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Abstract

The theory of optimal transport provides an elegant and powerful description of many evolution
equations as gradient flows. The primary objective of this thesis is to adapt and extend the
theory to deal with important equations that are not covered by the classical framework,
specifically boundary value problems and kinetic equations. Additionally, we establish new
results in periodic homogenization for discrete dynamical optimal transport and in quantization
of measures.

Section 1.1 serves as an invitation to the classical theory of optimal transport, including the
main definitions and a selection of well-established theorems. Sections 1.2-1.5 introduce the
main results of this thesis, outline the motivations, and review the current state of the art.

In Chapter 2, we consider the Fokker–Planck equation on a bounded set with positive Dirichlet
boundary conditions. We construct a time-discrete scheme involving a modification of the
Wasserstein distance and, under weak assumptions, prove its convergence to a solution of this
boundary value problem. In dimension 1, we show that this solution is a gradient flow in a
suitable space of measures.

Chapter 3 presents joint work with Giovanni Brigati and Jan Maas. We introduce a new theory
of optimal transport to describe and study particle systems at the mesoscopic scale. We prove
adapted versions of some fundamental theorems, including the Benamou–Brenier formula and
the identification of absolutely continuous curves of measures.

Chapter 4 presents joint work with Lorenzo Portinale. We prove convergence of dynamical
transportation functionals on periodic graphs in the large-scale limit when the cost functional
is asymptotically linear. Additionally, we show that discrete 1-Wasserstein distances converge
to 1-Wasserstein distances constructed from crystalline norms on Rd.

Chapter 5 concerns optimal empirical quantization: the problem of approximating a measure
by the sum of n equally weighted Dirac deltas, so as to minimize the error in the p-Wasserstein
distance. Our main result is an analog of Zador’s theorem, providing asymptotic bounds for
the minimal error as n tends to infinity.
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CHAPTER 1
Introduction

Over the last four decades, the theory of optimal transport has consistently attracted consider-
able interest among both theoretical mathematicians and applied researchers. Its relevance
is well-established not only in mathematical analysis (calculus of variations, PDE theory,
functional analysis), but also in mathematical physics, probability, geometry, and statis-
tics [Vil09b, San15, CNWR25, MRTV24, Mik21]. Furthermore, applications have been found
in many other fields, ranging from economics [Gal16] to machine learning [MPHA25], from biol-
ogy [BSK+24] to geophysics [MBM+16]. The originating mathematical problem, formulated by
G. Monge almost 250 years ago [Mon81], stems from a remarkably simple and natural question:
What is the optimal way to move a certain amount of mass to a different spatial configuration?
The modern mathematical formulation of the problem, due to L. Kantorovich [Kan42] is as
follows. Given are a cost function c : X × Y → R, which quantifies the effort required to
move a unit of mass from a location x ∈ X to another one y ∈ Y , and measures µ, ν that
represent the initial and final configurations on X, Y . The minimization problem reads

inf
π∈Π(µ,ν)

ˆ
X×Y

c(x, y) dπ(x, y) , (1.0.1)

where Π(µ, ν) is the set of couplings

Π(µ, ν) :=
{︂
π ∈ M(X × Y ) : π(· × Y ) = µ(·) and π(X × ·) = ν(·)

}︂
.

Note that Π(µ, ν) is nonempty if and only if µ and ν have the same total mass m: in this
case, µ⊗ν

m
∈ Π(µ, ν). For this reason, it is not restrictive to work with probability measures

(i.e., to assume m = 1). Of particular interest is the case where X = Y , this space is endowed
with a metric d, and the cost function c is set equal to a power dp of the distance. For
example, it is reasonable that on X = Y = Rd, the cost of physically moving a unit of mass
is proportional to the distance it covers. When c = dp, p ≥ 1, the minimal total cost

W p
p (µ, ν) := inf

π∈Π(µ,ν)

ˆ
X×X

dp(x, y) dπ(x, y) (1.0.2)

turns out to be the p-th power of a metric on the space Pp(X) of the probability measures
with finite p-th moment, called p-Wasserstein or p-Kantorovich–Rubinstein distance. We will
refer to Pp(X) endowed with Wp as the p-Wasserstein space.

The interest in Wasserstein distances is not only due to the natural problem they derive from
and their simple definition, but also to their many favorable properties, which give rise to an

1



1. Introduction

µ
ν

Figure 1.1: The mass displacement problem in dimension 1.

elegant and useful theory. The simplest example of this is that they generalize the underlying
distance d: if δx, δy are Dirac deltas at x, y ∈ X, then Wp(δx, δy) = d(x, y). Many other
results—more involved to prove, but generally with surprisingly neat statements—are, by now,
classical and can be found, e.g., in the monographs [Vil03, Vil09b, San15]. In Section 1.1, we
will present four of them: existence of optimal transport maps, the Benamou–Brenier formula,
the Riemannian structure of the 2-Wasserstein space, and the gradient-flow representation
of evolution equations. The latter, in particular, reveals a profound connection to PDEs and
random processes, which still seems to hold great potential for further development. This
leads to the first main topic of this thesis: the treatment of boundary value problems, kinetic
equations, and—more indirectly—evolutions in a discrete (or discretized) setting by means of
optimal transport techniques. To deal with these problems, it is often necessary to adapt the
classical theory, e.g., by modifying the Wasserstein geometry. Determining the best modified
framework and exploring the results that can be obtained within it are among our main
objectives.

The second main topic is discrete approximation via optimal transport methods, which is
ultimately motivated by computational problems such as, e.g., the design of numerical schemes
and data compression. Indeed, first, assessing the quality of numerical approximations of
certain PDEs can benefit from a theory of gradient flows of measures in a discrete setting.
Second, Wasserstein distances are natural tools to quantify the error introduced by discretizing
a measure. In Sections 1.2-1.5, we will contextualize and discuss the contributions of this
thesis.

1.1 Classical Optimal Transport

Optimal transport maps
When X, Y are separable and completely metrizable topological spaces, and c is bounded from
below and lower semicontinuous, it is not difficult to show that the problem (1.0.1) admits a
minimizer π ∈ Π(µ, ν) for every choice of µ ∈ P(X) and ν ∈ P(Y ); see [Vil09b, Theorem 4.1].
More challenging is the question of existence of deterministic optimal couplings π, namely
such that, additionally, there exists a map T : X → Y with

ˆ
X×Y

φ(x, y) dπ(x, y) =
ˆ

X

φ
(︂
x, T (x)

)︂
dµ(x) for all φ ∈ Cb(X × Y ) .

In general, the answer is negative. For example, when µ is a Dirac delta and ν is not, the
mass must necessarily split. The pioneering work of M. Knott and C. S. Smith [KS84],
Y. Brenier [Bre87], L. Rüschendorf and S. T. Rachev [RR90] provided the first positive result.

2



1.1. Classical Optimal Transport

Figure 1.2: Displacement interpolation.

Theorem 1.1.1 (Knott–Smith, Brenier, Rüschendorf–Rachev). Assume that X = Y = Rd,
that µ, ν have finite second moment, that µ is absolutely continuous with respect to the
Lebesgue measure, and that the cost c is the squared Euclidean distance. Then:

1. The problem (1.0.1) has a unique solution π. This coupling is induced by a map T of
the form T = ∇ψ for a lower semicontinuous, convex function ψ : Rd → R ∪ {+∞}.

2. Conversely, if ψ : Rd → R ∪ {+∞} is lower semicontinuous and convex, and if the
coupling π induced by ∇ψ belongs to Π(µ, ν), then π is optimal for (1.0.1).

Since then, research on this topic has been intense, and many generalizations are now known.
For example, analogous versions of Theorem 1.1.1 hold when we replace the squared Euclidean
distance with any of its p-powers, p ≥ 1 (without uniqueness for p = 1). For details, we refer
to [Vil03, Chapter 4] and [Vil09b, Chapters 9 & 10], and the references therein.

The Benamou–Brenier formula
The Benamou–Brenier formula is a dynamical formulation of the Wasserstein distances due to
J.-D. Benamou and Y. Brenier [BB00]. Let X = Y = Rd, choose c(x, y) = |x− y|p with p > 1.
Let us assume—for simplicity—that there exists an optimal map T between µ0 = µ and µ1 = ν,
and that the maps Tt(x) := (1 − t)x + tT (x), with t ∈ (0, 1), are invertible. We naturally
find an interpolating curve of measures (µt)t∈[0,1] by setting

ˆ
Rd

φ(z) dµt(z) =
ˆ
Rd

φ
(︂
Tt(x)

)︂
dµ(x) for all φ ∈ Cb(Rd) .

Interestingly, the curve (µt)t solves a continuity equation: there exists a vector field vt : Rd →
Rd such that

∂tµt + div(vtµt) = 0 (1.1.1)

in the distributional sense. One such vector field can be found by setting vt := (∂tTt) ◦ T−1
t

and, with this choice, one has

W p
p (µ0, µ1) =

ˆ 1

0

ˆ
Rd

|vt|p dµt dt . (1.1.2)

Even more, the curves (µt,vt)t we defined are exactly the minimizers of the action at the
right-hand side of (1.1.2) among the solutions to the continuity equation. This means that
the p-Wasserstein distance is characterized by a variational dynamical problem.

3



1. Introduction

Theorem 1.1.2 (Benamou–Brenier [San15, Section 6.1]). Assume that µ0, µ1 have finite p-th
moments. Then

W p
p (µ0, µ1) = min

(µt,vt)t∈[0,1]∈CE(µ0,µ1)

ˆ 1

0

ˆ
Rd

|vt|p dµt dt , (1.1.3)

where CE(µ0, µ1) is the set of all narrowly continuous curves of probability measures t ↦→ µt

between µ0 and µ1, and all vector fields vt such that the continuity equation (1.1.1) is satisfied.

Equation (1.1.3) was derived for the first time (for p = 2) in the work of J.-D. Benamou and
Y. Brenier [BB00]. Various generalizations are possible, for example when replacing Rd with
a manifold; see the references in [Vil09b, Chapter 7]. A similar characterization, known as
Beckmann’s problem [Bec52], holds for p = 1.

Theorem 1.1.3 ([San15, Theorem 4.6]). Assume that µ0, µ1 have finite 1-st moments. Then

W1(µ0, µ1) = min
{︂
|w| (Rd) : µ1 − µ0 + div(w) = 0

}︂
(1.1.4)

= min
(µt,wt)t∈[0,1]

⎧⎨⎩
ˆ 1

0
|wt| (Rd) dt : ∂tµt + div(wt) = 0

⎫⎬⎭ , (1.1.5)

where w and wt, for t ∈ [0, 1], are vector measures on Rd. In (1.1.5), t ↦→ µt is taken among
the curves of probability measures connecting µ0 to µ1.

Riemannian structure
The Benamou–Brenier formula (1.1.3) for p = 2 hints at a formal Riemannian structure on
the space of probability measures P2(Rd) endowed with the 2-Wasserstein distance. The idea,
first introduced by F. Otto [Ott01], is the following. The role of “smooth” curves is played by
solutions (µt)t to the continuity equation (1.1.1) (for some vector field), and the Hilbert norm
on the tangent at µt is given by

∥∂tµt∥2
µt

:= inf
vt

ˆ
Rd

|vt|2 dµt , (1.1.6)

where the infimum is taken among all vt’s such that (1.1.1) holds. It can be shown that
the optimal vt is the only solution to (1.1.1) in the L2(µt)-closure of the set of gradi-
ents

{︂
∇ψ : ψ ∈ C∞

c (Rd)
}︂
. In this way, (1.1.3) (for p = 2) becomes

W 2
2 (µ0, µ1) = min

(µt)t∈[0,1]

ˆ 1

0
∥∂tµt∥2

µt
dt , (1.1.7)

under the constraint that (µt)t connects µ0 to µ1.

L. Ambrosio, N. Gigli, and G. Savaré [AGS08] established a similar compatibility between this
(formal) Riemannian structure and the metric W2. Precisely, they proved that solutions to the
continuity equations coincide with absolutely continuous curves in the 2-Wasserstein space,
and that the metric derivative equals the norm in (1.1.6).

Definition 1.1.4 ([AGS08, Definition 1.1.1]). Let (X, d) be a metric space. We say that
an X-valued curve (xt)t∈[a,b] is 2-absolutely continuous if there exists ℓ ∈ L2(a, b) such that

d(xs, xt) ≤
ˆ t

s

ℓ(r) dr for all a ≤ s ≤ t ≤ b . (1.1.8)

4



1.1. Classical Optimal Transport

Figure 1.3: A gradient flow of an energy functional E : R2 → R.

Theorem 1.1.5 ([AGS08, Theorem 1.1.2]). Let (X, d) be a metric space. If (xt)t∈[a,b]
is 2-absolutely continuous, then the metric derivative

⃓⃓⃓
x′
⃓⃓⃓
(t) := lim

s→t

d(xs, xt)
|t− s|

(1.1.9)

exists for a.e. t ∈ (a, b). Moreover, the function t ↦→ |x′| (t) is square-integrable, it is an
admissible ℓ for (1.1.8), and it is minimal, meaning that⃓⃓⃓

x′
⃓⃓⃓
(t) ≤ ℓ(t) for a.e. t ∈ (a, b) (1.1.10)

whenever ℓ satisfies (1.1.8).

Theorem 1.1.6 (Ambrosio–Gigli–Savaré [AGS08, Theorems 8.3.1 & 8.4.5]). Let (µt)t∈[a,b] be
a 2-absolutely continuous curve of measures in the metric space

(︂
P2(Rd),W2

)︂
. Then there

exists (vt)t∈[a,b] such that the continuity equation (1.1.1) is satisfied, and
ˆ
Rd

|vt|2 dµt ≤
⃓⃓⃓
µ′
⃓⃓⃓2

(t) for a.e. t ∈ [a, b] . (1.1.11)

Conversely, if (µt)t∈[a,b] is a narrowly continuous curve that satisfies the continuity equation for
some (vt)t∈[a,b] with

´ b

a

´
Rd |vt|2 dµt dt < ∞, then (µt)t∈[a,b] is 2-absolutely continuous with

⃓⃓⃓
µ′
⃓⃓⃓2

(t) ≤
ˆ
Rd

|vt|2 dµt for a.e. t ∈ [a, b] . (1.1.12)

In either case,
∥∂tµt∥µt

=
⃓⃓⃓
µ′
⃓⃓⃓
(t) for a.e. t ∈ [a, b] . (1.1.13)

Wasserstein gradient flows
Let E : Rd → R be a smooth function. The gradient flow equation in Rd is the ODE

ẋt = −∇E(xt) , xt ∈ Rd for all t ≥ 0 . (1.1.14)

Namely, the solution flows in the direction of steepest descent for E. This equation makes
perfect sense in any Riemannian manifold M as well: given E : M → R, we define its gradient
at x ∈ M as the only vector ∇E(x) ∈ TxM such that

(dxE)(w) = ⟨∇E,w⟩TxM for all w ∈ TxM .

5



1. Introduction

As we have a Riemannian structure on P2(Rd), we can define gradient flows in this space. For
example, if E : P2(Rd) → R is an integral functional of the form

E(µ) =

⎧⎪⎪⎨⎪⎪⎩
ˆ
Rd

F
(︂
ρ(x)

)︂
dx if µ = ρ(x) dx ,

+∞ if µ ̸≪ dx ,

for some F : R → R, then the corresponding gradient flow equation reads

∂tρt = div
(︂
∇F ′(ρt)ρt

)︂
, µt = ρt(x) dx .

This suggests that several important evolution equations can be interpreted as gradient
flows in the 2-Wasserstein space. For instance, the heat equation ∂tρt = ∆ρt is found by
choosing F (ρ) := ρ log ρ, but also several nonlinear equations naturally fit into this theory;
see [San15, Section 8.4.2].

There are (at least) three other common notions of gradient flow in the metric setting:

1. Minimizing Movement approximation,

2. Curves of Maximal Slope,

3. Evolution Variational Inequalities.

In the 2-Wasserstein space, under certain regularity assumptions on the functional E , the
first two notions are substantially equivalent to the differential-geometric one discussed above.
When E additonally enjoys a suitable convexity property, all notions coincide. Details are given
in [AGS08, Chapter 11]. Let us present the Minimizing Movement approximation and the
Curves of Maximal Slope, which will play a role later in the thesis, especially in Chapter 2.

In the Euclidean setting, (1.1.14) can be discretized in time using the Implicit Euler Scheme

xτ
(k+1)τ − xτ

kτ = −τ∇E
(︂
xτ

(k+1)τ

)︂
, k ∈ N , (1.1.15)

where τ > 0 is the discretization parameter. Given xτ
kτ , one can find xτ

(k+1)τ by solving

xτ
(k+1)τ ∈ arg min

x

(︂
2τE(x) +|xτ

kτ − x|2
)︂
. (1.1.16)

Interestingly, the differential structure of Rd is invisible in the last formula; only the metric
structure needs to be defined. The following is due to E. De Giorgi [DG93].

Definition 1.1.7. Let (X, d) be a metric space, let E : X → R, and let x· : [0,∞) → X.
We say that (xt)t≥0 is a Minimizing Movements curve if, for a sequence of discretization
parameters τj → 0, the following holds. There exist curves xτj

· : [0,∞) → X such that:

1. t ↦→ x
τj

t is constant on each interval [kτj, (k + 1)τj) for k ∈ N,

2. for every k ∈ N and j, we have the the inclusion

x
τj

(k+1)τj
∈ arg min

x∈X

(︂
2τjE(x) + d2(xτj

kτj
, x)

)︂
, (1.1.17)

3. we have the convergence xτj
· → x· uniformly on compact sets as j → ∞.
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1.1. Classical Optimal Transport

The application of this definition to the 2-Wassertstein space by R. Jordan, D. Kinderlehrer,
and F. Otto [JKO98] allowed for the first identification of an evolution equation as a gradient
flow in the 2-Wasserstein space. Indeed, the authors of [JKO98] showed that the solutions to
the Fokker–Planck equation

∂tρt = ∆ρt + div
(︂
∇Ψ(x)ρt

)︂
,

for a smooth Ψ: Rd → [0,∞), are Minimizing Movement curves in
(︂
P2(Rd),W2

)︂
.

Finally, let us turn to Curves of Maximal Slope. Let E : Rd → R and t ↦→ xt ∈ Rd be smooth
functions. The chain rule, and Cauchy–Schwarz and Young’s inequalities give

− d
dtE(xt) = −∇E(xt) · ẋt ≤

⃓⃓
∇E(xt)

⃓⃓
|ẋt| ≤ 1

2
⃓⃓
∇E(xt)

⃓⃓2 + 1
2 |ẋt|2 .

The inequalities in the latter become equalities if and only if ẋ is negatively proportional
to ∇E(xt) and

⃓⃓
∇E(xt)

⃓⃓
= |ẋt|; hence, if and only if the gradient flow equation (1.1.14) is

satisfied. In other words, (1.1.14) is equivalent to the opposite inequality

− d
dtE(xt) ≥ 1

2
⃓⃓
∇E(xt)

⃓⃓2 + 1
2 |ẋt|2 .

Interestingly, the norms
⃓⃓
∇E(xt)

⃓⃓
and |ẋt| can be written in purely metric terms. Indeed, we

have already introduced the metric derivative (see Theorem 1.1.5), while the norm of the
gradient can be seen—in the context of gradient flows—as the magnitude of the maximal
descending slope, i.e., ⃓⃓

∇E(x)
⃓⃓
= lim sup

y→x

(︂
E(x) − E(y)

)︂
+

|y − x|
.

These ideas are originally due to E. De Giorgi, A. Marino, and M. Tosques [DGMT80], and
were later further developed by L. Ambrosio, N. Gigli, and G. Savaré [AGS08].

Definition 1.1.8 ([DGMT80, Definition 1.1], [AGS08, Definition 1.2.4]). Let (X, d) be a
metric space, let E : X → R ∪ {+∞}, and let x ∈ X be such that E(x) < ∞. We let the
descending slope of E at x be

|∂E| (x) := lim sup
y→x

(E(x) − E(y))+

|y − x|
(1.1.18)

if x is an accumulation point of X, and |∂E| (x) = 0 otherwise.

Definition 1.1.9 ([AGS08, Definition 1.3.2]). Let (X, d) be a metric space, let E : X →
R ∪ {+∞}, and let (xt)t∈[a,b] be an X-valued locally 2-absolutely continuous curve. We say
that (xt)t∈[a,b] is a Curve of Maximal Slope for E (with respect to its descending slope |∂E|)
if t ↦→ E(xt) is a.e. equal to a nonincreasing map φ such that

φ′(t) ≤ −1
2
⃓⃓⃓
x′
⃓⃓⃓
(t) − 1

2 |∂E|2 (xt) for a.e. t ∈ [a, b] . (1.1.19)

Wasserstein gradient flows have been deeply investigated. The connection they provide between
optimal transport and PDEs has shed light on the geometric interpretation of many evolution
equations, and, at the same time, has supplied new theoretical tools to prove existence,
uniqueness, stability, speed of convergence, energy estimates, and functional inequalities. As
an example, the Minimizing Movement scheme can be used to prove existence, even with
irregular initial data (i.e., measures), and provides a numerical method to compute the solution.
A comprehensive list of applications can be found in [AGS08, Section 11.1], together with
many references to specific results in the literature. We refer to [San17] for a detailed overview
on this topic.
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1. Introduction

1.2 Optimal Transport for Boundary Value Problems
Let Ω ⊆ Rd be a bounded open set. Any curve in

(︂
P(Ω),W2

)︂
, by definition, conserves

the total mass. Therefore, gradient flows in this space always satisfy appropriate Neumann
boundary conditions; see [San17, Section 4.7]. For example, the gradient flows of the
functional

´
Ω ρ log ρ dx are solutions to⎧⎨⎩∂tρt = ∆ρt in Ω ,

∂nρt = 0 on ∂Ω ,

where ∂n denotes the outer normal derivative.

At a first glance, therefore, the theory of optimal transport does not seem well-suited to
describe and study equations with other types of boundary conditions. Nonetheless, in 2010,
A. Figalli and N. Gigli [FG10] proposed a modified Wasserstein distance that provides a
gradient-flow representation for equations with Dirichlet boundary conditions. The boundary
Wasserstein distance Wbp(µ, ν) has almost the same definition of Wp:

Wbp
p(µ, ν) := inf

π∈Πb(µ,ν)

ˆ
Ω×Ω

|y − x|p dπ(x, y) , µ, ν ∈ M(Ω) , p ≥ 1 , (1.2.1)

but now the set of admissible transport plans is

Πb(µ, ν) :=
{︂
π ∈ M(Ω × Ω) : π(A× Ω) = µ(A) and π(Ω × A) = ν(A) for all A ⊆ Ω

}︂
.

(1.2.2)
The novelty is that transport plans are defined on the closure Ω × Ω of Ω × Ω, although we
prescribe only the restrictions to Ω of their marginals. Intuitively (see Figure 1.4), the allowed
motion of mass is not only within Ω, but also from the interior to the boundary and vice versa.
One can think of the amount of mass at each point of the boundary as infinite, in the sense
that any amount can flow in and out of any region of ∂Ω. Consider the functional

E(µ) :=

⎧⎪⎪⎨⎪⎪⎩
ˆ

Ω

(︂
ρ(x) log ρ(x) − ρ(x) + 1

)︂
dx if µ = ρ(x) dx ,

+∞ if µ ̸≪ dx ,

and fix µ̄ = ρ̄(x) dx ∈ M(Ω). The main result of [FG10] is the convergence of the Minimizing
Movement scheme⎧⎨⎩µ

τ
0 = µ̄ ,

µτ
(k+1)τ ∈ arg minµ∈M(Ω)

(︂
2τE(µ) +Wb2

2(µτ
kτ , µ)

)︂
,

k ∈ N , τ > 0 ,

to a solution to the heat equation with the constant Dirichlet boundary condition ρt|∂Ω ≡ 1:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρt = ∆ρt in Ω ,

ρt = 1 on ∂Ω ,

ρ0 = ρ̄ in Ω .

Remarkably, only one hypothesis is enforced: the finiteness of
´

Ω ρ̄ log ρ̄ dx. No regularity is
required on ∂Ω, as long as the identity ρt|∂Ω ≡ 1 is interpreted as (ρt − 1) ∈ W 1,1

0 (Ω).
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1.2. Optimal Transport for Boundary Value Problems

µ
ν

Figure 1.4: An admissible transport plan for Wbp when Ω is an interval in dimension d = 1.

Recent research has shown a renewed interest in the optimal transport interpretation of
equations with boundary conditions other than Neumann [Mor18, PS20, KKS25, CMS25,
EM25, BMRv25]. With [Qua25] (Chapter 2), we aim at contributing to this line of research,
by demonstrating its applicability to equations with more general Dirichlet boundary conditions,
under weak assumptions.
The subject of [Qua25] is the Fokker–Planck equation with positive and temporally constant1—
but otherwise arbitrary—boundary conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tρt = div(∇ρt + ρt∇V ) in Ω ,

ρt = g on ∂Ω ,

ρ0 = ρ̄ in Ω .

(1.2.3)

The domain Ω, the potential V : Ω → R, the boundary value g : ∂Ω → R>0, and the initial
datum ρ̄ : Ω → R+ are given. The main results are:

1. the construction of a scheme of Minimizing Movement type and its proof of convergence
to a solution to (1.2.3),

2. a Curve of Maximal Slope formulation of (1.2.3) when Ω is an interval in R1.

This work builds upon the paper [FG10] discussed above and [Mor18] by J. Morales. In fact, a
Minimizing Movement scheme for a problem similar to (1.2.3) is also described in [Mor18], but
we significantly reduce the regularity hypotheses on ∂Ω, on V , and on ρ̄, thereby obtaining,
in particular, the same assumptions as in [FG10] for Ω and ρ̄. Another fundamental aspect
of [Qua25] is the idea of lifting the problem to a larger space, namely a suitable subset S of
the signed measures on the closure Ω. This idea is partially inspired by [Mon21, PS20], but
this is its first use as a convenient way to handle arbitrary (positive) boundary conditions.
More concretely, we define a transportation functional T —not a distance—similar to the
boundary Wasserstein distance Wb2, but between signed measures in S , and consider the
driving functional2

H(µ) :=

⎧⎪⎪⎨⎪⎪⎩
ˆ

Ω
(log ρ− 1 + V ) dµ+

ˆ
∂Ω

(log g + V ) dµ if µ|Ω = ρ(x) dx ,

+∞ if µ|Ω ̸≪ dx .

Note that H depends on the measure µ on the full closure Ω, which justifies the necessity of
a larger space of measures. Like in [FG10], we see the evolution (1.2.3) as a motion of mass
that can be freely exchanged with the infinite reservoir at the boundary, but we additionally
keep track of the balance of mass taken or deposited at each point of the boundary. For this
reason we use signed measures.

1and not too irregular
2Assume here, for simplicity, that V continuously extends to the boundary.
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Theorem 1.2.1 (Q., Theorem 2.1.1 (informal)). Given µ̄ ∈ S , the scheme⎧⎨⎩µ
τ
0 = µ̄ ,

µτ
(k+1)τ ∈ arg minµ∈S

(︂
2τH(µ) + T 2(µτ

kτ , µ)
)︂
,

k ∈ N , τ > 0 (1.2.4)

converges to a curve t ↦→ µt such that its restriction to Ω satisfies (1.2.3).

In the case where V ≡ 0 and g ≡ 1, this result reduces to the theorem by A. Figalli and
N. Gigli [FG10]. Indeed, Wb2 can be seen as a projection3 of T and, when log g + V ≡ 0
on ∂Ω, we have E(µ|Ω) = H(µ).

Since T is not a distance, (1.2.4) is not exactly a Minimizing Movement scheme, and we
cannot say that the limit t ↦→ µt is a gradient flow. Nonetheless, this theorem can be used as
a prototype to prove existence in problems with general Dirichlet boundary conditions under
weak assumptions, as well as, possibly, numerically construct a solution. Furthermore, in a
similar way as with the classical Minimizing Movement scheme, this type of existence proof
allows to establish properties of the solution that, even when formally derivable from the
equation, may be difficult to directly prove under weak assumptions; see Remark 2.1.4.

We obtain a more refined result in dimension d = 1, that is, when Ω is an interval. In this
case, we define a true distance ˜︃Wb2 on S —again, similar to Wb2—and prove the following.

Theorem 1.2.2 (Q., Theorem 2.1.5 (informal)). Assume that Ω is an interval in R1. Given µ̄ ∈
S , the limit curve t ↦→ µt found with Theorem 1.2.1 is a Curve of Maximal Slope for H in
the space (S ,˜︃Wb2).

The main difficulty in the proof of this theorem is to ensure that the slope |∂H| is lower
semicontinuous. We overcome it by deriving an explicit formula for |∂H|. In [FG10], the
identification of the slope |∂E| was left as an open problem, which, as a byproduct of our
proof, we resolve in the case d = 1.

1.3 Kinetic Optimal Transport
Kinetic equations describe time-evolving physical systems at a mesoscopic scale, when particles
are not individually traceable, but we can write—for every time t—a statistical description
of their positions and velocities (i.e., a distribution on the phase space). One example is the
kinetic Fokker–Planck equation

∂tf(t, x, v) + v · ∇xf(t, x, v) = divv

(︂
∇vf(t, x, v) + f(t, x, v) v + f(t, x, v) ∇xU(x)

)︂
,

(t, x, v) ∈ (0,∞) × Rd × Rd ,

where U : Rd → R is a potential. The study of these equations is an active research area,
with many open questions, relative, e.g., to stability and convergence to equilibrium of their
solutions, and to the precise mathematical links between micrsoscopic, mesoscopic, and
macroscopic descriptions of a system, which is also part of Hilbert’s sixth problem [Gor18].

One fruitful approach to the convergence-to-equilibrium problem—mainly for linear equations—
is C. Villani’s theory of hypocoercivity [Vil09a]. Optimal transport too has been employed in

3in the sense made precise in Lemma 2.4.1
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1.3. Kinetic Optimal Transport

kinetic theory, e.g., in the celebrated works [Dob79] by R. L. Dobrushin and [Loe06] by G. Loeper
on the stability of Vlasov’s equations. More recent stability results have been obtained by
introducing twisted Wasserstein distances, inspired by hypocoercivity theory [BGM10, Iac16].
Furthermore, it has been shown that some kinetic equations can be approximated by time-
discrete schemes that, step-by-step, solve an optimal transport minimization problem [Hua00,
DPZ14, Par25], in a similar fashion to the Jordan–Kinderlehrer–Otto scheme [JKO98].

Although known contraction estimates and the aforementioned discretization schemes suggest
the possibility of a gradient flow description, an analog of Wasserstein gradient flows has not
yet been developed for kinetic equations. With [BMQ25] (Chapter 3), written in collaboration
with G. Brigati and J. Maas, we put forward the foundations of one such theory. One of the
main future goals is to obtain new convergence estimates for a large class of kinetic equations,
including those nonlinear ones that are not covered by the theory of hypocoercivity.

The main object we introduce is a discrepancy d between probability measures on the phase
space Rd

x × Rd
v. This discrepancy is based on the minimization of the acceleration of curves

between coupled points. Its construction is as follows. First, for fixed T > 0 and (x, v), (y, w) ∈
Rd

x × Rd
v, we define

d̃
2
T

(︂
(x, v), (y, w)

)︂
:= inf

α∈H2(0,T ;Rd
x)

⎧⎨⎩T
ˆ T

0

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dt : (α, α′)(0) = (x, v) , (α, α′)(T ) = (y, w)

⎫⎬⎭ . (1.3.1)

Secondly, we consider the optimal transport problem

d̃2
T (µ, ν) := inf

π∈Π(µ,ν)

ˆ
Rd

x×Rd
v×Rd

x×Rd
v

d̃
2
T

(︂
(x, v), (y, w)

)︂
dπ(x, v, y, w) , µ, ν ∈ P2(Rd

x × Rd
v) .

Thirdly, we set d equal to the W2-lower semicontinuous envelope of the infimum over T > 0
of d̃T . In can be checked that replacing the second derivative α′′(t) with α′(t) would give the
squared Euclidean distance between x and y in (1.3.1), regardless of the choice of T , and the
subsequent constructions would yield the classical 2-Wasserstein distance. Therefore, d can be
thought of as a “second-order” version of W2, although we emphasize that d is not a distance.

Our main results are a kinetic Benamou–Brenier formula and the identification of 2-absolutely
continuous curves with time-reparametrized solutions to Vlasov’s equations, which reminds
[AGS08, Theorem 8.3.1] (Theorem 1.1.6) from the classical theory. The Benamou–Brenier
formula has been independently obtained also in a recent work by K. Elamvazhuthi [Ela25].

Theorem 1.3.1 (Elamvazhuthi, Brigati–Maas–Q., Theorem 3.1.2 (simplified)). For ev-
ery µ, ν ∈ P2(Rd

x × Rd
v) and T > 0, we have

d̃2
T (µ, ν) = inf

(µt,Ft)t∈[0,T ]
T

ˆ T

0

ˆ
Rd

x×Rd
v

|Ft|2 dµt(x, v) dt , (1.3.2)

where the infimum is taken among solutions to Vlasov’s equation

∂tµt + v · ∇xµt + ∇v · (Ftµt) = 0 (1.3.3)

starting at µ0 = µ and ending at µT = ν.
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Theorem 1.3.2 (Brigati–Maas–Q., Theorem 3.1.7 (simplified)). Under appropriate regularity
assumptions, the following hold.

1. Let (µ̃s)s∈(ã,b̃) be d-2-absolutely continuous, i.e., there exists ℓ̃ ∈ L2(ã, b̃) such that

d(µ̃s, µ̃t) ≤
ˆ t

s

ℓ̃(r) dr for s < t . (1.3.4)

Then, there exist (Ft)t∈(a,b) and a bi-Lipschitz time-reparametrization (µt)t∈(a,b) of the
curve (µ̃s)s∈(ã,b̃) such that (µt, Ft)t∈(a,b) satisfies Vlasov’s equation (1.3.3), and the
right d-derivative of (µt)t∈(a,b) is ∥Ft∥L2(µt), namely,

lim
h↓0

d(µt, µt+h)
h

=∥Ft∥L2(µt) for a.e. t ∈ (a, b) . (1.3.5)

2. Let (µt, Ft)t∈(a,b) be a solution to Vlasov’s equation (1.3.3). Then,

d(µs, µt) ≤ 2
ˆ t

s

∥Fr∥L2(µr) dr for s < t , (1.3.6)

and
lim sup

h↓0

d(µt, µt+h)
h

≤∥Ft∥L2(µt) for a.e. t ∈ (a, b) . (1.3.7)

These theorems give the rigorous mathematical justification for a new formal degenerate
Riemannian-like structure on P2(Rd

x × Rd
v): given a curve (µt)t that satisfies Vlasov’s equa-

tion (1.3.3) for some vector field (Ft)t, the norm of its tangent vector is given by

∥∂tµt∥2
µt

:= inf
Ft

ˆ
Rd

x×Rd
v

|Ft|2 dµt ,

where the infimum is taken among all Ft’s such that (1.3.3) holds. See Remarks 3.1.9, 3.1.12,
and 3.1.13 for further details. In future works, we plan to show that, with these definitions or
suitable variants thereof (depending on the specific problem), the solutions to some significant
kinetic equations are gradient flows.

Finally, let us point out that a “second-order” optimal transport theory is useful also in many
applications requiring to construct smooth interpolations of measures:

1. optimal steering of a fleet of agents;

2. trajectory inference for particle motion or cell development;

3. image interpolation for computer graphics.

In fact, in [BMQ25], we also propose a variation on the smooth time interpolation of [CCLG+21].
With our theory, we prove that this new interpolation enjoys an injectivity property, which may
be desirable in practical applications since it prevents sharp shrinkage at intermediate times.
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1.4. Discrete Dynamical Optimal Transport

1.4 Discrete Dynamical Optimal Transport
The geometry induced by W2 is well-suited to describe many PDEs on the Euclidean space
and on manifolds, but not the evolution of continuous-time Markov chains on discrete spaces.
Indeed, as observed by J. Maas (see [Maa11, Remark 2.1]) the heat flow induced by an
irreducible and reversible Markov kernel on a finite set X cannot4 be 2-absolutely continuous
in
(︂
P2(X),W2

)︂
. The missing ingredient here is an analog of the Benamou–Brenier formula.

The gradient-flow description in this setting was recovered with the introduction of an alternative
distance W by J. Maas [Maa11], A. Mielke [Mie11], and S.-N. Chow, W. Huang, Y. Li, and
H. Zhou [CHLZ12]. Its definition resembles the Benamou–Brenier formula. Let G = (X,E)
be a finite undirected graph (i.e, E ⊆ X × X is symmetric), let π ∈ P(X) be a reference
measure, let ω : E → R+ be a symmetric weight function, let θ(a, b) :=

´ 1
0 a

sb1−s ds
denote the logarithmic mean. Given m0,m1 ∈ P(X), we write CEG(m0,m1) for the set of
all (mt, Jt)t∈[0,1] such that t ↦→ mt ∈ P(X) connects m0 to m1, each Jt ∈ RE is antisymmetric,
i.e., Jt(x, y) = −Jt(y, x), and the following discrete continuity equation is satisfied:

∂tmt(x) +
∑︂

y∈X : (x,y)∈E

Jt(x, y) = 0 for all x ∈ X . (1.4.1)

We set

W2(m0,m1) := min
(mt,Jt)t∈CEG(m0,m1)

ˆ 1

0

1
2

∑︂
(x,y)∈E

⃓⃓
Jt(x, y)

⃓⃓2
θ
(︃

mt(x)
π(x) ,

mt(y)
π(y)

)︃ω(x, y) dt . (1.4.2)

Let us remark that it is also possible to construct analogs of Wp for every p ≥ 1; see [GKMP23,
Remark 2.6]. For example, the counterpart of W1 is

min
(mt,Jt)t∈CEG(m0,m1)

ˆ 1

0

1
2

∑︂
(x,y)∈E

⃓⃓
Jt(x, y)

⃓⃓
ω(x, y) dt . (1.4.3)

Beyond gradient flows in the metric space induced by W (see also [Mie13, EM14]), research
around this topic has mainly developed in two directions: functional inequalities for Markov
chains [EM12, EMT15, FM16, EHMT17, EF18], and discrete-to-continuum limits [GM13,
GT20, GKMP23, GMP25, GKM20, GKMP20, GK26, Lav21]. The latter—which is the subject
of [PQ24], Chapter 4—deals with the following problem: If Gn = (Xn, En) is a sequence
of graphs embedded in Rd (or a manifold) that, in the limit, tend to fill the space, can
we say that the corresponding (suitably rescaled) distances Wn (or variants thereof) are
closer and closer to a Wasserstein distance? The graph Gn can represent, for instance, a
numerical discretization of the space, or a model of atoms or neurons. In practice, Gn is
typically periodic [GM13, GKMP23, PQ24] or randomly sampled [GT20, GMP25, GK26].
The question posed above is natural, given the similarity between the definition of W and
the Benamou–Brenier formula for W2. A positive answer may allow to infer properties
of the space

(︂
P(Xn),Wn

)︂
from those of the well-studied

(︂
P2(Rd),W2

)︂
, and to ensure

consistency of numerical schemes to compute Wasserstein distances or Wasserstein gradient
flows in P2(Rd) [GT20, Lav21].

The work [PQ24] (Chapter 4), coauthored with L. Portinale, builds upon [GKMP23] by
P. Gladbach, E. Kopfer, J. Maas, and L. Portinale, and answers a question that remained

4unless one starts at the equilibrium
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Figure 1.5: Successive scalings of a periodic graph.

open in this previous work. The problem is the Γ-convergence of dynamical transportation
functionals—i.e., generalizations of W—for periodic graphs in the large-scale limit. Given is
a Zd-periodic graph Ḡ = (X̄, Ē) in Rd. For ϵ > 0, we set Xϵ := ϵX̄/Zd and Eϵ := ϵĒ/Zd,
which define a graph Gϵ in the flat torus Td = Rd/Zd. We fix a convex, local, and lower
semicontinuous cost function F̄ : RX̄

+ × RĒ → R ∪ {+∞}, and suitably define a rescaled
version Fϵ : RXϵ

+ × REϵ → R ∪ {+∞}. Hence, we define the rescaled action functional

Aϵ

(︂
(mt, Jt)t

)︂
:=

ˆ 1

0
Fϵ(mt, Jt) dt , (1.4.4)

and the minimal action functional (or dynamical transportation functional)

MAϵ(m0,m1) := inf
(mt,Jt)t∈CEGϵ (m0,m1)

Aϵ

(︂
(mt, Jt)t

)︂
, m0,m1 ∈ P(Xϵ) . (1.4.5)

For example, the choice

F̄ (m, J) = 1
2

∑︂
(x,y)∈Ē : x∈[0,1)d

⃓⃓
J(x, y)

⃓⃓2
θ
(︃

mt(x)
π̄(x) ,

mt(y)
π̄(y)

)︃ ω̄(x, y) , m : X̄ → R+ , J : Ē → R

(1.4.6)
yields5 MAϵ = W for Gϵ. The main result of [GKMP23] is the Γ-convergence of both Aϵ

and MAϵ. More precisely:

1. [GKMP23, Theorem 5.1]: Under the assumption that F̄ grows at least linearly (in the
sense of Assumption 4.2.8), the functionals Aϵ Γ-converge, as ϵ → 0, to a certain
functional Ahom, which can be characterized by a cell formula (see [GKMP23, Defini-
tion 4.6]). The assumption on F̄ is satisfied by the discrete analogs of all p-Wasserstein
distances with p ≥ 1.

