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Abstract

The theory of optimal transport provides an elegant and powerful description of many evolution
equations as gradient flows. The primary objective of this thesis is to adapt and extend the
theory to deal with important equations that are not covered by the classical framework,
specifically boundary value problems and kinetic equations. Additionally, we establish new
results in periodic homogenization for discrete dynamical optimal transport and in quantization
of measures.

Section 1.1 serves as an invitation to the classical theory of optimal transport, including the
main definitions and a selection of well-established theorems. Sections 1.2-1.5 introduce the
main results of this thesis, outline the motivations, and review the current state of the art.

In Chapter 2, we consider the Fokker—Planck equation on a bounded set with positive Dirichlet
boundary conditions. We construct a time-discrete scheme involving a modification of the
Wasserstein distance and, under weak assumptions, prove its convergence to a solution of this
boundary value problem. In dimension 1, we show that this solution is a gradient flow in a
suitable space of measures.

Chapter 3 presents joint work with Giovanni Brigati and Jan Maas. We introduce a new theory
of optimal transport to describe and study particle systems at the mesoscopic scale. We prove
adapted versions of some fundamental theorems, including the Benamou—Brenier formula and
the identification of absolutely continuous curves of measures.

Chapter 4 presents joint work with Lorenzo Portinale. We prove convergence of dynamical
transportation functionals on periodic graphs in the large-scale limit when the cost functional
is asymptotically linear. Additionally, we show that discrete 1-Wasserstein distances converge
to 1-Wasserstein distances constructed from crystalline norms on R

Chapter 5 concerns optimal empirical quantization: the problem of approximating a measure
by the sum of n equally weighted Dirac deltas, so as to minimize the error in the p-Wasserstein
distance. Our main result is an analog of Zador's theorem, providing asymptotic bounds for
the minimal error as n tends to infinity.
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CHAPTER

Introduction

Over the last four decades, the theory of optimal transport has consistently attracted consider-
able interest among both theoretical mathematicians and applied researchers. Its relevance
is well-established not only in mathematical analysis (calculus of variations, PDE theory,
functional analysis), but also in mathematical physics, probability, geometry, and statis-

tics | , , , , |. Furthermore, applications have been found
in many other fields, ranging from economics | | to machine learning | |, from biol-
ogy [ ] to geophysics | |. The originating mathematical problem, formulated by
G. Monge almost 250 years ago | |, stems from a remarkably simple and natural question:
What is the optimal way to move a certain amount of mass to a different spatial configuration?
The modern mathematical formulation of the problem, due to L. Kantorovich | | is as

follows. Given are a cost function ¢: X x Y — R, which quantifies the effort required to
move a unit of mass from a location x € X to another one y € Y, and measures i, v that
represent the initial and final configurations on X, Y. The minimization problem reads

inf /Xyc(x,y) dr(z,y), (1.0.1)

mell(p,v)

where TI(u, v) is the set of couplings
(g, v) = {7 € M(X xY) : 7(- x V) = p() and w(X x -) = ()}

Note that II(u, ) is nonempty if and only if 1+ and v have the same total mass m: in this
case, Y2 ¢ TI(u,v). For this reason, it is not restrictive to work with probability measures
(i.e., to assume m = 1). Of particular interest is the case where X =Y, this space is endowed
with a metric d, and the cost function ¢ is set equal to a power d” of the distance. For
example, it is reasonable that on X =Y = R?, the cost of physically moving a unit of mass
is proportional to the distance it covers. When ¢ = d?, p > 1, the minimal total cost

Wr(p,v) = inf / dP(z,y) dm(x,y) (1.0.2)
eIl (p,v) XxX

turns out to be the p-th power of a metric on the space P,(X) of the probability measures

with finite p-th moment, called p-Wasserstein or p-Kantorovich—Rubinstein distance. We will

refer to P,(X) endowed with W), as the p-Wasserstein space.

The interest in Wasserstein distances is not only due to the natural problem they derive from
and their simple definition, but also to their many favorable properties, which give rise to an
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Figure 1.1: The mass displacement problem in dimension 1.

elegant and useful theory. The simplest example of this is that they generalize the underlying
distance d: if J,,0, are Dirac deltas at =,y € X, then W,(d,,6,) = d(z,y). Many other
results—more involved to prove, but generally with surprisingly neat statements—are, by now,
classical and can be found, e.g., in the monographs [ ) , ]. In Section 1.1, we
will present four of them: existence of optimal transport maps, the Benamou—Brenier formula,
the Riemannian structure of the 2-Wasserstein space, and the gradient-flow representation
of evolution equations. The latter, in particular, reveals a profound connection to PDEs and
random processes, which still seems to hold great potential for further development. This
leads to the first main topic of this thesis: the treatment of boundary value problems, kinetic
equations, and—more indirectly—evolutions in a discrete (or discretized) setting by means of
optimal transport techniques. To deal with these problems, it is often necessary to adapt the
classical theory, e.g., by modifying the Wasserstein geometry. Determining the best modified
framework and exploring the results that can be obtained within it are among our main
objectives.

The second main topic is discrete approximation via optimal transport methods, which is
ultimately motivated by computational problems such as, e.g., the design of numerical schemes
and data compression. Indeed, first, assessing the quality of numerical approximations of
certain PDEs can benefit from a theory of gradient flows of measures in a discrete setting.
Second, Wasserstein distances are natural tools to quantify the error introduced by discretizing
a measure. In Sections 1.2-1.5, we will contextualize and discuss the contributions of this
thesis.

1.1 Classical Optimal Transport

Optimal transport maps

When X, Y are separable and completely metrizable topological spaces, and ¢ is bounded from
below and lower semicontinuous, it is not difficult to show that the problem (1.0.1) admits a
minimizer 7 € II(u, v) for every choice of yu € P(X) and v € P(Y); see | , Theorem 4.1].
More challenging is the question of existence of deterministic optimal couplings 7, namely
such that, additionally, there exists a map 7': X — Y with

/X y o(x,y) dn(z,y) = /){gp(x,T(x)) du(z) forall o € Cp(X xY).

In general, the answer is negative. For example, when p is a Dirac delta and v is not, the
mass must necessarily split. The pioneering work of M. Knott and C. S. Smith | ],
Y. Brenier [ ], L. Rischendorf and S. T. Rachev | ] provided the first positive result.

2
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Figure 1.2: Displacement interpolation.

Theorem 1.1.1 (Knott-Smith, Brenier, Riischendorf-Rachev). Assume that X =Y = R¢,
that u, v have finite second moment, that p is absolutely continuous with respect to the
Lebesgue measure, and that the cost c is the squared Euclidean distance. Then:

1. The problem (1.0.1) has a unique solution 7. This coupling is induced by a map T' of
the form T = V1 for a lower semicontinuous, convex function 1: R — R U {+o0}.

2. Conversely, if 1p: R? — R U {+cc} is lower semicontinuous and convex, and if the
coupling 7 induced by Vi belongs to I1(p,v), then 7 is optimal for (1.0.1).

Since then, research on this topic has been intense, and many generalizations are now known.
For example, analogous versions of Theorem 1.1.1 hold when we replace the squared Euclidean
distance with any of its p-powers, p > 1 (without uniqueness for p = 1). For details, we refer
to [ , Chapter 4] and | , Chapters 9 & 10], and the references therein.

The Benamou—Brenier formula

The Benamou—Brenier formula is a dynamical formulation of the Wasserstein distances due to
J.-D. Benamou and Y. Brenier | ]. Let X =Y =R choose c(x,y) =|z — y|” withp > 1.
Let us assume—for simplicity—that there exists an optimal map 7" between 1o = p and g = v,
and that the maps T;(z) == (1 — t)z + tT'(x), with ¢ € (0,1), are invertible. We naturally
find an interpolating curve of measures (fi;)ic01] by setting

G ) = [ (D)) due)  for o€ GRY).

Rd

Interestingly, the curve (1), solves a continuity equation: there exists a vector field v,: R? —
R? such that

atllt + diV(Vt,LLt) = 0 (111)

in the distributional sense. One such vector field can be found by setting v, := (9,T;) o T, "
and, with this choice, one has

1
Wé’(uo,ul):/ / Ve[ dpy dt . (1.1.2)
0o Jrd

Even more, the curves (u, v;); we defined are exactly the minimizers of the action at the
right-hand side of (1.1.2) among the solutions to the continuity equation. This means that
the p-Wasserstein distance is characterized by a variational dynamical problem.

3
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Theorem 1.1.2 (Benamou—Brenier | , Section 6.1]). Assume that p, 11 have finite p-th
moments. Then

1
W (o, p11) = min / |vel” dpy dt, (1.1.3)
(mop1) Jo  JRd

(1e:vt)iefo,11ECE

where CE(po, pi1) is the set of all narrowly continuous curves of probability measures t +— i
between iy and 1, and all vector fields v; such that the continuity equation (1.1.1) is satisfied.

Equation (1.1.3) was derived for the first time (for p = 2) in the work of J.-D. Benamou and
Y. Brenier | ]. Various generalizations are possible, for example when replacing R? with
a manifold; see the references in | , Chapter 7]. A similar characterization, known as
Beckmann's problem | ], holds for p = 1.

Theorem 1.1.3 (| , Theorem 4.6]). Assume that ju, j11 have finite 1-st moments. Then

L%mmm):mmﬂwukﬂ:urqm+dwm0:0} (1.1.4)

— mln {/ ’Wt| t . 8tut ‘l—le(Wt) = 0} s (115)

(pt,we) te(0,1]

where w and wy, for t € [0, 1], are vector measures on R%. In (1.1.5), t + u; is taken among
the curves of probability measures connecting jiy to .

Riemannian structure

The Benamou—Brenier formula (1.1.3) for p = 2 hints at a formal Riemannian structure on
the space of probability measures P,(IR?) endowed with the 2-Wasserstein distance. The idea,
first introduced by F. Otto | ], is the following. The role of “smooth” curves is played by
solutions (p); to the continuity equation (1.1.1) (for some vector field), and the Hilbert norm
on the tangent at p; is given by

ol =t [ il e (116)
¢ JR

where the infimum is taken among all v;'s such that (1.1.1) holds. It can be shown that
the optimal v, is the only solution to (1.1.1) in the L?(u;)-closure of the set of gradi-
ents {V@/} VNS Cgo(Rd)}. In this way, (1.1.3) (for p = 2) becomes

W(jio, ) = min /H&mm“h (1.1.7)

(pt) t€[0,1]
under the constraint that (1), connects 11y to ;.

L. Ambrosio, N. Gigli, and G. Savaré | | established a similar compatibility between this
(formal) Riemannian structure and the metric W,. Precisely, they proved that solutions to the
continuity equations coincide with absolutely continuous curves in the 2-Wasserstein space,
and that the metric derivative equals the norm in (1.1.6).

Definition 1.1.4 (| , Definition 1.1.1]). Let (X, d) be a metric space. We say that
an X-valued curve (z;)c[q is 2-absolutely continuous if there exists £ € L?(a,b) such that

t
d(zs, z¢) < / ((r) dr foralla <s<t<b. (1.1.8)

4
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Figure 1.3: A gradient flow of an energy functional E: R? — R.

Theorem 1.1.5 (] , Theorem 1.1.2]). Let (X,d) be a metric space. If (x:)icap)
is 2-absolutely continuous, then the metric derivative

/

2’| (t) = lim d(zs,20)

s—t ’t — 5|

(1.1.9)

exists for a.e. t € (a,b). Moreover, the function t — |2'| (t) is square-integrable, it is an
admissible ¢ for (1.1.8), and it is minimal, meaning that

(t) < L(t) for a.e. t € (a,b) (1.1.10)

/
T

whenever ( satisfies (1.1.8).

Theorem 1.1.6 (Ambrosio—Gigli-Savaré [ , Theorems 8.3.1 & 8.4.5]). Let (fit)sc(a ) be
a 2-absolutely continuous curve of measures in the metric space (Pg(Rd), Wg). Then there
exists (Vi)icla,p) SUCh that the continuity equation (1.1.1) is satisfied, and

/d’Vt|2 dpy <
R

Conversely, if (1ut)tc[a,p) is @ narrowly continuous curve that satisfies the continuity equation for

‘(1) foraetelab). (1.1.11)

M/

some (Vy)icla,p) With ff fRd|vt|2 dpe dt < oo, then (j1)icia) is 2-absolutely continuous with

/

0

’ (t) < / Ivo|” du for a.e. t € [a,b]. (1.1.12)
Rd

In either case,

Wl (t) for a.e. t € [a,b]. (1.1.13)

HatMth =

Wasserstein gradient flows

Let £: R? — R be a smooth function. The gradient flow equation in R? is the ODE
iy = —VE(xy), z, € RY forall t > 0. (1.1.14)

Namely, the solution flows in the direction of steepest descent for E. This equation makes
perfect sense in any Riemannian manifold M as well: given £': M — R, we define its gradient
at © € M as the only vector VE(z) € T,,M such that

(d.E)(w) = (VE,w)r,m for all w e T, M .
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As we have a Riemannian structure on P,(IR?), we can define gradient flows in this space. For
example, if £: Py(R?) — R is an integral functional of the form

£1) /RdF(p(x)> dz if p=p(x)de,
+00 if p & de,

for some F': R — R, then the corresponding gradient flow equation reads
Oipr = diV(VF/(Pt)Pt) ) e = py(x) de .

This suggests that several important evolution equations can be interpreted as gradient
flows in the 2-Wasserstein space. For instance, the heat equation d,p;, = Ap; is found by
choosing F'(p) := plog p, but also several nonlinear equations naturally fit into this theory;
see | , Section 8.4.2].

There are (at least) three other common notions of gradient flow in the metric setting:

1. Minimizing Movement approximation,
2. Curves of Maximal Slope,

3. Evolution Variational Inequalities.

In the 2-Wasserstein space, under certain regularity assumptions on the functional &, the
first two notions are substantially equivalent to the differential-geometric one discussed above.
When &£ additonally enjoys a suitable convexity property, all notions coincide. Details are given
in [ , Chapter 11]. Let us present the Minimizing Movement approximation and the
Curves of Maximal Slope, which will play a role later in the thesis, especially in Chapter 2.

In the Euclidean setting, (1.1.14) can be discretized in time using the Implicit Euler Scheme
Ty — T = —TVE (2] 10),) keN, (1.1.15)

where 7 > 0 is the discretization parameter. Given zj, one can find z(; ;) by solving
T(t1)r € arg;nin(QTE(x) +|x7, — x|2) ) (1.1.16)

Interestingly, the differential structure of R? is invisible in the last formula; only the metric
structure needs to be defined. The following is due to E. De Giorgi | ]

Definition 1.1.7. Let (X,d) be a metric space, let F: X — R, and let z.: [0,00) — X.
We say that (z;);>0 is @ Minimizing Movements curve if, for a sequence of discretization
parameters 7; — 0, the following holds. There exist curves " : [0, 00) — X such that:

1. t — x; is constant on each interval [k}, (k + 1)7;) for k € N,

2. for every k € N and j, we have the the inclusion

x(T,iH)Tj = argg}rgin(QqE(x) - dz(mzjﬁ,m)) : (1.1.17)

3. we have the convergence x”7 — . uniformly on compact sets as j — oo.

6
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The application of this definition to the 2-Wassertstein space by R. Jordan, D. Kinderlehrer,
and F. Otto | ] allowed for the first identification of an evolution equation as a gradient
flow in the 2-Wasserstein space. Indeed, the authors of | ] showed that the solutions to
the Fokker—Planck equation

Orpr = Apy + div(V\I/(x)pt) ,
for a smooth ¥: R? — [0, 00), are Minimizing Movement curves in (PQ(Rd),WQ).

Finally, let us turn to Curves of Maximal Slope. Let £: R? — R and t — , € R? be smooth
functions. The chain rule, and Cauchy-Schwarz and Young's inequalities give

d . . 1 L.
The inequalities in the latter become equalities if and only if & is negatively proportional
to VE(z;) and |[VE(z;)| = |&|; hence, if and only if the gradient flow equation (1.1.14) is

satisfied. In other words, (1.1.14) is equivalent to the opposite inequality

d 1 1

Interestingly, the norms|V E(x;)| and || can be written in purely metric terms. Indeed, we
have already introduced the metric derivative (see Theorem 1.1.5), while the norm of the
gradient can be seen—in the context of gradient flows—as the magnitude of the maximal

descending slope, i.e.,

(E@) - E(y))

+

|IVE(x)| = limsup
Yy—x

ly — 7|
These ideas are originally due to E. De Giorgi, A. Marino, and M. Tosques [ ], and
were later further developed by L. Ambrosio, N. Gigli, and G. Savaré | |
Definition 1.1.8 (][ , Definition 1.1], | , Definition 1.2.4]). Let (X,d) be a

metric space, let E: X — RU {400}, and let € X be such that F(z) < co. We let the
descending slope of E at x be

0B| (2) = lim sup 2 = EW)- (1.1.18)

y—x ‘y — IE‘
if 2 is an accumulation point of X, and |0E| () = 0 otherwise.
Definition 1.1.9 (| , Definition 1.3.2]). Let (X,d) be a metric space, let £: X —
R U {+00}, and let (¢):c[ap) be an X-valued locally 2-absolutely continuous curve. We say

that (2;)ic(a,5 is @ Curve of Maximal Slope for E (with respect to its descending slope |[0F)
if t — E(x,) is a.e. equal to a nonincreasing map ¢ such that

1
/t < _=
¢'(t) < 5

/

2| () - ;\8E[2(a:t) forae. t € [a,]. (1.1.19)

Wasserstein gradient flows have been deeply investigated. The connection they provide between
optimal transport and PDEs has shed light on the geometric interpretation of many evolution
equations, and, at the same time, has supplied new theoretical tools to prove existence,
uniqueness, stability, speed of convergence, energy estimates, and functional inequalities. As
an example, the Minimizing Movement scheme can be used to prove existence, even with
irregular initial data (i.e., measures), and provides a numerical method to compute the solution.
A comprehensive list of applications can be found in [ , Section 11.1], together with
many references to specific results in the literature. We refer to | | for a detailed overview
on this topic.
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1.2 Optimal Transport for Boundary Value Problems

Let O C R? be a bounded open set. Any curve in <P(Q),W2), by definition, conserves
the total mass. Therefore, gradient flows in this space always satisfy appropriate Neumann
boundary conditions; see | , Section 4.7]. For example, the gradient flows of the
functional fQ plog pdx are solutions to

Oipr = Apy in Q,
Onpr =0 on 09},

where 0,, denotes the outer normal derivative.

At a first glance, therefore, the theory of optimal transport does not seem well-suited to
describe and study equations with other types of boundary conditions. Nonetheless, in 2010,
A. Figalli and N. Gigli | | proposed a modified Wasserstein distance that provides a
gradient-flow representation for equations with Dirichlet boundary conditions. The boundary
Wasserstein distance Wb,(f,v) has almost the same definition of V),

Woh(p,v) = inf / Ny =" dn(z,y), p,v e M(Q), p>1, (1.2.1)

mellb(u,v) Jaxa

but now the set of admissible transport plans is

M, v) = {7 € M@ x Q) : 7(Ax Q) = p(A) and 7(Q x A) = v(A) forall ACQ}.

(1.2.2)
The novelty is that transport plans are defined on the closure Q) x € of Q x Q, although we
prescribe only the restrictions to €2 of their marginals. Intuitively (see Figure 1.4), the allowed
motion of mass is not only within €2, but also from the interior to the boundary and vice versa.
One can think of the amount of mass at each point of the boundary as infinite, in the sense
that any amount can flow in and out of any region of 0¢2. Consider the functional

| (o) 10g p(o) = pla) +1) do 0= pla)
+00 if u £ de,

E(n) =

and fix g = p(z) de € M(2). The main result of | | is the convergence of the Minimizing
Movement scheme

{“02“’ keN, 7>0,

T

H(ps1)r € AIG MmN, vq(0) (275(/~L) + W3 (i, M)) )

to a solution to the heat equation with the constant Dirichlet boundary condition p;|g9q = 1:

Ope = Apy in Q,
pr=1 on 0f),
,O()Zf) in 2.

Remarkably, only one hypothesis is enforced: the finiteness of fQ plog p dz. No regularity is
required on 0L, as long as the identity p;|sq = 1 is interpreted as (p, — 1) € Wy (Q).

8
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Figure 1.4: An admissible transport plan for Wb, when 2 is an interval in dimension d = 1.

Recent research has shown a renewed interest in the optimal transport interpretation of
equations with boundary conditions other than Neumann | . . , ,

: . With | | (Chapter 2), we aim at contributing to this line of research,
by demonstrating its applicability to equations with more general Dirichlet boundary conditions,
under weak assumptions.

The subject of | ] is the Fokker—Planck equation with positive and temporally constant'—
but otherwise arbitrary—boundary conditions:

@gpt = dlv(th + ptVV) in Q,
pr=g on 052, (1.2.3)
pPo = p in Q.

The domain (2, the potential V': 2 — R, the boundary value g: 92 — R+, and the initial
datum p: Q — R, are given. The main results are:

1. the construction of a scheme of Minimizing Movement type and its proof of convergence
to a solution to (1.2.3),

2. a Curve of Maximal Slope formulation of (1.2.3) when ) is an interval in R!.

This work builds upon the paper | ] discussed above and | | by J. Morales. In fact, a
Minimizing Movement scheme for a problem similar to (1.2.3) is also described in [ ], but
we significantly reduce the regularity hypotheses on 02, on V, and on p, thereby obtaining,
in particular, the same assumptions as in | ] for Q and p. Another fundamental aspect
of | | is the idea of lifting the problem to a larger space, namely a suitable subset .7 of
the signed measures on the closure Q. This idea is partially inspired by | , ], but
this is its first use as a convenient way to handle arbitrary (positive) boundary conditions.
More concretely, we define a transportation functional 7—mnot a distance—similar to the
boundary Wasserstein distance Wby, but between signed measures in ., and consider the
driving functional®

/(logp—1+V) du+/ (logg+ V) du if plo = p(z) dz,
H(p) = Ja o0

+00 if pulg & dz.

Note that 7 depends on the measure 1. on the full closure €, which justifies the necessity of
a larger space of measures. Like in [ |, we see the evolution (1.2.3) as a motion of mass
that can be freely exchanged with the infinite reservoir at the boundary, but we additionally
keep track of the balance of mass taken or deposited at each point of the boundary. For this
reason we use signed measures.

1and not too irregular
2Assume here, for simplicity, that V' continuously extends to the boundary.



1.

INTRODUCTION

Theorem 1.2.1 (Q., Theorem 2.1.1 (informal)). Given i € .#, the scheme

1o = [,
| KeEN, 750  (1.24)
{u(kH)T € argmin, ¢ (27H (1) + T (1], 1))

converges to a curve t — yi; such that its restriction to ) satisfies (1.2.3).

In the case where V' = 0 and g = 1, this result reduces to the theorem by A. Figalli and
N. Gigli [ ]. Indeed, Wb, can be seen as a projection® of 7 and, when logg +V =0
on 09, we have &(ulq) = H(w).

Since T is not a distance, (1.2.4) is not exactly a Minimizing Movement scheme, and we
cannot say that the limit ¢ — p; is a gradient flow. Nonetheless, this theorem can be used as
a prototype to prove existence in problems with general Dirichlet boundary conditions under
weak assumptions, as well as, possibly, numerically construct a solution. Furthermore, in a
similar way as with the classical Minimizing Movement scheme, this type of existence proof
allows to establish properties of the solution that, even when formally derivable from the
equation, may be difficult to directly prove under weak assumptions; see Remark 2.1.4.

We obtain a more refined result in dimension d = 1, that is, when () is an interval. In this
case, we define a true distance Wb, on .¥—again, similar to Wbs—and prove the following.

Theorem 1.2.2 (Q., Theorem 2.1.5 (informal)). Assume that §) is an interval in R'. Given ji €
<, the limit curve t — p; found with Theorem 1.2.1 is a Curve of Maximal Slope for H in

the space (.7, Wb,).

The main difficulty in the proof of this theorem is to ensure that the slope |0H| is lower
semicontinuous. We overcome it by deriving an explicit formula for [0H|. In | |, the
identification of the slope |0E| was left as an open problem, which, as a byproduct of our
proof, we resolve in the case d = 1.

1.3 Kinetic Optimal Transport

Kinetic equations describe time-evolving physical systems at a mesoscopic scale, when particles
are not individually traceable, but we can write—for every time t—a statistical description
of their positions and velocities (i.e., a distribution on the phase space). One example is the
kinetic Fokker—Planck equation

Of(t,z,v)+v- -V, f(t,z,v) = diVU(VUf(t,x,v) + f(t,x,v)v+ f(t,x,v) VxU(x)) :
(t,x,v) € (0,00) x R? x R,

where U: R? — R is a potential. The study of these equations is an active research area,
with many open questions, relative, e.g., to stability and convergence to equilibrium of their
solutions, and to the precise mathematical links between micrsoscopic, mesoscopic, and
macroscopic descriptions of a system, which is also part of Hilbert's sixth problem | ]

One fruitful approach to the convergence-to-equilibrium problem—mainly for linear equations—
is C. Villani's theory of hypocoercivity | ]. Optimal transport too has been employed in

3in the sense made precise in Lemma 2.4.1

10
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kinetic theory, e.g., in the celebrated works [ ] by R. L. Dobrushin and | ] by G. Loeper

on the stability of Vlasov's equations. More recent stability results have been obtained by

introducing twisted Wasserstein distances, inspired by hypocoercivity theory | , ]

Furthermore, it has been shown that some kinetic equations can be approximated by time-

discrete schemes that, step-by-step, solve an optimal transport minimization problem [ ,
: |, in a similar fashion to the Jordan—Kinderlehrer-Otto scheme | ].

Although known contraction estimates and the aforementioned discretization schemes suggest
the possibility of a gradient flow description, an analog of Wasserstein gradient flows has not
yet been developed for kinetic equations. With | | (Chapter 3), written in collaboration
with G. Brigati and J. Maas, we put forward the foundations of one such theory. One of the
main future goals is to obtain new convergence estimates for a large class of kinetic equations,
including those nonlinear ones that are not covered by the theory of hypocoercivity.

The main object we introduce is a discrepancy d between probability measures on the phase
space RY x RY. This discrepancy is based on the minimization of the acceleration of curves
between coupled points. Its construction is as follows. First, for fixed T > 0 and (z,v), (y, w) €
RZ x RY, we define

dr ((2,v), (y,w))

T
= inf T /
aEHZ(O,T;Rg) 0

Secondly, we consider the optimal transport problem

o/’(t)‘2 dt : (o, d)(0) = (z,v), (o,a)(T) = (y,w)} . (1.3.1)

Gy = e[ E((2,0), (5,0)) dn(z,0,y,0), v € PyRL x RY).
m€(pv) JRd xRd x RY x RY

Thirdly, we set d equal to the Ws-lower semicontinuous envelope of the infimum over 7" > 0
of dr. In can be checked that replacing the second derivative o (t) with o/ (t) would give the
squared Euclidean distance between = and y in (1.3.1), regardless of the choice of 7', and the
subsequent constructions would yield the classical 2-Wasserstein distance. Therefore, d can be
thought of as a “second-order” version of W5, although we emphasize that d is not a distance.

Our main results are a kinetic Benamou—Brenier formula and the identification of 2-absolutely
continuous curves with time-reparametrized solutions to Vlasov's equations, which reminds
[ , Theorem 8.3.1] (Theorem 1.1.6) from the classical theory. The Benamou—Brenier
formula has been independently obtained also in a recent work by K. Elamvazhuthi [ ]

Theorem 1.3.1 (Elamvazhuthi, Brigati-Maas—Q., Theorem 3.1.2 (simplified)). For ev-
ery p,v € Po(R% x RY) and T > 0, we have

T
do(u,v) =  inf T// F,[? dpe(z,v) dt, (1.3.2)
( 1 Jo Jrixmrd

wesFe)eefo,r

where the infimum is taken among solutions to Vlasov's equation
Oty +v - Vopy + Vo - (Fipty) =0 (1.3.3)

starting at pio = p and ending at ur = v.

11
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Theorem 1.3.2 (Brigati-Maas—Q., Theorem 3.1.7 (simplified)). Under appropriate regularity
assumptions, the following hold.

1. Let (fi,)se(a) be d-2-absolutely continuous, i.e., there exists { € L*(a,b) such that

t
d(fg, f1y) < / {(r) dr for s <t. (1.3.4)

Then, there exist (Fi)ic(apy and a bi-Lipschitz time-reparametrization (fi)ic(a) Of the
curve (fiy)se(ap Such that (p, Fi)ic(p) satisfies Vlasov's equation (1.3.3), and the
right d-derivative of (put)ie(ap) 5 || Fil[ 12(,,,), namely,

d
lim (:uta Mt+h)

i 7 =1 Fll r2 () for a.e. t € (a,b). (1.3.5)

2. Let (11, Fy)ie(ap) be a solution to Viasov's equation (1.3.3). Then,

t
d(j1a, 1) < 2/ |Fllpogy dr - fors <t, (1.3.6)
and
d
lim supM <N Fill o) for a.e. t € (a,b). (1.3.7)
hl0 h

These theorems give the rigorous mathematical justification for a new formal degenerate
Riemannian-like structure on Py(R% x RY): given a curve (u;); that satisfies Vlasov's equa-
tion (1.3.3) for some vector field (F});, the norm of its tangent vector is given by

||8tut|lit = i{%f/ B dpe,
t JRdxRY

where the infimum is taken among all F}'s such that (1.3.3) holds. See Remarks 3.1.9, 3.1.12,
and 3.1.13 for further details. In future works, we plan to show that, with these definitions or
suitable variants thereof (depending on the specific problem), the solutions to some significant
kinetic equations are gradient flows.

Finally, let us point out that a “second-order” optimal transport theory is useful also in many
applications requiring to construct smooth interpolations of measures:

1. optimal steering of a fleet of agents;
2. trajectory inference for particle motion or cell development;

3. image interpolation for computer graphics.

In fact, in | ], we also propose a variation on the smooth time interpolation of | ].
With our theory, we prove that this new interpolation enjoys an injectivity property, which may
be desirable in practical applications since it prevents sharp shrinkage at intermediate times.

12
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1.4 Discrete Dynamical Optimal Transport

The geometry induced by W5 is well-suited to describe many PDEs on the Euclidean space
and on manifolds, but not the evolution of continuous-time Markov chains on discrete spaces.
Indeed, as observed by J. Maas (see | , Remark 2.1]) the heat flow induced by an
irreducible and reversible Markov kernel on a finite set X cannot* be 2-absolutely continuous
in (PQ(X), Wg). The missing ingredient here is an analog of the Benamou—Brenier formula.
The gradient-flow description in this setting was recovered with the introduction of an alternative
distance W by J. Maas | |, A. Mielke | ], and S.-N. Chow, W. Huang, Y. Li, and

H. Zhou [ |. Its definition resembles the Benamou—Brenier formula. Let G = (X, F)
be a finite undirected graph (i.e, £ C X x X is symmetric), let 7 € P(X) be a reference
measure, let w: £ — R, be a symmetric weight function, let 0(a,b) = fol asbt—* ds

denote the logarithmic mean. Given mg, m; € P(X), we write CEg(mg, m;) for the set of
all (my, Ji)teo such that ¢ — m, € P(X) connects mg to m4, each J; € R¥ is antisymmetric,

i.e., Ji(x,y) = —Ji(y,x), and the following discrete continuity equation is satisfied:
omu(z)+ Y. Jiz,y)=0 forall z € X . (1.4.1)
yeX : (z,y)eE
We set

<
SN—
T

1
1 J,
W2 (mg, my) = min / — Z [Je(
(me,Ji)t€CEG(mo,m1) Jg 2(as,y)eE(9(mt((9§) mt((?j))
m(x) ? w(y

Let us remark that it is also possible to construct analogs of W), for every p > 1; see | :
Remark 2.6]. For example, the counterpart of W is

1
1

min — Ji(x,y)|w(x,y) dt. 143

(m¢,J¢ )t €CEg(mo,m1) 0 2 (z§)6E| t( y)| ( y> ( )

Beyond gradient flows in the metric space induced by W (see also [ , ]), research

around this topic has mainly developed in two directions: functional inequalities for Markov

chains | , , , , ], and discrete-to-continuum limits | ,

, , , , , , ]. The latter—which is the subject
of | |, Chapter 4—deals with the following problem: If G, = (X,,, E,) is a sequence
of graphs embedded in R? (or a manifold) that, in the limit, tend to fill the space, can
we say that the corresponding (suitably rescaled) distances W, (or variants thereof) are
closer and closer to a Wasserstein distance? The graph G, can represent, for instance, a
numerical discretization of the space, or a model of atoms or neurons. In practice, GG,, is
typically periodic [ , , ] or randomly sampled [ : : ].
The question posed above is natural, given the similarity between the definition of ¥V and
the Benamou—Brenier formula for W5. A positive answer may allow to infer properties
of the space (P(Xn),Wn) from those of the well-studied (PQ(Rd),WQ), and to ensure
consistency of numerical schemes to compute Wasserstein distances or Wasserstein gradient
flows in Py(R?) [ : ].

The work | | (Chapter 4), coauthored with L. Portinale, builds upon [ ] by
P. Gladbach, E. Kopfer, J. Maas, and L. Portinale, and answers a question that remained

*unless one starts at the equilibrium

13



1. INTRODUCTION

e s Y v
S oz

‘\
0
o
N
L

Q\
:
(:\:\
&:Q‘»
|
-
S\

(\
;
(:\:\
o
.
.
A

\‘\
N
N
W
)

Q\
X
(:\:\

o
:
;
A

e

L AL AT A

W
g
!

NN
¢
W
;i
o

Figure 1.5: Successive scalings of a periodic graph.

open in this previous work. The problem is the I'-convergence of dynamical transportation
functionals—i.e., generalizations of WW—for periodic graphs in the large-scale limit. Given is
a Z%-periodic graph G = (X, E) in R%. For ¢ > 0, we set X, == ¢X/Z% and E, .= ¢E /77,
which define a graph G. in the flat torus ']I‘d = Rd/Zd. We fix a convex, local, and lower
semicontinuous cost function I ': RY x R¥ — R U {400}, and suitably define a rescaled
version F,: RY x R — R U {+o0}. Hence, we define the rescaled action functional

1
A((m, B, = / Fo(my, Jy) dt, (1.4.4)
0
and the minimal action functional (or dynamical transportation functional)

MAE(mo, ml) = lIlf AE((mt, Jt)t) y Mo, M1 € P(XE) . (145)

(m¢,J¢)t€CEg, (mo,m1)

For example, the choice

2

F(m,J):1 /()] wo(z,y), m: X -R,, J:E—=R
(ea)ehacony 0 (“;;(g;), “;;é?)
(1.4.6)
yields® M A, = W for G.. The main result of | | is the I-convergence of both A,
and MA.. More precisely:

L[ , Theorem 5.1]: Under the assumption that F' grows at least linearly (in the

sense of Assumption 4.2.8), the functionals A, T-converge, as ¢ — 0, to a certain

functional Ayom, which can be characterized by a cell formula (see | , Defini-

tion 4.6]). The assumption on F is satisfied by the discrete analogs of all p-Wasserstein
distances with p > 1.

2. | , Theorem 5.10]: Under an assumption of superlinear growth at infinity on F
(see Remark 4.2.6), the functionals M.A, I'-converge, as ¢ — 0, to
MApom (po, p1) = inf Apom(p, V) tio, 1 € P(T?), (1.4.7)

(m,v)ECE(po,p1)
where CE(1, t1) is a set of generalized solutions to the continuity equation with p =
Rdt € 73((0, 1) de) connecting jg to j11, and v being a vector measure on (0, 1) x T¢;

see Definition 4.2.1.° The assumption of superlinearity on F' is satisfied by the discrete
analogs of the p-Wasserstein distances for p > 1, but not for p = 1.

Sby suitably choosing w and 7 in (1.4.2) in terms of w and 7
®When (u,v) € CE(uo, 1), the measure p disintegrates as pu = p; @ dt, but t — p; € P(T9) is not
necessarily continuous; see | , Lemma 3.13].
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Figure 1.6: Schematic proof of the semicontinuity of MA,,. On the left: The boundary
condition may not pass to the limit. On the right: The modified curves of measures t — u?’é.

In the case where I is given by (1.4.6), one deduces (| , Corollary 5.3]) the convergence
of MA, to the 2-Wasserstein distance on P(T%) with respect to some underlying metric d on
the torus. Whether or not d is the Euclidean metric depends on an isotropy condition on the
graph G see | |

The main contribution in | ] is the following.

Theorem 1.4.1 (Portinale—Q., Theorem 4.3.9 (informal)). The convergence

MA S MApow  ase— 0, MApom as in (1.4.7), (1.4.8)

holds when one of the following two is satisfied:

1. the function F' has linear growth at infinity, or

2. F does not depend on the variable m.

In this way, we obtain convergence, e.g., in the previously excluded case of the discrete “1-
Wasserstein” minimal action; see (1.4.3). In this specific case, we additionally prove that the
functional MA},.,, is, in fact, a 1-Wasserstein distance, but never with respect to the Euclidean
metric if d > 2, which is a significant difference compared to the case p = 2 described above.

Theorem 1.4.2 (Portinale-Q., Proposition 4.4.4). If

_ 1 _
F(m,J) == > |J(z, )| w(z,y), m: X >Ry, J:E—R, (149)

(z,y)EE 1 2€[0,1)4

then MAy,,, is the 1-Wasserstein distance on P(Td) with respect to an underlying dis-
tance d: T¢ x T¢ — R, that depends on G and @. This distance is induced by a norm||-||
on R? via the formula

2€Z4

and ||-|| is a crystalline norm, i.e., the unit ball for||-|| is a polytope. Consequently, ||| can be

equal to the Euclidean norm only in dimension d = 1.

To conclude, let us briefly discuss how to prove that MAy,,, defined by (1.4.7) is lower
semicontinuous in the case of asymptotically linear F'. A posteriori, this property follows

from the I'-convergence, but its direct proof reveals the main difficulty in proving M A, RN
MA}om and how to solve it. Let (i, u}), be a sequence of pairs of measures weakly
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converging to (fig, fi;). For every n, let us choose an approximate minimizer (u",v") €
CE(uf, 7)), i.e., such that Apom (p™, V™) = MAyom (ug, #7). Up to extracting a subsequence,
we can assume convergence (u”,v™) — (u,v). If F is not superlinear, the obtainable
integrability bounds on (u™, v™) are insufficient to ensure that fi,, fi; are equal to the boundary
values jiy—, j14—1 of the limit curve ¢ — p; (where pu; @ dt = p); see Figure 1.6. Therefore,
might not be an admissible competitor for the problem defining MA o (fg, f11). Our solution is
to perturb each (u", V") into (u™°, v™%) by squeezing it into a smaller time interval (8,1 — ),
and defining u™° constantly equal to i (resp. p}) in the interval (0,8) (resp. (1 — 6, 1)).
This procedure does not significantly change the value of the action Ay, and the new
sequence (u™?, v™?), converges to some (u®, %) that satisfies the continuity equation and
such that ¢ +— ¢ is constantly equal to fi, (resp. ji,) for t € (0,9) (resp. t € (1 —§,1));
hence, it has the desired boundary conditions. At this point, we use the lower semicontinuity
of Apom on the sequence (u™?, v™9),—which, by | ], holds also when F is not
superlinear—and conclude with the chain of inequalities

n,0
)

Vnﬁ)

MAhom(ﬁOa 1[1/1) S Ahom(l*l’éa Vé) § hTrngolf Ahom(u’

~ lim inf Apom (p", V") = lim inf MApom (146, 17) -

1.5 Quantization of measures

Discretizing measures is a problem that frequently arises in applications to economics (urban
planning), numerics (numerical integration), data science (clustering and data compression),
and many other fields; see Section 5.1.5. As Wasserstein distances generalize the Euclidean
metric, they provide a natural way to quantify the error to be minimized in the discretization
process.

Fix p>1, n € Ny, and pu € P,(R?). The n-th optimal quantization error of order p for y is

eon(p) = min AW, (. pn) + Fsupp(pn) <} (1.5.1)

In other words, for a chosen number n, the problem (1.5.1) seeks the “best” compressed
description of 1 on n points. One equivalent formulation” is the following. Every set of n
points 71, ..., z, € R? determines a Voronoi tessellation of R? (see Figure 1.7), i.e., the sets

V;::{:ve]Rd : |x—:v2-|S|:B—a:j|forallj€{1,...,n}}, i=1,....n,

and the error e, ,,(11) is given by

One of the most fundamental results in quantization theory is the asymptotic behavior

of e,, (1) as n — oo, found by P. L. Zador | : |; see also [ |.
Theorem 1.5.1 (Zador | , Theorem 6.2]). Let p € Py(R?) for some 6 > p and let p be
the density of the absolutely continuous part of p. Then:
dtp
Jin ) =y [ o) ac) (152
Rd

"We assume here, for simplicity, that j is absolutely continuous.
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Figure 1.7: A Voronoi tessellation of R2.

where the optimal quantization coefficient ¢, 4 is a positive constant defined by

Up.d = igl\gl n'/de, , <d$|[071]d) : (1.5.3)

n

The subject of | | (Chapter 5) is a natural—albeit less extensively studied—variant of
the quantization problem (1.5.1): optimal empirical quantization. Given 1 € P,(R?), we are
interested in the problem

pn€Pp(RY) i=1

1 n
epn(p) = min {Wp(,u,,un) L = > 4, for some zy,...,x, € Rd} , (1.5.4)

which defines the n-th optimal empirical quantization error of order p for yi. Namely, we
consider the same minimization as in (1.5.1), with the difference that admissible competitors
are restricted to sums of n equally weighted Dirac deltas. More precisely, we investigate the
asymptotics for épﬁn(,u) and find, as a main result, an adapted version of Zador's theorem.

Theorem 1.5.2 (Q., Theorem 5.1.1). Assume that 1 < p < d, let p* = ;lf”p be the Sobolev

conjugate of p, let u € Py(RY) for some § > p*, let p be the density of the absolutely
continuous part of u, and let supp u® be the support of the singular part of . Then:

1/p
Ipd (/]Rd\ ( )p(x)ﬁp dx) < lim inf n%, (1), (1.5.5)
supp(p®
1/p
lim sup n 98,0 (1) < Gy ( /R , plz) T dx) , (1.5.6)

where

Qpd = ningl nl/depm (dx|[0y1]d> >0 and q,,= ningl nl/dépﬂ (dx|[0,1]d> >0. (15.7)

The main novelty of this theorem is the identification—in both the lower and the upper

_ 1/p
bound—of the prefactor <f pdTp dm) (when supp(u®) is p-negligible). Note that this
is different from the one in Zador's theorem, but it appears in other related discretization
problems, e.g. | ]. We provide an heuristic derivation in Section 5.2.

The existence of the limit of nl/dépﬁn(u) remains, in general, an open problem, but we establish
it in dimension d = 2 (with p < 2) for general measures, and in arbitrary dimension for certain
classes of measures. Note that the identity ¢, 4 = g, ;—combined with Theorem 1.5.2—would
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essentially imply the existence of the limit. Whether this equality holds is a problem closely
related to an open conjecture by A. Gersho | ]

The case p > d is more complex. In this regime, “many” measures exhibit the error asymptotic

lim sup n'/?¢,,,, (1) = 0o,
n—oo
for example all those having compact and disconnected support; see Example 5.4.4. Nonethe-
less, we prove that there is a class of regular measures for which €, (1) = n-,

Theorem 1.5.3 (Q., Corollary 5.1.4 (simplified)). Let 2 C R? be an open, convex, bounded
set with Ct'-regular boundary. Let p: Q) — R be a uniformly positive and globally Hélder
continuous probability density. Then, for every p > 1:

0 < liminf n*%, ,(pdz) < limsupn'/?e,,(pdz) < co. (1.5.8)

n—oo

One of the fascinating aspects of quantization lies in the combination of elementary combina-
torial, geometric, and measure-theoretic arguments with powerful tools from optimal transport
theory. As a first example, consider the inequalities (1.5.5) and (1.5.6). A key property of
the p-Wasserstein distance that we employ in proving the upper bound is its convexity:

WP (At + (1= N, W+ (1= \p?) S A2, v) + (1= NWE(u?,0%)
pt i vt v e Py(RY, A eo,1].

Conversely, to get the lower bound, we need some sort of concavity. Surprisingly, the boundary
Wasserstein distance by A. Figalli and N. Gigli [ ], which we described in Section 1.2,
enjoys such a property (and trivially bounds W, from below). More precisely, if 2;,...,€,
are open and pairwise disjoint subsets of a set 2 C R?, then®

W%, (ks v) = D Wi, (1

Qi7ljﬂi>7 ,U,I/GM(Q),
i=1
see [ , Section 2.2]. A second example is contained in the proof of Theorem 1.5.3,
where we use a result by S. Chen, J. Liu, and X.-J. Wang | | on the (global) regularity

of optimal transport maps. Additionally, let us mention that the study of random matching, a
combinatorial problem similar to quantization, has also benefited from advanced tools from
PDE theory and Fourier analysis; see | , ]

8We specify with a subscript the set on which the boundary Wasserstein distance is constructed.
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CHAPTER

Variational structures for the
Fokker—Planck equation with general
Dirichlet boundary conditions

This chapter contains the following publication [ |:

F. Quattrocchi. Variational structures for the Fokker—Planck equation with general Dirichlet
boundary conditions. To appear in Calculus of Variations and Partial Differential Equations,
2025+, CCBY 4.0. doi:10.1007/s00526-025-03193-1

This version of the article has been accepted for publication, after peer review but is not
the Version of Record and does not reflect post-acceptance improvements, or any correc-
tions. The Version of Record is available online at: http://dx.doi.org/10.1007/
s00526-025-03193-1.

Abstract

We prove the convergence of a modified Jordan—Kinderlehrer—-Otto scheme to a solution
to the Fokker—Planck equation in 0 @ R? with general—strictly positive and temporally
constant—Dirichlet boundary conditions. We work under mild assumptions on the domain,
the drift, and the initial datum.

In the special case where ) is an interval in R!, we prove that such a solution is a gradient
flow—-curve of maximal slope—within a suitable space of measures, endowed with a modified
Wasserstein distance.

Our discrete scheme and modified distance draw inspiration from contributions by A. Figalli
and N. Gigli [J. Math. Pures Appl. 94, (2010), pp. 107-130], and J. Morales [J. Math. Pures
Appl. 112, (2018), pp. 41-88] on an optimal-transport approach to evolution equations with
Dirichlet boundary conditions. Similarly to these works, we allow the mass to flow from/to
the boundary 92 throughout the evolution. However, our leading idea is to also keep track of
the mass at the boundary by working with measures defined on the whole closure €.

The driving functional is a modification of the classical relative entropy that also makes use of
the information at the boundary. As an intermediate result, when 2 is an interval in R, we
find a formula for the descending slope of this geodesically nonconvex functional.
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VARIATIONAL STRUCTURES FOR FOKKER—PLANCK WITH GENERAL DIRICHLET BC

2.1 Introduction

The subject of this paper is the linear Fokker—Planck equation

(i,ot — div (Vpy + pVV) (2.1.1)
on a bounded Euclidean domain 2 C R? combined with general—strictly positive and constant
in time—Dirichlet boundary conditions, and with nonnegative initial data. We want to approach
this problem by applying the theory of optimal transport, which, since the seminal works of
R. Jordan, D. Kinderlehrer, and F. Otto [ : : |, has proven effective in the
study of a number of evolution equations.

Existence, uniqueness, and appropriate estimates are often consequence of a peculiar structure
of the problem. Important instances are those PDEs which can be seen as gradient flows. In
fact, it has been proven that several equations, including Fokker—Planck on R?, are gradient
flows in a space of probability measures endowed with the 2-Wasserstein distance

Wa(,v) = inf J JERTREIEE

where the infimum is taken among all couplings v between p and v, i.e., measures with
marginals 71'#’}/ = 1 and wify = v. For such PDEs, existence can be deduced from the
convergence of the discrete-time approximations given by the Jordan—Kinderlehrer—Otto
variational scheme (also known, in a more general metric setting, as De Giorgi's minimizing
movement scheme [ )]

2 T d
+ WQ(MM) . neN, (2.1.2)

Pln+1)r AT € argmin,, (.F(u) o

where F is a functional that depends on the equation, and 7 > 0 is the time step.

When applied on a bounded Euclidean domain, this approach produces solutions with Neumann
boundary conditions. This fact is inherent in the choice of the metric space (probability measures
with the distance WW3) in which the flow evolves. Intuitively, Neumann boundary conditions
are natural because a curve of probability measures, by definition, conserves the total mass;
see also the discussion in [ ].

In order to deal with Dirichlet boundary conditions, A. Figalli and N. Gigli defined in | |
a modified Wasserstein distance Wb, that gives a special role to the boundary 0¢2. Despite
measuring a distance between nonnegative measures on 2, the metric Wb, is defined as an
infimum over measures v on the product of the topological closures Q) x €2, and only the
restrictions of the marginals 7,y and 7% to  are prescribed (see the original paper [ |
or Section 2.3.6). In this sense, the boundary 02 can be interpreted as an infinite reservoir,
where mass can be taken and deposited freely. The main result in | | is the convergence
of the scheme

pdz, p;,. dx)
2T

7 = i (1 - +1)d +Wb§( cN
Platyr € argmin, | | (plogp—p x : n € Ny,

as 7 J 0, to a solution to the heat equation with the constant Dirichlet boundary condi-
tion plag = 1. More generally, it was observed in | , Section 4] that the same scheme
with a suitably modified entropy functional converges to solutions to the linear Fokker—Planck
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equation (2.1.1) with the boundary condition p|sq = e~V In particular, this theory covers the
heat equation with any constant and strictly positive Dirichlet boundary condition.

In a more recent contribution, J. Morales | ] proved convergence of a similar discrete
scheme for a family of reaction-diffusion equations with drift, subject to rather general Dirichlet
boundary conditions. In this scheme, the distance between measures is replaced by 7-dependent
transportation costs. Morales’ work, together with | ], is the starting point of the present

paper.

Related literature

The case of the heat flow with vanishing Dirichlet boundary conditions was studied by
A. Profeta and K.-T. Sturm in | ]. They defined ‘charged probabilities’ and a suitable
distance on them. This metric is built upon the idea that mass can touch the boundary and
be reflected, as with the classical Wasserstein distance, but possibly changing the charge
(positive to negative or vice versa). One of their results is the Evolution Variational Inequality
(see [ ]) for such a heat flow.

D. Kim, D. Koo and G. Seo | | adapted the setting of | ] to porous medium
equations O;p; = Ap® (a > 1) with constant boundary conditions.

M. Erbar and G. Meglioli | | generalized the result of | | to a larger class of
diffusion equations with constant boundary conditions. They also established a dynamical
characterization of Wh,, in the spirit of the Benamou—Brenier formula for W5 | ]

J.-B. Casteras, L. Monsaingeon, and F. Santambrogio [ | found the Wasserstein gradient
flow structure for the equation arising from the so-called Sticky Brownian Motion, i.e., the
Fokker—Planck equation together with boundary conditions of Dirichlet type that also evolve in
time subject to diffusion and drift on the boundary. Namely, denoting by 0,, the outer normal
derivative,

op=Ap in Q,
p=r on 012, (2.1.3)
Oy = Apay — Onp  in ON).

M. Bormann, L. Monsaingeon, D. R. M. Renger, and M. von Renesse | | recently
proved a negative result. If we modify (2.1.3) by weakening the diffusion on the boundary
(i.e., we multiply Ayoy by a factor a € (0, 1)) the resulting problem is not a gradient flow of
the entropy in the 2-Wasserstein space built from any reasonably regular metric on €.

Our contribution

In this work, we present two novel results:

1. We prove convergence of a modified Jordan—Kinderlehrer—Otto scheme to a solution
to the Fokker—Planck equation with general Dirichlet boundary conditions under mild
regularity assumptions. To do this, we adopt a different point of view compared
to | , , ]: our scheme is defined on a subset . of the signed measures
on the closure Q, rather than on measures on ).
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2. In dimension d = 1, we determine that this solution ifsvalso a curve of maximal slope for
a functional # in an appropriate metric space (., Wbs).

Let us now explain in detail the extent of these contributions and provide precise statements.

Convergence of a modified JKO scheme

We look at the boundary-value problem

d
Pt = div (th + ptVV) in Q,

a”
piloq = eV on 9Q, (2.1.4)
Pt=0 = Po -

Here, 2 C R? is a bounded open set and py, ¥,V are given functions, with py > 0. The
function ¥ can be tuned to obtain the desired boundary condition.

We introduce the set .# of all signed measures on Q with
plo >0 and u(Q)=0. (2.1.5)

We also define
E(p) ::/(plogp+(V—1)p+1> dz, p: Q— Ry, (2.1.6)
Q

and, for u € .7,
5(p)+/ﬁfduag if plo = pdz,
Hp) = R

00 otherwise.

(2.1.7)

In Section 2.3.7, we will define a transportation-cost functional 7 on .. With it, we can
consider the scheme

o ) neNy, 7>0, (2.1.8)

[{ns1)r € argMin (”H(M) +
nes

starting from some pf = o € -, independent of 7, such that the restriction fi|q is absolutely

continuous with density py. These sequences are extended to maps ¢ — p, constant on the

intervals {m’, (n+ 1)7’) for every n € Ny, namely:

0=y, tE[0,00). (2.1.9)

Theorem 2.1.1. Assume that [, polog podz < oo, that W: Q — R is Lipschitz continuous,
and that' V e Wb (Q) N L>(Q). Then:
1. Well-posedness: The maps (t — pj ), resulting from the scheme (2.1.8) are well-defined
and uniquely defined: for every n and 7, there exists a minimizer in (2.1.8) and it is
unique.

1By vV e W&;C‘H(Q) we mean that for every w € €2 open there exists p = p(w) > d such that V € W1P(w);

see also Definition 2.3.1.
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2. Convergence: When 7 — 0, up to subsequences, the maps (t — ,uﬂg) converge
T

pointwise w.r.t. the Figalli-Gigli distance Wb, to a curve of absolutely continuous mea-
sures t — p;dzx. For every q € [1, 7%, convergence holds also in L110C<(0, 00); L1(R)).

3. Equation: This limit curve is a weak solution to the Fokker—Planck equation (2.1.1);
see Section 2.3.4.

4. Boundary condition: The function t — (\/ptev — 6‘1’/2> belongs to the space
110,00 W3 ().

loc
Remark 2.1.2. We assume that ¥ is defined on the whole set Q) in order to make sense of
the inclusion \/pe¥ — e¥/2 € W, *(Q) also when 9 is not smooth enough to have a trace
operator. Note that, if we are given a Lipschitz continuous function ¥y: 02 — R, we can
extend it to a Lipschitz function on € via

Remark 2.1.3. If V is Lipschitz continuous only in a neighborhood of OS2, then it is possible
to find U, Lipschitz as well, in order for e~ to match any uniformly positive and Lipschitz
boundary condition.

Remark 2.1.4. Throughout the proof of Theorem 2.1.1, we also show:

= time contractivity of suitably truncated and weighted L7 norms of u] | (see Proposi-
tion 2.5.15),

= upper bounds on the L7 norms of u|q, for every t > 0 (see Lemma 2.5.23),

= upper bounds on time averages of the W2 norm of \/pfeY, where p] is the density
of u]|o (see Lemma 2.5.22).

Furthermore, these estimates (assuming g € [1, d%ll) in the first two) pass to the limit as 7 — 0,

i.e., analogous properties hold for the curve t — p,.

As mentioned, the conceptual difference between the present work and [ : : ]
is that we make use of signed measures on the full closure €. In this regard, our approach
is similar to those of [ , |. The idea is that, due to the boundary condition we
have to match, it is convenient to keep track of the mass at the boundary and to consider a
functional that makes use of this information (namely, #).

On a more technical note, although Theorem 2.1.1 is similar to | , Theorem 4.1], the
latter is not applicable to the Fokker—Planck equation (2.1.1) without reaction term due to
[ , Assumptions (C1)-(C9)] (see in particular (C7)). Furthermore, we achieve significant
improvements in the hypotheses:

» The boundary 0€) does not need to have any regularity, as opposed to Lipschitz and
with the interior ball condition.

= There is no uniform bound on p, from above or below by positive constants. Only
nonnegativity and the integrability of pglog pg are assumed.
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» The function V is not necessarily Lipschitz continuous. Rather, it is required to be
bounded and to have suitable local Sobolev regularity.

These weak assumptions make it more involved to prove Lebesgue and Sobolev bounds for s,
as well as the strong convergence of the scheme, which in turn allows us to characterize the
limit. Indeed:

» When pg is bounded, or lies in some L9, it is possible to propagate these properties
along t — puf|q; see [ , Proposition 5.3] and Proposition 2.5.15. With our weak
assumptions on pg, we are still able to propagate the L! bound, but also need to establish
suitable Sobolev estimates (see Proposition 2.5.9 and Lemma 2.5.22) and make use of
the Sobolev embedding theorem in order to get stronger integrability (see Lemma 2.5.23)

and convergence in L%OC((O, 00); Lq(Q)) (see Lemma 2.5.26).

= If OS2 is not regular enough, we cannot directly apply the Sobolev embedding theorem
for W2 functions. Since the Sobolev continuous embedding holds for W, functions
regardless of the domain regularity, we are still able to apply it after establishing suitable
boundary conditions for 1] |o; see Proposition 2.5.9.

= When V is not Lipschitz, we need an extra approximation procedure to prove that p] |
is Sobolev regular and satisfies a precursor of the Fokker—Planck equation; see Proposi-
tion 2.5.9 and Lemma 2.5.10.

= Another issue with 9 not being regular is in applying (a variant of) the Aubin—Lions
lemma to prove convergence of the scheme. One of its assumptions is a compact
embedding of functional spaces, which would follow from the Rellich—-Kondrachov
theorem if {2 were regular enough. To overcome it, we use the Rellich—-Kondrachov
theorem on smooth subdomains and take advantage of the integrability estimates to
promote local L? convergence to convergence in L7(€)); see Lemma 2.5.26.

Curve of maximal slope

Our second main result is a strengthened version of Theorem 2.1.1 in the case where (2 is
an interval in R! and V' € W2(Q). In this setting, we are able to define a true metric Wb,
on .¥, construct piecewise constant maps with the scheme

—2
. . Wby (1, pir,r)
Hint1)r € ar;%emm H(p) + —2 "

o or s HEN(),T>O,

(2.1.10)
ug = Mo,

for a fixed pg with pglq = po dx, show that they coincide with those of Theorem 2.1.1, and
prove that their limit is a curve of maximal slope in (., Wb,).

Theorem 2.1.5. Assume that Q = (0, 1), that fol polog podx < 0o, and that V € W12(0,1).
Then:

1. If 7 is sufficiently small, the maps (t — uj ), resulting from the scheme (2.1.10) are
well-defined, uniquely defined, and coincide with those of Theorem 2.1.1.
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2. When T — 0, up to subsequences, the maps (t — puj ), converge pointwise w.r.t. Wb
to a curve t — ;.

3. The convergence 11" |q —+ j]q also holds in Llloc(((), o0); L4(0, 1)) for every q € [1,00).
The curve t +— g is a weak solution to the Fokker—Planck equation. Denoting by p;

o, the map t — <\/pteV — 6\1;/2) belongs to LIQOC([O, 00); Wy (0, 1))

the density of i

4. The map t — p; is a curve of maximal slope for the functlona/ ‘H in the metric
space (-7, sz) with respect to the descending slope ‘8 ; see Section 2.3.5.

Within the general theory of gradient flows in metric spaces developed by L. Ambrosio, N. Gigli,
and G. Savaré in | ] (see [ | for an overview), the ‘curve of maximal slope’ is one of
the metric counterparts of the gradient flow in the Euclidean space. In the context of PDEs with
Dirichlet boundary conditions, other proofs of this metric characterization in a (Wasserstein-
like) space of measures are given in [ , , ]. To be precise, the result of | ,
Proposition 1.20] is an ‘Evolution Variational Inequality’ (EVI) characterization, which implies
a formulation as curve of maximal slope by | , Proposition 4.6]. By Proposition 2.8.5,
our functional H is not semiconvex and, therefore, we do not expect an EVI characterization
in our setting; see | , Theorem 3.2]. Let us also point out that the ‘curve of maximal
slope’ characterizations in [ : | use the relaxed descending slope (see [ :
Equation (2.3.1)]), which yields a weaker notion of gradient flow compared to ours. In
fact, establishing that the descending slope is lower semicontinuous is the main difficulty in
proving Theorem 2.1.5. Indeed, the lower semicontinuity of the slope is usually derived from
the geodesic (semi)convexity of the functional via | , Corollary 2.4.10], but H is not
geodesically semiconvex by Proposition 2.8.5.

Nonetheless, in dimﬂsion d =1, we are able to find an explicit formula for the descending
slope of H in (., Wh,) without resorting to geodesic convexity. As a corollary, we also give
an answer, again in dimension d = 1, to the problem left open in [ ] of identifying the
descending slope |Owy,E| of € with respect to the Figalli-Gigli distance Whs,.

Theorem 2.1.6 (see Corollary 2.6.5). Assume that V € W'2(0,1). For every p € L} (0,1),
we have the formula

1 2
4 (aﬂ/ eV) eV ify/peV — 1€ W(0.1),
Own,El* (p) = /o g P 0" (0.1) (2.1.11)

00 otherwise.

Additionally,

Own,E| is lower semicontinuous with respect to Wbs.

We believe that the same formula should hold true also in higher dimension. A similar open
problem is [ , Conjecture 2].

Plan of the work

In Section 2.2, we formally derive the objects (entropy and transportation functionals) that
appear in the schemes (2.1.8) and (2.1.10).

In Section 2.3, we introduce notation, terminology, and assumptions that are in place throughout
the paper, we recall some definitions from the theory of gradient flows in metric spaces, as well
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as the Figalli—Gigli distance of [ ], and we define rigorously the transportation functionals 7°
and Wh,.

In Section 2.4, we gather the main properties of these functionals and of the corresponding
admissible transport plans. In particular, we show that Wb, is a true metric when € is a finite
union of one-dimensional intervals.

In Section 2.5, we prove Theorem 2.1.1.

In Sections 2.6-2.7, we focus on the case where ) = (O’~> C R'. In Section 2.6, we
find a formula for the slope of H in the metric space (-, Wb,) and prove, as a corollary,
Theorem 2.1.6. In Section 2.7, making use of Theorem 2.1.1 and of the slope formula, we

prove Theorem 2.1.5.

Section 2.8 contains some additional results on TWbs. Particularly, we prove the lack of geodesic
A-convexity for H when 2 = (0, 1).

