) highlights
the origin of this two-step relaxation. Initially, the double layer
builds up mostly thanks to the faster species: The equilib-
rium total charge density is reached through an immediate
rearrangement of the fast species around the instantaneous
local concentration of the slow species. Mass concentrations
are therefore different from the equilibrium ones: There is a
neutral excess of mass at the electrode with the same sign
as the slow species (as the slow species has not had time
to escape), and a defect of mass at the opposite side. This
requires a mass relaxation process, which happens precisely
with the diffusive timescale of Eq. (63). Note that even though
the diffusive scaling might recall depletion, cf. Eq. (31), the
phenomenon we just described is linear in all respects and
occurs also for v → 0.

(a) (b)

FIG. 11. (a) Largest-weight relaxation time τw extracted numerically from ρ̂(−L, s), in units of its theoretical value from Eq. (65), as
a function of δ = D+/D−, for different values of ε = λD/L. 1:1 electrolyte. (b) Ratio of the residues of ρ̂(−L, s) with respect to the pole
corresponding to τ0 and to the pole corresponding to τw, as a function of δ; 1:1 electrolyte.
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FIG. 12. Relaxation times τ as a function of v, for diffusivity ratios δ = D+/D− = 1/1.1 or 1/10 and valence ratios q+:q− = 1 : 2 or 2 : 1.
Times are in units of L2/D+ and different colors correspond to different values of ε = λD/L. As in Fig. 5, times are extracted from exponential
relaxation(s) of σ and, when present, empty symbols distinguish late-time processes from earlier-time processes (full symbols). Two black
arrows point at the values of τ0,+ and τNH, respectively, from Eqs. (62) and (63). The colored dotted lines represent the purely nonlinear time
obtained from Eqs. (64) and (51) and preceding ones (see Fig. 6): by construction, their small-v value is τRC from Eq. (65). The dashed black
line represents the time from Eq. (42) with D = D+. The dashed gray lines are the two times from Eq. (66) observed at short times, where the
relaxation is linear in time.

B. Nonlinear regimes

An analysis of the relaxation times observed in the nonlin-
ear regime is presented in Fig. 12 for δ = 1/1.1 and 1/10 and
for valences 1:2 and 2:1. Results obtained for the symmet-
ric diffusivity cases seem to extend naturally to asymmetric
diffusivities. In the purely nonlinear regimes, the capacitance
computed in Eqs. (48)–(51) is still applicable and can be
combined with the resistance from Eq. (64). Qualitatively,
at least for small valences, this results in a simple vertical
shift of the exponential curve representing increased nonlinear
capacitance in Fig. 12, such that at small ε the curve coincides
with the linear regime time from Eq. (65). The curve is most
evident for the δ = 1/1.1, 1:2 case at ε = 0.01 and is partially
masked by high-weight diffusive timescales for other parame-
ters. Its shape mostly depends on the valence ratio through the
capacitance, as per Fig. 6.

In the unscreened (v → ∞) fully depleted regime, the
discussion for the symmetric and asymmetric valence cases
still applies, with the caveat that asymmetry in the diffusiv-
ities will affect the initial linear drag phase. The times from

Eq. (55) must then be replaced by

t∗
± = 2L

ν±
= 2L2

D±q±v
. (66)

Once each ion train has reached the electrode, each counteri-
onic double layer will start its internal exponential relaxation
with relaxation time 4L2/(D±v2q2

±). For the same reasons
that led us to Eq. (59) in the partially asymmetric case, the
last relaxation should feature the slower of the two relaxation
times of the two counterionic double layers:

τ = 4L2

v2 min(D+q2+, D−q2−)
. (67)

This seems compatible with the numerical results presented in
Fig. 12, that are, however, computationally more involved to
obtain for significantly distinct values of valences and diffu-
sivities.
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Results from this section are summarized in Fig. 4 in
Ref. [26].

VI. NONIDEAL BEHAVIOR

In this section, we analyze in brief the applicability range
of the Poisson-Nernst-Planck theory. Specifically, we discuss
the impact of ionic correlations due to electrostatics and to
ion packing by estimating the electrostatic coupling parameter
and the maximum ion density in the device, across our regime
diagram. Our model indeed provides a simple framework
to benchmark further simulations, theories, or experiments,
allowing for a more profound assessment of the effect of
nonidealities (e.g., electrostatic correlations, ion size, polar-
izability, and electrode geometry).