2. [GKMP23, Theorem 5.10]: Under an assumption of superlinear growth at infinity on F̄
(see Remark 4.2.6), the functionals MAϵ Γ-converge, as ϵ → 0, to

MAhom(µ0, µ1) = inf
(µ,ν)∈CE(µ0,µ1)

Ahom(µ,ν) , µ0, µ1 ∈ P(Td) , (1.4.7)

where CE(µ0, µ1) is a set of generalized solutions to the continuity equation with µ =
µt⊗dt ∈ P

(︂
(0, 1)×Td

)︂
connecting µ0 to µ1, and ν being a vector measure on (0, 1)×Td;

see Definition 4.2.1.6 The assumption of superlinearity on F̄ is satisfied by the discrete
analogs of the p-Wasserstein distances for p > 1, but not for p = 1.

5by suitably choosing ω and π in (1.4.2) in terms of ω̄ and π̄
6When (µ, ν) ∈ CE(µ0, µ1), the measure µ disintegrates as µ = µt ⊗ dt, but t ↦→ µt ∈ P(Td) is not

necessarily continuous; see [GKMP23, Lemma 3.13].
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1.4. Discrete Dynamical Optimal Transport

Figure 1.6: Schematic proof of the semicontinuity of MAhom. On the left: The boundary
condition may not pass to the limit. On the right: The modified curves of measures t ↦→ µn,δ

t .

In the case where F̄ is given by (1.4.6), one deduces ([GKMP23, Corollary 5.3]) the convergence
of MAϵ to the 2-Wasserstein distance on P(Td) with respect to some underlying metric d on
the torus. Whether or not d is the Euclidean metric depends on an isotropy condition on the
graph Ḡ; see [GKM20].

The main contribution in [PQ24] is the following.

Theorem 1.4.1 (Portinale–Q., Theorem 4.3.9 (informal)). The convergence

MAϵ
Γ→ MAhom as ϵ → 0 , MAhom as in (1.4.7), (1.4.8)

holds when one of the following two is satisfied:

1. the function F̄ has linear growth at infinity, or

2. F̄ does not depend on the variable m.

In this way, we obtain convergence, e.g., in the previously excluded case of the discrete “1-
Wasserstein” minimal action; see (1.4.3). In this specific case, we additionally prove that the
functional MAhom is, in fact, a 1-Wasserstein distance, but never with respect to the Euclidean
metric if d ≥ 2, which is a significant difference compared to the case p = 2 described above.

Theorem 1.4.2 (Portinale–Q., Proposition 4.4.4). If

F̄ (m, J) = 1
2

∑︂
(x,y)∈Ē : x∈[0,1)d

⃓⃓
J(x, y)

⃓⃓
ω̄(x, y) , m : X̄ → R+ , J : Ē → R , (1.4.9)

then MAhom is the 1-Wasserstein distance on P(Td) with respect to an underlying dis-
tance d: Td × Td → R+ that depends on Ḡ and ω̄. This distance is induced by a norm ∥·∥
on Rd via the formula

d(x, y) = inf
z∈Zd

∥x− y + z∥ ,

and ∥·∥ is a crystalline norm, i.e., the unit ball for ∥·∥ is a polytope. Consequently, ∥·∥ can be
equal to the Euclidean norm only in dimension d = 1.

To conclude, let us briefly discuss how to prove that MAhom defined by (1.4.7) is lower
semicontinuous in the case of asymptotically linear F̄ . A posteriori, this property follows
from the Γ-convergence, but its direct proof reveals the main difficulty in proving MAϵ

Γ→
MAhom and how to solve it. Let (µn

0 , µ
n
1 )n be a sequence of pairs of measures weakly
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1. Introduction

converging to (µ̃0, µ̃1). For every n, let us choose an approximate minimizer (µn,νn) ∈
CE(µn

0 , µ
n
1 ), i.e., such that Ahom(µn,νn) ≈ MAhom(µn

0 , µ
n
1 ). Up to extracting a subsequence,

we can assume convergence (µn,νn) ⇀ (µ,ν). If F̄ is not superlinear, the obtainable
integrability bounds on (µn,νn) are insufficient to ensure that µ̃0, µ̃1 are equal to the boundary
values µt=0, µt=1 of the limit curve t ↦→ µt (where µt ⊗ dt = µ); see Figure 1.6. Therefore, µ
might not be an admissible competitor for the problem defining MAhom(µ̃0, µ̃1). Our solution is
to perturb each (µn,νn) into (µn,δ,νn,δ) by squeezing it into a smaller time interval (δ, 1 − δ),
and defining µn,δ constantly equal to µn

0 (resp. µn
1 ) in the interval (0, δ) (resp. (1 − δ, 1)).

This procedure does not significantly change the value of the action Ahom, and the new
sequence (µn,δ,νn,δ)n converges to some (µδ,νδ) that satisfies the continuity equation and
such that t ↦→ µδ

t is constantly equal to µ̃0 (resp. µ̃1) for t ∈ (0, δ) (resp. t ∈ (1 − δ, 1));
hence, it has the desired boundary conditions. At this point, we use the lower semicontinuity
of Ahom on the sequence (µn,δ,νn,δ)n—which, by [GKMP23], holds also when F̄ is not
superlinear—and conclude with the chain of inequalities

MAhom(µ̃0, µ̃1) ≤ Ahom(µδ,νδ) ≤ lim inf
n→∞

Ahom(µn,δ,νn,δ)

≈ lim inf
n→∞

Ahom(µn,νn) ≈ lim inf
n→∞

MAhom(µn
0 , µ

n
1 ) .

1.5 Quantization of measures
Discretizing measures is a problem that frequently arises in applications to economics (urban
planning), numerics (numerical integration), data science (clustering and data compression),
and many other fields; see Section 5.1.5. As Wasserstein distances generalize the Euclidean
metric, they provide a natural way to quantify the error to be minimized in the discretization
process.

Fix p ≥ 1, n ∈ N1, and µ ∈ Pp(Rd). The n-th optimal quantization error of order p for µ is

ep,n(µ) := min
µn∈Pp(Rd)

{︂
Wp(µ, µn) : #supp(µn) ≤ n

}︂
. (1.5.1)

In other words, for a chosen number n, the problem (1.5.1) seeks the “best” compressed
description of µ on n points. One equivalent formulation7 is the following. Every set of n
points x1, . . . , xn ∈ Rd determines a Voronoi tessellation of Rd (see Figure 1.7), i.e., the sets

Vi :=
{︂
x ∈ Rd : |x− xi| ≤ |x− xj| for all j ∈ {1, . . . , n}

}︂
, i = 1, . . . , n ,

and the error ep,n(µ) is given by

ep
p,n(µ) = inf

x1,...,xn

n∑︂
i=1

ˆ
Vi

|x− xi|p dµ(x) .

One of the most fundamental results in quantization theory is the asymptotic behavior
of ep,n(µ) as n → ∞, found by P. L. Zador [Zad64, Zad82]; see also [GL00].

Theorem 1.5.1 (Zador [GL00, Theorem 6.2]). Let µ ∈ Pθ(Rd) for some θ > p and let ρ be
the density of the absolutely continuous part of µ. Then:

lim
n→∞

n1/dep,n(µ) = qp,d

(︄ˆ
Rd

ρ(x)
d

d+p dx
)︄ d+p

dp

, (1.5.2)

7We assume here, for simplicity, that µ is absolutely continuous.

16



1.5. Quantization of measures

Figure 1.7: A Voronoi tessellation of R2.

where the optimal quantization coefficient qp,d is a positive constant defined by

qp,d := inf
n∈N1

n1/dep,n

(︂
dx|[0,1]d

)︂
. (1.5.3)

The subject of [Qua24] (Chapter 5) is a natural—albeit less extensively studied—variant of
the quantization problem (1.5.1): optimal empirical quantization. Given µ ∈ Pp(Rd), we are
interested in the problem

ẽp,n(µ) := min
µn∈Pp(Rd)

⎧⎨⎩Wp(µ, µn) : µn = 1
n

n∑︂
i=1

δxi
for some x1, . . . , xn ∈ Rd

⎫⎬⎭ , (1.5.4)

which defines the n-th optimal empirical quantization error of order p for µ. Namely, we
consider the same minimization as in (1.5.1), with the difference that admissible competitors
are restricted to sums of n equally weighted Dirac deltas. More precisely, we investigate the
asymptotics for ẽp,n(µ) and find, as a main result, an adapted version of Zador’s theorem.

Theorem 1.5.2 (Q., Theorem 5.1.1). Assume that 1 ≤ p < d, let p∗ := dp
d−p

be the Sobolev
conjugate of p, let µ ∈ Pθ(Rd) for some θ > p∗, let ρ be the density of the absolutely
continuous part of µ, and let suppµs be the support of the singular part of µ. Then:

qp,d

⎛⎝ˆ
Rd\supp(µs)

ρ(x)
d−p

d dx
⎞⎠1/p

≤ lim inf
n→∞

n1/dẽp,n(µ) , (1.5.5)

lim sup
n→∞

n1/dẽp,n(µ) ≤ q̃p,d

(︄ˆ
Rd

ρ(x)
d−p

d dx
)︄1/p

, (1.5.6)

where

qp,d := inf
n∈N1

n1/dep,n

(︂
dx|[0,1]d

)︂
> 0 and q̃p,d := inf

n∈N1
n1/dẽp,n

(︂
dx|[0,1]d

)︂
> 0 . (1.5.7)

The main novelty of this theorem is the identification—in both the lower and the upper

bound—of the prefactor
(︃´

ρ
d−p

d dx
)︃1/p

(when supp(µs) is µ-negligible). Note that this
is different from the one in Zador’s theorem, but it appears in other related discretization
problems, e.g. [DSS13]. We provide an heuristic derivation in Section 5.2.

The existence of the limit of n1/dẽp,n(µ) remains, in general, an open problem, but we establish
it in dimension d = 2 (with p < 2) for general measures, and in arbitrary dimension for certain
classes of measures. Note that the identity qp,d = q̃p,d—combined with Theorem 1.5.2—would
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1. Introduction

essentially imply the existence of the limit. Whether this equality holds is a problem closely
related to an open conjecture by A. Gersho [Ger79].

The case p ≥ d is more complex. In this regime, “many” measures exhibit the error asymptotic

lim sup
n→∞

n1/dẽp,n(µ) = ∞ ,

for example all those having compact and disconnected support; see Example 5.4.4. Nonethe-
less, we prove that there is a class of regular measures for which ẽp,n(µ) ≍ n−1/d.

Theorem 1.5.3 (Q., Corollary 5.1.4 (simplified)). Let Ω ⊆ Rd be an open, convex, bounded
set with C1,1-regular boundary. Let ρ : Ω → R+ be a uniformly positive and globally Hölder
continuous probability density. Then, for every p ≥ 1:

0 < lim inf
n→∞

n1/dẽp,n(ρ dx) ≤ lim sup
n→∞

n1/dẽp,n(ρ dx) < ∞ . (1.5.8)

One of the fascinating aspects of quantization lies in the combination of elementary combina-
torial, geometric, and measure-theoretic arguments with powerful tools from optimal transport
theory. As a first example, consider the inequalities (1.5.5) and (1.5.6). A key property of
the p-Wasserstein distance that we employ in proving the upper bound is its convexity:

W p
p

(︂
λµ1 + (1 − λ)µ2, λν1 + (1 − λ)ν2

)︂
≤ λW p

p (µ1, ν1) + (1 − λ)W p
p (µ2, ν2) ,

µ1, µ2, ν1, ν2 ∈ Pp(Rd) , λ ∈ [0, 1] .

Conversely, to get the lower bound, we need some sort of concavity. Surprisingly, the boundary
Wasserstein distance by A. Figalli and N. Gigli [FG10], which we described in Section 1.2,
enjoys such a property (and trivially bounds Wp from below). More precisely, if Ω1, . . . ,Ωn

are open and pairwise disjoint subsets of a set Ω ⊆ Rd, then8

Wbp
Ω,p(µ, ν) ≥

n∑︂
i=1

Wbp
Ωi,p

(µ|Ωi
, ν|Ωi

) , µ, ν ∈ M(Ω) ;

see [AGT22, Section 2.2]. A second example is contained in the proof of Theorem 1.5.3,
where we use a result by S. Chen, J. Liu, and X.-J. Wang [CLW21] on the (global) regularity
of optimal transport maps. Additionally, let us mention that the study of random matching, a
combinatorial problem similar to quantization, has also benefited from advanced tools from
PDE theory and Fourier analysis; see [AST19, BL21].

8We specify with a subscript the set on which the boundary Wasserstein distance is constructed.
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CHAPTER 2
Variational structures for the

Fokker–Planck equation with general
Dirichlet boundary conditions

This chapter contains the following publication [Qua25]:

F. Quattrocchi. Variational structures for the Fokker–Planck equation with general Dirichlet
boundary conditions. To appear in Calculus of Variations and Partial Differential Equations,
2025+, CC BY 4.0. doi:10.1007/s00526-025-03193-1

This version of the article has been accepted for publication, after peer review but is not
the Version of Record and does not reflect post-acceptance improvements, or any correc-
tions. The Version of Record is available online at: http://dx.doi.org/10.1007/
s00526-025-03193-1.

Abstract
We prove the convergence of a modified Jordan–Kinderlehrer–Otto scheme to a solution
to the Fokker–Planck equation in Ω ⋐ Rd with general—strictly positive and temporally
constant—Dirichlet boundary conditions. We work under mild assumptions on the domain,
the drift, and the initial datum.

In the special case where Ω is an interval in R1, we prove that such a solution is a gradient
flow—curve of maximal slope—within a suitable space of measures, endowed with a modified
Wasserstein distance.

Our discrete scheme and modified distance draw inspiration from contributions by A. Figalli
and N. Gigli [J. Math. Pures Appl. 94, (2010), pp. 107–130], and J. Morales [J. Math. Pures
Appl. 112, (2018), pp. 41–88] on an optimal-transport approach to evolution equations with
Dirichlet boundary conditions. Similarly to these works, we allow the mass to flow from/to
the boundary ∂Ω throughout the evolution. However, our leading idea is to also keep track of
the mass at the boundary by working with measures defined on the whole closure Ω.

The driving functional is a modification of the classical relative entropy that also makes use of
the information at the boundary. As an intermediate result, when Ω is an interval in R1, we
find a formula for the descending slope of this geodesically nonconvex functional.
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2. Variational structures for Fokker–Planck with general Dirichlet BC

2.1 Introduction
The subject of this paper is the linear Fokker–Planck equation

d
dtρt = div (∇ρt + ρt∇V ) (2.1.1)

on a bounded Euclidean domain Ω ⊆ Rd combined with general—strictly positive and constant
in time—Dirichlet boundary conditions, and with nonnegative initial data. We want to approach
this problem by applying the theory of optimal transport, which, since the seminal works of
R. Jordan, D. Kinderlehrer, and F. Otto [JKO98, Ott99, Ott01], has proven effective in the
study of a number of evolution equations.

Existence, uniqueness, and appropriate estimates are often consequence of a peculiar structure
of the problem. Important instances are those PDEs which can be seen as gradient flows. In
fact, it has been proven that several equations, including Fokker–Planck on Rd, are gradient
flows in a space of probability measures endowed with the 2-Wasserstein distance

W2(µ, ν) := inf
γ

√︄ˆ
|x− y|2 dγ(x, y) ,

where the infimum is taken among all couplings γ between µ and ν, i.e., measures with
marginals π1

#γ = µ and π2
#γ = ν. For such PDEs, existence can be deduced from the

convergence of the discrete-time approximations given by the Jordan–Kinderlehrer–Otto
variational scheme (also known, in a more general metric setting, as De Giorgi’s minimizing
movement scheme [DG93])

ρτ
(n+1)τ dx ∈ arg minµ

(︄
F(µ) + W 2

2 (µ, ρτ
nτ dx)

2τ

)︄
, n ∈ N0 , (2.1.2)

where F is a functional that depends on the equation, and τ > 0 is the time step.

When applied on a bounded Euclidean domain, this approach produces solutions with Neumann
boundary conditions. This fact is inherent in the choice of the metric space (probability measures
with the distance W2) in which the flow evolves. Intuitively, Neumann boundary conditions
are natural because a curve of probability measures, by definition, conserves the total mass;
see also the discussion in [San17].

In order to deal with Dirichlet boundary conditions, A. Figalli and N. Gigli defined in [FG10]
a modified Wasserstein distance Wb2 that gives a special role to the boundary ∂Ω. Despite
measuring a distance between nonnegative measures on Ω, the metric Wb2 is defined as an
infimum over measures γ on the product of the topological closures Ω × Ω, and only the
restrictions of the marginals π1

#γ and π2
#γ to Ω are prescribed (see the original paper [FG10]

or Section 2.3.6). In this sense, the boundary ∂Ω can be interpreted as an infinite reservoir,
where mass can be taken and deposited freely. The main result in [FG10] is the convergence
of the scheme

ρτ
(n+1)τ ∈ arg minρ

(︄ˆ
Ω

(︂
ρ log ρ− ρ+ 1

)︂
dx+ Wb2

2(ρ dx, ρτ
nτ dx)

2τ

)︄
, n ∈ N0 ,

as τ ↓ 0, to a solution to the heat equation with the constant Dirichlet boundary condi-
tion ρ|∂Ω = 1. More generally, it was observed in [FG10, Section 4] that the same scheme
with a suitably modified entropy functional converges to solutions to the linear Fokker–Planck
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2.1. Introduction

equation (2.1.1) with the boundary condition ρ|∂Ω = e−V . In particular, this theory covers the
heat equation with any constant and strictly positive Dirichlet boundary condition.

In a more recent contribution, J. Morales [Mor18] proved convergence of a similar discrete
scheme for a family of reaction-diffusion equations with drift, subject to rather general Dirichlet
boundary conditions. In this scheme, the distance between measures is replaced by τ -dependent
transportation costs. Morales’ work, together with [FG10], is the starting point of the present
paper.

Related literature

The case of the heat flow with vanishing Dirichlet boundary conditions was studied by
A. Profeta and K.-T. Sturm in [PS20]. They defined ‘charged probabilities’ and a suitable
distance on them. This metric is built upon the idea that mass can touch the boundary and
be reflected, as with the classical Wasserstein distance, but possibly changing the charge
(positive to negative or vice versa). One of their results is the Evolution Variational Inequality
(see [AGS08]) for such a heat flow.

D. Kim, D. Koo and G. Seo [KKS25] adapted the setting of [FG10] to porous medium
equations ∂tρt = ∆ρα (α > 1) with constant boundary conditions.

M. Erbar and G. Meglioli [EM25] generalized the result of [KKS25] to a larger class of
diffusion equations with constant boundary conditions. They also established a dynamical
characterization of Wb2, in the spirit of the Benamou–Brenier formula for W2 [BB00].

J.-B. Casteras, L. Monsaingeon, and F. Santambrogio [CMS25] found the Wasserstein gradient
flow structure for the equation arising from the so-called Sticky Brownian Motion, i.e., the
Fokker–Planck equation together with boundary conditions of Dirichlet type that also evolve in
time subject to diffusion and drift on the boundary. Namely, denoting by ∂n the outer normal
derivative, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tρ = ∆ρ in Ω ,

ρ = γ on ∂Ω ,

∂tγ = ∆∂Ωγ − ∂nρ in ∂Ω .

(2.1.3)

M. Bormann, L. Monsaingeon, D. R. M. Renger, and M. von Renesse [BMRv25] recently
proved a negative result. If we modify (2.1.3) by weakening the diffusion on the boundary
(i.e., we multiply ∆∂Ωγ by a factor a ∈ (0, 1)) the resulting problem is not a gradient flow of
the entropy in the 2-Wasserstein space built from any reasonably regular metric on Ω.

Our contribution
In this work, we present two novel results:

1. We prove convergence of a modified Jordan–Kinderlehrer–Otto scheme to a solution
to the Fokker–Planck equation with general Dirichlet boundary conditions under mild
regularity assumptions. To do this, we adopt a different point of view compared
to [FG10, Mor18, KKS25]: our scheme is defined on a subset S of the signed measures
on the closure Ω, rather than on measures on Ω.
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2. Variational structures for Fokker–Planck with general Dirichlet BC

2. In dimension d = 1, we determine that this solution is also a curve of maximal slope for
a functional H in an appropriate metric space (S ,˜︃Wb2).

Let us now explain in detail the extent of these contributions and provide precise statements.

Convergence of a modified JKO scheme

We look at the boundary-value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dtρt = div (∇ρt + ρt∇V ) in Ω ,

ρt|∂Ω = eΨ−V on ∂Ω ,

ρt=0 = ρ0 .

(2.1.4)

Here, Ω ⊆ Rd is a bounded open set and ρ0,Ψ, V are given functions, with ρ0 ≥ 0. The
function Ψ can be tuned to obtain the desired boundary condition.

We introduce the set S of all signed measures on Ω with

µ|Ω ≥ 0 and µ(Ω) = 0 . (2.1.5)

We also define

E(ρ) :=
ˆ

Ω

(︂
ρ log ρ+ (V − 1)ρ+ 1

)︂
dx , ρ : Ω → R+ , (2.1.6)

and, for µ ∈ S ,

H(µ) :=

⎧⎪⎪⎨⎪⎪⎩
E(ρ) +

ˆ
Ψ dµ|∂Ω if µ|Ω = ρ dx ,

∞ otherwise.
(2.1.7)

In Section 2.3.7, we will define a transportation-cost functional T on S . With it, we can
consider the scheme

µτ
(n+1)τ ∈ arg min

µ∈S

(︄
H(µ) + T 2(µ, µτ

nτ )
2τ

)︄
, n ∈ N0 , τ > 0 , (2.1.8)

starting from some µτ
0 = µ0 ∈ S , independent of τ , such that the restriction µ0|Ω is absolutely

continuous with density ρ0. These sequences are extended to maps t ↦→ µτ
t , constant on the

intervals
[︂
nτ, (n+ 1)τ

)︂
for every n ∈ N0, namely:

µτ
t := µτ

⌊t/τ⌋τ , t ∈ [0,∞) . (2.1.9)

Theorem 2.1.1. Assume that
´

Ω ρ0 log ρ0 dx < ∞, that Ψ: Ω → R is Lipschitz continuous,
and that1 V ∈ W 1,d+

loc (Ω) ∩ L∞(Ω). Then:

1. Well-posedness: The maps (t ↦→ µτ
t )τ resulting from the scheme (2.1.8) are well-defined

and uniquely defined: for every n and τ , there exists a minimizer in (2.1.8) and it is
unique.

1By V ∈ W 1,d+
loc (Ω) we mean that for every ω ⋐ Ω open there exists p = p(ω) > d such that V ∈ W 1,p(ω);

see also Definition 2.3.1.
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2. Convergence: When τ → 0, up to subsequences, the maps
(︂
t ↦→ µτ

t |Ω
)︂

τ
converge

pointwise w.r.t. the Figalli–Gigli distance Wb2 to a curve of absolutely continuous mea-
sures t ↦→ ρt dx. For every q ∈ [1, d

d−1), convergence holds also in L1
loc

(︂
(0,∞);Lq(Ω)).

3. Equation: This limit curve is a weak solution to the Fokker–Planck equation (2.1.1);
see Section 2.3.4.

4. Boundary condition: The function t ↦→
(︃√︂

ρteV − eΨ/2
)︃

belongs to the space

L2
loc

(︂
[0,∞);W 1,2

0 (Ω)
)︂
.

Remark 2.1.2. We assume that Ψ is defined on the whole set Ω in order to make sense of
the inclusion

√︂
ρteV − eΨ/2 ∈ W 1,2

0 (Ω) also when ∂Ω is not smooth enough to have a trace
operator. Note that, if we are given a Lipschitz continuous function Ψ0 : ∂Ω → R, we can
extend it to a Lipschitz function on Ω via

Ψ(x) := inf
y∈∂Ω

(︁
Ψ0(y) + (Lip Ψ0)|x− y|

)︁
.

Remark 2.1.3. If V is Lipschitz continuous only in a neighborhood of ∂Ω, then it is possible
to find Ψ, Lipschitz as well, in order for eΨ−V to match any uniformly positive and Lipschitz
boundary condition.
Remark 2.1.4. Throughout the proof of Theorem 2.1.1, we also show:

• time contractivity of suitably truncated and weighted Lq norms of µτ
t |Ω (see Proposi-

tion 2.5.15),

• upper bounds on the Lq norms of µτ
t |Ω, for every t > 0 (see Lemma 2.5.23),

• upper bounds on time averages of the W 1,2 norm of
√︂
ρτ

t eV , where ρτ
t is the density

of µτ
t |Ω (see Lemma 2.5.22).

Furthermore, these estimates (assuming q ∈ [1, d
d−1) in the first two) pass to the limit as τ → 0,

i.e., analogous properties hold for the curve t ↦→ ρt.

As mentioned, the conceptual difference between the present work and [FG10, Mor18, KKS25]
is that we make use of signed measures on the full closure Ω. In this regard, our approach
is similar to those of [CMS25, Mon21]. The idea is that, due to the boundary condition we
have to match, it is convenient to keep track of the mass at the boundary and to consider a
functional that makes use of this information (namely, H).

On a more technical note, although Theorem 2.1.1 is similar to [Mor18, Theorem 4.1], the
latter is not applicable to the Fokker–Planck equation (2.1.1) without reaction term due to
[Mor18, Assumptions (C1)-(C9)] (see in particular (C7)). Furthermore, we achieve significant
improvements in the hypotheses:

• The boundary ∂Ω does not need to have any regularity, as opposed to Lipschitz and
with the interior ball condition.

• There is no uniform bound on ρ0 from above or below by positive constants. Only
nonnegativity and the integrability of ρ0 log ρ0 are assumed.
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2. Variational structures for Fokker–Planck with general Dirichlet BC

• The function V is not necessarily Lipschitz continuous. Rather, it is required to be
bounded and to have suitable local Sobolev regularity.

These weak assumptions make it more involved to prove Lebesgue and Sobolev bounds for µτ
t ,

as well as the strong convergence of the scheme, which in turn allows us to characterize the
limit. Indeed:

• When ρ0 is bounded, or lies in some Lq, it is possible to propagate these properties
along t ↦→ µτ

t |Ω; see [Mor18, Proposition 5.3] and Proposition 2.5.15. With our weak
assumptions on ρ0, we are still able to propagate the L1 bound, but also need to establish
suitable Sobolev estimates (see Proposition 2.5.9 and Lemma 2.5.22) and make use of
the Sobolev embedding theorem in order to get stronger integrability (see Lemma 2.5.23)
and convergence in L1

loc

(︂
(0,∞);Lq(Ω)

)︂
(see Lemma 2.5.26).

• If ∂Ω is not regular enough, we cannot directly apply the Sobolev embedding theorem
for W 1,2 functions. Since the Sobolev continuous embedding holds for W 1,2

0 functions
regardless of the domain regularity, we are still able to apply it after establishing suitable
boundary conditions for µτ

t |Ω; see Proposition 2.5.9.

• When V is not Lipschitz, we need an extra approximation procedure to prove that µτ
t |Ω

is Sobolev regular and satisfies a precursor of the Fokker–Planck equation; see Proposi-
tion 2.5.9 and Lemma 2.5.10.

• Another issue with ∂Ω not being regular is in applying (a variant of) the Aubin–Lions
lemma to prove convergence of the scheme. One of its assumptions is a compact
embedding of functional spaces, which would follow from the Rellich–Kondrachov
theorem if Ω were regular enough. To overcome it, we use the Rellich–Kondrachov
theorem on smooth subdomains and take advantage of the integrability estimates to
promote local Lq convergence to convergence in Lq(Ω); see Lemma 2.5.26.

Curve of maximal slope

Our second main result is a strengthened version of Theorem 2.1.1 in the case where Ω is
an interval in R1 and V ∈ W 1,2(Ω). In this setting, we are able to define a true metric ˜︃Wb2
on S , construct piecewise constant maps with the scheme

µτ
(n+1)τ ∈ arg min

µ∈S

⎛⎜⎝H(µ) +
˜︃Wb

2
2(µ, µτ

nτ )
2τ

⎞⎟⎠ , n ∈ N0 , τ > 0 ,

µτ
0 = µ0 ,

(2.1.10)

for a fixed µ0 with µ0|Ω = ρ0 dx, show that they coincide with those of Theorem 2.1.1, and
prove that their limit is a curve of maximal slope in (S ,˜︃Wb2).

Theorem 2.1.5. Assume that Ω = (0, 1), that
´ 1

0 ρ0 log ρ0 dx < ∞, and that V ∈ W 1,2(0, 1).
Then:

1. If τ is sufficiently small, the maps (t ↦→ µτ
t )τ resulting from the scheme (2.1.10) are

well-defined, uniquely defined, and coincide with those of Theorem 2.1.1.
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2. When τ → 0, up to subsequences, the maps (t ↦→ µτ
t )τ converge pointwise w.r.t. ˜︃Wb2

to a curve t ↦→ µt.

3. The convergence µτ |Ω →τ µ|Ω also holds in L1
loc

(︂
(0,∞);Lq(0, 1)

)︂
for every q ∈ [1,∞).

The curve t ↦→ µt|Ω is a weak solution to the Fokker–Planck equation. Denoting by ρt

the density of µt|Ω, the map t ↦→
(︃√︂

ρteV − eΨ/2
)︃

belongs to L2
loc

(︂
[0,∞);W 1,2

0 (0, 1)
)︂
.

4. The map t ↦→ µt is a curve of maximal slope for the functional H in the metric
space (S ,˜︃Wb2), with respect to the descending slope

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓
; see Section 2.3.5.

Within the general theory of gradient flows in metric spaces developed by L. Ambrosio, N. Gigli,
and G. Savaré in [AGS08] (see [San17] for an overview), the ‘curve of maximal slope’ is one of
the metric counterparts of the gradient flow in the Euclidean space. In the context of PDEs with
Dirichlet boundary conditions, other proofs of this metric characterization in a (Wasserstein-
like) space of measures are given in [PS20, KKS25, EM25]. To be precise, the result of [PS20,
Proposition 1.20] is an ‘Evolution Variational Inequality’ (EVI) characterization, which implies
a formulation as curve of maximal slope by [AG13, Proposition 4.6]. By Proposition 2.8.5,
our functional H is not semiconvex and, therefore, we do not expect an EVI characterization
in our setting; see [DS08, Theorem 3.2]. Let us also point out that the ‘curve of maximal
slope’ characterizations in [KKS25, EM25] use the relaxed descending slope (see [AGS08,
Equation (2.3.1)]), which yields a weaker notion of gradient flow compared to ours. In
fact, establishing that the descending slope is lower semicontinuous is the main difficulty in
proving Theorem 2.1.5. Indeed, the lower semicontinuity of the slope is usually derived from
the geodesic (semi)convexity of the functional via [AGS08, Corollary 2.4.10], but H is not
geodesically semiconvex by Proposition 2.8.5.

Nonetheless, in dimension d = 1, we are able to find an explicit formula for the descending
slope of H in (S ,˜︃Wb2) without resorting to geodesic convexity. As a corollary, we also give
an answer, again in dimension d = 1, to the problem left open in [FG10] of identifying the
descending slope |∂W b2E| of E with respect to the Figalli–Gigli distance Wb2.

Theorem 2.1.6 (see Corollary 2.6.5). Assume that V ∈ W 1,2(0, 1). For every ρ ∈ L1
+(0, 1),

we have the formula

|∂W b2E|2 (ρ) =

⎧⎪⎪⎨⎪⎪⎩
4
ˆ 1

0

(︃
∂x

√︂
ρeV

)︃2
e−V dx if

√︂
ρeV − 1 ∈ W 1,2

0 (0, 1) ,

∞ otherwise.
(2.1.11)

Additionally, |∂W b2E| is lower semicontinuous with respect to Wb2.

We believe that the same formula should hold true also in higher dimension. A similar open
problem is [CMS25, Conjecture 2].

Plan of the work
In Section 2.2, we formally derive the objects (entropy and transportation functionals) that
appear in the schemes (2.1.8) and (2.1.10).

In Section 2.3, we introduce notation, terminology, and assumptions that are in place throughout
the paper, we recall some definitions from the theory of gradient flows in metric spaces, as well
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2. Variational structures for Fokker–Planck with general Dirichlet BC

as the Figalli–Gigli distance of [FG10], and we define rigorously the transportation functionals T
and ˜︃Wb2.

In Section 2.4, we gather the main properties of these functionals and of the corresponding
admissible transport plans. In particular, we show that ˜︃Wb2 is a true metric when Ω is a finite
union of one-dimensional intervals.

In Section 2.5, we prove Theorem 2.1.1.

In Sections 2.6-2.7, we focus on the case where Ω = (0, 1) ⊆ R1. In Section 2.6, we
find a formula for the slope of H in the metric space (S ,˜︃Wb2) and prove, as a corollary,
Theorem 2.1.6. In Section 2.7, making use of Theorem 2.1.1 and of the slope formula, we
prove Theorem 2.1.5.

Section 2.8 contains some additional results on ˜︃Wb2. Particularly, we prove the lack of geodesic
λ-convexity for H when Ω = (0, 1).

2.2 Formal derivation
Let us work at a completely formal level and postulate that a solution to the Fokker–Planck
equation (2.1.4) is the “Wasserstein-like” gradient flow of some functional F . By this we
mean the following:

1. the motion of ρt in Ω is governed by the continuity equation

d
dtρt = − div(ρtvt) , (2.2.1)

for some velocity field vt,

2. the time-derivative of ρt equals the inverse of the Wasserstein gradient of F at ρt for
every t, in the sense that for every sufficiently nice curve s ↦→ fs of functions on Ω
starting at f0 = ρt we have

d
dsF(fs dx)

⃓⃓⃓⃓
s=0

= −
ˆ

Ω
⟨vt,∇ψ⟩ρt dx , where d

dsfs

⃓⃓⃓⃓
s=0

= − div(ρt∇ψ) . (2.2.2)

As we want to retrieve the Fokker–Planck equation, a reasonable choice for F seems to be

F0(ρ dx) :=
ˆ

Ω

(︂
ρ log ρ+ (V − 1)ρ+ 1

)︂
dx . (2.2.3)

For a fixed t ≥ 0 and a curve s ↦→ fs, we have

d
dsF0(fs dx) =

ˆ
Ω
(V + log fs)

d
dsfs dx ,

and, therefore,

d
dsF0(fs dx)

⃓⃓⃓⃓
s=0

= −
ˆ

Ω
(V + log ρt) div(ρt∇ψ) dx

=
ˆ

Ω
⟨(∇V + ∇ log ρt),∇ψ⟩ρt dx−

ˆ
∂Ω

Ψρt⟨∇ψ,n⟩ dH d−1 ,
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2.3. Preliminaries

where, in the last identity, we used the boundary conditions in (2.1.4). Let us choose

vt := −∇V − ∇ log ρt ,

which makes the continuity equation (2.2.1) true, since ρt solves (2.1.4). Then,

d
dsF0(fs)

⃓⃓⃓⃓
s=0

= −
ˆ

Ω
⟨vt,∇ψ⟩ρt dx−

ˆ
∂Ω

Ψρt⟨∇ψ,n⟩ dH d−1 ,

and we see that F0 is not the right functional because of the integral on the boundary. The
measure ⟨∇ψ,n⟩ρtH d−1 on ∂Ω can be seen as the flux of mass (coming from f0 = ρt) that
is moving away from Ω along the flow s ↦→ fs at s = 0. Thus, if we let this mass settle on
the boundary, ⟨∇ψ,n⟩ρtH d−1 is the time-derivative of the mass on ∂Ω. For this reason, it
makes sense to consider not just measures on Ω, but rather on the closure Ω, and to define

F(µ) := F0(µ|Ω) +
ˆ

Ψ dµ|∂Ω .

Our entropy functional H is defined precisely like this, and, as we will see in Section 2.3, the
transportation functionals T and ˜︃Wb2 are extensions of Wb2 to the subset S of the signed
measures on Ω, constructed so as to encode the idea that mass can leave Ω to settle on ∂Ω
(and vice versa).

This argument is simple, but let us also emphasize the hidden difficulties:

• we assume low regularity on ∂Ω and on the functions ρ0 and V ;

• the transportation-cost functionals ˜︃Wb2 and T will not be, in general, distances;

• the functional H is not bounded from below on S (if Ψ is nonconstant), nor it is strictly
convex. Indeed, it is linear along lines of the form R ∋ l ↦→ µ+ lη with µ, η ∈ S and η
concentrated on ∂Ω;

• when (S ,˜︃Wb2) is a geodesic metric space, the functional H is not geodesically semi-
convex; see [FG10, Remark 3.4] and Section 2.8.3.

2.3 Preliminaries

2.3.1 Setting
Throughout the paper, Ω is an open, bounded, and nonempty subset of Rd. Without loss of
generality, we assume that 0 ∈ Ω. No assumption is made on the regularity of its boundary.

Three functions are given: the initial datum ρ0 : Ω → R+, the potential V : Ω → R, and the
function Ψ : Ω → R that determines the boundary condition. We assume that Ψ is Lipschitz
continuous and that the integral

´
Ω ρ0 log ρ0 dx is finite. In addition, we suppose that V is

bounded (i.e., in L∞(Ω)) and in the set of locally Sobolev functions W 1,d+
loc (Ω).2

Definition 2.3.1. We say that V ∈ W 1,d+
loc (Ω) if, for every ω ⋐ Ω open, there exists p =

p(ω) > d such that V ∈ W 1,p(ω).
2In particular, V ∈ C(Ω).
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2. Variational structures for Fokker–Planck with general Dirichlet BC

The set S is the convex cone of all finite and signed Borel measures µ on Ω such that (2.1.5)
holds.

Proposition 2.3.2. The set S is closed w.r.t. the weak convergence, i.e., in duality with
continuous and bounded functions on Ω.

Proof. If S ∋ µn →n µ, then µ(Ω) = limn→∞ µn(Ω) = 0 and, for every f : Ω → R+
continuous and compactly supported in Ω,

ˆ
f dµΩ =

ˆ
f dµ = lim

n→∞

ˆ
f dµn = lim

n→∞

ˆ
f dµn

Ω ≥ 0 .

The conclusion follows from the Riesz–Markov–Kakutani theorem.

The entropy functionals E : L1
+(Ω) → R∪ {∞} and H : S → R∪ {∞} are defined in (2.1.6)

and (2.1.7), respectively.

2.3.2 Convention on constants
The symbol c is reserved for strictly positive real constants. The number it represents may
change from formula to formula and possibly depends on the dimension d, the set Ω, the
functions V and Ψ, and the initial datum ρ0. We also allow c to depend on other quantities,
which are, in case, explicitly displayed as a subscript.

2.3.3 Measures
For every signed Borel measure µ and Borel set A, we write µA = µ|A for the restriction of µ
to A. Similarly, and following the notation of [FG10, Mor18], if γ is a measure on a product
space and A,B are Borel, we write γB

A = γA×B for the restriction of γ to A×B. We use the
notation µ+, µ− for the positive and negative parts of a given measure µ, and ∥µ∥ for the
total-variation norm of µ, i.e., the total mass of µ+ + µ−.

For every Borel function f and signed Borel measure µ, we denote by µ(f) the integral
´
f dµ.

On the set of the finite signed Borel measures on Ω, we also consider the (modified) Kantorovich–
Rubinstein norm (see [Bog07, Section 8.10(viii)])

∥µ∥˜︂KR :=
⃓⃓⃓
µ(Ω)

⃓⃓⃓
+ sup

{︂
µ(f) : f : Ω → R , Lip(f) ≤ 1 and f(0) = 0

}︂
. (2.3.1)

We write F#µ for the push-forward of a (signed) Borel measure µ via a Borel map F . Often,
we use as F the projection onto some coordinate: we write πi for the projection on the ith
coordinate (or πij for the projection on the two coordinates i and j).

We denote by L d the d-dimensional Lebesgue measure on Rd. We also use the notation |A| :=
L d(A) when A ⊆ Rd is a Borel set. We write δx for the Dirac delta measure at x.
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2.3. Preliminaries

2.3.4 Weak solution to the Fokker–Planck equation
We say that a family of nonnegative measures (µt)t≥0 on Ω is a weak solution to the Fokker–
Planck equation if:

1. it is continuous in duality with the space of continuous and compactly supported
functions Cc(Ω);

2. for every open set ω ⋐ Ω, both t ↦→ µt(ω) and t ↦→
´

|∇V | dµt|ω belong to L1
loc

(︂
[0,∞)

)︂
,

i.e., their restrictions to (0, t̄ ) are integrable for every t̄ > 0;

3. for every φ ∈ C2
c (Ω) and 0 ≤ s ≤ t, the following identity holds:
ˆ
φ dµt −

ˆ
φ dµs =

ˆ t

s

ˆ (︂
∆φ− ⟨∇φ,∇V ⟩

)︂
dµr dr . (2.3.2)

2.3.5 Metric gradient flows
The general theory of gradient flows in metric spaces was developed in [AGS08]; we refer to
this book and to the survey [San17] for a comprehensive exposition of the topic. We collect
here only the definitions we need from this theory.

Let (X, d) be a metric space, let [0,∞) ∋ t ↦→ xt be an X-valued map, and let f : X →
R ∪ {∞} be a function.