2.2 Formal derivation

Let us work at a completely formal level and postulate that a solution to the Fokker—Planck
equation (2.1.4) is the “Wasserstein-like” gradient flow of some functional F. By this we
mean the following:

1. the motion of p; in 2 is governed by the continuity equation

d

&Pt = — diV(pt'Ut) s (221)

for some velocity field vy,

2. the time-derivative of p; equals the inverse of the Wasserstein gradient of F at p, for
every t, in the sense that for every sufficiently nice curve s — f; of functions on 2
starting at fy = p; we have

A7t )

ds = —div(p,Vy). (2.2.2)

s=0

d
= —/(vt, Vi)pydr,  where —f
Q dS

s=0

As we want to retrieve the Fokker—Planck equation, a reasonable choice for F seems to be

Fo(pde) = /Q(plogp +(V-=1)p+ 1) dz . (2.2.3)

For a fixed t > 0 and a curve s — f, we have

d

d
GoFolfda) = [ (V+log £ fude

and, therefore,

d
&fo(fs dZL’)

= —/(V + log p;) div(p, V1)) dx
Q

s=0

- / (VV + Vlog pr), Vii)py dar — / Upu (Vi m) A
Q

o0
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where, in the last identity, we used the boundary conditions in (2.1.4). Let us choose
v; = —VV —Vlogp;,
which makes the continuity equation (2.2.1) true, since p; solves (2.1.4). Then,

d

&}—O(fs)

= _/<Utav¢>0t dl'—/ Up, (Vip,n) dad
5=0 Q o9

and we see that F is not the right functional because of the integral on the boundary. The
measure (Vi) m)p %1 on O) can be seen as the flux of mass (coming from f, = p;) that
is moving away from (2 along the flow s — f; at s = 0. Thus, if we let this mass settle on
the boundary, (Vi, n)p; %! is the time-derivative of the mass on 02. For this reason, it
makes sense to consider not just measures on §2, but rather on the closure €2, and to define

Flu) = Folpula) + / W dpilon.

Our entropy functional H is definedereciser like this, and, as we will see in Section 2.3, the
transportation functionals 7" and Wb, are extensions of Wb, to the subset . of the signed
measures on €, constructed so as to encode the idea that mass can leave () to settle on O
(and vice versa).

This argument is simple, but let us also emphasize the hidden difficulties:

= we assume low regularity on 0€2 and on the functions py and V;
= the transportation-cost functionals Wb2 and 7 will not be, in general, distances;

= the functional H is not bounded from below on . (if ¥ is nonconstant), nor it is strictly
convex. Indeed, it is linear along lines of the form R > | — p+In with u,n € % and n
concentrated on 0f);

= when (.7, %2) is a geodesic metric space, the functional H is not geodesically semi-
convex; see | , Remark 3.4] and Section 2.8.3.

2.3 Preliminaries

2.3.1 Setting

Throughout the paper, €2 is an open, bounded, and nonempty subset of R?. Without loss of
generality, we assume that 0 € 2. No assumption is made on the regularity of its boundary.

Three functions are given: the initial datum po: 2 — R, the potential V': 2 — R, and the
function ¥ : Q2 — R that determines the boundary condition. We assume that W is Lipschitz
continuous and that the integral fﬂ polog po dx is finite. In addition, we suppose that V is

bounded (i.e., in L>(€)) and in the set of locally Sobolev functions W,-4* (€2).2

ocC

Definition 2.3.1. We say that V € VVI})C‘H(Q) if, for every w € €2 open, there exists p =
p(w) > d such that V € WP (w).

2In particular, V € C(Q).
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The set .7 is the convex cone of all finite and signed Borel measures 1 on € such that (2.1.5)
holds.

Proposition 2.3.2. The set . is closed w.r.t. the weak convergence, i.e., in duality with
continuous and bounded functions on €.

Proof. If . > pu™ —, p, then u(Q) = lim, o pu"(2) = 0 and, for every f: Q@ — R,
continuous and compactly supported in €2,

[ rana= [ ran=tin [ rap =t [ 5 =o.

The conclusion follows from the Riesz—Markov—Kakutani theorem. O

The entropy functionals £: L (Q) — RU{oo} and H: . — RU{oo} are defined in (2.1.6)
and (2.1.7), respectively.

2.3.2 Convention on constants

The symbol ¢ is reserved for strictly positive real constants. The number it represents may
change from formula to formula and possibly depends on the dimension d, the set (2, the
functions V' and V¥, and the initial datum py. We also allow ¢ to depend on other quantities,
which are, in case, explicitly displayed as a subscript.

2.3.3 Measures

For every signed Borel measure p and Borel set A, we write p14 = ] for the restriction of p
to A. Similarly, and following the notation of | , |, if v is a measure on a product
space and A, B are Borel, we write 7% = 7,4 for the restriction of v to A x B. We use the
notation f, i for the positive and negative parts of a given measure i, and ||u|| for the
total-variation norm of y, i.e., the total mass of p + p_.

For every Borel function f and signed Borel measure y, we denote by y(f) the integral [ fdu.

On the set of the finite signed Borel measures on ), we also consider the (modified) Kantorovich—
Rubinstein norm (see | , Section 8.10(viii)])

il = (@] +sup {u(f) © F: @—R, Lip(f) <land f(0)=0}.  (231)

We write F.p for the push-forward of a (signed) Borel measure y via a Borel map F'. Often,
we use as F' the projection onto some coordinate: we write 7! for the projection on the ‘"
coordinate (or 7% for the projection on the two coordinates i and 7).

We denote by .#? the d-dimensional Lebesgue measure on R?. We also use the notation |A| =
Z4(A) when A C R? is a Borel set. We write §, for the Dirac delta measure at .
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2.3.4 Weak solution to the Fokker—Planck equation

We say that a family of nonnegative measures (1i):>0 on €2 is a weak solution to the Fokker—
Planck equation if:

1. it is continuous in duality with the space of continuous and compactly supported
functions C.(Q);

2. for every open set w € §, both ¢ — p;(w) and ¢ — [|VV]dpl, belong to L}OC([O, oo))
i.e., their restrictions to (0,¢) are integrable for every ¢ > 0;

3. for every ¢ € C?(Q2) and 0 < s < ¢, the following identity holds:

/wut —/god,us = /:/(A@— (Vip, VV)) dpsy dr . (2.3.2)

2.3.5 Metric gradient flows

The general theory of gradient flows in metric spaces was developed in | |; we refer to
this book and to the survey [ ] for a comprehensive exposition of the topic. We collect
here only the definitions we need from this theory.

Let (X,d) be a metric space, let [0,00) 5 ¢ +— z; be an X-valued map, and let f: X —
R U {oo} be a function.

Definition 2.3.3 (Metric derivative | , Theorem 1.1.2]). We say that (2)¢c[o,00) is locally
absolutely continuous if there exists a function m € L%OC([O, oo)) such that

d(ze 7)) < / m(r) dr (2.3.3)

for every 0 < s < t. If (4)ic[0,00) is locally absolutely continuous, for éﬁém)—a.e. t there exists
the limit

and this function, called metric derivative, is the Giﬂ[é’w)—a.e. minimal function m that satisfies
(2.3.3); see | , Theorem 1.1.2].2

Definition 2.3.4 (Descending slope [ , Definition 1.2.4]). The descending slope of f
at € X is the number
1) - £)
_ T -
‘8]”‘(:1:) = ‘8df‘(x) = hmdsup 0 : (2.3.5)

Yy—x

where a; = max {0, a} is the positive part of a € RU {£00}. The slope is conventionally
set equal to oo if f(z) = oo, and to 0 if x is isolated and f(x) < oco.

3In [ , Theorem 1.1.2], the completeness of the space is assumed but not necessary, as can be easily
checked.
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Definition 2.3.5 (Curve of maximal slope [ , Definition 1.3.2]). We say that a locally
absolutely continuous X-valued map (2):cj0,00) IS @ curve of maximal slope (with respect
to |0qf]) if t — f(x;) is a.e. equal to a nonincreasing map ¢: [0, 00) — R such that

. 1 1 2
ot) < — gl — i‘ﬁdf‘ (2) for L -ae. t. (2.3.6)

Definition 2.3.5 is motivated by the observation that, when (X, d) is a Euclidean space and f
is smooth, the inequality (2.3.6) is equivalent to the gradient-flow equation

d
El't = —Vf<ﬂ7t), t Z O,
see for instance [ , Section 2.2]. As noted in [ , Remark 1.3.3],* even in the general

metric setting, (2.3.6) actually implies the identities

—o(t) =|iy|* = ‘8df’2(xt) forae. t > 0.

2.3.6 The Figalli—Gigli distance

We briefly recall the definition and some properties of the distance W, introduced in [ ].
We denote by M5(€2) the set of nonnegative Borel measures i on 2 such that

. 2
/yle%fﬂm —y|"du(zr) < oo, (2.3.7)
and, for every nonnegative Borel measure v on 2 x , define the cost functional

Cly) = / & — g2 dr(z,p). (23.8)

Definition 2.3.6 ([FG10, Problem 1.1]). Let p,v € M>(Q2). We say that a nonnegative
Borel measure v on €2 x € is a Whe-admissible transport plan between p and v, and
write v € Admyyy, (1, v), if

(7?71#7)9 =pu and (7@7)9 =v. (2.3.9)

The distance Why(pu, v) is then defined as

Whby(p,v) = inf{ C(v) : v € Admyp, (1, 1/)} . (2.3.10)

In | , Section 2], it was observed that for every p, v € My(€2) there exists at least one
W be-optimal transport plan, that is, a measure v € Admyy,, (1, v) that attains the infimum
in (2.3.10).

Later, we will make use of the following consequences of | , Proposition 2.7]: the
convergence w.r.t. the metric Wb, implies the convergence in duality with C,(£2), and it is
implied by the convergence in duality with C(£2).

4Once again, completeness is not necessary.
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2.3.7 Transportation functionals

We now define the transportation functionals 7 and Why that appear in the schemes (2.1.8)
and (2.1.10).

Definition 2.3.7. For every u,v € .7, let Admm2(u, v) be the set of all finite nonnegative
Borel measures v on © x € such that

(1) (7hv), = ne,
(2) (772‘757>Q -

(3) Ty —mhy=p—v.
We call such measures Wby-admissible transport plans between 1 and v. We set

mz(p, V) = inf{ C(y) : ve€ Admﬁn(p, 1/)} , (2.3.11)

and write
Opty, (V) = argmin  C(v) (2.3.12)
"/GAdm‘;va2 (p,v)
for the set of all V[A//bg—optima/ tranport plans between p and v.
Remark 2.3.8. There is some redundancy in the properties (1)-(3), indeed,
(H+3)=(2) and (2)+(3)=(1).

Definition 2.3.9. For every u,v € ., let Admy(u,v) be the set of all measures v €
AdiT;b2 (i, v) such that, additionally,

(4) 756 = 0.

We define the T-admissible/optimal tranport plans as in (2.3.11) and (2.3.12), by replac-
ing Wby with T.

Remark 2.3.10. If v € Admy(u,v) for some p,v € .7, then

| +hg|| = lleall +lvall - (23.13)

Il <

Remark 2.3.11. Fix pu,v € .. For every n € . concentrated on 0f), it is easy to check that
Admg; (p+n,v+n) = Admg; (p,v) and  Admy(u+n,v+n) = Admy(u,v).
Hence,
Wby +n,v+1) = Why(u,v) and T(u+n,v+n)=T(uv). (2.3.14)
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(a) Why-admissible (b) Who-admissible (c) T-admissible

Figure 2.1: Examples of admisssible plans. Red (resp. blue) regions are those with an abundance
of initial (resp. final) mass 1 (resp. ). Admissible plans for Wby do not have any restriction
on the mass departing from and arriving to 9€). Admissible plans for Wby must agree—in
the sense of Condition (3)—with the configurations p, v also on Jf2. Admissible plans for T
are mg—admissible and, additionally, do not move mass from 0f) to 0f2.

Let us briefly comment on these definitions. Conditions (1) and (2) are precisely the same
as (2.3.9). They are needed to ensure that the mass that departs from (resp. arrives in) Q
is precisely po (resp. vg). Condition (3) is needed to also keep track of the mass that is
exchanged with the boundary. Namely, it ensures that, on each subregion of A C Q (possibly
including part of the boundary, which was neglected by Conditions (2)-(3)), the mass v(A)
after the transportation equals the initial mass j(A), plus the imported mass v(2 x A), minus
the exported mass (A x ). Observe that, since 1 and v normally have a negative mass on
some subregions of 02, it does not make sense to naively impose W%ﬁ = p and W%ﬁ = .

The difference between Wb, and T is Condition (4): T-admissible transport plans cannot
move mass from 02 to 9€2. This results in the loss of the triangle inequality.

Example 2.3.12. Consider, for the domain €2 := (0, 1), the measures
pr=0—0€S, p=04p—060ecs, u=0ecs.

The transport plans 3 = d(0,1/2) and 723 = d(1/2,1) are T-admissible, between 11, and ps,
and between py and ps, respectively. Thus, both T (uy, pe) and T (g, u3) are bounded
above by 1/2. However, there is no vi3 € Admy(pq, 3), whence 7 (i1, pu3) = oo. Indeed,
Conditions (1) and (2) in Definition 2.3.7 would imply (713)& = (713)% = 0. Together with (4)
in Definition 2.3.9, this means that 7,3 equals the zero measure, which contradicts (3) in

Definition 2.3.7.

Nonetheless, it is shown in Proposition 2.8.1 that Condition (4) is needed in dimension d > 2,
because the information about s and vgg may otherwise be lost. This does not happen
when ) is just a finite union of intervals in R!, because points in 92 are distant from each
other. We will see that, in this case, Definition 2.3.7 defines a distance.

These remarks reveal part of the difficulties in building cost functionals for signed measures
that behave like W5. See [Maill] for further details. However, it seems at least convenient to
use signed measures, given that a modified JKO scheme that mimics [FG10] should allow for
a virtually unlimited amount of mass to be taken from points of 0f2, step after step.
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2.4 Properties of the transportation functionals

We gather some useful properties of 7 and Whs.

2.4.1 Relation with the Figalli—-Gigli distance
For every u, v € ., we have the inclusions

Admy(p,v) © Admyz (1,v) © Admp, (po, ve) -
As a consequence,

Wby (pa, va) < Why(p, v) < T(p,v), €. (2.4.1)

In fact, I/IA//b2 and 7 can be seen as extensions of Wby in the following sense.

Lemma 2.4.1. Let p,v be finite nonnegative Borel measures on ). For every i € ./
with i, = j1, we have the identities

W (p, v) = Digf/{v’v?)g(g, p) g =v}= inf {T(,0) : vo=v} . (2.4.2)

Proof. In light of (2.4.1), it suffices to prove that
inf (T(.7) : 7 = v} < Why(u.v).
Let v € Admyyy, (i, v). Define 7 == v — 7452 and
D=+ — T

It is easy to check that g = v, that ¥ € Adm(f, ), and that C(7) < C(v). As a
consequence,

inf {T(i,7) : 7 = v} /€0,

and we conclude by arbitrariness of ~. O

2.4.2 Relation with the Kantorovich—Rubinstein norm
Interestingly, an inequality relates Wb, and Nl iem -
Lemma 2.4.2. For every u,v € ., we have
Wy (1, v) < diam ()| — v - (2.4.3)

Proof. Define the nonnegative measures

fi = pio + (foo — Voo)+, V= vo + (oo — Voa)-

and note that fi — 7 = p — v. In particular, 1(Q2) = ().

Let v be a coupling between i and 7, i.e., v is a nonnegative Borel measure on Q x Q such
that 73,y = fi and w5y = ©. Notice that 7 is W b,-admissible between 1 and v. Therefore,

Whi () < () = / & — y*dy < diam(©) / =y dy.

After taking the infimum over v, the Kantorovich—Rubinstein duality [ , Theorem 8.10.45]
implies

=72 . - . .
Why(p, v) < diam(Q)[n — || g = diam(Q)][p — O
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2.4.3 7T is an extended semimetric

The functional 7 may take the value infinity and does not satisfy the triangle inequality; see
Example 2.3.12. Nonetheless, we have the following proposition, which we prove together
with two useful lemmas.

Proposition 2.4.3. The functional T is an extended semimetric, i.e., it is nonnegative,
symmetric, and we have
T(p,v)=0 <= pu=v. (2.4.4)

Lemma 2.4.4. Let (u")nen, and (V")nen, be two sequences in .7, and let v € Admr(u", v"™)
for every n € Ny. Assume that

(a) p™ —, p and v"™ —,, v weakly for some i, v,
(b) ud —, po and v —, vq setwise, i.e., on all Borel sets,

(c) ¥ —n v weakly.

Then p,v € . and v € Admy(u, v).

In particular, for any u,v € .7, the set Adm(u, v) is sequentially closed with respect to the
weak convergence.

The proof of this lemma is inspired by part of that of | , Lemma 3.1].

Proof. The total mass of 4" is bounded and, therefore, the same can be said for the total
mass of (v")8, (7")2%, (v")%,. Hence, up to taking a subsequence, we may assume that

(Y2 =, o1 in duality with C(Q x Q)
(Y& =, o, in duality with C'(Q x 09) ,
(Y, —, o3 in duality with C'(9Q x Q)

for some o1, 09, 03. In particular, v* —,, v := 01 + 02 + 03.

We claim that o1, 05, 03 are concentrated on §2 x Q, Q x 0€, 02 x () respectively. If this is
true, then Condition (4) in Definition 2.3.9 for  is obvious, and those in Definition 2.3.7

follow by testing them with a function f € C,(2) for every n and passing to the limit. For
instance, to prove Condition (1) in Definition 2.3.7, we write the chain of equalities

pal(F) = Jim (1) = lim [ (@) a0

n—o0

~ [ f@) e+ oan) = [ Fa) i) = (B) ().

Let us prove the claim. Let A C Q be an open set, in the relative topology of Q, that
contains 0€2. We have

01 (002 x Q) <o (AxQ) < liﬁ%}gf(y")g(A x Q)
< liminf(7")3(A x Q) = liminf sy (A) = po(A),
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where the second inequality follows from the semicontinuity of the mass on open sets (in the
topology of © x Q) and the last equality from the setwise convergence. Since g has finite
total mass and 11 (992) = 0, we have o1(9Q x ) = 0. Analogously, using Condition (2) in
place of Condition (1), we obtain ,(Q x 9Q) = 0. For o5 and o3, the proof is similar. [

Lemma 2.4.5. If T(u,v) < oo, then Opt(u,v) # 0.

Proof. It suffices to prove that Admy(u, ) is nonempty and weakly sequentially compact. It
is nonempty if 7 (u,v) < oco. It is sequentially compact because

(2.3.13)
v € Admy(p, v) =" [yl <llpall +val

and thanks to Lemma 2.4.4. O
Proof of Proposition 2.4.3. Only the implication = in (2.4.4) is not immediate. Let us
assume that 7(u,v) = 0 and let v € Optr(u,v). Since C(y) = 0, the measure v is

concentrated on the diagonal of Q x Q. Thus, the equality ;1 = v follows from Condition (3)
in Definition 2.3.7. O

We conclude with a corollary of Lemma 2.4.4: a semicontinuity property of 7.

Corollary 2.4.6. Let (11")nen, and (V")nen, be two sequences in .. Assume that

(a) p* —, p and v —,, v weakly for some i, v,

(b) ud —, po and v —, vq setwise, i.e., on all Borel sets.

Then
T (p,v) < lminf T (p", v"). (2.4.5)

Proof. We may assume that the right-hand side in (2.4.5) exists as a finite limit and that, for
every n € Ny, there exists 4" € Admy(p, v) such that

C(y") < T?(u",v") + 711

The total variation of each measure ™ is bounded by ||u || +||v4]|, which is in turn bounded
thanks to the assumption. Therefore, we can extract a subsequence (7"*)yen, that converges
weakly to a measure . We know from Lemma 2.4.4 that v € Admy(u, v); thus,

T*(p,v) < C(y) = lim C(y™) = lm T2(u™, v™) = lim T*(p", ") O

2.4.4 H is “semicontinuous w.r.t 7"

Albeit not being a distance, the transportation functional 7 makes H lower semicontinuous,
in the following sense.

Proposition 2.4.7. Let (11")nen, be a sequence in .# and suppose that

Jim T (u", 1) =0 (2.4.6)
for some u € .. Then
H () < liminf H(u"). (2.4.7)

35



2.

VARIATIONAL STRUCTURES FOR FOKKER—PLANCK WITH GENERAL DIRICHLET BC

For the proof we need a lemma, to which we will also often refer later. This lemma, inspired
by [ , Lemma 5.8] allows to control (11—1/)gg in terms of T (1, ) and of the restrictions pgq
and vq. This fact is convenient for two reasons:

» the part of the functional H that depends on puq, is superlinear,

= we will see (Remark 2.5.17) that the restrictions to € of the measures produced by the
scheme (2.1.8) have bounded (in time) mass.

Lemma 2.4.8. Let7 >0, let p,v € .#, and let ®: Q — R be Lipschitz continuous. Then,

T,
1(®) — v(@)] < 7(Lip®) (sl +val]) + L7 (2.4.8)
In particular,
pon(8) — v(8) < () = (@) + (Lip @) (sl +h]) + L (29)
Proof. Let v € Opty(u,v). By Definition 2.3.7 and Definition 2.3.9, we have
() = v®)] =|(rder 7)) = [ (200) - 80) ar(2.0)
< [verwie) ey
1
< r(Lip®Pihl+ 4 [le =l dyloy)
| T,
< r(Lip®) (| + v} + L), 0

Proof of Proposition 2.4.7. We may assume that the right-hand side in (2.4.7) exists as a
finite limit and that H(u™) is finite for every n. In particular, ug is absolutely continuous
w.rt. ZJ. Denote by p" its density. Owing to Lemma 2.4.8, for every 7 > 0 and n, we have
H(p") = E(p") + pa (V)
T2 (",
> [ o +V = 1= er = W)y e 0]+ (®) — erljua]| - T2
Q

It follows that the sequence (p™),, is uniformly integrable. By the Dunford—Pettis theorem, it
admits a (not relabeled) subsequence that converges, weakly in L'(Q), to some function p.
From (2.4.1) and | , Proposition 2.7], we infer that ug, — pq in duality with C.(£2) and,
therefore, p is precisely the density of p. The functional £ is convex and lower semicontinuous
on L'(Q2) (by Fatou's lemma), hence weakly lower semicontinuous. Thus, we are only left
with proving that

pon(V) < liminf p56 ().

Once again, we make use of Lemma 2.4.8 and of the weak convergence in Ll(Q) to write, for
every 7 > (),

) . ) . . 7“2 n7
lim sup(pu — p")oa(¥) < lim sup CT(H,uQH —|—H,uQH) + hmsupw < c7llpall -
n—00 n—00 n—00 T
We conclude by arbitrariness of 7. O
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2.4.5 Wb, is a pseudodistance

The functional Wb, is a pseudodistance on ./, meaning that it fulfills the properties of a
distance, except, possibly, i = v when I/IA//bg(u, v) = 0. As before, nonnegativity, symmetry,
and the implication o

u=v = Why(u,v)=0

are obvious. To prove finiteness, it suffices to produce a single v € Admgy (p, v) for
every i, v € .. Let us arbitrarily fix a probability measure ¢ on 92 and set

0= pon — voo + (| all =llvall )¢

The following is Whs-admissible:

71l

Je @+ @ug+ T ifn #£0,

Only the triangle inequality is still missing.

Proposition 2.4.9. The functional Wb, satisfies the triangle inequality. Hence, it is a
pseudodistance.

Proof. Let iy, o, i3 € ., and let us view them as measures on three different copies of (2,
that we denote by ©;, O, 3, respectively. We write 72 for both the projections from Q; x €,
and Q, x Q3 onto Q.

Choose two transport plans 712 € Adm, (ul,u2) and 73 € Admgy (ug,ug) Let n =

(W#’}/Qg — W#’ylg)ag and consider
Y19 = Y12 + (Id, Id)uny,  Foz = 23 + (Id, Id) 47 .

It is easy to check that these are admissible too, i.e., ¥y, € Admyy (1, pu2) and Fy3 €
Admys (pa, i), as well as that C(712) = C(%12) and C(y23) = C(a3)- Furthermore, 7391,
equals 7@%3. The gluing lemma | , Lemma 5.3.2] supplies a nonnegative Borel mea-
sure ;45 such that

12~ ~ 23~ ~
Ty V123 = 712 and Ty V123 = V23 -

The measure v == 7@3%23 is mg—admissible between 11 and p5. By the Minkowski inequality,

Wha(p1, p12) < \/C(7) < \/C(A1) + /C(Aa) = /C(mm2) +1/C(323)

from which, by arbitrariness of 15 and 7,3, the triangle inequality follows. O

In general, Wb is not a true metric on .%. This is proven in Proposition 2.8.1. However, an
analogue of Lemma 2.4.4 holds (proof omitted).

Lemma 2.4.10. Let (1" )nen, and (V")nen, be two sequencesin .7, and lety" € Admg (u", ")
for every n € Ny. Assume that

(a) p* —, 1 and v —,, v weakly for some i, v,
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(b) ud —, po and vl —, vq setwise, i.e., on all Borel sets,

(c) ¥ =, v weakly.

Then u,v € . and v € AdiT;b2 (u,v).

In particular, for any p,v € .7, the set Adme(u, v) is sequentially closed with respect to
the weak convergence.

2.4.6 When (2 is a finite union of intervals, ng is a distance

When Q is a finite union of 1-dimensional intervals (equivalently, when 9 is a finite set) we
also have

Why(p,v) =0 <= p=v.

Proposition 2.4.11. Ifd =1 and Q is a finite union of intervals, then (., Wbs) is a metric
space.

This proposition is an easy consequence of the following remark and lemma, analogous to
Remark 2.3.10 and Lemma 2.4.5, respectively.

Remark 2.4.12. Fix p,v € . and pick v € Adm; (u,v). If 02 is finite and the diagonal
of 02 x 0f2 is ~-negligible, then

1

2
alz -yl

o

2
[l s] g + 58] < lmall +lval + — / o =yl dy(z,y)
min; yeo
TFY
<lpall +lvall + cC(v) -
(2.4.10)

Lemma 2.4.13. Assume that d = 1 and that ) is a finite union of intervals. Then the
set Optﬁ;b2 (e, v) is nonempty for every p,v € .

Proof. We already know that Adme(u, v) # (. Let us take a minimizing sequence
(7" )neno € Admyz (11, v) for the cost functional C. Let A be the diagonal of 90 x 9Q. It
is easy to see that (7" — 4™|a), is still an admissible and minimizing sequence. Therefore,
we can assume that v"*|n = 0. By Remark 2.4.12, the total variation of 4" is bounded.
Therefore, there exists a subsequence of (7"), that converges weakly to a limit ~ and,
by Lemma 2.4.10, v € Adm‘%Q(u, v). Since the sequence is minimizing, 7 is also Whs-
optimal. O

Two further useful facts about Wb, are the counterparts of Lemma 2.4.8 and Proposition 2.4.7
in the case where € is a finite union of intervals.

Lemma 2.4.14. Assume that d = 1 and that € is a finite union of intervals. Let yu,v € .
and let ®: Q) — R be Lipschitz continuous. Then,

1(®) — o(®)] < caha(ie, ) sl +vall + TE(u0). (24.11)
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Proof. By Condition (3) in Definition 2.3.7, for every y1, v € . and every v € Opt 5, (,u, v),
we have

(@) — v( \—'/ (z) — <I>(y))dv < (Lip @) /Ifc—yldv(:ﬂy)

< (Lip ®),/C(y) |l = (Lip ®)Wha(u, v) /|71l

We can assume that the diagonal of 02 x 0f2 is y-negligible; hence, we conclude by Re-
mark 2.4.12. O

Proposition 2.4.15. Assume that d = 1 and that () is a finite union of intervals. Then H is
lower semicontinuous w.r.t. Wby.

Proof. Similar to the proof of Proposition 2.4.7, making use of Lemma 2.4.14 in place of
Lemma 2.4.8. [

When Wb, defines a metric, a natural question is whether or not this metric is complete.
In general, the answer is no; this is proven in Proposition 2.8.2. Nonetheless, we prove in
Proposition 2.8.3 that the sublevels of H are complete for W b,.

Another interesting problem is to find a convergence criterion for Whs. Exploiting Lemma 2.4.2,
we find a simple sufficient condition for convergence in the 1-dimensional setting.

Lemma 2.4.16. Assume that d = 1 and that Q is a finite union of intervals. If (i"),en, C &
converges weakly to ju € ., then i 2%, .

Proof. The idea is to use Lemma 2.4.2 together with the measure-theoretic result [ ,
Theorem 8.3.2]: the metric induced by ||-|| ; metrizes the weak convergence® of nonnegative
Borel measures on €. For every x € 952, let a, := —inf,, pin (). Every number a, is finite

because, by the uniform boundedness principle, the total variation of 1" is bounded. By the
considerations above, we have

W=, pweakly = pu" + Z 30y —>n [0+ Z a0, weakly
€N €O

(2.4.3)

= "=l = 0 = Why(u" ) 5, 0. O

Remark 2.4.17. The converse of Lemma 2.4.16 is not true: in the case {2 := (0, 1), consider
the sequence
u” = n((Sl/n—(So), n e Nl,

which converges to 1 := 0 w.r.t. Whbs.

2.4.7 Estimate on the directional derivative

The following lemma will be used in Proposition 2.5.9 to characterize the solutions of the
variational problem (2.1.8). We omit its simple proof, almost identical to that of | :
Proposition 2.11].

®In [ ], two Kantorovich—Rubinstein norms are defined. Here, we implicitly use that they are equivalent
on measures on a bounded metric space; see [ , Section 8.10(viii)].
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Lemma 2.4.18. Let u,v € . and v € Opty(u,v). Let w: Q — R? be a bounded and
Borel vector field with compact support. Fort > 0 sufficiently small, define pi; = (Id +tw) 4.

Then
lim sup ,TQ(/JH V) B TQ(M? V)

t—0t t

< —2/<w(x), y—x)dy(z,y). (2.4.12)

2.4.8 Existence of transport maps

Proposition 2.4.19. Let i, v € .7, let A, B C QxQ be Borel sets, and let v be a nonnegative
Borel measure on Q x Q. If

(a) v € Optyg, (1, v),

(b) or: v € Optr(u,v) and (A x B) N (90 x 9Q) = 0,
then +% is optimal for the classical 2-Wasserstein distance between its marginals.

Consequently: under the assumptions of this proposition, if one of the two marginals of % is
absolutely continuous, we can apply Brenier's theorem | | and deduce the existence of an
optimal transport map. For instance, whenever 1, is absolutely continuous, there exists a
Borel map T': Q — Q such that 7§} = (Id, T) xpe.

Proof of Proposition 2.4.19. Let 7 be any nonnegative Borel coupling between ﬂ%ﬁf and
Wi"}/g. In particular, 7 is concentrated on A x B. Define the nonnegative measure

Y=y =8+
Note that
Ty =myy and  my = 7Ly,
which yields
v € Admy, (p,v) = s Admyz (1, v).

Furthermore, if 792 = 0, then (v)%2% = 79%. Thus,
{”y € Admy(p,v) and (A x B) N (092 x 082) = (Z)} = 7 € Admy(u,v).

Hence, if v € Opty;, (1,v), or v € Opty(u,v) and (A x B) N (02 x 9) = 0, then, by
optimality, C(y) < C(v/), and we infer that C(v5) < C(¥). We conclude by arbitrariness
of 7. 0

In [ , Proposition 2.3] and | , Proposition 3.2], the authors give more precise
characterizations of the optimal plans for their respective transportation functionals in terms of
suitable c-cyclical monotonicity of the support, as in the classical optimal transport theory; see,
eg., | , Lecture 3]. Existence of transport plans is then derived as a consequence. We
believe that a similar analysis can be carried out for the transport plans in Opt and Optm2,
but it is not necessary for the purpose of this work.
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2.5 Proof of Theorem 2.1.1

Recall the scheme (2.1.8): we first fix a measure 1y € . such that its restriction to 2 is
absolutely continuous (w.r.t. the Lebesgue measure) with density equal to p,. Then, for
every 7 > (0 and n € Ny, we iteratively choose

ﬂ(uw&)) |

H{nt1)r € argMin (”H(u) 0

pes

For all 7 > 0, these sequences are extended to maps ¢ — p], constant on the intervals {m-, (n+

1)7’) for every n € Ny.

Remark 2.5.1. The choice of (110)sq is inconsequential, in the sense that, for every ¢ and 7 the
restriction (1] ) does not depend on it. In fact, from Remark 2.3.11 and the uniqueness of the
minimizer in (2.1.8) (i.e., Proposition 2.5.11), it is possible to infer the following proposition
(proof omitted).

Proposition 2.5.2. Fix 7 > 0, and let 119, iy € . be such that (po)q = (fig)a. Lett — p]

and t — [if be the maps constructed with the scheme (2.1.8), starting from o and fi,
respectively. Then, for every t > 0,

pi — iy = po — flo = (fo)on — (fig)on - (2.5.1)
We are going to prove Theorem 2.1.1 in seven steps, corresponding to as many (sub)sections:

1. Existence: The scheme is well-posed, in the sense that there exists a minimizer for the
variational problem (2.1.8).

2. Boundary condition: The minimizers of (2.1.8) approximately satisfy the boundary
condition plgg = ¥V,

3. Sobolev regularity: There are minimizers such that their restriction to €2 enjoy some
Sobolev regularity, with quantitative estimates, and satisfy a “precursor” of the Fokker—
Planck equation.

4. Uniqueness: There is only one minimizer for (2.1.8) (given p7 ).

5. Contractivity: Suitably truncated L? norms decrease in time along ¢ — 7. This result is
useful in proving convergence of the scheme, both w.r.t. Wb, and in Llloc((O, 00); Lq(Q)).

6. Convergence w.r.t. Wbs.
7. Fokker—Planck with Dirichlet boundary conditions: The limit solves the Fokker—Planck

equation with the desired Dirichlet boundary conditions. Moreover, the convergence
holds in L}OC((O, 00); Lq(Q)) for g € [1, 2%).

Each (sub)section starts with the precise statement of the corresponding main proposition and
ends with its proof. When needed, some preparatory lemmas precede the proof.
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2.5.1 One step of the scheme

In this section, we gather together the subsections corresponding to the first five steps of
our plan for Theorem 2.1.1. The reason is that they all involve only one step of the discrete
scheme.

Throughout this section, j is any measure in . whose restriction to €2 is absolutely continuous
and such that, denoting by p the density of fig,, the quantity £(p) is finite. We also fix 7 > 0.
We aim to find one/all minimizer(s) of

.. SR (2.5.2)

and determine some of its/their properties.

Existence

Proposition 2.5.3. There exists at least one minimizer of the function in (2.5.2). Every
minimizer p satisfies the following:

1. Both H(p) and T (u, i) are finite. In particular, i admits a density p.

2. The total variation of ;1 and the integral fQ plog pdx can be bounded by a constant ¢, ;,
that depends on V' only through ||V|| ;.

3. The following inequality holds:

7“21;:/0 <E&(p) —E(p) + pa(¥) — o (¥) + cT(HuQH +H/ZQH) . (2.5.3)

The proof of this proposition, partially inspired by [ , Propositions 4.3 & 5.9], is essentially
an application of the direct method in the calculus of variations, although some care is needed
due to the unboundedness of H from below.

Proof of Proposition 2.5.3. Let (u")nen, C - be a minimizing sequence for (2.5.2). We may
assume that

T?(u" ) _
2T -

L, [ 1 1
M+—=’z‘1£(ﬁ)+—<c>o, neN;, (254)
27 n n

H(u") + H(p) +

where the finiteness of H (1) is consequence of £(p) < co. For every n, let p™ be the density
of ug and let 4™ € Opt(p", j1).

Step 1 (preliminary bounds). Firstly, we shall do some work towards the proof of (2.5.3) and
establish uniform integrability for {p"}, . By (2.5.4) and Lemma 2.4.8,

TR < 34y = () + = £(9) = £ + o (W) — (W) + -
< E(7) — E(7) + (W) — g ) + 7(Lip W) (| + ) + ) L
(2.5.5)
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from which,
S : _ | on 1
[ o080 < [ (108 + UVl +1¥le + 1+ 7(Lip W) (5 + 7)) d+ . (25

Since [ — [log( is superlinear, we have uniform integrability of {p™}, . In particular, ||ug] is
bounded.

Also the total variation ||| is bounded. Indeed,
[l < 207" [+l < 2llpall + 3lA1 (2.5.7)

where the first inequality follows from Condition (3) in Definition 2.3.7, and the second one
from Remark 2.3.10.

Step 2 (existence). We can extract a (not relabeled) subsequence such that:

1. uhe —n n for some 1 weakly in duality with C'(052),
2. p" —, p for some p weakly in L'(Q),
3. p" =, = pdx + n weakly in duality with C(Q), and p € ..
Since the functional £ is sequentially lower semicontinuous w.r.t. the weak convergence

in L'(2), and sum of lower semicontinuous functions is lower semicontinuous, Corollary 2.4.6
yields

T2 (u, 1)

2T

= inf (H(.) + ng;”) |

Step 3 (inequalities). If 1 is any minimizer for (2.5.2), the inequality (2.5.3), and the bounds
on||ul| and [, plog pdx directly follow from (2.5.5), (2.5.6), and (2.5.7) by taking the constant
sequence equal to p in place of (u"),. O]

H(p) +

< lim inf (H(u”) + TW)

Boundary condition

Pick any minimizer . for (2.5.2) and denote by p the density of . Let v € Opt(u, 1) and
let S: Q — Q be such that 7§} = (Id, S) g 0.

Proposition 2.5.4. There exists a £%-negligible set N C ) such that:
1. Forallxz € Q\ N and y € 09, the inequalities

|z —y’

<logp(z) — V(y)+ V(x) < S Ay (2.5.8)

hold. The constant ¢ can be chosen independent of V.

2. For all x € Q\ N such that S(z) € 0F0, we have the identity

_l=SE@P

log p(x) = W(S(x)) = V(x) - ==

(2.5.9)
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Remark 2.5.5. Proposition 2.5.4 implies in particular that p € L*>°(2) and that p is bounded
from below by a positive constant (depending on 7). In particular, the measure (g is equivalent
to the Lebesgue measure on ).

Remark 2.5.6. Define

g=ypeV =" g =(g—r)y—(g+r)-,  £>0.

It follows from (2.5.8) that, when x > ¢(e“” — 1), for a suitable constant ¢ independent
of V and 7, the function ¢ is compactly supported in €2 (up to changing its value on a
Lebesgue-negligible set).

Remark 2.5.7. The term c¢7 at the right-hand side of (2.5.8) can be removed when U is
constant. This fact can be easily checked in the proof of Proposition 2.5.4 and is consistent
with [ , Proposition 3.7 (27)]. However, the following example proves that, in general,
this extra term is necessary, i.e., the boundary condition need not be satisfied exactly by the
map ¢ — p] (even for t > 7).

Example 2.5.8. Let 2 := (0,1) and V' =0, and choose jz = 0. Since . = 0, we necessarily
have S(x) € 90 = {0, 1} for pg-a.e. z, hence for Z'-a.e. x € by Remark 2.5.5. Additionally,
by Proposition 2.5.4, for £!-a.e. z € S7(0) we have

11— x|2 (2.5.8)
<
2T -

a2
2T

(1) — log p(x) “Z¥ w(0)

and, after rearranging,
1
v< o+ 7(w(0) — w(1)).

Therefore, when ¥ and 7 are such that 7'(\1’(0) — \If(l)) < —3, the set S71(0) is negligible,
i.e., S(z) =1 for L'-ae. z € Q. Then, (2.5.9) gives

11—z

2T

log p(z) = ¥(1) for #1-ae. 1€,

and, therefore, the trace of p at 0 is exp (\If(l) — %) > exp(@(O)).

Proposition 2.5.4 is analogous to | , Proposition 3.7 (27) & (28)] and | , Propo-
sition 5.2 (5.39) & (5.40)]. Like those, ours is proven by taking suitable variations of the
minimizer L.

Proof of Proposition 2.5.4. We shall prove the inequalities in the statement for x out of
negligible sets N, that depend on y. This is sufficient because the set () is separable and all
the functions in the statement are continuous in the variable y. Fix y € 0.

Step 1 (first inequality in (2.5.8)). Let € > 0, take a Borel set A C (2, and define
fi = p+eLi—elAld, €S, A =q+eLi®d, € Admr(jiy, i) .

By the minimality property of 1 and the optimality of ~,

1 —pl —yl?
Os/ (<p+€) og(p +¢) pongrV_l_\I,(yHlx yl )dx‘
A

€ 2T
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Since the function [ — [logl is convex, we can use the monotone convergence theorem
(“downwards”) to find

2
Og/ (logp—i—V—\If(y)%—‘xy‘) dz .
A 2T

By arbitrariness of A, we have the first inequality in (2.5.8) for = out of a .Z?-negligible set
(possibly dependent on y). In particular, p > 0.

Step 2 (second indequality in (2.5.8) on S71(£2)). Let € € (0, 1), take a Borel set A C S~1(9),
define

fig = p+ €p(A)dy — €pa € S,

&2 il G(Id7 S)#MA + E(Sy ® S#,UA S Ame(ﬂZa la) :

Note that A C S~1(Q) is needed to ensure that (7,)% = 0. This time, the minimality
property gives

1— ¢)log(1 — CId,y+1d—2
m§/<( NS =) gy v 14 () 4 by ‘$>mM.

€ 2T

We conclude by arbitrariness of A, after letting ¢ — 0, that

<y -,y +x = 2S($)> S dlam(Q)’x - y’
2T T

log p(z) + V() — ¥(y) <
for y-a.e. x € S71(Q). Since p > 0, the same is true Xgﬁl(m—a.e.
Step 3 (identity (2.5.9)). Let € € (0,1), take a Borel set A C S71(9), define
fig = pt + €Sppia — €pa € L,
Vg =7 — G(Idv S)#MA S Ame(ﬁ?ﬂ ID’) :
By the minimality property,
1—¢)log(1 — Id -S|
mgf(( ©) log( d—d%p—v+1+w05—|23|)mm,

€ T

from which, by arbitrariness of € and A, we infer the inequality < in (2.5.9) .Zgl_l(m)—a.e.
The inequality > follows from the first inequality in (2.5.8).

Step 4 (second inequality in (2.5.8) on S1(99)). We make use of (2.5.9), the Lipschitz
continuity of ¥, the triangle inequality, and the inequality 2ab — b* < a*:

log plx) = W(y) + V() “27 W(S(x) — w(y) - “f”‘
< Lip1)15(a) -y - 2= S
< Wipw)e - S@) - 5L Lipwle -y
< TERY L (Lipw)fa—y

Eventually, we conclude with the estimate

z—yl Tl —yl _|z—y[  7diam(Q)
_ < < .
|x y| - 2T + 2 - 27 + 2
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Sobolev regularity

Proposition 2.5.9. Let ;1 be a minimizer of (2.5.2) and denote by p the density of gq.

1. The function p belongs to W,='*"(0), and 1/pe" belongs to W'2(£2). We have the

ocC

estimates T )
, ji
\V4 Vi < 2.5.10
N (25.10)
and, for every q € [1,00) such that q(d — 2) < d,
2
Iohin < ey (e [9e¥ +10l) (2511)
If d =1, the same is true with ¢ = oo too.
2. For every v € Opt(u, ), writing 7& = (Id, S) 4 p10, we have
S —1Id —v v d
p=Vp+pVV =e"V(pe") Z“-a.e. on). (2.5.12)
-

The core idea to prove Proposition 2.5.9 is to compute the first variation of the functional (2.5.2)
at a minimizer and exploit Lemma 2.4.18, like in [ , Proposition 3.6]. However, the proof is
complicated by the weak assumptions on V' and the lack of regularity of the boundary 90¢). To
manage V', we rely on an approximation argument (in the next lemma). The issue with OS2 is
that the the Sobolev embedding theorem is not available for functions in W12(Q). Nonetheless,
we can still apply it to functions in WOI’Q(Q). To do this, we leverage the approximate boundary
conditions of Proposition 2.5.4.

Lemma 2.5.10. Let i be a minimizer of (2.5.2) and denote by p the density of ug.
Let w: Q — R? be a C*-regular vector field with compact support. For ¢ > 0 sufficiently
small, define y1¢ := (Id +-ew) gp. Then

lim 2P0 = RO /(divw —(VV.w))pda. (2.5.13)
e—0t € Q

Proof. Let R.(x) = = + ew(x). Fix e sufficiently small and an open set w € €2 so that R,
is a diffeomorphism from w to itself and equals the identity on Q \ w for every s € (0, 1),
and inf,c(0,1) zco|det VR ()| > 0. It can be easily checked that the density p° of i, satisfies

pfoR. = detpVR Lae onQ;

therefore,

= dpg

€ €

log det VR, V —VoR,
[Ty, [VVoR,
Q € Q

H(p) — H(pe) / logp —log(p‘oR)+V —VoR,
“ (2.5.14)

€

By the dominated convergence theorem,

. / log det V R,
lim | ———
Q

e—0t €

dpg = /(divw)pd:p.
Q
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To deal with the last term in (2.5.14), we choose an open set @ such that w € @ € 2. By
Definition 2.3.1, we have V € W!P(%) for some p > d and, by Friedrichs’ theorem |
Theorem 9.2], the function V|, is the limit in W!?(w) and a.e. of (the restriction to w of) a
sequence of equibounded functions (Vi)ren, € C°(R%). For every k, we have

/V—VoRed,m:/V—Vkpdﬂ/Vk°Re—VoRepdx_/<m,w>pdx
€ w € w € w

1
—/ /((VV;.C)OR%—VVmw}pdxds.
0 w

With a change of variables, we rewrite the last integral as

1 1 -1
_ (wp) o Ry,
/0 /w<(VVk) o Rye — VVi,w)pdrds = /W<VV}“/0 et Voo R ds — wp> dz.

Recall that p € L>(€2) by Remark 2.5.5. Passing to the limit in &, we find that

V -VoR, ' (wp)o R}
_ = | € ds — dz .
/ ; d/m—i—/Q<VV, w)pdx /W<V ,/0 et VR, o R s w,o> x

It only remains to prove that the right-hand side in the latter is negligible as ¢ — 0. Let (p;)ien,
be a sequence of continuous and equibounded functions that converge to p almost everywhere
(hence in L*"). Using the triangle inequality and Minkowski's integral inequality, for I € N,

1
< /
/ 0

1 -1
(wp)o R
Se d _
‘ /0 det VR, o k10 WP

wp —wp) o Ry,
(wp )o R}
det VR, 0 R}

ds +|lwpr — wpl|

Lp Ly
N (wp) o R
*_ —w ds.
* /0 det VRy o R 7,
A change of variables yields
H (wp—wp) o R || wp—wpy
det VRy o R.b [ |[ldet VR, |7,
Hence, when we let ¢ — 0, using that p; is continuous, we find
b (wp)o R
li *__ds —w < 2||lwp — w .
lr?joup /0 det VR, o R} § P » < 2[|wp Pl”Lp
and we conclude by arbitrariness of [. m

Proof of Proposition 2.5.9. Step 1 (inequality (2.5.10)). Let w:  — R? be a C*-regular
vector field with compact support. For € > 0 sufficiently small, define ¢ :== (Id +ew)yp € 7.
Since p is optimal for (2.5.2),

€ 2eT

We can pass to the limit ¢ — 0 using Lemma 2.4.18 and Lemma 2.5.10 to find that

[ (v (wiw))pde < =1 [ty = o) dr(r) <l TEE L @2515)
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for any v € Opts(u, ft). By the Riesz representation theorem, this means that there exists a
vector field u € L?(p; R?) such that
T (ps 1)

HUHLQ(p) < . (2.5.16)

and
/(divw - <VV,w))pd:v = /(u,w)pdx,
Q Q
for all smooth and compactly supported vector fields w. In other words, —p(u + VV) is the
distributional gradient of p. Since p € L®(Q) (see Remark 2.5.5) and V € W, (Q), we
now know that p € VVf’QAd)

ocC

.
/\/peVdivwdx:lim/\/peV—i-ediV'wdx:lim/pe(u,w)dx
Q 0 Jo 0 Ja 2y /peV + e

B = P
- 2 el0 o peV +e 2 ’

(). Hence, for every smooth w that is compactly supported,

where, for the second equality, we used a standard property of the composition of Sobolev

functions (cf. [ , Proposition 9.5]) and, in the last one, the monotone convergence
theorem. It follows that that \/peV € WH2(Q) with
2
2 u (2.5.16) T
/v peV| eV dr < (HHLQ(P)) < M’ (2.5.17)
Q 2 47_2

which, since V' is bounded, yields (2.5.10).

Step 2 (inequality (2.5.11)). Pick ¢ as in the statement, i.e., 1 < ¢ < oo with ¢(d —2) <d
or, if d =1, ¢ € [1,00]. Inequality (2.5.11) would follow from the Sobolev embedding
theorem | , Corollary 9.14] if OS2 were regular enough. Nonetheless, by | , Remark 20,
Chapter 9], even with no regularity on 92, we still have that the inclusion TW,*(Q) < L%(Q)
is continuous. Consider the functions g and g**) of Remark 2.5.6 and fix x = c(e“” — 1) for
a suitable constant ¢ independent of 7 (and ¢), so that g(*) is compactly supported, hence
in W,*(Q2). From the Sobolev embedding theorem we obtain Hg(”) L2 S chg(")
therefore,

\z

s and,

W1,2>

< ¢y gl < g1+ ) +]g®

< ¢ <1 + K +Hg(””)

‘W1,2>

L24q

< ¢ (1 + /<a+HgHW1,2) <, (1 + /H—H\/pe‘/
< \%4
<o (1 mef[wyoet]| + i)

which can be easily transformed into (2.5.11).

L2

Step 3 (identity (2.5.12)). Let v € Opts (i, 2) and let S be such that v2 = (Id, S)4pq.
From (2.5.15) we infer that

—2/9\/F<v peV,'w> dz < —71_ /(w(m),y—x) dvy(z,y) = —j_/(w,S—Id>pdx.

By arbitrariness of w, (2.5.12) follows. O
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Uniqueness

Let us assume that p and p’ are two minimizers for (2.5.2) such that their restrictions to 2
are absolutely continuous; let p and p’ be their respective densities. Let v € Opt(u, ii)
and v" € Opt(¢/, t). By Proposition 2.4.19, we can write

Yo = (d, S)gpa, ()
Ta = <T7 Id)#ﬂﬂ ) (7,)

for some appropriate Borel maps.

= (Id7 S/)#NQ )
= (T",1d) g ,

Do D9
Q0 29

Proposition 2.5.11. The two measures 1 and j' are equal.

Note that uniqueness is not immediate, given that the functional H is not strictly convex.
This setting is different from that of | | and [ |: therein, measures are defined only
on (). Instead, we claim here that the measure i, on the whole 2, is uniquely determined.

The proof of Proposition 2.5.11 is preceded by three lemmas: the first one concerns the
identification of S and S’; the second one, similar to | , Proposition A.3 (A.5)], shows
that T'|7-1(9q) and T"|(11y-1(a0) enjoy one same property, inferred from the minimality of 4
and //; the third one ensures that this property identifies uniquely 7' (i.e., T'=T") on T~*(92)N
(T")~1(09).

Lemma 2.5.12. If uq = g, then S(z) = S'(x) for £d-a.e x.

Proof. This statement immediately follows from (2.5.12) in Proposition 2.5.9. O

Lemma 2.5.13. For ji-a.e. point x € Q such that T'(x) € 0N, we have

2
T(x) € arg min (W(y) + z—y ) . (2.5.18)
yeN 2T
An analogous statement holds for T".
Proof. Set )
flz,y) =¥(y) + \a:;_y\’ x e, yed. (2.5.19)
By | , Theorem 18.19] there exists a Borel function R: 2 — 0% such that

R(z) € argmin f(z,y)
yeos)

forall x € Q. Let A C T71(99Q) be a Borel set and consider the measure
foi=p—Tupg+ Ryfiy,
which lies in .. Additionally define
7= = (T Id)gfia + (R, Id) g0

and notice that 4 € Admy(f, t). By the minimality property of 1 and the optimality of 7,
we must have

Lem <um@+ —c).

H(u) + 2T 2T
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which, after rearranging the terms, gives

[ H@ @) ) < [ fa R@) dao) = [ min Fo) dig ).

We conclude the proof by arbitrariness of A. O]

Lemma 2.5.14. For ji-a.e. point x € Q such that T'(xz) € 02 and T"(x) € 0N2, we have

T(x)=T'(z).
Proof. We can resort to | , Lemma 1] by G. Cox. Adopting the notation of this lemma,
we set
|z —t°
Qt,2) = V(1) + —5—,  P=chlr@anm) 10

for some constant ¢ that makes P a probability distribution. Four assumptions are made
therein and need to be checked:

= Absolute Continuity: It follows from E(j1) < oo that fi, is absolutely continuous. Hence,
so is the probability P.

= Continuous Differentiability: Conditions (a) and (b) are easy to check. Condition (c) is
vacuously true by setting A(t) := () for every t.

= Generic: Condition (d) is true and easy to check.

= Manifold: This condition is not true if 92 does not enjoy any kind of regularity. However,
one can check that that 02 does not need to be a union of manifolds if the condition
Generic holds with A(t) := () for every t. The other topological properties, namely
second-countability and Hausdorff, are trivially true, since 9 C R<. O

Proof of Proposition 2.5.11. Step 1 (uniqueness of p and S). The identity p = p’ follows from

the strict convexity of the function [ — [logl. To see why, notice that %7/ € Admfr(%‘/, fi);
therefore, by minimality,

H(M)+$C(7)+H(M/)+glfc(7/)<H<u+u’> 1 <7+7’>
2 - 2 ’

Most of the terms simplify by linearity. What remains is

1 /1 / / /
/pogp+p og p dxg/ <p+p)log(p+p>dx’
o 2 o\ 2 2

which implies p(z) = p'(z) for Z%-a.e. x € Q. The identity S = S’ out of a £d-negligible
set follows from Lemma 2.5.12.

Step 2 (uniqueness of 5k, ). We can write

(oo
_|._
—~
\Q\
SE)

2

Y=+ and 4 =(Y)
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2.5. Proof of Theorem 2.1.1

Because of the uniqueness of 1 and S, we have the equality vg = (7’)2. If we combine this
fact with Condition (2) in Definition 2.3.7, we find

0=(m%(v=7)), =% (e — (")5)
=74 ((T7 Id) g fir—1(90) — (17, Id)#ﬂ(:r/)—l(am) = Hp-1(90) — I1)=1(09) -

This proves that 771 (99) and (T") 71 () are ji-essentially equal. Together with Lemma 2.5.14,
this gives

7529 = (T7 Id)#ﬂT*(&Q) = (T’, Id)#la(T’)*l(aQ) = (7/>§929~
Step 3 (conclusion). We have determined that v = +’. Condition (3) in Definition 2.3.9 gives
p=mpy =Ty + =y =y =
which is what we wanted to prove. O

Contractivity

In this section, we establish time monotonicity for some truncated and weighted L? norm
(¢ > 1) of the densities pj.

Here, too, only one step of the scheme is involved. We let i1 be the unique minimimum point
of (2.5.2) and p be the density of its restriction to 2.

Proposition 2.5.15. Let ¢ > 1. For every ¥ > ¥y := maxyq e?, the following inequality
holds (possibly, with one or both sides being infinite):

/ max {p, ﬁe‘v}q eV dy < / max {,6, 196_V}q eV dz (2.5.20)
Q Q

Remark 2.5.16. For a solution to the Fokker—Planck equation (2.1.4), a monotonicity property
like (2.5.20) is expected. Indeed, formally:

d / max {pt, ﬁe_v}q eV dg = q/ (peeV )T div(Vp: + pVV) da
dt Jq {

pt>19e—v}

~q [ (¥ Y= eV (T (), m) do?
of p>ve=V}

—qlq — 1)/ (") %" |V + pVV[* dz |
{pt>19@—v}

<0

If 9 > ¥y, the boundary condition forces the set 0 {pt > 196*‘/}(789 to be negligible. Moreover,

on d {pt > 196_‘/} N €2, the scalar product (V(p;e"’), n) is nonpositive. The case ¥ = ¥, can
be deduced by approximation.

Remark 2.5.17 (Mass bound). Note that Proposition 2.5.15 implies that the mass of (u])q is
bounded by a constant ¢ indepentent of ¢ and 7. Indeed,

/p[dxﬁ/max{pz,ﬁoeV}dx§~~~§/max{p0,19oeV}dx
0 Q 0
g/podx+ﬁo/6_vdx.
Q 0
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The proof of the first Step in Proposition 2.5.15, i.e., the case ¢ = 1, and of the preliminary
lemma Lemma 2.5.18 follow the lines of [ , Proposition 3.7 (24)] and | , Proposi-
tion 5.3]. In all these proofs, the key is to leverage the optimality of 1 by constructing small
variations. In the proof of Step 2, i.e., the case ¢ > 1, instead, our idea is to take the inequality
for ¢ = 1, multiply it by a suitable power of ¥, and integrate it w.r.t. the variable ¥ itself.
This is the reason why, while Proposition 2.5.15 will later be used only with ¥ = ¥p—or in the
form of Remark 2.5.17—it is convenient to have it stated and proven (at least for ¢ = 1) for a
continuum of values of 4.

Lemma 2.5.18. For u-a.e. x € Q such that S(x) € 2, we have

=S

log p(x) + V(z) <logp(S(x)) + V(S(x)) o

(2.5.21)

Proof. Let e € (0,1) and let A C S~(£2) be a Borel set. We define

fo:=p+eSups — €ty €S,
¥ =7—€(ld,9)gpa +€(S,S)ppa € Admy(fi, 1) .

Let p be the density of Sxp4 and note that p < p. By the minimality of 1, we have

xT

Id — 2
o (vos vt

)< / (p+e(p—1ap)) log(p + €(p — 1ap)) — plog p |
< | :

=1

We use the convexity of [ — [logl to write
I < /Q(ij — Lap) (1 +log(p + €(p — ﬂAp))> dw
= /Q(Z) —1ap)log(p+e(p — 1ap)) da
= /Qi)log(p +e(p—1ap)) do — /Aplog((l —€)p+€p) dx
< /Qﬁlog(,o + eﬁ) dr — /Ap(logp + log(1 — e)) dx .

On the first integral on the last line, we use the monotone convergence theorem (“downwards”):
its hypotheses are satisfied because p < p. By passing to the limit ¢ — 0, we obtain

Id-S|?
Og/i)logpdx—i-/(—logp+VoS—V—| o | )duA
Q

Id -S|’
:/(10gpoS—logp—|—VoS—V—| 5 ’)d,uA,

T

and we conclude by arbitrariness of A. O
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2.5. Proof of Theorem 2.1.1

Proof of Proposition 2.5.15. Step 1 (¢ =1). Consider the case ¢ = 1. Let
A= {x cQ: pe¥ > 19} . (2.5.22)

Thanks to (2.5.9), we know that AN S~!(99) is Z*-negligible. Therefore, we can extract
a Z4-full-measure Borel subset A of ANS~(Q) where (2.5.21) holds (recall that £3 < pq).

It is easy to check that S(A) C A. Therefore, we have

/max{p,ﬁe_v}dx (2'5:'22)/pdx:/pdx§/ pdx = Sypa(A)
A A A S-1(A)

Q (ACQ) _ _ _
= 1275(A) V=7 128(A) < m3A2(A) = fig(A) < /A max {p, e} dz. (25.23)
On the other hand,
/ max {p, 196"/} dg 22 / Ye V dx < / max {p, ﬁe’v} dx, (2.5.24)
O\A o\A O\A

and we conclude by taking the sum of (2.5.23) and (2.5.24).
Step 2 (q > 1) Assume now that ¢ > 1. Define

f = max {p, 196_‘/} , ¢ = max {p, 19€_V} .
Note that the case ¢ = 1 implies

/max{f,{(}e_v}dxg/max{g,@e_v}dx (2.5.25)
Q Q

for every ¥ > 0. After multiplying (2.5.25) by 1~9q_2, integrating w.r.t. U from 0 to some © > 0,
and changing the order of integration with Tonelli's theorem, we find

min{feV,G} o B © - ~
/ / 9% 4 fdx+/ / 940 | eV da
aQl\Jo Q min{feV,@}
min{geV,G)} e © ~g—1 ~
g/ / 9 dd gdx+/ / 97D | eV da,
Q 0 Q min{geV,Q}

whence
qil Qmin {f@v,@}q_lfdx—;/ﬂmin {feV,G}qe_de
< qil Qmin{gev,@}q_lgdx—;/Qmin{gev,@}qeVd:v.

It follows that

1 1 1
( — ) / min {fev, @}q e Vdr+ -~ / min {gev, @}q eV dz
¢—1 q)Ja qJa
1 q—1
< —— [ min{ge", 0 gdx.
qa—1Jg { }
We now let © — oo and deduce from the monotone convergence theorem that
( L 1) / faela=bV d$+1/gqe(‘1_1)v dr < 1 etV dy .
q—1 4q)Ja qJo T q—1Jg

Eventually, we can rearrange, and, noted that (q%l — %) > 0, simplify to finally obtain (2.5.20).
O
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2.5.2 Convergence w.r.t Wb

In this section, we prove convergence w.r.t. Wb, of the measures built with the scheme (2.1.8).
The argument is standard. In fact, we shall give a short proof that relies on the ‘refined version
of Ascoli-Arzela theorem’ | , Proposition 3.3.1].

Proposition 2.5.19. As 7 — 0, up to subsequences, the maps (t — (MZ)Q> converge
T
pointwise w.r.t. Wby to a curve t — p;dx of absolutely continuous measures, continuous

w.r.t. Whbs.

Once again, we first need a lemma.

Lemma 2.5.20. Lett >0 and 7 > 0. Then
[t/m]-1

T /Q p; logpydz+ > 7’2(/%77, u(iH)T) <cr(l+t+7). (2.5.26)
i=0
As a consequence,
WbQ((,LL;—)Q, (,utT)Q) < Why (,u;, u[) < c\/(t —s+7)(1+t+7), s € [0,t]. (2.5.27)
Proof. We use (2.5.3) to write
L= TZ(H% N(Ti+1)7) , ; W
; o < &(po) — E(p}) + (1])e(P) — (Ho)a (V) + c7 ;0 (i)l

and conclude (2.5.26) by using Remark 2.5.17.

The first inequality in (2.5.27) follows from (2.4.1). As for the second one, since Wb, is
a pseudometric, and by the Cauchy-Schwarz inequality and (2.4.1), we have the chain of
inequalities

- -1 1t/7]-1
Whao(ul,17) < 30 Woalpl i) < 0 T (0h 1740,
i=|s/7) i=|s/7]
lt/m]-1
t—s+r7 ..
S T Z T2 (MiT’M(i+1)7—) :
i=|s/7]
We combine the latter with (2.5.26) to infer (2.5.27). O

Proof of Proposition 2.5.19. Fix t > 0. We know from Lemma 2.5.20 that, for every s € [0, {]
and 7 € (0,1), we have

(U)o € K; = {pd:c : /plogpdx < c(2+t)} ,
0

where ¢ is the constant in (2.5.26). We claim that K; is compact in (My(€2), Wby). By
identifying an absolutely continuous measure with its density, K; can be seen as a subset
of L'(2). This set is closed and convex, as well as weakly sequentially compact by the
Dunford—Pettis theorem. From | , Proposition 2.7] we know that weak convergence
in L'(Q2) implies convergence w.r.t. Wbs; hence the claim is true.
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Furthermore, for every r, s € [0, ], we have

' (2.5.27)
limsup Wha (7)o, (10)a) - < eyfs =l (T41).

T—0

All the hypotheses of [ , Proposition 3.3.1] are satisfied; thus, we conclude the existence

of a subsequence of (s — (,ug)g) that converges, pointwise in [0,¢] w.r.t. Wby, to a
T

continuous curve of measures. Each limit measure lies in K; hence it is absolutely continuous.

