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Let 1,k, ¢ be integers such that 0 < ¢ < (]f) Given a large r-uniform hypergraph G, we consider the

fraction of k-vertex subsets that span exactly ¢ edges. If ¢ is 0 or (E), this fraction can be exactly 1 (by
taking G to be empty or complete), but for all other values of ¢, one might suspect that this fraction is
always significantly smaller than 1.

In this paper we prove an essentially optimal result along these lines: if ¢ is not 0 or (’f), then this
fraction is at most (1/e) + ¢, assuming k is sufficiently large in terms of r and ¢ > 0, and G is sufficiently
large in terms of k. Previously, this was only known for a very limited range of values of 1, k, £ (due to
Kwan-Sudakov-Tran, Fox-Sauermann, and Martinsson-Mousset-Noever-Truji¢). Our result answers a
question of Alon-Hefetz-Krivelevich-Tyomkyn, who suggested this as a hypergraph generalization of
their edge-statistics conjecture. We also prove a much stronger bound when ¢ is far from 0 and (E)

1 Introduction

Given a k-vertex graph H, what is the maximum possible number of k-vertex subsets of an n-vertex
graph that induce a copy of H? Denote this number by N(n, H), so we have 0 < N(n,H) < (). A simple
averaging argument shows that N(n, H)/(}) is nonincreasing in n (for n > k), so we can define

N, H)
()

This quantity is called the inducibility or the maximum induced density of H. It was first considered in 1975
by Pippenger and Golumbic [19] and has been studied intensively in the intervening decades.

In general, it is very difficult to determine ind(H), even for small graphs H (e.g., the inducibility of the
4-vertex path is still unknown). However, we do know the minimum of ind(H), among all k-vertex graphs
H (provided k is sufficiently large): indeed, Pippenger and Golumbic [19] showed that if H has k vertices,
then

ind(H) = lim (1.1)

I
ind(H) > k’fi
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anditis known (see [2, 10]) thatif k = 5 or if k is sufficiently large, there is a choice of H that attains this
bound.

What about the maximum value of ind(H)? It is easy to see that ind(H) = 1 when H is a complete
or empty graph; if we exclude these “trivial” examples then we arrive at the so-called large inducibility
conjecture of Alon, Hefetz, Krivelevich, and Tyomkyn [1, Conjecture 1.2]. Namely, they identified several
(nontrivial) infinite classes of graphs H with ind(H) > 1/e, and conjectured that the maximum of ind(H)
over all nontrivial k-vertex graphs H tends to 1/e as k — oo.

Alon, Hefetz, Krivelevich, and Tyomkyn also made a second much stronger conjecture called the edge-
statistics conjecture [1, Conjecture 1.1], concerning a much looser variant of graph inducibility. Specifically,
for 0 < ¢ < (%), let Na(n, k, £) be the maximum possible number of k-vertex subsets of an n-vertex graph
that induce exactly ¢ edges, and let

No(n, k, €)

V.
For each value of k, say that 0 and (E) are the “trivial” values of ¢; the edge-statistics conjecture says that
the maximum of ind,(k, ¢) over all nontrivial ¢ tends to 1/e as k — oo. This conjecture has significance
beyond its consequences for graph inducibility: it can be interpreted as giving a limit on “how uniform”
a graph can be, with respect to statistics of edges in small subsets.

It is equally natural to consider the large inducibility and edge-statistics conjectures for hypergraphs;
these generalizations were actually explicitly suggested in the same paper of Alon, Hefetz, Krivelevich,
and Tyomkyn, though they wrote “needless to say that we expect these questions to be difficult”. To
be precise, for an r-uniform hypergraph H and for 0 < ¢ < (’f) we define N(n, H) and N, (k, £) to be the
maximum possible numbers of k-vertex subsets in an n-vertex r-uniform hypergraph, which induce a
copy of H and which induce exactly ¢ edges, respectively. Then we can define ind(H) and ind, (k, ¢) as in
(1.1) and (1.3), and use these notions to generalize the large inducibility and edge-statistics conjectures
in the obvious ways: namely, the maximum value of ind(H), over all k-vertex r-uniform hypergraphs
that are neither empty nor complete, and the maximum value of ind,(k, £) over all 0 < ¢ < (’f) both tend
to 1/e as k — oo (holding r fixed).

In a combination of papers by Kwan, Sudakov, and Tran [14], Fox and Sauermann [9], and Martinsson,
Mousset, Noever, and Truji¢ [17], the edge-statistics conjecture for graphs (i.e., r = 2), and therefore the
large inducibility conjecture for graphs have been resolved. These papers also provide evidence for the
hypergraph edge-statistics conjecture, establishing it in the special cases where ¢ = o(k) and wherer = 3
and ¢ = Q(k?). Our first main theorem completely resolves the hypergraph edge statistics conjecture,
and therefore the hypergraph large inducibility conjecture.

ind,(k, ¢) = Y111_>n;1c (1.3)

Theorem 1.1. Fix any r € Nand ¢ > 0. Suppose k is sufficiently large in terms of 1, . If £ ¢ {0, (’f)}
then

. 1
ind,(k, ¢) < 2 +e&.
Consequently, for any k-vertex r-uniform hypergraph H that is neither empty nor complete,

ind(H) < % +&.

Alon, Hefetz, Krivelevich, and Tyomkyn were also interested in the value of inds(k, ¢) when ¢ is far
from 0 and (5) They made several conjectures in this direction [1, Conjecture 6.1 and 6.2], which have
since been resolved by Kwan, Sudakov, and Tran [14] and Kwan and Sauermann [13]. We also prove a
theorem along these lines for hypergraphs.

Theorem 1.2. Fix any r € Nand ¢ > 0. Ifa('f) << (- (x)(lf) for some a € (0,1/2], and if ak is
sufficiently large in terms of r, ¢, then

. 1
ind,(k, ¢) < W.
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We note that Kwan, Sudakov, and Tran [14, Theorem 1.3] previously proved the r = 3 case of
Theorem 1.2 in the “extremely dense” regime where « is a constant that may not vary with k (using
the induced hypergraph removal lemma).

Theorems 1.1 and 1.2 are both essentially optimal, as follows. Write N(G, k, ¢) for the number of k-
vertex subsets with ¢ edges, in an r-uniform hypergraph G.

e It was observed by Fox and Sauermann [9] that for every r the constant “1/e” in Theorem 1.1 cannot
be improved. To briefly explain why: for any 1 < s <, let F be a random s-uniform hypergraph on n
vertices, in which every possible edge is present with probability 1/(};) independently. Then, let G be
the r-uniform hypergraph on the same vertex set whose edges are the r-sets which are supersets
of some edge of F. For £ = (’f::) it is easy to establish the convergence in probability

NGO x (1 - 1)(5)1 1 (1.4)
(&) ) ¢

as n — oo, which implies that ind, (k, ¢) > 1/e.

¢ It is easy to see that the exponent “1/2" in Theorem 1.2 cannot be improved. Indeed, consider any
a € (0,1/2) and k € N such that «k is an integer, and consider any n divisible by k. Let G be an
n-vertex r-uniform hypergraph with a distinguished set S of an vertices, whose edges are the r-sets
that intersect S in exactly one vertex. Then, with ¢ = ak(k:)‘lk) (so ¢ has order of magnitude «(*)), one
can compute

lim w = (]Q )a”k 1— )0k > ¢ (1.5)

n=oo (g) ak = (k)12

for some absolute constant ¢ > 0, which implies that ind, (k, £) > c(ak)~"/2.