Definition 2.3.3 (Metric derivative [AGS08, Theorem 1.1.2]). We say that (xt)t∈[0,∞) is locally
absolutely continuous if there exists a function m ∈ L1

loc

(︂
[0,∞)

)︂
such that

d(xs, xt) ≤
ˆ t

s

m(r) dr (2.3.3)

for every 0 ≤ s < t. If (xt)t∈[0,∞) is locally absolutely continuous, for L 1
[0,∞)-a.e. t there exists

the limit
|ẋt| := lim

s→t

d(xs, xt)
|s− t|

, (2.3.4)

and this function, called metric derivative, is the L 1
[0,∞)-a.e. minimal function m that satisfies

(2.3.3); see [AGS08, Theorem 1.1.2].3

Definition 2.3.4 (Descending slope [AGS08, Definition 1.2.4]). The descending slope of f
at x ∈ X is the number

⃓⃓⃓
∂ f
⃓⃓⃓
(x) =

⃓⃓⃓
∂ df

⃓⃓⃓
(x) := lim sup

y
d→x

(︂
f(x) − f(y)

)︂
+

d(x, y) , (2.3.5)

where a+ := max {0, a} is the positive part of a ∈ R ∪ {±∞}. The slope is conventionally
set equal to ∞ if f(x) = ∞, and to 0 if x is isolated and f(x) < ∞.

3In [AGS08, Theorem 1.1.2], the completeness of the space is assumed but not necessary, as can be easily
checked.
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2. Variational structures for Fokker–Planck with general Dirichlet BC

Definition 2.3.5 (Curve of maximal slope [AGS08, Definition 1.3.2]). We say that a locally
absolutely continuous X-valued map (xt)t∈[0,∞) is a curve of maximal slope (with respect
to |∂ df |) if t ↦→ f(xt) is a.e. equal to a nonincreasing map ϕ : [0,∞) → R such that

ϕ̇(t) ≤ −1
2 |ẋt|2 − 1

2
⃓⃓⃓
∂ df

⃓⃓⃓2
(xt) for L 1

[0,∞)-a.e. t . (2.3.6)

Definition 2.3.5 is motivated by the observation that, when (X, d) is a Euclidean space and f
is smooth, the inequality (2.3.6) is equivalent to the gradient-flow equation

d
dtxt = −∇f(xt) , t ≥ 0 ,

see for instance [San17, Section 2.2]. As noted in [AGS08, Remark 1.3.3],4 even in the general
metric setting, (2.3.6) actually implies the identities

−ϕ̇(t) = |ẋt|2 =
⃓⃓⃓
∂ df

⃓⃓⃓2
(xt) for a.e. t ≥ 0 .

2.3.6 The Figalli–Gigli distance
We briefly recall the definition and some properties of the distance Wb2 introduced in [FG10].
We denote by M2(Ω) the set of nonnegative Borel measures µ on Ω such that

ˆ
inf

y∈∂Ω
|x− y|2 dµ(x) < ∞ , (2.3.7)

and, for every nonnegative Borel measure γ on Ω × Ω, define the cost functional

C(γ) :=
ˆ

|x− y|2 dγ(x, y) . (2.3.8)

Definition 2.3.6 ([FG10, Problem 1.1]). Let µ, ν ∈ M2(Ω). We say that a nonnegative
Borel measure γ on Ω × Ω is a Wb2-admissible transport plan between µ and ν, and
write γ ∈ AdmW b2(µ, ν), if (︂

π1
#γ
)︂

Ω
= µ and

(︂
π2

#γ
)︂

Ω
= ν . (2.3.9)

The distance Wb2(µ, ν) is then defined as

Wb2(µ, ν) := inf
{︃√︂

C(γ) : γ ∈ AdmW b2(µ, ν)
}︃
. (2.3.10)

In [FG10, Section 2], it was observed that for every µ, ν ∈ M2(Ω) there exists at least one
Wb2-optimal transport plan, that is, a measure γ ∈ AdmW b2(µ, ν) that attains the infimum
in (2.3.10).

Later, we will make use of the following consequences of [FG10, Proposition 2.7]: the
convergence w.r.t. the metric Wb2 implies the convergence in duality with Cc(Ω), and it is
implied by the convergence in duality with Cb(Ω).

4Once again, completeness is not necessary.
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2.3.7 Transportation functionals
We now define the transportation functionals T and ˜︃Wb2 that appear in the schemes (2.1.8)
and (2.1.10).

Definition 2.3.7. For every µ, ν ∈ S , let Adm˜︂W b2
(µ, ν) be the set of all finite nonnegative

Borel measures γ on Ω × Ω such that

(1)
(︂
π1

#γ
)︂

Ω
= µΩ,

(2)
(︂
π2

#γ
)︂

Ω
= νΩ,

(3) π1
#γ − π2

#γ = µ− ν.

We call such measures ˜︃Wb2-admissible transport plans between µ and ν. We set

˜︃Wb2(µ, ν) := inf
{︃√︂

C(γ) : γ ∈ Adm˜︂W b2
(µ, ν)

}︃
, (2.3.11)

and write
Opt˜︂W b2

(µ, ν) := arg min
γ∈Adm˜︂W b2

(µ,ν)
C(γ) (2.3.12)

for the set of all ˜︃Wb2-optimal tranport plans between µ and ν.

Remark 2.3.8. There is some redundancy in the properties (1)-(3), indeed,

(1) + (3) ⇒ (2) and (2) + (3) ⇒ (1) .

Definition 2.3.9. For every µ, ν ∈ S , let AdmT (µ, ν) be the set of all measures γ ∈
Adm˜︂W b2

(µ, ν) such that, additionally,

(4) γ∂Ω
∂Ω = 0.

We define the T -admissible/optimal tranport plans as in (2.3.11) and (2.3.12), by replac-
ing ˜︃Wb2 with T .

Remark 2.3.10. If γ ∈ AdmT (µ, ν) for some µ, ν ∈ S , then

∥γ∥ ≤
⃦⃦⃦⃦
γΩ

Ω

⃦⃦⃦⃦
+
⃦⃦⃦
γΩ

Ω

⃦⃦⃦
=∥µΩ∥ +∥νΩ∥ . (2.3.13)

Remark 2.3.11. Fix µ, ν ∈ S . For every η ∈ S concentrated on ∂Ω, it is easy to check that

Adm˜︂W b2
(µ+ η, ν + η) = Adm˜︂W b2

(µ, ν) and AdmT (µ+ η, ν + η) = AdmT (µ, ν) .

Hence,

˜︃Wb2(µ+ η, ν + η) = ˜︃Wb2(µ, ν) and T (µ+ η, ν + η) = T (µ, ν) . (2.3.14)
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(a) Wb2-admissible (b) ˜︃Wb2-admissible (c) T -admissible

Figure 2.1: Examples of admisssible plans. Red (resp. blue) regions are those with an abundance
of initial (resp. final) mass µ (resp. ν). Admissible plans for Wb2 do not have any restriction
on the mass departing from and arriving to ∂Ω. Admissible plans for ˜︃Wb2 must agree—in
the sense of Condition (3)—with the configurations µ, ν also on ∂Ω. Admissible plans for T
are ˜︃Wb2-admissible and, additionally, do not move mass from ∂Ω to ∂Ω.

Let us briefly comment on these definitions. Conditions (1) and (2) are precisely the same
as (2.3.9). They are needed to ensure that the mass that departs from (resp. arrives in) Ω
is precisely µΩ (resp. νΩ). Condition (3) is needed to also keep track of the mass that is
exchanged with the boundary. Namely, it ensures that, on each subregion of A ⊆ Ω (possibly
including part of the boundary, which was neglected by Conditions (2)-(3)), the mass ν(A)
after the transportation equals the initial mass µ(A), plus the imported mass γ(Ω ×A), minus
the exported mass γ(A× Ω). Observe that, since µ and ν normally have a negative mass on
some subregions of ∂Ω, it does not make sense to naively impose π1

#γ = µ and π2
#γ = ν.

The difference between ˜︃Wb2 and T is Condition (4): T -admissible transport plans cannot
move mass from ∂Ω to ∂Ω. This results in the loss of the triangle inequality.

Example 2.3.12. Consider, for the domain Ω := (0, 1), the measures

µ1 := δ0 − δ1 ∈ S , µ2 := δ1/2 − δ1 ∈ S , µ3 := 0 ∈ S .

The transport plans γ12 := δ(0,1/2) and γ23 := δ(1/2,1) are T -admissible, between µ1 and µ2,
and between µ2 and µ3, respectively. Thus, both T (µ1, µ2) and T (µ2, µ3) are bounded
above by 1/2. However, there is no γ13 ∈ AdmT (µ1, µ3), whence T (µ1, µ3) = ∞. Indeed,
Conditions (1) and (2) in Definition 2.3.7 would imply (γ13)Ω

Ω = (γ13)Ω
Ω = 0. Together with (4)

in Definition 2.3.9, this means that γ13 equals the zero measure, which contradicts (3) in
Definition 2.3.7.

Nonetheless, it is shown in Proposition 2.8.1 that Condition (4) is needed in dimension d ≥ 2,
because the information about µ∂Ω and ν∂Ω may otherwise be lost. This does not happen
when Ω is just a finite union of intervals in R1, because points in ∂Ω are distant from each
other. We will see that, in this case, Definition 2.3.7 defines a distance.

These remarks reveal part of the difficulties in building cost functionals for signed measures
that behave like W2. See [Mai11] for further details. However, it seems at least convenient to
use signed measures, given that a modified JKO scheme that mimics [FG10] should allow for
a virtually unlimited amount of mass to be taken from points of ∂Ω, step after step.
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2.4 Properties of the transportation functionals
We gather some useful properties of T and ˜︃Wb2.

2.4.1 Relation with the Figalli–Gigli distance
For every µ, ν ∈ S , we have the inclusions

AdmT (µ, ν) ⊆ Adm˜︂W b2
(µ, ν) ⊆ AdmW b2(µΩ, νΩ) .

As a consequence,
Wb2(µΩ, νΩ) ≤ ˜︃Wb2(µ, ν) ≤ T (µ, ν) , µ, ν ∈ S . (2.4.1)

In fact, ˜︃Wb2 and T can be seen as extensions of Wb2 in the following sense.

Lemma 2.4.1. Let µ, ν be finite nonnegative Borel measures on Ω. For every µ̃ ∈ S
with µ̃Ω = µ, we have the identities

Wb2(µ, ν) = inf
ν̃∈S

{︂˜︃Wb2(µ̃, ν̃) : ν̃Ω = ν
}︂

= inf
ν̃∈S

{︁
T (µ̃, ν̃) : ν̃Ω = ν

}︁
. (2.4.2)

Proof. In light of (2.4.1), it suffices to prove that
inf

ν̃∈S

{︁
T (µ̃, ν̃) : ν̃Ω = ν

}︁
≤ Wb2(µ, ν) .

Let γ ∈ AdmW b2(µ, ν). Define γ̃ := γ − γ∂Ω
∂Ω and

ν̃ := µ̃+ π2
#γ̃ − π1

#γ̃ .

It is easy to check that ν̃Ω = ν, that γ̃ ∈ AdmT (µ̃, ν̃), and that C(γ̃) ≤ C(γ). As a
consequence,

inf
ν̃∈S

{︁
T (µ̃, ν̃) : ν̃Ω = ν

}︁
≤
√︂

C(γ) ,

and we conclude by arbitrariness of γ.

2.4.2 Relation with the Kantorovich–Rubinstein norm
Interestingly, an inequality relates ˜︃Wb2 and ∥·∥˜︂KR.

Lemma 2.4.2. For every µ, ν ∈ S , we have
˜︃Wb

2
2(µ, ν) ≤ diam(Ω)∥µ− ν∥˜︂KR . (2.4.3)

Proof. Define the nonnegative measures
µ̃ := µΩ + (µ∂Ω − ν∂Ω)+ , ν̃ := νΩ + (µ∂Ω − ν∂Ω)− ,

and note that µ̃− ν̃ = µ− ν. In particular, µ̃(Ω) = ν̃(Ω).
Let γ be a coupling between µ̃ and ν̃, i.e., γ is a nonnegative Borel measure on Ω × Ω such
that π1

#γ = µ̃ and π2
#γ = ν̃. Notice that γ is ˜︃Wb2-admissible between µ and ν. Therefore,

˜︃Wb
2
2(µ, ν) ≤ C(γ) =

ˆ
|x− y|2 dγ ≤ diam(Ω)

ˆ
|x− y| dγ .

After taking the infimum over γ, the Kantorovich–Rubinstein duality [Bog07, Theorem 8.10.45]
implies ˜︃Wb

2
2(µ, ν) ≤ diam(Ω)∥µ̃− ν̃∥˜︂KR = diam(Ω)∥µ− ν∥˜︂KR .
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2.4.3 T is an extended semimetric
The functional T may take the value infinity and does not satisfy the triangle inequality; see
Example 2.3.12. Nonetheless, we have the following proposition, which we prove together
with two useful lemmas.

Proposition 2.4.3. The functional T is an extended semimetric, i.e., it is nonnegative,
symmetric, and we have

T (µ, ν) = 0 ⇐⇒ µ = ν . (2.4.4)

Lemma 2.4.4. Let (µn)n∈N0 and (νn)n∈N0 be two sequences in S , and let γn ∈ AdmT (µn, νn)
for every n ∈ N0. Assume that

(a) µn →n µ and νn →n ν weakly for some µ, ν,

(b) µn
Ω →n µΩ and νn

Ω →n νΩ setwise, i.e., on all Borel sets,

(c) γn →n γ weakly.

Then µ, ν ∈ S and γ ∈ AdmT (µ, ν).
In particular, for any µ, ν ∈ S , the set AdmT (µ, ν) is sequentially closed with respect to the
weak convergence.

The proof of this lemma is inspired by part of that of [Mor18, Lemma 3.1].

Proof. The total mass of γn is bounded and, therefore, the same can be said for the total
mass of (γn)Ω

Ω, (γn)∂Ω
Ω , (γn)Ω

∂Ω. Hence, up to taking a subsequence, we may assume that

(γn)Ω
Ω →n σ1 in duality with C(Ω × Ω) ,

(γn)∂Ω
Ω →n σ2 in duality with C(Ω × ∂Ω) ,

(γn)Ω
∂Ω →n σ3 in duality with C(∂Ω × Ω)

for some σ1, σ2, σ3. In particular, γn →n γ := σ1 + σ2 + σ3.

We claim that σ1, σ2, σ3 are concentrated on Ω × Ω,Ω × ∂Ω, ∂Ω × Ω respectively. If this is
true, then Condition (4) in Definition 2.3.9 for γ is obvious, and those in Definition 2.3.7
follow by testing them with a function f ∈ Cb(Ω) for every n and passing to the limit. For
instance, to prove Condition (1) in Definition 2.3.7, we write the chain of equalities

µΩ(f) = lim
n→∞

µn
Ω(f) = lim

n→∞

ˆ
f(x) d(γn)Ω

Ω(x, y)

=
ˆ
f(x) d(σ1 + σ2)(x, y) =

ˆ
f(x) dγΩ

Ω(x, y) =
(︂
π1

#γ
Ω
Ω

)︂
(f) .

Let us prove the claim. Let A ⊆ Ω be an open set, in the relative topology of Ω, that
contains ∂Ω. We have

σ1(∂Ω × Ω) ≤ σ1(A× Ω) ≤ lim inf
n→∞

(γn)Ω
Ω(A× Ω)

≤ lim inf
n→∞

(γn)Ω
Ω(A× Ω) = lim inf

n→∞
µn

Ω(A) = µΩ(A) ,
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where the second inequality follows from the semicontinuity of the mass on open sets (in the
topology of Ω × Ω) and the last equality from the setwise convergence. Since µΩ has finite
total mass and µΩ(∂Ω) = 0, we have σ1(∂Ω × Ω) = 0. Analogously, using Condition (2) in
place of Condition (1), we obtain σ1(Ω × ∂Ω) = 0. For σ2 and σ3, the proof is similar.

Lemma 2.4.5. If T (µ, ν) < ∞, then OptT (µ, ν) ̸= ∅.

Proof. It suffices to prove that AdmT (µ, ν) is nonempty and weakly sequentially compact. It
is nonempty if T (µ, ν) < ∞. It is sequentially compact because

γ ∈ AdmT (µ, ν) (2.3.13)=⇒ ∥γ∥ ≤∥µΩ∥ +∥νΩ∥ ,

and thanks to Lemma 2.4.4.

Proof of Proposition 2.4.3. Only the implication ⇒ in (2.4.4) is not immediate. Let us
assume that T (µ, ν) = 0 and let γ ∈ OptT (µ, ν). Since C(γ) = 0, the measure γ is
concentrated on the diagonal of Ω × Ω. Thus, the equality µ = ν follows from Condition (3)
in Definition 2.3.7.

We conclude with a corollary of Lemma 2.4.4: a semicontinuity property of T .

Corollary 2.4.6. Let (µn)n∈N0 and (νn)n∈N0 be two sequences in S . Assume that

(a) µn →n µ and νn →n ν weakly for some µ, ν,

(b) µn
Ω →n µΩ and νn

Ω →n νΩ setwise, i.e., on all Borel sets.

Then
T (µ, ν) ≤ lim inf

n→∞
T (µn, νn) . (2.4.5)

Proof. We may assume that the right-hand side in (2.4.5) exists as a finite limit and that, for
every n ∈ N0, there exists γn ∈ AdmT (µ, ν) such that

C(γn) ≤ T 2(µn, νn) + 1
n
.

The total variation of each measure γn is bounded by ∥µn
Ω∥ +∥νn

Ω∥, which is in turn bounded
thanks to the assumption. Therefore, we can extract a subsequence (γnk)k∈N0 that converges
weakly to a measure γ. We know from Lemma 2.4.4 that γ ∈ AdmT (µ, ν); thus,

T 2(µ, ν) ≤ C(γ) = lim
k→∞

C(γnk) = lim
k→∞

T 2(µnk , νnk) = lim
n→∞

T 2(µn, νn) .

2.4.4 H is “semicontinuous w.r.t T ”
Albeit not being a distance, the transportation functional T makes H lower semicontinuous,
in the following sense.

Proposition 2.4.7. Let (µn)n∈N0 be a sequence in S and suppose that

lim
n→∞

T (µn, µ) = 0 (2.4.6)

for some µ ∈ S . Then
H(µ) ≤ lim inf

n→∞
H(µn) . (2.4.7)
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For the proof we need a lemma, to which we will also often refer later. This lemma, inspired
by [Mor18, Lemma 5.8] allows to control (µ−ν)∂Ω in terms of T (µ, ν) and of the restrictions µΩ
and νΩ. This fact is convenient for two reasons:

• the part of the functional H that depends on µΩ is superlinear,

• we will see (Remark 2.5.17) that the restrictions to Ω of the measures produced by the
scheme (2.1.8) have bounded (in time) mass.

Lemma 2.4.8. Let τ > 0, let µ, ν ∈ S , and let Φ: Ω → R be Lipschitz continuous. Then,
⃓⃓
µ(Φ) − ν(Φ)

⃓⃓
≤ τ(Lip Φ)2

(︂
∥µΩ∥ +∥νΩ∥

)︂
+ T 2(µ, ν)

4τ . (2.4.8)

In particular,

µ∂Ω(Φ) − ν∂Ω(Φ) ≤ νΩ(Φ) − µΩ(Φ) + τ(Lip Φ)2
(︂
∥µΩ∥ +∥νΩ∥

)︂
+ T 2(µ, ν)

4τ . (2.4.9)

Proof. Let γ ∈ OptT (µ, ν). By Definition 2.3.7 and Definition 2.3.9, we have

⃓⃓
µ(Φ) − ν(Φ)

⃓⃓
=
⃓⃓⃓
(π1

#γ − π2
#γ)(Φ)

⃓⃓⃓
=
⃓⃓⃓⃓
⃓
ˆ (︂

Φ(x) − Φ(y)
)︂

dγ(x, y)
⃓⃓⃓⃓
⃓

≤
ˆ √

2τ(Lip Φ) · |x− y|√
2τ

dγ(x, y)

≤ τ(Lip Φ)2∥γ∥ + 1
4τ

ˆ
|x− y|2 dγ(x, y)

≤ τ(Lip Φ)2
(︂
∥µΩ∥ +∥νΩ∥

)︂
+ T 2(µ, ν)

4τ .

Proof of Proposition 2.4.7. We may assume that the right-hand side in (2.4.7) exists as a
finite limit and that H(µn) is finite for every n. In particular, µn

Ω is absolutely continuous
w.r.t. L d

Ω . Denote by ρn its density. Owing to Lemma 2.4.8, for every τ > 0 and n, we have

H(µn) = E(ρn) + µn
∂Ω(Ψ)

≥
ˆ

Ω
(log ρn + V − 1 − cτ − Ψ)ρn dx+|Ω| + µ(Ψ) − cτ∥µΩ∥ − T 2(µn, µ)

4τ .

It follows that the sequence (ρn)n is uniformly integrable. By the Dunford–Pettis theorem, it
admits a (not relabeled) subsequence that converges, weakly in L1(Ω), to some function ρ.
From (2.4.1) and [FG10, Proposition 2.7], we infer that µn

Ω → µΩ in duality with Cc(Ω) and,
therefore, ρ is precisely the density of µΩ. The functional E is convex and lower semicontinuous
on L1(Ω) (by Fatou’s lemma), hence weakly lower semicontinuous. Thus, we are only left
with proving that

µ∂Ω(Ψ) ≤ lim inf
n→∞

µn
∂Ω(Ψ) .

Once again, we make use of Lemma 2.4.8 and of the weak convergence in L1(Ω) to write, for
every τ > 0,

lim sup
n→∞

(µ− µn)∂Ω(Ψ) ≤ lim sup
n→∞

cτ
(︂
∥µn

Ω∥ +∥µΩ∥
)︂

+ lim sup
n→∞

T 2(µn, µ)
4τ ≤ cτ∥µΩ∥ .

We conclude by arbitrariness of τ .
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2.4.5 ˜︃Wb2 is a pseudodistance
The functional ˜︃Wb2 is a pseudodistance on S , meaning that it fulfills the properties of a
distance, except, possibly, µ = ν when ˜︃Wb2(µ, ν) = 0. As before, nonnegativity, symmetry,
and the implication

µ = ν =⇒ ˜︃Wb2(µ, ν) = 0

are obvious. To prove finiteness, it suffices to produce a single γ ∈ Adm˜︂W b2
(µ, ν) for

every µ, ν ∈ S . Let us arbitrarily fix a probability measure ζ on ∂Ω and set

η := µ∂Ω − ν∂Ω +
(︂
∥µΩ∥ −∥νΩ∥

)︂
ζ .

The following is ˜︃Wb2-admissible:

γ :=

⎧⎨⎩µΩ ⊗ ζ + ζ ⊗ νΩ + η+⊗η−
∥η+∥ if η ̸= 0 ,

µΩ ⊗ ζ + ζ ⊗ νΩ if η = 0 .

Only the triangle inequality is still missing.

Proposition 2.4.9. The functional ˜︃Wb2 satisfies the triangle inequality. Hence, it is a
pseudodistance.

Proof. Let µ1, µ2, µ3 ∈ S , and let us view them as measures on three different copies of Ω,
that we denote by Ω1,Ω2,Ω3, respectively. We write π2 for both the projections from Ω1 × Ω2
and Ω2 × Ω3 onto Ω2.

Choose two transport plans γ12 ∈ Adm˜︂W b2
(µ1, µ2) and γ23 ∈ Adm˜︂W b2

(µ2, µ3). Let η :=
(π2

#γ23 − π2
#γ12)∂Ω and consider

γ̃12 := γ12 + (Id, Id)#η+, γ̃23 := γ23 + (Id, Id)#η− .

It is easy to check that these are admissible too, i.e., γ̃12 ∈ Adm˜︂W b2
(µ1, µ2) and γ̃23 ∈

Adm˜︂W b2
(µ2, µ3), as well as that C(γ12) = C(γ̃12) and C(γ23) = C(γ̃23). Furthermore, π2

#γ̃12
equals π2

#γ̃23. The gluing lemma [AGS08, Lemma 5.3.2] supplies a nonnegative Borel mea-
sure γ̃123 such that

π12
# γ̃123 = γ̃12 and π23

# γ̃123 = γ̃23 .

The measure γ := π13
# γ̃123 is ˜︃Wb2-admissible between µ1 and µ2. By the Minkowski inequality,

˜︃Wb2(µ1, µ2) ≤
√︂

C(γ) ≤
√︂

C(γ̃12) +
√︂

C(γ̃23) =
√︂

C(γ12) +
√︂

C(γ23) ,

from which, by arbitrariness of γ12 and γ23, the triangle inequality follows.

In general, ˜︃Wb2 is not a true metric on S . This is proven in Proposition 2.8.1. However, an
analogue of Lemma 2.4.4 holds (proof omitted).

Lemma 2.4.10. Let (µn)n∈N0 and (νn)n∈N0 be two sequences in S , and let γn ∈ Adm˜︂W b2
(µn, νn)

for every n ∈ N0. Assume that

(a) µn →n µ and νn →n ν weakly for some µ, ν,
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(b) µn
Ω →n µΩ and νn

Ω →n νΩ setwise, i.e., on all Borel sets,

(c) γn →n γ weakly.

Then µ, ν ∈ S and γ ∈ Adm˜︂W b2
(µ, ν).

In particular, for any µ, ν ∈ S , the set Adm˜︂W b2
(µ, ν) is sequentially closed with respect to

the weak convergence.

2.4.6 When Ω is a finite union of intervals, ˜︃Wb2 is a distance
When Ω is a finite union of 1-dimensional intervals (equivalently, when ∂Ω is a finite set) we
also have ˜︃Wb2(µ, ν) = 0 ⇐⇒ µ = ν .

Proposition 2.4.11. If d = 1 and Ω is a finite union of intervals, then (S ,˜︃Wb2) is a metric
space.

This proposition is an easy consequence of the following remark and lemma, analogous to
Remark 2.3.10 and Lemma 2.4.5, respectively.
Remark 2.4.12. Fix µ, ν ∈ S and pick γ ∈ Adm˜︂W b2

(µ, ν). If ∂Ω is finite and the diagonal
of ∂Ω × ∂Ω is γ-negligible, then

∥γ∥ ≤
⃦⃦⃦⃦
γΩ

Ω

⃦⃦⃦⃦
+
⃦⃦⃦
γΩ

Ω

⃦⃦⃦
+
⃦⃦⃦
γ∂Ω

∂Ω

⃦⃦⃦
≤∥µΩ∥ +∥νΩ∥ + 1

minx,y∈∂Ω
x ̸=y

|x− y|2
ˆ

|x− y|2 dγ(x, y)

≤∥µΩ∥ +∥νΩ∥ + c C(γ) .
(2.4.10)

Lemma 2.4.13. Assume that d = 1 and that Ω is a finite union of intervals. Then the
set Opt˜︂W b2

(µ, ν) is nonempty for every µ, ν ∈ S .

Proof. We already know that Adm˜︂W b2
(µ, ν) ̸= ∅. Let us take a minimizing sequence

(γn)n∈N0 ⊆ Adm˜︂W b2
(µ, ν) for the cost functional C. Let ∆ be the diagonal of ∂Ω × ∂Ω. It

is easy to see that (γn − γn|∆)n is still an admissible and minimizing sequence. Therefore,
we can assume that γn|∆ = 0. By Remark 2.4.12, the total variation of γn is bounded.
Therefore, there exists a subsequence of (γn)n that converges weakly to a limit γ and,
by Lemma 2.4.10, γ ∈ Adm˜︂W b2

(µ, ν). Since the sequence is minimizing, γ is also ˜︃Wb2-
optimal.

Two further useful facts about ˜︃Wb2 are the counterparts of Lemma 2.4.8 and Proposition 2.4.7
in the case where Ω is a finite union of intervals.

Lemma 2.4.14. Assume that d = 1 and that Ω is a finite union of intervals. Let µ, ν ∈ S
and let Φ: Ω → R be Lipschitz continuous. Then,

⃓⃓
µ(Φ) − ν(Φ)

⃓⃓
≤ cΦ

˜︃Wb2(µ, ν)
√︃

∥µΩ∥ +∥νΩ∥ + ˜︃Wb
2
2(µ, ν) . (2.4.11)
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Proof. By Condition (3) in Definition 2.3.7, for every µ, ν ∈ S and every γ ∈ Opt˜︂W b2
(µ, ν),

we have

⃓⃓
µ(Φ) − ν(Φ)

⃓⃓
=
⃓⃓⃓⃓
⃓
ˆ (︂

Φ(x) − Φ(y)
)︂

dγ(x, y)
⃓⃓⃓⃓
⃓ ≤ (Lip Φ)

ˆ
|x− y| dγ(x, y)

≤ (Lip Φ)
√︂

C(γ) ∥γ∥ = (Lip Φ)˜︃Wb2(µ, ν)
√︂

∥γ∥ .

We can assume that the diagonal of ∂Ω × ∂Ω is γ-negligible; hence, we conclude by Re-
mark 2.4.12.

Proposition 2.4.15. Assume that d = 1 and that Ω is a finite union of intervals. Then H is
lower semicontinuous w.r.t. ˜︃Wb2.

Proof. Similar to the proof of Proposition 2.4.7, making use of Lemma 2.4.14 in place of
Lemma 2.4.8.

When ˜︃Wb2 defines a metric, a natural question is whether or not this metric is complete.
In general, the answer is no; this is proven in Proposition 2.8.2. Nonetheless, we prove in
Proposition 2.8.3 that the sublevels of H are complete for ˜︃Wb2.

Another interesting problem is to find a convergence criterion for ˜︃Wb2. Exploiting Lemma 2.4.2,
we find a simple sufficient condition for convergence in the 1-dimensional setting.

Lemma 2.4.16. Assume that d = 1 and that Ω is a finite union of intervals. If (µn)n∈N0 ⊆ S

converges weakly to µ ∈ S , then µn ˜︂W b2→ n µ.

Proof. The idea is to use Lemma 2.4.2 together with the measure-theoretic result [Bog07,
Theorem 8.3.2]: the metric induced by ∥·∥˜︂KR metrizes the weak convergence5 of nonnegative
Borel measures on Ω. For every x ∈ ∂Ω, let ax := − infn µn(x). Every number ax is finite
because, by the uniform boundedness principle, the total variation of µn is bounded. By the
considerations above, we have

µn →n µ weakly =⇒ µn +
∑︂

x∈∂Ω
axδx →n µ+

∑︂
x∈∂Ω

axδx weakly

=⇒ ∥µn − µ∥˜︂KR →n 0 (2.4.3)=⇒ ˜︃Wb2(µn, µ) →n 0 .

Remark 2.4.17. The converse of Lemma 2.4.16 is not true: in the case Ω := (0, 1), consider
the sequence

µn := n(δ1/n − δ0) , n ∈ N1 ,

which converges to µ := 0 w.r.t. ˜︃Wb2.

2.4.7 Estimate on the directional derivative
The following lemma will be used in Proposition 2.5.9 to characterize the solutions of the
variational problem (2.1.8). We omit its simple proof, almost identical to that of [FG10,
Proposition 2.11].

5In [Bog07], two Kantorovich–Rubinstein norms are defined. Here, we implicitly use that they are equivalent
on measures on a bounded metric space; see [Bog07, Section 8.10(viii)].
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Lemma 2.4.18. Let µ, ν ∈ S and γ ∈ OptT (µ, ν). Let w : Ω → Rd be a bounded and
Borel vector field with compact support. For t > 0 sufficiently small, define µt := (Id +tw)#µ.
Then

lim sup
t→0+

T 2(µt, ν) − T 2(µ, ν)
t

≤ −2
ˆ

⟨w(x), y − x⟩ dγ(x, y) . (2.4.12)

2.4.8 Existence of transport maps
Proposition 2.4.19. Let µ, ν ∈ S , let A,B ⊆ Ω×Ω be Borel sets, and let γ be a nonnegative
Borel measure on Ω × Ω. If

(a) γ ∈ Opt˜︂W b2
(µ, ν),

(b) or: γ ∈ OptT (µ, ν) and (A× B) ∩ (∂Ω × ∂Ω) = ∅,

then γB
A is optimal for the classical 2-Wasserstein distance between its marginals.

Consequently: under the assumptions of this proposition, if one of the two marginals of γB
A is

absolutely continuous, we can apply Brenier’s theorem [Bre87] and deduce the existence of an
optimal transport map. For instance, whenever µΩ is absolutely continuous, there exists a
Borel map T : Ω → Ω such that γΩ

Ω = (Id, T )#µΩ.

Proof of Proposition 2.4.19. Let γ̃ be any nonnegative Borel coupling between π1
#γ

B
A and

π2
#γ

B
A . In particular, γ̃ is concentrated on A× B. Define the nonnegative measure

γ′ := γ − γB
A + γ̃ .

Note that
π1

#γ
′ = π1

#γ and π2
#γ

′ = π2
#γ ,

which yields
γ ∈ Adm˜︂W b2

(µ, ν) =⇒ γ′ ∈ Adm˜︂W b2
(µ, ν) .

Furthermore, if γ∂Ω
∂Ω = 0, then (γ′)∂Ω

∂Ω = γ̃∂Ω
∂Ω. Thus,[︂

γ ∈ AdmT (µ, ν) and (A× B) ∩ (∂Ω × ∂Ω) = ∅
]︂

=⇒ γ′ ∈ AdmT (µ, ν) .

Hence, if γ ∈ Opt˜︂W b2
(µ, ν), or γ ∈ OptT (µ, ν) and (A × B) ∩ (∂Ω × ∂Ω) = ∅, then, by

optimality, C(γ) ≤ C(γ′), and we infer that C(γB
A ) ≤ C(γ̃). We conclude by arbitrariness

of γ̃.

In [FG10, Proposition 2.3] and [Mor18, Proposition 3.2], the authors give more precise
characterizations of the optimal plans for their respective transportation functionals in terms of
suitable c-cyclical monotonicity of the support, as in the classical optimal transport theory; see,
e.g., [ABS21, Lecture 3]. Existence of transport plans is then derived as a consequence. We
believe that a similar analysis can be carried out for the transport plans in OptT and Opt˜︂W b2

,
but it is not necessary for the purpose of this work.
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2.5 Proof of Theorem 2.1.1
Recall the scheme (2.1.8): we first fix a measure µ0 ∈ S such that its restriction to Ω is
absolutely continuous (w.r.t. the Lebesgue measure) with density equal to ρ0. Then, for
every τ > 0 and n ∈ N0, we iteratively choose

µτ
(n+1)τ ∈ arg min

µ∈S

(︄
H(µ) + T 2(µ, µτ

nτ )
2τ

)︄
.

For all τ > 0, these sequences are extended to maps t ↦→ µτ
t , constant on the intervals

[︂
nτ, (n+

1)τ
)︂

for every n ∈ N0.

Remark 2.5.1. The choice of (µ0)∂Ω is inconsequential, in the sense that, for every t and τ the
restriction (µτ

t )Ω does not depend on it. In fact, from Remark 2.3.11 and the uniqueness of the
minimizer in (2.1.8) (i.e., Proposition 2.5.11), it is possible to infer the following proposition
(proof omitted).

Proposition 2.5.2. Fix τ > 0, and let µ0, µ̃0 ∈ S be such that (µ0)Ω = (µ̃0)Ω. Let t ↦→ µτ
t

and t ↦→ µ̃τ
t be the maps constructed with the scheme (2.1.8), starting from µ0 and µ̃0,

respectively. Then, for every t ≥ 0,

µτ
t − µ̃τ

t = µ0 − µ̃0 = (µ0)∂Ω − (µ̃0)∂Ω . (2.5.1)

We are going to prove Theorem 2.1.1 in seven steps, corresponding to as many (sub)sections:

1. Existence: The scheme is well-posed, in the sense that there exists a minimizer for the
variational problem (2.1.8).

2. Boundary condition: The minimizers of (2.1.8) approximately satisfy the boundary
condition ρ|∂Ω = eΨ−V .

3. Sobolev regularity: There are minimizers such that their restriction to Ω enjoy some
Sobolev regularity, with quantitative estimates, and satisfy a “precursor” of the Fokker–
Planck equation.

4. Uniqueness: There is only one minimizer for (2.1.8) (given µτ
nτ ).

5. Contractivity: Suitably truncated Lq norms decrease in time along t ↦→ µτ
t . This result is

useful in proving convergence of the scheme, both w.r.t. Wb2 and in L1
loc

(︂
(0,∞);Lq(Ω)

)︂
.

6. Convergence w.r.t. Wb2.

7. Fokker–Planck with Dirichlet boundary conditions: The limit solves the Fokker–Planck
equation with the desired Dirichlet boundary conditions. Moreover, the convergence
holds in L1

loc

(︂
(0,∞);Lq(Ω)

)︂
for q ∈ [1, d

d−1).

Each (sub)section starts with the precise statement of the corresponding main proposition and
ends with its proof. When needed, some preparatory lemmas precede the proof.
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2.5.1 One step of the scheme
In this section, we gather together the subsections corresponding to the first five steps of
our plan for Theorem 2.1.1. The reason is that they all involve only one step of the discrete
scheme.

Throughout this section, µ̄ is any measure in S whose restriction to Ω is absolutely continuous
and such that, denoting by ρ̄ the density of µ̄Ω, the quantity E(ρ̄) is finite. We also fix τ > 0.
We aim to find one/all minimizer(s) of

H(·) + T 2(·, µ̄)
2τ

: S → R (2.5.2)

and determine some of its/their properties.

Existence

Proposition 2.5.3. There exists at least one minimizer of the function in (2.5.2). Every
minimizer µ satisfies the following:

1. Both H(µ) and T (µ, µ̄) are finite. In particular, µΩ admits a density ρ.

2. The total variation of µ and the integral
´

Ω ρ log ρ dx can be bounded by a constant cτ,µ̄

that depends on V only through ∥V ∥L∞ .

3. The following inequality holds:

T 2(µ, µ̄)
4τ ≤ E(ρ̄) − E(ρ) + µΩ(Ψ) − µ̄Ω(Ψ) + cτ

(︂
∥µΩ∥ +∥µ̄Ω∥

)︂
. (2.5.3)

The proof of this proposition, partially inspired by [Mor18, Propositions 4.3 & 5.9], is essentially
an application of the direct method in the calculus of variations, although some care is needed
due to the unboundedness of H from below.

Proof of Proposition 2.5.3. Let (µn)n∈N1 ⊆ S be a minimizing sequence for (2.5.2). We may
assume that

H(µn) + T 2(µn, µ̄)
2τ ≤ H(µ̄) + T 2(µ̄, µ̄)

2τ + 1
n

= H(µ̄) + 1
n
< ∞ , n ∈ N1 , (2.5.4)

where the finiteness of H(µ̄) is consequence of E(ρ̄) < ∞. For every n, let ρn be the density
of µn

Ω and let γn ∈ OptT (µn, µ̄).

Step 1 (preliminary bounds). Firstly, we shall do some work towards the proof of (2.5.3) and
establish uniform integrability for {ρn}n. By (2.5.4) and Lemma 2.4.8,

T 2(µn, µ̄)
2τ ≤ H(µ̄) − H(µn) + 1

n
= E(ρ̄) − E(ρn) + µ̄∂Ω(Ψ) − µn

∂Ω(Ψ) + 1
n

≤ E(ρ̄) − E(ρn) + µn
Ω(Ψ) − µ̄Ω(Ψ) + τ(Lip Ψ)2

(︂
∥µn

Ω∥ +∥µ̄Ω∥
)︂

+ T 2(µn, µ̄)
4τ + 1

n
,

(2.5.5)
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from which,
ˆ

Ω
ρn log ρn ≤

ˆ
Ω

(︂
ρ̄ log ρ̄+ (∥V ∥L∞ +∥Ψ∥L∞ + 1 + τ(Lip Ψ)2)(ρ̄+ ρn)

)︂
dx+ 1

n
. (2.5.6)

Since l ↦→ l log l is superlinear, we have uniform integrability of {ρn}n. In particular, ∥µn
Ω∥ is

bounded.

Also the total variation ∥µn∥ is bounded. Indeed,

∥µn∥ ≤ 2∥γn∥ +∥µ̄∥ ≤ 2∥µn
Ω∥ + 3∥µ̄∥ , (2.5.7)

where the first inequality follows from Condition (3) in Definition 2.3.7, and the second one
from Remark 2.3.10.

Step 2 (existence). We can extract a (not relabeled) subsequence such that:

1. µn
∂Ω →n η for some η weakly in duality with C(∂Ω),

2. ρn ⇀n ρ for some ρ weakly in L1(Ω),

3. µn →n µ := ρ dx+ η weakly in duality with C(Ω), and µ ∈ S .

Since the functional E is sequentially lower semicontinuous w.r.t. the weak convergence
in L1(Ω), and sum of lower semicontinuous functions is lower semicontinuous, Corollary 2.4.6
yields

H(µ) + T 2(µ, µ̄)
2τ ≤ lim inf

n→∞

(︄
H(µn) + T 2(µn, µ̄)

2τ

)︄
= inf

(︄
H(·) + T 2(·, µ̄)

2τ

)︄
.

Step 3 (inequalities). If µ is any minimizer for (2.5.2), the inequality (2.5.3), and the bounds
on∥µ∥ and

´
Ω ρ log ρ dx directly follow from (2.5.5), (2.5.6), and (2.5.7) by taking the constant

sequence equal to µ in place of (µn)n.