With a diagonal argument, we find a single subsequence that converges pointwise on the whole
half-line [0, c0). O

2.5.3 Solution to the Fokker—Planck equation with Dirichlet
boundary conditions

We are now going to conclude the proof of Theorem 2.1.1 by showing that the limit curve is,
in fact, a solution to the linear Fokker—Planck equation with the desired boundary conditions.

Proposition 2.5.21. [f the sequence (t > (u[)g) converges, pointwise w.r.t. Wby as T — 0,

tot — pydx, then p” —, p also in L%OC((O, oo);L%Q)) for every ¢ € [1,5%). The

curve t — py dx solves the linear Fokker—Planck equation in the sense of Section 2.3.4, and
the map t — (1/pt€V - e‘l’/2> belongs to Lfoc([o, 0); WOM(Q))

Like in the proofs of [ , Theorem 3.5] and [ , Theorem 4.1], the key to Proposi-
tion 2.5.21 is to first determine (see Lemma 2.5.24) that the measures constructed with (2.1.8)
already solve approximately the Fokker—Planck equation. In order to prove that the limit curve
has the desired properties and that convergence holds in L110c<(0’ 00); Lq(Q)) (Lemma 2.5.26),
two further preliminary lemmas turn out to be particularly useful. Both provide quantitative

bounds at the discrete level: one (Lemma 2.5.22) for /p7eY in L} ((O,oo); W172(Q)); the

loc

other (Lemma 2.5.23) for p” in L2 ((0, 00); Lq(Q)), for suitable values of ¢. In turn, these

loc

bounds are deduced from Proposition 2.5.9 and Proposition 2.5.15.
Lemma 2.5.22 (Sobolev bound). If 7 < t, then,

/ t Vore”

Proof. Let r > 7. By (2.5.10), we have

7

2
dr < c(141). (2.5.28)

w1l

2 . CTZ (M@/ﬂwﬂ@/ﬂrq) ‘
L2

2
Thus, ( )
’ 2 =t 2 (r ot
v v dr < ¢ (i4+1)7> Mt
/T prev|| dr< go - :
which, using Lemma 2.5.20, can be easily reduced to the desired inequality. O

Lemma 2.5.23 (Lebesgue bound). Let q € [1,00) be such that q(d —2) < d. If T <'t, then

a1t
.

o0 e < cqe (2.5.29)
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Proof. For every r € [0,t], Proposition 2.5.15 gives

1/q
T T q _
o7 e < ¢q ( max {ptev,ﬁo} e de)

ch<

and if, additionally, » > 7, then (2.5.11) yields

GPEACSY

After integrating w.r.t. r from 7 to ¢, Lemma 2.5.22 and Remark 2.5.17 imply (2.5.29). O

1/
max {pZev,ﬁo}q eV dx) ' < (1 +||,OZ||Lq) 5

S— S—

2
+||p:||L1) -
L2

Lemma 2.5.24 (Approximate Fokker-Planck). Let w € 2 be open, let ¢ € C3(w), and
let s,t be such that 0 < s <t. Then, p",p"VV € L}OC((T, 00); Ll(w)), and

LE)m+7
[ 7= mypdo— A e e vvasar

Jr+7

<c,7T(1+t+ T)HSOHcg(w) . (2.5.30)
Moreover, for € > 0, the inequality
107 = P2llc2y- < Cwoelt =5+ 7) (2.5.31)
holds whenever 0 < 217 < e < s <t < 1/e.

Remark 2.5.25. In (2.5.31), we identify p] — pI with the continuous linear functional

Cw) 30— [ (7~ v

Proof of Lemma 2.5.24. Step 1 (integrability). From Remark 2.5.17, it follows trivially
that p” € L] ([O,oo); Ll(Q)).

loc

We shall prove that the function p”VV belongs to Llloc((T, 00); Ll(w)) for every w € 2 open.
Fix a,b > 0 with 7 < a < b. Let p be as in Definition 2.3.1. Its conjugate exponent p’
satisfies p’ € [1,00) and p'(d — 2) < d. By Hélder's inequality and Lemma 2.5.23, we have

b . b . (2.5.29) . b1 4o
[ 19Vl ar <19V [l a2 IV e [
r—T
’ Y14 R (25:32)
<V ey € b—a) < coe b—a).
< | VV]| 1oy € a_T( a) < cye a—T( a)

The last passage is due to the fact that both p and [VV[|,,, can be seen as functions of V/
and w.
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Step 2 (inequality (2.5.30)). Let ¢ € Ny, and choose v" € OptT(,ua.H)T, u;) and S;: Q — Q
asin (2.5.12). By the triangle inequality and the fact that p] = p[;, ), whenr € {(i—Fl)T, (i+
2)7’), we have

(i+2)7
ROy ARTEE /( [ (80 = (Ve 9V drdr

i+1)7

<

/Q (0= 08— A + 7(Vp, VV)) sy

::Ii‘

_|_

/Q((@ ° Si)Pliv1yr — 90,0;> dz| .

::I;

Using (2.5.12), we rewrite I} as

I} =

Y

/Q (p — o Si+(Vp, S —1Id)) plii1), dz

and then, by means of Taylor's theorem with remainder in Lagrange form, we establish the
upper bound

i 2 7 T T
I < CHSDHcg(w) /Q|Sz — 1d| P(i+1)r dz < CH‘PHCg(w) T’ (M(i+1)wﬂw> .

By Condition (2) in Definition 2.3.7 and the fact that  is supported in the closure of w, we
have

i :’ [ ot antof -9 < lpll eIl

:‘ /Q oly) dri (78 — %)
2 T T
< cllellimy [ lo= ol @) € el T (s si)
Xw

where ¢,, actually only depends on the (strictly positive) distance of w from 0S2. Taking the
sum over 7, we obtain

Lf THT lt/7]-1 4 _
Lwr=eeds— [T [ gap— (o vvharal < 3 @i+ 1)
Q LiJ’T-‘r’T Q Z:LS/TJ
lt/7]—1 X
< CWH()OHCg(w) Z T (NZi+1)T7/’LZT) :
=0

At this point, (2.5.30) follows from the last estimate and Lemma 2.5.20.
Step 3 (inequality (2.5.31)). Assume that 27 < e < s <t < 1/e. From (2.5.30), we obtain

L£)rtr
<cetlelog + [, IoTBe = (Vo IVDrdr

[2)r+r

/(pZ — py)pde
Q

=13
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Taking into account Remark 2.5.17 and the estimate (2.5.32) of Step 1,

LF )+
Iy < 9lleae) /L T+ ar
fTJrT

Ls/7]T

1+t+7
< el ¢~ 5 7) (14 )

< cwﬁ”‘:pHCg(w) (t—s+7).
The inequality (2.5.31) easily follows. O

Lemma 2.5.26 (Improved convergence). Assume that the sequence (t > (MZ)Q)T converges
pointwise w.r.t. Wby as 7 — 0 to a limit t — p,dx. Then, for every q € [1, d%‘ll), the
sequence (p™), converges to p in Llloc((O, 00); Lq(Q)).

Proof. Step 1. Fix ¢ € (0,1) and an open set w € € with C'-regular boundary. As a first
step, we shall prove strong convergence of (p7), in Ll(e,efl; Lq(w)>. The idea is to use a
variant of the Aubin—Lions lemma by M. Dreher and A. Jiingel | ]. Consider the Banach
spaces

X =W"w), B=LWw), Y=(CWw).

and note that the embeddings X < B and B < Y are respectively compact (by the
Rellich—Kondrachov theorem | , Theorem 9.16]) and continuous. Inequality (2.5.31) in
Lemma 2.5.24 provides one of the two bounds needed to apply | , Theorem 1]. The other
one, namely
lim sup||p” < 00,
nsupllp ”Ll((e,e—lxvvl’l(w))

can be derived from our previous lemmas. Indeed, Remark 2.5.17 provides the bound on
the L1<e,e‘1; L'(w)) norm, and we have

Vol < /o Vit
< e\llofll [V orev

where p = p(w) is given by Definition 2.3.1. When 7 < ¢, Remark 2.5.17 and Lemma 2.5.22
yield

)+HPZVVHL1(W)

6Tl [TV s

1 1 1

IR I RE J [ et dtJ [ |worer
Moreover, since p’ € [1, 00) and p/(d—2) < d, we can apply Lemma 2.5.23 to bound || o] || . ,)-
To be precise, there is still a small obstruction to applying Dreher and Jiingel's theorem: it
requires p” to be constant on equally sized subintervals of the time domain, i.e., (e, e‘l); instead,
here, 7 and (6_1 —¢) may even be incommensurable. Nonetheless, it is not difficult to check that

2
dt <e..
L2

the proof in | ] can be adapted.® In the end, we obtain the convergence of (pT) , along
T
®The adaptation is the following. In place of [ , Inequality (7)], we write, in our notation:
(2.5.31)

>

ire<iT<e 1

Pir = Plmyr|y, S CweT ([1/(er) =1 = [¢/7]) Scwe(e™ —e+7).
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a subsequence (T1,)ren,, to some function f: (¢, ') x w — R, in L! (e, e L9w)). Up
to extracting a further subsequence, we can also require that convergence holds in L(w)
for .,?1 -a.e. t. For any such ¢, and for any ¢ € C.(w), we thus have

/wftdx=ljgrgo/w01k dx:/@ptdm,

where the last identity follows from the convergence w.r.t. Wby and | , Proposition 2.7].
Therefore, fi(z) = pi(x) for .,2”6“211 -a.e. (t,z), and, a posteriori, there was no need to

extract subsequences.

Step 2. Secondly, we prove that, for every € € (0, 1), the sequence (p7), is Cauchy in the
complete space L' (e,e_l;Lq(Q)). Pick an open subset w &€ 2 and cover it with a finite

number of open balls {4;},, all compactly contained in 2. Additionally choose 3 € (g, c0)
with 3(d —2) < d. We have

||-||L1 (a&‘%Lq(Q)) < %:||-||L1<676_1;Lq(Ai)) +||-||L1<676_1;Lq(9\w)) 7
and, by Holder's inequality,

I ) SRV

1 (eetito@\) @)

Hence, by Step 1,

limsup||p™ — p™|

71,72—0

1 1
< 2|0 a B i 3 .
B (676_1;”(9)) <2(Q\w| 1r?jélp\lﬂ I, (E’E_l;m(ﬂg

Recall Lemma 2.5.23: we have

lim sup|| "] co [ (14 i<
1Tjélp p ! (e,efl;Lﬁ(Q)) =t . ; = e

We conclude, by arbitrariness of w, the desired Cauchy property.

By Step 1, the limit of (p7), in Ll(e, e_l;Lq(Q)) must coincide .Z(ftll)x -a.e. with p for
every w € {2 open; hence, this limit is precisely p on . O]

Proof of Proposition 2.5.21. Convergence in Lloc<(0, 00); L9(€2)) was proven in the previous
lemma. Thus, we shall only prove the properties of the limit curve.

Step 1 (continuity). Continuity in duality with C.(2) follows from Proposition 2.5.19 and | :
Proposition 2.7].

Step 2 (identity (2.3.2) for s > 0). Let 0 < s <t and let ¢ € C%*(€2). Thanks to the
convergences

p. dz Kbﬁ psdx and p;dx %bﬁ prdx

we have (see [ , Proposition 2.7])

/( —p)pdr —; / — ps)pdr.
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Moreover, since every p as in Definition 2.3.1 has a conjugate exponent p’ that satisfies p’(d —
1) < d, Lemma 2.5.26 yields

L[ L)r+r ¢
/ / pr(Ap —(Vp, VV))dzdr —, / / pr(Ap — (V, VV)) da dr.
[2 Q s JQ

Jr+7
Thus, (2.3.2) is true by Lemma 2.5.24.
Step 3 (Sobolev regularity and boundary condition). In analogy with Remark 2.5.6, we define

gy =JpreV — e gt = (gl — k) — (g7 +K)-,  TE>0,7r>0,
and
gr = \/prev_e\l]ma gy(ﬂn)::(gr_ﬁ)Jr_(gr"i_K')*? k>0,7r=>0.

Recall that, if K > ¢(e“" —1) for an appropriate constant ¢, and if 7 > 7, then the function gZ’(“)
is compactly supported in 2. Let us fix one such x and 0 < s < t. Lemma 2.5.22
implies that the sequence (gT’(”)) is eventually norm-bounded in the space L? (s, t; WOM(Q))

As a consequence, it admits a subsequence (g”“(“))k (possibly dependent on s,t, k) that

converges weakly in L2<s,t; WOIQ(Q)) Using Lemma 2.5.26 and Mazur's lemma |
Corollary 3.8 & Exercise 3.4(.1)], one can easily show that this limit indeed coincides with g(*).

By means of the weak semicontinuity of the norm, the definition of gT’(””), and Lemma 2.5.22,
we find

t ) ¢
dr < liminf
s w2 k—o0 s

and, by arbitrariness of s,
t
/

for every k,t > 0. We can thus extract a subsequence (g("l))l (possibly dependent on t)

(~)

gt (k)

Tk
9r

t
2 . 2
e 7 < lllgf(_l}(l)glf/; g7 [y dr < e(141),

2
gt

e 1 < ¢(1+1)

that converges weakly in L2<O,t; W012(Q)) As before, one can check that this limit is g;
hence g € L? (0, t; Wolz(Q)) with

t
/ lgellfyrz dr < e(141) (2.5.33)
0

Step 4 (integrability, and (2.3.2) for s = 0). Fix an open set w € Q. Let p = p(w) > d be as
in Definition 2.3.1 and let p’ be its conjugate exponent. Since g € L? ([0, 00); W012(Q)) the

loc

Sobolev embedding theorem implies g € LIZOC([O, 0); LZP'(Q)). Given that V' € L*>(2), we

obtain p € Llloc([O,oo); Lp'(Q)>. In particular, t — [ pydz and t — [ |VV|p,dx are both
locally integrable on [0,0). Given ¢ € C?(w), the identity (2.3.2) for s = 0 thus follows
from the one with s > 0 by taking the limit s | 0: on the one side,

lim [ pspdx = / pop dx
s10 Jq Q
by continuity in duality with C.(£2); on the other,
t ¢
lim/ /pT(Ago —(Ve, VV))dxdr :/ /pT(Ago —(V, VV))dxdr
s JQ 0 JQ

sl0

by the dominated convergence theorem. O
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2.6. Slope formula in dimension d =1

2.6 Slope formula in dimension d = 1

In this section, we only work in dimension d = 1 and we take €2 = (0,1). Recall (Propo-
sition 2.4.11) that, in this setting, Wby is a metric on .. Our purpose is to find an

explicit formula for the descending slope ’8%27-[‘ and to derive Theorem 2.1.6 as a corollary.
Specifically, the main result of this section is the following.

Proposition 2.6.1. Assume that V € W'2(Q). Take pn € . such that H(p) < oo and let p
be the density of . Then,

2
4 [ (0n/ V> Vdz o if\JpeV —e¥/? € Wy(Q),
‘3N Hf(u): /Q< pe’ ) e du ifyfpet =TT e W (Q) (2.6.1)

00 otherwise.

Remark 2.6.2. In the current setting, i.e., 2 = (0,1) and V € W2(Q), the function V is
Hélder continuous; thus it extends to the boundary 92 = {0,1}. When /pe" € W12(Q),
the function p belongs to Wl’Z(Q), is continuous, and extends to the boundary as well.

Remark 2.6.3. The functional

Wl,Q(Q) 5 f s 4/§;(axf)2 eV dr if f _eV/2 ¢ W(}’Z(Q%

(2.6.2)
00 if f—e¥/2eWh2(Q)\ Wy?(Q).

is particularly well-behaved: it is convex, strongly continuous, weakly lower semicontinuous,

and has weakly compact sublevels. As a consequence, ‘8V%2H’ turns out to be lower

semicontinuous w.r.t. Wbh,. Indeed, assume that " "% 4 and sup, ‘8%27{’ (u") < oo.

Let p" be the density of ug,. Then the functions f, == \/p"e" converge, up to subsequences,
weakly in W12(Q2) and—by the Rellich—Kondrachov theorem [ , Theorem 8.8]—strongly
in C'(Q) to a function f such that f —e%/? € W,*(Q) and

4/(895]‘)26_‘/ dz < liminf ’0@ 7-[‘2 (u").
Q n—o0 2

Additionally, p" = f2e7V — f2e7V in C(Q), hence pg = 2™V dz (we use (2.4.1) and |
Proposition 2.7]).

While (2.6.1) reminds the classical slope of the relative entropy (i.e., the relative Fisher
information), the crucial difference is in the role of the boundary condition: if p does not
satisfy the correct one, the slope is infinite.

We are going to prove the two opposite inequalities in (2.6.1) separately. Proving > is easier: for

the case where \/peV —e¥/2 € W%, it amounts to taking small variations of ; in an arbitrary
direction; for the other case, it suffices to find appropriate sequences that make the difference
quotient diverge. To handle the opposite inequality, we have to bound (H(u) — H(ﬁ))+ from

above for every sufficiently close measure i € .. Classical proofs (e.g., | , Theorem
15.25] or | , Theorem 10.4.6]) take advantage of geodesic convexity of the functional,
which we do not to have; see Section 2.8.3. One of the perks of geodesic convexity is that it
automatically ensures lower semicontinuity of the descending slope, which in turn allows to
assume stronger regularity on p and then argue by approximation. To overcome this problem,
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we combine different ideas on different parts of 1 and ji. Away from the boundary 02 = {0, 1},
the transport plans move absolutely continuous measures to absolutely continuous measures.
The Jacobian equation (change of variables formula) relates the two densities and makes
the computations rather easy. Estimating the contribution of the parts of u, ji closest to
the boundary is more technical: we need to exploit the boundary condition and the Sobolev
regularity of the functions p, log p, and V. Note, indeed, that since the boundary condition is
positive, also log p has a square-integrable derivative in a neighborhood of 0f2.

To be in dimension d = 1 is necessary for mg to be a distance, but is also extremely
convenient because optimal transport maps are monotone and W'2-regular functions are
Holder continuous. For these reasons, it seems difficult (but maybe still possible) to adapt our
proof of Proposition 2.6.1 for an analogue of Theorem 2.1.6 in higher dimension.

We first prove a variant of the Lebesgue differentiation theorem that is needed for the
subsequent proof of Proposition 2.6.1. We prove Theorem 2.1.6 at the end of the section.

Lemma 2.6.4. Let (Y"),en, be a sequence of nonnegative Borel measures on §2 x € such
that lim,, ., C(v") = 0. Additionally assume that 7@7” is absolutely continuous for every n €
No, with a density that is uniformly bounded in L>(S). Then, for every f € L*(9),

lim. (]éy(f(z) ~ f(x)) dz>2dw(az,y) =0. (2.6.3)

Proof. Denote by p" the density of 7@7”. Let g: Q2 — R be Lipschitz continuous. For
every n € Ny, we have

L [ (f (- ) d2>2d7”
§3/(f(f—g)d2>2dv"+3/(J[:gdz—g(m)>2dv”

+3/Q(g—f)2,0"dx-

Consider the Hardy-Littlewood maximal function of (the extension to R of) f — g, that is,

min{z+r,1}
(f = 9)"() =sup o f-gldz, weR.
r>0 27 Jmax{z—r,0}
By the (strong) Hardy-Littlewood maximal inequality,

[(F =00 ar < f(u-ar@) ar =1 [ (=)

n *(|2 n 2
< 4supl|p® | I(f = 9)*[Iz2r) < esupllp™|l oo 1f = gl -

The Lipschitz-continuity of ¢ gives

/ (fygdz - 9(%)) dv" < (Lip g)? /(ﬂf —y)?d~" < (Lipg)*C(y"),
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2.6. Slope formula in dimension d =1

and, moreover, we have

[ o= e <ol 7 =gl
In conclusion,
I, < csngp"HLwa —gl7. + 3(Lipg)*C(7").

After passing to the limit superior in n, we conclude by arbitrariness of g. O]

Proof of Proposition 2.6.1. \We omit the subscript Vb in ‘8‘%27{) throughout the proof.

Step 1 (inequality >, finite case). Assume that \/peiv— e¥/? ¢ Wol’Q; hence, in particular, p €
L>(Q). Let w: Q@ — R be C*°-regular with compact support (and not identically equal to 0),
and, for € > 0, define R.(z) == = + ew(x). Set pu° = (R.)xp and v := (Id, R.)xp. When €
is sufficiently small, u € . and 7 € Adm‘%2 (p, p€). Therefore, arguing as in the proof of

Lemma 2.5.10,
lim H(p) — H(ue)

e—0F €

— /(azw —wd,V)pdzx.
Q
Thus,

/(azw —wd,V)pda < |0H|(n) limmf@ < [oH| (Il 2,
Q

€l0
/

Step 2 (inequality >, infinite case). The case \/pe" & W12(Q) is trivial. Thus, let us assume

now that \/peV € W12(Q) with Trp # Tre¥~". Without loss of generality, we may consider
the case where p(0) # e?©=VO _|f p(0) > Y@=V for ¢ > 0 define

62
/LE = ILL — 6“(0,62) + (6/ pdm) 50 - y,
0

V"= ey © o + (Id, 1d) (o — epgo,)) € Admygs (u, 1) -

Since all the functions involved are continuous up to the boundary, we get

2

1) — 1) = [ (p1osp— (1= plog((1= ) +<(V = 1= ¥(0))p) o

~epo € (log p(0) + V(0) = (0))p(0) .
On the other hand,

and we conclude that ) .
2
e Vda < 1‘87{‘ (1) .

0\ pe¥

€2 €2

Wy (s, 1) < 1/C(7e) = Je‘/ r?pde < Jé/ pdz ~epn €24/p(0),
0 0

from which we find

0] (1) > tim sup T —HU)

el0 Wb?(/% /1’6)
> \/p(O)(log p(0)+V(0) — \I/(O)) limsupe 2 = o0o.

el0

>0
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If, instead, p(0) < %@~V we consider, for ¢ > 0,
po= it €Ly oy — €00 € S A = el © Loy + (14, 1d) g € Admyg (, 1)
and conclude with similar computations as before.

Step 3 (preliminaries for <). We suppose again that y/pe” — e¥/2 € W;*(Q). In particular,
there exist \, € > 0 such that -
pliogun-ey > A

Let us take a sequence (4")nen, that converges to u w.r.t. Wby, with H(u™) < H(u) for
every n. We aim to prove that

_ n 2
lim sup H@ H") < 2\// (890 pev> e Vdx.
oo Why(p, p) Q

For every n € Ny, we write:

= p" for the density of ug;

= 4" for some (arbitrarily chosen) W by-optimal transport plan between 1 and u™ such
that the diagonal A of 92 x Jf (i.e., the set with the two points (0,0) and (1, 1))
is v"-negligible;

= T, S, for maps such that (y")2 = (Id, T},) 41, and (7v")g = (S, Id)ppug,. We can and
will assume that these two maps are nondecreasing, hence ,iﬂé—a.e. differentiable;

" a,,b, € Q = [0,1] for the infimum and supremum of the set 7,,(£2), respectively.
Note that, since 7;, is monotone, T,jl(Q) is an interval. Conventionally, we set a,, = 1
and b, = 0 if T,71(Q) = 0.

Observe that, since (0,a,) C T,;*({0,1}), we have

. an 3 min{an,€} ;\
Wb;(,u,u") > / min {z,1 — 2}* pdz > )\/ r?de = gmin {an, €}° .
0 0
In particular,
3 1—0b 3
lim sup ﬂafn < 00 and, similarly, lim supinn) <00 (2.6.4)
n—r00 sz(/jj’ ,un) n—00 sz(,u’ un)

thus, up to taking subsequences, we may and will assume that a, < € < 1 —¢€ < b, for

H n\Q 1 H n o
every n. In particular, (v")g # 0 and Zg . ip,1) < H(0,an)U(b,,1)- Furthermore, since 4™ is
Ws-optimal between its marginals (cf. Proposition 2.4.19), it is concentrated on a monotone
set I',. This implies that 7(0,1) and 7(1,0) equal 0 as soon as 7§} # 0. Combining this
observation with the fact that A is v-negligible, we infer that 755 = 0. By the same
argument, T'|, 1) = 1 and T'|(o4,) = 0.

Another assumption that we can and will make is

P lsz100) S A= (S;Qp 6‘”) : (sgp e‘V> : (2.6.5)
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2.6. Slope formula in dimension d =1

Indeed, if this is not the case, we can consider the new measures

,771 = 7”1 _ (Sm Id)# (pn|S;1(8Q) - A)+ZS% s
pr=p—my () + (V) € S

and notice that 5" € Admyy; (u, i"). We have

H(p") —H(p") = AlogA+V —1—-Vo S,)dz

/S;I(aﬂ)ﬂ{p"M}

—/ ptlogp" +V —1—ToS,)dr,
Syt (@)n{pn>A}

and, because of the definition of A, we obtain H (") < H(u™). At the same time,

VIA//bg(u,/l”) < I/IA//I)Q(M,M") because 4" < ™. This concludes the proof of the claim that we
can assume (2.6.5).

Step 4 (inequality <). By Proposition 2.4.19, ()% is a Wy-optimal transport plan between

its marginals p,ﬁfj{_l(m and p”,ﬁ%l_l(m, and it is induced by the map T},. Hence, by |

Theorem 7.3], the Jacobian equation

(p"|S;1(Q) o Tn) - 0,T, = p (2.6.6)

holds pcf;_l(m—a.e. Consequently, we have the chain of identities

/S_I(Q)(log pt+V —1)ptde = /(log PV = 1) dmi(v")g
_ / ((logp™ +V = 1)oT;)pda (2.6.7)
T (9)

(28:6) / (logp —log(0,T,,) + Vo T,, — 1) pdzx.
T, 1 ()

Thus, we can decompose the difference H (1) — H(u") as
ny (2.6.7) n
W) ) 20 [ (om0 +V VO T pde = ()
Tn
+/ (logp—i—V—l)pdx—/ (logp" +V —1)p"dz.
T (09) 5.1 (09)
(2.6.8)

n

Let us focus on the integral on T);1(f2). By making the estimate log(9,T;,) < 9,7, — 1 and
using the properties of the Riemann—Stieltjes integral, we obtain

bn, bn
/TI(Q) log(0,1,)pdx < /TI(Q)(&CT” —1)pdx :/ ((%Tn)pdx—/ pdx

bn—€

bn
< liﬂ[)l pdT,, — bup(by) + anplay) + / x0ppdr (2.6.9)
€ an+te an

b
= (T(by) = ba)p(bn) — (T(ay) — an)plan) — / (15 = 1d)0zp dz,
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where we employ the notation T'(a;!) = lim. o T'(a, + €), and similarly with T'(b;).
Let f := 0,V. By the fundamental theorem of calculus,

bn x
/ (V—VOTn)pdx:/ ( f(z)dz) pdz.
T, 1) an Tn(z)

By adding and subtracting f(z), we get

/ (V—-VoT,)pdx
(e)

- /b f(x) (/T() dz) pdx + /b (/T() (f(z) = f(=)) dZ) pdx (2.6.10)
_ / b (T, — 1d)p f du + / b ( /T jm (f(z) = f(2)) dz) pdz.

At this point, we observe that, by Hélder's inequality and Lemma 2.6.4 (applied to the
restriction (7")§), the last double integral is negligible, i.e., it is of the order o, (ng(,u, ,u”))

To handle the rest of (2.6.8), we exploit the convexity of [ — [log( and write

—/ (logp”+V—1)p"dx§—/ (logp+V)p”dx+/ pdz.
551 (09) Syt (09) St (@)n{pn >0}
(2.6.11)

By Condition (3) in Definition 2.3.7 and the boundary condition of p,
(0= 1)onl®) = [(ogp+ V)a (mh(" - m0ME) . (2612

In summary, recalling that (7")%% = 0, from (2.6.8), (2.6.9), (2.6.10), (2.6.11), and (2.6.12)
follows the inequality

P bn
M) = ) < 00 (W) = [ (T = 10)(@up + 0,V) o

=L?
i+ /(bgp +V) d(ﬂ# (v = (™8) - m2 (v - (7”)8))
=Ly
(2.6.13)
+(T(by) = ba ) plbn) +/ pdz —/ pdz
Spt(1)N{pm >0} T, (1)
::Lg1
—(T(a) = an)plan) + / pdz — / pdz .
Syt (0)n{pn>0} 7,,(0)
=L}

4

We claim that the last three lines in (2.6.13), i.e., L%, L% and L7}, are bounded from above

by negligible quantities, of the order o, (I/IA//I)Q(M,M”)). Let us start with L. Since every
left-neighborhood of 1 is not ug-negligible,

sup{r € Q: (x,T,(x))el,} =1,
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2.6. Slope formula in dimension d =1

which, together with the monotonicity of I';,, implies
T,(17) < pgs-essinf S71(1). (2.6.14)

We now distinguish two cases: either b, < 1 or b, = 1. If b, < 1, given that T}, |4, 1)
the set S71(1) is p-negligible by (2.6.14). Thus

Ly < /b:(p(bn) — p(x)) dz = —/b: (/I: &cde) dz
Lt [ (f{oan) o
“29 0, (Whs(u, M"))J /b 1 (75 yp dz>2 da.

Knowing that p € W12(Q) and that b, —, 1, it can be easily proven with Hardy's inequality
that the last square root tends to 0 as n — oo.

11

Assume now that b, = 1. This time, Inequality (2.6.14) yields

pdx::/;uj(m¢>—pu»)¢u

We conclude as in the case b, < 1, because the computations that led to (2.6.4) can be easily
adapted to show that (1—T7,,(17))? = O, (V[A//bz(u, u")) Indeed, the monotonicity of 7;, gives

1

@smmw—mm+/

Tn(17)

1 1

W) = [ (v - Tu(7)) " dr.

Tn(17)

(x — Tn(x)>2p(x) dz > 5\/

max{1-&T,(17) }
The proof for L} is similar to that for L.

Let us now deal with the term L3:

Ly = /(log p(a) + V(@) = log ply) — V() d((7™)8 + (")) -

Define the square-integrable function

_JEE 40V on(0,9U(1l-F1),
a 0 otherwise.

Since %{;} is concentrated on (b,,1) x {1}, and 7?1} is concentraded on {1} x (7,,(17),1),
as soon as n is large enough for b, and 7,,(17) to be greater than 1 — €, we have the equality

(logp(x) +V(x) —log p(y) — V(y)) = /xgdz for ((v")g} + (7”)?1})-3-6- (z,y) -

Moreover,

2

/(/yxgdZ) d(y")y < Why(p, ™) /bl (]élgdZ) L dr,

Slpll oo
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and

2
T 1 1
/(/ gdZ) d(v") %y < Wha(p, ) / (][ gdZ) Pl do-
y Ta(1-) \Je —_—

<A

In both cases, since b, and T,,(17) tend to 1 as n — oo, and g € L*(2), the square roots are
infinitesimal. The same argument can be easily applied at 0 (i.e. for the integrals w.r.t. (fy")éo}

and (7”)?0}), and this brings us to the conclusion that L} is negligible.
In the end, (2.6.13) reduces to

bn —
IH(N) - H(Mn) < - / (Tn - Id)(axp + paxv) dz + On, (WbQ(,ua ,Un))

an

SV%2(M7M")\I/Q (af/g+ﬁ8ﬂ) dz + 0,(1),

which is precisely the statement that we wanted to prove. ]

Corollary 2.6.5 (Theorem 2.1.6). Assume that V € W12(Q). Let u € Mo(Q). Then,

2

1
4/ (8m\/pev> eVde ifu=pde
0

.12
Owé| (1) = and \[peV —1e Wi,  (2615)
00 otherwise,
where & is defined as
5 £ if u=pd
Ms(Q) 5 s { (p) ifp=pder, (2.6.16)
00 otherwise.

Additionally, ‘Gszg is lower semicontinuous w.r.t. Wbs.

Proof. We may assume that ;4 = pdz for some p € L1 (), and that £(p) < oco. In
particular, y is finite and we can fix some i € .% such that i, = p

Step 1 (inequality <). Let (1" )nen, € M2(2) be such that Wha(u”, 1) —4, 0 (and p™ # p).
We want to prove that the limit superior
) (E(w) —E(m).,
im su
n—>oop Wb2 (/L, ,u")

is bounded from above by the right-hand side of (2.6.15). To this aim, we may assume that
the limit superior is actually a limit and that £(u") < E(u) = E(p) for every n € Ny. In
particular, each measure p" is finite and has a density p". By Lemma 2.4.1, for every n € N,

inf {Wha(ji, 2) v ="} = Wha(p "),

which ensures the existence of i € .% such that g, = ¢™ and
=1, as well as, consequently, lim Why(fi, i) = 0. (2.6.17)
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By (2.6.17) and Proposition 2.6.1 (with ¥ = 0), we conclude that

(B -Ewm), (E(p) — £
lim £ <limsup —— £ < RHS of (2.6.15).
e Wh(p, p) oot Why(fi, i)

Step 2 (inequality >). By Proposition 2.6.1 (with ¥ = 0), we know that there exists a
sequence (f")nen, € - such that Wbo(f™, ft) —,, 0 (with ™ # 1) and

. (Em) — &)
e Whs(fi, i)

+ — RHS of (2.6.15).

If this number is 0, then there is nothing to prove. Otherwise, we may assume that p # i
for every n, and we conclude by using (2.4.1).

Step 3 (semicontinuity). The lower semicontinuity is proven as in Remark 2.6.3: if u" e

i and supn‘avvng‘ (u™) < oo, then, up to subsequences, <\/p"ev> converges weakly

n

in W12(Q) and (strongly) in C(9), the limit is \/pe" by | , Proposition 2.7], and y/pe" —
1 € Wy*(€). We conclude by the weak semicontinuity of the functional in (2.6.2). O

2.7 Proof of Theorem 2.1.5

As in Section 2.6, throughout this section we restrict to the case where = (0,1) C R'.
Fix o € . such that its restriction to (0, 1) is absolutely continuous with density equal to pg.
Recall the scheme (2.1.10): for every 7 > 0 and n € Ny, we iteratively choose

—2
Wby (4, fins
Moy, € argmin | H(p) + W, 1: inr) (2.7.1)

nes 2T

These sequences of measures are extended to maps ¢ — pij, constant on the intervals [TLT, (n+

1)7’) for every n € Ny.

The purpose of this section is to prove Theorem 2.1.5. Observe the following fact: Statement 3
follows directly from Statements 1-2. Indeed, given the sequence of maps (¢ — u]), that

converges to t — 11, pointwise w.r.t. Wby, we infer from (2.4.1) that (t > (u[)g) converges

to t — () pointwise w.r.t. Whs. Since the approximating maps are precisely the same as
those built with (2.1.8), we can apply Proposition 2.5.21 to conclude Statement 3. The proof
of Theorem 2.1.6 is thus split into only three parts.

2.7.1 Equivalence of the schemes

Let us fix a measure i € .% such that its restriction to 2 = (0, 1) is absolutely continuous.
Denote by p the density of this restriction and assume that £(p) < oo.

Proposition 2.7.1. If 27U (1) — ¥(0)| < 1, then u € .7 is a minimizer of

2

%2('7/1)

HE)+ 2T

. = RU{o0} (2.7.2)
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if and only if it is a minimizer of

H(-) +

7‘257 A,y L RU {0} . (2.7.3)

In particular, there exists one single such p,; see Proposition 2.5.3 and Proposition 2.5.11.

Proof. Let .7 be the function in (2.7.2) and ¢ be that in (2.7.3). Recall that Wb, < T,
which implies that # < Y. Let p € .7, let y € OPtVT/@2(M>ﬁ) be such that the diagonal A
of 92 x 02 is ~-negligible, and define

o= = myhe + The € A= — b € Admr (i, ).

We have
7)< (i + 0 = 2 (0) + (38 = wia) (v) - C0)
= 7+ (90— w0) (3(0.1) —5(1,0)) - OO < 5 (274

where, in the last inequality, we used the assumption on 7.

Step 1. It follows from (2.7.4) that inf ¥ < .# < . This is enough to conclude that every
minimizer of ¢ is a minimizer of .% too.

Step 2. Assume now that x is a minimizer of .%. Again by (2.7.4),
F() < F () <G < F(p).

Therefore, it must be true that .7 (u) = ¢(f1) and that all inequalities in (2.7.4) are equalities.
This can only happen if vaaxaona = 758 has zero mass, which implies ;2 = fi. It is now easy
to conclude from .# < ¥ and .7 () = ¢ (1) that p is a minimizer of ¢. O

2.7.2 Convergence

Proposition 2.7.2. As 7 — 0, up to subsequences, the maps (t — u]), converge pointwise
w.r.t. Wby to a curve t — p;, continuous w.r.t Wby. The restrictions (pu;)q are absolutely
continuous.

Lemma 2.7.3. For everyt > 0 and 7 > 0 such that 27|¥(1) — ¥(0)| < 1, we have the
upper bound
sl <c(l+t+7). (2.7.5)

Proof. Let t > 0 be fixed. We already know from Remark 2.5.17 that ||(u])af < ¢. By
applying Lemma 2.4.8 with ®(z) := 1 — z, we find

T2 (i 1)
At ’

oo 0) = 2 0) < (1= 2) AT = i)+ €7+
for every i € Ny. By summing over i € {0,1,...,|t/7] — 1} and using Lemma 2.5.20,
() = 100) < (1 2) Ao~ pTda -+ e(L 4 7) < el 4 7).

Thus, the sequence (,utT(O)) is bounded from above as 7 — 0. By suitably choosing ®, we
can find a similar bound from below and bounds for 1] (1). O
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Proof of Proposition 2.7.2. We can assume that 7 < 1 and that 27|W(1) — U(0)| < 1. The
proof goes as in Proposition 2.5.19: for a fixed ¢ > 0, we need to prove that

lim sup Wy (ul, 1) < ey/lr — s| (1 +1), r,s € [0,t], (2.7.6)

7—0

and that

K, = {,uey Sl <ea+t), and po = pde with /plogpdeCQ(Q—l—t)}
Q

is compact in (.7, mg) where the constants ¢; and ¢, are given by Lemma 2.7.3 and
Lemma 2.5.20, respectively.

The inequality (2.7.6) follows from (2.5.27). If (4")nen, is a sequence in K, thanks to
the bound on the total mass, we can extract a (not relabeled) subsequence that converges
weakly to some 1 € . Let p" be the density of ug for every n € Njy. We exploit
the bound on the integral fﬂ p"log p™ to extract a further subsequence such that (p"),en,
converges weakly in L'(Q) to some p. We have ug = pdz, as well as [|ul| < ci1(2+¢)
and [, plog pdx < c3(2+1); hence p € K,. The convergence p" —, y holds also w.r.t. Wb
thanks to Lemma 2.4.16. ]

2.7.3 Curve of maximal slope

Proposition 2.7.4. Assume that V. € W'2?(Q). If the sequence (t — ), converges
pointwise w.r.t. Wby to a curve t — i, then the latter is a curve of maximal slope for the
functional H in the metric space (., Wb,).

To prove this proposition, we employ the classical | , Theorem 2.3.1], but we also
crucially need the results of Section 2.6. In particular, we rely on the explicit formula for the
slope of Proposition 2.6.1 and on the consequent semicontinuity observed in Remark 2.6.3.

Proof. Consider the subspace . = {u € .7 : H(u) < H(uo)}. Note that, since H is Wh,-
lower semicontinuous (Proposition 2.4.15), ¢t — u; entirely lies in . Moreover, ’8 ”H‘

coincides with ‘8 7—L|y)’ on .7. Therefore, it suffices to prove that ¢ ¢ is a curve of

maximal slope in 5”

We invoke | , Theorem 2.3.1]. Let us check the assumptions. Firstly, the space (i VIA//bg)
is complete by Proposition 2.8.3. Secondly, | , (2.3.2)] is satisfied because the slope

‘8~ H’ is Wb2 lower semicontinuous; see Remark 2.6.3 and [ , Remark 2.3.2]. Thirdly,
[ , Assumptions 2.1a,b] follow from Proposition 2.4.15 and Proposition 2.7.1. Finally,
to prove | , (2.3.3)], let us pick a sequence (u"),en, C - that converges to some

w.r.t. Wby and such that sup, ’8 )(,u”) < oo. We will show that H(u") — H(u).
Note that it is enough to prove thls convergence up to subsequences. Let p",p be the
densities of u@, 1o, respectively. Since supnT V%Q”H‘ (u") < oo, up to subsequences, the

functions (w/p”e‘/> converge in C'(Q2) to /pe¥. Since V is bounded, we also have the
convergence p" — p in C(Q). We write

H(u") = H(p)| =[EW") = E(p) + (1" — p)aa(P)|
<|E(W™) = E(p) — (1" — ) (V)| +[p" (V) — u(P)|
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Thanks to the uniform convergence p™ — p, we have |E(u™) — E(p) — (pn — ) (¥)| — 0.
Additionally, by Lemma 2.4.14,

. —2
() — (W] < T, ) + el + 752, )

from which we conclude, because sup,, ||| < sup,,||p"] ;0 < 0. O

Remark 2.7.5. To be precise, | , Theorem 2.3.1] applies to the limit of the maps t —
fif = pre/r- (as opposed to p] = pi/-)-). It can be easily checked that the distance
Wbo(uy, iy ) converges to 0 locally uniformly in time; see (2.5.27).

2.8 Appendix: Additional properties of Wb,

2.8.1 sz is not a distance when d > 2
We are going to prove that, when d > 2, the property
Why(p,v) =0 = p=v

in general breaks down. In fact, when applying Wh, to two measures i, v € & the information
about psq and vgq is completely lost, as soon as OS2 is connected and “not too irregular”. A
similar result is [ , Theorem 2.2] by E. Mainini.

Proposition 2.8.1. /fa: [0,1] — 0Q is (% + e) -Hélder continuous for some € > 0, then
mg (6(1(0) - 5&(1)7 O) - O . (281)

Consequently: Assume that 0X) is CO’%JF-path—connected, meaning that for every pair of
points x,y € OS) there exist ¢ > 0 and a (% + e) -Hélder curve a: [0, 1] — 0Q with a(0) = x
and a(1) = y; then, for every p,v € ., we have

Wha(p, v) = Wha(pa, va) - (2.8.2)

Proof. Step 1. Let av: [0, 1] — 052 be (% + e)—HéIder continuous for some € > 0. For n € Ny,
consider the points
x; = a(i/n), ie€{0,1,...,n},

and the measure

|
—

Y= 5(zi,xi+1) .

i

Il
o

It is easy to check that 4™ € Admv%Q <6a(0) — Oa(1) 0); moreover,

n—1 n—1
C(’}/n) = Z‘.CL'Z — $i+1’2 < Ca Z niliQE = Can72€,
=0 =0

where the inequality follows from the Hoélder continuity of a. We conclude (2.8.1) by
letting n — oo.

Step 2. Assume now that 02 is CO’%J“—path—connected. Fix a finite signed Borel measure 7
on 00 with n(02) = 0, that is, ||n4|| = [[n-]] = A. We shall prove that Wby(n,0) = 0.
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Fix €1,e0 > 0 and let X = {x1,29,..., 25} C 0N be a e;-covering for 92, meaning that
there exists a function P: 092 — X such that|z — P(x)| < € for every x € 0. We pick one
such P that is also Borel measurable (we can by | , Theorem 18.19]). From the previous
Step, for every i,j € {1,2,..., N}, we get 7, ; (nonnegative and concentrated on 92 x 0f2)
such that

ﬂ-:}gé’yi,j — ﬂ—i’%vj = 5$l — 5%. and C(’yz,]) S €q .
We define

7= (14, Pl + (P 1) +5 3 ne (P @) (P ()i

ij=1
The mg—admissibility of v, ie, v € AdmI;va2 (n,0), is straightforward. Furthermore,

C(y) = / 1d—PPd(ny +7-) + = Zm ) (P(2;))C(,)

zg 1
§2)\e%+)\62,

which brings us to the conclusion that mg(n, 0) = 0 by arbitrariness of €y, €.

Step 3. Let us assume again that OS2 is CO’%+—path-connected, and fix u,v € . and €3 > 0.
Let v be a Whs-optimal transport plan between pq and v, and set i == F#’}/ +(v— Fi’y)ag.
It is easy to check that ji € . and that uq = fig,. Therefore, the previous Step is applicable
to 1 = lao — flyn, and produces v, on 92 x OS2 such that

W#% — 7@% =n and C(y,) <e€;.
The measure v := v + 7, is W by-admissible between i and v. Therefore,
2
Why (1, v) < C(7) < C(7) + €5 = Wb (pa, va) + €3,
which yields one of the two inequalities in (2.8.2) by arbitrariness of 3. The other inequality

is (2.4.1). O

2.8.2 (Lack of) completeness

We prove here two claims from Section 2.4.6: in the setting where € is a finite union of
intervals, the metric space (., W) is not complete, but the sublevels of H are.

Proposition 2.8.2. Assume that d =1 and that () is a finite union of intervals. Then the
metric space (., Wb,) is not complete.

Proof. Without loss of generality, we may assume that (0,1) is a connected component
of Q,ie., (0,1) CQand {0,1} C 09.

Consider the sequence
n 1 1 ! 1
7! Z:*cannl)—éo *dl‘ey, n € Ny.
x ’ 9-n T
For every n, there exists the admissible transport plan
1 1
’yn = 50 ® <$$12n1’2n)> + (Id,Id)# (waaén,l)) S Adm~ (u ,u"“)
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which vyields

= n  n+l = a x? - 3 -n 3 .
Zsz(MaM )SZ ;dﬁzz §2 =\3’
n=1 n=1 2—n-1 n=1

hence (u"),, is Cauchy.

Assume now that " Ve i for some p € . and, for every n € Ny, fix " € Optvﬁg (", ).
Also fix € > 0. We have

Vo) = [l =yl a3 (.9) = &5 (je1 — ] x 982
and, using the conditions in Definition 2.3.7,
luall = 7" ([e.1 = e x Q) = p"(Je,1 = ¢]) = 3" (le. 1 - ] x 09)

€2

2 /vbn([a 1— 6]) -

Passing to the limit n — oo, we find

1—e 1
el > —dz
€ X

from which, by arbitrariness of ¢, it follows that the total mass of pq is infinite, contradicting
the finiteness required in Definition 2.3.7. O

Proposition 2.8.3. Assume that d =1 and that () is a finite union of intervals. Then the
sublevels of H in . are complete w.r.t. Wb,.

Proof. Take a Cauchy sequence (1" )nen, C - for Wby in a sublevel of 74, that is, H(;") < M
for some M € R, for every n € Ny. Thanks to Lemma 2.4.14, for every n € Ny we have

M > H(pm) > / g log o de — (IV | + 1) ] + 1 (W)

> / o log " da — (V]| + 1) 13| + 1) — ()

— Wby (u", MO)\AMEH +[ ]| + Why(, 1)

and, since Wby (", 1°) is bounded, the family (p™),en, is uniformly integrable. Let (o™ )ien,
be a subsequence that converges to some p weakly in L'(2). For each of the finitely
many = € 0f), let ®;z be a Lipschitz continuous function such that

$:(z) =1 and Pyz(z)=0ifx € 00\ {z} .
Again by Lemma 2.4.14, for every T € 0f2 and n,m € Ny, we have
1" (@) = ™ (2)] <[ (Pz) — pe (D)
o W, + ]+ W3 . )

/@mp”—pm)dx
Q

177 n m n m 7772 n m
+ o Wha(u iV o+ o7 + Wheen, m)
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which implies that (1" (Z))en, is @ Cauchy sequence in R, thus convergent to some number [;.
Define

= pdr + Z 70z .

zeoN)

It is easy to check that u"™* — u weakly; therefore, by Lemma 2.4.16, also w.r.t. Why. The
limit p also lies in the sublevel, i.e., H(u) < M, by Proposition 2.4.15. O

2.8.3 If Q is an interval, Wb, is geodesic, but # is not geodesically
convex

We prove that (., Wh,) is geodesic when € = (0,1), by using the analogous well-known

property of the classical 2-Wasserstein distance. However, as we expect in light of [

Remark 3.4], H is not geodesically A-convex for any A\. We provide a short proof by adapting
the aforementioned remark.

Proposition 2.8.4. If Q) = (0, 1), then (., V[A//bg) it is a geodesic metric space.

Proof. We already know from Proposition 2.4.11 that (.7, Wbs) is a metric space.

For any two measures fig, 11 € ., we need to find a curve t — p; such that
Wb (prs, 1) < (t — 8)Wha(po, f11) » 0<s<t<I1. (2.8.3)
The opposite inequality follows from the triangle inequality and (2.8.3) itself. Indeed,

Wby (10, 11) < Who(pt0, 1) + Wha(pts, i) + Wo(ja, f11)

(2.8.3) __ __
< (s+t—s+1—=t)Wba(po, 1) = Wha(po, 1),

and, in order for the inequalities to be equalities, the identity Wbs (s, ptt) = (t—8)Wba(io, 1)
must be true.

Take v € Opt‘%Z(uo,ul). By Proposition 2.4.19, ~ is optimal, between its marginals, for

the classical 2-Wasserstein distance. Since the set ) = [0, 1], endowed with the Euclidean
metric, is geodesic, the classical theory of optimal transport (see, e.g., | , Theorem
10.6]) ensures the existence of a curve (geodesic) ¢ — 1; of nonnegative measures on ) with
constant total mass, such that

Walvs, ) < (£ = s)Walmhy,789) = (= C() = (t = 5)Wh(pio, ) (284)

for 0 < s <t < 1. After noticing that ;1 — 1y = 11 — po by Condition (3) in Definition 2.3.7,
we define
e = o+ — Vo, te(0,1).

We claim that this is the sought curve. Firstly, since

(1t)a = (to)a + (M)a — (M)a = (M)a >0

by Condition (1) in Definition 2.3.7, and since 14(£2) = 14(£2), we can be sure that u; € . for
every t. Secondly, every Ws-optimal transport plan v, between v, and v, is Wby-admissible
between s and p;. Hence,

(2.8.4)

Whs(pts, ) < \JC(st) = Walvs, 1) < (t — 8)Wha(pao, f11) O
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Proposition 2.8.5. Let Q) = (0,1). The functional H is not geodesically A-convex on the
metric space (., Wby) for any A € R.
Proof. Consider the curve

Loy — 00 ifte(0,1],

t— =
He {0 ifi=0.

Clearly, p; € .7 for every t € [0,1]. We claim that this curve is a geodesic, that H (1) <
0o, and that lim; o H(u:) = oo, which would conclude the proof. The second claim,
namely (o) < 0o, is obvious. The third claim is true because

t
H(ut):—logt+][ Vdz —9(0), te (0,1},
0

and, since V' € L*°(0, 1), the right-hand side tends to oo as t — 0. To prove the first claim,
fix 0 < s <t <1 and define

S
Vst = (Id, ; Id># ot € AAdHIVI’}’b2 (uta ,US) )

which gives
9 2 t—s)?
Wit ) < Cloa) = [ o= 2] e = L5

Conversely, for every v € Opt‘%Q(ul,uo), Condition (3) in Definition 2.3.7 implies
(L 1) +9(1,0) +y({1} x ) =7(1,1) +7(0,1) + (2 x {1}) ,

and, since v({1} x Q) = 0 by Condition (2) in Definition 2.3.7, we have v(1,0) > (2 x {1}).
Therefore,

(2.8.5)

T — -
t

2
Wby (1, 110) = C(7) > C (&) + /Il‘ — 1] deyrd? +4(1,0)
> (o) + [ (o= 1P+ 1)amal) = [ ana.

By Conditions (1) and (2) in Definition 2.3.7,

1
1
/932 dﬂl#vm = /x2 dﬂﬂg = /0 22 dr = 3 ;

hence ary 2

5 85) (t— s —_

Why(pss ) - < 5= < (¢ =) Why(pm, po)
and this concludes the proof. O
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CHAPTER

Kinetic Optimal Transport (OTIKIN) —
Part 1: Second-Order Discrepancies
Between Probability Measures

This chapter contains (with minimal modifications) the following preprint | |:

G. Brigati, J. Maas, and F. Quattrocchi. Kinetic Optimal Transport (OTIKIN) — Part 1. Second-
Order Discrepancies Between Probability Measures. arXiv preprint arXiv:2502.15665v2,
2025.

Abstract

This is the first part of a general description in terms of mass transport for time-evolving
interacting particles systems, at a mesoscopic level. Beyond kinetic theory, our framework
naturally applies in biology, computer vision, and engineering.

The central object of our study is a new discrepancy d between two probability distributions
in position and velocity states, which is reminiscent of the 2-Wasserstein distance, but of
second-order nature. We construct d in two steps. First, we optimise over transport plans.
The cost function is given by the minimal acceleration between two coupled states on a fixed
time horizon T'. Second, we further optimise over the time horizon T" > 0.

We prove the existence of optimal transport plans and maps, and study two time-continuous
characterisations of d. One is given in terms of dynamical transport plans. The other one —in
the spirit of the Benamou—Brenier formula— is formulated as the minimisation of an action of
the acceleration field, constrained by Vlasov's equations. Equivalence of static and dynamical
formulations of d holds true. While part of this result can be derived from recent, parallel
developments in optimal control between measures, we give an original proof relying on two
new ingredients: Galilean regularisation of Vlasov's equations and a kinetic Monge—Mather
shortening principle.

Finally, we establish a first-order differential calculus in the geometry induced by d, and
identify solutions to Vlasov's equations with curves of measures satisfying a certain d-absolute
continuity condition. One consequence is an explicit formula for the d-derivative of such
curves.
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3.

SECOND-ORDER DISCREPANCIES BETWEEN PROBABILITY MEASURES

3.1 Introduction

Scientific background Kinetic equations describe systems of many interacting particles, at
an intermediate level between the microscopic scale, where each particle is tracked individually,
and the macroscopic scale of observable quantities, corresponding to, e.g., fluid dynamics
or diffusion models. Particles are characterised via their position € X and velocity v € V.
At the kinetic scale—which is our point of view thorough this paper—we do not track the
evolution of each single particle. Rather, particles are indistinguishable, and the only available
information is their distribution in x,v. The evolution of the system over time ¢ € [0, 00) is
modelled in a statistical mechanics fashion, as a time-dependent probability distribution on
the phase space I' .= X x V.

The hierarchy between scales was already considered by J.-C. Maxwell and L. Boltzmann
[ : ], and later included in D. Hilbert's problems for the XX century (Problem VI)
[ ]. Kinetic equations, their derivation from microscopic dynamics, and their macroscopic
limit regimes—fluid dynamics or diffusion—have been a vast research field ever since, with
important open questions still under active investigation.

On the other side, the classical optimal transport (OT) theory | : ], see §3.1.2, is
naturally connected to the macroscopic description of particle systems. Indeed, OT can be
reformulated in terms of fluid mechanics | ]. In addition, OT provides a deep interpretation
of diffusion equations as gradient flows in the space of probability measures | ], as well
as variational (JKO | ]) discrete approximation schemes.

In this paper, we take a step towards a new kinetic optimal transport (OTIKIN) theory,
specifically tailored to the kinetic description of particle systems. Indeed, our main object,
a new second-order discrepancy d between measures on I', preserves the distinct nature of
the variables = and v. We consider the case where particles are subject to Newton's laws of
mechanics.

Structure of the paper

Section 3.1. The main definitions and results are formulated in §3.1.1. In §3.1.2, we
draw connections with related works and collect some motivations, applications, and
perspectives.

Section 3.2. We consider the case of Dirac masses. In §3.2.1, we study the minimal
acceleration problem between states in I'. In §3.2.2, we introduce a non-parametric
minimal-acceleration discrepancy.

Section 3.3. In §3.3.1, we generalise the construction to a minimal-acceleration discrepancy d
between probability measures. The definition is given as a static mass transportation
problem. Optimisers (transport plans and maps) are shown to exist in §3.3.2. Additional
results are given in §3.3.3.

Section 3.4. We analyse two equivalent dynamical formulations of the minimal-acceleration
discrepancy d. These are defined, respectively, by means of dynamical transport plans
(§3.4.1) and minimal action of solutions to Vlasov's equations (§3.4.3). Further results
on dynamical plans and Vlasov's equations are collected in §3.4.2 and §3.4.4, respectively.

Section 3.5. We study a differential calculus induced by the structure of d. In §3.5.1-
3.5.2, we prove the equivalence between solutions to Vlasov's equations and a class
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of physical d-absolutely continuous curves. In §3.5.3, we compute the d-derivative of
solutions to Vlasov's equations. Moreover, we show that, along such curves, the optimal
transport plans are tangent to the curve itself. Finally, in §3.5.4, we extend the result
to reparametrisations of solutions to Vlasov's equations.

3.1.1 Definitions and main results

Static formulation Set X := R" and V := R", and let the phase space be I' :== X x V.
Let P»(T") be the set of probability measures ;1 € P(I'), such that the second-order moments
of u are finite, i.e.,

/F (]x|2 + |v|2) dp(z,v) < 0.

We aim at defining a minimal acceleration discrepancy between measures p, v € Po(T"). Let
us start with the case of Dirac masses ji = d(;.) and v = J(, ). We can see the squared
Euclidean distance between = and y as a variational problem where we minimise the integral
of the squared velocity for all paths « joining x and y in one unit of time:

1
ly—z> = inf /
a€H(0,1;X) 0

Therefore, one reasonable definition for an acceleration-based discrepancy would be

1
inf {/
a€H2(0,1;X) 0
(3.1.2)

namely, we compute the minimal squared L?-norm of a force F; that moves (x,v) to (y,w) in
one unit of time, under Newton's law

a’(t)‘2 dt  subject to a(0) =z and (1) = y} . (311

0/’(25)‘2 dt  subject to (a,a’)(0) = (z,v) and (a, &')(1) = (y,w) ¢ ,

Ty = Vg, ’Ut:Ft.

However, unlike in the first-order case, the choice of the time interval [0, 1] is now arbitrary.
Indeed, while we can write

T
ly— x> = inf T/
aGHl(O,T,X) 0

for every T' > 0, a direct calculation (see §3.2) shows that

T
inf T /
acH2(0,T;X) 0

o/(t)‘2 dt  subject to «(0) = z and (1) = y} (3.1.3)

o/’(t)‘2 dt st (a,a)(0) = (z,v) and (o, ') (T) = (y,w)}

2

y—z vtw w — o] = a;«x,v)’ (y’w)) . (3.1.4)

T 2

= 12‘

which is not independent of 7.

Thus, we introduce a relaxed version of (3.1.2), where the time parameter is an additional
resource to optimise:

gl((:r, v), (v, w)) = %I;fo ZZT<(ZE,’U), (y, w)) : (3.1.5)
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Problem (3.1.5) admits a solution (see §3.2). Namely, for all (z,v), (y,w) € T,

~2

d ((z,v), (y,w)) = =2l

2
3\v+w]2—3(ym.(v+w)) +lw—of ifx#y, (3.1.6)
+ . .

3o+ w|* +|w — v)? ifr=y.

This quantity is not lower-semicontinuous, but we can write its lower-semicontinuous envelope
explicitly: for (x,v), (y,w) € T,

2

3lv+wl* -3 (?y/_; (v + w))+ +lw—of ifx#y, (3.1.7)

lw —v]? ifr=y.

& ((w,0), (y,w)) =

This function d is our second-order discrepancy in the case of Dirac deltas. Notice that d
and d are not distances. A collection of their properties is given in §3.2.

For general probability measures 1, v € Py(T'), we define dr (i, v), d(i,v), and d(p, v), by
optimising over couplings (or transport plans) 7 as follows:

2
~2 . y—x v+w 2
dr(p,v) = inf 12 — +||lw—v , 3.1.8
M=t (1250 -5 o HW)) (3.18)
2
72 3||v+w||2 —£’>((y_m+w)w)++||w—v]|2 if ||y — x| >0
d(p,v) = einrg ) L2 () PR L2(m) Y L2(x) = Y
T v 2 2 .
v+ wlliagey +llw = vllaem if |y — {20 =0,
(3.1.9)
2
2 v +w|? —3<(y_x’v+w)”)+ +||w — v} if |y — |2, >0
d*(p,v) = eﬁrﬁﬁ : L2(r) lv=2ls, w L2 () Y 2(m) =Y
T R 2 .
||w_UHL2(7r) if ||y_x||L2(7r) =0,
(3.1.10)

where (-, ), is the scalar product in L?(7), and

M(p,v) = {7 € P(UxT) : (pr, )y =p, (pr,,)sm=v}.

Observe that (3.1.8)-(3.1.10) define finite non-negative quantities for every choice of p, v €
Po(I"). This is proved as in the classical OT theory, by testing with 7 .= p®@ v € II(u, v).
Another observation from OT theory is that (3.1.8) admits a minimiser for all y, v.

Our first result establishes the existence of optimisers for (3.1.10) and, under the assumption
of absolute continuity for i, of an optimal transport map, in analogy with the classical OT
theory | , , ]

Theorem 3.1.1 (Optimal plans and maps). The following statements hold.
1. (Proposition 3.3.2) We have
d(p, v) = %rifo dr(p, v), w, v € Po(l). (3.1.11)
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2. ( Proposition 3.3.4 ) The second-order discrepancy d is the lower-semicontinuous envelope
of d with respect to the 2-Wasserstein distance on Ps(I).

3. (Proposition 3.3.5) For all j1,v € Py(T"), there exists a minimiser for (3.1.10).

4. (Proposition 3.3.10) If uu is absolutely continuous with respect to the Lebesgue measure,
then, there exists a d-optimal transport map between . and v, i.e., a measurable
function M : T' — T" such that M yp = v and 7 := (id, M )4 is a minimiser for (3.1.10).

While Proposition 3.3.5 shows that d-optimal transport plan exist, we will see that this is not
always the case for d, i.e., minimisers for (3.1.9) may not exist, see Example 3.3.6. In §3.3.3,
we show that uniqueness of d-optimal kinetic transport plans (i.e., minimisers for (3.1.10))
and maps is not to be expected in general.

Dynamical formulations Even though (3.1.8) generalises (3.1.5)—which is derived from
the dynamical optimal control problem (3.1.4)—it is not immediate to recognise a minimal
acceleration in the cost of (3.1.8). However, there are at least two natural ways to generalise dr
to a discrepancy between probability measures via dynamical formulations. In what follows,
we discuss them and state our second theorem: these formulations are indeed equivalent to
the static one.

Fix p1,v € Po(I') and T > 0. To build our first dynamical formulation, the idea is to take a
mixture of curves («,a’): [0,7] — I' connecting points of supp(u) and supp(v). Precisely,
we consider measures m € P(HQ(O, T X)) such that

(pra(o)’a,(0)># m =/, (pra(T)’a/(T))# m=v, (3.1.12)

where pr,, ;) () denotes the evaluation map o — (a(t), o/(t)), and we define

T
AZ(p, V) = inf {T/ /
me7><H2(o,T;X)> 0

The function nr is a natural generalisation of dr, i.e.,

o/’(t)‘Q dm(a) dt  subject to (3.1.12)} . (3.1.13)

ng((%“)» (y,w)) =nr (5(33,11)7 5(y,w)) ) (x,v), (y,w)el', T >0.