The estimates in (1.4) and (1.5) can be confirmed via direct computation, but from a more conceptual
point of view, they can also be intuitively understood in terms of two different approximations for
the binomial distribution, which lead to two different anticoncentration bounds (i.e., upper bounds on
point probabilities). On the one hand, a binomial distribution with a low success probability can be
closely approximated by a Poisson distribution. The bound in (1.4) is related to the fact that a Poisson
random variable with parameter 1 is equal to 1 with probability 1/e, and this is the maximum possible
probability for any Poisson random variable to take any particular nonzero value. On the other hand, a
binomial distribution with k trials and success probability « € (0, 1/2) can be approximated by a Gaussian
distribution with standard deviation about v/«k. The point probabilities of such a binomial distribution
are at most about 1/+/ak; this corresponds to the fact that the corresponding Gaussian distribution has
density at most about 1/vak.

The proofs of Theorems 1.1 and 1.2 both crucially depend on anticoncentration inequalities that
vastly generalize the above two observations about binomial distributions. Specifically, we need two
general anticoncentration inequalities for low-degree polynomials of independent random variables: (a
strengthened form of) a “Poisson-type” anticoncentration inequality due to Fox, Kwan and Sauermann
[8], and bounds on the so-called polynomial Littlewood-Offord problem due to Meka, Nguyen, and Vu [18].

Recall that ind,(k,¢) can be defined in terms of quantities of the form N(G,k, ¢), which can be
understood as the probability that a random k-vertex subset of G has exactly ¢ edges. It is not hard to
interpret the number of edges in a random k-vertex subset of G as a polynomial evaluated at a random
vector (namely, at a random point on a “slice of the Boolean hypercube”). Unfortunately, since the entries
of this random vector are not independent, one cannot directly apply the aforementioned polynomial
anticoncentration inequalities (in fact, it is easy to see that the conclusions of these inequalities are
in general false on a slice of the Boolean hypercube). The key new contributions in this paper are
several different ways to “transfer” polynomial anticoncentration inequalities to slices of the Boolean
hypercube. For the proof of Theorem 1.2, we generalize a coupling lemma due to Kwan, Sudakov, and
Tran [14], and combine it with a result of Bollobas and Scott [3] related to discrepancy of hypergraphs.
For the proof of Theorem 1.1, we additionally use a classical estimate on hypergeometric distributions
due to Ehm [6], which allows us to transfer Poisson-type anticoncentration inequalities to functions of
the slice that only depend on a few vertices. Then, we prove a delicate combinatorial lemma, which says
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that every hypergraph has a small vertex subset Y that “only sees large matchings”. We use our Poisson-
type anticoncentration inequality to understand “what happens inside Y”, and then after conditioning
on this information we apply polynomial Littlewood-Offord bounds (which are effective for hypergraphs
with large matchings).

1.1 Further directions
There is nearly unlimited potential to ask more precise questions about the quantities ind,(k, ¢). Most

« »

obviously, there is the question of removing the “¢” in the exponent of Theorem 1.2: in the setting of
Theorem 1.2 we conjecture that

. o
ind,(k, 0) < o7 (1.6)

for some constant C, depending only on r (this also appears as [14, Conjecture 5]). In the case r = 2, this
bound was recently proved by Kwan and Sauermann [13], via new progress on the so-called quadratic
Littlewood—Offord problem. Actually, our proof of Theorem 1.2 reduces the general-r case of (1.6) to a well-
known conjecture in Littlewood-Offord theory. We introduce the polynomial Littlewood-Offord problem
properly, and discuss these aspects further, in Section 2.

One could also ask about the “¢” in Theorem 1.1: for each r,k, what is the exact maximum value of
ind,(k, ¢), amongall ¢ ¢ {0, (’f)}? We wonder if the maximum is always attained at £ = 1. We remark that
the exact value of indy(k, 1), for all k, was recently found by Liu, Mubayi, and Reiher [16, Theorem 1.13]
(see also [11] for earlier work in the case k = 4).

It is also interesting to consider the maximum possible value of ind,(k,¢) among all pairs (k,¢)
satisfying ¢ ¢ {0, (f)} In the case r = 2, it was suggested by Alon, Hefetz, Krivelevich, and Tyomkyn
[1] that this maximum value might be ind, (3, 1) = 3/4.

Finally, it would be very interesting to investigate “stability” in the settings of Theorems 1.1 and 1.2.
Although the constant “1/e” in Theorem 1.1 is best-possible in general, we conjecture that it can be
improved when min, (]f) — ¢) is not of the form (]fjss) (a related theorem was very recently proved by
Ueltzen [22] in the setting of graph inducibility). Similarly, although the exponent “1/2” in Theorem 1.2
is best-possible in general, we conjecture that there is §, > 0 such that ind, (k, £) < k=12~ for “generic” ¢
(i.e., fora 1—o(1) fraction of ¢ in the range 0 < ¢ < (¥), where asymptotics are as k — oo, holding  fixed).
This seems to be related to a conjecture of Costello [4, Conjecture 3] on “stability” for the polynomial
Littlewood-Offord problem.

1.2 Notation

We use standard graph theory notation throughout. For a hypergraph G, we write e(G) for the number
of edges in G, and for a vertex subset U, we write G[U] to denote the subgraph of G induced by U.

We also use asymptotic notation throughout. For functions f = f(n) and g = g(n), we write f = O(g)
or f < g to mean that there is a constant C such that |f| < C|g|, f = Q(g) or f 2 g to mean that there is
a constant ¢ > 0 such that f(n) > c|g(n)| for sufficiently large n, and f = o(g) to mean thatf/g — 0 as
n — oo. Subscripts on asymptotic notation indicate quantities that should be treated as constants.

For parameters a, f1,..., Bg, We write @ < fi,..., 6, to mean “« is sufficiently small in terms of
B1,..., B¢ (e, it is shorthand for a statement of the form “a < f(81,...,8;)", for some function f that
we do not wish to specify explicitly). Similarly, we write « > g1,..., B; to mean “« is sufficiently large in
terms of B1,..., B4

For a positive integer n and an integer 0 < d < n, we write [n] = {1,...,n} and denote the set of all size-
d subsets of [n] by ([g]). For a real number x, the floor and ceiling functions are denoted [x] = max(i €
Z:1<x) and [x] = min@ € Z : 1 > x). We will, however, sometimes omit floor and ceiling symbols and
assume large numbers are integers, when divisibility considerations are not important. All logarithms
in this paper without an explicit base are to base e, and the natural numbers N do not include zero.

For a vector X € R", we write Xq,..., %, for its coordinates, and for W C [n], we write XV to denote
the monomial [];.y xi. For a multilinear polynomial P € R[x1,...,x,], we denote the coefficient of the
monomial X% by P(W).
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1.3 Organization of the paper

In Section 2, we introduce the polynomial Littlewood-Offord problem (on anticoncentration of polyno-
mials of independent random variables) and describe the best-known bounds for this problem. These
results will play a crucial role in the proofs of both Theorems 1.1 and 1.2, but in order to actually apply
them we need a general coupling lemma for polynomials “on a slice of the Boolean hypercube”, which
we present in Section 3. In Section 4 we prove Theorem 1.2, using the above tools and a result of Bollobas
and Scott [3].