Boundary condition

Pick any minimizer µ for (2.5.2) and denote by ρ the density of µΩ. Let γ ∈ OptT (µ, µ̄) and
let S : Ω → Ω be such that γΩ

Ω = (Id, S)#µΩ.

Proposition 2.5.4. There exists a L d-negligible set N ⊆ Ω such that:

1. For all x ∈ Ω \N and y ∈ ∂Ω, the inequalities

−|x− y|2

2τ ≤ log ρ(x) − Ψ(y) + V (x) ≤ c
|x− y|
τ

+ cτ (2.5.8)

hold. The constant c can be chosen independent of V .

2. For all x ∈ Ω \N such that S(x) ∈ ∂Ω, we have the identity

log ρ(x) = Ψ(S(x)) − V (x) −
⃓⃓
x− S(x)

⃓⃓2
2τ . (2.5.9)
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Remark 2.5.5. Proposition 2.5.4 implies in particular that ρ ∈ L∞(Ω) and that ρ is bounded
from below by a positive constant (depending on τ ). In particular, the measure µΩ is equivalent
to the Lebesgue measure on Ω.
Remark 2.5.6. Define

g :=
√︂
ρeV − eΨ/2 , g(κ) := (g − κ)+ − (g + κ)− , κ > 0 .

It follows from (2.5.8) that, when κ ≥ c(ecτ − 1), for a suitable constant c independent
of V and τ , the function g(κ) is compactly supported in Ω (up to changing its value on a
Lebesgue-negligible set).
Remark 2.5.7. The term cτ at the right-hand side of (2.5.8) can be removed when Ψ is
constant. This fact can be easily checked in the proof of Proposition 2.5.4 and is consistent
with [AGS08, Proposition 3.7 (27)]. However, the following example proves that, in general,
this extra term is necessary, i.e., the boundary condition need not be satisfied exactly by the
map t ↦→ µτ

t (even for t ≥ τ).

Example 2.5.8. Let Ω := (0, 1) and V ≡ 0, and choose µ̄ = 0. Since µ̄ = 0, we necessarily
have S(x) ∈ ∂Ω = {0, 1} for µΩ-a.e. x, hence for L 1-a.e. x ∈ Ω by Remark 2.5.5. Additionally,
by Proposition 2.5.4, for L 1-a.e. x ∈ S−1(0) we have

Ψ(1) − |1 − x|2

2τ
(2.5.8)

≤ log ρ(x) (2.5.9)= Ψ(0) − |x|2

2τ

and, after rearranging,
x ≤ 1

2 + τ
(︂
Ψ(0) − Ψ(1)

)︂
.

Therefore, when Ψ and τ are such that τ
(︂
Ψ(0) − Ψ(1)

)︂
< −1

2 , the set S−1(0) is negligible,
i.e., S(x) = 1 for L 1-a.e. x ∈ Ω. Then, (2.5.9) gives

log ρ(x) = Ψ(1) − |1 − x|2

2τ for L 1-a.e. x ∈ Ω ,

and, therefore, the trace of ρ at 0 is exp
(︂
Ψ(1) − 1

2τ

)︂
> exp

(︂
Ψ(0)

)︂
.

Proposition 2.5.4 is analogous to [FG10, Proposition 3.7 (27) & (28)] and [Mor18, Propo-
sition 5.2 (5.39) & (5.40)]. Like those, ours is proven by taking suitable variations of the
minimizer µ.

Proof of Proposition 2.5.4. We shall prove the inequalities in the statement for x out of
negligible sets Ny that depend on y. This is sufficient because the set ∂Ω is separable and all
the functions in the statement are continuous in the variable y. Fix y ∈ ∂Ω.

Step 1 (first inequality in (2.5.8)). Let ϵ > 0, take a Borel set A ⊆ Ω, and define

µ̃1 := µ+ ϵL d
A − ϵ|A| δy ∈ S , γ̃1 := γ + ϵL d

A ⊗ δy ∈ AdmT (µ̃1, µ̄) .

By the minimality property of µ and the optimality of γ,

0 ≤
ˆ

A

⎛⎝(ρ+ ϵ) log(ρ+ ϵ) − ρ log ρ
ϵ

+ V − 1 − Ψ(y) + |x− y|2

2τ

⎞⎠ dx .
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Since the function l ↦→ l log l is convex, we can use the monotone convergence theorem
(“downwards”) to find

0 ≤
ˆ

A

⎛⎝log ρ+ V − Ψ(y) + |x− y|2

2τ

⎞⎠ dx .

By arbitrariness of A, we have the first inequality in (2.5.8) for x out of a L d-negligible set
(possibly dependent on y). In particular, ρ > 0.

Step 2 (second indequality in (2.5.8) on S−1(Ω)). Let ϵ ∈ (0, 1), take a Borel set A ⊆ S−1(Ω),
define

µ̃2 := µ+ ϵµ(A)δy − ϵµA ∈ S ,

γ̃2 := γ − ϵ(Id, S)#µA + ϵδy ⊗ S#µA ∈ AdmT (µ̃2, µ̄) .

Note that A ⊆ S−1(Ω) is needed to ensure that (γ̃2)∂Ω
∂Ω = 0. This time, the minimality

property gives

0 ≤
ˆ (︄

(1 − ϵ) log(1 − ϵ)
ϵ

− log ρ− V + 1 + Ψ(y) + ⟨y − Id, y + Id −2S⟩
2τ

)︄
dµA .

We conclude by arbitrariness of A, after letting ϵ → 0, that

log ρ(x) + V (x) − Ψ(y) ≤ ⟨y − x, y + x− 2S(x)⟩
2τ ≤ diam(Ω)|x− y|

τ

for µ-a.e. x ∈ S−1(Ω). Since ρ > 0, the same is true L d
S−1(Ω)-a.e.

Step 3 (identity (2.5.9)). Let ϵ ∈ (0, 1), take a Borel set A ⊆ S−1(∂Ω), define

µ̃3 := µ+ ϵS#µA − ϵµA ∈ S ,

γ̃3 := γ − ϵ(Id, S)#µA ∈ AdmT (µ̃3, µ̄) .

By the minimality property,

0 ≤
ˆ ⎛⎝(1 − ϵ) log(1 − ϵ)

ϵ
− log ρ− V + 1 + Ψ ◦ S − |Id −S|2

2τ

⎞⎠ dµA ,

from which, by arbitrariness of ϵ and A, we infer the inequality ≤ in (2.5.9) L d
S−1(∂Ω)-a.e.

The inequality ≥ follows from the first inequality in (2.5.8).

Step 4 (second inequality in (2.5.8) on S−1(∂Ω)). We make use of (2.5.9), the Lipschitz
continuity of Ψ, the triangle inequality, and the inequality 2ab− b2 ≤ a2:

log ρ(x) − Ψ(y) + V (x) (2.5.9)= Ψ(S(x)) − Ψ(y) −
⃓⃓
x− S(x)

⃓⃓2
2τ

≤ (Lip Ψ)
⃓⃓
S(x) − y

⃓⃓
−
⃓⃓
x− S(x)

⃓⃓2
2τ

≤ (Lip Ψ)
⃓⃓
x− S(x)

⃓⃓
−
⃓⃓
x− S(x)

⃓⃓2
2τ + (Lip Ψ)|x− y|

≤ τ(Lip Ψ)2

2 + (Lip Ψ)|x− y| .

Eventually, we conclude with the estimate

|x− y| ≤ |x− y|
2τ + τ |x− y|

2 ≤ |x− y|
2τ + τ diam(Ω)

2 .
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Sobolev regularity

Proposition 2.5.9. Let µ be a minimizer of (2.5.2) and denote by ρ the density of µΩ.

1. The function ρ belongs to W 1,(2∧d)
loc (Ω), and

√︂
ρeV belongs to W 1,2(Ω). We have the

estimates ⃦⃦⃦⃦
∇
√︂
ρeV

⃦⃦⃦⃦
L2

≤ c
T (µ, µ̄)

τ
, (2.5.10)

and, for every q ∈ [1,∞) such that q(d− 2) ≤ d,

∥ρ∥Lq ≤ cq

(︄
ecτ +

⃦⃦⃦⃦
∇
√︂
ρeV

⃦⃦⃦⃦2

L2
+∥ρ∥L1

)︄
. (2.5.11)

If d = 1, the same is true with q = ∞ too.

2. For every γ ∈ OptT (µ, µ̄), writing γΩ
Ω = (Id, S)#µΩ, we have

S − Id
τ

ρ = ∇ρ+ ρ∇V = e−V ∇(ρeV ) L d-a.e. on Ω . (2.5.12)

The core idea to prove Proposition 2.5.9 is to compute the first variation of the functional (2.5.2)
at a minimizer and exploit Lemma 2.4.18, like in [FG10, Proposition 3.6]. However, the proof is
complicated by the weak assumptions on V and the lack of regularity of the boundary ∂Ω. To
manage V , we rely on an approximation argument (in the next lemma). The issue with ∂Ω is
that the the Sobolev embedding theorem is not available for functions in W 1,2(Ω). Nonetheless,
we can still apply it to functions in W 1,2

0 (Ω). To do this, we leverage the approximate boundary
conditions of Proposition 2.5.4.

Lemma 2.5.10. Let µ be a minimizer of (2.5.2) and denote by ρ the density of µΩ.
Let w : Ω → Rd be a C∞-regular vector field with compact support. For ϵ > 0 sufficiently
small, define µϵ := (Id +ϵw)#µ. Then

lim
ϵ→0+

H(µ) − H(µϵ)
ϵ

=
ˆ

Ω

(︂
div w − ⟨∇V,w⟩

)︂
ρ dx . (2.5.13)

Proof. Let Rϵ(x) := x+ ϵw(x). Fix ϵ sufficiently small and an open set ω ⋐ Ω so that Rsϵ

is a diffeomorphism from ω to itself and equals the identity on Ω \ ω for every s ∈ (0, 1),
and infs∈(0,1),x∈Ω

⃓⃓
det ∇Rsϵ(x)

⃓⃓
> 0. It can be easily checked that the density ρϵ of µϵ

Ω satisfies

ρϵ ◦Rϵ = ρ

det ∇Rϵ

L d-a.e. on Ω ;

therefore,

H(µ) − H(µϵ)
ϵ

=
ˆ

Ω

log ρ− log(ρϵ ◦Rϵ) + V − V ◦Rϵ

ϵ
dµΩ

=
ˆ

Ω

log det ∇Rϵ

ϵ
dµΩ +

ˆ
Ω

V − V ◦Rϵ

ϵ
dµΩ .

(2.5.14)

By the dominated convergence theorem,

lim
ϵ→0+

ˆ
Ω

log det ∇Rϵ

ϵ
dµΩ =

ˆ
Ω
(div w)ρ dx .
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To deal with the last term in (2.5.14), we choose an open set ω̃ such that ω ⋐ ω̃ ⋐ Ω. By
Definition 2.3.1, we have V ∈ W 1,p(ω̃) for some p > d and, by Friedrichs’ theorem [Bre11,
Theorem 9.2], the function V |ω is the limit in W 1,p(ω) and a.e. of (the restriction to ω of) a
sequence of equibounded functions (Vk)k∈N0 ⊆ C∞

c (Rd). For every k, we have
ˆ
V − V ◦Rϵ

ϵ
dµΩ =

ˆ
ω

V − Vk

ϵ
ρ dx+

ˆ
ω

Vk ◦Rϵ − V ◦Rϵ

ϵ
ρ dx−

ˆ
ω

⟨∇Vk,w⟩ρ dx

−
ˆ 1

0

ˆ
ω

⟨(∇Vk) ◦Rsϵ − ∇Vk,w⟩ρ dx ds .

With a change of variables, we rewrite the last integral as
ˆ 1

0

ˆ
ω

⟨(∇Vk) ◦Rsϵ − ∇Vk,w⟩ρ dx ds =
ˆ

ω

⟨︃
∇Vk,

ˆ 1

0

(wρ) ◦R−1
sϵ

det ∇Rsϵ ◦R−1
sϵ

ds− wρ
⟩︃

dx .

Recall that ρ ∈ L∞(Ω) by Remark 2.5.5. Passing to the limit in k, we find that
ˆ
V − V ◦Rϵ

ϵ
dµΩ +

ˆ
Ω
⟨∇V,w⟩ρ dx =

ˆ
ω

⟨︃
∇V,

ˆ 1

0

(wρ) ◦R−1
sϵ

det ∇Rsϵ ◦R−1
sϵ

ds− wρ
⟩︃

dx .

It only remains to prove that the right-hand side in the latter is negligible as ϵ → 0. Let (ρl)l∈N0

be a sequence of continuous and equibounded functions that converge to ρ almost everywhere
(hence in Lp′). Using the triangle inequality and Minkowski’s integral inequality, for l ∈ N0,
we write⃦⃦⃦⃦
⃦⃦
ˆ 1

0

(wρ) ◦R−1
sϵ

det ∇Rsϵ ◦R−1
sϵ

ds− wρ

⃦⃦⃦⃦
⃦⃦

Lp′

≤
ˆ 1

0

⃦⃦⃦⃦
⃦(wρ− wρl) ◦R−1

sϵ

det ∇Rsϵ ◦R−1
sϵ

⃦⃦⃦⃦
⃦

Lp′
ds+∥wρl − wρ∥Lp′

+
ˆ 1

0

⃦⃦⃦⃦
⃦ (wρl) ◦R−1

sϵ

det ∇Rsϵ ◦R−1
sϵ

− wρl

⃦⃦⃦⃦
⃦

Lp′
ds .

A change of variables yields⃦⃦⃦⃦
⃦(wρ− wρl) ◦R−1

sϵ

det ∇Rsϵ ◦R−1
sϵ

⃦⃦⃦⃦
⃦

Lp′
=

⃦⃦⃦⃦
⃦⃦ wρ− wρl

|det ∇Rsϵ|1/p

⃦⃦⃦⃦
⃦⃦

Lp′

.

Hence, when we let ϵ → 0, using that ρl is continuous, we find

lim sup
ϵ→0

⃦⃦⃦⃦
⃦⃦
ˆ 1

0

(wρ) ◦R−1
sϵ

det ∇Rsϵ ◦R−1
sϵ

ds− wρ

⃦⃦⃦⃦
⃦⃦

Lp′

≤ 2∥wρ− wρl∥Lp′ ,

and we conclude by arbitrariness of l.

Proof of Proposition 2.5.9. Step 1 (inequality (2.5.10)). Let w : Ω → Rd be a C∞-regular
vector field with compact support. For ϵ > 0 sufficiently small, define µϵ := (Id +ϵw)#µ ∈ S .
Since µ is optimal for (2.5.2),

H(µ) − H(µϵ)
ϵ

≤ T 2(µϵ, µ̄) − T 2(µ, µ̄)
2ϵτ .

We can pass to the limit ϵ → 0 using Lemma 2.4.18 and Lemma 2.5.10 to find that
ˆ

Ω

(︂
div w − ⟨∇V,w⟩

)︂
ρ dx ≤ −1

τ

ˆ
⟨w(x), y − x⟩ dγ(x, y) ≤∥w∥L2(ρ)

T (µ, µ̄)
τ

, (2.5.15)
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for any γ ∈ OptT (µ, µ̄). By the Riesz representation theorem, this means that there exists a
vector field u ∈ L2(ρ;Rd) such that

∥u∥L2(ρ) ≤ T (µ, µ̄)
τ

, (2.5.16)

and ˆ
Ω

(︂
div w − ⟨∇V,w⟩

)︂
ρ dx =

ˆ
Ω
⟨u,w⟩ρ dx ,

for all smooth and compactly supported vector fields w. In other words, −ρ(u + ∇V ) is the
distributional gradient of ρ. Since ρ ∈ L∞(Ω) (see Remark 2.5.5) and V ∈ W 1,d+

loc (Ω), we
now know that ρ ∈ W

1,(2∧d)
loc (Ω). Hence, for every smooth w that is compactly supported,

ˆ
Ω

√︂
ρeV div w dx = lim

ϵ↓0

ˆ
Ω

√︂
ρeV + ϵ div w dx = lim

ϵ↓0

ˆ
Ω

ρeV

2
√︂
ρeV + ϵ

⟨u,w⟩ dx

≤
∥u∥L2(ρ)

2 lim inf
ϵ↓0

⌜⃓⃓⎷ˆ
Ω

ρe2V |w|2

ρeV + ϵ
dx =

∥u∥L2(ρ)∥w∥L2(eV )

2 ,

where, for the second equality, we used a standard property of the composition of Sobolev
functions (cf. [Bre11, Proposition 9.5]) and, in the last one, the monotone convergence
theorem. It follows that that

√︂
ρeV ∈ W 1,2(Ω) with

ˆ
Ω

⃓⃓⃓⃓
∇
√︂
ρeV

⃓⃓⃓⃓2
e−V dx ≤

⎛⎝∥u∥L2(ρ)

2

⎞⎠2
(2.5.16)

≤ T 2(µ, µ̄)
4τ 2 , (2.5.17)

which, since V is bounded, yields (2.5.10).

Step 2 (inequality (2.5.11)). Pick q as in the statement, i.e., 1 ≤ q < ∞ with q(d− 2) ≤ d
or, if d = 1, q ∈ [1,∞]. Inequality (2.5.11) would follow from the Sobolev embedding
theorem [Bre11, Corollary 9.14] if ∂Ω were regular enough. Nonetheless, by [Bre11, Remark 20,
Chapter 9], even with no regularity on ∂Ω, we still have that the inclusion W 1,2

0 (Ω) ↪→ Lq(Ω)
is continuous. Consider the functions g and g(κ) of Remark 2.5.6 and fix κ = c(ecτ − 1) for
a suitable constant c independent of τ (and q), so that g(κ) is compactly supported, hence
in W 1,2

0 (Ω). From the Sobolev embedding theorem we obtain
⃦⃦⃦
g(κ)

⃦⃦⃦
L2q

≤ cq

⃦⃦⃦
g(κ)

⃦⃦⃦
W 1,2

and,
therefore,⃦⃦⃦⃦√︂

ρeV

⃦⃦⃦⃦
L2q

≤ cq +∥g∥L2q ≤ cq(1 + κ) +
⃦⃦⃦
g(κ)

⃦⃦⃦
L2q

≤ cq

(︃
1 + κ+

⃦⃦⃦
g(κ)

⃦⃦⃦
W 1,2

)︃
≤ cq

(︂
1 + κ+∥g∥W 1,2

)︂
≤ cq

(︄
1 + κ+

⃦⃦⃦⃦√︂
ρeV

⃦⃦⃦⃦
W 1,2

)︄

≤ cq

(︄
1 + κ+

⃦⃦⃦⃦
∇
√︂
ρeV

⃦⃦⃦⃦
L2

+
√︂

∥ρ∥L1

)︄
,

which can be easily transformed into (2.5.11).

Step 3 (identity (2.5.12)). Let γ ∈ OptT (µ, µ̄) and let S be such that γΩ
Ω = (Id, S)#µΩ.

From (2.5.15) we infer that

−2
ˆ

Ω

√︂
ρe−V

⟨︃
∇
√︂
ρeV ,w

⟩︃
dx ≤ −1

τ

ˆ
⟨w(x), y − x⟩ dγ(x, y) = −1

τ

ˆ
⟨w, S − Id⟩ρ dx .

By arbitrariness of w, (2.5.12) follows.
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Uniqueness

Let us assume that µ and µ′ are two minimizers for (2.5.2) such that their restrictions to Ω
are absolutely continuous; let ρ and ρ′ be their respective densities. Let γ ∈ OptT (µ, µ̄)
and γ′ ∈ OptT (µ′, µ̄). By Proposition 2.4.19, we can write

γΩ
Ω = (Id, S)#µΩ , (γ′)Ω

Ω = (Id, S ′)#µΩ ,

γΩ
Ω = (T, Id)#µ̄Ω , (γ′)Ω

Ω = (T ′, Id)#µ̄Ω ,

for some appropriate Borel maps.

Proposition 2.5.11. The two measures µ and µ′ are equal.

Note that uniqueness is not immediate, given that the functional H is not strictly convex.
This setting is different from that of [Mor18] and [FG10]: therein, measures are defined only
on Ω. Instead, we claim here that the measure µ, on the whole Ω, is uniquely determined.

The proof of Proposition 2.5.11 is preceded by three lemmas: the first one concerns the
identification of S and S ′; the second one, similar to [Mor18, Proposition A.3 (A.5)], shows
that T |T −1(∂Ω) and T ′|(T ′)−1(∂Ω) enjoy one same property, inferred from the minimality of µ
and µ′; the third one ensures that this property identifies uniquely T (i.e., T = T ′) on T−1(∂Ω)∩
(T ′)−1(∂Ω).

Lemma 2.5.12. If µΩ = µ′
Ω, then S(x) = S ′(x) for L d

Ω-a.e x.

Proof. This statement immediately follows from (2.5.12) in Proposition 2.5.9.

Lemma 2.5.13. For µ̄-a.e. point x ∈ Ω such that T (x) ∈ ∂Ω, we have

T (x) ∈ arg min
y∈∂Ω

⎛⎝Ψ(y) + |x− y|2

2τ

⎞⎠ . (2.5.18)

An analogous statement holds for T ′.

Proof. Set
f(x, y) := Ψ(y) + |x− y|2

2τ , x ∈ Ω , y ∈ ∂Ω . (2.5.19)

By [AB06, Theorem 18.19] there exists a Borel function R : Ω → ∂Ω such that

R(x) ∈ arg min
y∈∂Ω

f(x, y)

for all x ∈ Ω. Let A ⊆ T−1(∂Ω) be a Borel set and consider the measure

µ̃ := µ− T#µ̄A +R#µ̄A ,

which lies in S . Additionally define

γ̃ := γ − (T, Id)#µ̄A + (R, Id)#µ̄A

and notice that γ̃ ∈ AdmT (µ̃, µ̄). By the minimality property of µ and the optimality of γ,
we must have

H(µ) + 1
2τ C(γ) ≤ H(µ̃) + 1

2τ C(γ̃) ,
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2. Variational structures for Fokker–Planck with general Dirichlet BC

which, after rearranging the terms, gives
ˆ
f(x, T (x)) dµ̄A(x) ≤

ˆ
f(x,R(x)) dµ̄A(x) =

ˆ
min
y∈∂Ω

f(x, y) dµ̄A(x) .

We conclude the proof by arbitrariness of A.

Lemma 2.5.14. For µ̄-a.e. point x ∈ Ω such that T (x) ∈ ∂Ω and T ′(x) ∈ ∂Ω, we have

T (x) = T ′(x) .

Proof. We can resort to [Cox20, Lemma 1] by G. Cox. Adopting the notation of this lemma,
we set

Q(t, z) := Ψ(t) + |z − t|2

2τ , P := c µ̄|T −1(∂Ω)∩(T ′)−1(∂Ω) ,

for some constant c that makes P a probability distribution. Four assumptions are made
therein and need to be checked:

• Absolute Continuity: It follows from E(µ̄) < ∞ that µ̄Ω is absolutely continuous. Hence,
so is the probability P .

• Continuous Differentiability: Conditions (a) and (b) are easy to check. Condition (c) is
vacuously true by setting A(t) := ∅ for every t.

• Generic: Condition (d) is true and easy to check.

• Manifold: This condition is not true if ∂Ω does not enjoy any kind of regularity. However,
one can check that that ∂Ω does not need to be a union of manifolds if the condition
Generic holds with A(t) := ∅ for every t. The other topological properties, namely
second-countability and Hausdorff, are trivially true, since ∂Ω ⊆ Rd.

Proof of Proposition 2.5.11. Step 1 (uniqueness of ρ and S). The identity ρ = ρ′ follows from
the strict convexity of the function l ↦→ l log l. To see why, notice that γ+γ′

2 ∈ AdmT (µ+µ′

2 , µ̄);
therefore, by minimality,

H(µ) + 1
2τ

C(γ) + H(µ′) + 1
2τ

C(γ′)
2 ≤ H

(︄
µ+ µ′

2

)︄
+ 1

2τ C
(︄
γ + γ′

2

)︄
.

Most of the terms simplify by linearity. What remains is
ˆ

Ω

ρ log ρ+ ρ′ log ρ′

2 dx ≤
ˆ

Ω

(︄
ρ+ ρ′

2

)︄
log

(︄
ρ+ ρ′

2

)︄
dx ,

which implies ρ(x) = ρ′(x) for L d-a.e. x ∈ Ω. The identity S = S ′ out of a L d
Ω-negligible

set follows from Lemma 2.5.12.

Step 2 (uniqueness of γΩ
∂Ω). We can write

γ = γΩ
Ω + γΩ

∂Ω and γ′ = (γ′)Ω
Ω + (γ′)Ω

∂Ω .
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2.5. Proof of Theorem 2.1.1

Because of the uniqueness of µΩ and S, we have the equality γΩ
Ω = (γ′)Ω

Ω. If we combine this
fact with Condition (2) in Definition 2.3.7, we find

0 =
(︂
π2

#(γ − γ′)
)︂

Ω
= π2

#

(︂
γΩ

∂Ω − (γ′)Ω
∂Ω

)︂
= π2

#

(︂
(T, Id)#µ̄T −1(∂Ω) − (T ′, Id)#µ̄(T ′)−1(∂Ω)

)︂
= µ̄T −1(∂Ω) − µ̄(T ′)−1(∂Ω) .

This proves that T−1(∂Ω) and (T ′)−1(∂Ω) are µ̄-essentially equal. Together with Lemma 2.5.14,
this gives

γΩ
∂Ω = (T, Id)#µ̄T −1(∂Ω) = (T ′, Id)#µ̄(T ′)−1(∂Ω) = (γ′)Ω

∂Ω .

Step 3 (conclusion). We have determined that γ = γ′. Condition (3) in Definition 2.3.9 gives

µ = π1
#γ − π2

#γ + µ̄ = π1
#γ

′ − π2
#γ

′ + µ̄ = µ′ ,

which is what we wanted to prove.

Contractivity

In this section, we establish time monotonicity for some truncated and weighted Lq norm
(q ≥ 1) of the densities ρτ

t .

Here, too, only one step of the scheme is involved. We let µ be the unique minimimum point
of (2.5.2) and ρ be the density of its restriction to Ω.

Proposition 2.5.15. Let q ≥ 1. For every ϑ ≥ ϑ0 := max∂Ω e
Ψ, the following inequality

holds (possibly, with one or both sides being infinite):
ˆ

Ω
max

{︂
ρ, ϑe−V

}︂q
e(q−1)V dx ≤

ˆ
Ω

max
{︂
ρ̄, ϑe−V

}︂q
e(q−1)V dx . (2.5.20)

Remark 2.5.16. For a solution to the Fokker–Planck equation (2.1.4), a monotonicity property
like (2.5.20) is expected. Indeed, formally :

d
dt

ˆ
Ω

max
{︂
ρt, ϑe

−V
}︂q
e(q−1)V dx = q

ˆ
{ρt>ϑe−V }

(ρte
V )q−1 div(∇ρt + ρt∇V ) dx

= q

ˆ
∂{ρt>ϑe−V }

(ρte
V )q−1e−V ⟨∇(ρte

V ),n⟩ dH d−1

−q(q − 1)
ˆ
{ρt>ϑe−V }

(ρte
V )q−2eV |∇ρt + ρt∇V |2 dx

⏞ ⏟⏟ ⏞
≤0

.

If ϑ ⪈ ϑ0, the boundary condition forces the set ∂
{︂
ρt > ϑe−V

}︂
∩∂Ω to be negligible. Moreover,

on ∂
{︂
ρt > ϑe−V

}︂
∩ Ω, the scalar product ⟨∇(ρte

V ),n⟩ is nonpositive. The case ϑ = ϑ0 can
be deduced by approximation.
Remark 2.5.17 (Mass bound). Note that Proposition 2.5.15 implies that the mass of (µτ

t )Ω is
bounded by a constant c indepentent of t and τ . Indeed,ˆ

Ω
ρτ

t dx ≤
ˆ

Ω
max

{︂
ρτ

t , ϑ0e
−V
}︂

dx ≤ · · · ≤
ˆ

Ω
max

{︂
ρ0, ϑ0e

−V
}︂

dx

≤
ˆ

Ω
ρ0 dx+ ϑ0

ˆ
Ω
e−V dx .
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2. Variational structures for Fokker–Planck with general Dirichlet BC

The proof of the first Step in Proposition 2.5.15, i.e., the case q = 1, and of the preliminary
lemma Lemma 2.5.18 follow the lines of [FG10, Proposition 3.7 (24)] and [Mor18, Proposi-
tion 5.3]. In all these proofs, the key is to leverage the optimality of µ by constructing small
variations. In the proof of Step 2, i.e., the case q > 1, instead, our idea is to take the inequality
for q = 1, multiply it by a suitable power of ϑ, and integrate it w.r.t. the variable ϑ itself.
This is the reason why, while Proposition 2.5.15 will later be used only with ϑ = ϑ0—or in the
form of Remark 2.5.17—it is convenient to have it stated and proven (at least for q = 1) for a
continuum of values of ϑ.

Lemma 2.5.18. For µ-a.e. x ∈ Ω such that S(x) ∈ Ω, we have

log ρ(x) + V (x) ≤ log ρ(S(x)) + V (S(x)) −
⃓⃓
x− S(x)

⃓⃓2
2τ . (2.5.21)

Proof. Let ϵ ∈ (0, 1) and let A ⊆ S−1(Ω) be a Borel set. We define

µ̃ := µ+ ϵS#µA − ϵµA ∈ S ,

γ̃ := γ − ϵ(Id, S)#µA + ϵ(S, S)#µA ∈ AdmT (µ̃, µ̄) .

Let ρ̂ be the density of S#µA and note that ρ̂ ≤ ρ̄. By the minimality of µ, we have

0 ≤
ˆ

Ω

(︂
ρ+ ϵ(ρ̂− 1Aρ)

)︂
log
(︂
ρ+ ϵ(ρ̂− 1Aρ)

)︂
− ρ log ρ

ϵ
dx⏞ ⏟⏟ ⏞

:=I1

+
ˆ ⎛⎝V ◦ S − V − |Id −S|2

2τ

⎞⎠ dµA .

We use the convexity of l ↦→ l log l to write

I1 ≤
ˆ

Ω
(ρ̂− 1Aρ)

(︃
1 + log

(︂
ρ+ ϵ(ρ̂− 1Aρ)

)︂)︃
dx

=
ˆ

Ω
(ρ̂− 1Aρ) log

(︂
ρ+ ϵ(ρ̂− 1Aρ)

)︂
dx

=
ˆ

Ω
ρ̂ log

(︂
ρ+ ϵ(ρ̂− 1Aρ)

)︂
dx−

ˆ
A

ρ log
(︂
(1 − ϵ)ρ+ ϵρ̂

)︂
dx

≤
ˆ

Ω
ρ̂ log(ρ+ ϵρ̂

)︂
dx−

ˆ
A

ρ
(︂
log ρ+ log(1 − ϵ)

)︂
dx .

On the first integral on the last line, we use the monotone convergence theorem (“downwards”):
its hypotheses are satisfied because ρ̂ ≤ ρ̄. By passing to the limit ϵ → 0, we obtain

0 ≤
ˆ

Ω
ρ̂ log ρ dx+

ˆ ⎛⎝− log ρ+ V ◦ S − V − |Id −S|2

2τ

⎞⎠ dµA

=
ˆ ⎛⎝log ρ ◦ S − log ρ+ V ◦ S − V − |Id −S|2

2τ

⎞⎠ dµA ,

and we conclude by arbitrariness of A.
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Proof of Proposition 2.5.15. Step 1 (q = 1). Consider the case q = 1. Let

A :=
{︂
x ∈ Ω : ρeV > ϑ

}︂
. (2.5.22)

Thanks to (2.5.9), we know that A ∩ S−1(∂Ω) is L d-negligible. Therefore, we can extract
a L d

A-full-measure Borel subset Ã of A∩S−1(Ω) where (2.5.21) holds (recall that L d
Ω ≪ µΩ).

It is easy to check that S(Ã) ⊆ A. Therefore, we haveˆ
A

max
{︂
ρ, ϑe−V

}︂
dx (2.5.22)=

ˆ
A

ρ dx =
ˆ

Ã

ρ dx ≤
ˆ

S−1(A)
ρ dx = S#µΩ(A)

= π2
#γ

Ω
Ω(A) (A⊆Ω)= π2

#γ
Ω
Ω(A) ≤ π2

#γ
Ω
Ω(A) = µ̄Ω(A) ≤

ˆ
A

max
{︂
ρ̄, ϑe−V

}︂
dx . (2.5.23)

On the other hand,ˆ
Ω\A

max
{︂
ρ, ϑe−V

}︂
dx (2.5.22)=

ˆ
Ω\A

ϑe−V dx ≤
ˆ

Ω\A

max
{︂
ρ̄, ϑe−V

}︂
dx , (2.5.24)

and we conclude by taking the sum of (2.5.23) and (2.5.24).
Step 2 (q > 1) Assume now that q > 1. Define

f := max
{︂
ρ, ϑe−V

}︂
, g := max

{︂
ρ̄, ϑe−V

}︂
.

Note that the case q = 1 impliesˆ
Ω

max
{︂
f, ϑ̃e−V

}︂
dx ≤

ˆ
Ω

max
{︂
g, ϑ̃e−V

}︂
dx (2.5.25)

for every ϑ̃ > 0. After multiplying (2.5.25) by ϑ̃q−2, integrating w.r.t. ϑ̃ from 0 to some Θ > 0,
and changing the order of integration with Tonelli’s theorem, we find
ˆ

Ω

⎛⎜⎝ˆ min{feV ,Θ}

0
ϑ̃

q−2 dϑ̃

⎞⎟⎠ f dx+
ˆ

Ω

⎛⎝ˆ Θ

min{feV ,Θ}
ϑ̃

q−1 dϑ̃
⎞⎠ e−V dx

≤
ˆ

Ω

⎛⎜⎝ˆ min{geV ,Θ}

0
ϑ̃

q−2 dϑ̃

⎞⎟⎠ g dx+
ˆ

Ω

⎛⎝ˆ Θ

min{geV ,Θ}
ϑ̃

q−1 dϑ̃
⎞⎠ e−V dx ,

whence
1

q − 1

ˆ
Ω

min
{︂
feV ,Θ

}︂q−1
f dx− 1

q

ˆ
Ω

min
{︂
feV ,Θ

}︂q
e−V dx

≤ 1
q − 1

ˆ
Ω

min
{︂
geV ,Θ

}︂q−1
g dx− 1

q

ˆ
Ω

min
{︂
geV ,Θ

}︂q
e−V dx .

It follows that(︄
1

q − 1 − 1
q

)︄ ˆ
Ω

min
{︂
feV ,Θ

}︂q
e−V dx+ 1

q

ˆ
Ω

min
{︂
geV ,Θ

}︂q
e−V dx

≤ 1
q − 1

ˆ
Ω

min
{︂
geV ,Θ

}︂q−1
g dx .

We now let Θ → ∞ and deduce from the monotone convergence theorem that(︄
1

q − 1 − 1
q

)︄ ˆ
Ω
f qe(q−1)V dx+ 1

q

ˆ
Ω
gqe(q−1)V dx ≤ 1

q − 1

ˆ
Ω
gqe(q−1)V dx .

Eventually, we can rearrange, and, noted that
(︂

1
q−1 − 1

q

)︂
> 0, simplify to finally obtain (2.5.20).

53



2. Variational structures for Fokker–Planck with general Dirichlet BC

2.5.2 Convergence w.r.t Wb2

In this section, we prove convergence w.r.t. Wb2 of the measures built with the scheme (2.1.8).
The argument is standard. In fact, we shall give a short proof that relies on the ‘refined version
of Ascoli-Arzelà theorem’ [AGS08, Proposition 3.3.1].

Proposition 2.5.19. As τ → 0, up to subsequences, the maps
(︂
t ↦→ (µτ

t )Ω
)︂

τ
converge

pointwise w.r.t. Wb2 to a curve t ↦→ ρt dx of absolutely continuous measures, continuous
w.r.t. Wb2.

Once again, we first need a lemma.

Lemma 2.5.20. Let t ≥ 0 and τ > 0. Then

τ

ˆ
Ω
ρτ

t log ρτ
t dx+

⌊t/τ⌋−1∑︂
i=0

T 2
(︂
µτ

iτ , µ
τ
(i+1)τ

)︂
≤ c τ(1 + t+ τ) . (2.5.26)

As a consequence,

Wb2
(︂
(µτ

s)Ω, (µτ
t )Ω

)︂
≤ ˜︃Wb2

(︂
µτ

s , µ
τ
t

)︂
≤ c

√︂
(t− s+ τ)(1 + t+ τ) , s ∈ [0, t] . (2.5.27)

Proof. We use (2.5.3) to write

⌊t/τ⌋−1∑︂
i=0

T 2
(︂
µτ

iτ , µ
τ
(i+1)τ

)︂
4τ ≤ E(ρ0) − E(ρτ

t ) + (µτ
t )Ω(Ψ) − (µ0)Ω(Ψ) + cτ

⌊t/τ⌋∑︂
i=0

⃦⃦
(µτ

iτ )Ω
⃦⃦
,

and conclude (2.5.26) by using Remark 2.5.17.

The first inequality in (2.5.27) follows from (2.4.1). As for the second one, since ˜︃Wb2 is
a pseudometric, and by the Cauchy–Schwarz inequality and (2.4.1), we have the chain of
inequalities

˜︃Wb2(µτ
s , µ

τ
t ) ≤

⌊t/τ⌋−1∑︂
i=⌊s/τ⌋

˜︃Wb2(µτ
iτ , µ

τ
(i+1)τ ) ≤

⌊t/τ⌋−1∑︂
i=⌊s/τ⌋

T
(︂
µτ

iτ , µ
τ
(i+1)τ

)︂

≤
√︄
t− s+ τ

τ

⌜⃓⃓⃓
⎷⌊t/τ⌋−1∑︂

i=⌊s/τ⌋
T 2
(︂
µτ

iτ , µ
τ
(i+1)τ

)︂
.

We combine the latter with (2.5.26) to infer (2.5.27).

Proof of Proposition 2.5.19. Fix t > 0. We know from Lemma 2.5.20 that, for every s ∈ [0, t]
and τ ∈ (0, 1), we have

(µτ
s)Ω ∈ Kt :=

{︄
ρ dx :

ˆ
Ω
ρ log ρ dx ≤ c (2 + t)

}︄
,

where c is the constant in (2.5.26). We claim that Kt is compact in (M2(Ω),Wb2). By
identifying an absolutely continuous measure with its density, Kt can be seen as a subset
of L1(Ω). This set is closed and convex, as well as weakly sequentially compact by the
Dunford–Pettis theorem. From [FG10, Proposition 2.7] we know that weak convergence
in L1(Ω) implies convergence w.r.t. Wb2; hence the claim is true.
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Furthermore, for every r, s ∈ [0, t], we have

lim sup
τ→0

Wb2
(︂
(µτ

r)Ω, (µτ
s)Ω

)︂ (2.5.27)
≤ c

√︂
|s− r| (1 + t) .

All the hypotheses of [AGS08, Proposition 3.3.1] are satisfied; thus, we conclude the existence
of a subsequence of

(︂
s ↦→ (µτ

s)Ω
)︂

τ
that converges, pointwise in [0, t] w.r.t. Wb2, to a

continuous curve of measures. Each limit measure lies in Kt; hence it is absolutely continuous.
With a diagonal argument, we find a single subsequence that converges pointwise on the whole
half-line [0,∞).

2.5.3 Solution to the Fokker–Planck equation with Dirichlet
boundary conditions

We are now going to conclude the proof of Theorem 2.1.1 by showing that the limit curve is,
in fact, a solution to the linear Fokker–Planck equation with the desired boundary conditions.

Proposition 2.5.21. If the sequence
(︂
t ↦→ (µτ

t )Ω
)︂

τ
converges, pointwise w.r.t. Wb2 as τ → 0,

to t ↦→ ρt dx, then ρτ →τ ρ also in L1
loc

(︂
(0,∞);Lq(Ω)

)︂
for every q ∈ [1, d

d−1). The
curve t ↦→ ρt dx solves the linear Fokker–Planck equation in the sense of Section 2.3.4, and
the map t ↦→

(︃√︂
ρteV − eΨ/2

)︃
belongs to L2

loc

(︂
[0,∞);W 1,2

0 (Ω)
)︂
.

Like in the proofs of [FG10, Theorem 3.5] and [Mor18, Theorem 4.1], the key to Proposi-
tion 2.5.21 is to first determine (see Lemma 2.5.24) that the measures constructed with (2.1.8)
already solve approximately the Fokker–Planck equation. In order to prove that the limit curve
has the desired properties and that convergence holds in L1

loc

(︂
(0,∞);Lq(Ω)

)︂
(Lemma 2.5.26),

two further preliminary lemmas turn out to be particularly useful. Both provide quantitative
bounds at the discrete level: one (Lemma 2.5.22) for

√︂
ρτeV in L2

loc

(︂
(0,∞);W 1,2(Ω)

)︂
; the

other (Lemma 2.5.23) for ρτ in L∞
loc

(︂
(0,∞);Lq(Ω)

)︂
, for suitable values of q. In turn, these

bounds are deduced from Proposition 2.5.9 and Proposition 2.5.15.