To write our second dynamical formulation, we observe that, for any a € HQ(O,T; X)
and p € C?((O,T) X X X V), we have

T d T
V= / —o(taa’) dt = / (p(t, 0, ) + 0/ - Vagp(t, a,0) + 0 - Vyplt, @, o)) dt
0 dt 0

— /0 /F(atSO(t, Z, U) +v- ngo(t, T, 1)) 4 a//(t) . va0<t, T, U)) d5< )(.T, U) dt,

a(t),e (t)

meaning that p; = (5((1(1&) o)

) and Fy(z,v) = o(t) satisfy Vlasov's equation

atut +v- qut + VU : (Ft ,ut) =0 (3114)
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weakly in (0,7) x I". For given u,v € Py(I") we define the T-minimal action as

MA () = inf T/ |Flag dt st (3114) and pio = i, pr = v/} |
(b, Ft)teqo, 0
(3.1.15)
which is reminiscent of the Benamou—Brenier formulation of the 2-Wasserstein distance [ ],

see (3.1.35) below. As before,
dr((.v), (g, 0)) = MAz (80n) 0p)) s (@,0), (yw) €T, T>0. (3.1.16)

Indeed, the inequality > follows from the discussion above. To justify the converse: when a
given curve (f1, Fy)ie(o,r) solves (3.1.14), then t — «(t) = [« dp, (formally) satisfies

d 1
oz;(t):/wi dps (3214’/(v-vx:cz-+Ft-wi) dutz/vi dpe, i€{l,...,n},
dt I r I

d 1.
(1) (/}%dﬂt“zy)/Xp-Vum@+ﬁ;-v;m)dutzﬁ/kfnidut,iez{L.u,n},
I I Iy

and, by Jensen's inequality, [ (t)| <||F}[[.2(,, for all t € (0,T), which yields < in (3.1.16).
The following result extends (3.1.16) from Dirac measures to all of Py(T").

Theorem 3.1.2 (Equivalence of static and dynamic formulations). For every p,v € Po(T")
and T > 0, the problems (3.1.13) and (3.1.15) admit a minimiser. Moreover, we have the
identities -

nr(p,v) = MAr(u,v) =dr(p,v). (3.1.17)

This result is proved in two steps, corresponding to Theorem 3.4.1 and Theorem 3.4.10. After
posting a first version of this manuscript on arXiv, we were informed of the preprint | ]
by K. Elamvazhuthi—building on a previous work [ ]|—which contains a generalised
version of the second equality in Theorem 3.1.2, in the context of optimal control systems.
In Theorem 3.1.2, we prove further equivalence with the formulation ny, and existence of
minimisers for all three problems. Distinctive features of our approach are an original kinetic
Monge—Mather principle (cf. Proposition 3.2.6 and Lemma 3.4.4) and the regularisation of
solutions to Vlasov's equation via Galilean convolution (cf. Lemma 3.4.9), which may be of
independent interest.

A variational characterisation of Vlasov’s equations In the classical optimal transport
theory, the Benamou—Brenier formula is constrained by the continuity equation 0;p; + V -
(Vipe) = 0, for a velocity field V;. Solutions to the continuity equation on a bounded open
interval (a,b) turn out to coincide with absolutely continuous curves in the Wasserstein space,
under appropriate integrability conditions | , |. Although d is not a distance, we
will give a similar characterisation for solutions to Vlasov's equations.

Definition 3.1.3 (Physical curves). Let (i) : (a,b) — I' be a 2-Wasserstein absolutely
continuous curve (see §3.1.2). We say that (1), is physical if, in addition, for all s < ¢ € (a,b),
and for a function ¢ € L,(a,b), it holds true that

amwwms/amw. (3.1.18)
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Heuristically, the physicality condition for a curve (1), yields some differentiable control in the
velocity marginal (pr,)x/u, together with the fact that the variation of the spatial marginal
(pr, )t is given by v (hence, p, would solve (3.1.14)). This idea is made rigorous in the
next result.

Theorem 3.1.4 (ldentification of the tangent I physical curves and Vlasov's equations). The
following hold true.

1. If (g, Fy)y is @ weak solution to (3.1.14) on (a,b) for some force field (F}); such that

b
[ ol 1R ,) ot < oo, (3.119)

then the curve (p); is physical with

0(t) =2 || Fillizgur) - (3.1.20)

2. Assume that (fit)ic(ap) is @ physical curve. Then, there exists a vector field (F})
with || Fi||r2u,) < U(t) for a.e. t € (a,b), such that (u, F}); is a weak solution to
Vlasov's equation (3.1.14) and we have the limit

d
lim h(:uta ,U/tJrh) ”FtH

i A L2 (3.1.21)

for a.e. t € (a,b).

The proof of this result can be found in §3.5, as a combination of Proposition 3.5.4, Corol-
lary 3.5.13, and Proposition 3.5.23.

Hypoelliptic Riemannian structure The class of solutions to Vlasov's equations (3.1.14)
is rather rigid, as it is not closed under Lipschitz time-reparametrisation. The latter is a
desirable property for “absolutely continuous” curves, which we define below.

Definition 3.1.5 (d-absolutely continuous curves). Let (fi,) s 5 be a 2-Wasserstein absolutely
continuous curve (see §3.1.2). We say that (fi,) ¢, ) is d-absolutely continuous if there exists

a function ¢ € L2,(a, b) such that for every s,t € (@,b) with s < t, we have
t~
d(fig, fiy) §/ O(r) dr. (3.1.22)

All physical curves are d-absolutely continuous. The converse is not true, e.g., a time-
reparametrisation of a physical curve is still absolutely continuous (but not physical). We
may wonder how general this example is and, consequently, how large the class of absolutely
continuous curves is compared to that of physical curves.

We find that, under a suitable regularity condition (Assumption 3.1.10), d-absolutely continuous
curves coincide with the closure of physical curves under regular reparametrisations in time.
Heuristically, d-absolute continuity is enough to have a differentiable control on the velocity
marginal for a curve (fi,)s, together with the fact that the variation of the space marginal of
fi, is positively proportional to v, i.e, it amounts to A(s)v, for some A(s) > 0 (independent of
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the space-velocity variables). The proportionality factor 5\(3) can be renormalised to one via a
time reparametrisation.

The factor A(s) is related to the infinitesimal ratio between the optimal time horizon in the
definition of d(fi,, fi,, ) and the physical time h. More precisely, given s, h, we define T'(s, s +
h) = argming dr(fi,, fi,, ). Then, whenever h s T'(s, s + h) is right-differentiable at 0, we
have that \(s) is finite, and .

As) = Jim L&5FR)
h—0+

We state these ideas precisely in Theorem 3.1.7 below.

Remark 3.1.6. If (11, F})ic(ap) SOlves Vlasov's equation (3.1.14), and 7: (@,b) — (a,b) is
a bi-Lipschitz reparametrisation, then the curve s — [i, == p, () solves the reparametrised
Vlasov equation

Dfiy + N(8)v - Vi, + V- (Foi,) =0,  s€(ab), (3.1.23)
with A(s) := 7/(s) and F, := \(s)Fy(s).

Theorem 3.1.7 (Identification of the tangent Il: d-absolutely continuous curves, d-derivative).
The following hold true.

1. Assume that (fi,, F',), is a weak solution to (3.1.23) on (a,b) for some force field (F'),

such that ;
) )
| (e +|1

and for a function \ bounded from above and below by positive constants.

)) ds < o0, (3.1.24)

2
L2(i,

If the Wasserstein metric derivative of the spatial marginal p,(-) .= i (- X V) satisfies

>0 forae se€(ab), (3.1.25)

~/
Psly,

then, the curve (fi,)s is d-absolutely continuous and satisfies Assumption 3.1.10, with

Us) =2||Fllien) and Aac(s) = A(s), s € (ab). (3.1.26)

2. Assume that (fi,) e is @ d-absolutely continuous curve satisfying Assumption 3.1.10.
If p, satisfies (3.1.25), then there exists a vector field (F'y)s with || Fs||12(n,) < (s) for
a.e. s € (a,b), such that (fi,, F,), is a solution to (3.1.23) with A = A\, and we have
the limit

d(/:bsalas—i-ﬁ) T

lim
10 h

(3.1.27)

Lz (ay)

for a.e. s € (a,b).

The proof of this result can be found in §3.5, see in particular Theorem 3.5.24.

Remark 3.1.8 (The flow velocity). In both statements in Theorem 3.1.7, we assume positivity
a.e. of the quantity |p/|y,, i.e., of the Wasserstein metric derivative of the spatial density
(ps)s- This can be interpreted as macroscopic non-steadiness of the system. Using the theory
of optimal transport (cf. | ] and Lemma 3.5.3 below) it is possible to prove the following.
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When (fiy), solves the reparametrised Vlasov equation (3.1.23) the metric derivative |5 |y, is

equal to the L2(p,)-norm of the irrotational part of the vector A(s) j (), where j () is the
flow velocity

jile) = [ v dp(o0).
%
Notice that (p,, ,)s solves Euler's equation
Osps + AMs)Vy -7, =0.

Remark 3.1.9 (The tangent cone |: admissible directions). Theorem 3.1.7 asserts that d-
absolutely continuous curves are identified with solutions to (3.1.23), which in turn are induced
by vector fields (A(s)v, F's)scap)- A narrowly continuous curve of measures (fi,)s solves
(3.1.23) for two different vector fields (F's)s and (Gj)s if and only if, by linearity of (3.1.23),
we have V,, - ((FS — @8) ﬂs> — 0 in the sense of distributions, that is, if and only if F; and G,

have the same projection onto

cliz(a,) { Vg 9 € CHT)} .

As in the classical case, see §3.1.2, we can define the hypoelliptic tangent cone at p as

TuaPa(T) = cliagy{(Av, Vi) © A € Rsg, g € CUI)}, (3.1.28)
and equip 7, 4P2(I") with the degenerate Riemannian form
(1 1 2 2) — 1. @)
(AW, FO), (AP, F )>MPQ(F) = /F F® dp . (3.1.29)

Finally, recall that Equation (3.1.23) is the closure under time-reparametrisation of (3.1.14).
At the geometric level, we formally interpret this fact as follows. The hypoelliptic tangent
T,.aP2(I") is the conical envelope of the vectors {(v, Vup), @€ C}:(I’)} , Which correspond

exactly to the vector fields inducing (3.1.14). See also Remark 3.1.13 below.

Assumption 3.1.10 (Regularity). Let (fi,),c;5 be a d-absolutely continuous (hence 2-
Wasserstein a.c.) curve, and define the open set of times

Q= {s € (@b : v, >0} . (3.1.30)

We assume that there exist

1. a measurable selection (s,t) — 75 € II(fi,, f1,) of d-optimal transport plans, i.e., min-
imisers in (3.1.10),

2. a measurable function A\, : (a, l;) — R-y bounded from above and below by positive
constants,

such that, defining the optimal time*

2
|y —$‘|L2(ﬁ5,t)

2( ) if (y—z,v+w)z,, >0,

Ty,=¢ VBT W a<s<t<b, (3.131)
0 if [y — 2l =0,
00 otherwise,

1This is a minimiser for (3.1.11) between i, and fi,, see Proposition 3.3.2
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then, the convergence

52*" — Aac(s) ash 0, (3.1.32)

holds for a.e. s € (@, b), with L'-domination on every compact subset of Q.

We conclude by stating an immediate consequence of Theorem 3.1.4 and Theorem 3.1.7.

Corollary 3.1.11. Let (y1;); be a 2-Wasserstein absolutely continuous curve with [pj|y,, > 0
for a.e. t. The curve (u;), is physical if and only if:

1. it is d-absolutely continuous, and

2. it satisfies Assumption 3.1.10 with S\ac =1.

3.1.2 Motivation, related contributions, and perspectives

In this section, we review the recent literature that motivated or inspired our construction.
We also give a perspective on future developments after this work in §3.1.2.

Comparison with standard optimal transport

Optimal transport (OT) Let pg, p1 € Po(X). One way to define the standard 2-Wasserstein
distance between py and p; is given by

Ws(po, p1) = inf \//|y — x|’ dn(z,y), (3.1.33)
m€l(po,p1)

where I1(pg, p1) is the set of all couplings m € Po(X x X) of py and p;. This variational
problem, in which the average distance between coupled points = € supp(pg) and y € supp(p1)
is minimised, is known as Kantorovich formulation. The existence of minimisers is classical
[ | and they are referred to as optimal transport plans. Under mild conditions on py, it is
also possible to establish existence of an optimal transport map between py and py, i.e., a
function M: X — X for which 7 := (id, M)4po is an optimal plan [ ]. The optimal
transport map is pg-a.e. uniquely determined and can be found by solving a Monge—Ampere
equation. Its regularity is a major research topic [ : ]

Recalling (3.1.1), |y — z|* is the squared length of the line joining x with y that min-
imises folfo/(t)|2 dt, among all H'-regular curves a: (0,1) — X with = and y as endpoints.
Thus, the 2-Wasserstein distance can also be written in its dynamical formulation

Wy, 1) = inf{ / 1 /

o/ dm dt, st meP(H(0,1:4)),

(pra(o))# m = p, (pra(l))# m = pl} . (3.1.34)
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Moreover, J.-D. Benamou and Y. Brenier | ] provided the following fluid-mechanical
characterisation:

1
W%(po,pl) = 1nf{/ ||‘/t||iQ(pt) dt, s.t. 8tpt + Vx . (Wpt) =0in D*((O, 1) X X) R
0

Pt=i = Pi for ¢ = 0, 1} (3135)

The idea is that the characteristic ODE of the continuity equation 0;p; + V. - (Vip:) = 0
in (3.1.35) is @y = V;. Thus, the squared norm of the velocity field (V}); is equal to the
average squared path-wise speed, cf. | , Chapter 8|. As it turns out, the curves (p;);
solving the continuity equation for some vector field (V;); such that fOIHVQHiQ(pt) dt < oo are
exactly the Wy-2-absolutely continuous curves | ], i.e., those satisfying

t
Wa(ps, pr) < / ((r) dr, 0<s<t<l. (3.1.36)

for some function ¢ € L2(0,1). For such curves, the metric derivative is

W
— lim 2(pt7 ,0t+h)
Wo h—0 h

=Vellpz( fora.e. t € (0,1), (3.1.37)

p:‘, pt) 7

if (ps,V;); solves the continuity equation and V; is chosen in the L?(p;)-closure of the
set {Vx(b NONS C};(X)} Formally, the distance W3 induces a Riemannian structure | |:

T,Pa(X) = cliagy) { Voo 1 ¢ € CLA)} (F, GV py) = /F-G dp. (3.1.38)

Comparison of OTIKIN and OT

= At the level of static problems (i.e., optimal transport plans), existence of minimisers is
true for both OT (i.e., in the problem (3.1.33) defining W5) and OTIKIN (i.e., in (3.1.10),
defining d). For both, also existence of an optimal transport map holds under the
assumption of absolute continuity of the starting measure w.r.t. Lebesgue (see Proposi-
tion 3.3.10), but uniqueness in OTIKIN does not hold, see §3.3.3.

= By minimising the acceleration as in (3.1.13), we find a discrepancy ny = dr that
depends on the time parameter T'. The non-parametric discrepancy d is then found
by optimising in T" and taking the Wy-relaxation, see Theorem 3.1.1. Note that this
relaxation is necessary in order to ensure existence of optimal transport plans, see
Proposition 3.3.5 and Example 3.3.6. In OT, the Wasserstein distance W, is, instead,
naturally non-parametric, in the sense that the choice of the time interval in (3.1.34) is
inconsequential. This follows from our discussion in §3.1.1.

= In (3.1.34), an optimiser exists and is supported on constant-speed straight lines con-
necting points & € supp(pg) to points y € supp(p;), according to the optimal coupling
in (3.1.33). In this case, there is no loss of generality in considering only curves
on [0, 1], see (3.1.3). In (3.1.13), we have the existence of a minimiser my, and this
measure is supported on cubic T-splines [ | (see §3.2), for every T'. However,
time-reparametrisations of my on another interval [0,7"] might no longer satisfy the
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desired boundary conditions. This happens even for one single spline between two Dirac
masses. Furthermore, even if a reparametrisation satisfies the boundary conditions, it
may not be optimal for the problem with time 7".

= While the class of continuity equations d;p; + V. - (Vip:) = 0 is invariant under time-
reparametrisation, the class of Vlasov's equations Oyp; + v - Vo + Vo - (Fyuy) = 0 is
not. When working with Dirac deltas, the same observation arises by comparing the
first-order ODE #; = V; with the second-order ODE &; = v;, 0, = Fj.

Remark 3.1.12 (The tangent cone II: tangency of optimal plans). In | , Chapter 8],
the Wasserstein tangent space at p € Py(X')—denoted by 7,P»(X)—is identified with the
closure in L?(p; R?) of {ngp Lp € Cé(?()} A time-dependent vector field V; € T, P2(X)
can be interpreted as the velocity field of a curve solving 9;p; + V. - (p: Vi) = 0 (which is a
necessary and sufficient condition for a curve to be Wa-2-a.c.). In | , Proposition 8.4.6],
it is shown that, taken two measures p;, pyyp, along such a curve, one has y —x — h'V; = o(h),
as h — 0, on the support of any Wy-optimal plan between p, and p; .

In our setting, we establish a similar structure. Let (y); be a solution to the Vlasov equation
(3.1.14), i.e. O +v -V + V- (Fue) = 0, with (v, Fy) € T, aP2(T) (see (3.1.28)). Note
that, by Theorem 3.1.4, this is equivalent to physicality. In §3.5.3, we will prove that, if m4p
is an optimal transport plan for d(g, f1+1), then, m ;. ,-almost everywhere,

y—x—hv=o(h),
w—v— hFy(z,v) =o0(h).

Whenever the total momentum of y; is non-zero, we gain a further order of precision in our
Taylor expansions on the support of 7 ;44!

1
y=2x+ hv+ §h2Ft(m, v) + o(h?).

Remark 3.1.13 (The tangent cone lll: geometry of the tangent bundle). We continue
the formal geometric considerations of Remark 3.1.9. Formally, the 2-Wasserstein distance
induces a Riemannian structure on Py(X), with a clear identification of the tangent bundle
[ : ]. The discrepancy d of OTIKIN yields a sort of hypoelliptic Riemannian
structure | ]. Vlasov's equation (3.1.14) and its time-reparametrisations (3.1.23), can
be rewritten as Jsfi, + Vg, - ((;\(t)v, F) ﬂt) = 0, which is a special case of the continuity
equation Osfi, + V., - (Xsfi,) = 0 associated with the Wy-distance over Py(I'), for a 2n-
component vector field X, : I' — R?". Thus, we can formally see the geometry of d—i.e., the
hypoelliptic tangent cone T «P>(I") with the form (3.1.29)—as a distribution of vectors
in Tz w,P2(I"), equipped with a degenerate version of (3.1.38) that measures only the
acceleration component F,.

Remark 3.1.14 (Comparison with sub-Riemannian optimal transport). A. Figalli and L. Rifford
developed a theory for optimal transport on sub-Riemannian manifolds [ ]. They consider
a m-~dimensional Riemannian manifold (M, (-,-)), equipped with a distribution of vector
fields A = span{ Xy, -+, X;}, with & < m, such that Lie(A) = T M, i.e., the Hérmander
condition | | is satisfied. The Wasserstein distance is replaced by

mell(p,v)

Wlio(s,v) = inf / () dnle,y) .
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where dggr denotes the sub-Riemannian distance on (M, (-, -), A). Notice that dgg is obtained
via minimal length of curves tangent to A,

1
2 .
dsn(v,9) = b | ] (1), @ (B)age dt.
a’eA
Our case is different, since d-absolutely continuous curves are induced by vector fields tangent
to?
9
Oy, |

but we only measure the speed of curves in the directions {Y;}? ,, while the vector field Z acts
solely as a constraint. The resulting hypoelliptic geometry combines degenerate Riemannian
with symplectic effects. Heuristically, the difference between sub-Riemannian geometry and
our hypoelliptic geometry is analogous to the distinction between Hormander operators of the
first kind, like the sub-elliptic Laplacian %, (X;)?, and Hérmander operators of the second
kind, like the Kolmogorov operator Z + -7 | (Y;)2.

Ay :=span{Z,Yy,---,Y,}, withZ=v-V,, Y, =

Minimal acceleration costs, kinetic Wasserstein, and related distances

Optimal transport with minimal acceleration cost has appeared in the context of variational
schemes for fluid dynamics | , i ], see also §3.1.2. There, a discrete time-step 7' > 0
is fixed, and the authors consider both dr and

Wi(u,v) = inf /(12|y;x—w;”

2

mell(p,v)

+|w—v|2) dr, p,v e Po(l),
(3.1.39)

w—v
5 -

which differ in the sign of

For our purposes, the functionals aT and W cannot be used as such, indeed:

1. smooth curves t — u; are not, in general, aT—continuous, in the sense that

lll}llilonf dr (g, fen) > 0.

Therefore, absolute continuity is not meaningful for aT;

2. on the one hand, for all 7' > 0, the functional W is a distance on Py(I"), which is
equivalent—with equivalence constants depending on T—to Wy, as the cost function
2
satisfies wr((z,v), (y,w)) =12 |1 — 232" +w — o] < |(z,v) — (y, w)[2
the derivative of wy along Newton's ODE &, = v, 0, = F} is given by

However,

2

2
- WT((It, Ve), (Ton, Ut+h)> + ’Ft’2 .

h—0 h2

Pl
T 2

This quantity is not natural in our setting, which demands the squared force |F}|?

instead, as we build a purely acceleration-based theory.

2Note that Lie(Ayin) = 7 R?", so that Hérmander's condition holds.
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In a recent paper | ], M. lacobelli explored two other families of ‘kinetic Wasserstein
distances’, yielding to new results for Vlasov's PDEs. The first idea is to build perturba-
tions of the standard Wasserstein distance W5 on P,(I"), using transportation costs of the
form aly —z|° + b(y — z) - (w — v) + ¢|w —v|?, with a,b,c € R to be tuned. Then,
time-dependent and non-linear generalisations are considered. Twisting the reference distance
(usually H? or 1.?) to better capture the interaction between space and velocity variables has

been a fruitful technique in kinetics, to prove both regularity (hypoellipticity | : 1)
and long-time convergence to equilibrium (hypocoercivity | , ]). The interplay
between hypocoercivity and optimal transport has been analysed in a few papers | : ].
A second class of distances is constructed by adding a time-shift as follows [ |:
inf /(!(:v—tv)—(y—tw)|2+|w—v|2) dm, t>0, prvePl).
mell(p,v)

Our discrepancy d differs from previous constructions, as it involves an optimisation over T > 0.
As a result, d is not a distance, but it has the physical dimension of a speed, so that its time
derivative along curves of measures is naturally an acceleration.

Variational approximation schemes for kinetic equations

Minimising the squared acceleration in optimal transport originated from a series of papers
about variational approximation schemes for dissipative kinetic PDEs [ , , ,

, |, before being readapted to fluid dynamics | , |. The goal there is
to approximate, by means of De Giorgi minimising movement schemes [ ], the solution
to Kramer's equation

Of +v-Vof =Auf,  f:(a,b)xT =R, (3.1.40)

and various generalisations thereof. One prototypical result is the following.

Theorem 3.1.15 (| : ]). Let £: Py(I') — [0, oo] be the Boltzmann—Gibbs entropy
1 de dv ifpu= dz d
E(n) = {fff og [ dzdv ifu=flz,v)dedv, (3.1.41)
+oo otherwise.
Given an initial datum f, € L(T"), define the sequence
pi = fo d dv,
) 1 -2 (3.1.42)
,Lt?kﬂ)h €argmin | E(V) + — dh(uzh, V) : keN.
VEP2(T) 2h

Then, as h — 0, the piece-wise constant interpolation (1}');>o converges to the solution
to (3.1.40) with initial datum f.

As observed in | ], the choice of the entropy £ and the penalisation d,, can be motivated
by a large deviation principle. However, the penalisation d;, depends on the timestep h, so
that (3.1.42) does not exactly define a De Giorgi scheme [ ]. Instead, the discrepancy d
we introduce does not depend on the timestep (in fact, we optimise over the time parameter).
This way, the intrinsic time parameter of d will depend on the evolution itself, without being
conditioned by the time discretisation. The analysis of a scheme akin to (3.1.42), with d in
place of dy, will be the subject of a forthcoming work.
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Wasserstein splines and interpolation

Splines between probability measures Splines arise in numerics as an interpolation method
for a set of data (;, 2;);—1.__x C [0,1] x X. An interpolating curve is a function a: [0,1] — X
with «(t;) = z;, subject to certain constraints (e.g., regularity). One interesting and common
example is the solution to

1
o € argmin /
acH?(0,1;X) 0

Spline interpolation between probability measures is the problem of finding a minimal accelera-
tion curve (p;)ic(o,1) such that p;, = p;, for a given dataset (¢;, p;)i=1,..kx [0, 1] xPa(X). This
matter has recently attracted increasing interest and has been the subject of both theoretical

2
o/’(t)‘ dt, s.t. a(t;) = x; for every z} :

and numerical investigations [ : , : |. One possible approach is to
interpret (p;); as a curve taking values in the Riemannian-like space (732(26'), Wg) (see §3.1.2)
and to measure the covariant acceleration of p via the Levi—Civita connection | : ]

A more tractable strategy is to consider measure-valued path splines:

1
me  argmin {/ /|o/’(t)|2 dm dt, s.t. (pr,)zm = p; for every z} . (3.1.43)
meP<H2(o,1;X)) 0

Notice that this problem differs from (3.1.13) with 7" = 1, where we interpolate only between
two measures and, most notably, we also fix the velocity marginals. However, (3.1.43) writes
as a relaxation of (3.1.13), by further minimising over all possible velocity marginals | ].

Kinetic Optimal Transport for measure interpolation We address two issues from the
recent literature related to spline interpolation:

1. Theorem 3.1.2 provides a fully rigorous proof of the kinetic Benamou—Brenier formula
with fixed space-velocity marginals. As a corollary, we prove a version thereof where
only the space marginals are assigned, as conjectured by Y. Chen, G. Conforti, and
T. T. Georgiou [ , Claim 4.1]. Details are given in Remark 3.4.12.

2. We outline a variation on the algorithm by S. Chewi, J. Clancy, T. Le Gouic, P. Rigol-
let, G. Stepaniants, and A. Stromme | , Section 3] for the construction of
splines in Py(X). As above, the problem is to construct a curve interpolating a
given dataset (t;,p;)i=1..x C [0,1] X Po(X), with ¢; < to < --- < t;. The proce-
dure in [ | is briefly described as follows. Firstly, one computes the optimal
multimarginal 2-Wasserstein coupling m € P,(X*). Secondly, one connects each tu-
ple (z1,...,7) € X* by means of an acceleration-minimising spline &, ., and
defines the interpolating spline of measures ¢ — p; at time ¢ as the push-forward of =
through the map a.(t): (x1,...,2%) — Qg .. 4, (). The modification we propose is
to use the construction above only to assign velocity marginals to each p;, i.e., we
set y1; = (0v.(t), &/(t))um € Po(I'). Given t € (t;,ti41), we take the optimal f, , +,)-
optimal dynamical plan m between p; and p;11, set

jon = (pra(t)’a,(t))# m, (3144)
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and define p; as the space marginal of 1;. Remarkably, our interpolation is deterministic
and injective, in the sense that

(pr (at0rt0). (a(t)’a/“))) # "

is induced by an injective map I' — T if u; is absolutely continuous, see §3.4.2.

Applications to biology and engineering

The problem of finding a minimal acceleration path between two measures j, v appears
naturally in applications.

» Trajectory inference is aimed at reconstructing a time-continuous evolution from a

few time-separated observations. This technique has recently gained relevance in
mathematical biology to study the development of cells | , , ,
], with potential applications in regenerative medicine. Wasserstein splines
(see §3.1.2) and our Proposition 3.4.3 provide a smooth interpolation scheme to this
purpose | : ]. In addition, the action functional in (3.1.13), which
encodes minimal acceleration/consumption along paths, can be easily adapted to the
specific model under investigation (taking into account, e.g., potential energy, drift).

Images in computer vision can be cast into probability measures. Various applications
involve continuous interpolations between images, which are often performed using

classical OT [ , ]. More recently, an alternative has been formulated using
Wasserstein splines [ , , , , ], with applications to texture
generation models | ]. Our construction, see §3.4, proposes a twofold variation.

Firstly, we remove the dependence on the timespan 7', which is usually a datum of the
problem in the literature. Secondly, we also assign the velocity marginals.

The minimal acceleration problem (3.1.4)-(3.1.5) arises naturally also in optimal control.
Indeed, we look for the optimal time-dependent force F; = () and timespan T
required to connect two states (z,v) and (y,w) in I'. The quantity we minimise is the
squared norm of F} over time, which is reminiscent of resource consumption in steering
of robots and space vehicles | : |. In particular, (3.1.4)-(3.1.5) is used for
rockets powered by Variable Specific Impulse engines [ : ]. Our work yields
a natural generalisation, i.e., a mathematical framework for the optimal steering of a
fleet of agents between two configurations, described by p, v € Py(I).

Conclusions and perspectives

= In the current work, we build an optimal-transportation discrepancy d between prob-

ability measures, which is based on the minimal acceleration. Also the timespan of
the minimal-acceleration path is optimised. In addition, we give a characterisation
of d-absolutely continuous curves, see Theorem 3.1.7. Such a result allows us to recast
kinetic equations of Vlasov type, driven by the transport operator v - V, and various
collision terms, as paths in the space of probability measures, with the metric derivative
depending only on the collisional effects. This is the starting point of the forthcom-
ing Part Il - Kinetic Gradient Flows. There, we are going to recast dissipative kinetic
PDEs as steepest descent curves, among all d-absolutely continuous curves, for some
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given free-energy functionals. The steepest descent will be characterised via optimality
in an energy-dissipation functional inequality. As a further justification, we aim at finding
a large-deviation principle behind our kinetic gradient flow structure | ].

» |n Part Il - Kinetic Gradient Flows, we aim to define JKO discrete variational schemes
[ ] with the discrepancy d and prove their convergence to dissipative kinetic PDEs.
To this end, we will treat a kinetic equation as a whole, exploiting the interplay between
space and velocity variables, which is also the leitmotiv of the current work. This strategy

is also at the core of the hypocoercivity theory | , |, where the reference
norm is twisted precisely in order to capture the interaction of x and v via v - V,. This
is in contrast with the splitting numerical schemes [ |, where the transport and the

collision terms are treated separately at each iteration.

» In this work, we specialise to a model case: particles are subject to Newton's laws i; =
vy, U = F}, without external confinement. However, this suggests a general scheme to
build adapted versions of the discrepancy d for systems of interacting particles. The
collision /irreversible effects in the phenomenon are measured via an action functional to
be minimised under a constraint, given by a suitable continuity equation, see (3.1.15).
Such a continuity equation (Vlasov's equation (3.1.14) in our setting) is determined by
the conservative/reversible dynamics of the system. The resulting discrepancy captures
the interaction between reversible and irreversible effects, while clearly distinguishing
their roles. The induced geometry on Py(I") formally reads as a degenerate Riemann-like
structure (where the d-derivative of curves corresponds to the instantaneous action), con-
strained on a symplectic form, which allows only the physically admissible directions. We
will explore generalisations of our theory in forthcoming papers. In particular, we aim at
giving an optimal-transport interpretation of systems belonging to the GENERIC (General
Equation for Non-Equilibrium Reversible-Irreversible Coupling) framework | , ].

3.2 The particle model

In this section, we describe the kinetic optimal transport model for Dirac measures.

3.2.1 The fixed-time discrepancy

Let 7" > 0 be a time parameter, and fix two points (z,v) and (y,w) in the phase space I :=
X xV =R" x R". Recall the minimisation problem

T
inf T /
a€H2(0,T;X) 0

This problem is strictly convex and coercive, hence, it admits a unique minimiser agvyw. This

curve satisfies the Euler—Lagrange equation o = 0 (i.e., it is a degree-3 polynomial in )
with the prescribed boundary conditions. Straightforward computations yield

o/’(t)‘2 dt st (a,a)(0) = (z,v) and (o, ') (T) = (y,w)} . (32.1)

T (vt w Yy—)\ ;4 y—x 20+w) ,
aa},v,y,w(t)_< T2 -2 T3 )t +<3 T2 - T )t + vt + o, tE(O,T),

(3.2.2)

or, equivalently,
0 yl€) =2+ 8B =20y —2) + TE1 - (1 - v —&w),  £€(0,1).
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We thus find the identity (3.1.4), i.e., the minimal value of (3.2.1) coincides with

2
~9 Yy—x v+ w
dr((z,0), (y,w)) = 12‘ g ‘+]w—v|2. (3.2.3)

Remark 3.2.1. It was shown by Kolmogorov | ] that the function

! dt2 z,v), Yy, w
¥ ((2,v), (y,w), t) ;:< 3 ) oo | ((z,0), (y,w))

27t2 4¢

is the fundamental solution to the Kramers equation
oV +v-V,U=A,U.

Remark 3.2.2. Contrary to the minimal L2-norm of the velocity (see (3.1.3)), the function dr
is not a distance on I'. Indeed, it is not symmetric, does not vanish on the diagonal of [' x I
(i.e., points (z,v) = (y,w)), and does not satisfy the triangle inequality. The latter can be
easily checked on

(x1,v1) = (0,0), (wg,v9) = (T0,0), (x3,v3) = (2T0,v),

which satisfy ng((ffl,Ul), (2, UQ)) = EZT<<3727 v2), (5’53,2/3)) =0, while gZT((l"l,Ul), (w3, Us)) =
V12|v| # 0 for any v € V' \ {0}. However, as observed in | |, we have the equivalence

EZQT((x,v),(y,wD =0 <= y=z+Tvandv=w. (3.2.4)

In this case, following [ |, we say that (y,w) is the T-free transport of (z,v) and
write (y,w) = Gr(z,v). Note that (Gr)r>o enjoys the semigroup property

ng O gT2 = QT1+T2 N Tl,TQ 2 O (325)

Remark 3.2.3. The fact that giT((x, v), (y,w)) is finite for every (x,v), (y,w) € I' can be

seen as an elementary version of hypoellipticity (see | ]). In fact, solutions to Newton's
equation @; = v;, 0y = F} are generated by vector fields in the space {(v, F) : F' € R"}.
This vector space has dimension n, but it generates a Lie algebra of full rank 2n:

[(0,0), (v,e)] = (e,0), i€ {l,....n}.

Remark 3.2.4. Fix (z,v), (y,w) € I'. Let (v, F})e(0,1) be the solution to Newton's equations,
)H). The first norm

in (3.2.3) (i.e., ’% - ”Tw‘) is the distance between the average velocity fOT vy dt and the

arithmetic mean of the velocities at the endpoints. The second norm (i.e., |w — v|) can be
written as ’fOT F, dt‘.

connecting (z,v) to (y,w) with the minimal action (i.e., F; = (ozfm’y’w

T

I7U7y?w for

Remark 3.2.5. It is interesting to analyse the behaviour of the optimal curves «
large T'. When t,7 — oo with t > aT for some a > 0, the formula (3.2.2) gives

AL

t? t
—T(4v—|—2w)+v+ —m5 = T

(oF,y) (1) = 5 (30 + 3u)
LY T2 T

6(y — )

= &2(3v+3w) — £ (v +2w) +£(1 =€) A

E=t/T.

Therefore, two cases may occur.
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:

Figure 3.1: Examples of trajectories. In the left figure, v = w = 0.

= Case 1: slow line. If the vector-valued polynomial
p(&) = (3v + 3w) — & (4v + 2w) + v
is identically equal to 0, then v = w = 0, the curve t — a£07y70(t) is a parametrisation
of the segment connecting (z,0) to (y,0), and (ax,07y,0)/(t) = O(T™") uniformly
inte (0,7)as T — oc.

» Case 2: long curve. If £ — p(§) is not identically equal to 0, then there must exist
an interval [a,b] C [0,1] (with 0 < a < b < 1) where it never vanishes. On such an
interval, we have

(o7, y) ()

which shows that the total length of o, , is of order ©(T'). On the other hand, the
curvature is bounded as

(a2, y0) )
() ®

uniformly in ¢ € [a, b]. Moreover, in dimension d > 2, we can often choose [a, b] = [0, 1].
This is because the set

{(v,w) €V xV : I €0,1] with p(§) =0}

has dimension d+1 (hence, it is negligible). All these observations indicate that, typically,
this second case corresponds to a’ resembling a large loop in the limit 7" — oo.

I?“?yiw

> €m[ir})]|p(§)| —-Oo(T™), as T'— oo, uniformly in t € [a,b],
cla,

T (/)] + O(T)
T et/ TP+ oY)

K(t) < =0(T™h as T — oo,

We conclude this section with a version of the Monge—Mather's shortening principle, cf. | :
Chapter 8]. Namely, we show that, given the initial and final configurations of two indistin-
guishable particles® in different locations, their optimal trajectories for the minimal acceleration
problem cannot meet at the same time, at the same point, with the same velocity.

3We also optimise—with respect to the average squared acceleration—how particles in the initial configu-
ration are coupled with those in the final configuration. Namely, a coupling is a matching of each particle in
the initial configuration to one in the final configuration. Then, for every pair, one can compute the minimal
acceleration as in (3.2.1), and average such contribution over all pairs.
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Y2 Wo

U1
i L2

(%
Figure 3.2: Trajectories that meet at the same time with the same velocity are not optimal.

PI’OpOSitiOﬂ 3.2.6. FixT > 0 and let (l’l,Ul), (yl,wl), (I‘Q, UQ), (yg, wg) el Let aq, 09 be
the optimal (polynomial) curves for the problem (3.1.4) between (x1,v1) and (yi,w:), and
between (x5, v9) and (yo,ws), respectively, i.e.,

a;’(t)f dt.
(3.2.6)

T
9 -
0/1’(25)‘ dt and d?p((xg,vg), (yg,wg)) = T/o

Ei;((xlavl>7 (y1»w1)> = T/

0

If there exists t € (0,T) such that (ay(t), ) (t)) = (aa(t), 4(t)), and if

‘3;(@1’ v1), (Y1, wl)) + ai’((@v v2), (Y2, w2)>
< ElQT((SChUl), (yz,wz)) + EZ;(@%W)? (thl)) ) (3-2-7)

then, (z1,v1) = (z2,v2) and (y1,w1) = (Yo, w2).

Proof. Define the curves

so=\o0 ek 0= en

which, by our assumptions, are of class H?. They are competitors for the problem (3.2.1)
between X := (z1,v1) and Y5 := (y2,w2), and between Xj := (z9,v2) and Y] = (y1,wy),
respectively. We also notice that, by additivity of the integral in the domain of integration,

T 9 T 9 T 9 T
Z;M@\aﬁéawﬂazzgﬂ@\a+ﬂ

Exploiting the assumption (3.2.7), we obtain

ay(o)| . (3.2.8)

~9 ~9 (32.7) -4 ~9
dT(Xla}/l)—i_dT(XQu}/Q) S dT(X17}/2> +dT(X27}/1>

T 9 T
gT/ & (t)] dt+T/
0 0

(3.2.8) T 2 T
iiT/‘%®‘&+T/
0 0
~2 ~2
= dT(Xh}/l) + dT(X%YZ) .

54;,’(10’2 dt

0/2/(25)‘2 dt
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We infer that the two inequalities in the latter formula are in fact equalities and, therefore, &,
and &y are optimal for the problem (3.2.1). Consequently, &; and &y are polynomials.
Since a;(t) = ay(t) for t € [0,t] and ¢ > 0, the two polynomials o; and &; coincide.
Similarly, &; = a; therefore, a; = ay. We conclude that

(x1,v1) = 1(0) = @2(0) = (z2,v2) and (y,w1) = a1(T) = a(T) = (Y2, w2). O

3.2.2 The non-parametric discrepancy

Using dz, we shall now define a discrepancy d which is not parametric in time.

Definition 3.2.7. For all (z,v), (y,w) € T, set
a((x, v), (v, w)) = %gfo ZiT<(x,U), (y, w)) : (3.2.9)

We denote by d: I' x I' = R the lower-semicontinuous envelope of d. We give d the name
second-order discrepancy between particles.

Proposition 3.2.8. The following hold.

1. The functiond: T x T — R>q is upper-semicontinuous. For every (z,v), (y,w) € I,
we have

- _Jlimy o giT((:v, v), (y,w)) if(y—z) - (v+w) <0,
d((x, v) w)) B {ng* ((w, v), (v, w)) if(y—2x) - (v+w)>0, (3:2.10)

where
2
ly —

S py

(3.2.11)

Hence, the following formula

2
3|v+w|2—3(y_’C -(v+w)) +lw—v]® ifxty,
+

~2

d ((z,v), (y,w)) =

ly—=|
3|+ w|” +|w — o)’ ifxr=1y
(x,v),(y,w) e'. (3.2.12)

2. The second-order discrepancy d: I' x I' = R is given by the formula

2
3U+w2—3(y_‘”~v+w) +lw—v]* ifr#y,
P((@0), (o)) = {0 =3 S ) ) A=

lw — v|? ifr=vy,

(z,v), (y,w) e I'. (3.2.13)

3. We have d((m, v), (y, w)) = 0 if and only if either (y,w) = Gr(z,v) for some T > 0,
orx #yandv=w=0.
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Proof. Proof of 1. Upper-semicontinuity is trivial, because d is defined as an infimum of
continuous functions.

Fix (z,v), (y,w) € I'. If y = z, then T +— EZ;((x,U), (v, w)) is constant, hence always equal
to its limit as 7" — oo. Otherwise, let us rewrite (3.2.3) as a convex quadratic polynomial
in 77, namely:

dp((z,v). (g, w)) = 1272y — 2’ = 24T (y — 2) - (v + w) + 3Jv + w|” +[w — vf* .
The vertex of this parabola is found at

-1 _ (y—a:)-(vjw)
2|y — |

Therefore, when (y—z) - (v+w) < 0, the minimum of c~l2T constrained to T" > 0, is approached
as T~' — 0. In formulae:

El2((x, v), (y,w)) = Tlgr;o EZ;((%‘,U), (v, w)) = 3v +w|’ +|w —v] .

Instead, when (y — ) - (v +w) > 0, we have

EZZ((JJ,U), (y,w)) = gl;((x,v), (y,w)) = 3lv 4+ w|* — 3(;:; .(v+w)> +lw — v .

Proof of 2. The right-hand side in (3.2.13) is lower-semicontinuous. Since it coincides
with d((x,v), (y,w)) when = # y or v +w = 0, we are only left with showing that, for
every x,v,w with v + w # 0, there exists a sequence y, — x such that

lw — v > limsup c~i2((x, v), (Y, w)) :

k—o0

We simply choose
1
yk::x+%(v+w), keNj.

Proof of 3. Assume that the right-hand side of (3.2.13) equals 0. We infer that v = w.
If z =y, then (y,w) = Go(x,v). If x # y, then

ol =22 "L .y
|y — =

and, therefore, either v =0, or y = x + T'v for some T > 0, that is, (y, w) = Gr(z,v). The
converse implication is a direct computation. O

Remark 3.2.9. It follows from (3.2.12) and (3.2.13) that neither d nor d is symmetric. Neither
of the two satisfies the triangle inequality: consider

(r1,v9) = (0,0), (w2,v2) = (0,0), (x3,v3):=(—0,0)
for any v € V' \ {0}. Moreover, we have the characterisation

d2((x,v),(y,w)) =0 <= [v=w=0or(y,w)=Gr(x,v)forsomeT >0] .
(3.2.14)
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In analogy with the metric setting of [ , Theorem 1.1.2]), we give the following.

Definition 3.2.10. We say that a curve v = (z.,v.): (a,b) — I is d-differentiable at t € (a,b)
when the one-sided limit

mﬂﬂwwm@+h».

i - (3.2.15)

exists. In this case, we denote it by |y'|, (¢) and call it the d-derivative of v at t.

Remark 3.2.11. As the discrepancy d is not symmetric, taking left or right limits to define d-
differentiability is not the same, even for smooth curves. We argue that (3.2.15) is the
natural definition. Indeed, if, for example, we consider the straight constant-speed line 7(t) ==
(tv,v), t € R, for some v € V' \ {0}, we have

d(y(t), v(t + h)) =0 forevery h >0,

and
d(fy(t),fy(t — h)) =|2v| >0 for every h > 0.

In particular, v is d-differentiable in the sense of Definition 3.2.10, but
d(+(t),7(t = h))

l}grol 7] = 0.

Our next aim is to formulate necessary and sufficient conditions for d-differentiability.

Proposition 3.2.12. Let v = (z.,v.): (a,b) — T be a curve such that x. is of class C' and v.
is of class C°. If v is d-differentiable at t € (a,b) and v, # 0, then there exists A(t) > 0 such
that it = )\(t)vt

Proof. If ~ is d-differentiable at ¢ € (a,b), then d(fy(t),’y(t + h)) < Ch for suitable C' > 0,
whenever h > 0 is small enough. If &; = 0, then it suffices to choose A(¢) = 0. Otherwise, we
have x4, # x; for small enough h > 0, hence d? (fy(t),’y(t + h)) = (fy(t),’y(t + h)> Pick

T(h) > 0 such that ZizT(h) (7(75), v(t+ h)) <d (v(t), v(t+ h)) + h?. In particular, for b > 0
small enough,

2
Tith — Ty Uy + Vg

) 2

< dyy (Y02 + 1)) < & (1) At + 1) + 12

= d*(y(t),y(t + h)) + h* < (C* + 1)h*.

Since “HA=Tt —y iy 2£ 0 and Ut — 4 #£ 0, we infer that T'(h)/h — A(t) as h — 0 for
some A(t) € (0, 00) satisfying &; = A(t)v;. O

Remark 3.2.13 (Reparametrisation). Let v = (z.,v.): (a,b) — I' be a curve such that z. is of
class C*1 and v. is of class C* for some k € Ny. Assume that &; = A(t)v; for every t € (a,b),
for a function \: (a,b) — (0,00) of class C*. Let 7: (a,b) — (a,b) be a function of class C*+1
with 7/ > 0. Set

Ts = IT(S) 5 Vg = U‘r(s) y ’?(S) = (‘%sa ;[}S) s ERS (d7 b) :
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Then, we have

that is, also 7 has the property i , = A(s)0, for every s € (@, b), for a function A: (@, b) —
(0, 0) of class C*.

Let t € (a,b) and assume that A > 0 on (a,b). By solving the Cauchy problem

L SN
T s 0=t (3.2.16)

we can find a reparametrisation 7 with iy =0,. Indeed, by classical results, the ODE (3.2.16)
admits a maximal solution on a neighbourhood of ¢. Moreover, since \ is bounded on every
compact K &€ (a,b), the values of 7 exit K in finite time. Therefore, the maximal solution
has the full set (a,b) as its image.

Proposition 3.2.14. Let v = (z.,v.): (a,b) — T be a curve such that z. is of class C* and v.
is of class C'. Assume that there exists \: (a,b) — (0,00) continuous, such that iy = \(t)v;
for every t € (a,b). Then, v is d-differentiable on (a,b) with|y'|, (t) =|v,].

Proof. On the one hand, we have

& (y(t),7(t+h)) s — penl?
. ’ S o +hl a2
hr}rllﬁ)nf 2 > hr}?ﬁ)nf 72 0", te(ab).

To prove the opposite inequality, momentarily assume that A =1, i.e., &, = v; for every t €
(a,b). We obtain

A (4(), 7(t + h)) d (v(£). 7t + 1))

lim su < lim su
h10 P h? T ho P h?
2
) 1 T —x Vien + U
= 111%¢soupﬁ <12 t+hh t t+h2 t S [vpen — Ut|2)
h h 2
:|Ut|2+lllré¢s()upﬁ th+ §It — UV — §’Ut+0(h) :‘Ut‘2
(3.2.17)

for every t € (a,b). In the general case, we apply the reparametrisation of Remark 3.2.13 to

find a diffeomorphism 7: (&, b) — (a,b) such that 7/(s) = m for every s € (@, b), so that

the computation (3.2.17) can be performed on 7: s — 7(7‘(3)). Given t = 7(s) € (a,b), we
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thus find

lim sup * (’Y(t),;(t * h>) = lim sup (7 <T > = ( )+ h))
hl0 h10

IR GO RIGERD)),
s (r(s+h) = 7(s))
@((s),5(s + 1)) 5

= lim sup - -
o P (r(s+h) —7(s))°
(3.2.17) 2| d 2
=UA(T6) | | =10
and this concludes the proof. O

Remark 3.2.15. The last result, specialised to curves satisfying &; = v, (i.e., with A = 1),
yields |7/|; (t) =|0:| =24, (a,b). In view of Newton's second law of motion, we
can say that the d-derivative equals the magnitude of the force driving the motion.

Remark 3.2.16. A curve 7 = (z.,v.) — [ is everywhere d-differentiable also when v. = 0,
regardless of x.. In this case, |7/|, = 0.

Corollary 3.2.17. Let v = (x.,v.): (a,b) — T be a curve such that x. is of class C* and v.
is of class C'. Assume that iy # 0 and v; # 0 for every t € (a,b). Then, 7 is everywhere d-
differentiable if and only if there exists \: (a,b) — (0,00) of class C! such that i; = \(t)v;
for every t € (a,b).

Proof. If ~ is everywhere d-differentiable, by Proposition 3.2.12, there exists A: (a,b) — Rxg
such that &y = A(t)v;. This function is of class C! because v; # 0 for every ¢ € (a,b) and
because both . and v. are of class C*. Moreover \(t) # 0 for every t, because this property
holds for ;. The converse follows from Proposition 3.2.14. In this case, |7/, (t) =|0¢|. O

3.3 Kinetic optimal plans and maps

This section is divided into three parts:

1. In §3.3.1, we prove Statements 1-3 in Theorem 3.1.1, including the semicontinuity of d
and the existence of optimal transport plans.

2. In §3.3.2, we prove Statement 4 in Theorem 3.1.1, i.e., the existence of optimal maps.

3. In §3.3.3, we discuss additional results, including non-uniqueness of optimal plans and
maps, and the characterisation of the pairs (i, /) for which d(u, ) = 0.
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3. SECOND-ORDER DISCREPANCIES BETWEEN PROBABILITY MEASURES

3.3.1 Semicontinuity and existence of optimal plans

Let Po(I" x I') be the set of probability measures on I' x I' with finite second moment. For
every m € Po(I' x I'), set

2
- y—x V4w 9
R s B TR LS R B (331)
2
o ol — 3 By sl > 0
&(m) = 21T Wl e, I e T = Tl > Y5 (33.2)

5 2 -

3[v + wHL%r) +lw — U”LQ(W) g if fly — xHLZ(W) =0,
2

(-t )

2
”y_xHLQ(ﬂ.)

2 .
[ = [l if |y = 2llLem = 0.

2 2 ;
3llv+wlam — 3 E Ao =l il = 2lliem >0, (333)

Note that &(m) = c(m) whenever ||y — x|z, > 0.

Remark 3.3.1. It may appear tempting to consider instead of ¢ a different object, namely
¢(m) = [ dQ((x,v), (y,w)) dm. Let us start by noticing that ¢(7) involves first a point-

wise optimisation of El;((x, v), (y,w)) in T, for each pair of states (x,v) and (y,w), and then
an integration over all pairs ((x,v), (y,w)) € supp(w). By contrast, as the next result shows,
¢(m) is given by one synchronous minimisation over T' > 0 for the cost ¢y (7). We justify
why € is more natural for our purposes. Let us consider 1 € Po(I"), such that (pr,)xp # do.
Let o : I' — [0,00) be a measurable map, and let G, : I' — I" be defined by the formula
Gy(x,v) = (v + o(x,v),v). Then, by calling v, = (G,) 4, we have that

inf ¢(m)=0.
mell(p.vo) (™
By contrast,
inf ¢(m)=0
WEH(%VU)

if and only if 0 = T, for some T" € [0,00). This shows that the optimal-transport problem
associated with ¢ is much more degenerate than the one associated with ¢. Finally, by taking
the curve t — p; := 14,, we have that
Vo<t<s, inf ¢(m) =0,
mE€Il(pe,ps)

which means that the curve (1), is everywhere differentiable in the optimal-transport dis-
crepancy induced by ¢. On the other hand, it is easy to see that this curve does not solve
any Vlasov's equation (3.1.14) in general. Thus, we would not be able to recover the PDE
representation of Theorem 3.1.7 in case we used ¢ instead of C.

Proposition 3.3.2 (Theorem 3.1.1, Statement 1). For every m € Po(I' x I'), we have

¢(m) = :lrgfo cr(m). (3.3.4)
The infimum is obtained for
2
-

T=2 ly = lzr if (y —z,v+w); >0,

(y =z, 0+ w) (3.3.5)
anyT >0 ity = zll2y =0,
T — oo otherwise.
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3.3. Kinetic optimal plans and maps

In particular, the function m — ¢(m) is concave, and (3.1.11) holds for every i, v € Po(T).

Proof. The proof is identical to that of Proposition 3.2.8, 1. The function ¢ is concave because
it is an infimum of linear functions. O]

Lemma 3.3.3. Let up — p and v, — v be two converging sequences in the 2-Wasserstein
distance. Let my, € I1(ug,vy) for every k, and assume that (my), narrowly converges to a
measure T € P(I" x I"). Then, convergence holds in W, we have € TI(u,v), and

< limi . .o,
c(m) < 11,£2£fc<”k) (3.3.6)
Proof. Convergence holds in Wy by | , Remark 7.1.11]. The measure  lies in TI(p, v)
by narrow continuity of the projection maps. We claim that the four functions
Fl(ilf,l),y,’UJ) ::|U+w|2 ) FQ(ZIZ’,U,Q,’(U) :|(y - QZ’) ’ (U+W)| )
F3(xvvuy7w) ::‘y—lC‘Q ) F4(x7/07y7w> ::\w—vf

are uniformly integrable with respect to (7). Indeed, as
Fi(w,v,y,w) < dmax {z]” +[v]* Jyl* +|w*} . i€{1,2,3,4},

for a > 0, we find that

/ F; dm, < 4/ (|x|2 —|—|v|2> dpk + 4/ (|y|2 +|w\2) dyy, .
{Fi>a} {lzl*+o>4} {lvPHwl*>4}

Then, the claim follows from the uniform integrability of the second moments of (u)g
and (v )k, given by [ , Proposition 7.1.5].

If{ly — 2[l12¢r > 0, then|ly — zl2(,, ) > 0 eventually; hence c(r) = &(m) and (7)) = &(mk)
for every k sufficiently large. Since the functions F; are uniformly integrable, through | ,
Lemma 5.1.7], we find that ¢(my) — ¢(m). Therefore,

c(m) =¢(m) = kh_)r]élo c(mg) = kh_}rgo c(mg) -

If, instead, ||y — 2|;2(,) = O, then
o(m) =[lw = vz < hﬂggfﬂw V[lT2 () < lllggg}fc(ﬂk) . O

Proposition 3.3.4 (Theorem 3.1.1, Statement 2). The lower-semicontinuous envelope of d
w.r.t. the 2-Wasserstein distance over Py(I") is the discrepancy d.

Proof. Firstly, let us show that d is lower-semicontinuous. Let pp — p and v, — v
be two Wy-convergent sequences. For every k € N, choose 7, € II(ug, ) so that we

have ‘c(m) — d?(pu, Vk)‘ — 0. By Prokhorov's theorem, see | , Theorem 8.6.2], up to

subsequences, (7)) is narrowly convergent to a certain measure m. By Lemma 3.3.3 we
deduce that 7 € II(u, v), and therefore

(3.1.10) (3.3.6)
d*(p,v) < c(n) < liminfc(m) = lilgn inf d?(pue, vi) -
—00

k—oo
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Secondly, we shall find sequences ji,, — p and v, — v (w.r.t. W) such that

(s, v) > limsupd” (jiy, 1)

k—o0
Let (7x)reny C II(u,v) be such that c(7y) — d*(u,v) as k — oo. If c(7y) = &(7) for

infinitely many k’s, then, up to subsequences,

d(u,v) = lim c(7p) = lim &#) > d (1, v),

k—00 k—00

i.e., it suffices to take the constant sequences ji;, = p and v = v. Otherwise, up to
subsequences, we have c(7;) < () for every k, which implies that

ly — allgzry =0 and o +wlpem, >0,  kEN. (3.3.7)

In this case, we set

Ri(z,v,y,w) = (m,v,y + Z;—:_lf,w> . Tk = (Ry)pTg, keN, (3.3.8)
as well as
fir, = (Do) e = 1, U= (pry,) s € P2(I),  keN.

From (3.3.7) and (3.3.8), it follows that ||y — @(|5(z,) = k—ile—i-wHLQ(ﬁk) > 0, and since

v+w
k+1

x =y holds 7-a.e., we infer that y — x = holds 7;-a.e. Consequently,

- 2 2
&(7g) =|lw — UHLQ(frk) =lw - UHL%‘%) :

Thus,
(g k) < EFR) = [|w = lfagz,) < (@) = d*(p,v) as k — oo

82
Using that (pr, ,, pr, ,, oRk) 47k € H(v,v), we find

o+ wiloy _ M19llegy vl

7)<
Walv, 7e) < E+1 = k41

—0 ask — o0,

which shows that v, — v, as desired. O
Proposition 3.3.5 (Theorem 3.1.1, Statement 3). Problem (3.1.10) admits a minimiser.

Proof. By Lemma 3.3.3, the function c is narrowly lower-semicontinuous on II(u,v). The
set TI(p, v) is narrowly compact by Prokhorov's theorem, hence a minimiser of c exists. [

We will denote by TI,, 4(1, v) the set of minimisers. An analogue of Proposition 3.3.5 does not
hold for d, namely, it is possible that no minimiser in (3.1.9) exists.

Example 3.3.6. Let n = 2. Forevery ¢ > 0 and t € R, set

ME(t) = (sin2m(t + €),cos2n(t +¢)) € X,

€

d

M(t) = (MZ (1), M{(1)) €T,

M

€
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3.3. Kinetic optimal plans and maps

and observe that these functions are of class C* with bounded derivatives, uniformly in ¢
and €. Define the measure p == (ME)#(dﬂ(o,l)), which is independent of ¢, and choose

7 = (Mo, M)y (At o)) € (), €>0.

If 0 <e <1, then|ly — x|z, > 0, and we can write

2

(I M50 (M) = Mg(9) @t + o)
Jy M (t) = Mg ()] dt

(Jo ez (@) di + o(e))
€ [y IMg(6)]” dt + o(e?)

&(r) P27 12 /01|M3’(t)|2 dt — 12 £ +0(1)

—12 /01|Mg(t)¢2 dt — 12 o(1) = of1),

where, in the last identity, we used that f01|M5’(t)\2 dt = ||UH]%2(“) > 0. This proves
that d(u, 1) = 0. However, assume that there exists 7 € II(u, ) such that &(m) = 0.
If{ly — 2|12 = 0, then [[v + w2y =[[v — W[ 2(r) = O, which implies that [|v||;2(,) = 0,

which is absurd. If, instead, |ly — x|,y > 0, then v = w for m-a.e. (v,w), and we have
equality in the Cauchy-Schwarz inequality

(y - T,V + w)ﬂ' < ||y - x||L2(7r)||U + w||L2(7r) )

which means that either v = w = 0 for m-a.e. (v, w) (hence|v[|;z(,) = 0), or y =z + Tv for
some 17" > 0, for m-a.e. (z,y,v). The latter case is excluded by observing that (Gr)uu # p
for every T' > 0, as its space marginal (pr, o Gr)x/ lies on a circle with radius strictly larger
than 1.

Corollary 3.3.7. There exists a measurable selection (i, v) — 7, € o 4(p, v).

Remark 3.3.8. We prove measurability w.r.t. the Borel o-algebra of the 2-Wasserstein topology,
which is the same as that of the narrow topology, e.g., by the Lusin—Suslin theorem [ ,
Theorem 15.1].

Proof of Corollary 3.3.7. We shall invoke | , Corollary 1]. By | , Theorem 6.18], the
metric spaces X = (PQ(F) x Po(I'), Wy & Wg) and YV = (PQ(F X F),Wg) are complete
and separable. The set

D= {((u,y),ﬂ) € (PQ(F) X Pg(F)) X Po(l'x T) + ey, 1/)}
is Borel, as it is the preimage of 0 through the continuous map

((M? V)? 7T) — W2<(pr:p,v)#7ra :u) + W2<<pry,w>#ﬂ'7 y) :

Each section
DH,V :H(/ubv V)? v EPZ(F)

is compact by Prokhorov's theorem and Lemma 3.3.3. Again by Lemma 3.3.3, the real-valued
function c is lower-semicontinuous on D,, ,, for every u,v. Furthermore, by Proposition 3.3.5,
for every 11, v, there exists m € D,, ,, such that c(m) = infzcp, , c(7). Therefore, the hypotheses
of | , Corollary 1] are satisfied, and there exists a measurable function (p, v) +— m,, € D,,,,
such that c(m,,) = infzep, , c(7) for every pu,v € Po(I'). O

Remark 3.3.9. With a similar proof, one can show the existence of a measurable selec-
tion (7', v, v) — 71, where wp ., is a dp-optimal plan between p and v.
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3.3.2 Existence of kinetic optimal maps

Proposition 3.3.10 (Theorem 3.1.1, Statement 4). Let p,v € Po(I"). Assume that u is
absolutely continuous with respect to the Lebesgue measure. Then, for every T' > 0, there
exists a unique transport plan wp € II(j, v) optimal for d (1, v). Moreover, mr is induced by
a measurable function My =1 — T, i.e., 7y = (id, M1)zp.

Furthermore, there exists a transport map M such that (id, M) is optimal for the time-
independent discrepancy d(u, v), i.e., (id, M)z € IL, 4(, v).

Note that we state uniqueness of the map for d7, but not for d, see also §3.3.3 below.

Proof. The first part of the statement, namely the uniqueness of 71 and its representation 7 =
(id, M) 44, follows from the classical theory of optimal transport, see in particular | :
Theorems 10.26 & 10.38]. To apply these theorems, we observe that

. ~2
1. the function d;. is smooth,

2. the twist condition is satisfied, i.e.,

(5, w) — Vol ((2,0), (y,w))

is injective for every (z,v) € T

Let us now move to the proof of the second part of the statement. Let 7 € IL, 4(y, v) be an
optimal transport plan. We will distinguish three cases.

Case 1. Assume that [ly — 2|2,y = 0, i.e., y =« for m-a.e. (z,y). By disintegration, there
exists a measure-valued measurable map z — 71, € P(V x V) with

/gp(a:,v,y,w) dr = //gp(x,v,x,w) dm, (v, w) dn(x), peC(ITxI), (33.9)
where 7 := (pr, )47 = (pr,)4xu. Note that we can also write n = (pr,) 47 = (pr,)xv. Set

fo = (Pry)4Ts, Vo= (Pry)4Ts, reX. (3.3.10)

Since p admits a density, so does u, for n-a.e. x € X. In particular, there exists a unique
W,-optimal transport map from p, to v, for n-a.e. x, see | , Theorem 6.2.4]. Therefore,
we can apply [ , Theorem 1.1] and get a Borel map M,: I'" — V such that, for n-

a.e. x €V, the transport plan (id,Mz(x, -))#,ugc is optimal for the 2-Wasserstein distance

between p, and v,. In particular,
/\v — My(z,v)* dp = /|v — My(z,v)* dnr
O [l = 2o o) d(pr,)male) dn(o)
20 [l = w0 diav) dn(o)
< 1w of dmafw,w) dnta)

629 / w — o dr = d(u, ),
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where the inequality follows from the optimality of M,. Moreover, M : (z,v) (x, My(x, v))
defines a transport map from p to v. We conclude that (id, M) xu € I, 4(p, v).

Case 2. Assume that ||y — x|,y > 0 and (y — 2, v+ w) > 0. Define T as in (3.3.5). In
this case, 7 is optimal for dy (s, ), and it is induced by a map.