Then, in the rest of the paper, we focus on Theorem 1.1. First, in Section 5 we apply the above tools in
a different way, to prove an anticoncentration bound for “sparse” polynomials with “large matchings”.
In Section 6, we state and prove our Poisson-type anticoncentration inequality. In Section 7, we show
how to use an estimate of Ehm [6] to compare certain functions “on a slice of the Boolean hypercube”
with corresponding functions of product distributions. Then, in Section 8, we prove a lemma showing
that every hypergraph has a small set of vertices that “only sees large matchings”. Finally, after some
technical variance estimates in Section 9, we prove Theorem 1.1 in Section 10.

2 The Polynomial Littlewood-Offord Problem

In this section we introduce the polynomial Littlewood—Offord problem, concerning anticoncentration of
polynomials of independent random variables. More specifically, let P € R[x4,...,X:] be a k-variable
polynomial and let &,..., & be i.i.d. Rademacher random variables (i.e., P[§ = —1] = P[§ = 1] = 1/2).
What upper bounds can be proved on the maximum point probability

supP[P(&, ..., &) = €],
LeR

in terms of simple combinatorial information about the polynomial P? The most well-known theorem
in this direction is due to Erdés [7]: improving a theorem of Littlewood and Offord [15], Erd6s proved
that if P is a linear form with at least m nonzero coefficients, then

(LmY;ZJ) < L
am. o~

ik

P[P(&1, ..., &) =1{] <

By letting P(x1,...,Xg) = X1+ +Xm and £ = 2 [m/2] —m, we see that this bound is exactly best possible.

For higher-degree polynomials, one cannot hope for a comparable bound in terms of the number of
nonzero coefficients: indeed, the multilinear polynomial P(x4, ..., X) = (X1 + X2)(X3 + - - + X) has 2k — 4
nonzero coefficients, but we have P[P(&, ..., &) = 0] > P[x1 # X2] = 1/2. There are a number of different
ways that rule out this kind of degenerate situation; in this paper, we will parameterize P by the matching
number of a certain hypergraph associated with P.

Definition 2.1. For a multilinear polynomial P € R[x4,...,X¢] and a > 0, let Hf]d) (P) be the d-uniform
hypergraph on the vertex set [k] with an edge ([i]ed) whenever the coefficient of the monomial
x! has absolute value strictly greater than a.

Definition 2.2. A matching in a hypergraph H is a collection of edges that are pairwise vertex-
disjoint. Let v(H) be the maximum number of edges in a matching in H.

It was first proved by Razborov and Viola [20] (building on work of Rosiniski and Samorodnitsky [21]
and Costello, Tao and Vu [5]) that if v(H® (P)) > m, then

Sup P[P, ..., &) =€ Sgm™™@ (2.1)
LeR

for some ¢; > 0 depending only on d. That is to say, if P has many degree-d terms with nonzero
coefficients, featuring disjoint sets of variables, then P(&,..., &) is anticoncentrated.
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The bound in (2.1) has since been improved, but in general the best possible bound is still unknown.
To ensure that the results in this paper are compatible with potential future improvements, we define a
function to describe “the best possible bound for the polynomial Littlewood—Offord problem”, as follows:

Definition 2.3. Ford,m > 0, let

LO4(m) = sulka P[P(&1, ..., &) = ¢],
P,

where the supremum ranges over all £ € R, all k € N, and all multilinear polynomials
P € R[x1,...,xx] of degree at most d with u(Hgi)(P)) > m, and we take &,...,& to be iid.
Rademacher random variables.

By considering the multilinear polynomial obtained from (x; + - -- 4+ x,,)? by substituting x? =1 for
all i, it is easy to see that

LOg(m) 2 i
m

It is widely believed (a conjecture along these lines seems to have been first posed by Nguyen and Vu
[18, 20])) that the matching upper bound LO4(m) <4 1/4/m should also hold. In the case d = 1 thisis a
classical result of Littlewood-Offord and Erdés, and in the case d = 2 this was recently proved by Kwan
and Sauermann [13] (improving intermediate results by Costello [4]). For general d, the best available
bound is due to Meka, Nguyen, and Vu [18] (via a theorem of Kane [12]), as follows.

Theorem 2.4. For any d,m € N,

(logm)0:®

LOg(m) <4 NG

We remark that the “¢” in Theorem 1.2 is entirely due to the logarithmic factors in Theorem 2.4; if we
knew that LOg(m) <4 1/4/m, we would be able to obtain the optimal result (1.6). Also, we remark that
while the proof of Theorem 2.4 is a little involved, Razborov and Viola’s proof of the bound LOz(m) <4
m~¢ is very simple, and this weaker bound is enough for our proof of Theorem 1.1.

We will need a version of Theorem 2.4 that takes terms of all degrees into account (not just the
degree-d terms), as follows.

Corollary 2.5. Consider a multilinear polynomial P € R[xq, ..., x| of degree at most d > 0, and for
each f € {0,...,d} let by be an upper bound on the absolute values of all degree-f coefficients.
Suppose that for somef € {0, ...,d} and t € Nwe have “(Hf{(},o) > t,wherea(f,t) = tbf+1+t2bf+2+
...+ t4fp,. Then,

SupP[P(&1, ..., &) = £] Sa supLOs(Qa(D).
f=d

teR

Proof. We prove the desired statement by induction on d. The case d = 0 holds vacuously, since
vHQ @) < 1for any P, a.Fix d > 1 and suppose that the desired bound is true for smaller d. Fix a degree-d

multilinear polynomial P € R[x, ..., X¢], and suppose that for some f < d we have v(fof()m P)) > t.

We split into cases. First, suppose that u(Hgd’(P)) > t/(2d). In this case we have

SupP[P(é1, . .., &) = £] < LO4(t/(2d)),
LeR

as desired.
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Otherwise, we have v(Hgd’(P)) < t/(2d). This means that f < d — 1. Consider a maximum matching M
in Hgd)(P), and let I C [k] be the set of vertices in this matching, so |I| = d|M| < t/2. Let E[I] = (§)ie1, and
consider any outcome &[I] = (&) € {—1,1}". Let Pgp € R[x; 1 1 ¢ I] be the multilinear polynomial obtained
from P(x1, ..., x¢) by substituting x; = & for all i € I. Since M is a maximum matching, Pg; has degree
at most d — 1. Also, note that the multilinear degree-f coefficients in Pg, differ from the corresponding
coefficients in P by at most

I I I
(‘1|)bf+1 + (lz‘)bm +oot (d l_lf)bd <a(f,v —a(f,t/2),

so all the edges of the induced subgraph HL{},U@)[[H \ 1] are also edges of H;f(}yt/z)(Pgm), and therefore,

v(HYL o ) = t= 111 > /2.
The induction hypothesis then yields

supP[P(é1, ..., &) = £] < supsup P[Pg[q@i igh=¢ | E[I]} <a sup LOs(Qq(D)),
LeR 5[1] LeR f<d-1

as desired. |

3 Describing the Slice via a Product Measure

In this section, we record a general lemma describing polynomials of “slice” measures in terms of
polynomials of independent Rademacher random variables. This is necessary to apply the results
from Section 2 to study the parameters ind,(k, ¢), which can naturally be understood as being about
polynomials evaluated on a slice measure.

Specifically, for any hypergraph G on the vertex set [n], and any k-vertex subset U, we can express

eGUh= D 57,

WeE(G)

where E(G) is the set of edges of G, and ¢ is the vector in {0, 1}" with exactly k ones, defined by setting
o; = 1ifi € Uand oy = O otherwise. When U is a uniformly random k-vertex subset, the corresponding ¢ is
a uniformly random vector in {0, 1}" with exactly k ones (this is called a “slice of the Boolean hypercube”).