Lemma 2.5.22 (Sobolev bound). If τ ≤ t, then,
ˆ t

τ

⃦⃦⃦⃦√︂
ρτ

re
V

⃦⃦⃦⃦2

W 1,2
dr ≤ c(1 + t) . (2.5.28)

Proof. Let r ≥ τ . By (2.5.10), we have
⃦⃦⃦⃦
∇
√︂
ρτ

re
V

⃦⃦⃦⃦2

L2
≤ c

T 2
(︂
µτ

⌊r/τ⌋τ , µ
τ
⌊r/τ⌋τ−τ

)︂
τ 2 .

Thus, ˆ t

τ

⃦⃦⃦⃦
∇
√︂
ρτ

re
V

⃦⃦⃦⃦2

L2
dr ≤ c

⌊t/τ⌋−1∑︂
i=0

T 2
(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
τ

,

which, using Lemma 2.5.20, can be easily reduced to the desired inequality.

Lemma 2.5.23 (Lebesgue bound). Let q ∈ [1,∞) be such that q(d− 2) ≤ d. If τ < t, then

∥ρτ
t ∥Lq ≤ cqe

cτ 1 + t

t− τ
. (2.5.29)
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Proof. For every r ∈ [0, t], Proposition 2.5.15 gives

∥ρτ
t ∥Lq ≤ cq

(︄ˆ
Ω

max
{︂
ρτ

t e
V , ϑ0

}︂q
e−V dx

)︄1/q

≤ cq

(︄ˆ
Ω

max
{︂
ρτ

re
V , ϑ0

}︂q
e−V dx

)︄1/q

≤ cq

(︂
1 +∥ρτ

r∥Lq

)︂
,

and if, additionally, r ≥ τ , then (2.5.11) yields

∥ρτ
t ∥Lq ≤ cq

(︄
ecτ +

⃦⃦⃦⃦
∇
√︂
ρτ

re
V

⃦⃦⃦⃦2

L2
+∥ρτ

r∥L1

)︄
.

After integrating w.r.t. r from τ to t, Lemma 2.5.22 and Remark 2.5.17 imply (2.5.29).

Lemma 2.5.24 (Approximate Fokker–Planck). Let ω ⋐ Ω be open, let φ ∈ C2
0(ω), and

let s, t be such that 0 ≤ s ≤ t. Then, ρτ , ρτ ∇V ∈ L1
loc

(︂
(τ,∞);L1(ω)

)︂
, and

⃓⃓⃓⃓
⃓⃓
ˆ

Ω
(ρτ

t − ρτ
s)φ dx−

ˆ ⌊ t
τ

⌋τ+τ

⌊ s
τ

⌋τ+τ

ˆ
Ω
(∆φ− ⟨∇φ,∇V ⟩)ρτ

r dx dr

⃓⃓⃓⃓
⃓⃓

≤ cω τ(1 + t+ τ)∥φ∥C2
0 (ω) . (2.5.30)

Moreover, for ϵ > 0, the inequality

∥ρτ
t − ρτ

s∥(C2
0 (ω))∗ ≤ cω,ϵ(t− s+ τ) (2.5.31)

holds whenever 0 < 2τ ≤ ϵ ≤ s ≤ t ≤ 1/ϵ.

Remark 2.5.25. In (2.5.31), we identify ρτ
t − ρτ

s with the continuous linear functional

C2
0(ω) ∋ φ −→

ˆ
ω

(ρτ
t − ρτ

s)φ dx .

Proof of Lemma 2.5.24. Step 1 (integrability). From Remark 2.5.17, it follows trivially
that ρτ ∈ L1

loc

(︂
[0,∞);L1(Ω)

)︂
.

We shall prove that the function ρτ ∇V belongs to L1
loc

(︂
(τ,∞);L1(ω)

)︂
for every ω ⋐ Ω open.

Fix a, b > 0 with τ < a ≤ b. Let p be as in Definition 2.3.1. Its conjugate exponent p′

satisfies p′ ∈ [1,∞) and p′(d− 2) ≤ d. By Hölder’s inequality and Lemma 2.5.23, we have

ˆ b

a

∥ρτ
r∇V ∥L1 dr ≤∥∇V ∥Lp(ω)

ˆ b

a

∥ρτ
r∥Lp′ dr

(2.5.29)
≤ cp∥∇V ∥Lp(ω) e

cτ

ˆ b

a

1 + r

r − τ
dr

≤ cp∥∇V ∥Lp(ω) e
cτ 1 + b

a− τ
(b− a) ≤ cωe

cτ 1 + b

a− τ
(b− a) .

(2.5.32)

The last passage is due to the fact that both p and ∥∇V ∥Lp(ω) can be seen as functions of V
and ω.
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Step 2 (inequality (2.5.30)). Let i ∈ N0, and choose γi ∈ OptT

(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
and Si : Ω → Ω

as in (2.5.12). By the triangle inequality and the fact that ρτ
r = ρτ

(i+1)τ when r ∈
[︂
(i+1)τ, (i+

2)τ
)︂
, we have

⃓⃓⃓⃓
⃓⃓
ˆ

Ω
(ρτ

(i+1)τ − ρτ
iτ )φ dx−

ˆ (i+2)τ

(i+1)τ

ˆ
Ω
(∆φ− ⟨∇φ,∇V ⟩)ρτ

r dx dr

⃓⃓⃓⃓
⃓⃓

≤
⃓⃓⃓⃓
⃓
ˆ

Ω

(︁
φ− φ ◦ Si − τ∆φ+ τ⟨∇φ,∇V ⟩

)︁
ρτ

(i+1)τ dx
⃓⃓⃓⃓
⃓⏞ ⏟⏟ ⏞

=:Ii
1

+
⃓⃓⃓⃓
⃓
ˆ

Ω

(︂
(φ ◦ Si)ρτ

(i+1)τ − φρτ
iτ

)︂
dx
⃓⃓⃓⃓
⃓⏞ ⏟⏟ ⏞

=:Ii
2

.

Using (2.5.12), we rewrite I i
1 as

I i
1 =

⃓⃓⃓⃓
⃓
ˆ

Ω

(︁
φ− φ ◦ Si + ⟨∇φ, Si − Id⟩

)︁
ρτ

(i+1)τ dx
⃓⃓⃓⃓
⃓ ,

and then, by means of Taylor’s theorem with remainder in Lagrange form, we establish the
upper bound

I i
1 ≤ c∥φ∥C2

0 (ω)

ˆ
Ω
|Si − Id|2 ρτ

(i+1)τ dx ≤ c∥φ∥C2
0 (ω) T 2

(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
.

By Condition (2) in Definition 2.3.7 and the fact that φ is supported in the closure of ω, we
have

I i
2 =

⃓⃓⃓⃓
⃓
ˆ

Ω
φ(y) dπ2

#(γΩ
Ω − γΩ

Ω)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
ˆ

Ω
φ(y) dπ2

#(γω
Ω − γω

Ω)
⃓⃓⃓⃓
⃓ ≤∥φ∥L∞(ω)∥γ

ω
∂Ω∥

≤ cω∥φ∥L∞(ω)

ˆ
∂Ω×ω

|x− y|2 dγ(x, y) ≤ cω∥φ∥L∞(ω) T 2
(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
,

where cω actually only depends on the (strictly positive) distance of ω from ∂Ω. Taking the
sum over i, we obtain⃓⃓⃓⃓
⃓⃓
ˆ

Ω
(ρτ

t − ρτ
s)φ dx−

ˆ ⌊ t
τ

⌋τ+τ

⌊ s
τ

⌋τ+τ

ˆ
Ω
ρτ

r(∆φ− ⟨∇φ,∇V ⟩) dx dr

⃓⃓⃓⃓
⃓⃓ ≤

⌊t/τ⌋−1∑︂
i=⌊s/τ⌋

(I i
1 + I i

2)

≤ cω∥φ∥C2
0 (ω)

⌊t/τ⌋−1∑︂
i=0

T 2
(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
.

At this point, (2.5.30) follows from the last estimate and Lemma 2.5.20.

Step 3 (inequality (2.5.31)). Assume that 2τ ≤ ϵ ≤ s ≤ t ≤ 1/ϵ. From (2.5.30), we obtain⃓⃓⃓⃓
⃓
ˆ

Ω
(ρτ

t − ρτ
s)φ dx

⃓⃓⃓⃓
⃓ ≤ cω,ϵ τ∥φ∥C2

0 (ω) +
ˆ ⌊ t

τ
⌋τ+τ

⌊ s
τ

⌋τ+τ

⃦⃦
ρτ

r(∆φ− ⟨∇φ,∇V ⟩)
⃦⃦

L1 dr
⏞ ⏟⏟ ⏞

=:I3

.
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Taking into account Remark 2.5.17 and the estimate (2.5.32) of Step 1,

I3 ≤∥φ∥C2
0 (ω)

ˆ ⌊ t
τ

⌋τ+τ

⌊ s
τ

⌋τ+τ

(︂
∥ρτ

r∥L1 +∥ρτ
r∇V ∥L1

)︂
dr

≤ cωe
cτ ∥φ∥C2

0 (ω) (t− s+ τ)
(︄

1 + 1 + t+ τ

⌊s/τ⌋τ

)︄
≤ cω,ϵ∥φ∥C2

0 (ω) (t− s+ τ) .

The inequality (2.5.31) easily follows.

Lemma 2.5.26 (Improved convergence). Assume that the sequence
(︂
t ↦→ (µτ

t )Ω
)︂

τ
converges

pointwise w.r.t. Wb2 as τ → 0 to a limit t ↦→ ρt dx. Then, for every q ∈ [1, d
d−1), the

sequence (ρτ )τ converges to ρ in L1
loc

(︂
(0,∞);Lq(Ω)

)︂
.

Proof. Step 1. Fix ϵ ∈ (0, 1) and an open set ω ⋐ Ω with C1-regular boundary. As a first
step, we shall prove strong convergence of (ρτ )τ in L1

(︂
ϵ, ϵ−1;Lq(ω)

)︂
. The idea is to use a

variant of the Aubin–Lions lemma by M. Dreher and A. Jüngel [DJ12]. Consider the Banach
spaces

X := W 1,1(ω) , B := Lq(ω) , Y :=
(︂
C2

0(ω)
)︂∗
,

and note that the embeddings X ↪→ B and B ↪→ Y are respectively compact (by the
Rellich–Kondrachov theorem [Bre11, Theorem 9.16]) and continuous. Inequality (2.5.31) in
Lemma 2.5.24 provides one of the two bounds needed to apply [DJ12, Theorem 1]. The other
one, namely

lim sup
τ→0

∥ρτ ∥
L1
(︂

(ϵ,ϵ−1);W 1,1(ω)
)︂ < ∞ ,

can be derived from our previous lemmas. Indeed, Remark 2.5.17 provides the bound on
the L1

(︂
ϵ, ϵ−1;L1(ω)) norm, and we have

∥∇ρτ
t ∥L1(ω) ≤ c

⃦⃦⃦⃦√︂
ρτ

t ∇
√︂
ρτ

t eV

⃦⃦⃦⃦
L1(ω)

+∥ρτ
t ∇V ∥L1(ω)

≤ c
√︂

∥ρτ
t ∥L1

⃦⃦⃦⃦
∇
√︂
ρτ

t eV

⃦⃦⃦⃦
L2

+∥ρτ
t ∥Lp′ (ω)∥∇V ∥Lp(ω) ,

where p = p(ω) is given by Definition 2.3.1. When τ ≤ ϵ, Remark 2.5.17 and Lemma 2.5.22
yield

ˆ 1
ϵ

ϵ

√︂
∥ρτ

t ∥L1

⃦⃦⃦⃦
∇
√︂
ρτ

t eV

⃦⃦⃦⃦
L2

dt ≤

⌜⃓⃓⎷ˆ 1
ϵ

ϵ

∥ρτ
t ∥L1 dt

⌜⃓⃓⎷ˆ 1
ϵ

ϵ

⃦⃦⃦⃦
∇
√︂
ρτ

t eV

⃦⃦⃦⃦2

L2
dt ≤ cϵ .

Moreover, since p′ ∈ [1,∞) and p′(d−2) ≤ d, we can apply Lemma 2.5.23 to bound∥ρτ
t ∥Lp′ (ω).

To be precise, there is still a small obstruction to applying Dreher and Jüngel’s theorem: it
requires ρτ to be constant on equally sized subintervals of the time domain, i.e., (ϵ, ϵ−1); instead,
here, τ and (ϵ−1−ϵ) may even be incommensurable. Nonetheless, it is not difficult to check that
the proof in [DJ12] can be adapted.6 In the end, we obtain the convergence of

(︂
ρτ
)︂

τ
, along

6The adaptation is the following. In place of [DJ12, Inequality (7)], we write, in our notation:∑︂
i : ϵ<iτ<ϵ−1

⃦⃦⃦
ρτ

iτ − ρτ
(i−1)τ

⃦⃦⃦
Y

(2.5.31)
≤ cω,ϵτ

(︁
⌈1/(ϵτ) − 1⌉ − ⌊ϵ/τ⌋

)︁
≤ cω,ϵ(ϵ−1 − ϵ + τ) .
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a subsequence (τk)k∈N0 , to some function f : (ϵ, ϵ−1) × ω → R+ in L1
(︂
ϵ, ϵ−1;Lq(ω)

)︂
. Up

to extracting a further subsequence, we can also require that convergence holds in Lq(ω)
for L 1

(ϵ,ϵ−1)-a.e. t. For any such t, and for any φ ∈ Cc(ω), we thus have
ˆ

ω

φft dx = lim
k→∞

ˆ
ω

φρτk
t dx =

ˆ
ω

φρt dx ,

where the last identity follows from the convergence w.r.t. Wb2 and [FG10, Proposition 2.7].
Therefore, ft(x) = ρt(x) for L d+1

(ϵ,ϵ−1)×ω-a.e. (t, x), and, a posteriori, there was no need to
extract subsequences.

Step 2. Secondly, we prove that, for every ϵ ∈ (0, 1), the sequence (ρτ )τ is Cauchy in the
complete space L1

(︂
ϵ, ϵ−1;Lq(Ω)

)︂
. Pick an open subset ω ⋐ Ω and cover it with a finite

number of open balls {Ai}i, all compactly contained in Ω. Additionally choose β ∈ (q,∞)
with β(d− 2) ≤ d. We have

∥·∥
L1
(︂

ϵ,ϵ−1;Lq(Ω)
)︂ ≤

∑︂
i

∥·∥
L1
(︂

ϵ,ϵ−1;Lq(Ai)
)︂ +∥·∥

L1
(︂

ϵ,ϵ−1;Lq(Ω\ω)
)︂ ,

and, by Hölder’s inequality,

∥·∥
L1
(︂

ϵ,ϵ−1;Lq(Ω\ω)
)︂ ≤

⃓⃓
Ω \ ω

⃓⃓ 1
q

− 1
β ∥·∥

L1
(︂

ϵ,ϵ−1;Lβ(Ω)
)︂ .

Hence, by Step 1,

lim sup
τ1,τ2→0

∥ρτ1 − ρτ2∥
L1
(︂

ϵ,ϵ−1;Lq(Ω)
)︂ ≤ 2

⃓⃓
Ω \ ω

⃓⃓ 1
q

− 1
β lim sup

τ→0
∥ρτ ∥

L1
(︂

ϵ,ϵ−1;Lβ(Ω)
)︂ .

Recall Lemma 2.5.23: we have

lim sup
τ→0

∥ρτ ∥
L1
(︂

ϵ,ϵ−1;Lβ(Ω)
)︂ ≤ cβ

ˆ ϵ−1

ϵ

(︄
1 + 1

t

)︄
dt ≤ cβ,ϵ .

We conclude, by arbitrariness of ω, the desired Cauchy property.

By Step 1, the limit of (ρτ )τ in L1
(︂
ϵ, ϵ−1;Lq(Ω)

)︂
must coincide L d+1

(ϵ,ϵ−1)×ω-a.e. with ρ for
every ω ⋐ Ω open; hence, this limit is precisely ρ on Ω.

Proof of Proposition 2.5.21. Convergence in L1
loc

(︂
(0,∞);Lq(Ω)) was proven in the previous

lemma. Thus, we shall only prove the properties of the limit curve.

Step 1 (continuity). Continuity in duality with Cc(Ω) follows from Proposition 2.5.19 and [FG10,
Proposition 2.7].

Step 2 (identity (2.3.2) for s > 0). Let 0 < s ≤ t and let φ ∈ C2
c (Ω). Thanks to the

convergences
ρτ

s dx W b2→τ ρs dx and ρτ
t dx W b2→τ ρt dx ,

we have (see [FG10, Proposition 2.7])
ˆ

Ω
(ρτ

t − ρτ
s)φ dx →τ

ˆ
Ω
(ρt − ρs)φ dx .
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Moreover, since every p as in Definition 2.3.1 has a conjugate exponent p′ that satisfies p′(d−
1) < d, Lemma 2.5.26 yields

ˆ ⌊ t
τ

⌋τ+τ

⌊ s
τ

⌋τ+τ

ˆ
Ω
ρτ

r(∆φ− ⟨∇φ,∇V ⟩) dx dr →τ

ˆ t

s

ˆ
Ω
ρr(∆φ− ⟨∇φ,∇V ⟩) dx dr .

Thus, (2.3.2) is true by Lemma 2.5.24.
Step 3 (Sobolev regularity and boundary condition). In analogy with Remark 2.5.6, we define

gτ
r :=

√︂
ρτ

re
V − eΨ/2 , gτ,(κ)

r := (gτ
r − κ)+ − (gτ

r + κ)− , τ, κ > 0 , r ≥ 0 ,
and

gr :=
√︂
ρreV − eΨ/2 , g(κ)

r := (gr − κ)+ − (gr + κ)− , κ > 0 , r ≥ 0 .

Recall that, if κ ≥ c(ecτ −1) for an appropriate constant c, and if r ≥ τ , then the function gτ,(κ)
r

is compactly supported in Ω. Let us fix one such κ and 0 < s < t. Lemma 2.5.22
implies that the sequence

(︂
gτ,(κ)

)︂
τ

is eventually norm-bounded in the space L2
(︂
s, t;W 1,2

0 (Ω)
)︂
.

As a consequence, it admits a subsequence
(︂
gτk,(κ)

)︂
k

(possibly dependent on s, t, κ) that
converges weakly in L2

(︂
s, t;W 1,2

0 (Ω)
)︂
. Using Lemma 2.5.26 and Mazur’s lemma [Bre11,

Corollary 3.8 & Exercise 3.4(.1)], one can easily show that this limit indeed coincides with g(κ).
By means of the weak semicontinuity of the norm, the definition of gτ,(κ), and Lemma 2.5.22,
we findˆ t

s

⃦⃦⃦
g(κ)

r

⃦⃦⃦2

W 1,2
dr ≤ lim inf

k→∞

ˆ t

s

⃦⃦⃦
gτk,(κ)

r

⃦⃦⃦2

W 1,2
dr ≤ lim inf

k→∞

ˆ t

s

∥gτk
r ∥2

W 1,2 dr ≤ c(1 + t) ,

and, by arbitrariness of s, ˆ t

0

⃦⃦⃦
g(κ)

r

⃦⃦⃦2

W 1,2
dr ≤ c(1 + t)

for every κ, t > 0. We can thus extract a subsequence
(︂
g(κl)

)︂
l

(possibly dependent on t)
that converges weakly in L2

(︂
0, t;W 1,2

0 (Ω)
)︂
. As before, one can check that this limit is g;

hence g ∈ L2
(︂
0, t;W 1,2

0 (Ω)
)︂

with
ˆ t

0
∥gr∥2

W 1,2 dr ≤ c(1 + t) (2.5.33)

Step 4 (integrability, and (2.3.2) for s = 0). Fix an open set ω ⋐ Ω. Let p = p(ω) > d be as
in Definition 2.3.1 and let p′ be its conjugate exponent. Since g ∈ L2

loc

(︂
[0,∞);W 1,2

0 (Ω)
)︂
, the

Sobolev embedding theorem implies g ∈ L2
loc

(︂
[0,∞);L2p′(Ω)

)︂
. Given that V ∈ L∞(Ω), we

obtain ρ ∈ L1
loc

(︂
[0,∞);Lp′(Ω)

)︂
. In particular, t ↦→

´
ω
ρt dx and t ↦→

´
ω
|∇V | ρt dx are both

locally integrable on [0,∞). Given φ ∈ C2
c (ω), the identity (2.3.2) for s = 0 thus follows

from the one with s > 0 by taking the limit s ↓ 0: on the one side,

lim
s↓0

ˆ
Ω
ρsφ dx =

ˆ
Ω
ρ0φ dx

by continuity in duality with Cc(Ω); on the other,

lim
s↓0

ˆ t

s

ˆ
Ω
ρr(∆φ− ⟨∇φ,∇V ⟩) dx dr =

ˆ t

0

ˆ
Ω
ρr(∆φ− ⟨∇φ,∇V ⟩) dx dr

by the dominated convergence theorem.
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2.6. Slope formula in dimension d = 1

2.6 Slope formula in dimension d = 1
In this section, we only work in dimension d = 1 and we take Ω = (0, 1). Recall (Propo-
sition 2.4.11) that, in this setting, ˜︃Wb2 is a metric on S . Our purpose is to find an
explicit formula for the descending slope

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓

and to derive Theorem 2.1.6 as a corollary.
Specifically, the main result of this section is the following.

Proposition 2.6.1. Assume that V ∈ W 1,2(Ω). Take µ ∈ S such that H(µ) < ∞ and let ρ
be the density of µΩ. Then,

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓2

(µ) =

⎧⎪⎪⎨⎪⎪⎩
4
ˆ

Ω

(︃
∂x

√︂
ρeV

)︃2
e−V dx if

√︂
ρeV − eΨ/2 ∈ W 1,2

0 (Ω) ,

∞ otherwise.
(2.6.1)

Remark 2.6.2. In the current setting, i.e., Ω = (0, 1) and V ∈ W 1,2(Ω), the function V is
Hölder continuous; thus it extends to the boundary ∂Ω = {0, 1}. When

√︂
ρeV ∈ W 1,2(Ω),

the function ρ belongs to W 1,2(Ω), is continuous, and extends to the boundary as well.
Remark 2.6.3. The functional

W 1,2(Ω) ∋ f ↦−→

⎧⎪⎪⎨⎪⎪⎩
4
ˆ

Ω
(∂xf)2 e−V dx if f − eΨ/2 ∈ W 1,2

0 (Ω) ,

∞ if f − eΨ/2 ∈ W 1,2(Ω) \W 1,2
0 (Ω) .

(2.6.2)

is particularly well-behaved: it is convex, strongly continuous, weakly lower semicontinuous,
and has weakly compact sublevels. As a consequence,

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓

turns out to be lower

semicontinuous w.r.t. ˜︃Wb2. Indeed, assume that µn ˜︂W b2→ µ and supn

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓
(µn) < ∞.

Let ρn be the density of µn
Ω. Then the functions fn :=

√︂
ρneV converge, up to subsequences,

weakly in W 1,2(Ω) and—by the Rellich–Kondrachov theorem [Bre11, Theorem 8.8]—strongly
in C(Ω) to a function f such that f − eΨ/2 ∈ W 1,2

0 (Ω) and

4
ˆ

Ω
(∂xf)2e−V dx ≤ lim inf

n→∞

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓2

(µn) .

Additionally, ρn = f 2
ne

−V → f 2e−V in C(Ω), hence µΩ = f 2e−V dx (we use (2.4.1) and [FG10,
Proposition 2.7]).

While (2.6.1) reminds the classical slope of the relative entropy (i.e., the relative Fisher
information), the crucial difference is in the role of the boundary condition: if ρ does not
satisfy the correct one, the slope is infinite.

We are going to prove the two opposite inequalities in (2.6.1) separately. Proving ≥ is easier: for
the case where

√︂
ρeV − eΨ/2 ∈ W 1,2

0 , it amounts to taking small variations of µ in an arbitrary
direction; for the other case, it suffices to find appropriate sequences that make the difference
quotient diverge. To handle the opposite inequality, we have to bound

(︂
H(µ) − H(µ̃)

)︂
+

from
above for every sufficiently close measure µ̃ ∈ S . Classical proofs (e.g., [ABS21, Theorem
15.25] or [AGS08, Theorem 10.4.6]) take advantage of geodesic convexity of the functional,
which we do not to have; see Section 2.8.3. One of the perks of geodesic convexity is that it
automatically ensures lower semicontinuity of the descending slope, which in turn allows to
assume stronger regularity on µ and then argue by approximation. To overcome this problem,
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2. Variational structures for Fokker–Planck with general Dirichlet BC

we combine different ideas on different parts of µ and µ̃. Away from the boundary ∂Ω = {0, 1},
the transport plans move absolutely continuous measures to absolutely continuous measures.
The Jacobian equation (change of variables formula) relates the two densities and makes
the computations rather easy. Estimating the contribution of the parts of µ, µ̃ closest to
the boundary is more technical: we need to exploit the boundary condition and the Sobolev
regularity of the functions ρ, log ρ, and V . Note, indeed, that since the boundary condition is
positive, also log ρ has a square-integrable derivative in a neighborhood of ∂Ω.

To be in dimension d = 1 is necessary for ˜︃Wb2 to be a distance, but is also extremely
convenient because optimal transport maps are monotone and W 1,2-regular functions are
Hölder continuous. For these reasons, it seems difficult (but maybe still possible) to adapt our
proof of Proposition 2.6.1 for an analogue of Theorem 2.1.6 in higher dimension.

We first prove a variant of the Lebesgue differentiation theorem that is needed for the
subsequent proof of Proposition 2.6.1. We prove Theorem 2.1.6 at the end of the section.

Lemma 2.6.4. Let (γn)n∈N0 be a sequence of nonnegative Borel measures on Ω × Ω such
that limn→∞ C(γn) = 0. Additionally assume that π1

#γ
n is absolutely continuous for every n ∈

N0, with a density that is uniformly bounded in L∞(Ω). Then, for every f ∈ L2(Ω),

lim
n→∞

ˆ (︄ y

x

(︂
f(z) − f(x)

)︂
dz
)︄2

d γn(x, y) = 0 . (2.6.3)

Proof. Denote by ρn the density of π1
#γ

n. Let g : Ω → R be Lipschitz continuous. For
every n ∈ N0, we have

In :=
ˆ (︄ y

x

(︂
f(z) − f(x)

)︂
dz
)︄2

dγn

≤ 3
ˆ (︄ y

x

(f − g) dz
)︄2

dγn + 3
ˆ (︄ y

x

g dz − g(x)
)︄2

dγn

+ 3
ˆ

Ω
(g − f)2ρn dx .

Consider the Hardy–Littlewood maximal function of (the extension to R of) f − g, that is,

(f − g)∗(x) := sup
r>0

1
2r

ˆ min{x+r,1}

max{x−r,0}
|f − g| dz , x ∈ R .

By the (strong) Hardy–Littlewood maximal inequality,

ˆ (︄ y

x

(f − g) dz
)︄2

d γn ≤ 4
ˆ (︂

(f − g)∗(x)
)︂2

d γn = 4
ˆ

Ω

(︂
(f − g)∗

)︂2
ρn dx

≤ 4 sup
n

∥ρn∥L∞
⃦⃦
(f − g)∗⃦⃦2

L2(R) ≤ c sup
n

∥ρn∥L∞∥f − g∥2
L2 .

The Lipschitz-continuity of g gives
ˆ (︄ y

x

g dz − g(x)
)︄2

d γn ≤ (Lip g)2
ˆ

(x− y)2 d γn ≤ (Lip g)2C(γn) ,
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and, moreover, we have ˆ
Ω
(g − f)2ρn dx ≤∥ρn∥L∞∥f − g∥2

L2 .

In conclusion,
In ≤ c sup

n
∥ρn∥L∞∥f − g∥2

L2 + 3(Lip g)2C(γn) .

After passing to the limit superior in n, we conclude by arbitrariness of g.

Proof of Proposition 2.6.1. We omit the subscript ˜︂W b2
in
⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓

throughout the proof.

Step 1 (inequality ≥, finite case). Assume that
√︂
ρeV − eΨ/2 ∈ W 1,2

0 ; hence, in particular, ρ ∈
L∞(Ω). Let w : Ω → R be C∞-regular with compact support (and not identically equal to 0),
and, for ϵ > 0, define Rϵ(x) := x+ ϵw(x). Set µϵ := (Rϵ)#µ and γϵ := (Id, Rϵ)#µ. When ϵ
is sufficiently small, µϵ ∈ S and γϵ ∈ Adm˜︂W b2

(µ, µϵ). Therefore, arguing as in the proof of
Lemma 2.5.10,

lim
ϵ→0+

H(µ) − H(µϵ)
ϵ

=
ˆ

Ω
(∂xw − w ∂xV )ρ dx .

Thus,
ˆ

Ω
(∂xw − w ∂xV )ρ dx ≤

⃓⃓⃓
∂H

⃓⃓⃓
(µ) lim inf

ϵ↓0

√︂
C(γϵ)
ϵ

≤
⃓⃓⃓
∂H

⃓⃓⃓
(µ)∥w∥L2(ρ) ,

and we conclude that ˆ
Ω

⃓⃓⃓⃓
∂x

√︂
ρeV

⃓⃓⃓⃓2
e−V dx ≤ 1

4
⃓⃓⃓
∂H

⃓⃓⃓2
(µ) .

Step 2 (inequality ≥, infinite case). The case
√︂
ρeV ̸∈ W 1,2(Ω) is trivial. Thus, let us assume

now that
√︂
ρeV ∈ W 1,2(Ω) with Tr ρ ̸= Tr eΨ−V . Without loss of generality, we may consider

the case where ρ(0) ̸= eΨ(0)−V (0). If ρ(0) > eΨ(0)−V (0), for ϵ > 0 define

µϵ := µ− ϵµ(0,ϵ2) +
⎛⎝ϵ ˆ ϵ2

0
ρ dx

⎞⎠ δ0 ∈ S ,

γϵ := ϵµ(0,ϵ2) ⊗ δ0 + (Id, Id)#(µΩ − ϵµ(0,ϵ2)) ∈ Adm˜︂W b2
(µ, µϵ) .

Since all the functions involved are continuous up to the boundary, we get

H(µ) − H(µϵ) =
ˆ ϵ2

0

(︃
ρ log ρ− (1 − ϵ)ρ log

(︂
(1 − ϵ)ρ

)︂
+ ϵ

(︂
V − 1 − Ψ(0)

)︂
ρ
)︃

dx

∼ϵ↓0 ϵ
3
(︂
log ρ(0) + V (0) − Ψ(0)

)︂
ρ(0) .

On the other hand,

˜︃Wb2(µ, µϵ) ≤
√︂

C(γϵ) =

⌜⃓⃓⎷ϵ ˆ ϵ2

0
x2ρ dx ≤

⌜⃓⃓⎷ϵ5
ˆ ϵ2

0
ρ dx ∼ϵ↓0 ϵ

7
2

√︂
ρ(0) ,

from which we find⃓⃓⃓
∂H

⃓⃓⃓
(µ) ≥ lim sup

ϵ↓0

H(µ) − H(µϵ)˜︃Wb2(µ, µϵ)
≥
√︂
ρ(0)

(︂
log ρ(0) + V (0) − Ψ(0)

)︂
⏞ ⏟⏟ ⏞

>0

lim sup
ϵ↓0

ϵ− 1
2 = ∞ .
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2. Variational structures for Fokker–Planck with general Dirichlet BC

If, instead, ρ(0) < eΨ(0)−V (0), we consider, for ϵ > 0,

µϵ := µ+ ϵL 1
(0,ϵ2) − ϵ3δ0 ∈ S , γϵ := ϵδ0 ⊗ L 1

(0,ϵ2) + (Id, Id)#µΩ ∈ Adm˜︂W b2
(µ, µϵ) .

and conclude with similar computations as before.

Step 3 (preliminaries for ≤). We suppose again that
√︂
ρeV − eΨ/2 ∈ W 1,2

0 (Ω). In particular,
there exist λ̄, ϵ̄ > 0 such that

ρ|[0,ϵ̄]∪[1−ϵ̄,1] > λ̄ .

Let us take a sequence (µn)n∈N0 that converges to µ w.r.t. ˜︃Wb2, with H(µn) < H(µ) for
every n. We aim to prove that

lim sup
n→∞

H(µ) − H(µn)˜︃Wb2(µ, µn)
≤ 2

√︄ˆ
Ω

(︃
∂x

√︂
ρeV

)︃2
e−V dx .

For every n ∈ N0, we write:

• ρn for the density of µn
Ω;

• γn for some (arbitrarily chosen) ˜︃Wb2-optimal transport plan between µ and µn such
that the diagonal ∆ of ∂Ω × ∂Ω (i.e., the set with the two points (0, 0) and (1, 1))
is γn-negligible;

• Tn, Sn for maps such that (γn)Ω
Ω = (Id, Tn)#µΩ and (γn)Ω

Ω = (Sn, Id)#µ
n
Ω. We can and

will assume that these two maps are nondecreasing, hence L 1
Ω-a.e. differentiable;

• an, bn ∈ Ω = [0, 1] for the infimum and supremum of the set T−1
n (Ω), respectively.

Note that, since Tn is monotone, T−1
n (Ω) is an interval. Conventionally, we set an = 1

and bn = 0 if T−1
n (Ω) = ∅.

Observe that, since (0, an) ⊆ T−1
n ({0, 1}), we have

˜︃Wb
2
2(µ, µn) ≥

ˆ an

0
min {x, 1 − x}2 ρ dx ≥ λ̄

ˆ min{an,ϵ̄}

0
x2 dx = λ̄

3 min {an, ϵ̄}3 .

In particular,

lim sup
n→∞

a3
n˜︃Wb

2
2(µ, µn)

< ∞ and, similarly, lim sup
n→∞

(1 − bn)3

˜︃Wb
2
2(µ, µn)

< ∞ ; (2.6.4)

thus, up to taking subsequences, we may and will assume that an < ϵ̄ < 1 − ϵ̄ < bn for
every n. In particular, (γn)Ω

Ω ̸= 0 and L 1
(0,an)∪(bn,1) ≪ µ(0,an)∪(bn,1). Furthermore, since γn is

W2-optimal between its marginals (cf. Proposition 2.4.19), it is concentrated on a monotone
set Γn. This implies that γ(0, 1) and γ(1, 0) equal 0 as soon as γΩ

Ω ̸= 0. Combining this
observation with the fact that ∆ is γ-negligible, we infer that γ∂Ω

∂Ω = 0. By the same
argument, T |(bn,1) ≡ 1 and T |(0,an) ≡ 0.

Another assumption that we can and will make is

ρn|S−1
n (∂Ω) ≤ Λ :=

(︄
sup
∂Ω

eΨ
)︄

·
(︄

sup
Ω
e−V

)︄
. (2.6.5)
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Indeed, if this is not the case, we can consider the new measures

γ̃n := γn − (Sn, Id)#
(︂
ρn|S−1

n (∂Ω) − Λ
)︂

+
L 1

Ω ,

µ̃n := µ− π1
#(γ̃n) + π2

#(γ̃n) ∈ S ,

and notice that γ̃n ∈ Adm˜︂W b2
(µ, µ̃n). We have

H(µ̃n) − H(µn) =
ˆ

S−1
n (∂Ω)∩{ρn>Λ}

Λ(log Λ + V − 1 − Ψ ◦ Sn) dx

−
ˆ

S−1
n (∂Ω)∩{ρn>Λ}

ρn(log ρn + V − 1 − Ψ ◦ Sn) dx ,

and, because of the definition of Λ, we obtain H(µ̃n) ≤ H(µn). At the same time,˜︃Wb2(µ, µ̃n) ≤ ˜︃Wb2(µ, µn) because γ̃n ≤ γn. This concludes the proof of the claim that we
can assume (2.6.5).

Step 4 (inequality ≤). By Proposition 2.4.19, (γn)Ω
Ω is a W2-optimal transport plan between

its marginals ρL 1
T −1

n (Ω) and ρnL 1
S−1

n (Ω), and it is induced by the map Tn. Hence, by [ABS21,
Theorem 7.3], the Jacobian equation(︂

ρn|S−1
n (Ω) ◦ Tn

)︂
· ∂xTn = ρ (2.6.6)

holds ρL 1
T −1

n (Ω)-a.e. Consequently, we have the chain of identities
ˆ

S−1
n (Ω)

(log ρn + V − 1)ρn dx =
ˆ

(log ρn + V − 1) dπ2
#(γn)Ω

Ω

=
ˆ

T −1
n (Ω)

(︂
(log ρn + V − 1) ◦ Tn

)︂
ρ dx

(2.6.6)=
ˆ

T −1
n (Ω)

(︁
log ρ− log(∂xTn) + V ◦ Tn − 1

)︁
ρ dx .

(2.6.7)

Thus, we can decompose the difference H(µ) − H(µn) as

H(µ) − H(µn) (2.6.7)=
ˆ

T −1
n (Ω)

(︂
log(∂xTn) + V − V ◦ Tn

)︂
ρ dx+ (µ− µn)∂Ω(Ψ)

+
ˆ

T −1
n (∂Ω)

(log ρ+ V − 1)ρ dx−
ˆ

S−1
n (∂Ω)

(log ρn + V − 1)ρn dx .

(2.6.8)

Let us focus on the integral on T−1
n (Ω). By making the estimate log(∂xTn) ≤ ∂xTn − 1 and

using the properties of the Riemann–Stieltjes integral, we obtain
ˆ

T −1
n (Ω)

log(∂xTn)ρ dx ≤
ˆ

T −1
n (Ω)

(∂xTn − 1)ρ dx =
ˆ bn

an

(∂xTn)ρ dx−
ˆ bn

an

ρ dx

≤ lim
ϵ↓0

ˆ bn−ϵ

an+ϵ

ρ dTn − bnρ(bn) + anρ(an) +
ˆ bn

an

x∂xρ dx

= (T (b−
n ) − bn)ρ(bn) − (T (a+

n ) − an)ρ(an) −
ˆ bn

an

(Tn − Id)∂xρ dx ,

(2.6.9)
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where we employ the notation T (a+
n ) := limϵ↓0 T (an + ϵ), and similarly with T (b−

n ).
Let f := ∂xV . By the fundamental theorem of calculus,

ˆ
T −1

n (Ω)
(V − V ◦ Tn)ρ dx =

ˆ bn

an

⎛⎝ˆ x

Tn(x)
f(z) dz

⎞⎠ ρ dx .

By adding and subtracting f(x), we getˆ
T −1

n (Ω)
(V − V ◦ Tn)ρ dx

=
ˆ bn

an

f(x)
⎛⎝ˆ x

Tn(x)
dz
⎞⎠ ρ dx+

ˆ bn

an

⎛⎝ˆ x

Tn(x)

(︂
f(z) − f(x)

)︂
dz
⎞⎠ ρ dx

= −
ˆ bn

an

(Tn − Id)ρ f dx+
ˆ bn

an

⎛⎝ˆ x

Tn(x)

(︂
f(z) − f(x)

)︂
dz
⎞⎠ ρ dx .

(2.6.10)

At this point, we observe that, by Hölder’s inequality and Lemma 2.6.4 (applied to the
restriction (γn)Ω

Ω), the last double integral is negligible, i.e., it is of the order on

(︂˜︃Wb2(µ, µn)
)︂
.

To handle the rest of (2.6.8), we exploit the convexity of l ↦→ l log l and write

−
ˆ

S−1
n (∂Ω)

(log ρn + V − 1)ρn dx ≤ −
ˆ

S−1
n (∂Ω)

(log ρ+ V )ρn dx+
ˆ

S−1
n (∂Ω)∩{ρn>0}

ρ dx .

(2.6.11)
By Condition (3) in Definition 2.3.7 and the boundary condition of ρ,

(µ− µn)∂Ω(Ψ) =
ˆ

(log ρ+ V ) d
(︃
π1

#(γn)Ω
∂Ω − π2

#(γn)∂Ω
Ω

)︃
. (2.6.12)

In summary, recalling that (γn)∂Ω
∂Ω = 0, from (2.6.8), (2.6.9), (2.6.10), (2.6.11), and (2.6.12)

follows the inequality

H(µ) − H(µn) ≤ on

(︂˜︃Wb2(µ, µn)
)︂

−
ˆ bn

an

(Tn − Id)(∂xρ+ ρ∂xV ) dx⏞ ⏟⏟ ⏞
=:Ln

1

+
ˆ

(log ρ+ V ) d
(︃
π1

#

(︂
γn − (γn)Ω

Ω

)︂
− π2

#

(︂
γn − (γn)Ω

Ω

)︂)︃
⏞ ⏟⏟ ⏞

=:Ln
2

+
(︂
T (b−

n ) − bn

)︂
ρ(bn) +

ˆ
S−1

n (1)∩{ρn>0}
ρ dx−

ˆ
T −1

n (1)
ρ dx⏞ ⏟⏟ ⏞

=:Ln
3

−
(︂
T (a+

n ) − an

)︂
ρ(an) +

ˆ
S−1

n (0)∩{ρn>0}
ρ dx−

ˆ
T −1

n (0)
ρ dx⏞ ⏟⏟ ⏞

=:Ln
4

.