Case 3. Assume that ||y — 2|2,y > 0 and (y — 2,v + w), < 0. We apply disintegration
to 4 and v to find maps v — pu, and v — v, such that

p(dx, dv) = p,(de)(pr,)gp(dv) and  v(dz,dv) = v,(dx)(pr,)zv(dv) .
Note that (pr,)xp and (pr,)sp-almost every measure y, are absolutely continuous.

Consider the cost (v, w) — 3|v + w|* +|w — v|*. Since this function is smooth and satisfies
the twist condition, once again we infer the existence of a Borel map B := )V — V optimal
for such a cost from (pr,)xp to (pr,)szv. Let A: ' — X be any Borel function such
that A(-,v)gpy = VB for (pr,)gu-a.e. v € V. The existence of A can be deduced,
e.g., from | , Theorem 1.1]. We claim that the map M: (z,v) — (A(:C,U),B(v))
defines an optimal transport map between ;1 and v. By construction, Mx,u = v and, by
optimality of B, we conclude the proof of our claim:

‘ (3.3.3) ) )
c((id, M)gp) < 3llv+ B)|[F2g v = B)I[Ea(
< 3[jv+ w”iw) +lw — UH%%) =d*(p,v). O

3.3.3 Additional results

Non-uniqueness

Fix p, v € Po(L'). If v is absolutely continuous, then for every T > 0, there exists a unique
minimiser for ¢ in II(p, ), and this plan is induced by a map. This fact follows from the
classical theory of optimal transport, cf. | , Theorems 10.26 & 10.38]. Nonetheless,
non-uniqueness in I, 4(y, ) may arise in several ways, for example:

= there may be two different times 77,75 > 0 for which

d(uv) = _inf en(r)= inf en(m)

» in the proof of Case 3 in Proposition 3.3.10 there is freedom in the choice of the
map A: I' = X for which M: (z,v) — (A(x,v), B(U)) is optimal.

Let us provide an example of non-uniqueness.

Example 3.3.11. Fix
X1:($1,U1)€F, XQZ(ZL‘Q,UQ)EF, S>0,

and set ! . ] .
o= §5X1 + §5X2 ) V= iégs(xl) + 55)(2 .
Note that II(u, v) coincides with the set of all the convex combinations of
1 1 1 1
T = 500 s () T 500X s T2 = 5006, Xe) T 50(Xegs(X0)) -

107



3.

SECOND-ORDER DISCREPANCIES BETWEEN PROBABILITY MEASURES

Let us assume that {x;,z2} # {21 + Svi,22}. Then, ¢ = € on II(u, v). Taking also into
account the concavity of ¢ (see Proposition 3.3.2), we deduce that

d*(p,v) = inf c(n)= inf &(x) = min {&(m),&(m)} .
(wv)= nf c(m)=_inf e&(m)=min{e(m)&(m))

Straightforward computations yield

352 (|v1|2+vl~112)i

2 5 +lva — vy
2 ‘.’BQ —1'1’ —H.TQ — X +SU1|

E(Wl) = 6’1)2|2 , 6(71'2) = 3”01 + 02‘2 —

If, for example, we choose x1 = x5 and v; L v,, we find
- - 2 ~ ~ 5, 12 2
C(?Tl) = C5<7T1) = 6‘1)2' s C(7T2) = C25(7T2> = 5”1)1’ + 4’?]2‘ .

Therefore, when, additionally, 5\vl|2 = 4|112]2, both plans 7; and 7 are optimal. Note that
they are induced by maps, and that their corresponding optimal times are different: .S for m;
and 25 for my. We also observe that S is exactly the optimal time for (3.1.5) between (z1,v;)
and (x; + Svy, v1), while 25 is the optimal time between (x,v3) and (x; + Svy, v1). In this
case, the structure of c disadvantages intermediate times between S and 2S5.

Characterisation of d =0

We provide a characterisation of the measures p, v such that d(u,v) = 0, analogous to the
particle case of Remark 3.2.9.

Proposition 3.3.12. Let p,v € Po(I'). We have d(u,v) = 0 if and only if one of the
following holds:

1. v = (Gr)up for some T > 0,
2. or (prv)#p’ = (prv)#y = 50'

If (pr,)up # 60 and v = (Gr)gp for aT > 0, then such a T is unique, and 11, 4(p,v) =
{(id, Gr)yu}.

Proof. If v = (Gr)xu for some T' > 0, we have c((id, QT)#M> = 0. If (pr,)apn = (pr,)sr =
do, then every m € II(p, v) has zero cost.

Conversely, assume that d(u,v) = 0. By Proposition 3.3.5, there exists 7 € II(u,v)
with c(m) = 0. By the definition of ¢, we must have v = w for m-a.e. (v,w). If x =y
for m-a.e. (z,y), then m = (id,id)4p. Otherwise, we have equality in the inequality

(y —T,v+ w)ﬂ' S ||y - x||L2(7r)||U + w||L2(7r) :

This can happen only if v = w = 0 for ma.e. (v,w), or if there exists T > 0 such
that y = x + T'v for m-a.e. (z,y,v).

Assume that (pr,)xp # 6. We have already proved that every m € II, 4(p,v) is of the
form 7 = (id, Gr)zp for some T'. Let us assume, by contradiction, that v = (Gp )xp =
(Gr,) 1t for some Ty, Ty > 0 with T} < T5. By the semigroup property:

v=(9n)1 = (Gr,-1)#(Gr ) gt = (-1 )4V = - = (G(rp—1)k )V
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for every k € N.g. For every ¢ € C.(I") and k € Ny, we thus find

/so(:c, v) dv = /g&(x + k(Ty — Ty)v, v) dv.

Note that limg |z + k(T2 — T1)v| = 0o whenever v # 0; hence, since ¢ is compactly
supported, the dominated convergence theorem yields

/g@(m,v) dv = /{U:O}w(;p,()) dv .

/(p(&: + Tlvvv) dp = / QO(JJ,O) dp,
{v=0}

Hence,

which can hold for every ¢ € C.(I") only if (pr, )i = do. O

Corollary 3.3.13. Let py — p and v, — v be two narrowly convergent sequences in Ps(T).
For every k € N, pick one m, € 11, 4(pt, vi). Assume:

(a) limy_ o0 d(pu, i) =0,
(b) (pr,)sn # do,

() supy min {|[v]| 2, - NVll2, b < oo

Then, d(p,v) =0, so that v = (Gr)up for aT > 0. Finally, m, — (id, Gr)xp € Iy q(p, v).

Remark 3.3.14. This corollary would easily follow from Proposition 3.3.12, Lemma 3.3.3,
and the lower semicontinuity of d if we assumed convergence of (), and (vg), w.r.t. Wa.
Instead, we assume here only narrow convergence.

Proof of Corollary 3.3.13. Since (pu)r and (vg)y are convergent, they are tight. Therefore,
the same is true for (7). By Prokhorov's theorem, the sequence (7); admits at least one
narrow limit. If one such limit 7 satisfies c(7) = 0, then © € I, 4(p, v) and d(u,v) = 0,
which yields, by Proposition 3.3.12, v = (Gr)4p and © = (id, Gr) 4 for some unique 7" > 0
(independent of the limit 7). If, every limit 7 satisfies c(7) = 0, then there exists only one
limit of the sequence (7)), namely (id, Gr)xp.

Let us thus prove that every limit 7 satisfies c(7) = 0. Up to extracting a subsequence, m, — 7.
To begin with, let us note that, by lower semicontinuity of the norm w.r.t. narrow convergence,

o (31100
[ = ]|y < liminfllw =l a, - < liminfd(u, vy) = 0.
Moreover, by the triangle inequality,

lim sup||v + wHL?(m) < ligl_)SUP (Hw - U||L2(7rk) + 2min {HU”L?(M) 7||U||L2(Vk)}>

k—00

< QSllip min {HU”LQ(Hk) a||U||L2(uk)} y

and the last term is bounded by Assumption (c). Thus, up to subsequences, we may assume
that [|v + wl|z(,, ) converges to a number a € R>o. Up to subsequences, we can also assume
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3. SECOND-ORDER DISCREPANCIES BETWEEN PROBABILITY MEASURES

that |y — ||| 5, converges, to an either real or infinite quantity b € R>o U {oo}. If a =0,
then, by lower semicontinuity of the norm w.r.t. narrow convergence,

(3.3.3) ) ) o ) )
() ' 30+l +lw = vlagr) < Blimino 4wl = 30 = 0.
If b= 0, again by lower semicontinuity, |ly — 2|/ >,y = 0, hence c(r) =|[w — vHiz(ﬂ) = 0.

From now on, let us assume a,b > 0 and, possibly up to subsequences, that [|v + w/[; s,
and ||y — xHLz(ﬂk) are strictly positive for every k. Define

2
ck::/ vrw — y— dmy, , keN.
v+ wlliegy Ny = 2lliegr)
We find that
2
) ((y —x,v+ w),r) ) e\ 2
o+ iy = =l i - (1 (15,
L2 ()

and, consequently,

2 d? 3 0
limsupmin{ck,l}glimsup 1—(1—61€> Slimsupwk’iy’;)/:—zzO.
k—+00 2 k—00 2/4 k—oo ||v+ w||L2(7r) a

This proves that ¢, — 0. Let ¢ € C.(I" x I') be non-negative. The convergence

2 2

U+ W —x v+ W —x
Y o - Y

[0+ wlliziry MY = 2lliagy)

a b 14

is uniform. Thus, the narrow convergence 1, — 7 yields

2 2

vtw  yY—=x . V4w Y—x
— @ dr = lim — @ dmy,
a b koo f v+ wliairy 1Y = Zlliagm,
<|l¢ll liminf ¢, =0,
k—o0
and, by arbitrariness of ¢,
va = y;x for m-a.e. (x,v,y,w).
Using the definition (3.3.3) of ¢, we infer that c(7) =|jw — v||iz(7r) =0. O
Corollary 3.3.15. In the setting of Corollary 3.3.13, additionally set
—x
2 ly = @llca(ey if (y —z,v+w),, >0,
T =) WomuEu), keN (3.3.11)
"0 it |y =zl 2(r,) =0, ' -
00 otherwise.

Then, T = limy_,, T}, exists, is finite, and v = (Gr) x/t.
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Proof. We know from Corollary 3.3.13 that 7, — (id, G7) 4/ for some T > 0. Up to extracting
a subsequence, we may assume that 7" := limy_,, T} exists in R>o U {oo}. We shall prove
that T'="1T.

If{ly — 2|;2(,) = O frequently, then 7" = 0 and, by semicontinuity, we obtain

1=l 1) = TP

hence, T = 0. Up to subsequences, we can from now on assume that ||y — |12,y > 0 for
every k. By Proposition 3.3.2, we have

2
““‘" dr.,  keN.

d(uk,uk)—c(ﬂk —C7Tk /‘

Let ¢ € C.(I' x I') be non-negative and assume that 7" > 0. Then, the convergence

‘y—x v+w’2 'y—x v+w‘2

T 2 T 2
is uniform; hence,
> 2
T
/ TV ¢ dp = hm /‘ v+w| o dm, <||¢ll hmmfd(uk,yk) =0.

ellst

This proves, by arbitrariness of ¢, that v = v for (pr,)xp-a.e. v. Since, by assump-
tion, (pr,)4xp # 0o, we conclude that 7' =T

Let again ¢ € C.(I" x ') be non-negative and assume that 7" = 0. Now the convergence

2
v+ w

‘y—x—Tk p—ly—afo
is uniform; hence,
~ 2 U+ w 2
/ ‘ ¢ dp = lim /‘y—x—Tk ’ o dm, <l liminf Tpd (g, vi) = 0.
k—oo 2 koo
We conclude, as before, that T=0=T. O

3.4 Dynamical formulations of kinetic optimal transport

This section, devoted to the dynamical formulations of kinetic optimal transport that we
introduced in §3.1 (see (3.1.13) and (3.1.15)), is organised as follows.

= In §3.4.1, we explore dynamical transport plans in the kinetic setting and prove the
equality of dr and nr, together with the existence of a minimiser for (3.1.13).

» In §3.4.2, we better characterise the optimal spline interpolations stemming from
Theorem 3.4.1 and we discuss injectivity of optimal-spline flows.

» In §3.4.3, we study Vlasov's equation (3.1.14), and we conclude the proof of Theo-
rem 3.1.2 with the kinetic Benamou—Brenier formula of Theorem 3.4.10.

= In §3.4.4, we show propagation of second-order moments along solutions to (3.1.14).
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3. SECOND-ORDER DISCREPANCIES BETWEEN PROBABILITY MEASURES

3.4.1 Dynamical plans

For a fixed T' > 0, a T-dynamical (transport) plan between u,v € Py(I") is a probability
measure m € P(HQ(O, T; X)) subject to the endpoint conditions (3.1.12).

The theorem below shows that minimising the acceleration functional

T
a— T/ /
0 JH2(0,T;%)

along T-dynamical plans between 1 and v is equivalent to computing a;(u, v) via (3.1.8).

o"(t)] dm(a) at

The leading idea is that optimal T-dynamical plans between p and v are supported on T-splines
between points (z,v) € supp(u) and (y,w) € supp(v). Splines are uniquely determined

by their endpoints, and their total squared acceleration equals c~l2T((:c, v), (y,w)). Endpoints

. : : ~2 : :
chosen according to an optimal coupling 7 for d.(1, ) determine an optimal m.

Theorem 3.4.1. For every p,v € Po(I') and T > 0, the problem (3.1.13) admits a minimiser.
Moreover, we have the identity

A (p, v) = dp(p, v) . (3.4.1)

Proof. FixT' > 0. We build a correspondence between admissible dynamical transport plans for
(3.1.13) and plans in II(p, v). If m € P(Hz(O,T; X)) is admissible (i.e., it satisfies (3.1.12)),
we have that

Tm = <pr(a(0)7a,(0)>, pr(a(T)ya,(T))>#m e (u,v). (3.4.2)

Conversely, given 7 € I1(u, v), we construct a T-dynamical plan as follows: m, is the push-
forward of m through the map ((I,U), (y,w)) = al (), see (3.2.2). Note mp,, = 7

x7v7y’w
for m € II(i, v), and m,,,, = m for all T-dynamical plans m concentrated on T'-splines.

Let m be any admissible dynamical transport plan in (3.1.13). For every q, it is clear from

2
(3.1.4) that T fOT l”(H)]> dt > 12 ‘% - “*2“” + |v — w|?, where (z,v),(y,w) are the

endpoints of .. Equality holds if and only if « is minimal in (3.1.4). Thus,

T T
T / / 0" (0 dm(a) dt / T / 0”(8)2dt dm(a)
0o JH2(0,T;%) H2(0,T;X) 0
>/ o] —a(0) _a'(0) + /()
- Jr2(0,1%)

2
:/ (12’“"’ . “*“" + ]v—w|2) A (2, ), (g, w0)) > dp(,v).
I'xI’ 2

+1]a’(0) — O/(T)I2) dm(a)

T 2
T

Optimising in m, we find g (u, v) > dp(p, v).
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3.4. Dynamical formulations of kinetic optimal transport

Turning to the converse inequality, let 7 be optimal in the definition (3.1.8) of aT(u, v). By
definition of m,, we have

T
A7, v) < T/ / o () ?dm(a) dt
0 JH2(0,T;X)
’ 2
:/F rT/o (02,,.)" ()] dt dr((z,v), (y,w))

2
y—x v+w ~2
:/rr(' 5 ‘+’U_w’2)d7T:dT(ﬂ>V)a
X

thanks to the fact that m, is supported on T-splines amyw As a by-product, we have that
m, is optimal in the minimisation problem for Ay (u, ). ]

Remark 3.4.2. By optimising in T', and then taking the lower semi-continuous relaxation scyy,
in dp(u, v) = Aar(p, v), we also have that

~9 .

d"(u,v) = inf { / /
mE7j H2 OTX

d?(p, v) = scyy, inf { / /
* >0 mGP H2 OTX

3.4.2 Spline interpolation and injectivity

”t dm () dt  subject to (3.1.12)} :

" t dm () At subject to (3.1.12)} :

As pointed out in §3.1.2, interpolation of measures based on splines is relevant for various
applications. For all u,v € Py(I'), all T > 0, and 7 € II(u,v) such that 7 is optimal for
EIT(;L, v), the proof of Theorem 3.4.1 provides us with an optimal dynamical transport plan m,.
The plan m, is supported on splines (parametrised on [0, 7]) joining points of supp(u) and
supp(v). Hence, we can interpret the curve

0,T] 3t +— i, = (pr<a(t),a/(t))> m, (3.4.3)
#
as an optimal spline interpolation between y and v. In §3.4.3, we will show that the curve
(fi,); satisfies an optimality criterion and it is a solution to Vlasov's equation (3.1.14), for a
suitable force field (F});.

We start with proving injectivity of the interpolation fi,, whenever © < dx dv.

Proposition 3.4.3 (Injective optimal spline interpolation). Fix T > 0 and p,v € Py(T") such
that pu is absolutely continuous with respect to the Lebesgue measure on I'. Then, there exists
a unique optimal T-dynamical transport plan m for ar(u,v) and, therefore, a unique spline
interpolation [i.. Moreover, for every t € [0, T, there exists a yi-a.e. injective (and measurable)
map M,;: I' — I such that

o = (M) (3.44)

Proof. Existence of m is ensured by Theorem 3.4.1. The plan 7 is a minimiser for Cp
in TI(z1, v). Since pu is absolutely continuous, Proposition 3.3.10 shows that s equals the
unique 7 that is optimal for dr(u,v). Therefore,

m=m,. =mn;.

m
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Once (i, )icjo,r] has been defined as in (3.4.3), we use Proposition 3.3.10 to find, for every ¢ €
[0, 77, an optimal map M, for d;(u, ;). Injectivity of M, follows from Lemma 3.4.4. O

Lemma 3.4.4. Fix T > 0, and let p,v € Py(T). As§ume that, for a Borel map My : I' — T,
the transport plan m = (id, My) g is optimal for dp(p, v). Then there exists a Borel set
A CT of full p-measure such that, for every t € (0,T), the map

/
My(z,v) := (af,v,MT(m,m(t), (o vrtro) <t>) . (zw)eAd (3.4.5)
is injective, where o, , is the solution of (3.1.4). Moreover, the set B := U;c(or){t} X

M;(A) and the map B > (t,y,w) — M; '(y,w) are Borel measurable.

Proof. Define
A={@ v €T+ ((@,0), Mr(z,v)) € suppr} = (id, Mr) ™ (supp ).

and notice that
n(A) = M((id, My)~(supp W)) = m(suppm) = 1.
By cyclical monotonicity [ , Theorem 1.38], we know that

d;((afl, Ul), MT($1, U1)) + a;((ZL’Q, Ug), MT(QZQ, ’Ug))
< dip((21,01), My (2, v2)) + dp (w2, v2), M (1, 01))

for every (z1,v1), (z2,v2) € A. Hence, injectivity for every ¢ € (0,T) comes from Proposi-
tion 3.2.6. Consequently, the map

(0,7) x A3 (t,2,v) — (t, My(x,v)) € B

is (Borel and) bijective. By the Lusin—Suslin theorem | , Corollary 15.2], images of
Borel sets through injective maps are Borel, from which the second assertion follows. n

3.4.3 Vlasov’s equations and the kinetic Benamou—Brenier formula
The class of Vlasov’s equations

Definition 3.4.5. Let a,b € RU{£oo} with a < b. Let (f1t)sc(ap) € P2(I") be a Borel family
of probability measures, and let F' = (F});: (a,b) x I' — R" be a time-dependent measurable

vector field. Assume that ,
/ /(|v| +|Ft|) dpg dt < oo. (3.4.6)
a N

We say that (pu, F})ic(a,p) is a solution to Viasov's equation
Oty +0 - Vopy + Vi - (Frp) =0 (3.4.7)

if (3.4.7) is solved in the weak sense, namely

b
Vp € CZ((a,b) x ) / /(@tp + v Vap+ Fy - Vo) dpy dt =0 (3.4.8)
a T
(or, equivalently, for every ¢ € Ci((a,b) X I‘), cf. [ , Remark 8.1.1]).
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3.4. Dynamical formulations of kinetic optimal transport

Proposition 3.4.6 (| , Section 4.1.2], | , Section 8.1]). Let (u¢, F}); be a solution
0 (3.4.7). Then, up to changing the representative of (u;); (i.e., changing p for a negligible
set of times t), the following hold.

= The curve () is continuous w.r.t. the narrow convergence of measures, and extends
continuously to the closure [a, b].

= For all functions 1 € CX(T"), the mapping t — [ dp(x,v) is absolutely continuous
and it holds true that

d
T /F@/) dps(z,v) = /Fvwzp (v, Fy) dpy(z,0) fora.e. t € (a,b). (3.4.9)

= If (1) has a Lipschitz continuous density (in t,x,v) and Fy is Lipschitz continuous in
x,v, then (3.4.7) is also solved in the a.e. sense.

Let (F}); be a vector field (a,b) x I' — R?, such that

b
/ (sup |Fy| + LipB(Ft)> dt < o0, (3.4.10)
a \ B

for every compact set B € I'. Then, for every (x,v) € I, the associated flow t — M; = (x4, v;)
given by

Ma ) = ? Y
(@,v) = (2,0) (3.4.11)
oM, = (Ut, Fy(4, Ut)) )
is well-posed in an interval [a,a + €) with € > 0, see | , Lemma 8.1.4]. In case
b
/ <sup 7| + LipF(Ft)> dt < o, (3.4.12)
o« \ T

we have global existence of the flow M, i.e., (3.4.11) is well-posed in [a, b].

Proposition 3.4.7 (| , Lemma 8.1.6 & Proposition 8.1.8]). Let pn € Po(I") and
let (F})ic(a) be a vector field satisfying (3.4.6) and (3.4.10).

= Assume that, for p-a.e. (z,v) € I, the flow t — M,(x,v) defined by (3.4.11) is
well-posed in the interval [a,b). Then, t — p; = (M;)xp is narrowly continuous
and (., Fy) is a weak solution to (3.4.7) in (a,b).

= Conversely, given a narrowly continuous curve (fi;)sc(a,5) SUch that (pi¢, Fy); solves (3.4.7)
n (a,b), and p, = u, then the flow t — M,(x,v) associated with (F}); is well-defined
on (a,b) for u-a.e. (x,v), and

e = (My)ap t e (a,b). (3.4.13)
We conclude the section by adapting the results of | , Section 8.2] to our framework.
Proposition 3.4.8 ([ , Theorem 8.2.1]). Let (1t)icjap) € P2(I") be a narrowly continu-

ous curve such that (u, Fy): is a solution to (3.4.7) on (a,b), and
/ / |v)? +|Ft dpy dt < oo (3.4.14)
Then, there exists ) € P(X x V x H*(a, b; X)) such that
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1. the measure m is supported on triples (x,v,«) such that («,a’) is an absolutely
continuous curve solving (3.4.11), with initial conditions <a(a),o/(a)) = (z,v) €
supp (fta);

2. we have

r = U, for all t € |a,b]. 3.4.15
(p (a(t)m(t))) #?7 . a:5) (3.4.15)

Conversely, any ) € P(X x V x H*(a, b; X)) satisfying Condition 1 and

b
/a /HQ(a,b;X) (

induces a solution to (3.4.7) via

= | pr , te(a,b). 3.4.17
iy (p (ot (t)))#n (a,b) ( )

o/ (0] +|Flalt), o' )] ) dn dt < oo (3.4.16)

The measure 7 is usually referred to as the /ift of the curve (py, F});.

Regularising Vlasov’s equations

In various technical passages of the next sections, a suitable regularisation of Vlasov's equation
(3.4.7) will be necessary. Namely, given a solution (p, F}); to (3.4.7), we aim at finding a
family ((Ng, Ff)t)e, for € > 0, such that each curve (u, F¥); is a classical solution to (3.4.7)
and lim._,o(u$, F¥)r = (e, 1) in a suitable sense. In particular, a desirable feature is that
the approximation is tight enough to ensure that lim, . fab 1 [ F2 () dt = ff 1EIF2 () dt,
where the non-trivial inequality is <.

Classically, such arguments are obtained by convolution with some regularising kernel (e.g.,
Gaussian mollifiers). A statement like [ , Lemma 8.1.10]—where fOT 1F 122, dt is
proved to decrease under any convolution operation—holds true also in our setting, with
natural adaptations, see also the proof of the lemma below.

By contrast, we need a novel argument to get a counterpart of | , Lemma 8.1.9]. There,
distributional solutions to the continuity equation Oyu; + V - (Xuy) = 0 are approximated
with regular solutions to the same equation, via standard convolution. Starting from a solution
to Vlasov's equation Oy + V., - ((v, Ft)pt) = 0, the standard convolution simply yields a
solution to Oy + V., - (Xfps) = 0, without ensuring the structure Xy = (v, FY). Indeed,
the operator v - V, is not preserved under this regularisation.

To overcome this difficulty, we use a natural convolution product for kinetic equations, taken
from [ ]. Consider the Lie group of Galilean translations of R!™2" :

(t,z,v) o (s,y,w) = (t+ 5,2+ sv+y,v+w),
s,teR, zyye X=R", vweV=R". (3.4.18)

The Galilean inverse is given by (¢, z,v)™' = (—t,—(z — tv), —v). The Lebesgue measure
on R*2" is invariant under left and right translations, i.e., the Galilean group is unimodular.
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For finite Borel measures y1, v on R!™2" their Galilean convolution j % v is the Borel measure
defined by

/ano dpxv) = /Rmn /Wn p(aob) dv(b) du(a), ¢e€ CyR™M).  (3.419)

Measures that are absolutely continuous with respect to the Lebesgue measure will be identified
with their density. In particular, for f, g € L}(R!™2"), we have

(f % v)(a) = / Flaob ™) du(b), (uxg)(b) = / galob) du().  (3.4.20)

For vector-valued measures we apply this definition component-wise. For b € R*2" we
consider the left shift L : a — b o a, and the right shift R®: a — a <o b. Then,

LYy (prv) = (Lyp)xv, RY(prv)=px(Ryv). (3.4.21)

The relevance of the Galilean group for Vlasov's equation becomes apparent when considering
infinitesimal Galilean translations. Indeed, for fixed b = (¢, z,v) € R™2" with tv = 0, the left

translation operators (T;’) _p act on functions f € LY(R'2") via
S

(Tff)(a) = f(aosb), acR'"™",

These operators satisfy the group property T° o TP = T?,, for r,s € R, since tv = 0. For
smooth functions we have

d Of +v-Vof ifb=(1,0,0),
& stf = aﬂczf if b= (0’ €i; O>’
s=0 avlf if b= (07 07 ei) .

Hence, in view of the commutation relation T?(f x g) = f * T'g, we infer that

(O +v-Vao)(fxg)=f* (O +v-Va)g, On(fxg)=[f*(0n9),
Ov,(f % g) = [*(0y,9) -

Lemma 3.4.9. Let (u, Fy): be a solution on (a,b) to the Vlasov equation (3.4.7), with

b
/ /(|v|2 FIRP) dpy dt < 5o (3.4.23)
a I

Then, there exists an approximating sequence ((u§ , Ff)t) 0 such that
€

(3.4.22)

1. For all € > 0, the function (p, FY): is smooth in (t,x,v), satisfies (3.4.6)-(3.4.10), and
solves the Vlasov equation (3.4.7) on (a,b) in the classical sense.

2. The following bounds hold true:

b b
/ /\F;P dps dtg/ /yFtP dy, dt, (3.4.24)
a I a I
b b
/ /W e dtg/ /|v|2 e dt +C 2, (3.4.25)
a T a T

for some constant C > 0, and for all ¢ > 0.
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3. The sequence ((ug, Ff)t) converges to (i, Fy); as € | 0 in the following sense:
vt € (a,b) py — e and  Fipg — Fiuyg, (3.4.26)
narrowly, and

10, EIE2 g ay = 10 F) 2, ar (3.4.27)

Proof. Let us take a smooth function n = n(t,z,v) : R"*?" — R, with globally bounded
derivatives, unitary integral, and the moment bound

1
/ /|U|277dl’d1) dt < o0,
—1Jr

that is also symmetric w.r.t. the variable v (i.e., n(-,-, —v) = n(-,-,v), for all v € V), strictly
positive when the variable ¢ lies in (—1,1), and equal to 0 otherwise. We introduce the
mollifiers

Ne(t, z,v) == e 274 n(e 2t e Pz, e ), €e>0.

Given (pu, Fi)ie(ap), We consider their trivial extension to curves defined on R:
F,=0 and Oy +v-Vuu, =0 forté|a,bl.
We define E := F' 11 and consider the regularised measures
pwe=nexp, FE=nxE, e>0,
Smoothness of 1€ and E* are indeed a consequence of the last display in | , Page 6]:

(vv + tvxa vt,x) (Mi Ee) = (Vv + tv:ca Vt,a:)ns * (HJ: E) .

Let now F€ = £

€1

proof of [ , Lemma 4.2], we will show that (i, F°) solves the Vlasov equation

where we identify regular measures with their densities. Following the

Op; +v-Vau; + V- (Fipg) =0.

Indeed, write 7°(¢, x,v) = n°((t,z,v)~') where (¢, z,v)~" denotes the Galilean inverse. Using
(3.4.22) and the fact that (p, F') solves the Vlasov equation, we obtain for any test function
p € C((ab) xT),

/R/F@“L“'Vm)@dﬂe://ﬁe*(aﬁrv-vx)sodu://(8t+v-vx)(77€*so)du
_/R/va(ﬁe* //ne*vvgde,u // o Fedye,

which proves the claim. Since 7€ is an approximation of the identity, it holds true that
ue—p, dt,  E°— Fyuy, ase—0.

Using Jensen's inequality for the jointly convex function (E, i) — @ as in [ , Lemma
8.1.10], we obtain the pointwise inequality
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Integration over R x I yields
||Ft€||%2(u§ a < ||Ft||%2(m dt) » €>0.
By [ , Proposition 5.18], we have

(0, F) I 20, ar) < 111%(1]Hf 10, F) R 2us ay -

Finally, using that [ vn(-,-,v) dv = 0, we obtain

/ [0 g (z,v) dz dv dt:/ [ol* d(n * 1) :/ 1 o] dp
RxI" RxI"

RxT

= / / ne(s,y,w) v —w|?* ds dy dw dpy(z,v) dt
RxI" JRxI

= / / 77€(S7y7w) (‘UF + |w|2) ds dy dw d,U/t(I,’U) dt
RxI" JRxT

— 022 0 + / ne(s.7,10) [wl? ds dy duw
RxT"
< llE2(y ary + C€,

with an explicit constant C' > 0 independent of . O

Proof of the kinetic Benamou—Brenier formula

In classical optimal transport, the Kantorovich problem admits an equivalent fluid-dynamics
formulation, as was shown by J.-D. Benamou and Y. Brenier | |. The idea is that optimally
transporting po to p; is equivalent to finding the minimal velocity field (V}); one should apply
to make particles flow from one measure to the other. This velocity field induces an evolution
of measures t — p; that satisfies the continuity equation

@pt + V- (tht) =0.

Here, we recover a similar interpretation for the second-order discrepancy d. The kinetic
optimal transport between p, v is given by the minimal force field (F}); required to push
particles from p to v. In this case, ¢t — p; evolves according to the Vlasov equation (3.4.7).

Theorem 3.4.10 (Kinetic Benamou—Brenier formula). For every p,v € Po(T') and T > 0,
the problem (3.1.15) admits a minimiser. Moreover, we have the identities

fr(p,v) = dp(p, v) = mT(,u, V). (3.4.28)

Proof. Fix T > 0. We say that a curve (p); : [0,7] — P2(T") is admissible and belongs to
the class N7 (p, v) if (g, Fy); solves (3.4.7) for a vector field (F}), satisfying

T
/ /<|v|2 —|—|Ft|2) dpy dt < 0o (3.4.29)
o Jr

and
Lo = [, pr =v. (3.4.30)
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We shall prove that dp > mT > Ay, which is sufficient, since fir = dr, in view of Theorem
3.4.1. To this end, fix u, v € Po(I") and, for now, assume that x is absolutely continuous with
respect to the Lebesgue measure. We shall prove that

inf &p(m) > inf //|Ft dpy dt.

mell(p,v) ()t ENT (1,v)

Notice first that the value inf ey, cr(m) is attained at a transport plan of the form
7 = (id, Mp)gp, for a map My = (Yp,Wrp): I' = T, see Theorem 3.1.1. Now define the
flow (M), for t € [0, T, via

Mi(z,v) = (24, v1), (z,v¢) = (OZZ,U,MT(I,U) (t), (OZZ,U,MT(I,U)),(??» ; te[0,17,

using the same notation as Lemma 3.4.4. For every t € (0,7, the map M, is injective on a
full p-measure set, as shown in Lemma 3.4.4. Let now

d2
ds?

T

Ft(y, U}) = OéMt’I(y,w),MToMfl(y,w)(8) , t e (0, T) . (3431)

It is clear that (Mr)xpn = v, and, setting i, = (M;)4p, we claim that (i) is a narrowly-
continuous curve such that (3.4.7) holds, with the vector field (F}); given above. To prove
this, we fix a smooth test function ¢ € Cgo([(), T] x F) and compute

T T
/ /at(,O<t,$,U) dﬂt(l’,l)> dt = / /@Sﬁ(taﬁt,%) d/L()(ZL’,’U) dt
o Jr o Jr
T d
— / / <dtcp(t,xt, V) — vy - Veo(t, g, v) — Fy(xg, vp) - Vop(t, a4, vt)> dpo(z,v) dt
o Jr
T
= / ©(0,z,v) dug — / (T, xp,vr) dpo — / / (v- Voo + V-V, F) dig, dt,
r r 0o Jr
which is the weak formulation of (3.4.7) with fixed endpoints, as
[ o ar.on) duloo) = [ o) dur = [ olT1) av.
r r r
It it easy to check—using (3.2.2)—that

T
| [ dae So ff (1l o+ 1o + 0P) due,o) dvly, w) < oc.
0 I

In addition,
T T T

T / / FPdpdt =T / / IFy (0, v) 2 dprdt = / T / |y (0, o) 2 dt dp
0 T 0 T 0

= /F (12 Yr(e,v) =@ - Wr(z,v) + v + v — WT(x,v)|2) dp(z,v)

T 2
~ ~2
= &r(m) = dr(p,v),

since 7 is optimal. Then, (j1,) solves (3.4.7)—in particular it belongs to the class Np(u, v)—

/\_/2 ~
and MAr (p,v) < dzT(u, v), every time p is absolutely continuous.
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We get rid of this additional assumption. Let (1*) be an approximation of y in the Wasserstein
metric, such that u* is absolutely continuous for all £ € N, and let MZ% be the optimal
transport map for dr (1%, ). Define the splines flow (M), associated with M via (3.4.5),
let puf == (M})4p*, and let (FF); be given by (3.4.31). Note that (uf, F¥); solves (3.4.7),
for all k € N. Using the explicit expressions of (3.2.2), and indicating with (zy,v;); = M} the
solution of (3.4.11), we find

[ [y autar= [ o 1840
-/ (ul + 1P, v) ) de du S [l 12 4 135 o)) i
< [ (I + 1o + o + o) dub(e. ) do(y, )
<1+ /( 22+ |v)? + |y]* + ]w!Q) dpo(z,v) dv(y,w) < C < oo
In addition,
/( 2| + |v?) duf(z,v) = /(|xt|2 + vy |*) dpl < C" < oo, uniformly int € [0,7], k € N.

Then, following [ , Lemma 4.5] we have that, up to a subsequence, /Lf — pn, for
all t € [0,7], and (v, FF)uFdt — Z narrowly, for some measures fi, € Po(I') and Z €
M([0,T] x T';R?"). By uniform integrability of ¢ — [ |(v, F¥)| du; with respect to k, we
have that Z = =, dt, for a vector-valued measure =; satisfying

|Et|2 . /T/ 2 k(2 k
—— dt < lim inf v|” + | F dpy dt.
/F:U’t k=oJo F(H |t|> '

Finally, by [ , Proposition 5.18], we have that =, = X, i, for a vector field X, =
(XM, XY € L2(fi,; R?") and a.e. t € [0,T]. By weak convergence, V- (X\ 1) = v+ Vi,
Let F, := X\?. Passing to the limit in the weak formulation of (3.4.7), we have that (i, F});
is a solution to (3.4.7), such that (ji,); is admissible for /\//l\A/T(,u, v).

Using lower semi-continuity (see again | , Proposition 5.18]), we achieve

T T
MAG (1, v) < T/ /]Ft|2 dp, dt < liminfT/ /|Ff;2 dpk dt = lim inf di (4%, v)
0 k—o0 0 k—o0
~2
= dT(:ua V)?

where the second to last equality holds because (u¥, F}¥); are optimal spline interpolations,
and the last equality is a consequence of the Wasserstein convergence pu* — 11 and of the
sequential Wasserstein continuity of dr.

For the inequality np < mT, let (4, Fy); be any admissible curve in (3.1.15). By the
smoothing procedure of Lemma 3.4.9, we can find a sequence <(,u§, Ff)t) of classical solutions
to (3.4.7) such that

T T T T
/ /|Ff|2 dpg dt < / /|Ft|2dp,t dt, / /|v|2 dpg dt < 1+/ /|v|2 dpy dt.
0 0 0 0
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By Proposition 3.4.7—more precisely following | , Proposition 8.1.8]—for all ¢ > 0,
we have p = (Mf)xpg for all t € [0,7T], where M€ is the flow generated by the vector
field (v, Ff),. Let m® € P(H?(0,T; X)) be defined via

m‘ = /éMe(x,v) dpg(z,v) .
For all e > 0 and ¢ € [0, 7], it holds true that

o (0)] me) =|FeP g

(pf(a(t),a/(t)))#mezﬂi and (pr(a(t),a/(t)))#<

Then, as in | ], we have that the sequence (m€), is tight, and we call m any nar-
row limit point of (m€).. Narrow convergence, together with Lemma 3.4.9, ensures that
(PT(a(t),0r(t)) )M = i, for all ¢ € [0, 7], and, in particular, (pr(y)a(0)))4#m = p, and
(PT(a(1) .0/ (1)))# M = V. By semicontinuity,

T T
R (4 1) < T / / 0" (0)? dm(a) dt < lim inf T / / ()| dme dt
0 JH2(0,T:X) el0 0 JH2(0,T:X)

T T
= limui)nfT/ /|Ff|2 dpg dt = T/ /|Ft|2 dpy dt,
¢ 0 0

where we used the strong convergence induced by Lemma 3.4.9. This concludes the equivalence,
by taking the infimum over (u, F});. As a by-product, the curve (i, ); built above is a minimiser
in (3.1.15). [

Remark 3.4.11. A posteriori, the proof shows that optimal curves in (3.1.15) are given by
injective interpolation along splines, when 1 is absolutely continuous, see also Proposition 3.4.3.
Indeed, in this case, when p < dx dv, the curve i, = (M;)4p is optimal in (3.1.15), where
M, is the flow of (3.4.5). The general case is a mixture of spline interpolations.

Remark 3.4.12. Our result proves® a conjecture of | ], i.e., the equivalence of | ,
Formula (14)] and | , Formula (3)]. Indeed, in our language | , Formula (14)]
reads

inf { ﬁ%(:u()nul) : (prz)#,ul = Pi, 1= 07 1} )

HosH1

while | , Formula (3)] corresponds to

—2
inf {MAlwo,m)  (Pry) it =pi,z'=0,1},

H0,H1

and equality between the two is a straightforward consequence of Theorem 3.4.10.

Y. Chen, G. Conforti, and T. T. Georgiou conjecture such an equivalence in | , Claim
4.1], and provide a formal argument in favour of it. At the same time, the authors remark
the lack of a rigorous proof. Our Theorem 3.4.10 fills the gap and completes the proof, by
building on the argument of | ] with the crucial addition of two new ingredients: the
injectivity of the map M, (allowing for the definition of F}) and the Galilean approximation of
solutions to (3.4.7) via Lemma 3.4.9.

#in case only two measures are considered
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3.4. Dynamical formulations of kinetic optimal transport

3.4.4 Moment estimates for Vlasov’s equations

In this section we prove propagation estimates for moments along solutions to (3.4.7). In
particular, the following results show that a solution (ju)scjq,p) Of (3.4.7) stays in Py(I),
provided the initial datum p, € Py(T).

Before turning to the rigorous estimates, let us give a heuristic argument. Let (u;, F}); be a
solution to (3.4.7). Then, formally,

il == [ 0PV () =2 [0 Fo di < 20l il

from which we obtain EHUHL%W) <||F |2 Similarly,

(pt)
d, o 2
glelieg == [ 121°Va - () = 2llpag) 10l

and, therefore, d%HxHLz(M) <vllL2 ()

Lemma 3.4.13 (Moment estimate). Let (i, F;); be a narrowly continuous solution on [a, b]
to the Vlasov equation (3.4.7) with i, € Po(T) and f [ 1F)? dpy dt < co. Then, for every
€ (a,b):

t
vl ) < N0l ua) +/ | Follie(ue) ds (3.4.32)
and
t
lllt20u) < 17 ]lL2 () +/ vz ds (3.4.33)
t
<z lle ey + (= a)||v]lL2 0 +/ (t = 8) || FsllL2(uy) ds- (3.4.34)

Proof. Let ¢ € C((a,b) x V) and ¢ € CX(X) with ((0) = 1. For every € > 0, the definition
of solution to the Vlasov equation implies

/ / (C(ex)op + epv - (Vyu()(ex) + ((ex)Fy - Vo) dpy dt = 0.

Note that v is compactly supported, hence bounded. The dominated convergence theorem
(for € — 0) yields

b
/ /(8t¢+Ft'VU¢) dp, dt =0.

For every t, consider the disintegration p; = [ py d(pr,,)xp, which gives

/ab / (a”” + < / Fy dﬂf) 'Vv@/)) d(pr,)gpe dt = 0. (3.4.35)

By arbitrariness of 1, this argument shows that ((prv)#pt, [ F, d,uf) satisfies the classical
continuity equation. Note that the vector field satisfies [ , (8.1.21)]: by assumption

b 2 b
/ /'/Ft duy| d(ey)pp dt S/ //\Ft|2 dpy d(pry)pp dt < oo.

Therefore, by [ , Theorem 8.2.1], there exists a probability measure n such that:
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(i) m is concentrated on the set of pairs (v,3) € V x H'(a,b;V) such that 3(t) =
[ Ey(z, B(t)) AP for ae. t € (a,b), with 5(0) = v;

(i) for every t € [a,b], (pr,)4u: equals the push-forward of n via the map (v, ) — [(1).

For t € (a,b), using Property (ii), and the Minkowski and Cauchy-Schwarz inequalities,

[0llL2gu) = \//Ivl d(pr,)gue = \//IB ()" dn
/W(dn+J /ﬂﬁ

2
UL?(ua)ﬂLJ/// d,Us ds

t
ﬂ%%+/tm/x6 PP
< lohag + | ¢ [ [1Fe 56 @ am as
IWMw@ﬁ/VﬂEQWFMA&

Let us focus on the other inequality we need to prove. The Vlasov equation can be seen as a
classical continuity equation with vector field (v, F}). It follows from the previous estimates
that this vector field satisfies | , (8.1.21)] and, by | , Theorem 8.2.1], there exists
a probability measure & such that:

dn

dn ds

(i) € is concentrated on the set of triples (z,v,7) € X x V x H'(a,b; X x V) such
that 4, (t) = 7,(t) and 4, (t) = Fi(72(t),70(t)) for ae. t € (a,b), with 7(0) = (z,v);

(i) for every t € [a,b], p; equals the push-forward of & via the map (z,v,7) — ().

Hence, for every ¢ € (a,b), we have:

lollego = [ ol dise = [1na(0) g

2
< /m %+J o (s)ds| de
2

:Mmm+//% aé

b
gwwﬂ+/ /m 2 dg ds

b
= [|2]|L2 () —i—/ /]U|2 dps ds. O
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3.5 Hypoelliptic Riemannian structure

In this section, we develop a differential calculus induced by d, with the main contributions
organised as follows.

= In §3.5.1, we show that solutions (y, F;); to (3.4.7) are physical and d-absolutely
continuous, with the optimal time for d(y, t:15) being asymptotically A, for h | 0.

= In §3.5.2, we prove the converse: d-absolutely continuous curves of measures (fi;);
can be represented as solutions to (3.4.7), provided the optimal time for d(u, fte1n) is
asymptotically i as h | 0. Similarly, we show that physical curves solve (3.4.7).

= In §3.5.3, we show that the minimal L?(y;)-norm of a force field (F}); such that (u, F});
solves (3.4.7) can be interpreted as a metric derivative, namely, it is, for a.e. t, the limit

of d(utn;;t+h) and a}L(Mt;LNt+h) as h J/ 0

= In §3.5.4, we extend these results to reparametrisations of (3.4.7) and complete the
proof of Theorem 3.1.7.

Henceforth, we assume that (1;)ic(ap) € P2(I') is a narrowly continuous curve. We set

Q:={t € (a,b) : vl >0} (3.5.1)
and define the spatial density

pr = (pry) i € P(X), t € (a,b). (3.5.2)

Using the disintegration theorem we write du.(z,v) = dp.(v) dpi(z), where iy, € P(V)
denotes the distribution of velocities at x € &', defined p;-a.e.

For every t € (a,b), let V; be the closure of the space V := {V¢ : ¢ € C(X)} in L?(ps; RY).
Additionally let pry, : L?(p;; R?) — V; be the corresponding projection operator, and define
the flow velocity

i) ::/v die,  (to) € (a,b) x X, (35.3)
V
and the total momentum
(V) = /v dpy = / Jr dpe t € (a,b). (3.5.4)
r X

Remark 3.5.1. For any p € P(X), the closure of V in L?(p; R?) contains all constant vector
fields. Indeed, fix ug € R? and a C°(R?) function ¢ with support contained in the unit ball,
and such that ¢ =1 in a neighbourhood of 0. For every ¢ > 0, set

e = ((ex) x - ug, reX.

We have
Vbe(z) = ((ex)up + €(z - up)V((ex) € V', reX.

As € — 0, the dominated convergence theorem gives

L2(p;R4
C(ex)ug (L> ) C(0)ug = ug ,
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as well as
/){!6(37 <up) V¢ (ex)[* dp SIUoF/{xKi} e[’ |V¢(ex)| dp S!uo\Q/X!VC(Ex)} dp
— |uo|*|V¢(0)] = 0.

Let (s,t) — 75+ € L, 4(pts, f1¢) be @ measurable selection of d-optimal transport plans, and 7 ;
the corresponding optimal times,® i.e.,

2
Iy = 2llea, )

2 if (y—z,v+w),, >0,
(y _ :L,’ v + w)ﬂ_st (y ) s,
Ts,t = ' . (355)
0 if ||y_x||L2(7rs’t) :07
00 otherwise.

3.5.1 d-regularity of solutions to Vlasov’s equations

The results of this subsection are given under the following.

Assumption 3.5.2 (Solution to Vlasov's equation). The curve (jit)ic(ap) in Po(I') is a
distributional solution to Vlasov's equation (3.4.7) for a field (F});c(q) such that

b
/ (1012 + I FelIE2(y) At < oo (3.5.6)

Under this assumption, the curve ¢t — i, is Wo-2-absolutely continuous by [ , Theo-
rem 8.3.1]. It is readily shown that the maps ¢ — ||z([;5(,,, and ¢ —[|v[|;2(,,, are continuous.
Indeed, for any W-optimal plan 7y, € I1(jus, p1:) we have

2 2
oliZagy ol | = | / (ot ) (=) drag] < Waln i) (lollguy + oo
X

Sincg t.r—> ||x||ig(ut) +||v]|ig(m) = W%(Nt,fs(o,O)) is continu?us and.thus locally bounc.jed., the
continuity of ¢ — [[v[|;2(,, follows. In particular, the set {2 is open in (a,b). The continuity of
t = ||zly2(,, is proved analogously.

Lemma 3.5.3. Under Assumption 3.5.2, the space-marginal curve t — p, is Wy-2-a.c. with

()| < \p;]% :Hprvt(jt) ooy Sl foraete(ab). (3.5.7)

Proof. Fix ¢ € C(?O((a, b) x X). With the same argument as in the proof of Lemma 3.4.13:

/ab/r(atw+v.v$¢) djry dt =0,

from which we get

b b
O:/a /X(atw‘i‘jt(l')-vxw) dpy dt:/a /X(atw—i—prvt(jt).vww) dpr dt,  (3.5.8)

°All times T' > 0 are optimal when ||y — :13||Lz(77s ) = 0. In this case, we conventionally choose T’ ¢ = 0.
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where we used that V,1(t,-) € V; in the last equality. Since 1 is arbitrary, we deduce

that ¢t — p; is a solution to the continuity equation with vector field <pth (jt)>t€( " The

identity ||y, :Hpth (J¢) : thus follows from | , Proposition 8.4.5].

L2(p:

The inequality Hpth(jt) < |[vlli2(,,) follows from the definition of j; using Jensen's

L2(pt)
inequality. Finally, by definition of (v), and Remark 3.5.1, we write

<U>? = /th {v) dpy = /Xprvt (Je) - (v)e dpy < |<U>t’Hpth (Je)

L2(ps)

which yields |(v),| SHpth(jt) L2y’ O
Our goal is to prove the following three propositions.
Proposition 3.5.4. Under Assumption 3.5.2, for every s,t with a < s <t < b, we have
t
Ao s) < de-stas ) <2 [ 1Bl (359)
Proposition 3.5.5. Under Assumption 3.5.2, for almost every t € (a,b), we have
. d(pes peen) _ . dn (e, pren)
hmhisoup —Eh R < hmhisoup # <N Eillie, - (3.5.10)
Proposition 3.5.6. Under Assumption 3.5.2, the following assertions hold.
1. For a.e. t € (a,b) such that|pi|y, > 0, we have
limM =1 forae te(ab). (3.5.11)
X ’
2. For every [d',b'] C Q, there exist h > 0 and g € L?(d’, V') such that
T,
“UER < g(t) forall t € [d,V]. (3.5.12)

he(0,h)

Consequently, if|pi|y, > 0 for a.e. t € ), we have % —1inLE.(Q) ash | 0.
Proposition 3.5.4 and Proposition 3.5.5 provide upper bounds for the kinetic discrepancies
between successive states along (y;);. The first one applies to any two times s, ¢ with s < ¢,
while the second one concerns the infinitesimal change, i.e., it provides an upper bound on
the d-derivative. Proposition 3.5.6 shows that the optimal time for d between two successive
nearby states along a solution to Vlasov's equation is comparable to the physical time. In
Proposition 3.5.20 below, the convergence % — 1 will be improved to T“;S_h — 0 at
a.e. times t € (a,b) where (v); # 0.

Remark 3.5.7. Comparing Proposition 3.5.4 and Proposition 3.5.5, we see the presence
of an extra factor 2 in the former. Note that a version of Proposition 3.5.5 with the extra
factor 2 follows immediately from Proposition 3.5.4. Also notice that, if d were a distance,
these two propositions, together, would allow dropping the constant 2 in (3.5.9), see | :
Theorem 1.1.2]. However, this factor is sharp, as demonstrated by the following example.
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Example 3.5.8. Let ¥ =V =R. For € € (0,1) we define

0 et? for t € |0, 1} ,
a(t) =
—€e+2t—(t—1)? forte 1,1—1-\/5},

and, by means of «,

’“‘t‘:é(a , te (0,14 Ve

0.))

This curve solves Vlasov's equation with Fy(x,v) := o”(t). In particular,

14+/e
/ | Fullag df = 2¢ + 2V,
0
On the other hand, recalling the definition (3.1.7) of d,

((a(0). 0/(0)), (a1 + V), o'(1+ Ve) ) = d*((0,0), (2¢Ve, 2¢ — 2))

2

2 2ey/€ 2
= 3|26 — 2v/€| — 3| —— - (2¢ — 2+/¢ 2¢ — 24/¢
2 -2V (Ml ( f>)++ Ve

2 2
= 4\26 - 2\/2\ —3(2e — 2//€)% = 4\26 — 2\/2’ ,
where the last equality is true because € < 1. Hence,

d((a(0), ' (0). (a(1L+ VB, (L + VD) _ |26~ 28
Jo I 2et2e

and the latter tends to 2 as € — 0.

Proof of Proposition 3.5.4. Let us fix s,t € (a,b) with s <t. By [ , Theorem 8.2.1],
there exists a measure 1 € P(F x HY (s, t; F)) supported on tuples (z,v,7,,,) such that:

1. v.(s) = and 7,(s) = v;
2. 4,(r) =(r) and 4,(r) = F, (fyx(r),’yv(r)) for a.e. r € (s,1);

3. (prvm)# n = p, for every r € (s,t).

By definition of d;_, and by the properties of 77, we write

~2 ~
dt—s(:uSv :ut) < Cis ((pr’Y(S),’Y(tD# 7’)

— / (12 ’}%(t) - 7$(S) _ Vv(t) + ’YU(S)

t—s 2
"t s—2r
:3//5 ﬁFr(%(T)a%(r)) dr

2

+]7(t) — %(8)12) dn

2
dn+/

2

[ Bt 00) ] an,
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which yields, by Minkowski's integral inequality,

3.5. Hypoelliptic Riemannian structure
dt s ,U/s’lubt S ( ’Ym 71) ))

2
dn dr)
( dn dr)
|t + s — 2r] ? ’ 2
S —2ar
_3(/ s Ml ) + (/ 1E 2 dr) . (35.13)

The conclusion follows by estimating ‘HS QT‘ <1. O

t—s

(3 (), o ))

Proof of Proposition 3.5.5. Let t € (a,b) be a Lebesgue point for t 1F3ll12(,,)- By the
kinetic Benamou—Brenier formula of Theorem 3.4.10 we have, for every h > 0,

& N,
h /ubblubt-&-h) < h(ut7ut+h) < HF H2
h2 — h2 — slIL2(p

We conclude by letting h | 0. [

Proof of Proposition 3.5.6

The core idea in the proof of Proposition 3.5.6 is to equate two interpretations of p; and fi4p,
as marginals of two different plans in II(f, ft14). One is the d-optimal plan 7 4.p, i.e., an
evolution along a 7} ;. 4-long curve; while the other is the dynamical transport plan induced
by Vlasov's equation, hence an evolution taking time h. One of the lemmas we prove
after this idea—namely, Lemma 3.5.10—uwill also be used to compute the d-derivative,
see Proposition 3.5.22.

Another key passage in the proof below is the derivation of the local L2-domination (3.5.12)
by means of the upper bound (3.5.9).

Lemma 3.5.9. Assume Assumption 3.5.2. Fix [a’,b'] C Q. Then, there exist h > 0 and a
function g € L*(d/,b') such that

Tiivn

< g(t) foralltc[da', ] and every h € (0,h). (3.5.14)

In particular, for a.e. t € ) (hence, for a.e. t such that|pi|\, > 0), we have

T;
lim sup —24" < oo (3.5.15)
hl0 h

Proof. Recall that the functions # + ||||;2, , and £ ~ ||v]|;2,, , are continuous on (a,b).
L2(uz) L2(uz)
Let ¢ > 0 be an upper bound on the restriction of these functions to {a’ M} and € > 0 be

the minimum of ¢ = ||vlli2(,,) on [a, b']. By Assumption 3.5.2 and Proposition 3.5.4, we can
find h € (0 ) depending on ¢, ¢ and f ||Ft||L2 ) dt, such that

2
- ~ €
he(0,h) = |[w- U||L2(7rt,t+h) < d(ps pregn) < dn(pes pegn) < —

. 5.1
- (3.5.16)
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Fix t € [a/,V] and h € (0,h). Let € P(F x H(t,t + h; F)) be as in the proof of
Proposition 3.5.4 (after replacing (s,t) with (¢, + h)) and let P be a probability measure
on T x T' x H'(¢,t + h; T") constructed by gluing 7, ;.5 and 1 at i, i.e., such that

(pra),uy,w)# P =m4n  and (prx,v,'y)# P=n.

Using the properties of i and P, we write
/y-de—/x-vdP
:/7$(t+h/) 7v<t+h) dP — ’Yx(t) 'Vv(t) dP
t+h
— [ [ 6ulo) mlt )+ 545) (e s ap
t
t+h
— [ [ () e+ 0+ Fo12(5).20(5)) - 22(0)) s P
t
Rearranging terms, this identity writes, for every 6 > 0, as
/(9|v|2+9(w—v)~U+(y—x—9v)-w) dpP
t+h
= /x (v —w) dP + // (%(s) Yot +h) + FS<%(8), %(s)) -%(t)> ds dP.
t
By the triangle and Cauchy-Schwarz inequalities, we obtain

y—x
0

2
0 HUHLQ(M) N HUHLQ(M)HU} - U||L2(7rt,t+h) o ||U||L2(ut+h) -V

Lz(ﬂ't,tJrh)

t+h t+h
< ||x||L2(Mt)||w N U||L2(7"t,t+h)+||U||L2(Mt+h) / “UHLQ(us) d8+||x”L2(Mt) / ”FSHLQ(MS) ds;
t t

hence, since [|v|;2(,,) > € and max {SUPZ||$||L2(M) ,supz||v||L2(W)} < ¢, we have

— X

7

Yy
0] —clw-— UHLQ(MHh) —c H
L2 (g t4n)

S c Hw - UHLQ(ﬂ'th+h

t+h
)+02h+c/t [ Fslli2(, ds- (3.5.17)

for a suitable choice of 6.

It remains to bound the term H% —v
L2(my 14h)

If T, € (0,00), we choose 6 := T ;.. Using the triangle inequality, the definition of ¢, the
fact that [y — #|[;2(r, ,,,) > 0, and the optimality of 7, ., we obtain

[ Hlw— ol e IS Y
-V w—v < - —llw — vz,
Titen L2(my14n) L) Ten 2 L2(ms61n) 2 L)
~ (3.5.16) ¢2
S 3\/C(7Tt,t+h) = 3\/C(7Tt,t+h) =3 d(/,Lt, /4Lt+h) S % . (3518)
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We arrive to the same conclusion in the case where T ;1) = oo by letting 6 — oo. In all cases
(trivially when T} ;1 = 0), we get the inequality

2
€ Tt,t-&-h
2

proving in particular that T}, < co. Bounding d(p, pe+r) with Proposition 3.5.4, we find

t+h
< cd(pe, pusn) + h+ C/ HFSHLQ(MS) ds,
t

Toen _ 1 [ ) 1 o :
< = Ge|| F|| +2¢*) ds < = sup ][ 6¢||Fslly20, y + 2¢7) ds
h 62 \ft ( L2(M$) ) 6 hE(O h) ( LQ(N.S) )

=ig(t)

Since  — | Fill 2 is L?, so is g by the strong Hardy-Littlewood maximal inequality. O

Lemma 3.5.10. Fix ¢ € C;N(T), i.e., ¢ is bounded and continuously differentiable, with
bounded and Lipschitz gradient. Under Assumption 3.5.2, for a.e.’ t € Q, we have

— T,
lim / LN dmeepn + t’Hh/vasO d sy 2/(U,Ft)~Vmo dpsg . (3.5.19)
rxr D 7 h Jr r ’

hl0
Proof. Fix t € ) satisfying (3.5.15). We also assume that ¢ is a Lebesgue point of

s +—>/ v, F Viwp dus and s — || Fllz,,) - (3.5.20)
Fix h € (0,b —t) such that T}, < 0o, and let i, P be as in Lemma 3.5.9. In particular

/w(y,w) dP—/w(:c,v) dP = /go(v(t+h)) dP —/go(v(t)) dP.

By the fundamental theorem of calculus and the properties of 7 and P, we deduce that

1 1
7 / / (y —z,w—wv)- Vm,u@(l‘ +r(y—z),v+r(w-— v)) dr dm4n
I'xI’

t+h t+h
][ / “90 s)) dn ds —][ /(T),Fs(fc,ﬂ» - Vaewp(Z,0) dus ds.
t r

(3.5.21)

The right-hand side in the latter equality converges to the right-hand side of (3.5.19) as h | 0,
since t is a Lebesgue point for (3.5.20).

Focusing on the left-hand side of (3.5.21), we observe that

1 1
5 / / (y —x,w—0)- (Vmap(x +r(y—x),v+r(w— U)) — Vawp(z, v)) dr dmyqp
2 Jo

2 2
My = @l w0 — vl

~ h

(7Tt,t+h)

w—+ v 2
2

2 2
H — 2 —Tiyp + (1 + th,t+h) |w — U||L2(7"t,t+h) + E%Hh”vnﬂ(ut)

L2(my t4n)

Sh
T? .
( tt+h) pes bein)? + Ty onllvlT2,,)
h Y
®We allow the negligible set of times where (3.5.19) does not hold to possibly depend on .

(3.5.22)
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where the constants hidden in < do not depend on h. Combining the latter with Propo-
sition 3.5.4, (3.5.15), and the fact that ¢ is a Lebesgue point for s = [[Fy[ 5., we infer
that (3.5.22) is o(1) for h | 0. Finally, we notice that

—x =T
/y x . tt+hU V.o di
r

Hy —x =Ty qpv
<
~ h ~ h

- (=) T ~
L2(mt,040n) £ t’t+hd(ﬂtyﬂt+h) =o(1),

where () can be proved as in (3.5.18) if T}, > 0, and is trivial otherwise. From (3.5.21)
and these observations, the conclusion follows. O

Corollary 3.5.11. Under Assumption 3.5.2, for a.e. t € (a,b) such that |p}|y, > 0, we have

. Tt,t+h_
lim 5t = 1. (3.5.23)

Proof. Let {¢y},cy be a C'-dense set of C°(X'). We apply Lemma 3.5.10 with ¢: (z,v) —
¢r(z) for every k € N to deduce that, for a.e. t € (a,b) such that|p}|y;, > 0, we have

T,
e /U . Vx¢k dﬂ’t - /U ' Va:(bk dlu’ta k S N. (3524)

=

Let us take any such ¢ for which, additionally, (3.5.7) holds. By Lemma 3.5.3, there exists b€
C2°(X) such that V¢ is sufficiently close to pry, (ji) in L?(py; RY), in the sense that

’PHW
> —2>0.
2

‘ [ Vo) v au

—‘/ngﬁ ’ PTVtUt) dp
To conclude, it suffices to choose k in (3.5.24) such that Hg?ﬁ — (ka(Jl is sufficiently small. [

Proof of Proposition 3.5.6. The result is immediate after Lemma 3.5.9 and Corollary 3.5.11.
O

3.5.2 Physical curves solve Vlasov’s equations

Let (14)ic(apy be a narrowly continuous curve in Py(I), let (s,t) — 7, be a measurable
selection of optimal transport plans for d, and let 7}, be the corresponding optimal times,

see (3.5.5). Recall p; := (pr,)gp: and Q = {t € (a,0) : |[vll2qu,) > O}.

Choose measurable functions (s,t) — 0, € [0,00] and (s,t) — 78, € II(1s, py). Let Qc
(a,b) be an open set of times.

Proposition 3.5.12. Assume the following:

(a) The curve (fit)ie(ap) is Wa-2-absolutely continuous. (Consequently, t — p; is Wo-2-
a.c, and t = ||z, is 2-a.c.)

(b) For every s < t such that 0, = 0, we have y = z 7% ,-a.e.