Definition 3.1. For an r-uniform hypergraph G on the vertex set [n], let A¢ € R[xq,..., x,] denote
the polynomial 3 ycxc, X In other words, the coefficient *c (W) of XW is 1 if W is an edge of G,
and 0 if W is not an edge of G.

Definition 3.2. Slice(n, k) denotes the subset of vectors in {0, 1}" with exactly k different 1-entries.
We write ¢ ~ Slice(n, k) to mean that the random vector ¢ is uniformly distributed on Slice(n, k).

Now, note that we can obtain Slice(n, k) (for n > 2k) by first randomly choosing k pairs of disjoint
vertices, then flipping an unbiased coin for each pair to decide which of the pair to actually take (as a

1-entry). We introduce notation for this, as follows:

Definition 3.3. Consider k,n € N. Let
U= (vi(=1),v1(D), ..., Ue(=1), (D))

be a uniformly random sequence of 2k distinct elements of [n], and let V; be the set of elements
in U. Independently from ¥, let § = (&1,...,&) be a sequence of k i.i.d. Rademacher random
variables. Let Usz = {vi(€n), - .-, Uk(&)}, 80 Uy is a uniformly random subset of k elements of [n].
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8 | V.Jainetal.

Define Frﬁé =(o1,..., on) € {0, 1}" by

1 ifve Usz,
' 0 otherwise,
SO Frﬁé ~ Slice(n, k).

The setup in Definition 3.3 allows us to interpret a polynomial on the slice as a polynomial in
Rademacher random variables, as follows (a similar slightly weaker result appears as [14, Lemma 2.8]).

Lemma 3.4. Recall the setup in Definition 3.3 and consider an n-variable multilinear polynomial

A= ZWQ[HJX(W)XW € R[xi,...,x%n]. Then, )L(c?ﬁyg) is a multilinear polynomial of g with
coefficients that depend on U. Specifically, we have

MGz = D As(DE',

Ic[k]
for coefficients Aj(I) given explicitly by

As() = Z (_1)\Wﬂ(Uz(*1)1i61)\X(W)2*\WI’
Wew; ()

where Wj(]) is the collection of all subsets W € Vj satisfying |[W N {vj(—1),vi(1)}| = 1 for every
iel

Remark 3.5. In particular, if » has degree at most d and all coefficients of A have absolute value
at most q, then for any I € [k], we have

lA;(D] < q- WD N{W C [n] : W] < d}| < q2"n?-11,

Additionally, if |I| > d, then W;(I) N {W C [n] : [W| < d} = ¢, so that A;(I) = 0.
Proof. For convenience of notation, write 6 = G;z. Then, oy,1) = (1 + §)/2 and ay,1) = (1 — &)/2 for

all i € [k] and o, = O for all other w. Let W; denote the set of all subsets W € V3, which satisfy
[W N {vi(=1), v;(1)}| <1 for each i. Note that if W ¢ Wj, then ¢V = 0. Therefore,

e = > WiV = > awe"

wcn] Wewsy

= > w2 I a+& [ a-#
Wewy Ui (Hew j:u,(—‘l)eW

— z Z (_1)|Wﬂ(U,(—1):1‘€IH/):(W)2—\W\ é—'l — Al‘;(l)gl
I€[k] \Wew; () Ic[k]

4 A Strong Bound for Edge-Statistics “In the Bulk”

In this section, we prove Theorem 1.2. It will be a simple consequence of the following anticoncentration
inequality for edge-statistics of dense hypergraphs.
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The Edge-Statistics Conjecture for Hypergraphs | 9

Lemma 4.1. Let n = 2k, let B € (0,1/2], and let G be an n-vertex r-uniform hypergraph with
B(7) <eG) < (1 - p)(}). Then, for U a uniformly random subset of k vertices of G, we have

sup P[e(G[U]) = £] <, sup LOs(22:(8n)).
LeR f=r

Before proving Lemma 4.1, we see how to deduce Theorem 1.2.

Proof of Theorem 1.2 given Lemma 4.1. Recall that we are to prove that ind,(k, £) < (¢k)~¥?*¢, where
ind,(k, £) = lim,_ o N, (n, k, E)/(g) and N;(n, k, £) is the maximum possible number of k-vertex subsets of
an n-vertex graph that induce exactly ¢ edges. Let n = 2k, let G be an n-vertex graph, and let U be a
uniformly random subset of k vertices of G. Due to the fact that Ny(n, k,ﬁ)/(Z) is nonincreasing in n, it
suffices to prove that

1

Ple(G[U]) = ¢] < @R

when «k is sufficiently large in terms of ¢, .

We may assume that G has at least « (%) edges and at least «(¥) non-edges; otherwise, it is impossible
to have e(G[U]) = ¢. Recalling that n = 2k (so (¥) > (7)), this means that the assumption in Lemma 4.1 is
satisfied for some B 2 «, and Lemma 4.1 implies that

Ple(G[U]) = €] <r sup LOs (2 (k).

The desired result then follows from Theorem 2.4. [ |

We need a few key ingredients to prove Lemma 4.1. First, we need a lemma essentially due to Bollobas
and Scott [3].

Definition 4.2. Consider an r-uniform hypergraph G on the vertex set [n]. For W ([f]), letG(W) =1
when W is an edge and let G(W) = 0 when W is not an edge. For s € [r], define

Qs(G) = Z Z(fl)IWﬂDﬁ(*l) ,,,,, Xs(*l))I’G\(W) ,
W

X

where the first sum is over sequences X = (x1(—1), x1(1), ..., Xs(—1), xs(1)) of 2s distinct vertices,
and the second sum is over all W e ([’Y']) that satisfy |[W N {xi(=1), x;(1)}| = 1 for every i e [s].

Lemma 4.3. Consider r, n satisfyingn > 3r, and consider an r-uniform hypergraph G on the vertex
set [n], satisfying B(7) < e(G) < (1 — B)(}). Then, for some s € [r], we have

Q(G) Zr B0

Proof. Let p := e(G)/(!) denote the density of G. Since g(7) < e(G) < (1 - B)(}), wehave g <p < 1- 8.
Define the function f : (") — R by

1- if W is an edge of G,
fan={""" &
B -p if W is not an edge of G.

Then, we have

Iflla = (e(G) -1-p+ ((y:) - E(G)) 'p) =2p(1—-p)- (]:) >2(1-p)- (:1) 2 B
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10 | V.Jainetal.

Let (n)ys denote the falling factorial n(n—1) ... (n—2s+1) (i.e., the number of ways to choose a sequence
of 2s different vertices); in [3], Bollob4s and Scott define (actually, they first define the W-vector in a
slightly different way, and prove that the two definitions are equivalent in [3, Lemma 8]) the “W-vector”
of f to be the vector (qo(f), ..., ar(f)) given by

(0 =2

where the first sum is over sequences x = (x1(—1), x1(1), ..., xs(=1), xs(1)) of 2s distinct vertices, and the
second sum is over all W e ([V;]) that satisfy [W N {x;(—1), x;(1)}| = 1 for every i € [s]. Note that gs(f) is not
affected by adding a constant function to f, so

9 =

f M2 "0 6 < 0uG
as(f) = e ( S) G) =r )

and, in particular, qo(f) =
Then, [3, Lemma 9] says that

qO(f) +oot QY(f) zv n7r||f“1;
the desired result follows. [ |

Next, the following technical lemma shows that random variables of a certain type are unlikely to
be very small (this lemma is stated in slightly more general form than we need, as it will also be applied
again later in the paper). It is proved by a simple application of Chebyshev’s inequality. Given f € N
and a set V, an ordered f-subset of V is a sequence of f distinct elements of V. We say that two ordered
f-subsets X, Y of V are disjoint if there is no element of V that appears in both X and Y.