(2.6.13)

We claim that the last three lines in (2.6.13), i.e., Ln
2 , Ln

3 and Ln
4 , are bounded from above

by negligible quantities, of the order on

(︂˜︃Wb2(µ, µn)
)︂
. Let us start with Ln

3 . Since every
left-neighborhood of 1 is not µΩ-negligible,

sup
{︁
x ∈ Ω : (x, Tn(x)) ∈ Γn

}︁
= 1 ,
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which, together with the monotonicity of Γn, implies

Tn(1−) ≤ µn
Ω -ess inf S−1(1) . (2.6.14)

We now distinguish two cases: either bn < 1 or bn = 1. If bn < 1, given that Tn|(bn,1) ≡ 1,
the set S−1(1) is µn

Ω-negligible by (2.6.14). Thus

Ln
3 ≤

ˆ 1

bn

(︂
ρ(bn) − ρ(x)

)︂
dx = −

ˆ 1

bn

(︄ˆ x

bn

∂xρ dz
)︄

dx

≤

⌜⃓⃓⎷ˆ 1

bn

|x− bn|2 dx

⌜⃓⃓⎷ˆ 1

bn

(︄ x

bn

∂xρ dz
)︄2

dx

(2.6.4)= On

(︂˜︃Wb2(µ, µn)
)︂⌜⃓⃓⎷ˆ 1

bn

(︄ x

bn

∂xρ dz
)︄2

dx .

Knowing that ρ ∈ W 1,2(Ω) and that bn →n 1, it can be easily proven with Hardy’s inequality
that the last square root tends to 0 as n → ∞.

Assume now that bn = 1. This time, Inequality (2.6.14) yields

Ln
3 ≤ (Tn(1−) − 1)ρ(1) +

ˆ 1

Tn(1−)
ρ dx =

ˆ 1

Tn(1−)

(︂
ρ(x) − ρ(1)

)︂
dx .

We conclude as in the case bn < 1, because the computations that led to (2.6.4) can be easily
adapted to show that (1−Tn(1−))3 = On

(︂˜︃Wb
2
2(µ, µn)

)︂
. Indeed, the monotonicity of Tn gives

˜︃Wb
2
2(µ, µn) ≥

ˆ 1

Tn(1−)

(︂
x− Tn(x)

)︂2
ρ(x) dx ≥ λ̄

ˆ 1

max{1−ϵ̄,Tn(1−)}

(︂
x− Tn(1−)

)︂2
dx .

The proof for Ln
4 is similar to that for Ln

3 .

Let us now deal with the term Ln
2 :

Ln
2 =

ˆ (︂
log ρ(x) + V (x) − log ρ(y) − V (y)

)︂
d
(︂
(γn)∂Ω

Ω + (γn)Ω
∂Ω

)︂
.

Define the square-integrable function

g :=

⎧⎨⎩
∂xρ

ρ
+ ∂xV on (0, ϵ̄) ∪ (1 − ϵ̄, 1) ,

0 otherwise.

Since γ{1}
Ω is concentrated on (bn, 1) × {1}, and γΩ

{1} is concentraded on {1} × (Tn(1−), 1),
as soon as n is large enough for bn and Tn(1−) to be greater than 1 − ϵ̄, we have the equality
(︂
log ρ(x) + V (x) − log ρ(y) − V (y)

)︂
=
ˆ x

y

g dz for
(︂
(γn){1}

Ω + (γn)Ω
{1}

)︂
-a.e. (x, y) .

Moreover,

ˆ ⎛⎝ˆ x

y

g dz
⎞⎠ d(γn){1}

Ω ≤ ˜︃Wb2(µ, µn)

⌜⃓⃓⃓
⎷⃓
ˆ 1

bn

⎛⎝ 1

x

g dz
⎞⎠2

ρ⏞⏟⏟⏞
≤∥ρ∥L∞

dx ,
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and ˆ ⎛⎝ˆ x

y

g dz
⎞⎠ d(γn)Ω

{1} ≤ ˜︃Wb2(µ, µn)

⌜⃓⃓⃓
⎷⃓
ˆ 1

Tn(1−)

⎛⎝ 1

x

g dz
⎞⎠2

ρn|S−1
n (1)⏞ ⏟⏟ ⏞

≤Λ

dx .

In both cases, since bn and Tn(1−) tend to 1 as n → ∞, and g ∈ L2(Ω), the square roots are
infinitesimal. The same argument can be easily applied at 0 (i.e. for the integrals w.r.t. (γn){0}

Ω
and (γn)Ω

{0}), and this brings us to the conclusion that Ln
2 is negligible.

In the end, (2.6.13) reduces to

H(µ) − H(µn) ≤ −
ˆ bn

an

(Tn − Id)(∂xρ+ ρ ∂xV ) dx+ on

(︂˜︃Wb2(µ, µn)
)︂

≤ ˜︃Wb2(µ, µn)

⌜⃓⃓⃓
⎷ˆ

Ω

⎛⎝∂xρ√
ρ

+ √
ρ ∂xV

⎞⎠2

dx+ on(1) ,

which is precisely the statement that we wanted to prove.

Corollary 2.6.5 (Theorem 2.1.6). Assume that V ∈ W 1,2(Ω). Let µ ∈ M2(Ω). Then,

⃓⃓⃓
∂W b2 Ê

⃓⃓⃓2
(µ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4
ˆ 1

0

(︃
∂x

√︂
ρeV

)︃2
e−V dx if µ = ρ dx

and
√︂
ρeV − 1 ∈ W 1,2

0 (Ω) ,
∞ otherwise,

(2.6.15)

where Ê is defined as

M2(Ω) ∋ µ
Ê↦−→

⎧⎨⎩E(ρ) if µ = ρ dx ,
∞ otherwise.

(2.6.16)

Additionally,
⃓⃓⃓
∂W b2 Ê

⃓⃓⃓
is lower semicontinuous w.r.t. Wb2.

Proof. We may assume that µ = ρ dx for some ρ ∈ L1
+(Ω), and that E(ρ) < ∞. In

particular, µ is finite and we can fix some µ̃ ∈ S such that µ̃Ω = µ

Step 1 (inequality ≤). Let (µn)n∈N0 ⊆ M2(Ω) be such that Wb2(µn, µ) →n 0 (and µn ̸= µ).
We want to prove that the limit superior

lim sup
n→∞

(︂
Ê(µ) − Ê(µn)

)︂
+

Wb2(µ, µn)

is bounded from above by the right-hand side of (2.6.15). To this aim, we may assume that
the limit superior is actually a limit and that Ê(µn) ≤ Ê(µ) = E(ρ) for every n ∈ N0. In
particular, each measure µn is finite and has a density ρn. By Lemma 2.4.1, for every n ∈ N0,

inf
ν̃∈S

{︂˜︃Wb2(µ̃, ν̃) : ν̃Ω = µn
}︂

= Wb2(µ, µn) ,

which ensures the existence of µ̃n ∈ S such that µ̃n
Ω = µn and

lim
n→∞

˜︃Wb2(µ̃, µ̃n)
Wb2(µ, µn) = 1 , as well as, consequently, lim

n→∞
˜︃Wb2(µ̃, µ̃n) = 0 . (2.6.17)
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By (2.6.17) and Proposition 2.6.1 (with Ψ ≡ 0), we conclude that

lim
n→∞

(︂
Ê(µ) − Ê(µn)

)︂
+

Wb2(µ, µn) ≤ lim sup
n→∞

(︂
E(ρ) − E(ρn)

)︂
+˜︃Wb2(µ̃, µ̃n)

≤ RHS of (2.6.15).

Step 2 (inequality ≥). By Proposition 2.6.1 (with Ψ ≡ 0), we know that there exists a
sequence (µ̃n)n∈N0 ⊆ S such that ˜︃Wb2(µ̃n, µ̃) →n 0 (with µ̃n ̸= µ̃) and

lim
n→∞

(︂
Ê(µ) − Ê(µ̃n

Ω)
)︂

+˜︃Wb2(µ̃, µ̃n)
= RHS of (2.6.15).

If this number is 0, then there is nothing to prove. Otherwise, we may assume that µ ≠ µ̃n
Ω

for every n, and we conclude by using (2.4.1).

Step 3 (semicontinuity). The lower semicontinuity is proven as in Remark 2.6.3: if µn W b2→
µ and supn

⃓⃓⃓
∂W b2 Ê

⃓⃓⃓
(µn) < ∞, then, up to subsequences,

(︃√︂
ρneV

)︃
n

converges weakly

in W 1,2(Ω) and (strongly) in C(Ω), the limit is
√︂
ρeV by [FG10, Proposition 2.7], and

√︂
ρeV −

1 ∈ W 1,2
0 (Ω). We conclude by the weak semicontinuity of the functional in (2.6.2).

2.7 Proof of Theorem 2.1.5
As in Section 2.6, throughout this section we restrict to the case where Ω = (0, 1) ⊆ R1.
Fix µ0 ∈ S such that its restriction to (0, 1) is absolutely continuous with density equal to ρ0.
Recall the scheme (2.1.10): for every τ > 0 and n ∈ N0, we iteratively choose

µτ
(n+1)τ ∈ arg min

µ∈S

⎛⎜⎝H(µ) +
˜︃Wb

2
2(µ, µnτ )

2τ

⎞⎟⎠ . (2.7.1)

These sequences of measures are extended to maps t ↦→ µτ
t , constant on the intervals

[︂
nτ, (n+

1)τ
)︂

for every n ∈ N0.

The purpose of this section is to prove Theorem 2.1.5. Observe the following fact: Statement 3
follows directly from Statements 1-2. Indeed, given the sequence of maps (t ↦→ µτ

t )τ that
converges to t ↦→ µt pointwise w.r.t. ˜︃Wb2, we infer from (2.4.1) that

(︂
t ↦→ (µτ

t )Ω
)︂

τ
converges

to t ↦→ (µt)Ω pointwise w.r.t. Wb2. Since the approximating maps are precisely the same as
those built with (2.1.8), we can apply Proposition 2.5.21 to conclude Statement 3. The proof
of Theorem 2.1.6 is thus split into only three parts.

2.7.1 Equivalence of the schemes
Let us fix a measure µ̄ ∈ S such that its restriction to Ω = (0, 1) is absolutely continuous.
Denote by ρ̄ the density of this restriction and assume that E(ρ̄) < ∞.

Proposition 2.7.1. If 2τ
⃓⃓
Ψ(1) − Ψ(0)

⃓⃓
< 1, then µ ∈ S is a minimizer of

H(·) +
˜︃Wb

2
2(·, µ̄)
2τ

: S → R ∪ {∞} (2.7.2)
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if and only if it is a minimizer of

H(·) + T 2(·, µ̄)
2τ

: S → R ∪ {∞} . (2.7.3)

In particular, there exists one single such µ; see Proposition 2.5.3 and Proposition 2.5.11.

Proof. Let F be the function in (2.7.2) and G be that in (2.7.3). Recall that ˜︃Wb2 ≤ T ,
which implies that F ≤ G . Let µ ∈ S , let γ ∈ Opt˜︂W b2

(µ, µ̄) be such that the diagonal ∆
of ∂Ω × ∂Ω is γ-negligible, and define

µ̃ := µ− π1
#γ

∂Ω
∂Ω + π2

#γ
∂Ω
∂Ω ∈ S , γ̃ := γ − γ∂Ω

∂Ω ∈ AdmT (µ̃, µ̄) .

We have

G (µ̃) ≤ H(µ̃) + C(γ̃)
2τ = F (µ) +

(︂
π2

#γ
∂Ω
∂Ω − π1

#γ
∂Ω
∂Ω

)︂
(Ψ) − C(γ∂Ω

∂Ω)
2τ

= F (µ) +
(︂
Ψ(1) − Ψ(0)

)︂(︂
γ(0, 1) − γ(1, 0)

)︂
− γ(0, 1) + γ(1, 0)

2τ ≤ F (µ) , (2.7.4)

where, in the last inequality, we used the assumption on τ .

Step 1. It follows from (2.7.4) that inf G ≤ F ≤ G . This is enough to conclude that every
minimizer of G is a minimizer of F too.

Step 2. Assume now that µ is a minimizer of F . Again by (2.7.4),

F (µ) ≤ F (µ̃) ≤ G (µ̃) ≤ F (µ) .

Therefore, it must be true that F (µ) = G (µ̃) and that all inequalities in (2.7.4) are equalities.
This can only happen if γ(∂Ω×∂Ω)\∆ = γ∂Ω

∂Ω has zero mass, which implies µ = µ̃. It is now easy
to conclude from F ≤ G and F (µ) = G (µ) that µ is a minimizer of G .

2.7.2 Convergence

Proposition 2.7.2. As τ → 0, up to subsequences, the maps (t ↦→ µτ
t )τ converge pointwise

w.r.t. ˜︃Wb2 to a curve t ↦→ µt, continuous w.r.t ˜︃Wb2. The restrictions (µt)Ω are absolutely
continuous.

Lemma 2.7.3. For every t ≥ 0 and τ > 0 such that 2τ
⃓⃓
Ψ(1) − Ψ(0)

⃓⃓
< 1, we have the

upper bound
∥µτ

t ∥ ≤ c(1 + t+ τ) . (2.7.5)

Proof. Let t ≥ 0 be fixed. We already know from Remark 2.5.17 that
⃦⃦
(µτ

t )Ω
⃦⃦

≤ c. By
applying Lemma 2.4.8 with Φ(x) := 1 − x, we find

µτ
(i+1)τ (0) − µτ

iτ (0) ≤
ˆ

(1 − x) d
(︂
µτ

iτ − µτ
(i+1)τ

)︂
Ω

+ c τ +
T 2
(︂
µτ

(i+1)τ , µ
τ
iτ

)︂
4τ ,

for every i ∈ N0. By summing over i ∈
{︁
0, 1, . . . , ⌊t/τ⌋ − 1

}︁
and using Lemma 2.5.20,

µτ
t (0) − µ0(0) ≤

ˆ
(1 − x) d(µ0 − µτ

t )Ω + c(1 + t+ τ) ≤ c(1 + t+ τ) .

Thus, the sequence
(︂
µτ

t (0)
)︂

τ
is bounded from above as τ → 0. By suitably choosing Φ, we

can find a similar bound from below and bounds for µτ
t (1).
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Proof of Proposition 2.7.2. We can assume that τ < 1 and that 2τ
⃓⃓
Ψ(1) − Ψ(0)

⃓⃓
< 1. The

proof goes as in Proposition 2.5.19: for a fixed t ≥ 0, we need to prove that

lim sup
τ→0

˜︃Wb2(µτ
s , µ

τ
t ) ≤ c

√︂
|r − s| (1 + t) , r, s ∈ [0, t] , (2.7.6)

and that

K̃t :=
{︄
µ ∈ S : ∥µ∥ ≤ c1(2 + t) , and µΩ = ρ dx with

ˆ
Ω
ρ log ρ dx ≤ c2(2 + t)

}︄

is compact in (S ,˜︃Wb2), where the constants c1 and c2 are given by Lemma 2.7.3 and
Lemma 2.5.20, respectively.

The inequality (2.7.6) follows from (2.5.27). If (µn)n∈N0 is a sequence in K̃t, thanks to
the bound on the total mass, we can extract a (not relabeled) subsequence that converges
weakly to some µ ∈ S . Let ρn be the density of µn

Ω for every n ∈ N0. We exploit
the bound on the integral

´
Ω ρ

n log ρn to extract a further subsequence such that (ρn)n∈N0

converges weakly in L1(Ω) to some ρ. We have µΩ = ρ dx, as well as ∥µ∥ ≤ c1(2 + t)
and

´
Ω ρ log ρ dx ≤ c2(2+ t); hence µ ∈ K̃t. The convergence µn →n µ holds also w.r.t. ˜︃Wb2

thanks to Lemma 2.4.16.

2.7.3 Curve of maximal slope

Proposition 2.7.4. Assume that V ∈ W 1,2(Ω). If the sequence (t ↦→ µτ
t )τ converges

pointwise w.r.t. ˜︃Wb2 to a curve t ↦→ µt, then the latter is a curve of maximal slope for the
functional H in the metric space (S ,˜︃Wb2).

To prove this proposition, we employ the classical [AGS08, Theorem 2.3.1], but we also
crucially need the results of Section 2.6. In particular, we rely on the explicit formula for the
slope of Proposition 2.6.1 and on the consequent semicontinuity observed in Remark 2.6.3.

Proof. Consider the subspace ˜︂S :=
{︁
µ ∈ S : H(µ) ≤ H(µ0)

}︁
. Note that, since H is ˜︃Wb2-

lower semicontinuous (Proposition 2.4.15), t ↦→ µt entirely lies in ˜︂S . Moreover,
⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓

coincides with
⃓⃓⃓
∂˜︂W b2

(H| ˜︁S )
⃓⃓⃓

on ˜︂S . Therefore, it suffices to prove that t ↦→ µt is a curve of
maximal slope in ˜︂S .

We invoke [AGS08, Theorem 2.3.1]. Let us check the assumptions. Firstly, the space ( ˜︂S ,˜︃Wb2)
is complete by Proposition 2.8.3. Secondly, [AGS08, (2.3.2)] is satisfied because the slope⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓

is ˜︃Wb2-lower semicontinuous; see Remark 2.6.3 and [AGS08, Remark 2.3.2]. Thirdly,
[AGS08, Assumptions 2.1a,b] follow from Proposition 2.4.15 and Proposition 2.7.1. Finally,
to prove [AGS08, (2.3.3)], let us pick a sequence (µn)n∈N0 ⊆ ˜︂S that converges to some µ
w.r.t. ˜︃Wb2 and such that supn

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓
(µn) < ∞. We will show that H(µn) → H(µ).

Note that it is enough to prove this convergence up to subsequences. Let ρn, ρ be the
densities of µn

Ω, µΩ, respectively. Since supn

⃓⃓⃓
∂˜︂W b2

H
⃓⃓⃓
(µn) < ∞, up to subsequences, the

functions
(︃√︂

ρneV

)︃
n

converge in C(Ω) to
√︂
ρeV . Since V is bounded, we also have the

convergence ρn → ρ in C(Ω). We write⃓⃓
H(µn) − H(µ)

⃓⃓
=
⃓⃓
E(µn) − E(µ) + (µn − µ)∂Ω(Ψ)

⃓⃓
≤
⃓⃓
E(µn) − E(µ) − (µn − µ)Ω(Ψ)

⃓⃓
+
⃓⃓
µn(Ψ) − µ(Ψ)

⃓⃓
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Thanks to the uniform convergence ρn → ρ, we have
⃓⃓
E(µn) − E(µ) − (µn − µ)Ω(Ψ)

⃓⃓
→ 0.

Additionally, by Lemma 2.4.14,

⃓⃓
µn(Ψ) − µ(Ψ)

⃓⃓
≤ c˜︃Wb2(µn, µ)

√︃
∥µn

Ω∥ +∥µΩ∥ + ˜︃Wb
2
2(µn, µ) ,

from which we conclude, because supn∥µn
Ω∥ ≤ supn∥ρn∥L∞ < ∞.

Remark 2.7.5. To be precise, [AGS08, Theorem 2.3.1] applies to the limit of the maps t ↦→
µ̃τ

t := µ⌈t/τ⌉τ (as opposed to µτ
t = µ⌊t/τ⌋τ ). It can be easily checked that the distance˜︃Wb2(µτ

t , µ̃
τ
t ) converges to 0 locally uniformly in time; see (2.5.27).

2.8 Appendix: Additional properties of ˜︃Wb2

2.8.1 ˜︃Wb2 is not a distance when d ≥ 2
We are going to prove that, when d ≥ 2, the property

˜︃Wb2(µ, ν) = 0 =⇒ µ = ν

in general breaks down. In fact, when applying ˜︃Wb2 to two measures µ, ν ∈ S the information
about µ∂Ω and ν∂Ω is completely lost, as soon as ∂Ω is connected and “not too irregular”. A
similar result is [Mai11, Theorem 2.2] by E. Mainini.

Proposition 2.8.1. If α : [0, 1] → ∂Ω is
(︂

1
2 + ϵ

)︂
-Hölder continuous for some ϵ > 0, then

˜︃Wb2
(︂
δα(0) − δα(1), 0

)︂
= 0 . (2.8.1)

Consequently: Assume that ∂Ω is C0, 1
2 +-path-connected, meaning that for every pair of

points x, y ∈ ∂Ω there exist ϵ > 0 and a
(︂

1
2 + ϵ

)︂
-Hölder curve α : [0, 1] → ∂Ω with α(0) = x

and α(1) = y; then, for every µ, ν ∈ S , we have

˜︃Wb2(µ, ν) = Wb2(µΩ, νΩ) . (2.8.2)

Proof. Step 1. Let α : [0, 1] → ∂Ω be
(︂

1
2 + ϵ

)︂
-Hölder continuous for some ϵ > 0. For n ∈ N1,

consider the points
xi := α(i/n), i ∈ {0, 1, . . . , n} ,

and the measure
γn :=

n−1∑︂
i=0

δ(xi,xi+1) .

It is easy to check that γn ∈ Adm˜︂W b2

(︂
δα(0) − δα(1), 0

)︂
; moreover,

C(γn) =
n−1∑︂
i=0

|xi − xi+1|2 ≤ cα

n−1∑︂
i=0

n−1−2ϵ = cαn
−2ϵ ,

where the inequality follows from the Hölder continuity of α. We conclude (2.8.1) by
letting n → ∞.

Step 2. Assume now that ∂Ω is C0, 1
2 +-path-connected. Fix a finite signed Borel measure η

on ∂Ω with η(∂Ω) = 0, that is, ∥η+∥ = ∥η−∥ =: λ. We shall prove that ˜︃Wb2(η, 0) = 0.
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Fix ϵ1, ϵ2 > 0 and let X = {x1, x2, . . . , xN} ⊆ ∂Ω be a ϵ1-covering for ∂Ω, meaning that
there exists a function P : ∂Ω → X such that

⃓⃓
x− P (x)

⃓⃓
≤ ϵ1 for every x ∈ ∂Ω. We pick one

such P that is also Borel measurable (we can by [AB06, Theorem 18.19]). From the previous
Step, for every i, j ∈ {1, 2, . . . , N}, we get γi,j (nonnegative and concentrated on ∂Ω × ∂Ω)
such that

π1
#γi,j − π2

#γi,j = δxi
− δxj

and C(γi,j) ≤ ϵ2 .

We define

γ := (Id, P )#η+ + (P, Id)#η− + 1
λ

N∑︂
i,j=1

η+
(︂
P−1(xi)

)︂
η−
(︂
P−1(xj)

)︂
γi,j .

The ˜︃Wb2-admissibility of γ, i.e., γ ∈ Adm˜︂W b2
(η, 0), is straightforward. Furthermore,

C(γ) =
ˆ

|Id −P |2 d(η+ + η−) + 1
λ

N∑︂
i,j=1

η+(P−1(xi))η−(P−1(xj))C(γi,j)

≤ 2λϵ2
1 + λϵ2 ,

which brings us to the conclusion that ˜︃Wb2(η, 0) = 0 by arbitrariness of ϵ1, ϵ2.

Step 3. Let us assume again that ∂Ω is C0, 1
2 +-path-connected, and fix µ, ν ∈ S and ϵ3 > 0.

Let γ be a Wb2-optimal transport plan between µΩ and νΩ, and set µ̃ := π1
#γ + (ν − π2

#γ)∂Ω.
It is easy to check that µ̃ ∈ S and that µΩ = µ̃Ω. Therefore, the previous Step is applicable
to η := µ∂Ω − µ̃∂Ω, and produces γη on ∂Ω × ∂Ω such that

π1
#γη − π2

#γη = η and C(γη) ≤ ϵ3 .

The measure γ′ := γ + γη is ˜︃Wb2-admissible between µ and ν. Therefore,

˜︃Wb
2
2(µ, ν) ≤ C(γ′) ≤ C(γ) + ϵ3 = Wb2

2(µΩ, νΩ) + ϵ3 ,

which yields one of the two inequalities in (2.8.2) by arbitrariness of ϵ3. The other inequality
is (2.4.1).

2.8.2 (Lack of) completeness
We prove here two claims from Section 2.4.6: in the setting where Ω is a finite union of
intervals, the metric space (S ,˜︃Wb2) is not complete, but the sublevels of H are.

Proposition 2.8.2. Assume that d = 1 and that Ω is a finite union of intervals. Then the
metric space (S ,˜︃Wb2) is not complete.

Proof. Without loss of generality, we may assume that (0, 1) is a connected component
of Ω, i.e., (0, 1) ⊆ Ω and {0, 1} ⊆ ∂Ω.

Consider the sequence

µn := 1
x
L 1

(2−n,1) − δ0

ˆ 1

2−n

1
x

dx ∈ S , n ∈ N1 .

For every n, there exists the admissible transport plan

γn := δ0 ⊗
(︄

1
x
L 1

(2−n−1,2−n)

)︄
+ (Id, Id)#

(︄
1
x
L 1

(2−n,1)

)︄
∈ Adm˜︂W b2

(µn, µn+1) ,
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which yields

∞∑︂
n=1

˜︃Wb2(µn, µn+1) ≤
∞∑︂

n=1

⌜⃓⃓⎷ˆ 2−n

2−n−1

x2

x
dx =

∞∑︂
n=1

√︄
3
8 2−n =

√︄
3
8 ;

hence (µn)n is Cauchy.

Assume now that µn ˜︂W b2→ n µ for some µ ∈ S and, for every n ∈ N1, fix γ̃n ∈ Opt˜︂W b2
(µn, µ).

Also fix ϵ > 0. We have

˜︃Wb
2
2(µn, µ) =

ˆ
|x− y|2 dγ̃n(x, y) ≥ ϵ2γ̃n

(︂
[ϵ, 1 − ϵ] × ∂Ω

)︂
,

and, using the conditions in Definition 2.3.7,

∥µΩ∥ ≥ γ̃n
(︂
[ϵ, 1 − ϵ] × Ω

)︂
= µn

(︂
[ϵ, 1 − ϵ]

)︂
− γ̃n

(︂
[ϵ, 1 − ϵ] × ∂Ω

)︂
≥ µn

(︂
[ϵ, 1 − ϵ]

)︂
−
˜︃Wb

2
2(µn, µ)
ϵ2 .

Passing to the limit n → ∞, we find

∥µΩ∥ ≥
ˆ 1−ϵ

ϵ

1
x

dx

from which, by arbitrariness of ϵ, it follows that the total mass of µΩ is infinite, contradicting
the finiteness required in Definition 2.3.7.

Proposition 2.8.3. Assume that d = 1 and that Ω is a finite union of intervals. Then the
sublevels of H in S are complete w.r.t. ˜︃Wb2.

Proof. Take a Cauchy sequence (µn)n∈N0 ⊆ S for ˜︃Wb2 in a sublevel of H, that is, H(µn) ≤ M
for some M ∈ R, for every n ∈ N0. Thanks to Lemma 2.4.14, for every n ∈ N0 we have

M ≥ H(µn) ≥
ˆ

Ω
ρn log ρn dx−

(︂
∥V ∥L∞ + 1

)︂
∥µn

Ω∥ + µn
∂Ω(Ψ)

≥
ˆ

Ω
ρn log ρn dx−

(︂
∥V ∥L∞ + 1

)︂
∥µn

Ω∥ + µ0(Ψ) − µn
Ω(Ψ)

− c˜︃Wb2(µn, µ0)
√︃

∥µn
Ω∥ +

⃦⃦⃦
µ0

Ω

⃦⃦⃦
+ ˜︃Wb

2
2(µn, µ0) ,

and, since ˜︃Wb2(µn, µ0) is bounded, the family (ρn)n∈N0 is uniformly integrable. Let (ρnk)k∈N0

be a subsequence that converges to some ρ weakly in L1(Ω). For each of the finitely
many x̄ ∈ ∂Ω, let Φx̄ be a Lipschitz continuous function such that

Φx̄(x̄) = 1 and Φx̄(x) = 0 if x ∈ ∂Ω \ {x̄} .

Again by Lemma 2.4.14, for every x̄ ∈ ∂Ω and n,m ∈ N0, we have⃓⃓
µn(x̄) − µm(x̄)

⃓⃓
≤
⃓⃓
µn

Ω(Φx̄) − µm
Ω (Φx̄)

⃓⃓
+ cΦx̄

˜︃Wb2(µn, µm)
√︃

∥µn
Ω∥ +∥µm

Ω ∥ + ˜︃Wb
2
2(µn, µm)

=
⃓⃓⃓⃓
⃓
ˆ

Ω
Φx̄ · (ρn − ρm) dx

⃓⃓⃓⃓
⃓

+ cΦx̄
˜︃Wb2(µn, µm)

√︃
∥ρn∥L1 +∥ρm∥L1 + ˜︃Wb

2
2(µn, µm) ,
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which implies that (µnk(x̄))k∈N0 is a Cauchy sequence in R, thus convergent to some number lx̄.
Define

µ := ρ dx+
∑︂

x̄∈∂Ω
lx̄δx̄ .

It is easy to check that µnk →k µ weakly; therefore, by Lemma 2.4.16, also w.r.t. ˜︃Wb2. The
limit µ also lies in the sublevel, i.e., H(µ) ≤ M , by Proposition 2.4.15.

2.8.3 If Ω is an interval, ˜︃Wb2 is geodesic, but H is not geodesically
convex

We prove that (S ,˜︃Wb2) is geodesic when Ω = (0, 1), by using the analogous well-known
property of the classical 2-Wasserstein distance. However, as we expect in light of [FG10,
Remark 3.4], H is not geodesically λ-convex for any λ. We provide a short proof by adapting
the aforementioned remark.

Proposition 2.8.4. If Ω = (0, 1), then (S ,˜︃Wb2) it is a geodesic metric space.

Proof. We already know from Proposition 2.4.11 that (S ,˜︃Wb2) is a metric space.

For any two measures µ0, µ1 ∈ S , we need to find a curve t ↦→ µt such that
˜︃Wb2(µs, µt) ≤ (t− s)˜︃Wb2(µ0, µ1) , 0 ≤ s ≤ t ≤ 1 . (2.8.3)

The opposite inequality follows from the triangle inequality and (2.8.3) itself. Indeed,

˜︃Wb2(µ0, µ1) ≤ ˜︃Wb2(µ0, µs) + ˜︃Wb2(µs, µt) + ˜︃Wb2(µt, µ1)
(2.8.3)

≤ (s+ t− s+ 1 − t)˜︃Wb2(µ0, µ1) = ˜︃Wb2(µ0, µ1) ,

and, in order for the inequalities to be equalities, the identity ˜︃Wb2(µs, µt) = (t−s)˜︃Wb2(µ0, µ1)
must be true.

Take γ ∈ Opt˜︂W b2
(µ0, µ1). By Proposition 2.4.19, γ is optimal, between its marginals, for

the classical 2-Wasserstein distance. Since the set Ω = [0, 1], endowed with the Euclidean
metric, is geodesic, the classical theory of optimal transport (see, e.g., [ABS21, Theorem
10.6]) ensures the existence of a curve (geodesic) t ↦→ νt of nonnegative measures on Ω with
constant total mass, such that

W2(νs, νt) ≤ (t− s)W2(π1
#γ, π

2
#γ) = (t− s)

√︂
C(γ) = (t− s)˜︃Wb2(µ0, µ1) (2.8.4)

for 0 ≤ s ≤ t ≤ 1. After noticing that ν1 − ν0 = µ1 − µ0 by Condition (3) in Definition 2.3.7,
we define

µt := µ0 + νt − ν0 , t ∈ (0, 1) .
We claim that this is the sought curve. Firstly, since

(µt)Ω = (µ0)Ω + (νt)Ω − (ν0)Ω = (νt)Ω ≥ 0

by Condition (1) in Definition 2.3.7, and since ν0(Ω) = νt(Ω), we can be sure that µt ∈ S for
every t. Secondly, every W2-optimal transport plan γst between νs and νt is ˜︃Wb2-admissible
between µs and µt. Hence,

˜︃Wb2(µs, µt) ≤
√︂

C(γst) = W2(νs, νt)
(2.8.4)

≤ (t− s)˜︃Wb2(µ0, µ1) .
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Proposition 2.8.5. Let Ω = (0, 1). The functional H is not geodesically λ-convex on the
metric space (S ,˜︃Wb2) for any λ ∈ R.

Proof. Consider the curve

t ↦−→ µt :=

⎧⎨⎩
1
t
L 1

(0,t) − δ0 if t ∈ (0, 1] ,
0 if t = 0 .

Clearly, µt ∈ S for every t ∈ [0, 1]. We claim that this curve is a geodesic, that H(µ0) <
∞, and that limt→0 H(µt) = ∞, which would conclude the proof. The second claim,
namely H(µ0) < ∞, is obvious. The third claim is true because

H(µt) = − log t+
 t

0
V dx− Ψ(0) , t ∈ (0, 1] ,

and, since V ∈ L∞(0, 1), the right-hand side tends to ∞ as t → 0. To prove the first claim,
fix 0 ≤ s < t ≤ 1 and define

γst :=
(︃

Id, s
t

Id
)︃

#
µt ∈ Adm˜︂W b2

(µt, µs) ,

which gives ˜︃Wb
2
2(µs, µt) ≤ C(γst) =

ˆ ⃓⃓⃓⃓
x− s

t
x
⃓⃓⃓⃓2

dµt = (t− s)2

3 . (2.8.5)

Conversely, for every γ ∈ Opt˜︂W b2
(µ1, µ0), Condition (3) in Definition 2.3.7 implies

γ(1, 1) + γ(1, 0) + γ({1} × Ω) = γ(1, 1) + γ(0, 1) + γ(Ω × {1}) ,

and, since γ({1} × Ω) = 0 by Condition (2) in Definition 2.3.7, we have γ(1, 0) ≥ γ(Ω × {1}).
Therefore,

˜︃Wb
2
2(µ1, µ0) = C(γ) ≥ C

(︂
γ

{0}
Ω

)︂
+
ˆ

|x− 1|2 dπ1
#γ

{1}
Ω + γ(1, 0)

≥ C
(︂
γ

{0}
Ω

)︂
+
ˆ (︂

|x− 1|2 + 1
)︂

dπ1
#γ

{1}
Ω ≥

ˆ
x2 dπ1

#γ
∂Ω
Ω .

By Conditions (1) and (2) in Definition 2.3.7,
ˆ
x2 dπ1

#γ
∂Ω
Ω =

ˆ
x2 dπ1

#γ
Ω
Ω =

ˆ 1

0
x2 dx = 1

3 ;

hence ˜︃Wb
2
2(µs, µt)

(2.8.5)
≤ (t− s)2

3 ≤ (t− s)2˜︃Wb
2
2(µ1, µ0) ,

and this concludes the proof.
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CHAPTER 3
Kinetic Optimal Transport (OTIKIN) –

Part 1: Second-Order Discrepancies
Between Probability Measures

This chapter contains (with minimal modifications) the following preprint [BMQ25]:

G. Brigati, J. Maas, and F. Quattrocchi. Kinetic Optimal Transport (OTIKIN) – Part 1: Second-
Order Discrepancies Between Probability Measures. arXiv preprint arXiv:2502.15665v2,
2025.

Abstract
This is the first part of a general description in terms of mass transport for time-evolving
interacting particles systems, at a mesoscopic level. Beyond kinetic theory, our framework
naturally applies in biology, computer vision, and engineering.

The central object of our study is a new discrepancy d between two probability distributions
in position and velocity states, which is reminiscent of the 2-Wasserstein distance, but of
second-order nature. We construct d in two steps. First, we optimise over transport plans.
The cost function is given by the minimal acceleration between two coupled states on a fixed
time horizon T . Second, we further optimise over the time horizon T > 0.

We prove the existence of optimal transport plans and maps, and study two time-continuous
characterisations of d. One is given in terms of dynamical transport plans. The other one —in
the spirit of the Benamou–Brenier formula— is formulated as the minimisation of an action of
the acceleration field, constrained by Vlasov’s equations. Equivalence of static and dynamical
formulations of d holds true. While part of this result can be derived from recent, parallel
developments in optimal control between measures, we give an original proof relying on two
new ingredients: Galilean regularisation of Vlasov’s equations and a kinetic Monge–Mather
shortening principle.

Finally, we establish a first-order differential calculus in the geometry induced by d, and
identify solutions to Vlasov’s equations with curves of measures satisfying a certain d-absolute
continuity condition. One consequence is an explicit formula for the d-derivative of such
curves.
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3. Second-Order Discrepancies Between Probability Measures

3.1 Introduction
Scientific background Kinetic equations describe systems of many interacting particles, at
an intermediate level between the microscopic scale, where each particle is tracked individually,
and the macroscopic scale of observable quantities, corresponding to, e.g., fluid dynamics
or diffusion models. Particles are characterised via their position x ∈ X and velocity v ∈ V .
At the kinetic scale—which is our point of view thorough this paper—we do not track the
evolution of each single particle. Rather, particles are indistinguishable, and the only available
information is their distribution in x, v. The evolution of the system over time t ∈ [0,∞) is
modelled in a statistical mechanics fashion, as a time-dependent probability distribution on
the phase space Γ := X × V .

The hierarchy between scales was already considered by J.-C. Maxwell and L. Boltzmann
[Max67, Bol72], and later included in D. Hilbert’s problems for the XXth century (Problem VI)
[Gor18]. Kinetic equations, their derivation from microscopic dynamics, and their macroscopic
limit regimes—fluid dynamics or diffusion—have been a vast research field ever since, with
important open questions still under active investigation.

On the other side, the classical optimal transport (OT) theory [San15, Vil09b], see §3.1.2, is
naturally connected to the macroscopic description of particle systems. Indeed, OT can be
reformulated in terms of fluid mechanics [BB00]. In addition, OT provides a deep interpretation
of diffusion equations as gradient flows in the space of probability measures [AGS08], as well
as variational (JKO [JKO98]) discrete approximation schemes.

In this paper, we take a step towards a new kinetic optimal transport (OTIKIN) theory,
specifically tailored to the kinetic description of particle systems. Indeed, our main object,
a new second-order discrepancy d between measures on Γ, preserves the distinct nature of
the variables x and v. We consider the case where particles are subject to Newton’s laws of
mechanics.

Structure of the paper

Section 3.1. The main definitions and results are formulated in §3.1.1. In §3.1.2, we
draw connections with related works and collect some motivations, applications, and
perspectives.

Section 3.2. We consider the case of Dirac masses. In §3.2.1, we study the minimal
acceleration problem between states in Γ. In §3.2.2, we introduce a non-parametric
minimal-acceleration discrepancy.

Section 3.3. In §3.3.1, we generalise the construction to a minimal-acceleration discrepancy d
between probability measures. The definition is given as a static mass transportation
problem. Optimisers (transport plans and maps) are shown to exist in §3.3.2. Additional
results are given in §3.3.3.

Section 3.4. We analyse two equivalent dynamical formulations of the minimal-acceleration
discrepancy d. These are defined, respectively, by means of dynamical transport plans
(§3.4.1) and minimal action of solutions to Vlasov’s equations (§3.4.3). Further results
on dynamical plans and Vlasov’s equations are collected in §3.4.2 and §3.4.4, respectively.

Section 3.5. We study a differential calculus induced by the structure of d. In §3.5.1-
3.5.2, we prove the equivalence between solutions to Vlasov’s equations and a class
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of physical d-absolutely continuous curves. In §3.5.3, we compute the d-derivative of
solutions to Vlasov’s equations. Moreover, we show that, along such curves, the optimal
transport plans are tangent to the curve itself. Finally, in §3.5.4, we extend the result
to reparametrisations of solutions to Vlasov’s equations.

3.1.1 Definitions and main results
Static formulation Set X := Rn and V := Rn, and let the phase space be Γ := X × V .
Let P2(Γ) be the set of probability measures µ ∈ P(Γ), such that the second-order moments
of µ are finite, i.e., ˆ

Γ

(︂
|x|2 + |v|2

)︂
dµ(x, v) < ∞ .

We aim at defining a minimal acceleration discrepancy between measures µ, ν ∈ P2(Γ). Let
us start with the case of Dirac masses µ = δ(x,v) and ν = δ(y,w). We can see the squared
Euclidean distance between x and y as a variational problem where we minimise the integral
of the squared velocity for all paths α joining x and y in one unit of time:

|y − x|2 = inf
α∈H1(0,1;X )

⎧⎨⎩
ˆ 1

0

⃓⃓⃓
α′(t)

⃓⃓⃓2
dt subject to α(0) = x and α(1) = y

⎫⎬⎭ . (3.1.1)

Therefore, one reasonable definition for an acceleration-based discrepancy would be

inf
α∈H2(0,1;X )

⎧⎨⎩
ˆ 1

0

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dt subject to (α, α′)(0) = (x, v) and (α, α′)(1) = (y, w)

⎫⎬⎭ ,

(3.1.2)
namely, we compute the minimal squared L2-norm of a force Ft that moves (x, v) to (y, w) in
one unit of time, under Newton’s law

ẋt = vt , v̇t = Ft .

However, unlike in the first-order case, the choice of the time interval [0, 1] is now arbitrary.
Indeed, while we can write

|y − x|2 = inf
α∈H1(0,T ;X )

⎧⎨⎩T
ˆ T

0

⃓⃓⃓
α′(t)

⃓⃓⃓2
dt subject to α(0) = x and α(1) = y

⎫⎬⎭ (3.1.3)

for every T > 0, a direct calculation (see §3.2) shows that

inf
α∈H2(0,T ;X )

⎧⎨⎩T
ˆ T

0

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dt s.t. (α, α′)(0) = (x, v) and (α, α′)(T ) = (y, w)

⎫⎬⎭
= 12

⃓⃓⃓⃓
⃓y − x

T
− v + w

2

⃓⃓⃓⃓
⃓
2

+|w − v|2 =: d̃2
T

(︂
(x, v), (y, w)

)︂
, (3.1.4)

which is not independent of T .