A. Deviation from mean field

Ionic correlations are an intrinsically discrete phenomenon,
whose magnitude depends on local density and whose effect
can be anisotropic and counterintuitive. A possible approach
consists in introducing a constant effective correlation length
scale within mean-field models. The effects of this effective
correlation length on the small-voltage EDLC dynamics have
been studied in Refs. [45,46], which reported relatively small
deviations from the mean-field dynamics for reasonable val-
ues of correlation length. Nonetheless, the mapping between
the effective correlation length and physical parameters is
somewhat elusive. We take here a different approach, relying
only on the electrostatic coupling parameter.

When only one kind of ions is present in the double layer,
which is often the case in the nonlinear regimes, a useful tool
to quantify the importance of ion-ion electrostatic correlations
is the electrostatic coupling parameter [47–50]. It represents
the squared ratio between the electrostatic energy between two
ions of charge eq at a distance a and the thermal energy kBT :

� =
(

q2lB
a

)2

. (68)

If ions adhere to a wall of charge density e� and the system
is electroneutral, then the typical distance is fixed by the
wall charge density (a = √

q/�) and the coupling parame-
ter assumes the familiar expression � = 2π l2

Bq3� [47–50].
Poisson-Boltzmann is an excellent approximation when � �
1, while for � � 10 the ion density noticeably deviates from
the mean-field one [51–53]. In addition, since usual ion sizes
are smaller than lB = 0.7 nm in water at ambient tempera-
ture, one can reasonably assume that absence of electrostatic
correlations implies absence of ion packing effects. � � 1 is
therefore a good proxy for the absence of ionic correlations.

B. Fully depleted nonlinear regime

We analyze here the fully depleted nonlinear regime, de-
scribed in Secs. III D, IV C, and V B, and represented by
the light-shaded regions of Figs. 3(a) and 4(a) in Ref. [26].
In this regime, the vicinity of the electrodes is populated
by counterions only. In addition, the system (electrode and
counterions) is in general not electroneutral as the electrode
charge � can be larger than the amount of ions present in the
system 2n0L. Looking, for simplicity, at the symmetric 1:1
case, at equilibrium all ions are in the vicinity of the electrode.

In the worst-case scenario, they are adsorbed on the plate and
the typical distance between them is a 	 1/

√
2n0L, so that the

coupling parameter (68) takes the form

� = lB
4πLε2

= 2l2
BLn0, (69)

which is independent of v.
For v > 1 and ε > 1, we always have � < 1, as realisti-

cally lB � L for any aqueous-electrolyte EDLC (where lB =
0.7 nm), so that correlations are negligible. Referring to the
regime diagram in Fig. 3(a) in Ref. [26], in the no-screening
small-ε sector [v > 1 and v−1/2 < ε < 1 as per Eq. (43)], we
have � < vlB/4πL. For v � 50 for aqueous electrolytes, it
is still � � 1 for realistic EDLCs and correlations have little
relevance. Finally, in the partially screened depleted sector
[v > 1 and 1/ sinh(v/2) < ε < v−1/2], � may exceed unity
for some combinations of voltage, concentration, permittivity,
pore size and temperature, and the validity of mean field
should be checked on a case-by-case basis computing �

through Eq. (69). For example, a 5-mM 1:1 aqueous elec-
trolyte in a 3-mm-wide EDLC (experimental parameters from
Ref. [54]) would result in � exceeding 4000. In contrast, a
1-µm cell in the same conditions would experience a fairly
weak coupling, with � close to 1.

C. Purely nonlinear regime

We now turn to the purely nonlinear regime, where deple-
tion is absent. This is described in Secs. III C, IV B, and V B,
represented in the central-bottom regions of Figs. 3 and 4 in
Ref. [26], and identified, in the fully symmetric case, by the
conditions v > 1 and ε < (20 sinh(v/2))−1 as per Eq. (37).
In this regime, the system (electrode and double-layer) is
electroneutral. While a theory of electrostatic coupling for
two-species double layers does not exist, for large voltages
counterions are expelled from the EDL, so that one can still
use � = 2π l2

Bq3�. Once equilibrium is reached, Eq. (33) for
the electrode charge gives

� = lB
Lε

sinh
(v

2

)
(70)

for monovalent ions. By Eq. (37) again, in this sector � �
lB

20Lε2 , with the equality holding only at the boundary with the
depleted region. Replacing for ε, this means

� � 4π

10
l2
BLn0 	 LX

3 nm
, (71)

where X is the numeric value of the molarity in moles per liter
and we assumed an aqueous solution at ambient temperature.
In practice, for nanopores with L ≈ 100 nm and concentra-
tions below 30 mM (i.e., X < 0.03), � stays below 1 in the
whole sector. While Eq. (71) sets an upper bound, � decreases
exponentially with decreasing v, rapidly moving away from
this bound as per Eq. (70). As a result, for v ∼ 1, our results
stay relevant even at substantially higher concentrations. For
the millimeter-scale EDLCs from Ref. [54], at concentrations
between 5 and 400 mM and applied voltages between 0.05
and 0.6 V, Eq. (70) yields a � ranging from 0.08 to 230,
corresponding to a very weak to moderately strong coupling.
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D. Early-time behavior (t → 0)