Lemma 4.4. Consider f,m € Nand a set V, with 2f < mf < |V|.Foreachi € [m], let 7 be a collection

of atleast y |V ordered f-subsets of V, and let X, ... Xy be uniformly random pairwise disjoint
ordered f-subsets of V. Let N be the number of i such that X: € Fi. Then,

1
P[N 2] <p —.
[N <ym/2] om

Proof. Let 1; be the indicator random variable for the event that 5(1- € Fi, and write n = |V|. By linearity
of expectation,

m m ‘Fl m |f
EIN] = ; ':Zn(nfl) ff+1)z§nf =rm

1=

Then, for all i,j € [m] with i # j, we have

Covl1, 1] < |Fil - 1F51 7( | il )( |51 )
v nn-1...n—=2f+1) nn-1..m—f+H)\nn-1...n—f+1)

< VLA L
~W W

Var|N] < ZIE[]l]—i—ZCovll 1]
i%

IFI 1 7 E[N2
SF2F e (Z ) =EINJ+— .
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By Chebyshev’s inequality, we deduce the desired result

PN < ym/2] < B[N < E[N]/2] < % < ﬁ + %
|

Given the conclusion of Lemma 4.3, we can apply Lemma 4.4 in the setting of Lemma 3.4, as follows.

Lemma 4.5. Consider r,k € N satisfying k > r, and let n = 2k. Consider an r-uniform hypergraph
G on the vertex set [n], and its corresponding polynomial Ag. Suppose Qs(G) > gn™** for some
B > 0and s € [r]. Recall the coefficients As(I) from Lemma 3.4 (defined in terms of a random
sequence 1).

Then, except with probability at most O,(1/(Bn)) over the randomness of U, the following holds:
there exist t 2, gn disjoint s-sets Iy, ..., I: € [k] such that |A;(I)| 2 gn"~° for each .

Proof. For a sequence X = (x1(—1),x1(1),...,Xs(—=1),xs(1)) of 2s distinct indices, let

where the sum is over all W e ([';]) that satisfy |W N {xij(—1),xi(1)}| = 1 for every i € [s]. By definition, we
have Qs(G) = X ; a(X). Note that we always have a(X) < 2n'~5, so it must be the case that a(%x) =5 pn'™*
for at least Q(8n%) different X. Denote the set of all such X by F.

Now, let m = Lk/sJ 25 n. Recall the random sequence U = (U1(=1),v1(1),...,Ue(=1), Ux(1)) from
Definition 3.3, and for each j € [m], let

[={(s(-D+1s-D+2,...,5},

Xj = (Vsg-1y+1(—=1D), Usg—n41(1), ..., Usj(—=1), U5 (1)).

So, in the language of Lemma 4.4, 5(1, .. ,Xm are uniformly random disjoint ordered 2s-subsets of [n].
If 5(]- e F, then |A;()| = 2*’a(5(j) 2, Bn'7s. So, the desired result follows from Lemma 4.4, with f = 2s
andy 2, g and Fj = F for allj € [m]. |

Now, it is straightforward to deduce Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.3 and Lemma 4.5, there is s € [r] and t =, gn such that, except with
probability O,(1/(8n) < sups_q LOs(Bn) over the randomness of U, the following holds: there are at least
t disjoint s-sets I, ..., It € [k] such that |A5()| > r2'tn=s~1 for each j. Condition on such an outcome
of U.

Recalling Remark 3.5, we have |A; (D] < 2'n" =: bs foralll e (“;]). So, in the notation of Corollary 2.5,
we have

[As ()] > 12"t 7t > ags, )

for each j e [t]. We can therefore apply Corollary 2.5 using the randomness of & to obtain the desired
result. ]

5 A Littlewood-Offord-Type Inequality for “Sparse” Polynomials on
the Slice

For the proof of Theorem 1.1, we will need one further application of polynomial Littlewood-Offord
bounds. Here we consider a degree-d polynomial A, which is “sparse” (almost all its top-degree
coefficients are zero), and give a bound in terms of the matching number of the hypergraph of nonzero
degree-d coefficients of A. This matching number is a priori quite different to the matching number of
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12 | V.Jainetal.

the polynomial obtained from Lemma 3.4; we take advantage of our sparseness assumption to relate
the two (this is actually a somewhat delicate matter, and requires a careful minimality argument).
Recall that the notation « > g1, ..., B3 means “u is sufficiently large in terms of g1,..., 8"

Lemma 5.1. For d, q € N, there is § > 0 such that the following holds. Consider R, k,m,n € N with
2k <n < Rk and let & € R[xy,...,%,] be an n-variable multilinear polynomial with degree at
most d, whose coefficients all lie in {0, ..., q}. Suppose v(H(()d)(A)) > m and suppose that A has at
most snd nonzero degree-d terms. Then, for ¢ ~ Slice(n, k), provided that k > d, q, R, we have

N 1
supP[A() = £] <ar SUPLOf(Qra,q(M) Sdrg —7-
LeR <d m

For our proof of Lemma 5.1, we use the following simple lemma, showing thatif a graph G has a large
matching, then a random subset of its vertices also typically has a large matching.

Lemma 5.2. Let G be a d-uniform hypergraph whose number of vertices is between 2k and Rk and
satisfies v(G) > m. Let U be a uniformly random k-vertex subset, for some k > 2d. Then, except
with probability Ogr(1/m), we have v(G[U]) Z4r M.

Proof. Letnbe the number of vertices in G. First, note that we have the trivial upper bound m < n/d <g k.
By shrinking m if necessary, note that we can assume k/m >» g, §,d, R (we would only shrink m to a value
of the form Qg 4,4(m), so the form of the final bound would be unchanged).

LetEq,...,Eny be the edges of a matching in G. For each i € [m], let 1; be the indicator random variable
for the event E; C U,and let N = 1, + - - - + 1,,,. Then, with similar calculations as in Lemma 4.4 we have
(actually, with slightly more careful calculations one can see that Cov[1;, 1;] < 0; this is essentially done
in the proof of Proposition 9.1)

()

n—d n—2d n—dy \ 2
E[]ll] — (k—d) Zd,R 1, COV[ﬂi, ]1}:[ — (k—zd) _ ((kd)) Sd,R 1/]Q,

and therefore
E[N] 24z m, Var[N] <gz m+m?/k <gm
(using that m < (Rk)/d <g k). The desired result follow from Chebyshev’s inequality. ]
Now, we prove Lemma 5.1.

Proof of Lemma 5.1. Recall the coefficients Aj(I) from Lemma 3.4, defined in terms of a random
sequence U = (U1(=1),v1(1),...,Ux(=1),U(1)). Let G(1) = (U1(1),...,Ur(1)). By Lemma 5.2, over the
randomness of (1), except with probability Ogr(1/m) <ar LOa(m), the subgraph of Hf)d)(k) induced by
the vertices of (1) has a matching of size m" = Qg 4(m). Condition on such an outcome of (1), and let
E1,...,Ew be the edges of this matching. Given such a choice of U(1), condition on an arbitrary outcome
of V; such that V3 D {u1(1),...,ur(1)}. Note that there is still some randomness remaining in v: namely,
v1(=1),...,Ur(=1) is a uniformly random ordering of the vertices in U(—1) := {v1(=1),..., U(=D)}.