(c) There exists a function { € 1%(a,b) such that
t
lw = vl 2gp0 ) < / l(r) dr, a<s<t<b. (3.5.25)
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(d) The set Q has full measure in (a,b). For every [a',b'] C €, we have the limits

b/
lim
hl0 o

0
lim t’;j’l”,/egmh(wf’m) dt =0. (3.5.27)

hJ/O {te(a/vbl) zet,t-O-he(Ovoo)}

9“;:" - 1‘ dt =0 (3.5.26)

and

Then, there exists a force field (F}); such that (pu, Fi); solves Vlasov's equation (3.4.7),
and (F;); belongs to the L*(p,; dt)-closure of{vap CpeC¥ ((a, b) x F) }

We discuss the assumptions of Proposition 3.5.12 below, and give a proof at the end of this
section. Choosing 0, :=1t — s and 0,, := T, we immediately obtain two corollaries.

Corollary 3.5.13. Assume (a) in Proposition 3.5.12 holds. If there exists { € 1?(a,b) with
_ t
di—s(ps, pe) < / l(r) dr, a<s<t<b, (3.5.28)
then the conclusion of Proposition 3.5.12 holds.

Proof. Set 0,4 =t — s, and let (s,t) — n%, € II(js, j1) be a measurable selection of di_o-

optimal plans. We set () := (a,b). Then, Assumption (b) in Proposition 3.5.12 is vacuously
true, (3.5.25) follows from (3.5.28) because dy—s(tis, p1e) = [|w — vl 250 ), (3.5.26) is obvious,

and (3.5.27) follows from (3.5.28). O

Corollary 3.5.14. Assume (a) in Proposition 3.5.12 and, in addition, the following.
(c’) There exists a function ( € L*(a,b) such that

t
d(ps, pe) < / l(r) dr, a<s<t<b. (3.5.29)

(d’) The set Q) has full measure in (a,b). For every [/, V'] C ), we have the limit

/

lim
hio J .

T,
t*;;h - 1‘ dt =0. (3.5.30)

Then the conclusion of Proposition 3.5.12 holds.

Proof. Set 0, := T, and choose 7?2)715 = 754, which has the following property:
Tt € (0,00) = d*(us, ptr) = () = Cr,, (752 - (3.5.31)

Then, Assumption (b) in Proposition 3.5.12 follows from (3.5.5), and (3.5.25) follows
from (3.5.29) because d(us, pt) = ||w — v|l12(r, ,)- Finally, (3.5.27) follows from (3.5.31),
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(3.5.29), and (3.5.30); indeed,

Tt,t+h\/m 4 < /b’ Tt,t-s-h /t+h g(r) s
s,t ) —_ o h ; )

/{te(a/,b’) ITt7t+hE(07OO)} h

b,
T,
<Nl |

' +h
+ h/ l(r) dr,

’

tt+h
— — 1| dt
h ‘

which tends to 0 as /| 0 by (3.5.30). O

Remark 3.5.15. The combination of Corollary 3.5.14 and Proposition 3.5.6 yields a self-
improvement result for the convergence % — 1. Indeed, let us make the assumptions of
Corollary 3.5.14 with © = Q. In particular, we assume the LL () convergence of % From
Corollary 3.5.14, we get Assumption 3.5.2 and therefore, by Proposition 3.5.6, the L .(Q)-
and almost everywhere convergence of %

Proposition 3.5.12 and its corollaries reproduce [ , Theorem 8.3.1] from the classical
OT theory. We will also adopt a similar proof strategy, namely we prove that a certain linear
functional is bounded, so as to apply the Riesz representation theorem. Naively, one could try
to work with the same functional as in | , Theorem 8.3.1], i.e.

b
sof—>/ /8t<pdut de,
a I

and prove that the function representing it is of the form (v, F'). However, it turns out
being more natural to treat 0, + v - V, as a single differential operator, in the spirit of
hypoellipticity [ |. Then, we work with the linear functional L = L(y) defined via

b b o B
- (Opp+v - V) duy dt = lim pltz,0) =gt = hw = hv,v) dpy dt.
a JT a JT hi0 h

We shall prove that, in fact, L = L(V,), i.e., L is a linear and bounded functional of V¢,
with operator norm ||L|| <||¢||;.. One key ingredient in the proof is that = and y — hw coincide
to the first order on the support of Wth. More precisely, by means of Assumption (d), we
show that

Yy — 2 — hw|
lim —_—

hio [ h dnyyp, dt =0, [, V] C Q.

Let us briefly comment on the assumptions of Proposition 3.5.12. Assumption (a) is certainly
true for any solution to Vlasov's equation with moment bounds by | , Theorem 8.3.1].
Furthermore, it is independent of the other assumptions, and not even replaceable by Wasser-
stein BV-continuity of (f;)ie(q,)- The following example produces a bounded variation curve
satisfying Assumptions (b) to (d) which does not solve (3.4.7).

Example 3.5.16. Let z4: (0,1) — (0, 1) be the Cantor function, namely a continuous, sur-
jective, nondecreasing function of bounded variation, having a Cantor measure—concentrated
on the Cantor set C'—as derivative. In dimension n = 1, set

v(t) =inf{t —¢| : ce C}, te(0,1),

x(t) = xo(t) +/0 v(s) ds, te(0,1),
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and define the curve u. .= (5( )

). Choose Q == (0,1) \ C and

6., =1, 0394 |2 (t) — a(s)|? _ wo(t) = wo(s) + [y v(r) dr-

- (2(t) = 2(5)) (v() + (5)) o(t) + o(s)

In this case, there is only one admissible plan for every s,t, namely 7r2t = s ® .

Assumption (b) is vacuously true, because z is strictly increasing. Assumption (c) holds
because
lu(t) —v(s)| <t—s, O<s<t<l.

The function v is uniformly bounded away from 0 on any compact subset of Q, and g is
constant on any interval in Q). Therefore, the convergence b, =4t — 1 holds locally uniformly

on Q. When 6,, € (0,00), we have

G, (m50) =v(t) —v(s)| <t —s,
and with this we verify Assumption (d).
Nevertheless, this curve does not solve Vlasov's equation for any force field (F}); such

2
that [|F,(x(t),v(t))| dt < oco. If it did, then, by Lemma 3.4.13, we would have

3433)
o0 “ e+ [ a5, e ),
which would imply xy = 0.

Assumption (b), Assumption (c), and (3.5.27), together, are a weakened version of the natural
absolute continuity condition

t
¢ 0
C9t,t+h(ﬂ-t,t+h) S/ ((r) dr
s

(calling & () the limit of &(7},,,,) for € = 0), as can be easily checked (using (3.5.26)).

t t+h

Assuming — 1 is needed to select a solution to Vlasov's equation (3.4.7) among all

its possible reparametrisations. Recall also the hypothesis that ) has full measure in (a,b).
This ensures that (1;); solves Vlasov's equation on the whole (a,b). In the next lemma, we
show that there are conditions under which €2 has full measure and, therefore, it may be a
viable choice for €. More precisely, we establish a connection between ' lw, and [Vl

in terms of lim infy g b =Lt a priori, i.e., without knowing that (1), solves Vlasov's equation.

For solutions to Vlasov' s equation, the analogous statement is Lemma 3.5.3.
Lemma 3.5.17. Let t € (a,b) be a Wy-differentiability point for t — p;, and assume that

there exists a sequence hy | 0 such that

0
= lim 2% < o0 0,4, € (0,00)VE, and lim &, (7f,,,) = 0. (35.33)

k—o0 k

/
s S - (3.5.34)
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As a consequence, if

Tiiin

. . o /
ln}llﬁ)nf < 00, lﬁgd(,ut,,uﬁh) =0, and W, 0 (3.5.35)

for a.e. t € (a,b), then Q has full measure in (a,b).

Remark 3.5.18. If[pi|y,, > 0 and Assumption (b) holds, then 0; ;4 > 0 for small h.

Proof of Lemma 3.5.17. We write

Hy - 5UHL2

) J—
R e Hlollaguy
0t,t+hk et,t-l-hk 2 L2( tt+h ) - L2(7rt0t+hk)
= \/E9t,t+hk (" ean) TVl -
Therefore, by hypothesis,
1y = lliage,
< [ liminf PR —
2 l 11?—%2 0t,t+hk : HUHLQ(M)

The proof that € has full measure under (3.5.35) is consequence of Remark 3.5.18 and the
fact that d(,ut, /.Lp,.h) = ETt,t+h (Wt,t—i-h) if E7t+h S (O, OO) ]

Proof of Proposition 3.5.12. Let us fix [a/,5'] C Q and ¢ € CSO((a’, b)) x X x V). We write

b
:/ /(8t90+v-vx90) dp dt

o(t,z,v) — p(t — h,x — hv,v)

hw h due dt

and, by the dominated convergence theorem and a change of time variable,

b/
) o(t,z,v) — @(t — h,z — hv,v)
L{y) < lim /a / / - dpy dt

fa, [o(t,z,v) dp, dt — f f(p — hv,v) dpygyp dt

= lim

Hence, we have

4 ¢ —p(t,y—h
L((,O) < hm/ /90< ,ZL‘,'U) 90]5 Y wuw) dﬂ-thrh dt
! T

h10
bl
t — p(t
< liminf/ / otz v) = olt, 2, w)| deHh de
hi0 I'xT h ’
::LPJ
b’
t —o(t,y—~h
—|—limsup/ / p(t, 2, w) — p(t,y — hw, w)| dn?, ., dt .
h10 IxT h ’
=y 2
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We start by estimating 1., ;. By the Cauchy-Schwarz inequality:

b 2
o(t, t
I,1 < l1m1nf / / zv) = et 2, w)) drf, ., dt
xT lv — w| '

g v — w/*
. J / / bl . (35.36)
a’ I'xI’

By Assumption (c), we have [|w — vl|; 20 ) — 0 forae. t. Therefore, the first square root
t,t+h

in (3.5.36) converges to [|Vyolly2(,, ar by the dominated convergence theorem. As for the
second one, again by Assumption (c), we write

b’ |U i w|2 b t+h 2 b'+h
/ / Ll dt < / ][ () dr | dt < / Cr)dr (3.5.37)
a’ I'xT" a’ t a’

from which we conclude that 1,1 <|[[Vulli2(,, anllfll2-

We claim that I, > = 0. To prove it, we estimate

b/
) —z—hw
I <)@l en hmsup/ / ly ; | dn?,,, dt.
h{0 a’ JI'xD

Momentarily fix ¢ and h. If 6, € (0,00), then the triangle inequality gives

ly — 2z — hw| —r Ot w|  |w—o 9t7t+h_1|v+w|
h —| h h 2 2 h 2
and, therefore,
|y —T— hw| t,t+h ~ th
/ . dry Toipn = n Vv C9t,t+h,(7Tf,t+h) +
I'xT t
e [0llr2guy Fvl2ge,
h 2
If 0; 1, = 0, then by Assumption (b),
ly — 2 — hw| 0 O4n
/FXF h dﬂ—t’t'i_h - ||U||L2(Nt+h) - h -1 ”U||L2(Mt+h) ’
If 0,411, = 00, then, trivially,
9t,t+h

ly—x —huwl
/1" r h d tt+h
X

- 1| |
Hence, we find

o ly—ax—h 0
y—x w| tit+h /=
/ / h dﬂ—f,t—&-h de S / h Cet,t+h (ﬂ-te,t-‘,—h) de
a’ JI'xID {te(a’,b’) : 9t1t+h€(0,oo)}

b'+h
+ h/ ((r) dr

/

Qt’t*h—l‘dt

b/
| s ol 1) [

a+a’ b+b
el bl
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and Assumption (d) allows to conclude that I, = 0.

We established that L(p) < [[Vo@llpz(,, anllfllL2 for every ¢ € ijo((a’,b’) X X X V)
with [/, V] C €. By linearity of L and arbitrariness of da’, b, we have, in fact, that

L(#) Vol an il for every o € CX(Qx X x V). (3.5.38)

We claim that the same inequality holds for every ¢ € Cgo((a, b) x X x V). Given one such ¢,
and a function 1 € C(€2), we write

:/ab/r(atwrv-wo) dp, dt
= [(-00) [@o 0 Vop) ape

+/ab <n(t)/r(8tg0+v-vz80) dut+3t77(t)/g0 dut> /a o (t )/Fcp dpe dt.

Since (,ut)te(ab is Wy-2-a.c., and ¢ is smooth and compactly supported, the function ¢ —
[ @(t,-) duy is 2-a.c. Therefore, an integration by parts yields

L(p) = / (1=n)) /F(atso + v Vap) dpy dt

+Ab£(at(n¢)+v-vm(n¢)) dpu dt+/ab77(t);tfrso dyry dt .

Since ny € Cgo(ﬁ x X x V), we apply (3.5.38) to write

b
L(p) S/ (1=n)) /(3t90+v'sz0) dpie At +[0Vebll L2 an 1€l L2 ap)

+/bm£/ dps

By Assumption (d), the complement of Qs Lebesgue negligible. Thus, 1 can approximate
the constant function 1 in L*(Q2) = L?(a,b). This gives

b
d
L(p) S||VUSOHL2(Mdt)”g”w(a,b) +/ dt/FSD dprg dt :||Vv80”L2(Mdt)||€HL2 ;

which was our claim.

Finally, we apply the Riesz representation theorem on the closure in L?(u; dt) of the set
{vap NS CSO((a, b) X X X V)} to find (F3); such that (yu, F})ic(ap) solves (3.4.7). O

3.5.3 First-order differential calculus

Let (f¢)tc(ap) be a narrowly continuous curve in Py(I'), let (s,t) — m,; be a measurable
selection of optimal transport plans for d, and let 7, be the corresponding optimal times,
see (3.5.5). Recall that p; == (pr,) 4/ and (V) = [ v dp.
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The tangent

In the light of the previous sections, we can now give a more rigorous description of the geometric
intuitions of Remark 3.1.9, Remark 3.1.12, and Remark 3.1.13. Given a solution (1t¢, F})te(a,p)
to Vlasov's equation (3.4.7), we can see v as the infinitesimal z-variation (i.e. the velocity),
and the field (F}); driving (1), as the infinitesimal v-variation (i.e., the acceleration or force).
In the case of the particle model—Section 3.2—we have that, along a regular solution to

Newton's equations &; = vy, Uy = Fy(x4,v;), it holds true:

l’t:l'o—i‘t?]o—i‘O(t), t—>0,

vy = vg +t Fo(zg,v0) +0(t), t—0,

1
Ty = Xo + tUO + 5 t2 Fo(l’o, Uo) + O(t2> s

t—0.

In the next propositions, we recover analogous formulae in the case of evolutions of measures
along Vlasov's equations. The heuristic argument—given in Remark 3.1.12—is the following.
Along a solution (p); to (3.4.7), the optimal plan 7,4y for d(p, purn) is close to the

projection

(pr(a(t),a’(t))7(a(t+h),a’(t-i—h))) L

of the dynamical transport plan m induced by Vlasov's equation itself (cf. |

rem 8.2.1]). Quantitative statements are given below.

, Theo-

Proposition 3.5.19. Suppose that Assumption 3.5.2 holds (i.e., (y, F}); is a solution to
Vlasov's equation for a field (F});), with (F}); belonging to the 12(u; dt)-closure of the

set {vao D e Cx ((a,b) X F)} Then, for a.e. t € (a,b) such that|pj|y, > 0, we have

o1

1}%1 EHw —v = hFy(z,v)|2r,,.,) =0, (3.5.39)
v4w

lim—ly —x —Typop—— =0. 3.5.40

}ﬂ)l h2 y—x Lith ™o . ( )

Proposition 3.5.20. In the setting of Proposition 3.5.19, for a.e. t such that (v); # 0, we

have T "
. dppn — N
e =0
and
.1 ?
léil[’)lﬁ y—x—hv— ?Ft(x,v)

(3.5.41)

~0. (3.5.42)

L2(my,44n)

Proof of Proposition 3.5.19. Let {¢y}, .y be a C'-dense set of C2°(T') functions. For almost

every t € (a,b), we have

2. % — 1, cf. Corollary 3.5.11,
3. Equation (3.5.19) holds with ¢ := ¢y, for every k € N,

4. limsupy,, 7«"“]’;’5*’1)
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5. I} belongs to the L?(u;)-closure of {V,p : ¢ € CX(T)}.

Let ¢ be one such time. To prove (3.5.39), we compute

2 2 2
Jw—v— th(%U)Hm( =||w — UHL‘Z(m,Hh) + hQHFtHL?(ut)

—2h /(w —v) - Fy(x,v) dmeqn,

7Tt,t+h)

hence, resorting to Proposition 3.5.5,

680 B — 2limint
= 2||FtHL2(M)_2H}L1ﬁ)H

w—v

h

ﬂ't,t+h)

. lw =0 = hE {2
lim sup

hy0 h2 - Fy(z,v) dmpeqn .

(3.5.43)

We estimate the last integral. For every k, we have

/Ft - Vopr dp

3.5.19) .. w— 0 T,
(229 1]551 (/ N Vopr(z,v) dmeeqn + (t;;h — 1) /U - Vazok dﬂt)

(3.5:.23) lim w — v
h10 h

- Voyor, (L U) dﬂ-t,t—‘,—h

lw = vllar, , 0

h

. w—="v .
< hfilﬁ)ﬂf/ o Fy dmepen + I Voor — Fillia ) hmhisoup

| F2]

(3510) w—v
< llmmf/ o B dme, I Vopr — Filliz

10 L2(pe)

,ut)|

By arbitrariness of &,

w—v

/Ft Vo dpr < lilﬁ%}nf/ n Fy dmypen +||Vop — BHL?(M)HFtHLQ(Mt)

for every p € C°(T"). Since F; belongs to the L?(u;)-closure of {V,p : ¢ € C(I)},

w—v

By < limpint [0 Fy drigen,

which, together with (3.5.43), yields (3.5.39).

Let us now prove (3.5.40). By definition of d, we write

~9 2
2 B TEHh d” (g, pregn) —[Jw — UHL?(m,Hh)

h? h? ’

12
hi

U+ w

Yy—x— Tt,t+hT

L2(mt t4n)
therefore, it suffices that

~9 2
lim d (,ut, ,Mt+h) - ||w - U||L2(7rt,t+h)

10 h2 =0,

which follows from (3.5.10) and (3.5.39). O

140



3.5. Hypoelliptic Riemannian structure

Proof of Proposition 3.5.20. Let t € (a,b) be such that (v); # 0. In the light of Lemma 3.5.3,
Corollary 3.5.11, Proposition 3.5.19, we may assume that (3.5.23), (3.5.39), (3.5.40) hold,
and, additionally, ¢ is a Lebesgue point for

s»—>/Fsdu8.

Fix h € (0,b —t) such that T}y, < 0o, and let i), P be as in Lemma 3.5.9. In particular,

/y-(v)t dP—/x-(v>t sz/%(t—l—h)-(v)t dP—/%(t)-<v>t dpP,
thus,

fro i | [ [
[ 7 as an= /(m) [ <t+h—sm<>d)-<v>tdn
-/ (h%w - / Hh(t b= 5)Fy (32, (1) ds) (o) dn

= o wanes [T aen-) [ R o

We infer that

T . t+h _
Tooen = h v :][ t+th—s /Fs-<v>t dﬂs_/pt.<v>t dye | ds
h? ; h
t+h t+ h —
+/Ft'<v>t d#t][ Tsds
t

T v — w 1 v+ w
+ t’;L+h / on ()¢ Ay — hQ/ <3/ - T Tt,t+h2> () ATy -

Let us analyse the four terms at the right-hand side one by one. The first one is negligible,
because we can bound ”"T’s <1 and use the Lebesgue differentiation theorem. The second
one is equal, for every h > 0, to 5 th )¢ dpe. The third one converges to this same
quantity with inverse sign (i.e., %th d/zt by (3.5.23) and (3.5.39). The fourth one
is negligible by (3.5.40).

Since (v); # 0, the proof of (3.5.41) is complete, and (3.5.42) follows from (3.5.39), (3.5.40),
(3.5.41). O

d-derivative

For a solution (p); to Vlasov's equation, we are going to prove that the limits of the
d(pe,teqn) dp, (1t e tn)
h h

incremental ratios and as h | 0O exist and are equal to the smallest norm
of a force field (F}); driving (j1;);. This is similar to a consequence of | , Theorem 1.1.2
& Theorem 8.3.1] in classical OT. A major obstacle in replicating these results is that d is not
a distance.

The classical way to show that d(’“’if’jt*h) has a limit for almost every t—without extracting a
subsequence—is | , Thereom 1.1.2], which relies on the triangle inequality. The proof
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we give here is, instead, based on Lemma 3.5.10, which, for a.e. t € (a,b) with ||y, > 0,
identifies F; with the direction of infinitesimal change of the velocities, which in turn bounds
the incremental ratio of d from below.

Remark 3.5.21. Proposition 3.5.22 below is a generalised version of Proposition 3.2.14, which
provided the d-derivative in the particle-model case.

Proposition 3.5.22. Under Assumption 3.5.2 with (F;); belonging to the L?(p; dt)-closure
of the set {vao D€ C?((a, b) X F)} for a.e. t such that|p|y, > 0, we have the limits

. d(p, Cdn (e,
lim (,ut ,ut-i-h) _ 1}1&1 h(,ut ,ut-&-h) :HFtHLZ(

im == (3.5.44)

He) *

Proof. The inequality < is given by Proposition 3.5.5. The inequality > follows from Proposi-
tion 3.5.19:

o dn( pern) oG ) o MW=Vl (35.39)
h%l&)nf IO PR > llr}}&)nf TJF > llrili%)nf P 2= Fll e
for a.e. t € (a,b) such that|p}|y, > 0. O
The limit ~
. dh(,uta,ut h)
1lglgf+ =1 Fell 2y - (3.5.45)

can be obtained without the assumption |}y, > 0.

Proposition 3.5.23. Under Assumption 3.5.2 with (F;); belonging to the L?(p; dt)-closure
of the set {vap L€ Cg‘)((a, b) x F)} for a.e. t, we have (3.5.45).

Proof. The inequality < is given by Proposition 3.5.5. To prove >, we adopt a similar
strategy as in the proof of Lemma 3.5.10 and Proposition 3.5.20. Let us fix a C'-dense set of
functions {¢y},cny € C°(I), and ¢ such that:

1. t is a Lebesgue point of the functions

5 —> /(17, Fy)-Vaiwpor dus  forevery k€ N, and s+ HFSHLQ(M .
r

2. F; belongs to the L?(ju;)-closure of {V,p : p € C>(T)}.

The points ¢ satisfying the previous conditions form a full-measure set in (a,b).

Fix h € (0,b—t), let @ € TI(py, ptesn) be dy-optimal, let i € P(F x H(t,t + h; F)) be as in
the proof of Proposition 3.5.4 (after replacing (s,t) with (¢, + h)). By gluing 7 and 1 at 4,
construct P € P(F x T'x HY(¢,t + h; F)) For every k, we have

/@k(va) dP — /w(%v) dP = /wk(v(tJrh)) dP — /sok(v(t)) P,
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3.5. Hypoelliptic Riemannian structure

which yields, by the fundamental theorem of calculus and the properties of 1 and P,

1 1
/ / (y—f%w_v)'Vx,usﬂk($+7“(y—x),v+r(w—U)) dr d7
I'xI"JO

t+h
:][ /(@,Fs(i,fj))  Vawor(E, ) dpg ds
t I

- / 2 / (- rw—) (Vewspr(o 41y = )0+ r(w = ) = Vol 0) ) dr dfr‘

Observe that

2 2
< 1y = llrze) Hllw = vllize

~ h
w+ v ?
2 2
- H —x—h + (1+h2)‘|w_UHL2(ﬁ)+h2”UHL2(ut)
T 2 e
(1 + hZ)dh [, pin)? + h2”“”i2(ut)

h Y
and the last contribution is negligible by Proposition 3.5.4. Furthermore,

—a—h
/W.vw%dﬁ <
r h

as h | 0. We deduce that

ly =2 — hvl[2m) _ -
h Satl 5 dh(:utalut-i-h) — 07

) w—
lim
h10

- Vypp dm = /E - Vpr dpg -
I

Consequently,

o fw= U”Lz(ﬁ) . ah(,uty,ut—i-h)
/FFt - Voor dpy < HVUsOk|’L2(M) hrabnf — < ||vv90k||L2(Mt) hril&)nf S

The conclusion follows, as F; can be approximated by V, . O

3.5.4 Reparametrisations

Let (fis)se(an © Pa2(I') be a Wy-2-absolutely continuous curve, and (s, t) — 7, a measurable

selection of d-optimal transport plans. Define (2, Ps Ts,t in the same way as in the introduction
to §3.5.

Theorem 3.5.24. Let \: (d,g) — R. be measurable, bounded, and bounded away from
zero. Assume that |pl|y,, > 0 for a.e. s € (a,b). Then, the following are equivalent:

1. The curve (fi,)se(a ) is @ distributional solution to
Osfiy + A(8) v+ Vafiy + Vo - (Fafiy) = 0 (3.5.46)

for some force field (Fs)se(a,é) with
b

2
[ (101,

? d 3.5.47
Ja) ds < o0 (3.5.47)
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2. There exists { € L2(a,b) such that

t
d(fig, 1) < / O(r) dr, a<s<t<b. (3.5.48)
Moreover, ~
T, .. = -
lim —2" — X(s)  fora.e. s € (a,b). (3.5.49)
ho  h

sup —=t < 5(s) foralls e [@,b]. (3.5.50)
he(0,h)
When the first statement holds for some (Fs)se(& 5, we can choose | == QHF. L2 in (3.5.48).
) M-

When either of the two statements is true, a force field (F's),cap for which (3.5.46)
and (3.5.47) hold exists in the L*(ji, ds)-closure of {vab CpE C(?o((d, b) x F)} Given
such a force field, for a.e. s € (a,b) we have

d (/15 7~ﬂs+fz> o

lim z

3.5.51
hl0 h ( )

P2 (us)

Proof. Set a :==0, b := f: A(s) ds, and define the bi-Lipschitz continuous function

Define
Mt = /1771(,5) ) t € (CL, b) ,
as well as
Tst = Tr1(s)r1(t) € oa(ths, te) , a<s<t<b,
so that
Tst = Trl(s),fl(t) , a<s<t<hb.

Note that (,ut)te(a’b) is Wy-2-absolutely continuous. Indeed, for all a < s <t < b, we have

(1) , ¢ 'alfl(r) w

W T < il ar— [ O g

WQ(MS)Mt) WQ(MT 1(s)s Hr 1(t)) —/ Hi Wo r /s )\(7*1(7“)) "
2

T=1(s)
bIfil bl |2 b
[l By |
a /\(T_1<T)) a A7) M Ja
Moreover, at every differentiability point s for 3 — p; and 7, for which 7(s) is a Ws-
differentiability point for £ — p; and 7/(s) = A(s) > 0, we have

and

dr < oo.
Wa

. - Wo(py, Pysn)
/ — 112\Ps) Psth)
0< Ps Wy llllir(l) ‘h| ( )
3.5.52
< lim Wy (pT(s)7 p‘r(erh)) . |T(8 + h) — T(S)‘ _|y T/(S)
= 150 ‘T(S + h) o T(S)’ he—0 |h| pT(S) .
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This proves that |pj|y, > 0 for a.e. t € (a,b). Observe that
Q={te(@b) oo >0} ={r(s) : s € @), [0z, >0} = ().

Proof of 1 = 2. Define

We have

b b s
~ L2(i
/a (”U”iz(ut) +||F;f||iz(ut)> dt = /a )\(S)HUHiz(ﬂs) + :\(S)(“S) ds < 0. (3553)
Fix ¢ € C?O((a,b) X F) and define ¢(s,+) == go(T(s), ) Let (7% )ken be a sequence of C>
functions converging to 7 in H'(a,b) (hence uniformly), and let @,(s,-) = gp(Tk(s),-)
for s € (a,b) and k € N. At least when k is large, we have ¢, € C° ((6,5) X F), so that

(3.5.46

0 ) lim / / Ospy + Av - Vo, + F V,u@,,) dji, ds

k—o0
= / /(85@4— Ao - ngb%—psvv@ dfi,ds = / /(atg0+v Ve + Fy - Vyp) dug dt .
’ ’ (3.5.54)

This proves that (i, F})ic(a,p) Satisfies Assumption 3.5.2. We apply Proposition 3.5.4 to write

7 5.
oy 47 (3.555)

o (3.5.9) 7(t) t o
d(usalut) = d(ﬂ’r(s)uur(t)) < 2/( ) HF"‘HL?(;LT) dr = 2/ HFT‘
and deduce (3.5.48).
Let [@,5] C €. By Lemma 3.5.9 there exist 2 > 0 and a function g in L2 such that

Tii4n
h

Then, there exists a constant C'5; > 0 such that

<g(t), forallte [T(d/),T(a)} , and every h € (0,h).

Tooin  7(s+0)—7(s)  Topgyrisniy

o h T(S+f;) ) < Cyg(r(s)) (3.5.56)

for s € [&’,5/] and h € (0, E/C’;\). Observe that s — g(r(s)) is square-integrable (hence
integrable), thus (3.5.50) follows. By Corollary 3.5.11, we have

. Tiitn
lim

im — =1 forae. te(a,b),

hence (3.5.49) thanks to

T h il - TT s),7(s+h 3 7
S5th (s + ~) 7(s) ()7(sth)  _, X(s) ash |0 forae s€(ab). (3.557)
h T(s+h) —7(s)
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Proof of 2 = 1. By (3.5.49), for a.e. t € (a,b), we have

j—‘ut_;'_h o Tﬁl(t + h) — Tﬁl(t)

Ty 15
MR G NI M) =1. (3558)

h h Tt + h) — 77L(¢) 5\(7——1(75))
For every s,t with a < s <t < b, we have
) ) (3548) TT'O_ t Z(T‘l(r))
d(pss, pu) = d(ﬂrl(s)a/irl(t)) < / ((F) di = / T/ dr,
T—1(s) s )\(T 1(7’))

and we notice that

~ 2 ~

b(r(r b g(7)2

[AZO) 4 U g
@ A1) a A7)

This proves Assumption (c') in Corollary 3.5.14, which together with (3.5.58), fulfil the

hypotheses of Lemma 3.5.17. Then,  has full measure in (a,b).

To prove Assumption (d'), let us fix [a’,b'] C Q. For every t € [a/, 1], we have

Tipen _ 7+ =77 Trvwraen |1
h h 7Lt +h) —771(t) T ||\

Trfl(t),rl(t+h)
oo T HEHR) =T (E)

and, by (3.5.50),

et < ey )

for h € (0, h/C5), for some constant C5. The function ¢ — g(rfl(t)) is integrable on [a’, V'],
therefore (3.5.30) follows from (3.5.58) and the dominated convergence theorem. Corol-
lary 3.5.14 provides a force field (F}); such that (p, F}); solves (3.4.7) on (a,b) x I' and (F}),

belongs to the L?(y; dt)-closure of {vap D€ Cgo((a,b) X F)} As we did in (3.5.54), it
is possible to prove that the curve (i) and the field

FS = X(S)FT(S) , S € (&, b) ,
solve (3.5.46). From (3.5.53), we infer (3.5.47). By Proposition 3.5.22, we find (3.5.51): for
a.e. s,
d(fis, frgi) _ 75+ h) = 7(5) dWire)s Hroy) (520 59| Iz
h h T(s+h) —71(s) T2 ) “llLe(a,)

We show that (F), lies in the L*(f, ds)-closure of {vab cpeCy ((d,lNJ) X F)} Let
(¢r)ren be a sequence of Cgo((a, b) x F) functions such that V, ¢ — F in L?(y, dt), and

let (77)ien be a sequence of C* functions converging to 7 in H'(a, I;) For every £k,
Grys (8,2,0) — 7'1/(3)9%(77(3)75”7”)

belongs to CgO((a, b) x T'), at least for large I. As | — oo, the sequence (V,,); converges
to the v-gradient of the function

Ot (s,x,0) — X(s)cpk(T(s),z,v)

146



3.5. Hypoelliptic Riemannian structure

in L2(y1s ds), since 7 — 7 uniformly, 77 — X in L?(ds), and vapk<n(s),x,v) is uniformly
bounded in [ for fixed k. Moreover, by a change of variables

/j [Pvean(re.) - £ dn, as = /j;(s)f [[7au(ro).) ~ B
= /ab‘S‘(Tl(m’ /’V@c — F* dp dt SHS\HLW /ab/\chk — F|* dpy dt,

2
d,uT(S) ds

and the latter tends to 0 as & — oo. O
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CHAPTER

Discrete-to-continuum limits
of optimal transport with linear growth
on periodic graphs

This chapter contains (with minimal modifications) the following publication [ |:

L. Portinale and F. Quattrocchi. Discrete-to-continuum limits of optimal transport with linear
growth on periodic graphs. European Journal of Applied Mathematics, 2024, CC BY 4.0.
doi:10.1017/50956792524000810

Abstract

We prove discrete-to-continuum convergence for dynamical optimal transport on Z-periodic
graphs with cost functional having linear growth at infinity. This result provides an answer to
a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential
Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical
transport problems is proved under the stronger assumption of superlinear growth. Our result
extends the known literature to some important classes of examples, such as scaling limits
of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the
geometry of the graph plays a crucial role in the structure of the limit cost function, as we
discuss in the final part of this work, which includes some visual representations.

4.1 Introduction

In the Euclidean setting, the Benamou—Brenier | ] formulation of the distance on the
space P, (R?) known as 2-Wasserstein or Kantorovich-Rubinstein distance is given by the
minimisation problem

|th2

1
Wa (o, f11)* = inf {/ / ——dzdt @ Oy +V -1y =0, fu—o = po, fu—1 = Nl} :
0 R4

Mt
(4.1.1)
for every pg, 11 € P5(R%). The PDE constraint is called continuity equation (we write
(p,v) € CE when (p,v) is a solution). Over the years, the Benamou—Brenier formula (4.1.1)
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4. DISCRETE-TO-CONTINUUM LIMITS OF OPTIMAL TRANSPORT WITH LINEAR GROWTH

has revealed significant connections between the theory of optimal transport and different fields
of mathematics, including partial differential equations | |, functional inequalities | ],
and the novel notion of Lott—Sturm—Villani's synthetic Ricci curvature bounds for metric
measure spaces [ , , , ]. Inspired by the dynamical formulation (4.1.1),
in independent works, Maas | | (in the setting of Markov chains) and Mielke [ | (in
the context of reaction-diffusion systems) introduced a notion of optimal transport in discrete
settings structured as a dynamical formulation a /a Benamou—Brenier as in (4.1.1). One of
the features of this discretisation procedure is the replacement of the continuity equation with
a discrete counterpart: when working on a (finite) graph (X, &) (resp. vertices and edges),
the discrete continuity equation reads

Omy(z) + > Ji(z,y) =0, VreX, (we write (m, J) € CcE’X)

y~z

where (my, J;) corresponds to discrete masses and fluxes (s.t. Ji(z,y) = —Ji(y,x)). Maas'
proposed distance W | | is obtained by minimising, under the above constraint, a discrete
analogue of the Benamou—Brenier action functional with reference measure 7 € (X)) and
weight function w € RE, of the form

)‘2 ere 7i(x = r(x), rx) =
0 (:cyz)es Tt x,y) wi@,y)dt, wh (@,9) = buog(re(2),re(y)) - rel) m(z) ’

and where 6,4(a, b) fo a’*h'~* ds denotes the 1-homogeneous, positive mean called log-
arithmic mean. Wlth this particular choice of the mean, it was proved | , ]
(see also [ ]) that the discrete heat flow coincides with the gradient flow of the rel-
ative entropy with respect to the discrete distance VV. In discrete settings, the equivalence
between static and dynamical optimal transport breaks down, and the latter stands out
in applications to evolution equations, discrete Ricci curvature, and functional inequalities
[ , , , . , |. Subsequently, several contributions
have been devoted to the study of the scaling behaviour of discrete transport problems, in
the setting of discrete-to-continuum approximation problems. The first convergence results
were obtained in [ ] for symmetric grids on a d-dimensional torus, and by | ]ina
stochastic setting. In both cases, the authors obtained convergence of the discrete distances
towards Wy, in the limit of the discretisation getting finer and finer.

Nonetheless, it turned out that the geometry of the graph plays a crucial role in the game. A
general result was obtained in | |, where it is proved that the convergence of discrete
distances associated with finite-volume partitions with vanishing size to the 2-Wasserstein space
is substantially equivalent to an asymptotic isotropy condition on the mesh. The first complete
characterisation of limits of transport costs on periodic graphs in arbitrary dimension for
general action functionals (not necessarily quadratic) was established in [ : |:
in this setting, the limit action functional (more precisely, the energy density) can be explicitly
characterised in terms of a cell formula, which is a finite-dimensional constrained minimisation
problem depending on the initial graph and the cost function at the discrete level. The action
functionals considered in | | are of the form

(n,v) e CE — A(p,v) ::/

(0,1)xTd

. d cof L .1
f(p5) 4z H+/(071Wf (o*,7*) dor
(4.12)
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where we used the Lebesgue decomposition
u:pgd—&-l_i_uj_’ V:j$d+l+yj_’ and “J_ :pJ_a_’ fyu :jJ_o_ (O.J_gdﬂ)

and where the energy density f : Ry x RY — R U {400} is some given convex, lower
semicontinuous function with at least linear growth, i.e. satisfying

f(p,7)>clil—C(p+1), VpeRy and jeR?, (4.1.3)

whereas f°° denotes its recession function (see (4.2.3) for the precise definition). The choice
f(p,7) == |j|?/p corresponds to the W, distance. At the discrete level, on a locally finite
connected graph (X, €) embedded in R?, the natural counterpart is represented by action
functionals of the form

(m,J)eClx — Am,J):= /1 F(m,J)dt, (4.1.4)

for a given lower semicontinuous, convex, and local cost function F' which also has at least
linear growth with respect to the second variable (see (4.2.16) for the precise definition).

The main result in [ | is the I'-convergence for constrained functionals as in (4.1.4),
after a suitable rescaling of the graph A := cX, &, := €&, and of the cost F. (and associated
action A.), in the framework of Z?-periodic graphs. In particular, the limit action is of the
form (4.1.2), where the energy density f = fiom is given in terms of a cell formula, explicitly
reading

From(p,g) = inf {F(m, J) = (m,J) €Rep(p.j)}, peRy, jER,  (415)

where Rep(p, j) denotes the set of discrete representatives of p and j, given by all Z?-periodic
functions m : X — R with

Yo mlz)=p (4.1.6)

x€XN[0,1)¢

and all Zd-periodic anti-symmetric discrete vector fields J : £ — R with zero discrete
divergence and with effective flux equal to j, i.e.,

1
div J(z) := ZJ(x,y) =0 VxeX and Eff(J):== Z J(x,y)(y—x)=17j.
Yy~ 2 (z,y)EE
z€[0,1)4

(4.1.7)

The result covers several examples, both for what concerns the geometric properties of the
graph (such as isotropic meshes of T¢, or the simple nearest-neighbors interaction on the
symmetric grid) as well as the choice of the cost functionals (including discretisation of
p-Wasserstein distances in arbitrary dimension and flow-based models, i.e. when F' —or f —
does not depend on the first variable).

As a consequence of this I'-convergence (in time-space) and a compactness result for curves of
measures with bounded action | , Theorem 5.9], one obtains as a corollary | ,
Theorem 5.10] that, under the stronger assumption of superlinear growth on F, also the
corresponding discrete boundary-value problems (i.e. the associated squared distances, in the
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Figure 4.1: Example of Z%periodic graph embedded in R?

case of the quadratic Wasserstein problems) I'-converge to the corresponding continuous one,
namely MA. = MApom (with respect to the weak topology), where

MA5<7TL0, ml) = inf {Ae(m, J) : (m,J) S CEXE and mi—g = My, My=1 = ml} s
MAhom(HOvul) := inf {Ahom(u’a V) : (H’a V) € CE and Hi=p = Hos Hi=1 = ,ul}

are the minimal discrete and homogenised action functionals, respectively. The superlinear
growth condition, at the continuous level, is a reinforcement of the condition (4.1.3) and
assumes the existence of a function 6 : [0, 00) — [0, 00) with lim; @ = 00 and a constant
C € R such that

f(p,j) = (p+1)0 (p|]—i—|1> ~C(p+1), VpeR,, jecR? (4.1.8)
In particular, this forces every (u,v) € CE with finite action to satisfy v < p + £+
[ , Remark 6.1], and it ensures compactness in CKR([O,l];./\/l+(Td)> [
Theorem 5.9], i.e., with respect to the time-uniform convergence in the Kantorovich-Rubinstein
norm (recall that the KR norm metrises weak convergence on M (T%), see [ :
Appendix A]). This compactness property makes the proof of the convergence MA. L MALom
an easy corollary of the convergence of the time-space energies.

Without the assumption of superlinear growth the situation is much more subtle: in particular,
the lower semicontinuity of MA obtained minimising the functional A associated to a function
f satisfying only (4.1.3) is not trivial. This is due to the fact that, in this framework, being
a solution to CE with bounded action only ensures bounds for pu € BVKR<(O, 1); M+(Td)),
which does not suffice to pass to the limit in the constraint given by the boundary conditions:
Jjumps may occur at t € {0,1} in the limit. Therefore, when the cost F' grows linearly (linear
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4.2. General framework: continuous and discrete transport problems

bounds from both below and above), the scaling behaviour of the discrete boundary-value
problems M., as well as the lower semicontinuity of MA, cannot be understood with the
techniques utilised in [ ]. The main goal of this work is, thus, to provide discrete-
to-continuum results for MA. for cost functionals with linear growth, as well as for every
flow-based type of cost, i.e. F'(m,J) = F(J). With similar arguments, we can also show the
lower semicontinuity of MA for a general energy density f under the same assumptions, see
Section 4.3.3.

Theorem 4.1.1 (Main result). Assume that either F' satisfies the linear growth condition, i.e.

F(m,J)SC(l—l— S (zy)l+ > m(x))

(zy)e€ TeEX

|z|<R lz|<R
for some constant C' < oo and some R > 0, or that F' does not depend on the m-variable
(flow-based type). Then, ase — 0, the discrete functionals M A. I'-converge to the continuous
functional M Ay, with respect to weak convergence.

The contribution of this paper is twofold. On one side, thanks to our main result, we can
now include important examples, such as the W, distance and related approximations, see
in particular Section 4.4 for some explicit computations of the cell formula, including the
equivalence between static and dynamical formulations (4.4.6), as well as some simulations.
As typical in this discrete-to-continuum framework, also for W;-type problems, the geometry
of the graph plays an important role in the homogenised norm obtained in the limit, giving
rise to a whole class of crystalline norms, see Proposition 4.4.4 as well as Figure 4.2. On
the other hand, this work provides ideas and techniques on how to handle the presence of
singularities /jumps in the framework of curves of measures which are only of bounded variation,
which is of independent interest.

Related literature. In their seminal work | |, Jordan, Kinderlehrer, and Otto showed
that the heat flow in R? can be seen as the gradient flow of the relative entropy with respect
to the 2-Wasserstein distance. In the same spirit, a discrete counterpart was proved in
[ | and | |, independently, for the discrete heat flow and discrete relative entropy
on Markov chains. In | ], the authors proved the evolutionary T'-convergence of the
discrete gradient-flow structures associated with finite-volume partitions and discrete Fokker—
Planck equations, generalising a previous result obtained in | | in the setting of isotropic,
one-dimensional meshes. Similar results were later obtained in [ : | for the study
of the limiting behaviour of random walks on tessellations in the diffusive limit. Generalised
gradient-flow structures associated to jump processes and approximation results of nonlocal and
local-interaction equations have been studied in a series of works [ , , ].
Recently, | | considered the more general setting where the graph also depends on time.

4.2 General framework: continuous and discrete
transport problems

In this section, we first introduce the general class of problems at the continuous level we are
interested in, discussing main properties and known results. We then move to the discrete,
periodic framework in the spirit of | |, summarise the known convergence results, and
discuss the open problems we want to treat in this work. In contrast with [ ], for the
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sake of the exposition we restrict our analysis to the time interval Z := (0, 1). Nonetheless,
our main results easily extend to a general bounded, open interval Z C R.

4.2.1 The continuous setting: transport problems on the torus

We start by recalling the definition of solutions to the continuity equation on T¢.
Definition 4.2.1 (Continuity equation). A pair of measures (u,v) € M+((O, 1) x ']Td> X
./\/ld((O, 1) x Td) is said to be a solution to the continuity equation

O+ V-v=0 (4.2.1)

if, for all functions ¢ € Ccl((O, 1) x Td), the identity

/ 8t<pdu—|—/ Vp-dv =0
(0,1)xTd (0,1)xTd

holds. We use the notation (u,v) € CE.

Throughout the whole paper, we consider energy densities f with the following properties.

Assumption 4.2.2. Let f: R, x R - RU {+00} be a lower semicontinuous and convex
function, whose domain D(f) has nonempty interior. We assume that there exist constants ¢ >
0 and C' < oo such that the (at least) linear growth condition

fpg) Z eljl = Clp+1) (4.2.2)

holds for all p € R, and j € RY.

The corresponding recession function f> : R, x R? — R U {+occ} is defined by

t—+o0 t ’

(4.2.3)

for every (po, jo) € D(f). It is well established that the function f* is lower semicontinuous,
convex, and it satisfies the inequality

2, 4) = cljl —Cp,  peRy, jeR?, (4.2.4)
see [ , Section 2.6].

Let #9*1 denote the Lebesgue measure on (0,1) x T¢. For pu € M+((O, 1) x ’I[‘d) and
vE /\/ld((O, 1) x ']I‘d), we write their Lebesgue decompositions as

N:p$d+l+ﬂl7 V:jgd—l-l_'_uj_’

for some p € Li((O, 1) x ’]Td) and j € L1<(O, 1) x Td;Rd). Given these decompositions,

there always exists a measure o € /\/l+((0, 1) x ']I‘d) such that
pt=pto, vt =jto, (4.2.5)
for some pt € L! (o) and j*= € L*(o;RY) (take for example o := |ut| + |[v]).
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4.2. General framework: continuous and discrete transport problems

Definition 4.2.3 (Action functionals). We define the action functionals by
A M((0,1) x T*) x M?((0,1) x T%) = RU {+00},

Alp,v) = /(0,1)x1rd f(p,j) Attt 1 /(0 [ (pL7jL) do,

,1)xTd

A(p) == inf {A(p,v) : (p,v) € CE} .

Remark 4.2.4. This definition does not depend on the choice of o, due to the 1-homogeneity
of f>. As f(p,j) > —C(1+p) and f<(p,j) > —Cp from (4.2.2) and (4.2.4), the fact that
y,((O, 1) x Td) < 00 ensures that A(p,v) is well-defined in RU {4o00}.

The natural setting to work in is the space BVKR<(0, 1); M+(’]I‘d)) of the curves of measures

1 (0,1 T h that the BV-semi = fi
o (0,1) = M (T?) such that the BV-seminorm ||| HMHBVKR((O,I);M+(’]I“1)> defined by

te(0,

|| == sup {/( /d Oeprdpedt = @ € Ci<(0> 1);01<Td))a ma}f) l@tllerray < 1}
0,1) JT

is finite. Note that, by the trace theorem in BV, curves of measures in BVKR((O, 1); M+(']I‘d))
have a well defined trace at t = 0 and ¢t = 1. As shown in | , Lemma 3.13], any
solution (u,v) € CE can be disintegrated as du(t,z) = du(x)dt for some measurable
curve t — p; € M (T9) with finite constant mass. If A(u) < oo, then this curve belongs to

BVir ((0,1); M (T?)) and

Il ) < [v|((0,1) x T7) . (4.2.6)

KR ((0:1);M+(Td)

Boundary conditions and lower semicontinuity

Define the minimal homogenised action for g, 11 € M (T%) with po(T?) = p1(T?) as

MA (po, p1) == inf {AR) © g = Hos By = 1} (4.2.7)
MGBVKR,((071)§M+(Td))

Note that, in general, MIA may be infinite (although the measures have equal masses).
Despite the lower semicontinuity property of A (cfr. | , Lemma 3.14]), the lower
semicontinuity of MIA with respect to the natural weak topology of M. (T%) x M, (T¢) is,
in general, nontrivial. More precisely, it is a challenging question to prove (or disprove) that
for any two sequences i, ut € M, (T9), such that u? — p; weakly in M (T%) as n — oo
for i = 0,1, the inequality

lim inf MA (ug, py) = MA(pto, 111) (4.2.8)
holds. In this work, we provide a positive answer in the case when f has linear growth
or it is flow-based (i.e. it does not depend on the first variable), see Remark 4.3.14 and
Proposition 4.3.15 below. First, we discuss the main challenges and the setup where the lower
semicontinuity is already known to hold.
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Remark 4.2.5 (Lack of compatible compactness). We know from [ , Lemma 3.14]
that (u,v) — A(p,v) and p — A(p) are lower semicontinuous w.r.t. the weak topology.
Moreover, if p" is a sequence with

supA(p") < oo and sup u”((O, 1) x ’]I‘d) < 00 (4.2.9)

then p" is weakly compact and any limit p belongs to BVKR<(0, 1);M+(Td)). This can be
proved as in | , Theorem 5.4]. Nonetheless, this property does not ensure the lower
semicontinuity of MIA, because weak convergence does not preserve the boundary conditions
(at time ¢t = 0 and ¢ = 1). For similar issues in the setting of functionals of R%valued curves
with bounded variations and their minimisation, see e.g. | ].

Remark 4.2.6 (Superlinear growth). Under the strengthened assumption of superlinear growth
on f (with respect to the momentum variable), it is possible to prove the lower semicontinuity
property (4.2.8), in the same way as in the proof of the discrete-to-continuum I'-convergence
of boundary-value problems of | , Theorem 5.10]. More precisely, we say that f is of
superlinear growth if there exists a function 6 : [0, 00) — [0, 00) with lim;_,., @ =00 and a
constant C' € R such that

flp, ) > (p+1)8 <p|i|1> —C(p+1), VpeR,, jeR?. (4.2.10)

Arguing as in | , Remark 5.6], one shows that any function of superlinear growth must
satisfy the growth condition given by Assumption 4.2.2. Moreover, in this case, the recession
function satisfies f°°(0,j) = 400, for every j # 0. See [ , Examples 5.7 & 5.8] for
some examples belonging to this class. By arguing similarly as in the proof of |
Theorem 5.9], assuming superlinear growth one can show that if u™ is a sequence with
bounded action A(p") and bounded total mass y,"(((), 1) x Td), then, up to a (nonrelabeled)
subsequence, we have p™ — p in M, ((0,1) x T9) and u* — ; in KR norm uniformly in
t € (0,1), with limit curve p € Wy ((0,1); M (T%)). Using this fact, it is clear that the
problem of “jumps” in the limit explained in Remark 4.2.5 does not occur, and the lower
semicontinuity (4.2.8) directly follows from the lower semicontinuity of A.

Remark 4.2.7. (Nonnegativity) Without loss of generality, we can assume that f > 0. Indeed,
thanks to the linear growth assumption 4.2.2, we can define a new function

F(p.d) = Flp.d) + Clp+1) = clj| 2 0 (4.2.11)

which is now nonnegative and with (at least) linear growth. Furthermore, we can compute the
recess f°° and from the definition we see that

[<(p,j) = f=(p,J) +Cp. (4.2.12)

Denote by A the action functional obtained by replacing f with f. Thanks to (4.2.11),
(4.2.12), we have that

A(p) =inf {A(p,v) : (n,v) € CE} (4.2.13)
=inf {A(p,v) : (,v) € CE} + C(p((0,1) x TY) +1). (4.2.14)

It follows that the corresponding boundary value problems are given by
MA (10, t11) = MA (s, 1) + Cpo(T?) + 1), if pao(T4) = pus (T%). (4.2.15)

Therefore, the (weak) lower semicontinuity for MA is equivalent to that of MA.
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4.2. General framework: continuous and discrete transport problems

4.2.2 The discrete framework: transport problems on periodic
graphs

We recall the framework of | ]: let (X, &) be a locally finite and Z9-periodic connected

graph of bounded degree. We encode the set of vertices as X = Z? x V, where V is

a finite set, and we use coordinates * = (z,,x,) € X. The set of edges £ C X x X

is symmetric and Z%-periodic, and we use the notation x ~ y whenever (z,y) € £. Let
Ry := max(; y)eg | T, — Yz|oo be the maximal edge length in the supremum norm |- | on R%.

We use the notation X? := {r € X : z, = 0} and % := {(x,y) €& x, = O}. For a
discussion concerning abstract and embedded graphs, see | , Remark 2.2].

In what follows, we denote by Rf the set of functions m: X — R, and by Rag the set of
anti-symmetric functions J: & — R, that is, such that J(x,y) = —J(y,z). The elements
of R will often be called (discrete) vector fields.

Assumption 4.2.8 (Admissible cost function). The function F : RY x RS — R U {+o0} is

assumed to have the following properties:

(1) F is convex and lower semicontinuous.

(2) F is local, meaning that, for some number R, < oo, we have F(m,J) = F(m/,J)
whenever m,m’ € R and J,J' € RE agree within a ball of radius Ry, i.e.

m(x) =m'(x) for all x € X with |1,|0c < R, and
J(x,y) = J'(z,9) for all (x,y) € & with |z]oc, [Ye]oe < Ry

(3) F is of at least linear growth, i.e. there exist ¢ > 0 and C' < oo such that

Fim,J)>c > |J(zy)| - C(l + > m(a:)) (4.2.16)

(z,y)ee zEX
|$z|oo§Rmax

for any m € RY and J € RE. Here, Ry := max{Ry, Ri}.

(4) There exist a Z*-periodic function m® € R and a Z‘-periodic and divergence-free
vector field J° € RE such that

(m°,J°) € D(F)°. (4.2.17)
Remark 4.2.9. Important examples that satisfy the growth condition (4.2.16) are of the form
1 J p
Fm.J)=5 ¥ @)l S (4.2.18)
(z,y)€€Q A(quTTI,(I), nym(y>)

where 1 < p < 00, the constants ¢.,, ¢, > 0 are fixed parameters defined for (z,y) € £, and
A is a suitable mean. Functions of this type naturally appear in discretisations of Wasserstein
gradient-flow structures | , , |, see also [ , Remark 2.6].

The rescaled graph. Let T? = (¢Z/Z)? be the discrete torus of mesh size ¢ € 1/N. We
denote by [ez] for 2 € Z the corresponding equivalence classes. Equivalently, T¢ = £Z¢ where

7¢ = (Z/%Z)d. The rescaled graph (X, &.) is defined as

Xo=TIxV and &= {(T2(x), T°(y)) : (z,y) € £}
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where, for z € Z4,
TE:X =X, (z0) e (EGE+2))v). (4.2.19)
For z = ([ez], v) € X. we write
xZ::zGZg, r,=veV.

The equivalence relation ~ on X is equivalently defined on X. by means of £.. Hereafter, we
always assume that e Ry < %

The rescaled energies. Let F : RY x RE — R U {+oo} be a cost function satisfying
Assumption 4.2.8. For € > 0 satisfying the conditions above, we can define a corresponding
energy functional F. in the rescaled periodic setting: following | ], for z € Z¢, each
function ¢ : X. — R induces a %Zd—periodic function

VX =R, (7)) =o(TE ) forzeX.
Similarly, each function J : £ — R induces a 1Z“-periodic function
2] E =R, (TfJ)(x,y) = J(Tf(x),Tf(y)) for (z,y) € €.

Definition 4.2.10 (Discrete energy functional). The rescaled energy is defined by

z ZJ
FoiRY xRE 5 RU{400},  (m,J) V5 ZHF(TSm e )

d 7 ~d-1
2€74 € €

Remark 4.2.11. As observed in [ , Remark 2.8], the functional F.(m, J) is well-defined
as an element in RU {400}. Indeed, the condition (4.2.16) yields

B g TEm TZJ d TZm(x)
Fe(m,J)—Zda F( Zd ’52—1>2_C ng (1—1— 3 Egd
2€LE 2€Z4 @ l:c€<z\é

> —C(l + (2Rmax + 1) > m(x)> > —00.

reX,

Definition 4.2.12 (Discrete continuity equation). A pair (m,J) is said to be a solution to
the discrete continuity equation if m : (0,1) — R7* is continuous, J : (0,1) — R is Borel
measurable, and

Omy(z) + > Ji(z,y) =0 (4.2.20)

Yy~x
holds for all x € X, in the sense of distributions. We use the notation
(m,J) € CE..

Remark 4.2.13. We may write (4.2.20) as 9;m; + div J;, = 0 using the discrete divergence
operator, given by

divJ € R* divJ(z) ==Y J(z,y), VJ € Ré.

y~z
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The proof of the following lemma can be found in | ]

Lemma 4.2.14 (Mass preservation). Let (m,J) € CE.. Then we have mg(X.) = my(X.) for
all s,t € (0,1).

We are now ready to define one of the main objects in this paper.

Definition 4.2.15 (Discrete action functional). For any continuous function m : (0,1) — R7*

such that ¢ — Y cx. my(z) € Ll((O, 1)) and any Borel measurable function J : (0,1) — RE-,
we define

1
A (m, J) ::/ Fu(my, Ji) dt € RU {+00} |
0
Furthermore, we set

A(m) = igf{AE(m,J) : (m,J)eCSE}.

Arguing as in Remark 4.2.11, one can show | , Remark 2.13] that A.(m,J) is
well-defined as an element in R U {400}, as a consequence of the growth condition (4.2.16).

Definition 4.2.16 (Minimal discrete action functional). For any pair of boundary data m,
my € Rf, we define the associated discrete boundary value problem as

MA(mg, my) := inf {Aa(m) :m:(0,1) — Rf ., M—=my and my_; = ml} )

The aim of this work is to study the asymptotic behaviour of the energies MA. as ¢ — 0
under the Assumption 4.2.8.

4.3 Statement and proof of the main result

In this paper we extend the I'-convergence result for the functionals M. towards MA,.,,
proved in [ | for superlinear cost functionals to two cases: under the assumption of
linear growth (bound both from below and above) and when the function F' does not depend
on p.

Assumption 4.3.1 (Linear growth). We say that a function F : RY x RE — RU {400} has
linear growth if it satisfies

FWMC(H > a@yl+ Y m(:ﬂ))
(z,y)e€ TEX

for some constant C < oo and some R > 0.

Assumption 4.3.2 (Flow-based). We say that a function F : RY x RS — R U {400} is
of flow-based type if it depends only on the the second variable, i.e. (with a slight abuse of
notation) F(m,J) = F(J), for some F : RE — R U {+cc}.
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Similarly, we say that f : R, x RY — R is of flow-based type if it does not depend on the
p variable, i.e., f(p,7) = f(j). In this case, the problem simplifies significantly, and the
dynamical variational problem described in (4.2.7) admits an equivalent, static formulation
(see (4.3.35)).

Remark 4.3.3 (Linear growth vs Lipschitz). While working with convex functions, to assume a
linear growth condition (from above) is essentially equivalent to require Lipschitz continuity
with respect to the second variable.

Lemma 4.3.4 (Lipschitz continuity). Let f : R, x R? — R be a function, convex in the
second variable. Let C' > 0. Then the following are equivalent:

1. for every p € Ry and j € RY the inequality f(p,7) < C(1+ p+]j|) holds.

2. for every p € R, the function f(p,-) : R? — R is Lipschitz continuous (uniformly in
p) with constant C, and the inequality f(p,0) < C(1+ p) holds.

In the very same spirit, one can show the analogous result at the discrete level.

Lemma 4.3.5 (Lipschitz continuity Il). Let F': RY x R — R U {+o0} be convex in the
second variable. Let C'| R > 0. Then the following are equivalent:

1. F is of linear growth, in the sense of Assumption 4.3.1, with the same constants C
and R.

2. For every m € RY, we have that

F(m,0)§C<1+ > m(:c)>,

zeX
|$z‘oo§R

as well as that F' is Lipschitz continuous with constant C' in the second variable, in the
sense that

]F(m, Jl) - F(m> JQ)‘ <C Z |J1(*757y) - J2(x7y)’> (431)

(z.y)€E
‘xz‘ooSR

for every Jy, Jo € RE.

Proof of Lemma 4.3.4. Let us assume the first condition and fix p € R, as well as j;, j» € R
It follows from the convexity in the second variable that the function

R>t—= f(p,j1+t(J2—j1))

is convex. In particular, the inequalities

Flp,ja) — fp,jr) < f(p, 1+ t(j2 _tjl)) — f(p,j1)

_ C’(l +p+ ’ji + t(jo —j1))) — f(p,J1)
- t
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hold for every ¢t > 1. Letting ¢ — oo, we thus find

f<p7]2) - f(pujl) < C|.]2 - jll

and, by arbitrariness of the arguments, the claimed Lipschitz continuity. The fact that
f(p,0) < C(1+ p) trivially follows from the first condition.

Conversely, if the second condition holds, we necessarily have

f(p,J) < Cljl+ f(p,0) < C(1 + p+li]),
for every p € R, and j € R?, which is precisely the first condition in the statement. O]
Let us recall the homogenised energy density fiom, Which describes the limit energy and is
given by a cell formula. For given p > 0 and j € R?, fuom(p, j) is obtained by minimising over

the unit cube the cost among functions m and vector fields J representing p and j. More
precisely, the function fiom : Ry x R? — R is given by

fuom(p. §) := WE{ F(m. J) + (m..]) € Rep(p.j)} (43.2)

where the set of representatives Rep(p, j) consists of all Z%-periodic functions m : X — R,
and all Z-periodic anti-symmetric discrete vector fields J : £ — R satisfying

> m(z)=p, divJ=0, and Eff(J):= 1 S J(@y)y.—x,) =3. (43.3)

TEXQ (z,y)e€Q
The set of representatives is nonempty for every choice of p and j by | , Lemma 4.5
(iv)]. In the case of embedded graphs, the definition of effective flux coincide with the one
provided in the introduction (cfr. (4.1.7)), see | , Proposition 9.1].

Remark 4.3.6. It is not hard to show that if £ is of linear growth, then fi,y, is also of linear
growth (and therefore, in view of Lemma 4.3.4, it is Lipschitz in the second variable uniformly
w.r.t. the first one), see e.g. | ].

We denote by Ay, and MAy,, the action functionals corresponding to the choice f = fiom-
In order to talk about I'-convergence, we need to specificy which type of discrete-to-continuum
topology/convergence we adopt (in the same spirit of | D).

Definition 4.3.7 (Embedding). For ¢ > 0 and z € R?, let Q7 := ez + [0,£)? C T? denote
the projection of the cube with side length ¢ based at £z to the quotient T¢ = R¢/Z<. For
m € R and J € RS, we define tom € M (T?) and t.J € M4(T%) by

tem =e ¢ > m(x)$d|ng ) (4.3.4)
TEX,
J 1
o = et S (z.9) / LY e ds | (s — 7). (4.3.5)
EMESE o ¢

With a slight abuse of notation, given m : (0,1) — R we also write t..m € M+((0, 1) x Td)
for the continuous space-time measure with time disintegration given by ¢ — (.m,. Moreover,
for a given sequence of nonnegative discrete measures m® € Rf, we write

me — 11 € My (T weakly iff Lem® — - weakly in M (T9).