Thus, we introduce a relaxed version of (3.1.2), where the time parameter is an additional
resource to optimise:

d̃
(︂
(x, v), (y, w)

)︂
:= inf

T >0
d̃T

(︂
(x, v), (y, w)

)︂
. (3.1.5)
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Problem (3.1.5) admits a solution (see §3.2). Namely, for all (x, v), (y, w) ∈ Γ,

d̃
2(︂(x, v), (y, w)

)︂
=

⎧⎪⎪⎨⎪⎪⎩
3|v + w|2 − 3

(︃
y−x

|y−x| · (v + w)
)︃2

+
+|w − v|2 if x ̸= y ,

3|v + w|2 +|w − v|2 if x = y .
(3.1.6)

This quantity is not lower-semicontinuous, but we can write its lower-semicontinuous envelope
explicitly: for (x, v), (y, w) ∈ Γ,

d2
(︂
(x, v), (y, w)

)︂
=

⎧⎪⎪⎨⎪⎪⎩
3|v + w|2 − 3

(︃
y−x

|y−x| · (v + w)
)︃2

+
+|w − v|2 if x ̸= y ,

|w − v|2 if x = y .
(3.1.7)

This function d is our second-order discrepancy in the case of Dirac deltas. Notice that d
and d̃ are not distances. A collection of their properties is given in §3.2.

For general probability measures µ, ν ∈ P2(Γ), we define d̃T (µ, ν), d̃(µ, ν), and d(µ, ν), by
optimising over couplings (or transport plans) π as follows:

d̃2
T (µ, ν) := inf

π∈Π(µ,ν)

⎛⎝12
⃦⃦⃦⃦
⃦y − x

T
− v + w

2

⃦⃦⃦⃦
⃦

2

L2(π)
+∥w − v∥2

L2(π)

⎞⎠ , (3.1.8)

d̃2(µ, ν) := inf
π∈Π(µ,ν)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3∥v + w∥2

L2(π) − 3

(︂
(y−x,v+w)π

)︂2

+
∥y−x∥2

L2(π)
+∥w − v∥2

L2(π) if ∥y − x∥L2(π) > 0,

3∥v + w∥2
L2(π) +∥w − v∥2

L2(π) if ∥y − x∥L2(π) = 0,
(3.1.9)

d2(µ, ν) := inf
π∈Π(µ,ν)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3∥v + w∥2

L2(π) − 3

(︂
(y−x,v+w)π

)︂2

+
∥y−x∥2

L2(π)
+∥w − v∥2

L2(π) if ∥y − x∥L2(π) > 0,

∥w − v∥2
L2(π) if ∥y − x∥L2(π) = 0,

(3.1.10)

where (·, ·)π is the scalar product in L2(π), and

Π(µ, ν) =
{︂
π ∈ P(Γ × Γ) : (prx,v)#π = µ , (pry,w)#π = ν

}︂
.

Observe that (3.1.8)-(3.1.10) define finite non-negative quantities for every choice of µ, ν ∈
P2(Γ). This is proved as in the classical OT theory, by testing with π := µ ⊗ ν ∈ Π(µ, ν).
Another observation from OT theory is that (3.1.8) admits a minimiser for all µ, ν.

Our first result establishes the existence of optimisers for (3.1.10) and, under the assumption
of absolute continuity for µ, of an optimal transport map, in analogy with the classical OT
theory [San15, AGS08, Vil09b].

Theorem 3.1.1 (Optimal plans and maps). The following statements hold.

1. (Proposition 3.3.2) We have

d̃(µ, ν) = inf
T >0

d̃T (µ, ν) , µ, ν ∈ P2(Γ) . (3.1.11)

80



3.1. Introduction

2. (Proposition 3.3.4) The second-order discrepancy d is the lower-semicontinuous envelope
of d̃ with respect to the 2-Wasserstein distance on P2(Γ).

3. (Proposition 3.3.5) For all µ, ν ∈ P2(Γ), there exists a minimiser for (3.1.10).

4. (Proposition 3.3.10) If µ is absolutely continuous with respect to the Lebesgue measure,
then, there exists a d-optimal transport map between µ and ν, i.e., a measurable
function M : Γ → Γ such that M#µ = ν and π := (id,M)#µ is a minimiser for (3.1.10).

While Proposition 3.3.5 shows that d-optimal transport plan exist, we will see that this is not
always the case for d̃, i.e., minimisers for (3.1.9) may not exist, see Example 3.3.6. In §3.3.3,
we show that uniqueness of d-optimal kinetic transport plans (i.e., minimisers for (3.1.10))
and maps is not to be expected in general.

Dynamical formulations Even though (3.1.8) generalises (3.1.5)—which is derived from
the dynamical optimal control problem (3.1.4)—it is not immediate to recognise a minimal
acceleration in the cost of (3.1.8). However, there are at least two natural ways to generalise d̃T

to a discrepancy between probability measures via dynamical formulations. In what follows,
we discuss them and state our second theorem: these formulations are indeed equivalent to
the static one.

Fix µ, ν ∈ P2(Γ) and T > 0. To build our first dynamical formulation, the idea is to take a
mixture of curves (α, α′) : [0, T ] → Γ connecting points of supp(µ) and supp(ν). Precisely,
we consider measures m ∈ P

(︂
H2(0, T ; X )

)︂
such that

(︂
prα(0),α′(0)

)︂
#

m = µ ,
(︂
prα(T ),α′(T )

)︂
#

m = ν , (3.1.12)

where prα(t),α′(t) denotes the evaluation map α ↦→
(︂
α(t), α′(t)

)︂
, and we define

ñ2
T (µ, ν) := inf

m∈P
(︂

H2(0,T ;X )
)︂
⎧⎨⎩T

ˆ T

0

ˆ ⃓⃓⃓
α′′(t)

⃓⃓⃓2
dm(α) dt subject to (3.1.12)

⎫⎬⎭ . (3.1.13)

The function ñT is a natural generalisation of d̃T , i.e.,

d̃T

(︂
(x, v), (y, w)

)︂
= ñT

(︂
δ(x,v), δ(y,w)

)︂
, (x, v) , (y, w) ∈ Γ , T > 0 .

To write our second dynamical formulation, we observe that, for any α ∈ H2(0, T ; X )
and φ ∈ C∞

c

(︂
(0, T ) × X × V

)︂
, we have

0 =
ˆ T

0

d
dtφ

(︂
t, α, α′

)︂
dt =

ˆ T

0

(︂
∂tφ(t, α, α′) + α′ · ∇xφ(t, α, α′) + α′′ · ∇vφ(t, α, α′′)

)︂
dt

=
ˆ T

0

ˆ
Γ

(︂
∂tφ(t, x, v) + v · ∇xφ(t, x, v) + α′′(t) · ∇vφ(t, x, v)

)︂
dδ(︂

α(t),α′(t)
)︂(x, v) dt ,

meaning that µt := δ(︂
α(t),α′(t)

)︂ and Ft(x, v) := α′′(t) satisfy Vlasov’s equation

∂tµt + v · ∇xµt + ∇v · (Ft µt) = 0 (3.1.14)

81
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weakly in (0, T ) × Γ. For given µ, ν ∈ P2(Γ) we define the T -minimal action as

˜︁MA
2
T (µ, ν) := inf

(µt,Ft)t∈[0,T ]

⎧⎨⎩T
ˆ T

0
∥Ft∥2

L2(µt) dt s.t. (3.1.14) and µ0 = µ , µT = ν

⎫⎬⎭ ,

(3.1.15)
which is reminiscent of the Benamou–Brenier formulation of the 2-Wasserstein distance [BB00],
see (3.1.35) below. As before,

d̃T

(︂
(x, v), (y, w)

)︂
= ˜︁MAT

(︂
δ(x,v), δ(y,w)

)︂
, (x, v) , (y, w) ∈ Γ , T > 0 . (3.1.16)

Indeed, the inequality ≥ follows from the discussion above. To justify the converse: when a
given curve (µt, Ft)t∈(0,T ) solves (3.1.14), then t ↦→ α(t) :=

´
Γ x dµt (formally) satisfies

α′
i(t) = d

dt

ˆ
Γ
xi dµt

(3.1.14)=
ˆ

Γ

(︂
v · ∇xxi + Ft · ∇vxi

)︂
dµt =

ˆ
Γ
vi dµt , i ∈ {1, . . . , n} ,

α′′
i (t) = d

dt

ˆ
Γ
vi dµt

(3.1.14)=
ˆ

Γ

(︂
v · ∇xvi + Ft · ∇vvi

)︂
dµt =

ˆ
Γ
(Ft)i dµt , i ∈ {1, . . . , n} ,

and, by Jensen’s inequality,
⃓⃓
α′′(t)

⃓⃓
≤∥Ft∥L2(µt) for all t ∈ (0, T ), which yields ≤ in (3.1.16).

The following result extends (3.1.16) from Dirac measures to all of P2(Γ).

Theorem 3.1.2 (Equivalence of static and dynamic formulations). For every µ, ν ∈ P2(Γ)
and T > 0, the problems (3.1.13) and (3.1.15) admit a minimiser. Moreover, we have the
identities

ñT (µ, ν) = ˜︁MAT (µ, ν) = d̃T (µ, ν) . (3.1.17)

This result is proved in two steps, corresponding to Theorem 3.4.1 and Theorem 3.4.10. After
posting a first version of this manuscript on arXiv, we were informed of the preprint [Ela25]
by K. Elamvazhuthi—building on a previous work [ELLO23]—which contains a generalised
version of the second equality in Theorem 3.1.2, in the context of optimal control systems.
In Theorem 3.1.2, we prove further equivalence with the formulation ñT , and existence of
minimisers for all three problems. Distinctive features of our approach are an original kinetic
Monge–Mather principle (cf. Proposition 3.2.6 and Lemma 3.4.4) and the regularisation of
solutions to Vlasov’s equation via Galilean convolution (cf. Lemma 3.4.9), which may be of
independent interest.

A variational characterisation of Vlasov’s equations In the classical optimal transport
theory, the Benamou–Brenier formula is constrained by the continuity equation ∂tρt + ∇ ·
(Vtρt) = 0, for a velocity field Vt. Solutions to the continuity equation on a bounded open
interval (a, b) turn out to coincide with absolutely continuous curves in the Wasserstein space,
under appropriate integrability conditions [AGS08, San15]. Although d is not a distance, we
will give a similar characterisation for solutions to Vlasov’s equations.

Definition 3.1.3 (Physical curves). Let (µt)t : (a, b) → Γ be a 2-Wasserstein absolutely
continuous curve (see §3.1.2). We say that (µt)t is physical if, in addition, for all s < t ∈ (a, b),
and for a function ℓ ∈ L2

≥0(a, b), it holds true that

d̃t−s(µs, µt) ≤
ˆ t

s

ℓ(r) dr . (3.1.18)
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Heuristically, the physicality condition for a curve (µt)t yields some differentiable control in the
velocity marginal (prv)#µt, together with the fact that the variation of the spatial marginal
(prx)#µt is given by v (hence, µt would solve (3.1.14)). This idea is made rigorous in the
next result.

Theorem 3.1.4 (Identification of the tangent I: physical curves and Vlasov’s equations). The
following hold true.

1. If (µt, Ft)t is a weak solution to (3.1.14) on (a, b) for some force field (Ft)t such that
ˆ b

a

(︂
∥v∥2

L2(µt) +∥Ft∥2
L2(µt)

)︂
dt < ∞ , (3.1.19)

then the curve (µt)t is physical with

ℓ(t) = 2 ∥Ft∥L2(µt) . (3.1.20)

2. Assume that (µt)t∈(a,b) is a physical curve. Then, there exists a vector field (Ft)t

with ∥Ft∥L2(µt) ≤ ℓ(t) for a.e. t ∈ (a, b), such that (µt, Ft)t is a weak solution to
Vlasov’s equation (3.1.14) and we have the limit

lim
h↓0

d̃h(µt, µt+h)
h

=∥Ft∥L2(µt) (3.1.21)

for a.e. t ∈ (a, b).

The proof of this result can be found in §3.5, as a combination of Proposition 3.5.4, Corol-
lary 3.5.13, and Proposition 3.5.23.

Hypoelliptic Riemannian structure The class of solutions to Vlasov’s equations (3.1.14)
is rather rigid, as it is not closed under Lipschitz time-reparametrisation. The latter is a
desirable property for “absolutely continuous” curves, which we define below.

Definition 3.1.5 (d-absolutely continuous curves). Let (µ̃s)s∈(ã,b̃) be a 2-Wasserstein absolutely
continuous curve (see §3.1.2). We say that (µ̃s)s∈(ã,b̃) is d-absolutely continuous if there exists
a function ℓ̃ ∈ L2

≥0(ã, b̃) such that for every s, t ∈ (ã, b̃) with s < t, we have

d(µ̃s, µ̃t) ≤
ˆ t

s

ℓ̃(r) dr . (3.1.22)

All physical curves are d-absolutely continuous. The converse is not true, e.g., a time-
reparametrisation of a physical curve is still absolutely continuous (but not physical). We
may wonder how general this example is and, consequently, how large the class of absolutely
continuous curves is compared to that of physical curves.

We find that, under a suitable regularity condition (Assumption 3.1.10), d-absolutely continuous
curves coincide with the closure of physical curves under regular reparametrisations in time.
Heuristically, d-absolute continuity is enough to have a differentiable control on the velocity
marginal for a curve (µ̃s)s, together with the fact that the variation of the space marginal of
µ̃s is positively proportional to v, i.e, it amounts to λ̃(s)v, for some λ̃(s) ≥ 0 (independent of
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3. Second-Order Discrepancies Between Probability Measures

the space-velocity variables). The proportionality factor λ̃(s) can be renormalised to one via a
time reparametrisation.

The factor λ̃(s) is related to the infinitesimal ratio between the optimal time horizon in the
definition of d(µ̃s, µ̃s+h̃) and the physical time h̃. More precisely, given s, h̃, we define T (s, s+
h̃) := arg minT d̃T (µ̃s, µ̃s+h̃). Then, whenever h̃ ↦→ T (s, s+ h̃) is right-differentiable at 0, we
have that λ̃(s) is finite, and

λ̃(s) = lim
h̃→0+

T (s, s+ h̃)
h̃

.

We state these ideas precisely in Theorem 3.1.7 below.

Remark 3.1.6. If (µt, Ft)t∈(a,b) solves Vlasov’s equation (3.1.14), and τ : (ã, b̃) → (a, b) is
a bi-Lipschitz reparametrisation, then the curve s ↦→ µ̃s := µτ(s) solves the reparametrised
Vlasov equation

∂sµ̃s + λ̃(s) v · ∇xµ̃s + ∇v · (F̃ sµ̃s) = 0 , s ∈ (ã, b̃) , (3.1.23)

with λ̃(s) := τ ′(s) and F̃ s := λ̃(s)Fτ(s).

Theorem 3.1.7 (Identification of the tangent II: d-absolutely continuous curves, d-derivative).
The following hold true.

1. Assume that (µ̃s, F̃ s)s is a weak solution to (3.1.23) on (ã, b̃) for some force field (F̃ s)s

such that ˆ b̃

ã

(︃
∥v∥2

L2(µ̃s) +
⃦⃦⃦
F̃ s

⃦⃦⃦2

L2(µ̃s)

)︃
ds < ∞ , (3.1.24)

and for a function λ̃ bounded from above and below by positive constants.
If the Wasserstein metric derivative of the spatial marginal ρ̃s(·) := µ̃s(· × V) satisfies⃓⃓⃓

ρ̃′
s

⃓⃓⃓
W2

> 0 for a.e. s ∈ (ã, b̃) , (3.1.25)

then, the curve (µ̃s)s is d-absolutely continuous and satisfies Assumption 3.1.10, with

ℓ̃(s) = 2 ∥F̃ s∥L2(µ̃s) and λ̃ac(s) = λ̃(s) , s ∈ (ã, b̃) . (3.1.26)

2. Assume that (µ̃s)s∈(ã,b̃) is a d-absolutely continuous curve satisfying Assumption 3.1.10.
If ρ̃s satisfies (3.1.25), then there exists a vector field (F̃ s)s with ∥F̃ s∥L2(µ̃s) ≤ ℓ̃(s) for
a.e. s ∈ (ã, b̃), such that (µ̃s, F̃ s)s is a solution to (3.1.23) with λ̃ = λ̃ac, and we have
the limit

lim
h̃↓0

d(µ̃s, µ̃s+h̃)
h̃

=
⃦⃦⃦
F̃ s

⃦⃦⃦
L2(µ̃s)

(3.1.27)

for a.e. s ∈ (ã, b̃).

The proof of this result can be found in §3.5, see in particular Theorem 3.5.24.

Remark 3.1.8 (The flow velocity). In both statements in Theorem 3.1.7, we assume positivity
a.e. of the quantity |ρ̃′

s|W2
, i.e., of the Wasserstein metric derivative of the spatial density

(ρ̃s)s. This can be interpreted as macroscopic non-steadiness of the system. Using the theory
of optimal transport (cf. [AGS08] and Lemma 3.5.3 below) it is possible to prove the following.
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When (µ̃s)s solves the reparametrised Vlasov equation (3.1.23) the metric derivative |ρ̃′
s|W2

is
equal to the L2(ρ̃s)-norm of the irrotational part of the vector λ̃(s) j̃s(x), where j̃s(x) is the
flow velocity

j̃s(x) :=
ˆ

V
v dµ̃s(x, v) .

Notice that (ρ̃s, j̃s)s solves Euler’s equation

∂sρ̃s + λ̃(s)∇x · j̃s = 0 .

Remark 3.1.9 (The tangent cone I: admissible directions). Theorem 3.1.7 asserts that d-
absolutely continuous curves are identified with solutions to (3.1.23), which in turn are induced
by vector fields (λ̃(s)v, F̃ s)s∈(ã,b̃). A narrowly continuous curve of measures (µ̃s)s solves
(3.1.23) for two different vector fields (F̃ s)s and (G̃s)s if and only if, by linearity of (3.1.23),
we have ∇v ·

(︂
(F̃ s − G̃s) µ̃s

)︂
= 0 in the sense of distributions, that is, if and only if F̃ s and G̃s

have the same projection onto

clL2(µ̃s)
{︂
∇vφ : φ ∈ C1

c(Γ)
}︂
.

As in the classical case, see §3.1.2, we can define the hypoelliptic tangent cone at µ as

Tµ,dP2(Γ) := clL2(µ)
{︂
(λ v,∇vφ) : λ ∈ R≥0, φ ∈ C1

c(Γ)
}︂
, (3.1.28)

and equip Tµ,dP2(Γ) with the degenerate Riemannian form⟨︂
(λ(1)v, F (1)), (λ(2)v, F (2))

⟩︂
Tµ,dP2(Γ)

:=
ˆ
F (1) · F (2) dµ . (3.1.29)

Finally, recall that Equation (3.1.23) is the closure under time-reparametrisation of (3.1.14).
At the geometric level, we formally interpret this fact as follows. The hypoelliptic tangent
Tµ,dP2(Γ) is the conical envelope of the vectors

{︂
(v,∇vφ), φ ∈ C1

c(Γ)
}︂
, which correspond

exactly to the vector fields inducing (3.1.14). See also Remark 3.1.13 below.

Assumption 3.1.10 (Regularity). Let (µ̃s)s∈(ã,b̃) be a d-absolutely continuous (hence 2-
Wasserstein a.c.) curve, and define the open set of times

Ω̃ :=
{︂
s ∈ (ã, b̃) : ∥v∥L2(µ̃s) > 0

}︂
. (3.1.30)

We assume that there exist

1. a measurable selection (s, t) ↦→ π̃s,t ∈ Π(µ̃s, µ̃t) of d-optimal transport plans, i.e., min-
imisers in (3.1.10),

2. a measurable function λ̃ac : (ã, b̃) → R>0 bounded from above and below by positive
constants,

such that, defining the optimal time1

T̃ s,t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2

∥y − x∥2
L2(π̃s,t)

(y − x, v + w)π̃s,t

if (y − x, v + w)π̃s,t > 0 ,

0 if ∥y − x∥L2(π̃s,t) = 0 ,
∞ otherwise,

ã < s < t < b̃ , (3.1.31)

1This is a minimiser for (3.1.11) between µ̃s and µ̃t, see Proposition 3.3.2
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then, the convergence
T̃ s,s+h̃

h̃
→ λ̃ac(s) as h̃ ↓ 0 , (3.1.32)

holds for a.e. s ∈ (ã, b̃), with L1-domination on every compact subset of Ω̃.

We conclude by stating an immediate consequence of Theorem 3.1.4 and Theorem 3.1.7.

Corollary 3.1.11. Let (µt)t be a 2-Wasserstein absolutely continuous curve with |ρ′
t|W2

> 0
for a.e. t. The curve (µt)t is physical if and only if:

1. it is d-absolutely continuous, and

2. it satisfies Assumption 3.1.10 with λ̃ac ≡ 1.

3.1.2 Motivation, related contributions, and perspectives
In this section, we review the recent literature that motivated or inspired our construction.
We also give a perspective on future developments after this work in §3.1.2.

Comparison with standard optimal transport

Optimal transport (OT) Let ρ0, ρ1 ∈ P2(X ). One way to define the standard 2-Wasserstein
distance between ρ0 and ρ1 is given by

W2(ρ0, ρ1) := inf
π∈Π(ρ0,ρ1)

√︄ˆ
|y − x|2 dπ(x, y) , (3.1.33)

where Π(ρ0, ρ1) is the set of all couplings π ∈ P2(X × X ) of ρ0 and ρ1. This variational
problem, in which the average distance between coupled points x ∈ supp(ρ0) and y ∈ supp(ρ1)
is minimised, is known as Kantorovich formulation. The existence of minimisers is classical
[San15] and they are referred to as optimal transport plans. Under mild conditions on ρ0, it is
also possible to establish existence of an optimal transport map between ρ0 and ρ1, i.e., a
function M : X → X for which π := (id,M)#ρ0 is an optimal plan [Bre91]. The optimal
transport map is ρ0-a.e. uniquely determined and can be found by solving a Monge–Ampère
equation. Its regularity is a major research topic [San15, Fig17].

Recalling (3.1.1), |y − x|2 is the squared length of the line joining x with y that min-
imises

´ 1
0
⃓⃓
α′(t)

⃓⃓2 dt, among all H1-regular curves α : (0, 1) → X with x and y as endpoints.
Thus, the 2-Wasserstein distance can also be written in its dynamical formulation

W2
2(ρ0, ρ1) = inf

⎧⎨⎩
ˆ 1

0

ˆ ⃓⃓⃓
α′(t)

⃓⃓⃓2
dm dt , s.t. m ∈ P

(︂
H1(0, 1; X )

)︂
,

(︂
prα(0)

)︂
#

m = ρ0 ,
(︂
prα(1)

)︂
#

m = ρ1

⎫⎬⎭ . (3.1.34)
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Moreover, J.-D. Benamou and Y. Brenier [BB00] provided the following fluid-mechanical
characterisation:

W2
2(ρ0, ρ1) = inf

⎧⎨⎩
ˆ 1

0
∥Vt∥2

L2(ρt) dt , s.t. ∂tρt + ∇x · (Vtρt) = 0 in D⋆
(︂
(0, 1) × X

)︂
,

ρt=i = ρi for i = 0, 1

⎫⎬⎭. (3.1.35)

The idea is that the characteristic ODE of the continuity equation ∂tρt + ∇x · (Vtρt) = 0
in (3.1.35) is ẋt = Vt. Thus, the squared norm of the velocity field (Vt)t is equal to the
average squared path-wise speed, cf. [AGS08, Chapter 8]. As it turns out, the curves (ρt)t

solving the continuity equation for some vector field (Vt)t such that
´ 1

0 ∥Vt∥2
L2(ρt) dt < ∞ are

exactly the W2-2-absolutely continuous curves [AGS08], i.e., those satisfying

W2(ρs, ρt) ≤
ˆ t

s

ℓ(r) dr , 0 < s < t < 1 . (3.1.36)

for some function ℓ ∈ L2
≥0(0, 1). For such curves, the metric derivative is

⃓⃓⃓
ρ′

t

⃓⃓⃓
W2

:= lim
h→0

W2(ρt, ρt+h)
h

=∥Vt∥L2(ρt) , for a.e. t ∈ (0, 1) , (3.1.37)

if (ρt, Vt)t solves the continuity equation and Vt is chosen in the L2(ρt)-closure of the
set

{︂
∇xϕ : ϕ ∈ C1

c(X )
}︂

. Formally, the distance W2 induces a Riemannian structure [Ott01]:

TρP2(X ) := clL2(ρ)
{︂
∇xϕ : ϕ ∈ C1

c(X )
}︂
, ⟨F,G⟩TρP2(X ) :=

ˆ
F ·G dρ . (3.1.38)

Comparison of OTIKIN and OT

• At the level of static problems (i.e., optimal transport plans), existence of minimisers is
true for both OT (i.e., in the problem (3.1.33) defining W2) and OTIKIN (i.e., in (3.1.10),
defining d). For both, also existence of an optimal transport map holds under the
assumption of absolute continuity of the starting measure w.r.t. Lebesgue (see Proposi-
tion 3.3.10), but uniqueness in OTIKIN does not hold, see §3.3.3.

• By minimising the acceleration as in (3.1.13), we find a discrepancy ñT = d̃T that
depends on the time parameter T . The non-parametric discrepancy d is then found
by optimising in T and taking the W2-relaxation, see Theorem 3.1.1. Note that this
relaxation is necessary in order to ensure existence of optimal transport plans, see
Proposition 3.3.5 and Example 3.3.6. In OT, the Wasserstein distance W2 is, instead,
naturally non-parametric, in the sense that the choice of the time interval in (3.1.34) is
inconsequential. This follows from our discussion in §3.1.1.

• In (3.1.34), an optimiser exists and is supported on constant-speed straight lines con-
necting points x ∈ supp(ρ0) to points y ∈ supp(ρ1), according to the optimal coupling
in (3.1.33). In this case, there is no loss of generality in considering only curves
on [0, 1], see (3.1.3). In (3.1.13), we have the existence of a minimiser mT , and this
measure is supported on cubic T -splines [BGV19] (see §3.2), for every T . However,
time-reparametrisations of mT on another interval [0, T ′] might no longer satisfy the
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3. Second-Order Discrepancies Between Probability Measures

desired boundary conditions. This happens even for one single spline between two Dirac
masses. Furthermore, even if a reparametrisation satisfies the boundary conditions, it
may not be optimal for the problem with time T ′.

• While the class of continuity equations ∂tρt + ∇x · (Vtρt) = 0 is invariant under time-
reparametrisation, the class of Vlasov’s equations ∂tµt + v · ∇xµt + ∇v · (Ftµt) = 0 is
not. When working with Dirac deltas, the same observation arises by comparing the
first-order ODE ẋt = Vt with the second-order ODE ẋt = vt , v̇t = Ft.

Remark 3.1.12 (The tangent cone II: tangency of optimal plans). In [AGS08, Chapter 8],
the Wasserstein tangent space at ρ ∈ P2(X )—denoted by TρP2(X )—is identified with the
closure in L2(ρ;Rd) of

{︂
∇xφ : φ ∈ C1

c(X )
}︂
. A time-dependent vector field Vt ∈ TρtP2(X )

can be interpreted as the velocity field of a curve solving ∂tρt + ∇x · (ρt Vt) = 0 (which is a
necessary and sufficient condition for a curve to be W2-2-a.c.). In [AGS08, Proposition 8.4.6],
it is shown that, taken two measures ρt, ρt+h along such a curve, one has y− x− hVt = o(h),
as h → 0, on the support of any W2-optimal plan between ρt and ρt+h.

In our setting, we establish a similar structure. Let (µt)t be a solution to the Vlasov equation
(3.1.14), i.e. ∂tµt + v · ∇xµt + ∇v · (Ftµt) = 0, with (v, Ft) ∈ Tµt,dP2(Γ) (see (3.1.28)). Note
that, by Theorem 3.1.4, this is equivalent to physicality. In §3.5.3, we will prove that, if πt,t+h

is an optimal transport plan for d(µt, µt+h), then, πt,t+h-almost everywhere,

y − x− h v = o(h) ,
w − v − hFt(x, v) = o(h) .

Whenever the total momentum of µt is non-zero, we gain a further order of precision in our
Taylor expansions on the support of πt,t+h:

y = x+ hv + 1
2h

2Ft(x, v) + o(h2) .

Remark 3.1.13 (The tangent cone III: geometry of the tangent bundle). We continue
the formal geometric considerations of Remark 3.1.9. Formally, the 2-Wasserstein distance
induces a Riemannian structure on P2(X ), with a clear identification of the tangent bundle
[Ott01, AGS08]. The discrepancy d of OTIKIN yields a sort of hypoelliptic Riemannian
structure [Hör67]. Vlasov’s equation (3.1.14) and its time-reparametrisations (3.1.23), can
be rewritten as ∂sµ̃s + ∇x,v ·

(︂
(λ̃(t)v, F̃ t) µ̃t

)︂
= 0, which is a special case of the continuity

equation ∂sµ̃s + ∇x,v · (Xsµ̃s) = 0 associated with the W2-distance over P2(Γ), for a 2n-
component vector field Xs : Γ → R2n. Thus, we can formally see the geometry of d—i.e., the
hypoelliptic tangent cone Tµ̃s,dP2(Γ) with the form (3.1.29)—as a distribution of vectors
in Tµ̃s,W2P2(Γ), equipped with a degenerate version of (3.1.38) that measures only the
acceleration component F̃ t.

Remark 3.1.14 (Comparison with sub-Riemannian optimal transport). A. Figalli and L. Rifford
developed a theory for optimal transport on sub-Riemannian manifolds [FR10]. They consider
a m-dimensional Riemannian manifold (M, ⟨·, ·⟩), equipped with a distribution of vector
fields ∆ = span{X1, · · · , Xk}, with k < m, such that Lie(∆) = T M, i.e., the Hörmander
condition [Hör67] is satisfied. The Wasserstein distance is replaced by

W2
SR,2(µ, ν) := inf

π∈Π(µ,ν)

ˆ
d2

SR(x, y) dπ(x, y) ,
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where dSR denotes the sub-Riemannian distance on (M, ⟨·, ·⟩,∆). Notice that dSR is obtained
via minimal length of curves tangent to ∆,

d2
SR(x, y) = inf

α:[0,1]→M
α′∈∆

ˆ 1

0
⟨α′(t), α′(t)⟩α(t) dt .

Our case is different, since d-absolutely continuous curves are induced by vector fields tangent
to2

∆kin := span {Z, Y1, · · · , Yn} , with Z = v · ∇x , Yi = ∂

∂vi

,

but we only measure the speed of curves in the directions {Yi}n
i=1, while the vector field Z acts

solely as a constraint. The resulting hypoelliptic geometry combines degenerate Riemannian
with symplectic effects. Heuristically, the difference between sub-Riemannian geometry and
our hypoelliptic geometry is analogous to the distinction between Hörmander operators of the
first kind, like the sub-elliptic Laplacian ∑︁k

i=1(Xi)2, and Hörmander operators of the second
kind, like the Kolmogorov operator Z +∑︁n

i=1 (Yi)2.

Minimal acceleration costs, kinetic Wasserstein, and related distances

Optimal transport with minimal acceleration cost has appeared in the context of variational
schemes for fluid dynamics [GW09, CSW19], see also §3.1.2. There, a discrete time-step T > 0
is fixed, and the authors consider both d̃T and

W2
T (µ, ν) := inf

π∈Π(µ,ν)

ˆ ⎛⎝12
⃓⃓⃓⃓
⃓y − x

T
− w − v

2

⃓⃓⃓⃓
⃓
2

+|w − v|2
⎞⎠ dπ , µ, ν ∈ P2(Γ) ,

(3.1.39)

which differ in the sign of w−v
2 .

For our purposes, the functionals d̃T and WT cannot be used as such, indeed:

1. smooth curves t ↦→ µt are not, in general, d̃T -continuous, in the sense that

lim inf
h↓0

d̃T (µt, µt+h) > 0 .

Therefore, absolute continuity is not meaningful for d̃T ;

2. on the one hand, for all T > 0, the functional WT is a distance on P2(Γ), which is
equivalent—with equivalence constants depending on T—to W2, as the cost function
satisfies wT

(︂
(x, v), (y, w)

)︂
:= 12

⃓⃓⃓
y−x

T
− w−v

2

⃓⃓⃓2
+|w − v|2 ≍ |(x, v) − (y, w)|2. However,

the derivative of wT along Newton’s ODE ẋt = vt, v̇t = Ft is given by

lim
h→0

w2
T

(︂
(xt, vt), (xt+h, vt+h)

)︂
h2 = 12

⃓⃓⃓⃓
⃓vt

T
− Ft

2

⃓⃓⃓⃓
⃓
2

+ |Ft|2 .

This quantity is not natural in our setting, which demands the squared force |Ft|2
instead, as we build a purely acceleration-based theory.

2Note that Lie(∆kin) = T R2n, so that Hörmander’s condition holds.
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3. Second-Order Discrepancies Between Probability Measures

In a recent paper [Iac22], M. Iacobelli explored two other families of ‘kinetic Wasserstein
distances’, yielding to new results for Vlasov’s PDEs. The first idea is to build perturba-
tions of the standard Wasserstein distance W2 on P2(Γ), using transportation costs of the
form a |y − x|2 + b (y − x) · (w − v) + c |w − v|2, with a, b, c ∈ R to be tuned. Then,
time-dependent and non-linear generalisations are considered. Twisting the reference distance
(usually H2 or L2) to better capture the interaction between space and velocity variables has
been a fruitful technique in kinetics, to prove both regularity (hypoellipticity [Kol34, Hör67])
and long-time convergence to equilibrium (hypocoercivity [Vil09a, DMS15]). The interplay
between hypocoercivity and optimal transport has been analysed in a few papers [Bau17, Sal21].
A second class of distances is constructed by adding a time-shift as follows [Iac22]:

inf
π∈Π(µ,ν)

ˆ (︂
(x− tv) − (y − tw)

⃓⃓2 +|w − v|2
)︂

dπ , t > 0 , µ, ν ∈ P2(Γ) .

Our discrepancy d differs from previous constructions, as it involves an optimisation over T > 0.
As a result, d is not a distance, but it has the physical dimension of a speed, so that its time
derivative along curves of measures is naturally an acceleration.

Variational approximation schemes for kinetic equations

Minimising the squared acceleration in optimal transport originated from a series of papers
about variational approximation schemes for dissipative kinetic PDEs [HJ00, Hua00, DPZ13,
DPZ14, Par25], before being readapted to fluid dynamics [GW09, CSW19]. The goal there is
to approximate, by means of De Giorgi minimising movement schemes [AGS08], the solution
to Kramer’s equation

∂tf + v · ∇xf = ∆vf , f : (a, b) × Γ → R , (3.1.40)

and various generalisations thereof. One prototypical result is the following.

Theorem 3.1.15 ([DPZ14, Hua00]). Let E : P2(Γ) → [0,∞] be the Boltzmann–Gibbs entropy

E(µ) :=

⎧⎨⎩
´

Γ f log f dx dv if µ = f(x, v) dx dv ,
+∞ otherwise.

(3.1.41)

Given an initial datum f0 ∈ L1(Γ), define the sequence

µh
0 := f0 dx dv ,

µh
(k+1)h ∈ arg min

ν∈P2(Γ)

(︄
E(ν) + 1

2h d̃2
h

(︂
µh

kh, ν
)︂)︄

, k ∈ N .
(3.1.42)

Then, as h → 0, the piece-wise constant interpolation (µh
t )t≥0 converges to the solution

to (3.1.40) with initial datum f0.

As observed in [DPZ14], the choice of the entropy E and the penalisation d̃h can be motivated
by a large deviation principle. However, the penalisation d̃h depends on the timestep h, so
that (3.1.42) does not exactly define a De Giorgi scheme [AGS08]. Instead, the discrepancy d
we introduce does not depend on the timestep (in fact, we optimise over the time parameter).
This way, the intrinsic time parameter of d will depend on the evolution itself, without being
conditioned by the time discretisation. The analysis of a scheme akin to (3.1.42), with d in
place of d̃h, will be the subject of a forthcoming work.
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Wasserstein splines and interpolation

Splines between probability measures Splines arise in numerics as an interpolation method
for a set of data (ti, xi)i=1,...,k ⊆ [0, 1]×X . An interpolating curve is a function α : [0, 1] → X
with α(ti) = xi, subject to certain constraints (e.g., regularity). One interesting and common
example is the solution to

ᾱ ∈ arg min
α∈H2(0,1;X )

⎧⎨⎩
ˆ 1

0

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dt , s.t. α(ti) = xi for every i

⎫⎬⎭ .

Spline interpolation between probability measures is the problem of finding a minimal accelera-
tion curve (ρt)t∈[0,1] such that ρti

= ρi, for a given dataset (ti, ρi)i=1,...,k ⊆ [0, 1]×P2(X ). This
matter has recently attracted increasing interest and has been the subject of both theoretical
and numerical investigations [BGV19, CCG18, Cla21, CCLG+21]. One possible approach is to
interpret (ρt)t as a curve taking values in the Riemannian-like space

(︂
P2(X ),W2

)︂
(see §3.1.2)

and to measure the covariant acceleration of ρ via the Levi–Civita connection [Lot08, Gig12].
A more tractable strategy is to consider measure-valued path splines:

m̄ ∈ arg min
m∈P

(︂
H2(0,1;X )

)︂
⎧⎨⎩
ˆ 1

0

ˆ
|α′′(t)|2 dm dt , s.t. (prti

)#m = ρi for every i

⎫⎬⎭ . (3.1.43)

Notice that this problem differs from (3.1.13) with T = 1, where we interpolate only between
two measures and, most notably, we also fix the velocity marginals. However, (3.1.43) writes
as a relaxation of (3.1.13), by further minimising over all possible velocity marginals [CCG18].

Kinetic Optimal Transport for measure interpolation We address two issues from the
recent literature related to spline interpolation:

1. Theorem 3.1.2 provides a fully rigorous proof of the kinetic Benamou–Brenier formula
with fixed space-velocity marginals. As a corollary, we prove a version thereof where
only the space marginals are assigned, as conjectured by Y. Chen, G. Conforti, and
T. T. Georgiou [CCG18, Claim 4.1]. Details are given in Remark 3.4.12.

2. We outline a variation on the algorithm by S. Chewi, J. Clancy, T. Le Gouic, P. Rigol-
let, G. Stepaniants, and A. Stromme [CCLG+21, Section 3] for the construction of
splines in P2(X ). As above, the problem is to construct a curve interpolating a
given dataset (ti, ρi)i=1,...,k ⊆ [0, 1] × P2(X ), with t1 < t2 < · · · < tk. The proce-
dure in [CCLG+21] is briefly described as follows. Firstly, one computes the optimal
multimarginal 2-Wasserstein coupling π ∈ P2(X k). Secondly, one connects each tu-
ple (x1, . . . , xk) ∈ X k by means of an acceleration-minimising spline ᾱx1,...,xk

, and
defines the interpolating spline of measures t ↦→ ρt at time t as the push-forward of π
through the map ᾱ·(t) : (x1, . . . , xk) ↦→ ᾱx1,...,xk

(t). The modification we propose is
to use the construction above only to assign velocity marginals to each ρi, i.e., we
set µi := (ᾱ·(t), ᾱ′

·(t))#π ∈ P2(Γ). Given t ∈ (ti, ti+1), we take the optimal ñ(ti+1−ti)-
optimal dynamical plan m between µi and µi+1, set

µt :=
(︂
prα(t),α′(t)

)︂
#

m , (3.1.44)
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3. Second-Order Discrepancies Between Probability Measures

and define ρt as the space marginal of µt. Remarkably, our interpolation is deterministic
and injective, in the sense that⎛⎝pr(︂

α(ti),α′(ti)
)︂

,

(︂
α(t),α′(t)

)︂⎞⎠
#

m

is induced by an injective map Γ → Γ if µi is absolutely continuous, see §3.4.2.

Applications to biology and engineering

The problem of finding a minimal acceleration path between two measures µ, ν appears
naturally in applications.

• Trajectory inference is aimed at reconstructing a time-continuous evolution from a
few time-separated observations. This technique has recently gained relevance in
mathematical biology to study the development of cells [LZKS24, Sch21, BSK+24,
CZHS22], with potential applications in regenerative medicine. Wasserstein splines
(see §3.1.2) and our Proposition 3.4.3 provide a smooth interpolation scheme to this
purpose [RBDB+24, CGP21]. In addition, the action functional in (3.1.13), which
encodes minimal acceleration/consumption along paths, can be easily adapted to the
specific model under investigation (taking into account, e.g., potential energy, drift).

• Images in computer vision can be cast into probability measures. Various applications
involve continuous interpolations between images, which are often performed using
classical OT [RPDB12, San15]. More recently, an alternative has been formulated using
Wasserstein splines [BGV19, Cla21, FP23, JRR23, ZSS22], with applications to texture
generation models [JRE24]. Our construction, see §3.4, proposes a twofold variation.
Firstly, we remove the dependence on the timespan T , which is usually a datum of the
problem in the literature. Secondly, we also assign the velocity marginals.