For a set W < V3, let B(W) be the number of nonzero coefficients A(Z) of A, among all size-d sets Z
satisfying W € Z € V3. By assumption,

B@#) < én’. (5.1)

Consider M > 8,4, d. For all j € [m'], we have B(E)) = 1 = (n/M)*~5l, so we may define F; C Ej to be a
minimal subset of E; satisfying B(F;) > (n/M)4~"!. Recalling (5.1), and assuming § < M~¢, we have F # 0.
Assume without loss of generality that all the sets F, ..., Fyq have the same size d’ € [d].

Next, foreachj e [m'/d],let]; = {i: vi(1) € F;} € [k]. For each j e [m’/d], we have |[j| = |F;| = d, since F; €
Ej € {v1(D), ..., uk(1)}. Define the sequence X; = (ui(=1) : i € [;) and its underlying set X; = {v;(-=1) : 1 € [;}.
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The Edge-Statistics Conjecture for Hypergraphs | 13

Then, note that each coefficient A;(I;) depends only on the randomness of }?}-. Recall that since we have
conditioned on a choice of the set U(—1), the number of possibilities for 5(}» iskk—=1)---(k—d' +1) <k?.

Claim. Let M > q,d,R and & <« q,M,R. For each j e [m’/d], let F; be the collection of all possible
outcomes of 5(j that satisfy Ag([j) > an®?. Then, |F| > k7.

Proof of claim. Consider an arbitraryj e [m’/d] and lete = 1/M%-% so that B(Fj) > en?~%". By the definition
of F;, for every proper subset Y C Fj, we have B(Y) < (n/M)*¥! < (e/Myn®~I"l. The sum of B(T) over all
size-d’ sets T 2 Y satisfying T\ Y € U(—1) is therefore at most

d—1v| e aafk—1Yl
<, £
(d’ - m)Bm SR 3" (d’ - |Y|)‘

That is to say, if T is uniformly random subject to the constraints T 2 Yand T\Y € U(-1), then E[B(T)] <ar
(e/M)n®~? so by Markov's inequality, provided M is sufficiently large in terms of d, R, we have

P[B(T) > (¢/M*)nt=4] < M~1/3, (5.2)

Now, say that a set X € U(—1) is good if B(T) < (¢/MY?)n®=4 for every size-d’ subset T € F; U X containing
at least one vertex of X. If X; is good, then

Ag(I) = D AWM= X w2~

W2F W2E;

o 2k—1 »
E(B(Fi)fd(d,d/,&)'z 7q~mjng(T)
> ent=d _ (¢ /MY3)pd~4

d—d
Zd,M n ,

where the sums on the first line are over all W € Vj, which satisfy [W N {v;(=1),v;(1)}| = 1 for every
1€ [;, and the “max” in the second line is over all size-d’ subsets T C F;UX; containing at least one vertex
of Xj.

So, it suffices to show that X; is good with probability €(1) (recall that the randomness comes from
a uniformly random permutation of the elements of U(—1)). To this end, for each proper subset] C I,
let Y; = {ui(1) : i € J} € F; and let Tj be the random size-d’ set containing v;(1) for i € J and v;(=1) for
i¢J If B(Ty) < (¢/MY*)n=4 for all J C I, then X; is good. But note that each T; is a uniformly random
set satisfying T; 2 Y and T\ Y € U(-1), so by (5.2) and a union bound over all ] C I;, we see that
P[X; is not good] < 24 M~%3 < 1/2. |

Now, recall from Remark 3.5 that we always have [Az(D)] < q2'(2k)4~ =: by for all I € ([}f]) As in
Corollary 2.5, let a(d’, t) = thgyq + - - + 19 4by g g mkd—4—1,

In the notation of Lemma 4.4, note that X1, .. ., Xm,/d are uniform random ordered d’-subsets of U(-1).
So, by Lemma 4.4 (with f = d’ and y = Q(1)) and the above claim, except with probability O(1/m) <
LO4(m), we have |A;([j)| Zqmar k4. Therefore,|As())| > a(d',t) for t = Q(m'/d) different j (here we are
using that k/m > q, 8, d,R). Condition on an outcome of U such that this is the case.

We may then apply Corollary 2.5, using the randomness of £, to obtain the desired conclusion.

6 A Poisson-Type Anticoncentration Inequality

Another key ingredient for the proof of Theorem 1.11is a “Poisson-type” anticoncentration inequality for
polynomials of independent random variables, strengthening a result of Fox, Kwan, and Sauermann [8,
Theorem 1.8].
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14 | V. Jainetal.

Theorem 6.1. Fix y > 0, and suppose p is sufficiently small in terms of y. Let F € R[x,...,Xs] be
a multilinear polynomial that has nonnegative coefficients, and zero constant coefficient. Let
B, ..., Bs beii.d. Bernoulli(p) random variables. Then for any t € [0, o0) and ¢ > 35t, we have

1
PlIF(B1,....Bs) — Ll <t] < FRas

Proof. We prove by induction on s that whenever ¢ > 3°tand F € R[x4, ..., Xs| is a multilinear polynomial
that has nonnegative coefficients and zero constant coefficient, we have

P[IF(B) - € < 1] < maxP[Xy, = 1],

where X, ~ Bin(n, p). This suffices, because elementary estimates show that the right-hand side of the
above expression converges to 1/e as p — 0 (see [8, Lemma 3.3]).

The desired statementis vacuously true for s = 0, so fix some s > 1 and assume the desired statement
is true for smaller s. Write ||B]|o for the number of nonzero entries of g.

Let g; be the coefficient of x; in F(x1, ..., X). First, if we have a; > (¢ + t)/2 for all i, then we can only
have |F(B) — €| < tif |Bllo = 1. Indeed, if we had ||B]lo = 0 we would have F(§) = 0, and if we had ||B]lo > 2
we would have F(B) — € > 2(€ + t)/2 — ¢ = t. The desired bound follows.

Otherwise, suppose without loss of generality that a; < (¢ + t)/2. We can write F(x1,...,X) =
G(X1, ..., Xs—1)+0sXs +XsH(Xq, ..., Xs—1), where G,H € R[xy, ..., Xs—1] are multilinear polynomials that have
nonnegative coefficients and zero constant coefficient. We will show the desired bound conditional on
both of the two possible outcomes of gs.

Let E/ = (B1,...,Ps—1). If Bs =0, then |F(,§) — (| < tif and only if |G(B") — ¢]| < t, and the desired result
follows by induction. Otherwise, if s = 1, then |[F(8) — ¢| < tif and only if |(G +H)(B') — (£ —as)| < t. Note
that ¢ —as > (¢ —1)/2 > ¢/3 > 3571t, so the desired result again follows by induction. [ |

7 Comparison Between the Slice and a Product Measure

Recall that in order to apply bounds on the polynomial Littlewood-Offord problem, we needed a lemma
describing a slice measure in terms of a product measure (Lemma 3.4). In order to apply Theorem 6.1,
we also need a comparison between a slice measure and a product measure, but since Theorem 6.1
only applies to polynomials with nonnegative coefficients, we will need a lemma of a rather different
flavour, for functions on the slice that only depend on a few coordinates.

For probability distributions u, v with the same sigma-algebra of events, recall that the total variation
distance drv(u, v) is the supremum of |u(A) — v(A)| over all events A.