Similarly, for m® : (0,1) — RY* we write m* — p € M+((O, 1) x Td) with an analogous
meaning. Similar notation is used for (Borel, possibly discontinuous) curves of fluxes J :
(0,1) — R% and convergent sequences of (curves of ) fluxes.
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4. DISCRETE-TO-CONTINUUM LIMITS OF OPTIMAL TRANSPORT WITH LINEAR GROWTH

Remark 4.3.8 (Preservation of the continuity equation). The definition of this embedding for
masses and fluxes ensures that solutions to the discrete continuity equation are mapped to
solutions of CE, cfr. | , Lemma 4.9].

We are ready to state our main result.

Theorem 4.3.9 (Main result). Let (X,&, F) be as described in Section 4.2.2 and Assump-
tion 4.2.8. Assume that F' is either of flow-based type (Assumption 4.3.2) or with linear
growth (Assumption 4.3.1). Then, in either case, the functionals MA. T'-convergence to
MApom as € — 0 with respect to the weak topology of M (T%) x M (T¢). More precisely,
we have:

(1) Liminf inequality: For any sequences m{, m§ € M, (X.) such that m§ — u; weakly
in M (T?) fori= 0,1, we have that

lil;rl_glf./\/lAa(mf), m7) > MApom (o, f11) - (4.3.6)

(2) Limsup inequality: For any g, 11 € M (T?), there exist sequences m§, m5 €
M (X.) such that m$ — p; weakly in M (T?) fori= 0,1, and

lim sup MA(mg,mT) < MAyom (o, 11) - (4.3.7)
E—

Remark 4.3.10 (Convergence of the actions and superlinear regime). The I'-convergence
of the energies A, towards Ay, under Assumption 4.2.8 is the main result of | ,
Theorem 5.1]. Related to it, similarly as discussed in Remark 4.2.6, the superlinear case
[ , Assumption 5.5], not included in the statement, has already been proved in
[ ], and it follows directly from the aforementioned convergence A. L Apom and
a strong compactness result which holds in such a framework, see in particular [ :
Theorems 5.9 & 5.10]. Without the superlinear growth assumption, the proof is much more
involved and requires extra work and new ideas, which are the main contribution of this paper.

Remark 4.3.11 (Compactness under linear growth from below). Just assuming Assumption 4.2.8,
the following compactness result for sequences of bounded action was proved in [ :
Theorem 5.4]: if m® : (0,1) — R7* is such that

sup A.(m°) < oo and supme((O, 1) x XE) < 00,
e>0 e>0

then there exists a curve p = p,(dx)dt € BVKR((O,l);M+(Td)) such that, up to a
(nonrelabeled) subsequence, we have

m® — p weakly in ./\/l+((0, 1) x ']I‘d) and  mS — p,  weakly in M_(T9),

for a.e. t € (0,1). This is going to be an important tool in the proof of our main result.

4.3.1 Proof of the limsup inequality

In this section, we prove the limsup inequality in Theorem 4.3.9. This proof does not require
Assumption 4.3.1 or Assumption 4.3.2, but rather a weaker hypothesis, which is satisfied under
either of the two assumptions.
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4.3. Statement and proof of the main result

Proposition 4.3.12 (I'-limsup). Let ju, 11 be nonnegative measures on Te. Assume that
there exists a Z%-periodic and divergence-free vector field J € RE such that

F(m,J) < C’(l + > m(x)) : m € RY, (4.3.8)
olc<r

for some finite constants C' and R. Then there exist two sequences (m3).~o and (m5).=o in

Rff such that mi — p; weakly in M (T%) fori = 0,1, and

lim sup MA. (mg, m7) < MAyom (1o, ft1) - (4.3.9)

e—0

Proof. We may and will assume that MAy., (10, 11) < 0o. We also claim that it suffices
to prove the statement with MA (p, 111) + 1/k in place of the right-hand side of (4.3.9) for
every k € Nj. Indeed, assume that we know of the existence of sequences (mf’k)s such that
mf’k — i, and

lim sup MA.(m5", m5") < MA (o, 1) + 1/k

e—0

for every k € N;. Since T? is compact, the weak convergence is equivalent to convergence in
the Kantorovich—Rubinstein norm. Hence, for every k we can find ¢, such that, when ¢ < ¢,

<1/k.

LeT i
€ KR —

MA(mG*, mT*) < MAnom (o, i) +2/k  and max

We can also assume that ¢, < £, for every k. It now suffices to set
keo=max{k € N; : g, > e} and mS:=mF,
for every £ and ¢ = 0,1 to get

2
lim sup M A, (m§, m3) < MAypom (o, #11) + lim sup —

e—0 e—0 £
as well as
) 1
tim sup max| . — il < limsup -
e—0 e—0 £

The claim is proved, since k. —. 00, as can be readily verified.
Thus, let us now choose k and keep it fixed. By definition of MAy,,,, there exists pu =
pe( da) dt € BVier ((0,1); M (T%)) with .o = pto, sty = 11 and such that

Ahom(ﬂ') S MAhom(MOa ,ul) + 1/k .

Recall from Remark 4.3.10 that A. LN Ayom; in particular, there exists a recovery sequence
(ms, J¢) € CE. such that m* — p weakly and

limsup A.(m®, J°) < Apom(ps) -

e—0
We shall prove that [|ecm; — pisllip(pay — 0 in (£'-)measure or, equivalently, that
1

lim [ min {||Lam§ — pellrray - 1} dt =0. (4.3.10)
0

e—0
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In order to do this, assume by contradiction that there exists a subsequence such that

1
/ min {||L5nmt — ellkrray 1} dt >4, neN,
0

for some § > 0. Up to possibly extracting a further subsequence, it can be easily checked that
the hypotheses of [ , Theorem 5.4] are satisfied (cfr. Remark 4.3.11); hence, there
exists a further (not relabeled) subsequence such that, for almost every ¢ € (0, 1), m{" — 1
weakly and thus |[te,m;" — fiz| g (ray — 0. The dominated convergence theorem yields an
absurd.

From (4 3.10) we deduce that for every T" € (0,1/2) there exists a sequence of times
(al). € (0,T) such that

hm

LeMgr — KT KR(T4) =

With a diagonal argument, we find a sequence (a.). € (0,1/2) such that

Lemyg_ — MOH =0

lima. =0 and hm
£—0 =0 KR(T%)

e, = Hoc oy = 53

KR(T?)

Similarly, we can find another sequence (b.). C (1/2,1) such that

LMy, — MlHKR(’]N =0

limb. =1 and lim

e—0 e—0
We claim the sought recovery sequences is provided by mg := m;_and m{ := mj_. In order
to show this, let us define J° : £ — R via the formula® (recall the assumption (4.3.8))

~E
z
(0

_ d
i J, z € Ly,
so that J is divergence-free. Now define
ms_ift €[0,a.) J°iftel0,a.)
mE =1 ms iftela,b] and Ji={JF iftela, b -
m§if t € (b, 1] J°ift e (b 1]

It is readily verified that (m°, je) solves the continuity equation for every . Therefore

. zje

MA(mg,mE) < A(ms, I Z clp | e mt,TH dt (4.3.11)
0 zezd €
[y dF( it J) ar [y wE (T Bl ;ﬁ) dt
0 zezd ae zc7d €
(4.3.12)
Z dF< i, J) dt (4.3.13)
be zezd

1The definition is well-posed because Ry is assumed to be smaller than 1/2.
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4.3. Statement and proof of the main result

The first and last integral can be estimated using the assumption (4.3.8). Indeed,

L+L<CY ((ae—i—l et Y (ad(mEmg) (@) + (1 —bg)(fgmgg)(x))>

2€74 TEX
|zz|lc0 <R

<C <(a€ +1=b)+ QR+ 1) Y (acmf, () + (1 - bg)mia(aﬁ)))

IGXE
_c ((ae +1—b) + (2R + 1) (aemf, (T%) + (1 - bE>L€ng<Td))) ,
and in the limit we find

limsup I + I5 < C (0 + (2R + 1)*(0 - pto(T) + 0 - 111 (T%))) = 0. (4.3.15)

e—0

As for the second integral, thanks to Assumption 4.2.8(c) we have that

z € ZJE
I — A (m®, J°) = —/ S elF (Ta s Tz_i) dt (4.3.16)
(0.0)0(6-.1) 27 el e
< (@ + 1= b) % (2Ruae + 1t (((0,0) U (b, 1) x T9) )
(4.3.17)

Since (1:m°®). converges weakly, for every a,b € (0,1), we have that

lim sup ¢t.m* (((0, a:) U (b, 1)) x Td) < lim sup (cm? (((0, al U b, 1)) X ']I‘d>

e—0 e—0
<p (((0, U, 1) x 'Ifd> .
Using the fact that the previous estimate holds for every a,b € (0,1), we obtain that

lim sup 1cm? (((0, a) U (b, 1)) x T4) = 0.

e—0

This, together with the estimate obtained in (4.3.16), gives us the inequality
limsup /5 < limsup A.(m*, J°). (4.3.18)

e—0 e—0

In conclusion, from (4.3.11), (4.3.15), and (4.3.18) we find
lim sup MA.(mg, m7) < hmsup.A (m®,J°) < A(p) < MA(po, 1) + 1/k,

e—0

which is sought upper bound. O

4.3.2 Proof of the liminf inequality

In this section, we provide the proof of the liminf inequality in Theorem 4.3.9. Let mg, mj be
sequences of measures weakly converging to pig, pt1, respectively. We want to show that

linLiglfMAg(mf), m7) > MApom (o, 1) - (4.3.19)

Without loss of generality, we will assume that the limit inferior in the latter is a true finite
limit, and that m§(X.) = mj(X:) for every £ > 0.

We split the proof into two parts: first for F' with linear growth and then for F' of flow-based
type, respectively Assumption 4.3.1 and Assumption 4.3.2.
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4. DISCRETE-TO-CONTINUUM LIMITS OF OPTIMAL TRANSPORT WITH LINEAR GROWTH

Case 1: F with linear growth

Assume that F’ satisfies Assumption 4.3.1. Recall that, as a consequence of Lemma 4.3.5, F
is Lipschitz continuous as well, in the sense of (4.3.1).

Proof of the liminf inequality (linear growth). With a very similar argument as the one pro-
vided by Remark 4.2.7 in the continuous setting, we can with no loss of generality assume
that F is nonnegative. Let (m®, J°) € CE. be approximate optimal solutions associated to
MA.(m§, m3), i.e. such that

lim (A (m*, J°) = MA(m§,m5)) = 0. (4.3.20)

e—0

As usual, we write dm?(t,z) = m;(dxz)dt for some measurable curve t + m; € R} of
constant, finite mass. By compactness (Remark 4.3.11), we know that up to a further non-
relabeled subsequence, m® — p weakly in /\/l+((0, 1) x']I‘d) with p € BVKR((O, 1); M+(Td)).
Due to the lack of continuity of the trace operators in BV, a priori we cannot conclude that
Mo = Mo and p,_; = p1. In other words, there might be a “jump” in the limit as ¢ — 0 at
the boundary of (0,1). In order to take care of this problem, we rescale our measures m* in
time, so as to be able to “see” the jump in the interior of (0, 1).

To this purpose, for § € (0,1/2), we define Z5 := (6,1—§) and m*? € BVKR((O, 1); M+(']I‘d))
as
mg if t € (0,0]
ms ={mf.s ifte;

mi  ifte[l—41)

. dmS(t, ) i= m$ (da) dt . (4.3.21)

By construction, the convergence of the boundary data, and the fact that, by assumption,
m? — p weakly, it is straightforward to see that m*° — ﬂ5 weakly, where

Mo ift e (0, 5]
o= pes iftels C o dpd(t,z) = (dx)dt. (4.3.22)

1-20

Note that the rescaled curve ¢t — ,&f might have discontinuities at t = ¢ and t = 1 — §, which
correspond to the possible jumps in the limit as € — 0 for m® at {0, 1}. Nevertheless, ff is a
competitor for MIA (po, f41), which, by the T'-convergence of A, towards Ay, (Remark 4.3.10),
ensures that

lim inf A (m®) > Apom (f1°) > MAnom (10, 11) - (4.3.23)

We are left with estimating from above the left-hand side of the latter displayed equation.
To do so, we seek a suitable curve of discrete vector fields J*° with (ms°, J°) € C€. and
having an action A, (m®?, J5?%) comparable with A.(m¢, J¢) for small § > 0. We set

0 if ¢ € (0,0]
1
Jed = J5s iftels . dIO(t 2) = JP0(da) dt .
1—20 1-25
0 ifte[l1—0,1)
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4.3. Statement and proof of the main result

We claim that (m®?, J=%) € CE. and
A(m=, J7%) < (1+ C(F)8) A(m?, J°) + C(F)(S(l +0m®((0,1) x Td)) L (43.24)

where C'(F') € R, only depends on F' (specifically on the constants in Assumption 4.2.8 and
Assumption 4.3.1). This would suffice to conclude the proof of the sought liminf inequality.
Indeed, from (4.3.20) and (4.3.24) we infer

ligliglfMAg(mg, m3) = lirgglf A.(m?, J?)

hm mfA (m*°, J*%) — (1 +1m®((0,1) x Td)>

1
> 000
T 1+C(F) -
which, combined with (4.3.23), yields

. 5 € MAhom(,UOa,ul) C(F)5 ( d )
> —
hm8 1Onf/\/l.,45(m0, ml) Z C’( )5 1 C’( )5 1+ Mo( )

for any 0 € (0,1/2). We conclude by letting § — 0.
We are left with the proof of (m#° J*°) € CE. and of the claim (4.3.24).

Proof of (m®° J*%) € CE.. Letusfixz € X. and p € C’g((O,l)). Set ¢ := @ ors,
with 75(s) := (1 — 20)s + §. We have

1 5 1
/@gpmfﬁ(m)dt:/ 8tgpm8(x)dt+/ 8t90mi(x)dt+/ @gpmi_l(t)(x)dt
0 0 1-§ Ts g
1
— () mi(a) (1 = ) mi(a) + (1= 26) [ (Bup) o rsmifa) ds
0

— 3(0) mi(x) — F(1)mS (z) + / 0, Fme (x) ds

1
— [ ¢ lads= DI
0 y~x Is Y~T
/ > Ji(z,y)d (4.3.25)
Yy~

where, in the fourth equality, we used that (m*,J¢) € C€E..

Proof of the action estimate. Define r5(s) := (1 — 2d)s + 0. Note that, by construction, for
(t7 ($, y)) € I§ X 851

g, 5 € 1 €
mi(2) = miag (@), T () = s (@) (4.3.26)

On the other hand, for (¢, (z,y)) € ((0,5] Ul -4, 1)) x &, we have that

{mg(x) if t € (0, 0] and I (5y) 0.
i

mi(z) iftell—4,1)
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It follows that the action of (m®?, J=9) is given by

A (m° J0) = / Fe(mi?®, IO dt = AB(me0, J50) +6 3 F(mf,0),  (4.3.27)

i=0,1

where we used the notation

! 1
AD (meS, g5y = [ Fa(mS JE%Ydt = (1 — 26) / Fo(f, 25 ) e (43.28)
. ; 1- 26

Using Assumption 4.3.1, we see that, for i = 0,1,
Fe(m5,0) < C(mi (&) +1) = C(em®((0,1) x T*)+1)

and, by the Lipschitz continuity exhibited in Lemma 4.3.5, we also infer that

Is £,0 7,0 . € 1 o /’szsxy
AT (m0, ) < (1= 25) | AL (m°, J)+C<1_25 D> o

2€7¢  (xy)€€
|22l <R

ZJSZL‘y
gdl

< (1 — 26)A.(m?, J°) + 26C(2R + 1)° / 72 Ji (@, y)l
zezd (z,y)€EQ

Since we assumed F' to be nonnegative, we can estimate
(1 — 20)A.(m?, J?) < A(mF, J°)

and, using (4.2.16),
1725 (2, )| 1 e 1, © ¢
/ Tt e < A, )+ (1 (14 2B) ey )
zEZd (z,y)€€Q

Combining these estimates with (4.3.27), we find (4.3.24). O

Case 2: F is flow-based

In this section we show (4.3.19) in the case F' (and hence fi,om) is of flow-based type, i.e. it
satisfies Assumption 4.3.2. We start by observing that, in this particular setting, both the
discrete and the continuous formulations of the boundary-value problems admit an equivalent,
static formulation.

Let (p,v) € CE, and consider the Lebesgue decomposition
p=pZL"" 1+ pte, v=3i2" 4 jto.

We know that every solution to the continuity equation can be disintegrated in the form
p(dt, dz) = py(dx) dt for some measurable curve t — pu; € M, (T?) of constant, finite
mass. If f is a function as in Assumption 4.2.2 that further does not depend on p, then
Jensen’s inequality yields

/01 Tdf(y't) dz dt > /wf (/Oljtdt) dz . (4.3.29)
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4.3. Statement and proof of the main result

In order to take care of the singular part, consider the disintegration of o with respect to the
projection map 7 : (t,x) — x, in the form

o(dt, dz) = o"(dt)(muo)(dx), (4.3.30)

for some measurable z — o” € 32((0, 1)) Due to the convexity of f°°, by Jensen's inequality

we also obtain
/ 3G do z/ [ (/f daf) dryo(z). (4.3.31)
(0,1)xTd Td

Now, we define the new space-time measures

o= ju(dzr)dt and v:= R Zan +§'L dt ® mgo, where

~ ) L n N (4.3.32)
fir == pio + t(p1 — po),  J() ;:/ je(z)dt, and j (z):= /] do”,
0
and note that (f,v) € CE. By (4.3.29) and (4.3.31), we therefore have
A 0o /AL
b= [ jGder [ G dnot). (4.333)
T T

We need to be careful here: the decomposition of & in (4.3.32) may not be a Lebesgue
decomposition, in the sense that d¢ ® mxo can have a nonzero absolutely continuous part.
Let 5 € M (T?) be singular w.r.t. ¢ and such that p, 1, 740 < £? + 7. We can write
the Lebesgue decompositions

L=pL" 4+ ptdtes, v= " 1+ itdtwe.

If we write
O = a %+ 56
for some functions a, 3 : T¢ — R, then

A /\,J_ ~ ’\.J—
j=j+aj and jt=pj5.

The inequality (4.3.33) becomes, recalling that f> is 1-homogeneous,

Alp,v) > /

Td

(1) + (i) de | (577 ds. (4.334)

At this point, we need a lemma.

Lemma 4.3.13. For every ji, jo € R?, we have that f(ji + j2) < f(j1) + [*(j2).

Proof. Let g < f be a convex and Lipschitz continuous function. By convexity, for every € €
(0,1), we have

roaafp-artod) o) o)

Let jo € D(f). By the Lipschitz continuity of g,

— €

g(j1+j2) < (1 —¢) (9(]1) + (Lipg) (11 - 1> |jl|) +€g (jj + Jb) + ¢(Lipg)|jol
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and, since g < f,

9l +2) < (1= ) f(jr) +¢f (h +jo) + €(Lipg) (ol +11l) -

€
As we let ¢ — 0, we find
g1 +72) < f) + £702) -

Since f is convex and lower semicontinuous, we conclude by an approximation argument. [J

Applying this lemma with j; = 7(z) and j, = ajL(x) for every x € T¢, (4.3.34) finally
becomes

Apv) = [ fG)aes | £ a5 = AE.D).

In other words, we have shown that an optimal curve p between two given boundary data is
always given by the affine interpolation (and a constant-in-time flux). We conclude that

MA (po, 1) = A(p) (4.3.35)

:inf{ fNdz+ [ f°GHde : v=3.2%4+5'5, Y* 1L 5 and v-yzﬂo—m}.
v Td Td

We refer to the latter expression as the static formulation of the boundary value problem
described by MA (pq, 1t1) (in the case when f is of flow-based type).

Remark 4.3.14. Using this equivalence, the lower semicontinuity of MA directly follows from
the semicontinuity of A given by [ , Lemma 3.14].

Arguing in a similar way (in fact, via an even simpler argument, due to the lack of singularities),
we obtain a static formulation of the discrete transport problem in terms of a discrete divergence
equation, when F'(m,J) = F(J). Precisely, in this case we obtain

MA.(mg, my) = inf {]:E(J) : JERE, div] =mg — ml} . (4.3.36)
The sought I'-liminf inequality easily follows from such static formulations.

Proof of the liminf inequality (flow-based type). Let mg, m5 € R7* be a sequence of discrete
nonnegative measures which converge weakly (via ¢, in the usual sense) to i, 1, and such
that m§(X.) = m5(AXL) for every € > 0. Let (m®,J°) € CE. be (almost-)optimal solutions
associated with MA.(mg, m]), namely

lim inf MA(mg,m3) = lim inf A.(m?) = lim inf A (me, J7). (4.3.37)

Consider the discrete equivalent of the measure constructed in (4.3.32), namely
o 1
my :==mg+t(m; —mg) and  Jp = J° = / Jids,
0

which still solves the continuity equation. By applying Jensen's inequality, the convexity of F'
ensures that

A.(m?,J%) > AmS, T ) = F.(J°) and  (m°,J) € CE.. (4.3.38)
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4.3. Statement and proof of the main result

Thus A.(m*,J°) > A.(m"). Note that, by construction, m® — pi weakly, where
po=(dz)dt with = po + (= po) -

Hence, from (4.3.37), (4.3.38), and the I'-convergence of A, to Ayom (cfr. [ , Theo-
rem 5.1]), we infer that

llrsn_gglf./\/lAE(mE, mi) Z Ahom(ﬁ) Z MAhom(,UOa ,ul) )

which concludes the proof of the liminf inequality. O]

4.3.3 About the lower semicontinuity of MA

In view of our main result, whenever F’ satisfies either Assumption 4.3.1 or Assumption 4.3.2,
the limit boundary-value problem MAy,., (-, -) is necessarily jointly lower semicontinuous with
respect to the weak topology on M (T¢) x M, (T?). This indeed follows from the general
fact that any I'-limit with respect to a given topology is always lower semicontinuous with
respect to that same topology. Using a very similar proof to that of the I'-liminf inequality, we
can actually show that, if f is with linear growth or it is of flow-based type, then the associated
MA is always lower semicontinuous (even if, a priori, f is not of the form f = fiom), thus
providing a positive answer in this framework to the validity of (4.2.8). In the flow-based
setting, this fact has been observed in Remark 4.3.14.

Proposition 4.3.15. Assume that f is with linear growth, namely it satisfies one of the
two equivalent conditions appearing in Lemma 4.3.4, and assume that (ug, pt) — (po,
) € My (T4 x M (T?) weakly. Then:

lim inf MA(pg, py) = MA(po, pa) -

n—oo

The proof goes along the same line of the proof of the I'-liminf inequality for discrete energies
F with linear growth. We sketch it here and add details whenever we encounter nontrivial
differences between the two proofs.

Proof. Let (u™,v") € CE be (almost-)optimal solutions associated to MA (ug, ), i.e.,
lim inf MA (ug, puy) = linl}ian(p,", v"). (4.3.39)

With no loss of generality we can assume sup,, A(p", ") < oo and that the limits inferior
are true limits. By the compactness of Remark 4.2.5, we know that, up to a non-relabeled
subsequence, p" — p weakly in M+((O, 1) x ’]I‘d). Moreover, we also have du(t,z) =

we(dz)de € BVKR<(O,1);M+('I[‘d)) for some measurable curve t — u; € M (T?) of
constant, finite mass. Once again, due to the lack of continuity of the trace operators in BV,
we cannot ensure that p,_o = o and p,_; = p1. To solve this issue, we rescale our measures
" in time in the same spirit as in (4.3.21). For a given § > 0, we define Zs := (4,1 — ¢) and
' € BV ((0,1); M (T4)) as

i if t € (0,0]
p?’(s =pu" s iftels

o ifte[l—6,1)

;o dp™(t @) = 0 (da) dt . (4.3.40)
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By construction, it is not hard to see that p™® — fi° weakly, where

= pass it €T o dpd(t,x) =l (dx)dt. (4.3.41)
L1 ifte[l—94,1)

We stress that, as in (4.3.22), the rescaled curve t — fi{ could have discontinuities at t = §
and t = 1 — ¢, corresponding to the possible jumps in the limit as n — oo for pu™ at {0, 1}.
Nevertheless, f1° is a competitor for MA (140, 1), which, by lower semicontinuity of A, ensures
that

liminf A(p™") > A(A°) > MA (o, 1) - (4.3.42)

In order to estimate the left-hand side of the latter displayed equation we seek a suitable
vector meausure v™° so that (u™?, v™?) € CE and whose action A(u™°, v™°) is comparable
with A(p™, v™) for small 6 > 0.

It is useful to introduce the following notation: for § € (0,1/2),

5:(0,1) =2 Zs, rs(s):=(1—20)s+9, (4.3.43)
Rs : (0, 1) Td —TIs x T, Rs(s,z) := (rs(s), x). (4.3.44)

Define i5 : M%(Zs x T?) — M¢ g (0,1) x ’]I‘d as the natural embedding obtained by extending

to 0 any measure out5|de Ts, and set
v = 05| (Ry) "] € M((0,1) x T%) . (4.3.45)
The proof that (u™°, v™?) € CE works as in (4.3.25). In the same spirit as in (4.3.24), we
claim that
A", vm0) < (14 O A", 1) + O f)5(1 +u((0,1) % Td)> . (43.46)

where C(f) € R, only depends on f. The combination of (4.3.39), (4.3.42) and (4.3.46),
and the arbitrariness of d would then suffice to conclude the proof.

We are left with the proof of the claim (4.3.46), which is a bit more involved, compared to
that of (4.3.24), due to the presence of the singular part at the continuous level. We need
the following.

Lemma 4.3.16. Let o € ./\/l+((0, 1) x Td) be a singular measure with respect to £t

Then, the measure (Rs)yo € M (Zs x T%) is also singular with respect to 1. Moreover,
for every measure ¢ = f.£ + fLo € M"™((0,1) x T¢), we have the decomposition

(Rs)p€ = f°L + f2H(Rs) 4o, (4.3.47)
where the respective densities are given by the formulas
5 1 -1 5,1 1f,.—1
ot x) = mf(ra (t),x) and  fo(t,x)=f (7"5 (t),x) : (4.3.48)
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Proof. By assumption, o is singular with respect to .#%*!, which means there exists a set
A C (0,1) x T? such that £t (A) = 0 = o(A°). By the very definition of push-forward
and the bijectivity of R, we then have that

(Re)yor ((Rs(A))) = o (R5! (Rs(47)) ) = o(a%) =0, (4:3.49)

whereas, by the scaling properties of the Lebesgue measure, we have that £ (Rs(A)) =
(1 —26)L%1(A) = 0, which shows the claimed singularity. The second part of the lemma
follows from the fact that (Rs)x 2% = (1 — 26)71.2%"! and the following statement: for
every &' = f'o’ with o’ € M ((0,1) x T%), we claim that

d(Rs)4€'
d(Rs)40’

Indeed, by definition of push-forward, we have for every test function ¢ € C,

(t,2) = f/(R;\(t,2)), Y(t,z) €Ty x T¢. (4.3.50)

/ o d(Ry) ' = / (po Ry)de’ = / (o0 Ry)f' do’ = / o (f o Ry d(Rs)po
which indeed shows (4.3.50). O

Let
p' = ptd M 4 prtde and v = j"d2 + vt de (4.3.51)

be Lebesgue decompositions. We apply Lemma 4.3.16 to both u™ and v" and find that,
on Zs; x T¢, we have

Mn,& _ pn,(S d$d+1 + pn,é,J_ d(R(;)#O' and Vn,& _ jn,(s dag/derl + jn,é,J_ d(R(g)#O'
with (Rs)40o singular with respect to .-#4*1 and
Pt x) = (p” o Rgl) (t,x), PO (t ) = (1 — 26) (,0"’L o Rgl)(t, x),

Ot x) = (j” o R5_1> (t,x), GOt (t, x) = (j”’L o Rd_l) . (4.3.52)

1—-26
Further consider the Lebesgue decompositions

n n d n, L .
pi = pi dZ°+ p; doy, i €{0,1}

for some o1, 09 € M (T%) singular w.r.t. £¢. The action of (u™°,v™?) is given by?

A(p™ vm™0) = AT (pm™° )+ D, 5( fpp.0)d2? + foo( >dal> ’

1=0,1

where we used the notation

Alg(un,é’ynﬁ) — / f<pn,6’jn,6) dgd—i—l +/ foo( 7,0, L n(5J.) d(R(s)#O'
IgXTd ZgXTd

2Note that the definition of the action does not depend on the choice of the measure which is singular
with respect to £?*1, therefore we can use (R;)40 instead of o.
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Making use of the formulas (4.3.52) and the homogeneity of f°°, we find

ATs (™0 ) (4.3.53)

—a-w) [ (D) ezt [ (-t ) do
(0,1)xT4 1—2) (0,1)xT4

n n, L
n J d+1 fo'e) n, L J7
—(1-2 / f(p, >d.$ +/ f ( o+ )da>.
( )< (0,1)xTd 1-2 (0,1)xTd P 1—-29
(4.3.54)

Furthermore, it follows from the linear growth assumption that, for i =0, 1,
[ oazts [ oo do < O + 1) = O(a(0.1) x T + 1)
Td Td
as well as, by (4.3.53), the nonnegativity of f, and Assumption 4.2.2,

AT (4 1) < A 1) + 25 (Lip) ( /
(0,1)

20(Lipf)

C

|jn|d$d+1 +/

(0,1)x Td

Kk da)

x Td

< A", o) + (Aw, V") 4 O+ ||u“||w>) .

We thus conclude (4.3.46). O

4.4 Analysis of the cell problem with examples

This section is devoted to the characterisation and illustration of fy.., in the case where the
function F' is of the form

Fm,J)y=F(J)= Y oaglJ(z,y) (4.4.1)

(z,y)€€?

for some strictly positive function a : £¢ 3 (z,y) — a,, > 0. A natural problem of interest
is to determine whether/when the I'-limit MAy,,, can be the WW;-distance. The analogous
problem for the TW,-distance has been extensively studied in | ] and [ ] in the
case where the graph stucture is associated with finite-volume partitions.

4.4.1 Discrete 1-Wasserstein distance

We start the analysis of this special setting by observing that, in this case, the discrete
functional MA. actually coincides with the W; distance associated to a natural induced
metric structure. In order to prove this fact, we first define a® : &, — R, as the unique
function such that

zZyE
T

=« z €72
£ 1gQ

It is easy to check that this definition is well-posed and determines the value of &y, for
every (z,y) € .. Further let

o, + o,
amy:%u (xvy)ega
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be the symmetrisation of &°. Given J € R%, we can write F.(J) in terms of a°. Precisely,

fa(J):ZEdF< )ZZEd 3 %L

zELZ 2€Z4  (&,9)€EQ

=Y Y maE@EIEn = Y &g,y

2€74 (2,9)€EQ (z,y)E€e

= > ailJ(zy)l,

(w,y)€€e

4
T2 J
cd—1

where in the last passage we used that |.J| is symmetric. We define a distance on X given by
d:(z,y) := MA.(6;,0,), Vr,y € X.. (4.4.2)

One can easily show that d. indeed defines a metric on X.. In fact, d. can be seen as a
weighted graph distance.

Proposition 4.4.1. For every x,y € X., we have

k—1
d.(z,y) = inf {Z 2054, To=T, 2=y, (T, Ti4) €E Vi, k€ N} :
i=0
Proof. The inequality < directly follows by choosing unit fluxes along admissible paths:
let 9 = =, xy,..., 21,7, = y be a path, i.e., (z;,z;11) € & forevery i =0,1,..., k, and
consider
k—1
JP = 2(5(%%) ~ Orr ) (4.4.3)

which has divergence equal to 6, — d,. Then,

de(1,y) = MA(0,,6,) = inf {F.(]) : div.] =0, —5,}

=inf¢ > af,|J(z,y)| : div] =6, -0,

(z,y)€€e

k-1
< Z Ofiy Jp(xvy)‘ < Z 2a§31:3311+1 ’
() €é- =0

where in the last inequality we used that o is symmetric.

To prove the converse, let J € ]Ris be an optimal flux for MA.(d,,d,), that is,

divJ =6, — 6, and MA.(6,,9,) = Z g,

(w,y)€Ee

J(a,y)| .

Since the graph &. is finite, in order for J to satisfy the divergence condition, there must
exist a simple path 2y = =, 21, ..., 2, = y such that (x;,7,4,) € & and J(z;,2;41) > 0 for
every i. Let J” be the associated vector field as in (4.4.3). Note that, for every A € R, we
have div((l —\)J + )\JP) = 0, — d,. Furthermore, the function

Ao F(L=NT+ A7) = Y af,

(Z‘,y)egg

(1= N J(z,y) + M (2,y)]
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is differentiable at A\ = 0, since (J(x,y) = 0) = (J”(z,y) = 0). By optimality, the derivative
at A = 0 must equal 0, i.e.,

0= o, (J @y —J(xy)senJ(z,y) = Y o, J (x,y)senJ(z,y) —de(z,y),

(zy)€€e (z,y)€EE:

and, since (J”(z,y) # 0) = (sgn J(z,y) = sgn J(x,y)), we have

de(z,y) = > of,

(z,y)€€e

k
Jp(x,y)) = 2;a;ixi+1 ,

where, in the last equality, we used that the path is simple (and the symmetry of o). This
shows the inequality > and concludes the proof. O]

Consider the 1-Wasserstein distance associted to d., that is,

Wy (g, ) = inf { [ dleanan  Gym=m. (@)= ml} (4a4)

as well as, by Kantorovich duality,

Wl,a(mo7m1) = sup {/ @d(mo - ml) : Lipds(@ < 1} ) (4-4-5)

for every mg,m; € Z(X.).
Proposition 4.4.2. For every mgy,m; € P (X.), we have

MAg(mo, ml) = W175<m0, ml) . (446)

Proof of >. Fix mg,m; € 2(X.) and set m := my — my. Let J € RE be an optimal flux
for MA.(mg, my), that is,

div/=m and MA(mg,mi)= Y Oy

(w,y)€€e

J(x,y)| - (4.4.7)

Let ¢ : Az — R be such that Lip, ¢ < 1, i.e., |p(y) — 90(;1:)| < d.(z,y) for x,y € X.. Then,

/s@dm: Xsoddiﬂ:Zw(ﬂ:)fo(%y) Z o(@)(J(x,y) = J(y, )

rEX: y~w (:1: y)EE:

(4.4.8)
Z ‘ x y)‘ (4.4.9)
z,y)€E

[\D\}—t

> () = e@)J(,y) <

(w,y)€E:

N[ =

In order to conclude, we make the following crucial observation: as a consequence of the
optimality of J, we claim that

J(x,y) 20 = d.(z,y) =205, (4.4.10)

To this end, assume that J(z, ) # 0 and consider an optimal .J@¥ for d.(z,y) = MA.(,, ;).
Note that, by construction,

div (J&9) =6, — 5, = div.],  where J = d(ay) — 6ya), (4.4.11)
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which in turns also implies that

div (J + J(z,y) (S = J)) =div.J. (4.4.12)
By optimality of J(*%) we have

Fo(D) =205, > F(JOV) = 3 ai;lJ0V(E )|, (4.4.13)

(z,y)€E:

whereas the optimality of .J yields

Fe(J + I, y) (T =) J(E,9) + J (2, y) ]9 (7, 7)]

2 oy

(zy)e€\{(zy),(y.2)}

£

0%, [T (2, 1) TV (@, y)| + o,
>F())= Y o5J39)|

(z,y)€ée

J(@,9) IV (y, )]

By applying the triangle inequality and simplifying the latter formula, we find

2. o
Yy

(z,y)€E:

J(x,y)J V(7. 5)| > 205,

J(z,y)| - (4.4.14)

The combination of (4.4.13) and (4.4.14) implies d.(z,y) = 2a5,. With (4.4.10) at hand, we

can write
[ eam< ¥ o |iey)] = MAGmom).
€ (z,y)€E
and we conclude by arbitrariness of ¢. O

Proof of <. Let m be such that (e;)4m = m; for ¢ = 0,1. Further, for every z,y € X,
let J@¥) € RE be optimal for M.A_(8,,4,). It follows from a direct computation that the
divergence of the asymmetric flux

J= Y w(x,y) "V

z,yEXe

is equal to mg — my. Thus,

MA(mo,m) < 3 oS [J@PI< D wlwy) D oI (@)
(z,y)€EE: TyeXe (z,y)EE
:/ d.dm,
Xe X Xe
and we conclude by arbitrariness of 7. O]

In view of the equality MA. = W, ., it is worth noting that for cost functions of the form
(4.4.1) there are (at least) two different possible methods to show discrete-to-continuum
limits for M.A.. One such method is provided by the current work and makes use of the I'-
convergence of A, to Ay, proved in | , Theorem 5.4]. The convergence of the
“weighted graph distance” d. follows a posteriori. Another approach is to study directly the
scaling limits of the distance d. as ¢ — 0 and, from that, infer the convergence of the
associated 1-Wasserstein distances, in a similar spirit as in | ]
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4.4.2 General properties of fiom
For j € RY, recall that
from(j) = inf {F(J) : J € Rep(j)}, (4.4.15)
where Rep(j) is the set of all Z?-periodic functions J € R such that
Eff(J) = 1 > J(xy)y,—x,) =3 and divJ=0.
(w,y)eE?
As noted in | , Lemma 4.7], we may as well write min in place of inf in (4.4.15).

Our first observation is that, indeed, the homogenised density is a norm. This has already been
proved in | , Corollary 5.3]; for the sake of completeness we provide here a simple
proof in our setting.

Proposition 4.4.3. The function fyom is a norm.

Proof. Finiteness follows from the nonemptiness of the set of representatives proved in

[ , Lemma 4.5]. To prove positiveness, take any j € R% and J € Rep(j). For every
norm ||-||, we have
: 1 F(J) [y, — 22|
=||Eff(J)]| < = J L, — X, < —= _ 4.4.16
R S O e (+4.16)

(z,y)€€R

The constant that multiplies F'(J) at the right-hand side is finite because every o, is
strictly positive and the graph (X, ) is locally finite. Absolute homogeneity and the triangle
inequality follow from the absolute homogeneity and subadditivity of F', and the affinity of the
constraints. [

Hence, MAy,., is always (i.e. for any choice of (o)., and of the graph (X,€&)) the W;-
distance w.r.t. some norm. However, the norm fi,, can equal the 2-norm ||, only in
dimension d = 1. In fact, the unit ball for f,,n has to be a polytope, namely the associated
sphere is contained in the union of finitely many hyperplanes. These types of norms are also
known as crystalline norms.

Proposition 4.4.4. The unit ball associated to the norm f,om, namely
B:={j €R" : fiom(j) <1},
is the convex hull of finitely many points. In particular, the associated unit sphere is contained

in the union of finitely many hyperplanes, i.e., fuom is a crystalline norm.

Proof. Let X be the vector space of all Z9-periodic functions .J € R¢ such that div.J = 0.
The sublevel set
Xy ={JeX : F(J)<1}

is clearly compact (due to the strict positivity of (ay,).,) and can be written as finite
intersection of half-spaces, namely

Xi= N JeX > agryd(zy) <1

re{—1,1}¢9 (z,y)eeQ
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Thus, X is the convex hull of some finite set of points A, that is, X; = conv(A). Since fhom
is defined as a minimum, we have

B={jeR: 3J €Rep(j), F(J) < 1} = Eff(X,) = Eff (conv(A)) = conv(Eff(A)),

where the last equality is due to the linearity of Eff. m

4.4.3 Embedded graphs

To visualise some examples, we shall now focus on the case where (X, ) is embedded, in
the sense that V is a subset of [0,1)? and we use the identification (2,v) = 2z + v (see

also [ , Remark 2.2]). It has been proved in | , Proposition 9.1] that, for
embedded graphs, the identity
Eff(J S J(zy)(y — ) (4.4.17)
2
(zy)ee?

holds for every Z?-periodic and divergence-free vector field J € RE. In what follows, we also

make the choice ]

gy = Sl —yly, (z,v) €&v.
One-dimensional case with nearest-neighbor interaction
Assume d =1, let z; < 23 < --- < 3, be an enumeration of V, and set
E={(x,y) € X X X s.t. there is no z € X strictly between x and y}.
In other words, denoting zo = x; — 1 and zp1 = 21 + 1,

E=U U@z} U{(zi,zi)}

2€Zi=1
By rewriting (4.4.16) using (4.4.17), and by the definition of f,om, we find
1 < foom(7),  JER
On the other hand, given j € R?, choose
J(z,y) =jsenly —x),  (x,y) €€,
This vector field is in Rep(j), because
div J(z;) = J(xi, xip1) + J (@i, 2i29) =5 — 7 =0,

for every i, and

1 k
Eff(J) 5 Z(J(SL’Z, Ii+1>($i+1 - .fz) + J(l’l, xi—l)(xi—l — IZ))
=1
j k
=5 ;(lxi—i-l — x| +|z — 37i—1|>
%(xk-i-l — X1+ T — $0)

A similar computation shows that F(J) =|j|, from which fuom(7) =|j].
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Cubic partition
Consider the case where X = Z? and

&= {(x,y) €Z X T v -yl = 1}.
It is a result of [ , Section 9.2] that

. . . d
fhom(]):‘]h ) JER”.
Notice that, in this case, the 2-norm is evaluated only at vectors on the coordinate axes.
Therefore, the same result holds when o, = %|l‘ — y|p, for any p.
Graphs in R?

A few other examples in dimension d = 2 are shown in Figure 4.2: for each one, we display the
graph and the unit ball in the corresponding norm fy.,. To algorithmically construct the unit
balls, we solve the variational problem (4.4.15) for every j on a discretisation of the circle S'.

In turn, this is achieved with the help of the Python library CVXPY [ , ]. For
visualisation, we make use of the library matplotlib | ]
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Figure 4.2: Examples of graphs in R? and corresponding unit balls for fi,om
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CHAPTER

Asymptotics for Optimal Empirical
Quantization of Measures

This chapter contains (with minimal modifications) the following preprint | |:

F. Quattrocchi. Asymptotics for Optimal Empirical Quantization of Measures. arXiv preprint
arXiv:2408.12924v1, 2024.

| wrote this preprint during my PhD at ISTA, but some partial results were already included
in my Master's thesis | |, written under the supervision of Prof. Dario Trevisan at the
University of Pisa. More precisely:

= the upper bound (U) in Theorem 5.1.1, in the special case of absolutely continuous
and compactly supported measures, is the statement of | , Theorem 3.2.3]. The
generalization to arbitrary measures with a moment condition, and the lower bound (L)
are new;

= Theorem 5.1.3 was proven in | , Theorem 3.2.1] in the special case where A is
a bounded 2-dimensional convex set. The generalisation to sets that are bi-Lipschitz
equivalent to a disk is new. The other special cases in which existence of the renormalized
limit is proven are Proposition 5.6.1 and Corollary 5.9.1, which correspond to [ ,
Theorem 3.2.2] and [ , Corollary 3.5.7], respectively;

» Corollary 5.1.4 is new;

= Theorem 5.1.7 is new.

Abstract

We investigate the minimal error in approximating a general probability measure 1 on R by
the uniform measure on a finite set with prescribed cardinality n. The error is measured in
the p-Wasserstein distance. In particular, when 1 < p < d, we establish asymptotic upper and
lower bounds as n — oo on the rescaled minimal error that have the same, explicit dependency
on fi.

In some instances, we prove that the rescaled minimal error has a limit. These include general
measures in dimension d = 2 with 1 < p < 2, and uniform measures in arbitrary dimension
with 1 < p < d. For some uniform measures, we prove the limit existence for p > d as well.
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5.

ASYMPTOTICS FOR OPTIMAL EMPIRICAL QUANTIZATION OF MEASURES

For a class of compactly supported measures with Holder densities, we determine the conver-
gence speed of the minimal error for every p > 1.

Furthermore, we establish a new Pierce-type (i.e., nonasymptotic) upper estimate of the
minimal error when 1 < p < d.

In the initial sections, we survey the state of the art and draw connections with similar problems,
such as classical and random quantization.

5.1 Introduction

Quantization is the problem of optimally approximating a probability measure i on R¢ by
another one, say i, supported on a finite number n of points. For instance, we can think
of 1 as the description of a picture and of pu, as its digital compression. Another typical
example comes from urban planning: if 1 represents the population distribution in a city, then
the support of the approximating measure 1,, determines good locations to build schools,
supermarkets, parks, etc.

The mathematical formulation is as follows: for a given number of points n and a fixed
parameter p € [1,00), find a solution to the minimization problem

epn(p) = Mngg&d){Wp(m fn) ¢ #SupD(n) <, (5.1.1)

where W, is the p-Wasserstein—Kantorovich—-Rubinstein distance | : ]. We will
call this minimal number the nt" optimal quantization error of order p for ;. Equivalently
(see | 1), €p.n(12) can be written as the following minimum over maps 7': R? — R¢ onto
at most n points:

1/p
. . 1/p
(1) = min ( [llz = 7@ du> — min Ex, [1X - 7(X) 7]
or, also,

1/p

epn(it) = min (/ min||z — ;|| du) : (5.1.2)
Z1,...,Ln ERY i

One of the questions that have attracted considerable attention over the years is the asymptotic

behavior of e, (1) as n — oo, see | ]. The most fundamental result in this direction is

Zador's Theorem: given a probability measure 2 on R? enjoying a suitable moment condition,

and denoting by p the density of its absolutely continuous part, we have

dip
dp
lim n'e, (1) = gpa ( / P d$d> , (5.13)
with
dpd = niéll\ff‘l n*de,,, (gd‘[(]’l]d) >0, (5.1.4)
see | : : : | and Theorem 5.4.1 below. That is, when p is not purely

singular (otherwise the limit (5.1.3) equals zero), Zador's Theorem determines the speed of
convergence n~ /% of epn () and the explicit dependency of the prefactor on y. For a heuristic
derivation, see | ] or Section 5.2 below.
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We will focus on a variation of the classical quantization problem: optimal (or deterministic)
empirical quantization (also known as optimal /deterministic uniform quantization). The
subject of our study is the optimal empirical quantization error €,, (1), defined by

1 n
epn(i) = min {Wp(,u,,un) e = > 4, for some zy,..., 2, € ]Rd} ., (5.1.5)

pn€P(RY) i=1

or, equivalently,

n 1/p
€rn(t) = min  min x — x;||P dut ,
pn(p) = min - min (; I I” du )
where p!, ... u™ are subprobabilities, each having total mass equal to 1/n, that sum up to p.
The two numbers e, (1) and €,,,(x) are similarly defined, but the second one is a minimum
over a smaller set of measures, hence e, ,,(¢t) < €,,(x). Our aim is to find formulas analogous
to (5.1.3) for &,,, ().

Several results are available, both for the case d = 1 |

], and in arbitrary dimension [ : : : : ], but a
general statement like Zador's Theorem is still missing. As we will see in greater detail in
Section 5.4, the works [ , | contain the proof of the following. For “sufficiently

nice” probability measures p (and assuming, for simplicity, p # d), we have

.. 1/d~ . ﬁ~
0 < liminfn /4, (1) and h{lnﬁsogpn ®d e, (1) < 00.

In particular, the speed of convergence to 0 of &, (1) is n~4 in the regime p < d. However,
the known bounds from below and above of the limits inferior and superior are rather loose, in

that they do not depend in the same way on y (see (5.4.5) below), and the existence of this
limit is unknown.

5.1.1 Main theorem

Our main theorem addresses the first of the two matters above by providing a high-resolution
formula for p < d (in the same spirit of | | for random empirical quantization).

Theorem 5.1.1. Assume that 1 < p < d and let p* := ddfpp be the Sobolev conjugate of p.
Let . be a probability measure on R? and assume that, for some 6 > p*, the 8" moment of
is finite. Let p be the density of the absolutely continuous part of . and let supp p® be the
support of the singular part of ji (w.r.t. the Lebesgue measure £?). Then:

1/p
d—p .. ~
i (/Rd\suppw ‘ di”d) < lim nf 012, (1), ©
1/p
lim sup '/, (1) < 4.4 ( /]R ) p T dfd) 7 (V)

where

qp,d = nlélI\fI‘l nl/dep’n ($d|[0,1]d) >0 and qnd = nléll\flkl nl/dénn (gd‘[071]d) > 0. (516)
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Note that the dependence on the measure in (5.1.3) and in Theorem 5.1.1 is different; we will
give a heuristic explanation of this phenomenon in Section 5.2. It is also worth noting that the
integral fpc%p d.#? has already appeared in the asymptotic study of other (related) problems
in combinatorial optimization | , , , , | and random (empirical)
quantization | : |

In general, the two constants ¢, 4 and g, 4 in (5.1.6) are not known explicitly, but it is possible
to establish upper and lower bounds, see [ , Chapters 8 & 9]. We pose the following.

Conjecture 5.1.2. The identity q, 4 = ¢, 4 holds (for every p > 1 and d € N, ).

This is tightly linked with a famous conjecture by A. Gersho [ ], which, in essence, states
the following: if A C R? is convex and we denote by U, its uniform measure, then the
optimal quantizers p,, for e,,(Ua) are asymptotically uniform, and “most” of the Voronoi
regions generated by supp(u,) are congruent to one another. Weak versions of Gersho's
Conjecture have been proven in | , , |, but they seem to be insufficient to
settle Conjecture 5.1.2. As noted in [ , Remark 2], proving the equality of the constants
appearing in the upper and lower bounds «seems to be a general open problem in transport
problems» (see also [ : ]).

Nonetheless, with Remark 5.6.3 and Theorem 5.1.3 (see below), we show that Conjecture 5.1.2
is true ford =1 and d = 2.

5.1.2 Existence of the limit

The second matter, namely the convergence of the renormalized error (i.e., n*/9¢, (1)

if the speed of convergence of &,,(u) is n~'/?), remains, in general, an open question.
For p < d, however, Theorem 5.1.1 reduces this problem to Conjecture 5.1.2. Indeed,
assuming Conjecture 5.1.2, that 1 < p < d, that the 8" moment of 1 is finite for some § > p*,
and [0 p AL =0, the limit of nl/4¢, (1) exists by the combination of (L) and (U).

Moreover, with the results of this work, we are able to prove the limit existence in some cases:

1. for every p > 1 and d € Ny, when p is the uniform measure on a cube, see Proposi-
tion 5.6.1;

2. when 1 < p < d and p is the uniform measure on a bounded nonnegligible Borel set,
see Corollary 5.9.1;

3. for every p > 1, when d = 2 and p is the uniform measure on a set which is bi-Lipschitz
equivalent to a closed disk;

4. when 1 < p < d = 2, the 8™ moment of p is finite for some 6 > p*, and supp(u®)
is u®-negligible, where ©® and p® are the absolutely continuous and singular parts of f,
respectively.

In all these cases, the upper bound (U) is attained in the limit:

n—oo

1/p
lim n'/?,,(1) = 4,4 / T det| . (5.1.7)
{p>0}

The points (3),(4) descend directly from Theorem 5.1.1 and the following.
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Theorem 5.1.3. Let A C R? be bi-Lipschitz equivalent to a closed disk' and let U, be
its uniform measure. Then, for every p > 1, the limit of \/né,,(Ua) exists and coincides
with lim,, . v/n€,,(Ua), that is (by (5.1.3)),

lim v/nép(Ua) = gpay/| Al (5.1.8)
In particular, we can choose A = [0, 1]* and obtain q,3 = .

By [ , Theorem 5.15] (restated as Theorem 5.4.2 below), the limit exists also when d = 1
and the upper quantile function of u is absolutely continuous.

5.1.3 Asymptotic behavior for p € [1, c0)

As a first step towards the proof of Theorem 5.1.1, we will prove (5.1.7) for the uniform
measure $d|[0,1]d for every p > 1 (Proposition 5.6.1). In particular, we have?

lim sup nl/dépyn ($d|[071}d> < 00, (5.1.9)

n—oo

from which we derive one corollary which may be of independent interest. Note that, while
Theorem 5.1.1 assumes p < d, this corollary applies when p > d as well.

Corollary 5.1.4. Let Q,Q be open bounded sets in R% and let = p£® be an absolutely
continuous probability measure concentrated on ). Assume that:

1. the set ) is convex with C'*' boundary;

2. there exists a diffeomorphism M: Q0 — Q of class C* with (globally) Hélder continuous
and uniformly nonsingular Jacobian;

3. the restriction plq is uniformly positive and Hélder continuous (globally on ().

Then, for every p > 1,

d

0 < lim inf n'%, (1) < limsup n'/?e,, (1) < co. (5.1.10)

n—oo

For general measures and p > d, it is possible, and often expected, that

lim sup n'/?¢,,,, (1) = 0o,
n—oo
see [ , Example 5.8 & Remark 5.22] and Example 5.4.4 below. Corollary 5.1.4 states
that the error convergence is still fast (of order n=/9) if the measure is “smooth and well-
concentrated”.

INote that every convex body A is bi-Lipschitz equivalent to a closed disk: further assuming, without loss
of generality, that O lies in the interior part of A, the map

inf{r >0:zerd}

Ad>zr+—

(deformation by the Minkowski functional) is bi-Lipschitz onto the unit disk.
2For d > 3, the bound (5.1.9) can also be easily derived from the theory of random empirical quantization,
see | , Formula (8)].
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Remark 5.1.5. Corollary 5.1.4 applies in particular when  itself is convex with C! boundary
and p|q is uniformly positive and Holder: the identity is admissible as a diffeomorphism M
onto €.

Remark 5.1.6. The proof of Corollary 5.1.4 relies on a theorem by S. Chen, J. Liu, and
X.-J. Wang | ] on the regularity of optimal transport maps. Using other results from this
field, e.g. [ , ], it is possible to adapt Corollary 5.1.4 to other sets of assumptions.

5.1.4 Nonasymptotic upper bound

Along the way, we also prove a nonasymptotic upper bound on the optimal empirical quan-
tization error. This is analogous to what is known as Pierce’s Lemma | | in classical
quantization.

Theorem 5.1.7. Under the assumptions of Theorem 5.1.1, there exists a constant c, 4
(independent of ;1 and n) such that

1/6
nl/dép’n(,u) < Cpdp </||x||9 du) , neNy. (5.1.11)

5.1.5 Related literature

The theory of quantization has been studied since the 1940s by electrical engineers interested

in the compression of analog signals. Early works include | ] by C. E. Shannon, | ]
by B. M. Oliver, J. R. Pierce and C. E. Shannon, | | by W. R. Bennett, and | ] by
P. F. Panter and W. Dite. We refer the reader to [ ] for a survey of the related literature

in the fields of signal processing and information theory until the late 1990s.

Algorithms to solve the quantization problem in R? are known since the works of H. Stein-
haus | ] and S. P. Lloyd [ ]. Arguably, the most popular ones are Lloyd’s method (also
known as k-means algorithm) and the Competitive Learning Vector Quantization, see | ,
Section 3].

Over the years, quantization theory has found applications to data science (clustering, rec-
ommender systems, etc.) | , ], mathematical models in economics | , ,

|, computer graphics | |, geometry (approximation of convex bodies and Alexandrov’s
Problem) | : ]. The survey | | describes its applications to numerics, particu-
larly to numerical integration | |, numerical probability | |, and numerical solving
of (stochastic) (partial) differential equations, relevant, e.g., in mathematical finance | ]
Quantization has been studied also beyond the finite-dimensional Euclidean setting, partic-
ularly in Riemannian manifolds | , , , , , , | and
infinite-dimensional Banach spaces (functional quantization), see [ | and references
therein.

For a more comprehensive and detailed picture of this extensive mathematical subject, we refer
to the following monographs. In chronological order: | ] by A. Gersho and R. M. Gray,
[ ] by S. Graf and H. Luschgy, and [ ] by H. Luschgy and G. Pages.

As previously noted, asymptotics for ép,n(,u) have been investigated in | , , ,
, , , , : : ], see also Section 5.4. Al-
gorithms and other theoretical properties of optimal empirical quantization (and of the
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slightly more general capacity-constrained quantization®) have been proposed and studied,

eg., in| , , , , . , , , ]. Fur-
thermore, this theory has been used as a tool, e.g., for the approximation of variational prob-
lems and (stochastic) differential equations | , , , , , ],
to prove convergence rates for regularized optimal transport | |, to analyze restricted
Monte Carlo methods for quadrature | |, to optimally place robots in an environ-
ment [ , : ], in computer graphics (e.g., to generate blue-noise distributions)
[ : : |, in neuronal evolution modeling [ |, and in material
modeling [ : ].

Several versions of optimal empirical quantization with respect to different metrics/diver-
gences/discrepancies (in place of W,) have also been studied. We mention [ : :

|, as well as the series of works | , , , , | on the
generalized star-discrepancy, which is used to bound numerical integration error by means of
the generalized Koksma—Hlawka inequality | ].

Closely related to optimal empirical quantization is random empirical quantization, i.e., the
problem of approximating a measure y using random empirical measures ,, = % 0%,
where (X;);en is a sequence of random variables (typically independent and identically dis-

tributed), see [ , | and references therein. In recent times, some asymptotic results
for this problem have been proven using the theory of partial differential equations [ |
and Fourier analysis | ]

5.1.6 Open questions

It may be interesting to further investigate the following problems.

1. In (L), the domain of the integral is R?\ supp(y®). Is this just an artifact of our proof?
That is: Can we replace this domain with the whole space R%?

2. We already stated Conjecture 5.1.2 on the equality ¢, 4 = ¢, - Unclear is also the relation
between ¢, 4,7, 4 and the constants that appear in | , Theorem 2] and | :
Theorem 1.6] in the context of random empirical quantization. Numerical estimates of
the constants may also help understand this relation.

3. Depending on p, several asymptotic behaviors are possible for the error &, ,, (1) when p >
d, see [ , Table 1] as well as Corollary 5.1.4, Example 5.4.4, and Proposition 5.6.1.
It may be worth determining precise characterizations of the measures that exhibit a
certain error decay. For example, given p > d, for which absolutely continuous and
compactly supported measures p is the limit superior of nl/dépvn(,u) finite?
4. What can we say about the error asymptotics for singular measures?

5. It would be natural to also study the problem on manifolds (as in [ : : |
for classical quantization) and infinite-dimensional spaces.

3In this version, the competitors fi,, are of the form u, = """ | X\;d,,, where n and Ay,..., A, € [0,1]
are prescribed, and x,...,x, are free.
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5.1.7 Plan of the work

The first four sections are preparatory. In Section 5.2, we give a simple heuristic argument
that justifies the integral fpd?Tp d%4 in Theorem 5.1.1. In Section 5.3, we fix the notation
and give all necessary definitions. In Section 5.4, we present some of the existing results in
the literature, both to provide context and because we will use some of them.

The subsequent sections contain proofs. The major ones will be preceded by comments on
the core ideas and techniques. In Section 5.5, we prove the nonasymptotic upper bound of
Theorem 5.1.7. In Section 5.6, we begin the proof of Theorem 5.1.1 by proving the limit (5.1.7)
for the uniform measure on the unit cube. In Section 5.7, we prove Corollary 5.1.4. In
Section 5.8, we complete the proof of Theorem 5.1.1. In Section 5.9, we prove the limit (5.1.7)
for uniform measures in the regime p < d. In Section 5.10, we prove Theorem 5.1.3.

Not all sections are necessary for the later arguments in this manuscript. The following scheme
outlines the logical dependencies among Sections 5.5-5.10.

—_

Sec.5.5) [Sec. 5.6/{Sec. 5.7] [Sec. 5.8}{Sec. 5.9] (Sec. 5.10

5.2 Heuristics

Firstly, let us formally derive Zador's Theorem. A similar heuristic argument is given in | ].
Fix a “nice” probability measure pu, say absolutely continuous, compactly supported, and
with continuous density p. Let S, = {x;,...,7,} C R? be the support of an optimal
classical quantizer (i.e., a minimizer in (5.1.2)) and let 0,,.2? be a “nice” approximation of the
measure = >, §,,. For n large, the number of points in S,, that fall within a small ball B.(z)
of radius € centered at € R? is, approximately and up to a dimensional constant, e?no, (7).
Since p is continuous and € is small, we can expect the points of S,, N B.(Z) to be evenly spread
on B.(x); therefore, the distance r of a generic point in such a ball from S, is roughly equal
to the d* root of the ratio between the volume of the ball and the cardinality # (S, N B.(Z)),

~1/d
et rxd % = (nan(i)) / . Hence,

/ minfle — ;7 dp ~ n P/ / o7ty A,

Thus, we can rephrase the problem in (5.1.2) as a minimization over functions:

eb (1) ~ n P/ i{‘lf/ap/dp 4.z,

*In this work, the symbols ~, <, Z do not have a rigorous meaning. They are used in heuristic arguments
as shorthands for ‘is approximately equal to’ and ‘is approximately smaller/greater than’.
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under the constraint [ o d.£? = 1. By Holder's inequality,

d d P d?LTp ﬁdp p dip a+p
/prlﬂo d.z% < /<pd+pg—d+p) d.2¢ </ (aﬂ) P d$d>

p

d
= (/U_p/dp d$d> v (/0 d$d> ’ ,

=1

_d_ . ..
and the inequality is an equality for o := ¢ pd+», where ¢ is a normalizing constant.

In the case of optimal empirical quantization, we expect that the optimal locations S,, =
{z1,...,x,} are, instead, approximately distributed according to p: to keep the Wasserstein
distance minimal, we should approximately match the mass in every small ball B.(Z) to the
points in (or closest to) such a ball, which means, in particular,

¢p(Z) = p(B(T)) =~ n ' #(S, N B(2)) = €o,(z),

where, as before, o, is an approximation of the uniform measure on S,,.°> Since, once again,
the points S, N B.(Z) are evenly spread on B.(Z), a generic point z € B.(Z) should be
matched by an optimal transport plan to the closest x; € S,,. Recall that the typical distance
from S,, is of order (nan(i))_l/d, which, combined with the considerations above, yields

& (p) = n / p Pl dg?.

We conclude this section with another simple observation. Postulate that

() ( [ dzd)

for some a,b,c € R and for every (sufficiently “nice”) probability measure 1 = p.Z4. It is
easy to check that ép,n()\‘dp()\_l-).,iﬂd) = Aep.n(1) for every A > 0. Therefore,

A (/ o’ d.,%d)C = (/Rd (A ) d«i”d)c = AU (/ P’ d«i”d)C :

from which we obtain the identity 1 = dc(1 —b). Note that this is coherent with the statement
of Theorem 5.1.1.

5.3 Preliminaries

5.3.1 Notation

We regard R? as a measure space endowed with the o-algebra of Borel sets %(R?), on
which the Lebesgue measure £ is defined, and as a normed space with the Euclidean

5This explains why the same formula (up to constant) appears in random empirical quantization, see |
Theorem 2].
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norm ||-|| =||-||,. For every z € R?, we let d, be the Dirac delta measure at x. Given a Borel
set A € B(R?), we sometimes write |A| in place of Z4(A). If |A] # 0, 00, it is well defined
the uniform measure

L2
UA =
Al
of A. For convenience, we further define
Ud = U[O,l]d .

For every set A C R%, we denote by diam(A) its diameter, i.e.,

0 ifA=0,

sup, yeallr —yl| otherwise,

diam(A) = {

and by #A € Ny U {oo} its cardinality. We write int(A) and A for its interior part and
topological closure, respectively.

For every pair of sets A, B C R?, we denote by dist(A, B) their minimal distance

inf{la—y|| :z €A, ye B}y ifAB#0,

dist(A, B) = { _
00 otherwise,
and, similarly, we write dist(x, A) := dist({z}, A).