Even when mean field is in principle bound to fail, it should
still capture the early response, at least for initial concentra-
tions low enough that correlations can be neglected at small
times. At t = 0 it is a = n−1/3

0 , which translates to

�bulk = (
lBn1/3

0

)2 � 1. (72)

This makes our analysis valid at least for short times for any
electrolyte concentrations of order 1 M or below. In cells from
Ref. [54], the early-time electrostatic coupling is completely
negligible, with � between 0.01 and 0.2.

E. Final comments

Overall, while in many regions of parameter space the
mean-field assumption strictly holds, it is in general not pos-
sible to determine regions in the (v, ε) diagram where mean
field surely fails, so that the value of the electrostatic coupling
parameter � should be checked case by case. This is because
electrostatic correlations can introduce new length scales that
make it impossible to reduce the � � 1 condition to a simple
condition on v and ε, with � becoming in general a different
function of the system size, ion concentration, voltage, solvent
permittivity, and temperature. We also note that Eqs. (3) for
the ion dynamics neglect the coupling with the solvent, not
only in terms of electrokinetic effects (see, e.g., Refs. [16,55])
but also Maxwell-Stefan fluxes which may contribute as the
salt concentration increases (see, e.g., Ref. [56]).

Finally, in the present work we have assumed that there
are no electrochemical reactions (in particular involving the
solvent) during the whole charging process. Considering the
most used media, the electrochemical window of water is
v 	 50, that of organic solvents v 	 60, while that of ionic
liquids at most v 	 120 [57]. Our numerical results beyond
these limits have the purpose of highlighting the dominant
process, which is in general more evident far away from the
transitions with other regimes.

VII. CONCLUSION

Despite its applications in electrochemistry, the relaxation
to equilibrium of EDLCs has been somewhat elusive, in par-
ticular for the most common case of electrolytes with different
valences and/or diffusivities. This work, together with Ref.
[26], tries to fill this gap by giving a new perspective on
existing results for the linear fully symmetric case and by sub-
sequently addressing the asymmetric cases and the nonlinear
regimes. We characterize the relaxation behavior focusing on
the dominant timescales, which are usually the slowest ones.
We define different regimes in the parameter space spanned
by applied voltage and ion concentration, providing analytical
boundaries between regimes whenever possible. For low ion
concentrations, the behaviors of positive and negative ions
can be mutually decoupled, with a relaxation that is diffusive
(exponential in time) in the small-voltage regime and drag-
dominated (linear in time) in the large-voltage one. Beyond
this low concentration limit, the picture is different. At asymp-
totically small voltage, the relaxation is faster than diffusion,
yet followed by a slower diffusion process of neutral mass in

the case of asymmetric diffusivities. As voltage increases, the
relaxation time increases exponentially due to nonlinearity,
until the potential difference is strong enough to deplete ions
from the bulk. Then relaxation gradually goes from exponen-
tial to linear in time, through a regime where the electric field
across the bulk is highly varying. Last, if the electrode charge
is much larger than the charge that the confined electrolyte can
possibly neutralize, then the picture from low salt concentra-
tion is recovered, where ions are dragged at constant velocity
to the electrodes.

The results presented here rely on the validity of the
mean-field approximation. We discussed in Sec. VI how ex-
ceedingly large ion concentrations, caused either by too-large
initial concentrations or applied voltages, might bring about
effects beyond mean field that can at least partially invali-
date our results, in particular in the partially screened fully
depleted regime. The significance of electrostatic correlations
[48,58–60], but also of ion pair formation [61] and finite-size
effects [18,62–67], may depend on the specific kind of ions
used, the permittivity of the medium [50,68], the pore size
[65,69], the temperature, and the nature of the electrode.

Our analysis contributes to the understanding of electro-
chemical devices and of confined charged materials, providing
a clear mapping between any point in parameter space
and mean-field relaxation times. This facilitates compari-
son among theories that include ion specificity, finite ion
sizes, ionic correlations, hydrodynamics, or geometric effects
[17–19,66,70,71]. Finally, our work paves the way to the
design of optimization procedures for the charging of EDLCs
[21–23], with promising applications to energy production
and recovery.
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APPENDIX: NUMERICAL METHODS

The Poisson-Nernst-Planck equations are solved numeri-
cally using a flux-conservative finite-difference method. We
discretize space into nodes, positioned at zk+ 1

2
for k =

0, . . . , N − 1, and edges, located at zk for k = 0, . . . , N . If
the spacing between nodes and between edges is constant,
then we have zk+ 1

2
= −L + (k + 1

2 )
z and zk = −L + k
z,
with 
z = 2L/N . The extension to a nonlinear spacing is
straightforward and useful. For simplicity, we will describe
the algorithm assuming constant spacing.