Theorem 7.1. Let k < n/2. Consider any set S and function F : {0,1}" — S, such that
F(x1,...,Xy) only depends on x1, ..., Xs. Let ¢ ~ Slice(n, k) and let E be a vector of n independent
Bernoulli(k/n) random variables. Then,

max(s, 2n/k) — 1

drv(FG), F(B)) < 1

We will prove Theorem 7.1 using the following theorem of Ehm [6]. Write Hyp(n,k,t) for the
hypergeometric distribution with k draws from a population of size n with t “featured” elements, and
let Bin(n, p) be the binomial distribution with n trials and success probability p.

Theorem 7.2 ([6, Theorem 2]). If (k/n)(1 — k/n)t > 1, then

drv (Hyp(n, k, 1), Bint, k/n)) < ;:
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Proof of Theorem 7.1. Let t = max(s, 2n/k), so (k/n)(1 — k/n)t > 1 and F(x4,..., Xy) only depends on
X1,..., % (since t > s). For X € {0, 1}", let ||X|lo be the number of i € [t] for which x; = 1. Let 6 ~ Slice(n, k),
and let g be a vector of n independent Bernoulli(k/n) random variables. Then clearly |5 |lo.+ ~ Hyp(n, k, t)
and ||B\|o;t ~ Bin(t, k/n). For all q in the support of both Hyp(n,k,t) and Bin(t, k/n), the conditional
distribution of F(6) given ||lolo.: = q is the same as the conditional distribution of F(B) given H/§||o;t =q.
So,

" = o - t—
drv(F@),F(B)) < drv (I llog, 1Bllog) < —

where the last inequality follows from Theorem 7.2. |

8 The Vertex Cover Lemma

In this section we prove a lemma showing that every hypergraph G has a small vertex set Y that “only
sees large matchings”, in the sense that for any subset S C Y, if we remove all the edges intersecting
S, and we remove all the vertices of Y\ S from all the remaining edges, the resulting hypergraph either
has a large matching or no edges at all.

Definition 8.1. Let G be an r-uniform hypergraph. For vertex subsets X C Y, write Gy(X) = {e\X :
e e G- (Y\X), e\X # ¢}. In other words, delete all edges that intersect Y\X, and look at the
portion of each edge outside X. This is a mixed-uniformity hypergraph, whose edges have sizes
between 1 and r. For d € [r], let c;g;’) (X) be the subhypergraph of edges that have size exactly d.

Lemma 8.2. Letr,m € N and let G be an r-uniform hypergraph. We can find a vertex set Y of size
Orm(1) such that the following holds. Consider any X € Y such that Gy(X) is nonempty, and let
d be the maximum integer such that G@(X) is nonempty. Then G@(X) has a matching of size
at least m. Moreover, if Y # ¢, then every edge of G has non-empty intersection with Y.

Proof. It will be more convenient to prove the following statement. Let V be the vertex set of G. For
SCcYcCV,letI'y(S) :=1{e\S: ee G, enY = S} (this is a hypergraph whose edges have size exactly r — |S]).
Say that S is Y-relevant if I'y(S) is nonempty and I'y(S') is empty for all S' C S. We say that a relevant
set S is m-bad (or simply, bad), if the maximum matching in I'y(S) has size at most m — 1. We will show
that we can choose a vertex set Y of size O, (1) such that there are no Y-relevant sets S € Y that are
bad. To see that this implies the conclusion of the lemma, for X € Y, let d be the maximum integer such
that G@(X) is nonempty. Since G(Yd)(X) is nonempty, there exists S € X of size r — d such that I'y(S) is
non-empty, and since d is the largest integer satisfying this property, it must be the case that I'y(S) = ¢
forall S" C S.In other words, S is Y-relevant. Therefore, I'y(S) has a matching of size at least m, and since
I'y(S) € G (X), our conclusion follows.

We will construct our desired set Y iteratively, by iterating a “greedy cover” map ¢ starting from the
empty set. Specifically, fix an ordering of the vertex set, and for Z € V, we define ¢(Z) > Z as follows:

e Ifthereis some Z-relevantsetS C Z such that I'z(S) has no matching of size at least m, then consider
such a set S with the smallest size (breaking ties lexicographically, according to our ordering of the
vertex set) and a maximum matching M in I'z(S) (again, breaking ties lexicographically), let W be
the vertex set of M, and set ¢(2) = ZU W.

e Otherwise, set ¢(Z) = Z.

For Z C V, let ¢*(2) be the result of repeatedly applying the map ¢, starting with Z, until it stabilizes,
and let Y = ¢*(#). We just need to show that |Y| = O, (1); this will be a simple inductive consequence
of the following claim.

Claim. For Z € V and ¢ € {0,...,r}, let N,(Z) be the number of Z-relevant sets T € Z with |T| = £. If
¢(Z) # Z, then there exists d € {0, ..., r} for which the following hold:

(1
(2
(3
(4

Na(¢(2)) < Na(2),

Nf(¢(2)) < Np(2) for all f < d,

|¢(2)| < |Z| +rm, and

Ni(¢(2)) < 1o < (1Z] +rm) for all f > d.

==
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Proof of claim. First, parts (3) and (4) are immediate, because ¢(Z) is obtained by adding fewer than rm
vertices to Z.

To prove parts (1) and (2), suppose ¢(Z) # Z and let S C Z be the set appearing in the definition of
¢(Z). Note that, by construction, T'yz,(S) = ¢. In particular, S is a Z-relevant set that is not ¢ (Z)-relevant.
Let S* € Z be a smallest set that is Z-relevant but not ¢(Z)-relevant and let d = |S*|. This is the value of
d for which we will prove parts (1) and (2). In order to do this, it suffices to show the following: for any
¢ (Z)-relevant set T C ¢(Z) with |T| < d, it must be the case that T € Z and in fact, that T is Z-relevant.
This immediately implies (2), and since S* is a Z-relevant set that is not ¢ (Z)-relevant, we also get (1).

Suppose T € ¢(Z) is a ¢ (Z)-relevant set of size |T| < d. Suppose for contradiction that either (a) T ¢ Z,
or (b) T € Zbut T is not Z-relevant. In either case, since 'y (T) is non-empty, it follows that I'z(TN Z) is
non-empty as well, so that there exists T" € TN Z such that T’ is Z-relevant. In case (a), [TNZ| < |T| < d
andin case (b) T" C T, so thatin either case, |T’| < d— 1. Since S* is the smallest Z-relevant set that is not
¢ (Z)-relevant, it must be the case that T’ is ¢ (Z)-relevant. However, since T' C T, this contradicts that T
is ¢(Z)-relevant. [ |

Recall that we wish to show that |Y| = |¢*(@)| = Orm(1). For nonnegative integers Ny, ..., Ny, z, define
F(Np,...,Ny,z) to be the maximum of |¢*(Z)|, over all Z C V with

|Zl =2z, No(Z) =No, Ni(Z) <Nz, ..., Ni(Z) =N,

and over all r-uniform hypergraphs G on any vertex set V. (A priori, it is possible that no such maximum
exists, in which case we set F(Ny, ..., N, z) = 00.) Since |Y| = |¢*(#)| < F(1,0,...,0), our goal is to show
that F(1,0,...,0) < co. Since the input parameters to the function F are only r and m (via the definition
of $*(Z)), in this case it is clear that F(1,0,...,0) depends only on r and m. In fact, writing N, for the
nonnegative integers, we will show that for any (No,...,Ny,z) € N’joz, we have F(No, ..., N, z) < co.