We denote by P(IRY) the space of Borel probability measures on R% and by M (RY) the space
of Borel nonnegative finite measures on R%, i.e., M(R?) := R>( - P(R?). For every p > 1,
it is also convenient to introduce the space P,(R?) of probability measures with finite p'™
moment

PRY = {n e PEY - [lell auto) < o
and the space P.(R?) of compactly supported probability measures
P.(RY) = {,u € P(R?) : 3K C R? compact such that p(K) = 1} .

For n € Ny, we further define the set

1 n
Py (RY) = {un c P(RY) : 3y, 29,...,2, €RY pyp = nZ(sxi} :
=1

Analogously, we set
My(RY) = Rag - Py(RY), M(RY) = Rog - Pe(RY), Moy (R = Rsg - Py (R,
and M g)(R?) := {0}.

The (total variation) norm of a measure ;1 € M(R?) is||u| := p(R?). For every measurable
function T: R% — R%, we denote by Ty : M(R%) — M(R%) the pushforward operator,
defined by

Tyn(A) = u(T7'(4)), Ae BRE).

Note that the norm is invariant under pushforward, i.e.,

Ty =llull. For o€ M(R?), we
write supp(u) for the support of p, i.e., the smallest closed set on which p is concentrated.
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For ease of notation, when p € leo(Rd), we sometimes write p to denote the measure p. ¥4 €

M(RY).

We use the notation a < b when there exists a constant ¢ > 0 for which a < ¢b. Given two

sequences (ay,,), and (b,), of positive real numbers (defined for an unbounded set of natural

indices), we write a,, < b, if
Lo an _ an
— <liminf — <limsup — < ¢
C n—oo b, n—oco Op

for some constant ¢ > 0. Possible dependencies of the constant ¢ are explicitly displayed as

subscripts of the symbols < and x<.

5.3.2 Wasserstein distance

Let p > 1, and take two measures y, v € M, (R?) such that||u| =|/v||. We denote by I'(u, v)
the set of couplings between 1 and v, i.e., the nonnegative Borel measures v on R? x R¢ that
have p and v as marginals. The Wasserstein distance of order p between 1 and v is given by
the formula

1/p
W)= nt( [le=ol driem) (531)
YET (V)
The function W, is really a distance on AP,(R?) for every A > 0 (the case A\ = 0 is trivial), as
shown, for instance, in | , Proposition 5.1], and we have W, (A, A\v) = AYPW,(u, v) for

every admissible choice of p, v, A\. Moreover, by a simple compactness argument (see [ ,
Theorem 1.7]), the infimum in (5.3.1) is actually a minimum.

The following two nice features of W, will be used in this work. The first one is a subadditivity
property.

Lemma 5.3.1 (Subadditivity). Let p!, % vt 1% € M,(R?) be such that HMIH = HVIH
andH/ﬂH :H1/2H. Then we have
W;’(ul + 2 vt + V2> < WP vh) + WP (2, 7). (5.3.2)
Proof. This result follows from the implication
Fel(u',v'),ie{l,2} = ~'4+4%c¢ F(ul + vt + V2)

and the linearity of

v o=yl a1y, .
The second one is: on a fixed compact set, the Wasserstein distance of two a.c. measures can
be controlled by the L!-distance of their densities.

Lemma 5.3.2 (Comparison with ||-||1). Let u = pL v = 0.%? be compactly supported
and absolutely continuous measures, with ||| =||v||. Let A C R be a bounded set on which
both v and v are concentrated. Then:

Wy (p,v) < diam(A)|lp — o[ 1" . (5.33)
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Proof. We can and will assume that p # v. Set

pt =v' =min(p,0) L, p® =max(p—0,0)L7, v? = max(o — p,0).24,
and notice that neither u? nor 12 is equal to the zero measure. The hypotheses of Lemma 5.3.1
are satisfied. Hence,
W2 (u,v) < W', vh) + W2 (u?, %)
=0

Therefore, it suffices to find a suitable coupling between ;2 and v2. We choose

,_M2®V2_M2®V2

el 2l
which vyields
[le=v st < [le -l S5 ) o dy
< diarn(A)pHN;J/‘!ﬁ2H = diam(A)pH/LzH :
We conclude by the inequality H/ﬂH <|lp— ol O

5.3.3 Boundary Wasserstein pseudodistance

A. Figalli and N. Gigli introduced in [ ] a modified Wasserstein distance Wb for measures
defined on a bounded Euclidean domain, giving a special role to the boundary of such a
domain: it can be interpreted as an infinite reservoir, where mass can be deposited and taken
freely. We give here a slightly modified definition of a pseudodistance between measures
defined on the whole R.

Let p > 1 and fix an open bounded nonempty set 2 C R%. Take two measures u, v € M (R?),
possibly having different total mass. Let ['bo(u, ) be the set of the nonnegative Borel
measures -y on the closure ) x  such that 7|, g has x|q as first marginal, and v|g, o, has V|
as second marginal.

Definition 5.3.3. The boundary Wasserstein pseudodistance of order p for €2 between p
and v is given by the formula

1/p
Wb, (u,v) = inf (/Ha: —yl” dv(%y)) : (5.3.4)

y€Tbo (11,v)

It is easy to check that Wbg (1, ) is nonnegative and finite for every y, v, that the symmetry
property Wb (1, v) = Wba,(v, 1) holds, and that Whg, (i, 1) = 0. The triangle inequality
can be proven as in | , Theorem 2.2] (or directly deduced from this theorem). Clearly,
with our definition, Wbg,, cannot be a true distance, as it does not distinguish measures
that differ out of Q: for every p, v € M(R?), we have Whq (1, v) = Wb, (tla, v|a). As
with W, we have the identity Whq,(Au, \v) = AYPWq (i1, v) for X > 0. Further notice
that Whq (1, v) < W,(u,v) when p,v € M,(R?) and ||u|| =]|v||, for any Q.

A crucial property of Wb, is its geometric superadditivity, which will be used in the proof of
the lower bound (L).
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Lemma 5.3.4 (Superadditivity). If {;}, is a (finite or countably infinite) family of open,
bounded, nonempty, and pairwise disjoint subsets of €2, then

Wb, (. v) > ZWbQ 1), p,v € M(R?). (5.3.5)
Proof. The proof of this lemma can be found in | , Section 2.2]. O

5.3.4 Quantization errors and coefficients

Definition 5.3.5. The n'" optimal quantization error of order p is

epn(p) = {Wy (gt ) = #5upp(pia) < mand [lull =[mall} . 1€ My(RY,
(5.3.6)
and the optimal quantization coefficient of order p is

Upd = ig\g n'de, . (Uy) . (5.3.7)

Definition 5.3.6. The n'" optimal empirical quantization error of order p is
Epm(p) = if {Wy (1t 1) = i € My (RY), il =llell} . € M(RY),  (5.3.8)
and the optimal empirical quantization coefficient of order p is

Gpa = inf n'%, . (Uy) . (5.3.9)

We leave e, (1) and €,(y) undefined when 1 # 0.

In words, the optimal quantization error measures the minimal distance to atomic measures
supported on at most n points (with the same total mass); the optimal empirical quantization
error measures the minimal distance to (appropriately rescaled) sums of n Dirac deltas.

Remark 5.3.7. For every 1 € M,(R?), the following inequality holds:

epn(p) < Epn(p) . (5.3.10)

Both errors are %—homogeneous and e, ,(0) = &,,(0) = 0 for every n, including n = 0.

Moreover, if T: R? — R< is an affine transformation of the form T'(z) = v + Az, with v € R?
and )\ € R then

epn(Tup) =M epnlp) s Epn(Tp) =|AEpn(p) - (5.3.11)

Remark 5.3.8. From (5.3.10), we deduce also ¢,4 < @,,. Moreover, the quantization
coefficients are strictly positive, see Theorem 5.4.1.

Remark 5.3.9. Let ut, u?> € M,(R?) and n;,ny € Ny be such that
i =0=p' =0, ie{1,2}.
Then it follows from Lemma 5.3.1 that
Cpnan (1 + 1) < eb () + b, (17). (5.3.12)
If, moreover, HMIH Ny = H/ﬂH nq, then

Cpmims (1 + %) <8 (h) + 8 (1) (5.3.13)
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The infima in (5.3.6) and (5.3.8) are, in fact, minima. For e, , (1), the proof can be found
in [ , Theorem 4.12] (which, in turn, follows the lines of | , Lemma 8]) or in |
Appendix A.4]. Let us prove the existence of the minimum in (5.3.8).

Lemma 5.3.10. Let i € M,(R?). For every n € N; there exists a measure p,, € M) (R?)
with || || = [l and such that &, (1) = Wp(p, pin).

Proof. If n = 0, then u, =0 € M(n)(Rd) is the sought measure. Otherwise, we may
renormalize and assume that ||| = 1, we have to prove that the function

1 n
Y:R™ S (21,...,2,) — W, (M,HZ(SM)
i=1

admits a minimizer. This function is continuous: by the triangle inequality and Lemma 5.3.1,
» o[ 1 1 &
|¢(I17"'7xn)_w(yla'-'aynﬂ SWp gzémmﬁz(syl

> WP (60 8,) = Zuxz il

for every o1,....Tn, Y1, ..., yn € R% Again by the triangle inequality,
@/)(171,...,:13 ) (507 Z(le) - :u’ 60 ZH%HP /Hpr d,u 5
<

which implies that the sublevels of i) are bounded. We conclude by applying the extreme value
theorem on a sufficiently large compact set. O]

Let us show that the sequence (ép,n(u)) is infinitesimal as n — oo for every 11 with finite pt"

moment. In dimension d = 1, this was established in | , Corollary 5.12]. The analogous
result for e, (1) follows as a corollary, but was also proven, e.g., in | , Lemma 6.1].

Proposition 5.3.11. For every i € M,(R?), we have

lim é,,(u) =0. (5.3.14)

n—o0

Proof. We may and will assume that p is a probability measure, not concentrated on a single

point. Set
M= [l ap.

and fix > 0 large enough for the ball B, := {z : ||z|| < r} to have nonzero y-measure.

If 11 is concentrated on B,., then the conclusion follows from Theorem 5.4.3. Otherwise, let us

define
. ( oM )”p
- \1—u(B,)

and notice that, by Markov's inequality,

% _ 1_M(Br)

piz x| > R} < = 5 (5.3.15)
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For every natural number n > , define n; = [n,u(B,,)W and ny, == n — ny. Since

2
1—p(Br)
the p-measure of the ball Br := {x : ||z|| < R} can be estimated with

(5315  1— u(B. 1 — u(B, 1
u(Br) 2 1= LB s gy 2B gy L
2 2 n
there exists a measure p' (dependent on n) such that u|p, < u' < u|p, and HMH =ni/n.

Let % == 1 — p'. By Remark 5.3.9,
epa(t) < e, (1) + e, (1)
By Theorem 5.4.3, there exists an infinitesimal function f, 4 such that

- n
e (n') < ;Rpfp,d(nl) ,

and, since p? is concentrated on R¢\ B,,

w50) = [halp < [ palp ae
R\ B,

() < W7 (12

Note that
n
lim sup —lRpfp,d(m) = pu(B,) R limsup f, a(n1) = 0;

n—00 n n1—oo

therefore, we infer that

limsupes, () < [ el d,
’ R4\ B,

n—oo

and we conclude by arbitrariness of 7. O]

Remark 5.3.12. The minimizers of (5.3.6) and (5.3.8) are not, in general, unique. For example,
let 1 be invariant under orthogonal transformations and not concentrated at the origin. If n
is large enough, by Proposition 5.3.11, no minimizer can be concentrated at the origin;
hence, infinitely many orthogonal transformations map any minimizer to other minimizers (via
pushforward).

Let us conclude this section with a lemma that relates the classical quantization error and
the boundary Wasserstein pseudodistance. This result will be used in the proof of the lower
bound (L).

Lemma 5.3.13. Let Q2 be an open bounded nonempty subset of R?. Choose € > 0 and define
the “tightened” open set

Q; = {req: dist(z,R"\ Q) > ¢} . (5.3.16)
Fix 1 € M(R®). Then, for every n € Ny and p1,, € M(R?) with # supp(pn|a) < n, we have

Vd diam(Q) ’

Woap(p, pin) 2 pnin(plg-),  where N = { (5.3.17)

€
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Proof. By considering the vertices of a suitable regular grid, it is easy to check that there exist
aset Y C R? with #) < N and a Borel function T: Q- — Y such that ||z — T'(z)|| < €
for every x € Q_. Given p, 1, as in the statement, let v be a nonnegative Borel measure
on  x Q such that 7|, g has u|o as first marginal, and |g, ., has u,|q as second marginal.
Let 71: R? x R? — RY be the projection onto the first d coordinates, and define

v =Y xa + (T T o) 4 (V- xon) -

Let v be the second marginal of «’. Notice that supp(v) C supp(us|a) U Y, which im-
plies # supp(v) < n+ N. Moreover, since the norm is invariant under pushforward,

Consequently, e, i n(1lg-) < Wy(ulg-,v). By noticing that 7" € I'(u[q-,v), we deduce

that
/ - / e — (@)

Moreover, by definition of 7" and Q2_,
<[e < [la=ulr

[l -
D= [lo= ol dlara < [l -l @

eg n—i—N
We conclude by arbitrariness of ~. O]

p
p n+N

therefore,

5.4 Previous results

There is a rich literature studying asymptotics for classical quantization, see, e.g., | :
]. The following is a fundamental result by P. Zador | : ]

Theorem 5.4.1 (Zador's Theorem, | , Theorem 6.2]). Let i1 € Py(R?) for some® > p > 1
and let p be the density of the absolutely continuous part of ji. Then:
d+p

dp
lim n'%e,,, (1) = qpa (/ pﬁ d$d> : (5.4.1)

n—oo

and the optimal quantization coefficient g, q is strictly positive.

This theorem establishes the exact asymptotic of e, ,,(1) as n — 0 for every p which is not
purely singular, under a moment condition (which is not dispensable, see [ , Example
6.4]).

Less is known about the rate of convergence of €,,(x). The case d = 1 has been studied
in [ , , , , , ]. In particular, the following theorem
determines the exact convergence rate under a suitable assumption.
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Theorem 5.4.2 (C. Xu and A. Berger, | , Theorem 5.15]). Let po € P,(R). If the (upper)
quantile function
FH(t) = sup {.CE eER: u((—oo,x]) < t} : t e (0,1) (5.4.2)

is absolutely continuous, then

dFM—1
dt

lim né, (1) = ¢ (5.4.3)

n—oo

Lr

For general measures in arbitrary dimension, we have the following theorem, independently

proven in | | (only for p=2) and | ].
Theorem 5.4.3 (Q. Mérigot and J.-M. Mirebeau, | , Proposition 12]; J. Cheval-
lier, [ , Theorem 3]). If u € P.(R?) is supported in [—r,7]? for some r > 0, then:
n~1/d ifp<d,
Epn(t) Spar -4 (1+1logn)Vin=1d jfp=d, neN. (5.4.4)
n~1/p ifp>d,

Combined with Theorem 5.4.1 and Remark 5.3.7, this theorem determines the speed of
convergence &, ,,(1t) = 4., n~Y4 in the regime p < d for every ;1 which is compactly supported
and not purely singular:

d+p

dp
Qp.d (/ pﬁp d$d> < liminfn'/?, (1) < limsupn/9e,,, (1) <pa 7, (5.4.5)

n—00 n—00

where p is as in Theorem 5.4.1 and r is as in Theorem 5.4.3.

We note that also for p > d the upper bound (5.4.4) is tight, in the sense that there exist

compactly supported measures—even absolutely continuous and with smooth densities—for
which

li?ﬁs;}p n'?e, (1) >0, (5.4.6)
as demonstrated by the following example; see also the 1-dimensional case in | , Re-

mark 5.22].

Example 5.4.4. Assume that u € P,(R?) is concentrated on the union of two distant
sets A, B C R? with u(A) > 0 and p(B) > 0. Then (5.4.6) holds.

Proof. Le us write r := dist(A, B). Define
A= {:c c R? : dist(z, A) < dist(x,B)} ., B=RI\A.

Given n € Ny, take any i, € P,y (R?) and v € T'(, p1,). We have

/le —yl" dy > (;)p (VA x B)+4(B x 4)) > (;)ph(z‘l x B) = (B x A)

- (2)’3%(3) — (B x B) = y(B x A)| = (g)p\un(é) —u(B)|.
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Let us denote by 7(n) the fractional part of nu(B). Since nju,(B) € Ny, we get

iz =l ar = 3 (5) min(r(), 1 - 7).

and, by arbitrariness of v and p,,, we find
1
nPe, (1) > gmin(T(n), 1- T(n)) /p, neN;.

To conclude (5.4.6), it suffices to prove that, for infinitely many numbers n € Nj, we
have 7(n) € [1/3,2/3]. Firstly, we note that

T(n) =0 = 71(n+1)=puB)e(0,1);

hence 7(n) € (0,1) frequently. Finally, it is easy to check that

1
3 min(T(n), 1-— T(n))

rn) € (0,1)\[1/3,2/3] = n|el/s,2/3. O

For p = d, it is still unknown whether the logarithmic term in (5.4.4) is necessary (for compactly
supported measures), see [ , Remark 1].

In addition to Theorem 5.4.3, we mention the results in [ , |, applicable
to certain measures in infinite-dimensional Banach spaces, | ] for the volume measure on
a compact manifold, and the upper bounds that can be deduced from the theory of random
empirical quantization | ] using the trivial inequality

. 1
ep,n(ﬂ) S E Wp (,u, E Z 5X1) )
=1

valid for every family of random variables {Xj,..., X,,}. In particular, the following theo-
rems already provide an upper estimate of the form (U) and a nonasymptotic upper bound
like Theorem 5.1.7 in the regime p < d/2.

Theorem 5.4.5 (S. Dereich, M. Scheutzow, and R. Schottstedt, | , Theorem 2|). Under

the assumptions of Theorem 5.1.1, further suppose that p < d/2, and that p is Riemann

integrable or p = 1. If X1, Xs, ... is a sequence of p-distributed i.i.d. random variables, then
1 n 1/17 dp 1/p

W u, - ;5& =,an </Rd pa d$d> asn — 00. (5.4.7)

Theorem 5.4.6 (S. Dereich, M. Scheutzow, and R. Schottstedt, | , Theorem 1]). Under

the assumptions of Theorem 5.1.1, further suppose that p < d/2. If X1, Xs,... is a sequence
of u-distributed i.i.d. random variables, then

1/p

n 1/6
1
wy (u, " > 5Xi> Spaon e (/Hx”e du) , neNy. (5.4.8)
i=1
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5.5. Nonasymptotic upper bound (Theorem 5.1.7)

In a recent preprint, E. Caglioti, M. Goldman, F. Pieroni, and D. Trevisan | | ex-
tended | , Theorem 2] to p < d (with some modifications when p = d) for x in a certain
class of radially symmetric and rapidly decaying probability laws, including, e.g., the normal
distribution.

As noted in the introduction, it remains unknown whether any of the hidden constants
appearing in (5.4.7) and in | , Theorem 1.6] coincides with g, 4 or g, 4-

With our Theorem 5.1.1 and Theorem 5.1.7, we obtain several improvements over what was
previously known:

= We establish the speed of convergence €, (1) <, a, n~'/ for general (not purely
singular) measures in the whole range p € [1, d), under a moment condition, but without
assuming compactness of the support or Riemann integrability of the density.

= We prove a nonasymptotic upper bound also for d/2 < p < d without assuming
compactness of the support.

» We find the same explicit dependence on the measure in the asymptotic upper and lower
bounds (L) and (U) (assuming u®(supp(p®)) = 0, where u® and u® are the absolutely
continuous and singular parts of y, respectively).

= We establish the asymptotic upper bound with the constant g, ,;, which is optimal,
since (U) is an equality for u = Uy.

Furthermore, we determine the existence of the limit in some instances (Section 5.1.2) and
we find the speed of convergence &, ., (1) <,a, 1~/ for every p > 1 for a certain class of
measures (Corollary 5.1.4).

5.5 Nonasymptotic upper bound (Theorem 5.1.7)

The proof of Theorem 5.1.7 is similar to those of its counterpart for compactly supported
measures in [ : ] (Theorem 5.4.3). lteratively n times, we extract from the given
measure /. a sufficiently concentrated subprobability with mass equal to 1/n. In | , ],
where 1 is compactly supported, the subprobabilities are found by splitting the support into a
finite number of pieces (of small, comparable size) and applying a pigeonhole-like principle: the
measure of at least one of these pieces is sufficiently large. Since our measure is not compactly
supported, we use the moment condition to first identify, at each iteration, a compact region
(small relative to the moment of ;1) where enough mass is concentrated; we then proceed as
before.

Proof of Theorem 5.1.7. Fix n € Ny, let M = f”:z:He dpu, and define

2nM G
rk:z(n—k) , kEe{l,2,...,n—1}.
With this choice, for every k we have
p(rnd) =1 [ it [ el
R\ [y, rg ] R\ [—r 7] (5.5.1)
L) VO L
- 2nM 2 2n’
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Using [ , Lemma 1], we now argue as in the proof of | , Theorem 2]. By applying this
lemma to the measure vy == pl;_,, ,,j¢, we find a measure 7, < vy with total mass||n:|| = 1/n

and supported on a set with diameter bounded by 4v/d 7, (n || |)~/¢. We repeat this procedure
with vy = pi|i_,, ;,je — M1 to find 1y, then with v3 == pf(_,, ;o — 71 — 72, and so on. At the

end, we have a family of measures 11,79, ...,7n,_1 with
1
Mttt Spoand il =lnell ==l =
and
~1/d

diamn(supp(n)) Sa () = i (ma (=, mil?) = (k= )

651 [pn—Fk\ Y
< 1y 5

forevery k € {1,2,...,n—1}.

(5.5.2)

Let us pick a point x;, from each supp(ny). After defining 1, == pp—mn—- - 1,1, Lemma 5.3.1
gives

e (1) S WP+ 4 My +70,n (O, + - + 60, +00))

< WE (1, ™" d0) +:§W5(m,n‘15zk) (5.5.3)
¢ i i omemtn
Holder's inequality and the fact that 6 > p* yield
[l < 325 < a2/t < agolouols (55.4)
Moreover,
nil (diam(supp(ﬁk)))p g;;)e AP0 51 nil(n _ k)—g—g <pd0 Mp/en—p/d’ (5.5.5)

n

k=1 k=1

where, in the last inequality, we used that £+% < 1. We conclude by combining (5.5.3), (5.5.4),
and (5.5.5). O

5.6 Uniform measure on a cube

In this section, we establish the limiting behavior of the optimal empirical quantization error
for the uniform measure U, on [0, 1]<.

Proposition 5.6.1. For every p > 1, we have the identity

lim n'/%,,(Us) = inf n'/%,,(Us) = Gpq- (5.6.1)

n— oo neNy
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5.6. Uniform measure on a cube

Figure 5.1: The points on which the optimal measure p,, for U; is concentrated are evenly
separated on [0, 1].

Note that this proposition applies also when p > d.

Proposition 5.6.1 is easy to prove in dimension d = 1, see Remark 5.6.3 below. Moreover,
exploiting the self-similarity of the cube, we can build a simple “scale-and-copy” argument
(Lemma 5.6.4, inspired by | , Step 1 in Theorem 6.2], see also Figure 5.2) to write

= f 1 .
dp.a ég%lgfgpknl Epktm(Ua)

In order to prove that

lim sup n'/9¢, ,(Uy) < inf limsup km'/ % kim (Ua) ,
n—00 meN1T ko0

we estimate the increase rate of the function n — ¢&,,,(Uy): given n and m, we want to know
how far n'/9¢, ,(U,) is from the sequence k — km!/?€, 4,,(U,). The bound on the increase
rate is proven in Lemma 5.6.5 by constructing a suitable competitor for the minimization
problem that defines ¢, ,,(Uy). This competitor is built by combining two optimal empirical
quantizers: one for U, and one for the uniform measure U;_; on the (d — 1)-dimensional
(!) cube. In the end, this procedure shifts the problem to estimating the optimal empirical
quantization error for the uniform measure on a lower dimensional cube. In fact, (5.6.1) is
proven by induction on the dimension.

Remark 5.6.2. While it is obvious that n — e,,(x) is nonincreasing, the same cannot in

6+6

general be said for the optimal empirical quantization error. For example, if u = === for two

distinct points z,y € R?, then &,4(u) = 0 but &,3(u) > 0.

Remark 5.6.3 (1-dimensional case). The values of e, (U;) and é,,,(U;) are easy to compute
and coincide. For both the problems, the optimal measure p,, € P, (R?) and the optimal
transport plan v € I'(Uy, p,,) are simply:

i=1

see | , Theorem 4.16], | , Theorem 5.5], and Figure 5.1. Hence,

®(521 1 € F(Ul,,un),

i
n ’n

2 — 1 1

(p+1)(2n)r

€£7n(U1) = ég,n(Ul) = Z dx =
i=1

Proof of Proposition 5.6.1. For simplicity, we write é,,, 4 in place of &,,(Uy). The proof is
by induction on the dimension d. Base step: By Remark 5.6.3, n¢,,  is constantly equal

1
to W
For the inductive step, we make use of two lemmas.

Lemma 5.6.4. For every m, k € Ny, we have the inequality
. 1.
ep,kdm,d S %ep,m,d' (562)
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Figure 5.2: ldea for Lemma 5.6.4. Given the measure ., concentrated on the black dots in
the left square, the competitor 1}, is built by making k? rescaled copies of fi,,.

Proof. Let p,, € Pimy(R?) and v € T'(Uy, p). For every i € {0,1,...,k — 1}%, we define

1
E(l+x)7 :L‘G[O,l]d.
Notice that T; maps [0, 1]¢ to i/k+[0,1/k]?. The idea is to use these transformations to make
smaller copies of i, which, together, constitute an appropriate competitor for the infimum
that defines ¢, ;a,, 4. Precisely, we set

Ti(x) =

,U;Cd = /{:dz #umepkdm( d),
’7/ = ﬁ Z(Tzuj—‘z)#’y € F<Uda M;cdm) :

With these choices, we obtain

oma < [l =vl a7 = 55 [1T0) - Ty @
= 2 [l =yl dv = k,,/l!x—yllp ay.

We conclude by arbitrariness of v and fi,. O

Lemma 5.6.5. There exists a constant c,, > 0 such that, for every n,l € Ny, we have

. n [, L\
ep,n-i-l,d-‘rl S n+ l pn d+1 +c Cp "+ lep’l’d + Cp m . (563)
Proof. Let p,,v; be probability measures of the form
1. gil 1 n+l
Hn = E 26($i,ti) S P(n) (R ) , l Z 511 eP l)(R )
=1 i=n+1

for some @1,. .., Tp, Tpi1,- -, Tny € RTand ty,...,t, € R. Pick v € ['(Uyy1, i) and 1 €
['(Ug,v;). Consider the linear 1-Lipschitz function T': R4 — R*! given by the formula

T(z,t) = <x,nt>, reR?, teR,
n+1
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e

1

B[O

Figure 5.3: Idea for Lemma 5.6.5 with d = 1,n = 4,1 = 3. From a transport plan for Uy,
with n points and one for U, with [ points, we construct a new plan for Uy, with n+1[ points
by “shrinking” the first one and “expanding” the second one.

and define 7/ € P(R*™ x R4 via

/gody/; ] go(T(xt) (2, 1) d7+/ / (z,t,2',1) dn(z,2) dt,

n-+l

for every continuous and bounded test function ¢: R4l x R — R. It is not difficult to
check that the first marginal of 7/ is Uy, . Indeed, given a test function 1: R¥*! — R and
denoting by 7!: R4T! x R4 — R+ the projection onto the first d + 1 coordinates, we have

/¢d7‘('3#’y,:n+l/’¢ xt dﬂ#7+/ /thdﬂ#n r) dt
:n+l//< )dUd dt+/ /¢xthd
_/dedH.

The second marginal is

1 n n+l
=1 i=n+1

because

/wdﬂify’:nn_i_l/z/}( (x,1) dw#’y—l—/ /wxldﬂ#n()d

B w 1. l 1 n+l
= r g VTt + oy 3 e

We infer the inequality

pd’)/

B n
eg,n—f—l,d-l—l < m /HT(JJ,t) - T(:L",t/)

/ /th le dn(x,2") dt.
n+l
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1. since T is 1-Lipschitz,

T(x,t) =T, )| <||(z, 1) = (", )],

2. there exists a constant ¢, such that

@) = (@, #)

pgcp(Hx—x' p+’t—t'

for every z,2/ € R? and ¢,t’' € R. Precisely, ¢, = max(l, 25_1)
Therefore, we obtain

’)

~p n

nan < 7y [ = @.0)

pd'y—ircpnj_l/Ha:—x' .

dn
1
+cp/ (1 —t)P dt.
prew)
By arbitrariness of u,,v;,7v,n,
> n oo L ' P
Cpntldil = n 4 | Cpmdtl + o Cpid To | (1—t)P dt,
el
and the conclusion follows.

]
Assume that (5.6.1) is true for a certain dimension d, and fix m € Ny. For every n > 2d+1yy,
set

k, = l(n>d+l} -1, Il,=n-— kﬁ“m.
m

Observe that k,,, [, > 1 for every n (they are integer and strictly positive), and that I, <4,
anl Indeed, on the one hand,

d+1

= (k, +2)4,
from which we get

o < (ko + 2™ = K3 ) Sg kim < nTmas
On the other hand,

b > (ke + )" =k )m Za (ka

d 4 _1_
kn + 2)%m > narima+
Lemma 5.6.5 gives the estimate
l l p+1
~P ~p n ~p n
pn,d+1 ep,kﬁ“m,dﬂ Sp Eep,ln,d + () )

and, by inductive hypothesis, €, | <pa [-7/% Thus,

1711—5 l p+1
~ y4 n
pn,d+l a ep7k’(rit+lm7d+1 §p7d + ’

n n
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5.7. Asymptotic behavior for p € [1,00) (Corollary 5.1.4)

d
The combination of the latter with [,, <, n@T gives

p p
lim sup na+i e < limsupna+ie? )
n—)oop pndtl = n—)oop p,k;iﬁlm,d-i-l

Now we use Lemma 5.6.4 to write

. 1 - . nd+l 1
lim sup n@ e, ,, 441 < €pm,d+1 limsup = MLy 1 dy1 -
n—00 n—00 kn
We conclude the inductive step (and therefore the proof) by arbitrariness of m. n

5.7 Asymptotic behavior for p € [1,00) (Corollary 5.1.4)

This section is devoted to Corollary 5.1.4. Note that this result will not be used later in this
work. The following simple observation is at the core of the proof.

Remark 5.7.1. The property
lim sup n'/9¢, (1) < oo (5.7.1)

n—oo

is invariant under pushforward via Lipschitz maps. In particular, if T': [0, 1] — R? is Lipschitz,
then (5.7.1) holds with p := T, U, for every p > 1.

Proof of Corollary 5.1.4. Step 1 (2 = Q). Assume at first that Q = Q, i.e., Q itself is convex
and with C'! boundary. The idea is to use the regularity theory for optimal transport to
find a Lipschitz map 7" such that p = T Uy in order to apply Remark 5.7.1. Precisely, we
use [ , Theorem 1.1] (see also [ , Theorem 1.1 (i)]): given a measure py = po-L°
concentrated on an open set )y, with the same assumptions as p and (2, there exists a
Lipschitz transport map® T} pushing s to p. If we manage to find one such g of the
form pp = (1)U, for some Lipschitz map T, then we can set 7' := T} o T}, and conclude.
The obstruction to simply taking p1o = Uy is that the boundary of [0, 1]¢ is not of class C'!.
Let us also note that it makes no difference if we find i as Lipschitz pushforward of the
uniform measure on another d-dimensional cube, such as the unit ball w.r.t. 1-norm [|-||;.

In light of the previous discussion, proving the following lemma suffices to complete this Step.
Lemma 5.7.2. The map

[Ed[k
To(x) = (1 =zl + | = lelly <1,

1l

is Lipschitz continuous. Moreover, the measure 1y = (1)U ({||||1 < 1}) is concentrated

on the Euclidean ball )y := {||||2 < 1} and, therein, it has Lipschitz continuous and uniformly
positive density.

Proof. We omit the simple proofs that 7T} is Lipschitz and that uq is concentrated on €2y, and
focus on the computation of the density of . Let ¢: 29 — R be a Borel measurable and
bounded test function. We have

1 ol
/gp dpg = / / @(To(rv))rd_l dr d%d_l(v),
Cq Jsd-1 Jg

6ln fact, the map T is of class C'' with Holder Jacobian. Since Qg is convex, T is Lipschitz.
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where ¢4 == ’{HHl < 1}‘ = %C!l' the set S*~! is the (d — 1)-dimensional sphere (w.r.t. the 2-

norm), and 7?1 is the (d — 1)-dimensional Hausdorff measure on it. Let us write

To(ro) =r (L=rloly+rlol}) v, re(0fpli’), ves™,

=6y (r)

and notice that
@:€)(r) =1+ 2rl, (loll, — 1) > 1,

where, in the last inequality, we used that |||, <||-||,. In particular, &, is invertible. Thus, by
changing variables, we find

_ L 1 rv & ()™ 7 =1,
/90 duo—cd/gdl/o i )(&fv)(fvl(f))d A4 (),

and, therefore, the density of 1y on €2 is

&M (11,)
allo i 0,0) (621 (1211))

d—1

po(x) = ,  where v, = |zll, < 1.

x
1l "

If we set

=l e 0 gy (12
T o (T s, D T e, )

cqV/1+4t 2t

tedious but simple computations (passing through the explicit formula for & ') reveal
that polo, = a o 8. When ||z||, < 1, the values of 3(z) range between 0 and d — V/d.
On this interval, the function « is Lipschitz continuous and positive. Since S|q, is Lipschitz
too, the proof is complete. O]

Step 2 (2 # Q). Let us now generalize to the case where, possibly, Q # €, but there
exists M : 2 — §2 as in the assumptions. Consider the probability measure ji defined by

N (po M)|det VM| on Q, i

= ~ =pL°.

P {0 on R4\ Q, po=r

Thanks to the assumptions on M and p, to this new measure we can apply Step 1; thus (5.7.1)

holds for ji. Moreover, by the change of variables formula, ;x = Myfi, and the map M

is Lipschitz because its Jacobian is bounded and ) is convex. Hence, we conclude by
Remark 5.7.1. O

5.8 Main theorem (Theorem 5.1.1)

This section is subdivided into four parts: we first establish two preliminary lemmas, then we
prove Theorem 5.1.1 for singular measures, the upper bound (U) (in general), and eventually
the lower bound (L).
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5.8.1 Preliminary lemmas

Lemma 5.8.1. Let (by)ren, be a sequence of nonnegative numbers, infinitesimal as k — oc.
Then there exists a sequence (ky)nen, C Ny such that k, — 0o as n — oo and

lim n~Y/42% = lim n'/42 7k, =0, (5.8.1)
n—oo n—oo
Proof. The existence of such a sequence is established in the proof of | , Theorem 5] by
F. Barthe and C. Bordenave. 0

Lemma 5.8.2. Let C' C R? be a closed set and let p € leo(]Rd). For every k € Ny and s > 0
define the open sets

Q= (0,277 4274, ieZ, (5.8.2)
and
QP = int U Q. (5.8.3)
i€Z4: Q;NC'=0

(see Figure 5.4), the set of indices
I s = {z €Z i |lx—vy| > s Vo e Vy e R\ Q(k)} : (5.8.4)

and the function

K3

Prs = (7[ pdgd) 1g, . (5.8.5)

ielk,s
Then pys — p|ra\c almost everywhere and in LY(RY) as k — oo and s — 0.
Proof. Almost every point z € R?\ C (for example, the points out of C for which all
coordinates are irrational) is contained in some €2; with i € [} ; as soon as its distance from C

is larger than v/d2'~* + s. Therefore, by [ , Theorem 6.2.3], we have p s — plra\c
almost everywhere and, by Scheffé's Lemma | , Theorem 5.10], in L!(R). O

Remark 5.8.3. With the notation of Lemma 5.8.2, note the following:

Uauc Uauca®c | %R\ C, keNy, s>0.
Z'EI]C,S iEIk,O Z'EI)C,O
5.8.2 Singular measures
The proof of Theorem 5.1.1 for singular measures is inspired by | , Proposition 3]. We
will combine the following three observations:
= we can split 4 into measures y' supported on small cubes (plus a remainder that we

control with Theorem 5.1.7);

= the error &0 (u) is subadditive in the sense of Remark 5.3.9 and, by Theorem 5.4.3, for

every u' € P.(R?), we can bound n'/4¢,,,(11*) in terms of the diameter of the support
of ut;

= since u is singular, it is concentrated on open sets with arbitrarily small Lebesgue
measure.
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Proof of Theorem 5.1.1 for yu 1. #?. Choose any open set Q C R? such that u(Q) = 1,

and write it as a countable disjoint union of (half-open) cubes {Q;},.y, see, eg., [ :
Theorem 1.11]. Note, in particular, that diam(Q;) <4|Q:|"/".
Pick two numbers n, i, € Ny and define
ng= (@), b= @M | i€ {1 )
0 otherwise,

Notice that u* < u for every i and, since the cubes are all disjoint, also the sum Y™+ /% is
not larger than pu. Define

tmax Tmax

no=n—y n;, pl=pu—> i,
=1 =1

and notice that H,uOH = ng/n.
Owing to Remark 5.3.9, we have

tmax

ehn(n) < D e, (1)
=0

Theorem 5.1.7 (or Theorem 5.4.3 for i > 1) yields

~ _P_P imax 1—
Epn(1) Spao ntlny 4 (/HxH d,LL()) +> n'n, a diam(Q;)?
Z = (5.8.6)
< b

p_1 1-E_& 1-2 d
Npad79>.u ne 1n0 a0 + n - Z nl ! ’Ql‘p/ )

where 6 > p* is such that 1 € Py(R?). Note that a :=1—5 — & > 0. Since p < d, we can
apply Holder's inequality to the last sum and obtain

i i -4 i p/d

max B max max

znid Ws(zm) (ZIQJ) < ni-f|QP/ (5.8.7)
i=1 =1

Furthermore, we notice that

ng <mn— f(nu(@z) - 1) =n (1 — ia:x,u(Qz)) + imax - (5.8.8)
i=1 i=1

We now combine (5.8.6), (5.8.7), and (5.8.8) to infer

e Zmax max d

hence, .
lim sup np/dep W (1) Spado (1 -3 ,U(Qi)) QP (5.8.9)

Since p is concentrated on ey, @i, the first term at the right-hand side of (5.8.9) tends
to 0 as imax — 00. Moreover, when i is singular, || can be made arbitrarily small. O
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5.8.3 Upper bound

To prove the upper bound, we first assume that the measure p is compactly supported and
absolutely continuous. We split the domain into cubes {2, }, with edge length 27* and consider
an approximating density px that is constant on each of these cubes. We then construct a
further approximation p,(gn) having mass on each cube equal to an integer multiple of 1/n, i.e.,

of the form "
(n) ._ ni Lo,

with n; = nu(€2;). Using Remark 5.3.7, Remark 5.3.9, and Proposition 5.6.1, it is possible to
show that

k—o0 n—00

1/p
lim sup lim sup n'/%¢,, , (p;")) < Gpg </d p% d$d> :
R

Indeed, heuristically:

e, (V) < Z%\Qi]”/d & (Uy) (Rmk. 5.3.7, Rmk. 5.3.9)

(2

xquzﬁ|9i|p/dni—p/d (Prop. 5.6.1)
k] - n
~ d—p
mn ST Q) T (ns ()

~ n_p/dEjgd/ pdij dz?.
R4

Our argument is similar to the proof of Zador's Theorem (see [ , Steps 2 & 3 in
Theorem 6.2]), but we have an additional obstacle: for fixed k, the approximating error
explodes as n — oo. Even worse: the two errors made by replacing 1 with pg, and pg
with pfg") compete with each other, in the sense that (up to constant), each one is almost
equal to a negative power of the other. However, in the upper bound for the error W;’(,u, Pk),
thanks to Lemma 5.3.2, there is also the additional term ||p — pg|| ;.. This term is infinitesimal
as k — oo (here we use that p is absolutely continuous and Lemma 5.8.2). Taking advantage
of Lemma 5.8.1, we can let k tend to infinity with n in such a way that both approximating
errors become negligible. This solution is partly inspired by the proof of | , Theorem 5].

To deal with a general measure, we split it into its singular part, a compactly supported and
absolutely continuous part, and a remainder. To the latter, we apply Theorem 5.1.7.

Proof of the upper bound in Theorem 5.1.1. Step 1 (1 € P.(R?) and p < £?). We start by
proving the upper bound (U) under the additional assumption that p is absolutely continuous,
e, = pZ?% and compactly supported. It is easy to check that, if 7: R — R? is a
homothety, then (U) for 1 and for Ty p are equivalent. Thus, without loss of generality, we
assume that 4 is concentrated on (0, 1)<.

Fix k,n € Ny, Let us define {4}, 54, Iy = I, and p, = po as in Lemma 5.8.2
with C := R?\ (—1,2)? and s = 0. Notice that ||px|;: =|lp|| = 1. For every i € I, we
define n; = n;(n, k) = [nu(€%) ], and we let ng :=n — X7, n;. We then set

n n;

i€l
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By using the triangle inequality, it is immediate to check that

Epn (1) < Epnlpr) + Walk, pr) - (5.8.10)
Remark 5.3.9 yields
& (op) <. (pk —pln ) + ; er . ( 1)) , (5.8.11)
i€l
and can use Remark 5.3.7 to write
& (ZU(QQ) - %égm (V@) = ng;p~gm(Ud) ielst.n;>1. (58.12)

The 1 homogene|ty of €, ,,, combined with Theorem 5.4.3 (recall that, currently, all measures
are concentrated on (0,1)9) gives

(n)

Pk — P L)

Epmo (pk - Pl(c )) Sp.d ‘ ng"/t = M0

Thus, since

no=n— 3 [nu(Q)] <n—>> nu() + #I, = #1, Sqa 2",

ZEIk Zelk

we have

Qk(d—p)
pno (pk p§€ )) ~p,d n (5813)
(here we use p < d). Moreover, by applying Lemma 5.3.1 and Lemma 5.3.2, we get
WE (i) < 30 WY (ile,, n(Q0)U())
e B (5.8.14)
< 3 diam()7||(p = i)l |, Spa 270 — prll s -
i€l

By Lemma 5.8.1 and since py L, p as k — oo (Lemma 5.8.2), we can choose k = k, as a
function of n in such a way that

lim n~Y/42kn — lim n 497k p — panLl =0, (5.8.15)

n—oo

By (5.8.10), (5.8.11), (5.8.12), (5.8.13), (5.8.14), and (5.8.15) we thus have

limsupn”/*¢7, () < limsup2 ™oy 55 (M) T e (vy)

n—o00 n—00 i€ly,, in;>1 n Pimi
d—p
<timsup [ 7 h(ln2 4, ]) A2,
n—oo
where
d~ .
h(m) mrlier (Uy) !f m € Ny,
0 ifm=20.
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Note that h is nonnegative, bounded, and converges to (}g’d as m — oo by Proposition 5.6.1.
In particular, since n27%¢ — oo and p;, — p a.e., we have

lim h([n2""py, |) A2 =G5, a.e.on {p>0}. (5.8.16)
Since =2 € (0, 1), the function t — t“7" is subadditive. Therefore,

d—p o
/ Pl h([n2 7y, |) 2 < / p b2y, ]) A2

+ sup him) [ lp= g, T A2,

meENy

Using that p and py, are supported on [0, 1]¢, Jensen’s inequality gives

PR ip
J1o= o 0t <llp— o LT >0, asn oo

In the end, we obtain

n—oo n—o0

hmsupn”/dep A(p) < lim sup/p%ph(tnTk"dpknJ) dz? = (};d/p%p dz?,

where the last identity follows from (5.8.16) and the dominated convergence theorem.

Step 2 (conclusion). Let p € Pp(R?) and fix r > 0. We let:

= 1! be the absolutely continuous part of ]
= 2 be the singular part of p_, a,
= = M|Rd\[—r,r]d-

Furthermore, for n € Ny, we define

as well as ng :=n —n; —ny — n3 and p®" == p — pb"* — p?" — 3" Note that ng < 3.

—tipt ifng > 1,

% n||pt

H J ’ 'uim = i€{1’2v3}’

0 otherwise,
By Remark 5.3.9, we can make the estimate
lim sup n?/9e (1) < Z lim sup n?/9e0 | (™). (5.8.17)

n—oo i=0 n—oo

We shall bound the four terms in the sum separately.

When ng > 1, Remark 5.3.7 and Theorem 5.1.7 yield

1—2 0,n
n ) 4 pld [
w0 = (22 e, ( )
N0 n 0 “pno HMOHH

5111) 1-2
Spas ”0) (el o
o\ rwu
1-5-3
é (1" dp
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The exponent a := 1 — & — & is positive; hence (the case ng = 0 is trivial),

p/dzp 0,n —a
n ep,no (,u ) Sp,dﬁ,/i n )

which means that the 0" term of the sum in (5.8.17) is zero.

When n3 > 1, similar computations give

a P/9
~ n n
nP/heb (1) Spao ( 3) ( / ]| d,ﬁ) .

n

Using that ng < nHu?’H < n||pl|, we thus obtain (trivially if ng = 0)
, p/0
np/dég’ng(,u&n) fgp,d,@:ﬂ (/HxH dILL‘Rd\[_T’T]d> .

IfH,uQH > 0, then ny — o0 as n — o0; therefore Theorem 5.1.1 for singular measures yields

n % luz
. _ n . 2 d-
lim sup np/degm2 (4*™) = lim sup <> ng/ € s < > =0,

and the same conclusion holds trivially ifH/ﬂH =0.

IfHulH > 0, then n; — 0o as n — oo; therefore the previous Step gives
ny\ T 1

lim sup n?/9e0 | (p"™) = lim sup <1> nf/dégm ( o )

n—oo n—00 n H/Ll H

d—p

d—p d
d / ( 101 ) dgd
[—r,r]d H H H
d—

N 1
< quH,U ‘

and the same conclusion holds trivially ifH,ulH =0.

In the end, (5.8.17) and the subsequent estimates prove that

n—oo

p/0
. - ~ d—p /]
lim sup n”/ &0 (1) < @4 /[ ]dp T AL+ cpapp ( / |4l dule\[_m]d>

for some constant ¢, 40, independent of . We conclude by letting » — oo. O

5.8.4 Lower bound

To prove the lower bound, we again split the domain into cubes {{2;}, with edge length 27"
and approximate the density p of the given measure . by the piecewise constant function

i

1
Pro = Z M(Qz)mg
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Given an optimal empirical quantizer p,, for p, we aim to bound from below the boundary
Wasserstein pseudodistance between pjo and j,,. We make use of this pseudodistance—
smaller than the Wasserstein distance—because its geometric superadditivity (Lemma 5.3.4)
is well-suited to reduce the lower bound problem to the single cubes. On each cube, we use
Lemma 5.3.13 and the definition of g, 4 to obtain the integral of pd;dp. The argument can be
sketched as follows:

g Zepm( (Qi)) with n; = np, () (Lem. 5.3.13)
> qp,dZn Q)] (Rmk. 5.3.7, Def. 5.3.5)

and, since it is reasonable to expect that 1, (€2;) =~ p(£2;), we get
dp
P! W (o, i) R dhg /Rd pa dL?.

The idea of using the boundary Wasserstein pseudodistance (or a similar object) to exploit
its geometric superadditivity is not new. It has been used to prove lower bounds in similar
problems, see, e.g., | : : ]. There is, however, a technical difference between
these works, which estimate the expected value of a functional of i.i.d. random variables, and
the current one. Given a set of u-distributed i.i.d. random variables, the random number of
those that fall within a certain region (cube) is a binomial r.v. whose law can be explicitly
determined in terms of u. Instead, given an optimal empirical quantizer p,,, it does not seem
immediate to rigorously justify the heuristic 1,,(€2;) ~ p(€2;). A considerable part of the proof
is indeed devoted to this problem.

Proof of the lower bound in Theorem 5.1.1. Fix k,n € N; and s € (0,27%), choose two
numbers €;,e, € (0,1), and define {Qi}iezd,Q(k),fm,[k78,pk70,pk,s as in Lemma 5.8.2
with C' := supp(p®). Set

2

Q; = {z e dist(z,R"\ Q) >e27 "}, ez’

Note that each ;" is an open cube with edge length equal to (1 —¢;)27%. It is also convenient
to define the “enlarged” sets

QF = {1: € R? : dist(z, ) < 3} , i€zt

An important observation that we are going to use later is:

OF Ny <27t i £ (5.8.18)

We say that two cubes €2; and ), are adjacent, and we write i ~ j, if Q; N Q; # 0 (it
suffices that their closures share a single vertex). Notice that each cube has 3% adjacent cubes,
including itself, and that, since s < 27%, the intersection Q) N Q; is nonempty iff i ~ j.

Using Lemma 5.3.10, pick i, € P(ny(R?) such that €,,(1) = W, (1, 1n). We have

Epn () = Whaa (1, ftn) = Wbaw ,(Pr0, tin) — Wheaw ,(pk,0, 1)

5.8.19
> Wbmm,p(pk,o, tin) = WPk, ttlow) ( )
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R\ C

—
2—k

Figure 5.4: Geometric setup in the proof of the lower bound. In this example, i € I},
and j S [k,O \ Ik,s-

where, in the last inequality, we used that u(Q(k)) = Hpk,oHL1 (recall Remark 5.8.3). Note
that, in the same way we derived (5.8.14), we can deduce

1/p
JA

Wi (pro: law) Spa 2_k|’0|g<k> — Pk0 (5.8.20)

Let us focus on Whaw) ,(pr0, tn). Set n; = nu,(€2;) € Ny for every i € I ;. By the
superadditivity property of Lemma 5.3.4,

Wb?l(k),p (,Okp, Nn) > Wbl;z,-,p (pk,Ov ,un) )

1€ 5t () > €027k
and, by Lemma 5.3.13,

(1 — 61)p+d
Wt (Pros ) = e (prolay ) = e — ()b (Ua),

where N := [2d/e;]?. Hence, by the definition of g, 4, we have

Qﬁ,d (1- El)erd —p/d
W), (Pros i) > o 3 p()(ni+N) T (5.8.21)

1€ st p(Q)>en2—kd

At this point, we need to estimate n; from above. To this aim, pick v € Tbgw) (k.0 fin),
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which gives:
n;

P pn(§2;) = W(W X Qz)
= 7((&)(@\ Qj) X QZ-) —l—'y((Q(k) N Qj) X Q,) —|—7((8§2(k) N Qj) X QZ)

1
<5 [le=oll Glgm o+ [ modz? (00 n0) x ).

If i € I, then the last term is zero since 9Q®) N Qf = () by the definitions of I, , and Q.
Moreover, since s < 27% we have
5.8.18)

(
| medzi= 5 u@plarne] TS a@+ ¥ 2suy).

; €l 0 i €l jri
We thus obtain

Q;
ni+ N <np( Q)+ N+n|—+ > 2"su(Q)
P el jmi

The elementary inequality (a + b))~ > a=¢ — (-%~, which holds for every a,( > 0 and b > 0,
yields

Q;
nu(Sh) | - + > 2%su(9y)

1(82;) S 1(€2;) P j€ln o jri
(o ) )+ M) L ey )T
pe] 124%Y7;
=:6;
i€y, (5.8.22)

Note that .

Q, =p/d;(Q).) T

(8%) 50 pllh) = () > 25

0 N p/d 1 4 N2k p/d

(TLM( i)+ ) ( + EQH)

Let us focus on the sum of the last terms in (5.8.22):

Y et S S S ()

P

G€Tyy : p(Q) > 2 Hd i€l \ 0 jelng:jri
. a.
—p/d_—p/dokp Z’Lelk,s 2 k (5823)
4,J€lg 0 i~]

_ 1
< 621)/6171710/5!2/%10 <p/”x —y|IP dy + 3d2k8> .
s
We plug these estimates into (5.8.21), take the infimum over v € Tbgw) (pk.0, fin), and find

¢y (1— ) ()T

2kp Nokd\P/d
€on )

np/degw) P (Pk,o ) Mn) >

i€l st p1(Q) > €227k (1 +

a1
— g (1—e) e v/ (S,,Wb?zw),p(ﬂk,o, fn) + 392Fs | .

<1
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Now we make a choice for the values of s and k. Thanks to Lemma 5.8.1, Lemma 5.8.2, and
the observation that Q%) " R?\ C as k — 0o, we can find k = k, such that

1/p

1/doky,
2 o

1/d2—kn

=0. (5.8.24)

lim n~
n—oo

= lim n n) —
lim Platn) = Pk,

We set s, := V2 knn=1/d which is smaller than 27%» at least for large values of n, and

obtain
p knp  p
Qpq2 2 N2
o S | Wi (P01 1)

d

_ . \ptd _
> (1—e) pr dod — 3dqp Pl [kn g —1/d
p,d (1 4 Nzknd)p/d {pk . >62} kn,sn p,d =2

€an

If we pass to the limit, keeping (5.8.24) in mind, we get

d—p
lim inf np/de?zwn),p(Pkn,oa pn) > qb 4(1 — €)P " lim inf [{ Prra, AL
Pk ,sm

n—oo
2} (5.8.25)
d—p
qud(l_Gl)p+d/ p i dL?,
’ {p>e}\C

where the last inequality follows from Lemma 5.8.2 and Fatou’s Lemma. By combining the
formulas (5.8.19), (5.8.20), and (5.8.25), and by arbitrariness of €5, ¢, we conclude:

1/p H,O|Q(k e 1/p
‘ ‘ 1/d~ d—p _ . n V| 11
liminf n*/"€, (1) > @p.d (/}Rd\cp d dx> Cp,a lim sup o1/ O

n—oo n—oo

=0

5.9 Limit existence for uniform measures

Combining the upper bound (U) and the existence of the limit for the uniform measure on a
cube, it is possible to prove (for p < d) the existence of the limit for any uniform measure on
a bounded set. The proof is inspired by [ , Theorem 24].

Corollary 5.9.1. Ifp < d and A C R? is a bounded Borel set with|A| # 0, then

lim 7'/, ,(Us) = G,4/ A" . (5.9.1)

n—o0

Proof. Note that this result easily follows from Proposition 5.6.1 if A is a cube. Moreover, in
general, one inequality is already given by (U) in Theorem 5.1.1.

We may and will assume that A is contained in (and not essentially equal to) [0, 1]%. Consider
the measures:

n ,ul = Ud|,4 :|A| UA:
. ,u2 =U; — ,ul = (1 _|A|) U[Oﬂd\A'
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For n € Ny, define

n
n=|—||+1, ny=n, no=n—-n-—1, ng:=1.
LAIJ

Observe that that 0 < n; < ﬁ‘ p'|| for i € {1,2} and define
in 1 7 . 0,n 1,n 2,n
pt" = et fori € {1,2} 't =Ug — " — p"
A || ]

By definition of g, ; and Remark 5.3.9, we have
d & i
Bt <8 a(Ua) <38, (™).
i=0

The 0 term at the right-hand side can be easily bounded:

dp/?
ép (MO,n) S Wp (Mo,n’ MO,nH50> — /Hpr d’uo,n S S
n

D1 P
Hence,
1 s n\ no\ T

gasa? () + (5) T w0+ ()T e (Vo).

which yields
Gpa < A liminf n?/%eb  (Ua) + (1 — A lim sup ey, (U[O,l]d\A)
(%) Al lim inf n”/ 28 (Ua) + @ 4(1 | Al).

We conclude by rearranging the terms. O

5.10 Proof of Theorem 5.1.3

The proof of Theorem 5.1.3 is based on a fundamental result by L. Fejes Téth [ , p. 81],
see also | |

Theorem 5.10.1 (L. Fejes Téth [ |)- Let f:[0,00) — R be a nondecreasing function,
let H C R? be a convex hexagon centered at the origin, let n € Ny, and let x1, ..., z, € R
Then

/Hf(||x]|> dz < i/ﬁHmm [l —al) i€ n}} o (5.10.1)

Let us fix n € N;. To prove Theorem 5.1.3, we consider a hexagonal tiling {Hm}Z of the
plane, with the area of each H;, being equal to |A| /n. The idea is to define an empirical
quantizer by taking the centers of the hexagons contained in A. Theorem 5.10.1 (together
with Theorem 5.4.1) is used to show that this quantizer is asymptotically optimal for the
classical quantization problem; hence, e,,,,(Ua) < €,,(Ua) < €pn(Ua). The issue is that, in
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general, we cannot tile A perfectly with hexagons. Therefore, we carry out this construction
only for the hexagons that are “well-contained” in A and leave out a strip of approximate
thickness n~!/2. We complete the quantizer by splitting the strip into approximately (and up

to constant) /n square-looking pieces {Bj}, of approximate size n~ /2 x n~1/? and taking
J

one point z; from each piece. In this way, the contribution of the strip to the p power of
the quantization error is bounded by

(532) 1

wp(FEvm)t5,) L LS ().) < L Sawnny

which is negligible, i.e., much smaller than n=p/2,

We use the bi-Lipschitz map to make the argument rigorous, by transforming the strip into a
more explicit approximate annulus.

Lemma 5.10.2. Let D C R? be the open unit disk and D be its closure. Let T: D — R?
be a homeomorphism onto its image. Then 8(T(D)) =T(0D).

Proof. By the Jordan-Schénflies Theorem (cf. | , Theorem 3.1]), there exists a homeomor-
phism ®: R? — R? such that ®|sp = T'|sp. In particular, the connected set ¢~* (T(D)) is con-

tained in R?\ 0D, implying that, in fact, it is entirely contained in either D or R*\ D. The latter
case is impossible: any retraction r1: R?*\ D — 9D would induce a retraction rjo®~'oT: D —
0D, which is absurd by the No-Retraction Theorem. Hence, QD*l(T(D)) C D. We claim

that equality holds. Indeed, if there exists z € D\ <I>_1(T(D)), then we can find a retrac-

tion ro: D\ {z} — 0D, which induces a retraction r,0 @' o T: D — dD. Once again, this
is absurd. Thus, 7'(D) = ®(D) and, using that ® is a homeomorphism and that it coincides
with 7" on 0D, we conclude:

o(T(D)) = 0(®(D)) = ®(9D) = T(ID). O

Proof of Theorem 5.1.3. Fix a regular hexagon H C IR? with unit area, centered at the origin.
For n € Ny, choose z1,...,x, € R%. By Theorem 5.10.1 with f(¢) := t?, we have

1
/||x||p dz < / min
H nJng °

Hence, by arbitrariness of the points x1,...,x, and by Theorem 5.4.1,

’x — Vnz;

" da = np/Q/ min||z — z;||” dx.
H 7

[ lalP de < Jim 26} (Un) = .
H

Therefore, again thanks to Theorem 5.4.1, it will suffice to prove that

n—oo

lim sup n?/?e0 (U,) §|A|p/2/ |z||” dx . (5.10.2)
H

We can and will assume that |A| = 1. Let T: D — A be a (bijective) bi-Lipschitz map and
let ¢ > 1 be a Lipschitz constant for both 7" and T7!. Let {Hi}ieNo be a family of regular,
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unit-area, pairwise disjoint hexagons that cover R%. For n € Ny, define H,,, := H;/\/n and

I, = {z €Ny : H;,, CT(D) and dist (Hi,n,T((?D)) > CT} , A, = U Hip.
v il
(5.10.3)
Note that we have A, CT(D) and

D\T'(A,) C {x € D :dist(z,0D) < n ' ep (cT + diam(H))} . (5.10.4)

ol

Indeed, for every x € D\ T~'(A,) there exists i & I,, such that T(z) € H;,,. There are two

cases. If dist (H;p, T(DD)) < <%, then

inf ||z — vyl <ecr 1nf HT( ) —T(y)|| < er diam (Hi7n> +cr dist (Hi7n,T(8D)) .

yeOD

=n—1/2 diam(H) <n=1/2¢p

If H;,, £ T(D), then, since H, ,, is connected, we have Hi7nﬂ6(T(D)> # (). By Lemma 5.10.2,
we know that 8(T(D)) = T(0D); hence dist(z,0D) < ¢y diam (Hl n)

By the measure-theoretic properties of Lipschitz maps (cf. | , Theorem 7.5]), we
have |T'(0D)| = 0 and

[AN\ Ap| =|T(D)\ An| < G[D\ T (A,)] -0 asn —ooby (5104).  (5.10.5)
Let k,, := #1,,. By Remark 5.3.9, we have the inequality

e (Ua) <Y & (Ualn,,) + s (Uslina, ) »

i€ln

and the sum over i € [, is easy to bound:

S @ (Uli,) <o [ el ar <o [ el e,
HIVR "

i€l
Therefore, (5.10.2) is verified once we prove that

lim sup n?/ ¢ AN (UA]A\A”) =0. (5.10.6)

n—oo
From now on, we use polar coordinates on D. Consider the function

:‘T{(r, 9) e D\T(A,) : 6€0,0}|,  0e0,2n], (5.10.7)

and note that g is continuous, g(0) = 0, and g(27) = |T(D) \ A,| =|A\A,| =1
Furthermore, g is strictly increasing: for 0 < 6, < 6, < 27, we have

g(02) = 9(01) =|T {(:0) € D\T'(An) : 6 € (00,621}
r6) € DT (An) : 6 € (01,0]}]

{
>c;2{r¢ e D\TY(4,) : rell—n"1], e(el,ez]}’
{ro )

¢
re[l-n"21], ¢ € (01,0}

Y

221



5.

ASYMPTOTICS FOR OPTIMAL EMPIRICAL QUANTIZATION OF MEASURES

A

Sl

Bl 61

Figure 5.5: Idea for Theorem 5.1.3. We select the hexagons inside T'(D) that are sufficiently
far from T(0D). We define the sets B; as T-images of intersections of D\ T!(A4,,) with
angles.

where the last inequality follows from the definition of A,, in (5.10.3). Indeed, if 1 —r < n=%/2
and T'(r,¢) € H,;,, then

dist (H;0, T(OD)) <|T(r,9) = T(1,9)]| < erll(r,6) — (1) < jﬁ .
Therefore,
— 92 9 1 _ Qg — 91
02) — g(61) > ¢ l——— | >¢ 10.
o0 a0 > 2220 (1o ) sl (09
Let us define
0;:=9"(i/n), Je{ln=hl g
Bj:=T{(r,¢) e D\T"(A) : 6 € (0, 1,0},  jefl,....n—k}. =
These sets enjoy two important properties: firstly, by (5.10.7) and (5.10.9),
_ _ 1
1Bj| = 9(0;) — 9(0;-1) =~ (5.10.10)
secondly, by (5.10.4),
B;CT{(r¢)eD :r>1-n""% ¢e (010},
which implies’
. o ¢ (5108) _ ¢
diam(B;) < er(0; —0j-1) + 2cr—= < QCT\/_< (0;) — (9]-_1)) + 200 —
\/ﬁ vn
o0 (5.10.11)
QCT\/_ + QCTT ST n_1/2
We can conclude: by Remark 5.3.9,
) (5.10.10) "—kn n—kn diam(B;)P
& n ko (UAlA\An) < ) eg,l(UA|Bj) Z
=1
(5.10.11) L
Srop <1 — ;) nP?=|A\ A,|n7P?,
which, together with (5.10.5), implies (5.10.6). O

"To move from one point of D to another, one can (inefficiently) walk radially up to the circle 9D, then
along 0D, and radially again.
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