Ion densities n± and potential φ are defined on nodes zk+ 1
2
,

while electric field and ionic currents are defined on edges
zk; this reduces the error associated with numerical derivation
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or integration. Densities are initially set to their t = 0 value,
n±(z, 0) = n0

±, for all nodes. Then the density and potential
profiles are evolved in time in steps of 
t . More precisely, at
every step i:

(1) The ionic contribution to the electric field is computed
via Gauss’ theorem, by numerically integrating the following
charge density:

ρ
(
zk+ 1

2
, i 
t

) = q̄−n−
(
zk+ 1

2
, i 
t

) + q̄+n+
(
zk+ 1

2
, i 
t

)
.

(2) The ionic contribution to the potential is computed by
numerically integrating the ionic contribution of the electric
field.

(3) The electrodes’ (constant) contribution to the electric
field is computed by imposing that the overall potential differ-
ence across the capacitor (ions’ and electrodes’ contributions)
be 2V (i 
t ) = 2V0 for i > 0. This corresponds to computing
the surface charge density σ of the electrodes at time i 
t ,
which is proportional to the electrodes’ electric field through
the dielectric permittivity.

(4) The overall electric field (ions’ and electrodes’ con-
tributions) determines the ionic currents through the discrete
analogous of Eq. (1).

(5) Ion densities at time (i + 1)
t are computed through
the discrete analogous of Eq. (2), starting from the just deter-
mined currents at time i 
t .

Iteration stops when the prescribed final time is reached.
The algorithm is flux conservative [72] because it con-

serves the numerical integral of the densities for both ionic
species, i.e., the total number of ions, up to machine precision.
This is a consequence of the fact that density updates are
computed by the finite-difference equivalent of Eq. (2). At any
time, the total number of ions is indeed

∑
k

n±
(
zk+ 1

2
, t + 
t

)

z

=
∑

k

(
n±

(
zk+ 1

2
, t

) + 
t
j±(zk, t ) − j±(zk+1, t )


z

)

z

=
(∑

k

n±
(
zk+ 1

2
, t

)

z

)
+ 
t ( j±(z0, t ) − j±(zN , t ))

=
∑

k

n±
(
zk+ 1

2
, t

)

z. (A1)

The last equality follows from the zero-current condition on
the electrodes, placed at z0 = −L and zN = +L. This prop-
erty is exact for constant spacing 
z, as shown, but also for
irregular spacings, provided that 
z in Eq. (A1) is replaced
everywhere by (
z)k+ 1

2
= zk+1 − zk . The usage of irregular

spacings, with nodes and edges more dense close to the walls
and less dense in the bulk, is essential to speed up the calcu-
lation when L is orders of magnitude larger than the thickness
of the double layer and it also favors stability in the nonlinear
regime, as mentioned below.

A necessary condition for the stability of the algorithm is
that the time step 
t verify the Courant-Friedrichs-Lewy con-
dition [72], requiring that 
t < 
z2/ maxα{Dα}. Otherwise
said, assuming purely diffusive motion, the typical distance
traveled by the faster species in a time 
t must be smaller than
the lattice spacing. For the numerical calculations reported in
the paper, the Courant factor 
t/(
z2/ maxα{Dα}) is between
0.05 and 0.9.

Last, it is necessary to have a sufficient number of nodes
inside the double layer, for the results to be accurate and sta-
ble. This is particularly important when nonlinear effects set
in, as densities and potential curves become much steeper in
the double layer. For this reason, irregular node spacing is fun-
damental and was chosen in such a way that the distribution of
nodes was linear in the bulk region and became exponentially
dense closer to the electrodes. In addition, nonlinear effects
favor electromigration with respect to diffusion and can elicit
a rather violent response to the perturbation. This makes the
Courant condition insufficient at strong voltages, calling for a
further reduction of the time step.

In contrast to canonical simulations, the results for grand-
canonical systems (shown in Fig. 7) are obtained by solving
numerically the nonlinear Poisson-Boltzmann equation de-
scribing the final equilibrium state. In that case the Debye
length sets the salt concentration in the reservoir instead
of that in the system. In practice, we solve the Poisson-
Boltzmann equation by an iterative procedure.
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