To see this, note that the above claim implies a recurrence for F(No,...,Ny,z): for all (No,...,Ny,2),
either F(No,...,Ny,z) =z or

F(No,...,Ny,z) < max
d 1}:Ng

S OF(NO,...,Nd,l,Nd—1,(z+rm)d+1,...,(z+rm)’,z+rm) (8.1)
€{0,..., }

>

(here we use the convention that the maximum of the empty set is —oo; in other words, F(O, ...,0,2) = z,
which is also easy to see directly). Now, the desired result follows by induction (most easily described
in a “transfinite” way): since the lexicographic order on N’joz is a well order, if F(Ng,...,N;,2) = o0
for some (Np,...,N;,z), then there must exist a lexicogral__)hically minimal (N, ...,N#, z*) for which
F(N§,...,N#, z*) = oo. But thisis impossible: we would have F(N§, ..., N¥, z*) # z*,s0 (8.1) would contradict
lexicographic minimality.

Finally, the “moreover” part is clear by construction.

9 A Variance Bound for Polynomials on the Slice

We need one more technical ingredient for the proof of Theorem 1.1, namely a bound on the variance
of a polynomial on the slice.

Proposition 9.1. For any n > k, let & € R[x1,...,%,] be an n-variable multilinear polynomial with
degree at most d whose coefficients all have absolute value at most q. Let ¢ ~ Slice(n, k). Then,

Var[r(3)] Saq n? .

Proof. Since x; + --- + X, iS constant on X € Slice(n, k), it follows that Var[r(s)] = Var[Q(c)], where
Q) = AMX) +q(xX1 +- - -+xn)?%. Since the coefficients of A have absolute value at most g, it follows that the
coefficients of Q are non-negative and have absolute value at most O4(q). The key point is the following:
let W, T C [n] be disjoint sets with |W| = i and |T| = j. Then, writing a = b if a and b have the same sign,
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we have

where the last inequality follows since

ﬁ(n—s)(k—j—s) -
n—j—s)k—s) ~

(M- (7
()

) _
)

s=0

for k < n. Note also that for any W, T C [n], we have Cov[c",57] < E[cWsT] < 1.
Recall that the coefficients Q(S) are non-negative of size at most O4(q). Moreover, Q(S) = 0 if |S| > d.
Putting everything together, we have

Var[Q(a)]:zé(wﬁ(T)cOv[aW,aT]5 > QW)Q(T) Cov[s ™V, 5T]
w,T W,TC[n]
WNT#H

%Y Y A ant ot

|W|<d |T|<d
TNW A0

10 Completing the Proof of the Hypergraph Edge-Statistics
Conjecture

Now, we combine all the ingredients collected so far to prove Theorem 1.1. Recall that the notation
a < Bi,..., By (respectively, « > f1,..., By) means “a is sufficiently small in terms of g,..., By
(respectively, “a is sufficiently large in terms of g1, ..., B;").

Proof Proof of Theorem 1.1. Recall that we are to prove thatif k > r,e and ¢ ¢ {0, (}f)} then ind,(k,¢) <
1/e+e.Since ind, (k, £) = ind, (k, (’f) —0), it suffices to assume that ¢ < [(E)/Z]A Further, it suffices to prove
the statement only for (say) ¢ < k~/2(¥), since in the complementary regime k=/2(*) < ¢ < [(¥)/2], a
stronger statement follows from Theorem 1.2.

So, consider integers k, ¢ satisfying 0 < ¢ < k=%/2 (]f) andfixanye > 0. The dependence of konr, ¢ will be
moderated by additional parameters R, m, ¢, §, which will play a role later in the argument. Specifically,
we first need R >» ¢, then m > R, then q > m, 1, and then § « q. Finally, k > m, q, 1, R, §, &. To summarize,
the relative sizes of various parameters should be thought of as

k> 1/6>qg>m>R> 1/

Let n = Rk, let G be an r-uniform hypergraph on the vertex set [n], and let U be a random subset of k
vertices of G. As N,(n, k, K)/(,f) is nonincreasing in n, it suffices to prove that

Ple(GU) =¢] <1/e+e.

Let Y be the set obtained by applying Lemma 8.2 to G (with our value of m).
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Case I: Y # ¢ Consider the random variable E[e(G[U]) | Y nU]. This can be interpreted as a multilinear
polynomial evaluated at ¢ ~ Slice(n, k) (where i = 1,y), that only depends on |Y| = O, (1) of its
variables. Indeed, we have

EG[UD|YNUl= > PWeEGU)|YNUl= D PW\Y CU]lwnycuny
WeE(G) WeE(G)

> PW\Y U™,
WeE(G)

where E(G) denotes the set of edges of G (cf. the expression for e(G[U]) at the start of Section 3). Note
that this polynomial has nonnegative coefficients. Also, since we are assuming Y # ¢, every edge of G
intersects Y, so the constant coefficient of this polynomial is zero. So, by Theorems 6.1 and 7.1 (with
s=|Y|and y = ¢/2 and t = 371V1¢), since R, k > &, it follows that except with probability 1/e 4+ ¢/2,

‘E[e(G[U]) Y NU] - 4 >3 Mg > e (10.1)

Condition on any outcome of Y N U such that (10.1) holds. The remaining randomness is comprised
of the random set U\ Y (which is a uniformly random subset of [n] \ Y of size k — [Y N UJ).

Recall from Definition 8.1 that Gy(X) = {e\X : e € G — (Y\X), e\X # 0}. If Gy(Y N U) = ¢, then we
are done: given our conditioning, e(G[U]) would then take some value with probability 1, and this value
cannot be equal to ¢ since we are working with an outcome of YNU for which (10.1) holds. Therefore, we
can assume that Gy(YNU) is non-empty. In this case, given our conditioning, we can write e(G[U]) = A(o),
where ¢ ~ Slice(n—[Y|,k—[YNU]) and A is a multilinear polynomial of some degree d € [r— 1]. Note that
the coefficients of & all lie in the set {0, 1,..., q} (here we are using that g > m,1,s0 q > (')). Also, by the
definition of Y, we have v(Hg(A)) = v(Gy(Y NU)) > m. Our objective is to show that P[r(c) = €] < ¢/2.

Recall that § « r,qand m > R >» ¢ and k > r,q, m. By Lemma 5.1, at least one of the following holds:

(1) » has at least $n? nonzero degree-d coefficients, or

(2) we have

supP[A(G) =£] <q
teR

1
a s <e/2.

In case (2) we are done. In case (1), we have E[A(5)] 2 6k? >; k¢ while Var[A(3)] <aq n?! Saqr k241
by Proposition 9.1. So, by Chebyshev’s inequality, except with probability at most ¢/2, we have

[2@) — EM@)]| Saqnac KVZERG)],

Recalling from (10.1) that E[A(6)] is excluded from a range of the form (1 £+ Q,n(1))¢, the desired result
follows for k >»>m, q,1,R, 8, .

Case II: Y = ¢ If G is empty, then we are done, since ¢ # 0 by assumption. Otherwise, we can write
e(G[U]) = Ag(0), where A¢ has degree r and ¢ ~ Slice(n, k). In this case we will be able to prove the
stronger bound

PleG[U]) = €] =Prc(G) = €] < /2 < 1/e+&.

Asin Case I above, we have v(Hg) (1)) > m, and similarly arguing via Lemma 5.1, we only need to consider
the case that G has at least én" nonzero degree-r coefficients. By the same argument as above, except
with probability at most ¢/2 we have

16(@) —Ec(@)]| Saqrse kY2 E[GE)).

The desired conclusion now follows for k > q,1,R,§, ¢, since E[Ac(5)] 2rs k', Whereas by assumption
0 < k12 (E) < k12
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