• The minimal acceleration problem (3.1.4)-(3.1.5) arises naturally also in optimal control.
Indeed, we look for the optimal time-dependent force Ft = α′′(t) and timespan T
required to connect two states (x, v) and (y, w) in Γ. The quantity we minimise is the
squared norm of Ft over time, which is reminiscent of resource consumption in steering
of robots and space vehicles [MR24, LGP14]. In particular, (3.1.4)-(3.1.5) is used for
rockets powered by Variable Specific Impulse engines [Mar12, Kec95a]. Our work yields
a natural generalisation, i.e., a mathematical framework for the optimal steering of a
fleet of agents between two configurations, described by µ, ν ∈ P2(Γ).

Conclusions and perspectives

• In the current work, we build an optimal-transportation discrepancy d between prob-
ability measures, which is based on the minimal acceleration. Also the timespan of
the minimal-acceleration path is optimised. In addition, we give a characterisation
of d-absolutely continuous curves, see Theorem 3.1.7. Such a result allows us to recast
kinetic equations of Vlasov type, driven by the transport operator v · ∇x and various
collision terms, as paths in the space of probability measures, with the metric derivative
depending only on the collisional effects. This is the starting point of the forthcom-
ing Part II - Kinetic Gradient Flows. There, we are going to recast dissipative kinetic
PDEs as steepest descent curves, among all d-absolutely continuous curves, for some
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given free-energy functionals. The steepest descent will be characterised via optimality
in an energy-dissipation functional inequality. As a further justification, we aim at finding
a large-deviation principle behind our kinetic gradient flow structure [DPZ14].

• In Part II - Kinetic Gradient Flows, we aim to define JKO discrete variational schemes
[JKO98] with the discrepancy d and prove their convergence to dissipative kinetic PDEs.
To this end, we will treat a kinetic equation as a whole, exploiting the interplay between
space and velocity variables, which is also the leitmotiv of the current work. This strategy
is also at the core of the hypocoercivity theory [Vil09a, DMS15], where the reference
norm is twisted precisely in order to capture the interaction of x and v via v · ∇x. This
is in contrast with the splitting numerical schemes [Par25], where the transport and the
collision terms are treated separately at each iteration.

• In this work, we specialise to a model case: particles are subject to Newton’s laws ẋt =
vt , v̇t = Ft, without external confinement. However, this suggests a general scheme to
build adapted versions of the discrepancy d for systems of interacting particles. The
collision/irreversible effects in the phenomenon are measured via an action functional to
be minimised under a constraint, given by a suitable continuity equation, see (3.1.15).
Such a continuity equation (Vlasov’s equation (3.1.14) in our setting) is determined by
the conservative/reversible dynamics of the system. The resulting discrepancy captures
the interaction between reversible and irreversible effects, while clearly distinguishing
their roles. The induced geometry on P2(Γ) formally reads as a degenerate Riemann-like
structure (where the d-derivative of curves corresponds to the instantaneous action), con-
strained on a symplectic form, which allows only the physically admissible directions. We
will explore generalisations of our theory in forthcoming papers. In particular, we aim at
giving an optimal-transport interpretation of systems belonging to the GENERIC (General
Equation for Non-Equilibrium Reversible-Irreversible Coupling) framework [GÖ97, ÖG97].

3.2 The particle model
In this section, we describe the kinetic optimal transport model for Dirac measures.

3.2.1 The fixed-time discrepancy
Let T > 0 be a time parameter, and fix two points (x, v) and (y, w) in the phase space Γ :=
X × V = Rn × Rn. Recall the minimisation problem

inf
α∈H2(0,T ;X )

⎧⎨⎩T
ˆ T

0

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dt s.t. (α, α′)(0) = (x, v) and (α, α′)(T ) = (y, w)

⎫⎬⎭ . (3.2.1)

This problem is strictly convex and coercive, hence, it admits a unique minimiser αT
x,v,y,w. This

curve satisfies the Euler–Lagrange equation α′′′′ ≡ 0 (i.e., it is a degree-3 polynomial in t)
with the prescribed boundary conditions. Straightforward computations yield

αT
x,v,y,w(t) =

(︄
v + w

T 2 − 2y − x

T 3

)︄
t3 +

(︄
3y − x

T 2 − 2v + w

T

)︄
t2 + vt+ x , t ∈ (0, T ) ,

(3.2.2)
or, equivalently,

αT
x,v,y,w(ξT ) = x+ ξ2(3 − 2ξ)(y − x) + Tξ(1 − ξ)

(︂
(1 − ξ)v − ξw

)︂
, ξ ∈ (0, 1) .
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We thus find the identity (3.1.4), i.e., the minimal value of (3.2.1) coincides with

d̃
2
T

(︂
(x, v), (y, w)

)︂
:= 12

⃓⃓⃓⃓
⃓y − x

T
− v + w

2

⃓⃓⃓⃓
⃓
2

+|w − v|2 . (3.2.3)

Remark 3.2.1. It was shown by Kolmogorov [Kol34] that the function

Ψ
(︂
(x, v), (y, w), t

)︂
:=
(︄

3
2πt2

)︄d

exp

⎛⎜⎝−
d̃

2
t

(︂
(x, v), (y, w)

)︂
4t

⎞⎟⎠
is the fundamental solution to the Kramers equation

∂tΨ + v · ∇xΨ = ∆vΨ .

Remark 3.2.2. Contrary to the minimal L2-norm of the velocity (see (3.1.3)), the function d̃T

is not a distance on Γ. Indeed, it is not symmetric, does not vanish on the diagonal of Γ × Γ
(i.e., points (x, v) = (y, w)), and does not satisfy the triangle inequality. The latter can be
easily checked on

(x1, v1) := (0, v̄) , (x2, v2) := (T v̄, v̄) , (x3, v3) := (2T v̄, v̄) ,

which satisfy d̃T

(︂
(x1, v1), (x2, v2)

)︂
= d̃T

(︂
(x2, v2), (x3, v3)

)︂
= 0, while d̃T

(︂
(x1, v1), (x3, v3)

)︂
=√

12 |v̄| ̸= 0 for any v̄ ∈ V \ {0}. However, as observed in [GW09], we have the equivalence

d̃
2
T

(︂
(x, v), (y, w)

)︂
= 0 ⇐⇒ y = x+ Tv and v = w . (3.2.4)

In this case, following [GW09], we say that (y, w) is the T -free transport of (x, v) and
write (y, w) = GT (x, v). Note that (GT )T ≥0 enjoys the semigroup property

GT1 ◦ GT2 = GT1+T2 , T1, T2 ≥ 0 . (3.2.5)

Remark 3.2.3. The fact that d̃T

(︂
(x, v), (y, w)

)︂
is finite for every (x, v), (y, w) ∈ Γ can be

seen as an elementary version of hypoellipticity (see [Hör67]). In fact, solutions to Newton’s
equation ẋt = vt , v̇t = Ft are generated by vector fields in the space

{︁
(v, F ) : F ∈ Rn

}︁
.

This vector space has dimension n, but it generates a Lie algebra of full rank 2n:[︂
(v, 0), (v, ei)

]︂
= (ei, 0) , i ∈ {1, . . . , n} .

Remark 3.2.4. Fix (x, v), (y, w) ∈ Γ. Let (vt, Ft)t∈(0,T ) be the solution to Newton’s equations,
connecting (x, v) to (y, w) with the minimal action (i.e., Ft =

(︂
αT

x,v,y,w

)︂′′
). The first norm

in (3.2.3) (i.e.,
⃓⃓⃓

y−x
T

− v+w
2

⃓⃓⃓
) is the distance between the average velocity

ffl T

0 vt dt and the
arithmetic mean of the velocities at the endpoints. The second norm (i.e., |w − v|) can be
written as

⃓⃓⃓´ T

0 Ft dt
⃓⃓⃓
.

Remark 3.2.5. It is interesting to analyse the behaviour of the optimal curves αT
x,v,y,w for

large T . When t, T → ∞ with t ≥ a T for some a > 0, the formula (3.2.2) gives
(︂
αT

x,v,y,w

)︂′
(t) = t2

T 2 (3v + 3w) − t

T
(4v + 2w) + v +

(︄
− t2

T 2 + t

T

)︄
6(y − x)

T

= ξ2(3v + 3w) − ξ (4v + 2w) + ξ (1 − ξ)6(y − x)
T

, ξ := t/T .

Therefore, two cases may occur.
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Figure 3.1: Examples of trajectories. In the left figure, v = w = 0.

• Case 1: slow line. If the vector-valued polynomial

p(ξ) := ξ2(3v + 3w) − ξ (4v + 2w) + v

is identically equal to 0, then v = w = 0, the curve t ↦→ αT
x,0,y,0(t) is a parametrisation

of the segment connecting (x, 0) to (y, 0), and
(︂
αx,0,y,0

)︂′
(t) = O(T−1) uniformly

in t ∈ (0, T ) as T → ∞.

• Case 2: long curve. If ξ ↦→ p(ξ) is not identically equal to 0, then there must exist
an interval [a, b] ⊆ [0, 1] (with 0 ≤ a < b ≤ 1) where it never vanishes. On such an
interval, we have⃓⃓⃓⃓(︂
αT

x,v,y,w

)︂′
(t)
⃓⃓⃓⃓
≥ min

ξ∈[a,b]

⃓⃓
p(ξ)

⃓⃓
−O(T−1) , as T → ∞ , uniformly in t ∈ [a, b] ,

which shows that the total length of αT
x,v,y,w is of order Θ(T ). On the other hand, the

curvature is bounded as

κ(t) ≤

⃓⃓⃓⃓(︂
αT

x,v,y,w

)︂′′
(t)
⃓⃓⃓⃓

⃓⃓⃓⃓(︂
αT

x,v,y,w

)︂′
(t)
⃓⃓⃓⃓2 = T−1 ⃓⃓p′(t/T )

⃓⃓
+O(T−2)⃓⃓

p(t/T )
⃓⃓2 +O(T−1)

= O(T−1) as T → ∞ ,

uniformly in t ∈ [a, b]. Moreover, in dimension d ≥ 2, we can often choose [a, b] = [0, 1].
This is because the set{︁

(v, w) ∈ V × V : ∃ξ ∈ [0, 1] with p(ξ) = 0
}︁

has dimension d+1 (hence, it is negligible). All these observations indicate that, typically,
this second case corresponds to αT

x,v,y,w resembling a large loop in the limit T → ∞.

We conclude this section with a version of the Monge–Mather’s shortening principle, cf. [Vil09b,
Chapter 8]. Namely, we show that, given the initial and final configurations of two indistin-
guishable particles3 in different locations, their optimal trajectories for the minimal acceleration
problem cannot meet at the same time, at the same point, with the same velocity.

3We also optimise—with respect to the average squared acceleration—how particles in the initial configu-
ration are coupled with those in the final configuration. Namely, a coupling is a matching of each particle in
the initial configuration to one in the final configuration. Then, for every pair, one can compute the minimal
acceleration as in (3.2.1), and average such contribution over all pairs.

95



3. Second-Order Discrepancies Between Probability Measures

Figure 3.2: Trajectories that meet at the same time with the same velocity are not optimal.

Proposition 3.2.6. Fix T > 0 and let (x1, v1), (y1, w1), (x2, v2), (y2, w2) ∈ Γ. Let α1, α2 be
the optimal (polynomial) curves for the problem (3.1.4) between (x1, v1) and (y1, w1), and
between (x2, v2) and (y2, w2), respectively, i.e.,

d̃
2
T

(︂
(x1, v1), (y1, w1)

)︂
= T

ˆ T

0

⃓⃓⃓
α′′

1(t)
⃓⃓⃓2

dt and d̃
2
T

(︂
(x2, v2), (y2, w2)

)︂
= T

ˆ T

0

⃓⃓⃓
α′′

2(t)
⃓⃓⃓2

dt .
(3.2.6)

If there exists t̄ ∈ (0, T ) such that (α1(t̄), α′
1(t̄)) = (α2(t̄), α′

2(t̄)), and if

d̃
2
T

(︂
(x1, v1), (y1, w1)

)︂
+ d̃

2
T

(︂
(x2, v2), (y2, w2)

)︂
≤ d̃

2
T

(︂
(x1, v1), (y2, w2)

)︂
+ d̃

2
T

(︂
(x2, v2), (y1, w1)

)︂
, (3.2.7)

then, (x1, v1) = (x2, v2) and (y1, w1) = (y2, w2).

Proof. Define the curves

α̃1(t) :=

⎧⎨⎩α1(t) if t ∈ [0, t̄] ,
α2(t) if t ∈ [t̄, T ] ,

α̃2(t) :=

⎧⎨⎩α2(t) if t ∈ [0, t̄] ,
α1(t) if t ∈ [t̄, T ] ,

which, by our assumptions, are of class H2. They are competitors for the problem (3.2.1)
between X1 := (x1, v1) and Y2 := (y2, w2), and between X2 := (x2, v2) and Y1 := (y1, w1),
respectively. We also notice that, by additivity of the integral in the domain of integration,

ˆ T

0

⃓⃓⃓
α′′

1(t)
⃓⃓⃓2

dt+
ˆ T

0

⃓⃓⃓
α′′

2(t)
⃓⃓⃓2

dt =
ˆ T

0

⃓⃓⃓
α̃′′

1(t)
⃓⃓⃓2

dt+
ˆ T

0

⃓⃓⃓
α̃′′

2(t)
⃓⃓⃓2

dt. (3.2.8)

Exploiting the assumption (3.2.7), we obtain

d̃
2
T (X1, Y1) + d̃

2
T (X2, Y2)

(3.2.7)
≤ d̃

2
T (X1, Y2) + d̃

2
T (X2, Y1)

≤ T

ˆ T

0

⃓⃓⃓
α̃′′

1(t)
⃓⃓⃓2

dt+ T

ˆ T

0

⃓⃓⃓
α̃′′

2(t)
⃓⃓⃓2

dt

(3.2.8)= T

ˆ T

0

⃓⃓⃓
α′′

1(t)
⃓⃓⃓2

dt+ T

ˆ T

0

⃓⃓⃓
α′′

2(t)
⃓⃓⃓2

dt

= d̃
2
T (X1, Y1) + d̃

2
T (X2, Y2) .
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3.2. The particle model

We infer that the two inequalities in the latter formula are in fact equalities and, therefore, α̃1
and α̃2 are optimal for the problem (3.2.1). Consequently, α̃1 and α̃2 are polynomials.
Since α1(t) = α̃1(t) for t ∈ [0, t̄] and t̄ > 0, the two polynomials α1 and α̃1 coincide.
Similarly, α̃1 ≡ α2; therefore, α1 ≡ α2. We conclude that

(x1, v1) = α1(0) = α2(0) = (x2, v2) and (y1, w1) = α1(T ) = α2(T ) = (y2, w2) .

3.2.2 The non-parametric discrepancy
Using d̃T , we shall now define a discrepancy d which is not parametric in time.

Definition 3.2.7. For all (x, v), (y, w) ∈ Γ, set

d̃
(︂
(x, v), (y, w)

)︂
:= inf

T >0
d̃T

(︂
(x, v), (y, w)

)︂
. (3.2.9)

We denote by d : Γ × Γ → R≥0 the lower-semicontinuous envelope of d̃. We give d the name
second-order discrepancy between particles.

Proposition 3.2.8. The following hold.

1. The function d̃ : Γ × Γ → R≥0 is upper-semicontinuous. For every (x, v), (y, w) ∈ Γ,
we have

d̃
(︂
(x, v), (y, w)

)︂
=

⎧⎪⎨⎪⎩limT →∞ d̃T

(︂
(x, v), (y, w)

)︂
if (y − x) · (v + w) ≤ 0 ,

d̃T ∗

(︂
(x, v), (y, w)

)︂
if (y − x) · (v + w) > 0 ,

(3.2.10)

where
T ∗ := 2 |y − x|2

(y − x) · (v + w) . (3.2.11)

Hence, the following formula

d̃
2(︂(x, v), (y, w)

)︂
=

⎧⎪⎪⎨⎪⎪⎩
3|v + w|2 − 3

(︃
y−x

|y−x| · (v + w)
)︃2

+
+|w − v|2 if x ̸= y ,

3|v + w|2 +|w − v|2 if x = y

(x, v), (y, w) ∈ Γ . (3.2.12)

2. The second-order discrepancy d : Γ × Γ → R≥0 is given by the formula

d2
(︂
(x, v), (y, w)

)︂
=

⎧⎪⎪⎨⎪⎪⎩
3|v + w|2 − 3

(︃
y−x

|y−x| · (v + w)
)︃2

+
+|w − v|2 if x ̸= y ,

|w − v|2 if x = y ,

(x, v), (y, w) ∈ Γ . (3.2.13)

3. We have d
(︂
(x, v), (y, w)

)︂
= 0 if and only if either (y, w) = GT (x, v) for some T ≥ 0,

or x ̸= y and v = w = 0.
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3. Second-Order Discrepancies Between Probability Measures

Proof. Proof of 1. Upper-semicontinuity is trivial, because d̃ is defined as an infimum of
continuous functions.

Fix (x, v), (y, w) ∈ Γ. If y = x, then T ↦→ d̃
2
T

(︂
(x, v), (y, w)

)︂
is constant, hence always equal

to its limit as T → ∞. Otherwise, let us rewrite (3.2.3) as a convex quadratic polynomial
in T−1, namely:

d̃
2
T

(︂
(x, v), (y, w)

)︂
= 12T−2|y − x|2 − 24T−1(y − x) · (v + w) + 3|v + w|2 +|w − v|2 .

The vertex of this parabola is found at

T−1 = (y − x) · (v + w)
2|y − x|2

.

Therefore, when (y−x) ·(v+w) ≤ 0, the minimum of d̃2
T , constrained to T > 0, is approached

as T−1 → 0. In formulae:

d̃
2(︂(x, v), (y, w)

)︂
= lim

T →∞
d̃

2
T

(︂
(x, v), (y, w)

)︂
= 3|v + w|2 +|w − v| .

Instead, when (y − x) · (v + w) > 0, we have

d̃
2(︂(x, v), (y, w)

)︂
= d̃

2
T ∗

(︂
(x, v), (y, w)

)︂
= 3|v + w|2 − 3

(︄
y − x

|y − x|
· (v + w)

)︄2

+|w − v|2 .

Proof of 2. The right-hand side in (3.2.13) is lower-semicontinuous. Since it coincides
with d̃

(︂
(x, v), (y, w)

)︂
when x ̸= y or v + w = 0, we are only left with showing that, for

every x, v, w with v + w ̸= 0, there exists a sequence yk → x such that

|w − v|2 ≥ lim sup
k→∞

d̃
2(︂(x, v), (yk, w)

)︂
.

We simply choose
yk := x+ 1

k
(v + w) , k ∈ N1 .

Proof of 3. Assume that the right-hand side of (3.2.13) equals 0. We infer that v = w.
If x = y, then (y, w) = G0(x, v). If x ̸= y, then

2|v| = 2 y − x

|y − x|
· v

and, therefore, either v = 0, or y = x+ Tv for some T > 0, that is, (y, w) = GT (x, v). The
converse implication is a direct computation.

Remark 3.2.9. It follows from (3.2.12) and (3.2.13) that neither d̃ nor d is symmetric. Neither
of the two satisfies the triangle inequality: consider

(x1, v2) := (0, v̄) , (x2, v2) := (v̄, 0) , (x3, v3) := (−v̄, 0)

for any v̄ ∈ V \ {0}. Moreover, we have the characterisation

d2
(︂
(x, v), (y, w)

)︂
= 0 ⇐⇒

[︁
v = w = 0 or (y, w) = GT (x, v) for some T ≥ 0

]︁
.

(3.2.14)
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In analogy with the metric setting of [AGS08, Theorem 1.1.2]), we give the following.

Definition 3.2.10. We say that a curve γ = (x·, v·) : (a, b) → Γ is d-differentiable at t ∈ (a, b)
when the one-sided limit

lim
h↓0

d
(︂
γ(t), γ(t+ h)

)︂
h

. (3.2.15)

exists. In this case, we denote it by |γ′|d (t) and call it the d-derivative of γ at t.

Remark 3.2.11. As the discrepancy d is not symmetric, taking left or right limits to define d-
differentiability is not the same, even for smooth curves. We argue that (3.2.15) is the
natural definition. Indeed, if, for example, we consider the straight constant-speed line γ(t) :=
(tv̄, v̄), t ∈ R, for some v̄ ∈ V \ {0}, we have

d
(︂
γ(t), γ(t+ h)

)︂
= 0 for every h > 0 ,

and
d
(︂
γ(t), γ(t− h)

)︂
= |2v| > 0 for every h > 0 .

In particular, γ is d-differentiable in the sense of Definition 3.2.10, but

lim
h↓0

d
(︂
γ(t), γ(t− h)

)︂
|h|

= ∞ .

Our next aim is to formulate necessary and sufficient conditions for d-differentiability.

Proposition 3.2.12. Let γ = (x·, v·) : (a, b) → Γ be a curve such that x· is of class C1 and v·
is of class C0. If γ is d-differentiable at t ∈ (a, b) and vt ̸= 0, then there exists λ(t) ≥ 0 such
that ẋt = λ(t)vt.

Proof. If γ is d-differentiable at t ∈ (a, b), then d
(︂
γ(t), γ(t+ h)

)︂
≤ Ch for suitable C > 0,

whenever h > 0 is small enough. If ẋt = 0, then it suffices to choose λ(t) = 0. Otherwise, we
have xt+h ̸= xt for small enough h > 0, hence d2

(︂
γ(t), γ(t+ h)

)︂
= d̃

2(︂
γ(t), γ(t+ h)

)︂
. Pick

T (h) > 0 such that d̃2
T (h)

(︂
γ(t), γ(t+ h)

)︂
≤ d̃

2(︂
γ(t), γ(t+ h)

)︂
+ h2. In particular, for h > 0

small enough,

12
⃓⃓⃓⃓
⃓xt+h − xt

T (h) − vt + vt+h

2

⃓⃓⃓⃓
⃓
2

≤ d̃
2
T (h)

(︂
γ(t), γ(t+ h)

)︂
≤ d̃

2(︂
γ(t), γ(t+ h)

)︂
+ h2

= d2
(︂
γ(t), γ(t+ h)

)︂
+ h2 ≤ (C2 + 1)h2 .

Since xt+h−xt

h
→ ẋt ̸= 0 and vt+vt+h

2 → vt ̸= 0, we infer that T (h)/h → λ(t) as h → 0 for
some λ(t) ∈ (0,∞) satisfying ẋt = λ(t)vt.

Remark 3.2.13 (Reparametrisation). Let γ = (x·, v·) : (a, b) → Γ be a curve such that x· is of
class Ck+1 and v· is of class Ck for some k ∈ N0. Assume that ẋt = λ(t)vt for every t ∈ (a, b),
for a function λ : (a, b) → (0,∞) of class Ck. Let τ : (ã, b̃) → (a, b) be a function of class Ck+1

with τ ′ > 0. Set

x̃s := xτ(s) , ṽs := vτ(s) , γ̃(s) := (x̃s, ṽs) , s ∈ (ã, b̃) .
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Then, we have

ṽs = vτ(s) = 1
λ
(︂
τ(s)

)︂ ẋτ(s) = 1
λ
(︂
τ(s)

)︂
τ ′(s)

·
x̃ s , s ∈ (ã, b̃) ,

that is, also γ̃ has the property ·
x̃ s = λ̃(s)ṽs for every s ∈ (ã, b̃), for a function λ̃ : (ã, b̃) →

(0,∞) of class Ck.

Let t̄ ∈ (a, b) and assume that λ > 0 on (a, b). By solving the Cauchy problem

τ ′ = 1
λ(τ) , τ(0) = t̄ , (3.2.16)

we can find a reparametrisation γ̃ with ·
x̃ s = ṽs. Indeed, by classical results, the ODE (3.2.16)

admits a maximal solution on a neighbourhood of t̄. Moreover, since λ is bounded on every
compact K ⋐ (a, b), the values of τ exit K in finite time. Therefore, the maximal solution
has the full set (a, b) as its image.

Proposition 3.2.14. Let γ = (x·, v·) : (a, b) → Γ be a curve such that x· is of class C2 and v·
is of class C1. Assume that there exists λ : (a, b) → (0,∞) continuous, such that ẋt = λ(t)vt

for every t ∈ (a, b). Then, γ is d-differentiable on (a, b) with |γ′|d (t) = |v̇t|.

Proof. On the one hand, we have

lim inf
h↓0

d2
(︂
γ(t), γ(t+ h)

)︂
h2 ≥ lim inf

h↓0

|vt − vt+h|2

h2 = |v̇t|2 , t ∈ (a, b) .

To prove the opposite inequality, momentarily assume that λ ≡ 1, i.e., ẋt = vt for every t ∈
(a, b). We obtain

lim sup
h↓0

d2
(︂
γ(t), γ(t+ h)

)︂
h2 ≤ lim sup

h↓0

d̃
2
h

(︂
γ(t), γ(t+ h)

)︂
h2

= lim sup
h↓0

1
h2

⎛⎝12
⃓⃓⃓⃓
⃓xt+h − xt

h
− vt+h + vt

2

⃓⃓⃓⃓
⃓
2

+|vt+h − vt|2
⎞⎠

= |v̇t|2 + lim sup
h↓0

12
h2

⃓⃓⃓⃓
⃓ẋt + h

2 ẍt − vt − h

2 v̇t + o(h)
⃓⃓⃓⃓
⃓
2

= |v̇t|2

(3.2.17)

for every t ∈ (a, b). In the general case, we apply the reparametrisation of Remark 3.2.13 to
find a diffeomorphism τ : (ã, b̃) → (a, b) such that τ ′(s) = 1

λ(τ(s)) for every s ∈ (ã, b̃), so that
the computation (3.2.17) can be performed on γ̃ : s ↦→ γ

(︂
τ(s)

)︂
. Given t = τ(s) ∈ (a, b), we
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thus find

lim sup
h↓0

d2
(︂
γ(t), γ(t+ h)

)︂
h2 = lim sup

h↓0

d2
(︂
γ
(︂
τ(s)

)︂
, γ
(︂
τ(s) + h

)︂)︂
h2

= lim sup
h̃↓0

d2
(︂
γ
(︂
τ(s)

)︂
, γ
(︂
τ(s+ h̃)

)︂)︂
(︂
τ(s+ h̃) − τ(s)

)︂2

= lim sup
h̃↓0

d2
(︂
γ̃(s), γ̃(s+ h̃)

)︂
h̃

2
h̃

2(︂
τ(s+ h̃) − τ(s)

)︂2

(3.2.17)= λ
(︂
τ(s)

)︂2
⃓⃓⃓⃓
⃓ d
dsvτ(s)

⃓⃓⃓⃓
⃓
2

= |v̇t|2 ,

and this concludes the proof.

Remark 3.2.15. The last result, specialised to curves satisfying ẋt = vt (i.e., with λ ≡ 1),
yields |γ′|d (t) = |v̇t| = |ẍt|, for all t ∈ (a, b). In view of Newton’s second law of motion, we
can say that the d-derivative equals the magnitude of the force driving the motion.

Remark 3.2.16. A curve γ = (x·, v·) → Γ is everywhere d-differentiable also when v· ≡ 0,
regardless of x·. In this case, |γ′|d ≡ 0.

Corollary 3.2.17. Let γ = (x·, v·) : (a, b) → Γ be a curve such that x· is of class C2 and v·
is of class C1. Assume that ẋt ̸= 0 and vt ̸= 0 for every t ∈ (a, b). Then, γ is everywhere d-
differentiable if and only if there exists λ : (a, b) → (0,∞) of class C1 such that ẋt = λ(t)vt

for every t ∈ (a, b).

Proof. If γ is everywhere d-differentiable, by Proposition 3.2.12, there exists λ : (a, b) → R≥0
such that ẋt = λ(t)vt. This function is of class C1 because vt ̸= 0 for every t ∈ (a, b) and
because both ẋ· and v· are of class C1. Moreover λ(t) ̸= 0 for every t, because this property
holds for ẋt. The converse follows from Proposition 3.2.14. In this case, |γ′|d (t) = |v̇t|.

3.3 Kinetic optimal plans and maps
This section is divided into three parts:

1. In §3.3.1, we prove Statements 1-3 in Theorem 3.1.1, including the semicontinuity of d
and the existence of optimal transport plans.

2. In §3.3.2, we prove Statement 4 in Theorem 3.1.1, i.e., the existence of optimal maps.

3. In §3.3.3, we discuss additional results, including non-uniqueness of optimal plans and
maps, and the characterisation of the pairs (µ, ν) for which d(µ, ν) = 0.
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3.3.1 Semicontinuity and existence of optimal plans
Let P2(Γ × Γ) be the set of probability measures on Γ × Γ with finite second moment. For
every π ∈ P2(Γ × Γ), set

c̃T (π) := 12
⃦⃦⃦⃦
⃦y − x

T
− v + w

2

⃦⃦⃦⃦
⃦

2

L2(π)
+∥w − v∥2

L2(π) , T > 0 (3.3.1)

c̃(π) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3∥v + w∥2

L2(π) − 3

(︂
(y−x,v+w)π

)︂2

+
∥y−x∥2

L2(π)
+∥w − v∥2

L2(π) if ∥y − x∥L2(π) > 0 ,

3∥v + w∥2
L2(π) +∥w − v∥2

L2(π) , if ∥y − x∥L2(π) = 0 ,
(3.3.2)

c(π) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3∥v + w∥2

L2(π) − 3

(︂
(y−x,v+w)π

)︂2

+
∥y−x∥2

L2(π)
+∥w − v∥2

L2(π) if ∥y − x∥L2(π) > 0 ,

∥w − v∥2
L2(π) , if ∥y − x∥L2(π) = 0 .

(3.3.3)

Note that c̃(π) = c(π) whenever ∥y − x∥L2(π) > 0.

Remark 3.3.1. It may appear tempting to consider instead of c̃ a different object, namely
ĉ(π) :=

´
Γ×Γ d̃

2(︂(x, v), (y, w)
)︂

dπ. Let us start by noticing that ĉ(π) involves first a point-
wise optimisation of d̃2

T ((x, v), (y, w)) in T , for each pair of states (x, v) and (y, w), and then
an integration over all pairs ((x, v), (y, w)) ∈ supp(π). By contrast, as the next result shows,
c̃(π) is given by one synchronous minimisation over T > 0 for the cost c̃T (π). We justify
why c̃ is more natural for our purposes. Let us consider µ ∈ P2(Γ), such that (prv)#µ ̸= δ0.
Let σ : Γ → [0,∞) be a measurable map, and let Gσ : Γ → Γ be defined by the formula
Gσ(x, v) = (x+ σ(x, v), v). Then, by calling νσ = (Gσ)#µ, we have that

inf
π∈Π(µ,νσ)

ĉ(π) = 0 .

By contrast,
inf

π∈Π(µ,νσ)
c̃(π) = 0

if and only if σ ≡ T , for some T ∈ [0,∞). This shows that the optimal-transport problem
associated with ĉ is much more degenerate than the one associated with c̃. Finally, by taking
the curve t ↦→ µt := νtσ, we have that

∀ 0 < t < s , inf
π∈Π(µt,µs)

ĉ(π) = 0 ,

which means that the curve (µt)t is everywhere differentiable in the optimal-transport dis-
crepancy induced by ĉ. On the other hand, it is easy to see that this curve does not solve
any Vlasov’s equation (3.1.14) in general. Thus, we would not be able to recover the PDE
representation of Theorem 3.1.7 in case we used ĉ instead of c̃.

Proposition 3.3.2 (Theorem 3.1.1, Statement 1). For every π ∈ P2(Γ × Γ), we have
c̃(π) = inf

T >0
c̃T (π) . (3.3.4)

The infimum is obtained for⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
T = 2

∥y − x∥2
L2(π)

(y − x, v + w)π

if (y − x, v + w)π > 0 ,

any T > 0 if ∥y − x∥L2(π) = 0 ,
T → ∞ otherwise.

(3.3.5)
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In particular, the function π ↦→ c̃(π) is concave, and (3.1.11) holds for every µ, ν ∈ P2(Γ).

Proof. The proof is identical to that of Proposition 3.2.8, 1. The function c̃ is concave because
it is an infimum of linear functions.

Lemma 3.3.3. Let µk → µ and νk → ν be two converging sequences in the 2-Wasserstein
distance. Let πk ∈ Π(µk, νk) for every k, and assume that (πk)k narrowly converges to a
measure π ∈ P(Γ × Γ). Then, convergence holds in W2, we have π ∈ Π(µ, ν), and

c(π) ≤ lim inf
k→∞

c(πk) . (3.3.6)

Proof. Convergence holds in W2 by [AGS08, Remark 7.1.11]. The measure π lies in Π(µ, ν)
by narrow continuity of the projection maps. We claim that the four functions

F1(x, v, y, w) := |v + w|2 , F2(x, v, y, w) :=
⃓⃓
(y − x) · (v + w)

⃓⃓
,

F3(x, v, y, w) := |y − x|2 , F4(x, v, y, w) := |w − v|2

are uniformly integrable with respect to (πk)k. Indeed, as

Fi(x, v, y, w) ≤ 4 max
{︂
|x|2 +|v|2 ,|y|2 +|w|2

}︂
, i ∈ {1, 2, 3, 4} ,

for a > 0, we find that
ˆ

{Fi≥a}
Fi dπk ≤ 4

ˆ
{|x|2+|v|2≥ a

4 }

(︂
|x|2 +|v|2

)︂
dµk + 4

ˆ
{|y|2+|w|2≥ a

4 }

(︂
|y|2 +|w|2

)︂
dνk .

Then, the claim follows from the uniform integrability of the second moments of (µk)k

and (νk)k, given by [AGS08, Proposition 7.1.5].

If ∥y − x∥L2(π) > 0, then ∥y − x∥L2(πk) > 0 eventually; hence c(π) = c̃(π) and c(πk) = c̃(πk)
for every k sufficiently large. Since the functions Fi are uniformly integrable, through [AGS08,
Lemma 5.1.7], we find that c̃(πk) → c̃(π). Therefore,

c(π) = c̃(π) = lim
k→∞

c̃(πk) = lim
k→∞

c(πk) .

If, instead, ∥y − x∥L2(π) = 0, then

c(π) =∥w − v∥2
L2(π) ≤ lim inf

k→∞
∥w − v∥2

L2(πk) ≤ lim inf
k→∞

c(πk) .

Proposition 3.3.4 (Theorem 3.1.1, Statement 2). The lower-semicontinuous envelope of d̃
w.r.t. the 2-Wasserstein distance over P2(Γ) is the discrepancy d.

Proof. Firstly, let us show that d is lower-semicontinuous. Let µk → µ and νk → ν
be two W2-convergent sequences. For every k ∈ N, choose πk ∈ Π(µk, νk) so that we
have

⃓⃓⃓
c(πk) − d2(µk, νk)

⃓⃓⃓
→ 0. By Prokhorov’s theorem, see [Bog07, Theorem 8.6.2], up to

subsequences, (πk)k is narrowly convergent to a certain measure π. By Lemma 3.3.3 we
deduce that π ∈ Π(µ, ν), and therefore

d2(µ, ν)
(3.1.10)

≤ c(π)
(3.3.6)

≤ lim inf
k→∞

c(πk) = lim inf
k→∞

d2(µk, νk) .
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Secondly, we shall find sequences µ̄k → µ and ν̄k → ν (w.r.t. W2) such that

d2(µ, ν) ≥ lim sup
k→∞

d̃2(µ̄k, ν̄k) .

Let (π̄k)k∈N ⊆ Π(µ, ν) be such that c(π̄k) → d2(µ, ν) as k → ∞. If c(π̄k) = c̃(π̄k) for
infinitely many k’s, then, up to subsequences,

d2(µ, ν) = lim
k→∞

c(π̄k) = lim
k→∞

c̃(π̄k) ≥ d̃2(µ, ν) ,

i.e., it suffices to take the constant sequences µ̄k := µ and ν̄k := ν. Otherwise, up to
subsequences, we have c(π̄k) < c̃(π̄k) for every k, which implies that

∥y − x∥L2(π̄k) = 0 and ∥v + w∥L2(π̄k) > 0 , k ∈ N . (3.3.7)

In this case, we set

Rk(x, v, y, w) :=
(︄
x, v, y + v + w

k + 1 , w
)︄
, π̃k := (Rk)#π̄k , k ∈ N , (3.3.8)

as well as

µ̄k := (prx,v)#π̃k = µ , ν̄k := (pry,w)#π̃k ∈ P2(Γ) , k ∈ N .

From (3.3.7) and (3.3.8), it follows that ∥y − x∥L2(π̃k) = 1
k+1∥v + w∥L2(π̄k) > 0, and since

x = y holds π̄k-a.e., we infer that y − x = v+w
k+1 holds π̃k-a.e. Consequently,

c̃(π̃k) =∥w − v∥2
L2(π̃k) =∥w − v∥2

L2(π̄k) .

Thus,
d̃2(µ̄k, ν̄k) ≤ c̃(π̃k) =∥w − v∥2

L2(π̄k) ≤ c(π̄k) → d2(µ, ν) as k → ∞ .

Using that (pry,w, pry,w ◦Rk)#π̄k ∈ Π(ν, ν̄k), we find

W2(ν, ν̄k) ≤
∥v + w∥L2(π̄k)

k + 1 ≤
∥v∥L2(µ) +∥v∥L2(ν)

k + 1 → 0 as k → ∞ ,

which shows that ν̄k → ν, as desired.

Proposition 3.3.5 (Theorem 3.1.1, Statement 3). Problem (3.1.10) admits a minimiser.

Proof. By Lemma 3.3.3, the function c is narrowly lower-semicontinuous on Π(µ, ν). The
set Π(µ, ν) is narrowly compact by Prokhorov’s theorem, hence a minimiser of c exists.

We will denote by Πo,d(µ, ν) the set of minimisers. An analogue of Proposition 3.3.5 does not
hold for d̃, namely, it is possible that no minimiser in (3.1.9) exists.

Example 3.3.6. Let n = 2. For every ϵ ≥ 0 and t ∈ R, set

Mx
ϵ (t) := (sin 2π(t+ ϵ), cos 2π(t+ ϵ)) ∈ X ,

M v
ϵ (t) := d

dtM
x
ϵ (t) ∈ V

Mϵ(t) :=
(︂
Mx

ϵ (t),M v
ϵ (t)

)︂
∈ Γ ,
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and observe that these functions are of class C∞ with bounded derivatives, uniformly in t
and ϵ. Define the measure µ := (Mϵ)#

(︂
dt|(0,1)

)︂
, which is independent of ϵ, and choose

πϵ := (M0,Mϵ)#
(︂
dt|(0,1)

)︂
∈ Π(µ, µ) , ϵ ≥ 0 .

If 0 < ϵ ≪ 1, then ∥y − x∥L2(πϵ) > 0, and we can write

c̃(πϵ)
(3.3.2)= 12

ˆ 1

0

⃓⃓
M v

0 (t)
⃓⃓2 dt− 12

(︃´ 1
0 M

v
0 (t) ·

(︂
Mx

ϵ (t) −Mx
0 (t)

)︂
dt+ o(ϵ)

)︃2

+´ 1
0
⃓⃓
Mx

ϵ (t) −Mx
0 (t)

⃓⃓2 dt
+ o(1)

= 12
ˆ 1

0

⃓⃓
M v

0 (t)
⃓⃓2 dt− 12

(︂´ 1
0 ϵ
⃓⃓
M v

0 (t)
⃓⃓2 dt+ o(ϵ)

)︂2

+

ϵ2
´ 1

0
⃓⃓
M v

0 (t)
⃓⃓2 dt+ o(ϵ2)

+ o(1) = o(1) ,

where, in the last identity, we used that
´ 1

0
⃓⃓
M v

0 (t)
⃓⃓2 dt = ∥v∥2

L2(µ) > 0. This proves
that d̃(µ, µ) = 0. However, assume that there exists π ∈ Π(µ, µ) such that c̃(π) = 0.
If ∥y − x∥L2(π) = 0, then ∥v + w∥L2(π) =∥v − w∥L2(π) = 0, which implies that ∥v∥L2(µ) = 0,
which is absurd. If, instead, ∥y − x∥L2(π) > 0, then v = w for π-a.e. (v, w), and we have
equality in the Cauchy–Schwarz inequality

(y − x, v + w)π ≤∥y − x∥L2(π)∥v + w∥L2(π) ,

which means that either v = w = 0 for π-a.e. (v, w) (hence ∥v∥L2(µ) = 0), or y = x+ Tv for
some T > 0, for π-a.e. (x, y, v). The latter case is excluded by observing that (GT )#µ ̸= µ
for every T > 0, as its space marginal (prx ◦ GT )#µ lies on a circle with radius strictly larger
than 1.

Corollary 3.3.7. There exists a measurable selection (µ, ν) ↦→ πµ,ν ∈ Πo,d(µ, ν).

Remark 3.3.8. We prove measurability w.r.t. the Borel σ-algebra of the 2-Wasserstein topology,
which is the same as that of the narrow topology, e.g., by the Lusin–Suslin theorem [Kec95b,
Theorem 15.1].

Proof of Corollary 3.3.7. We shall invoke [BP73, Corollary 1]. By [Vil09b, Theorem 6.18], the
metric spaces X :=

(︂
P2(Γ) × P2(Γ),W2 ⊕ W2

)︂
and Y :=

(︂
P2(Γ × Γ),W2

)︂
are complete

and separable. The set

D :=
{︃(︂

(µ, ν), π
)︂

∈
(︂
P2(Γ) × P2(Γ)

)︂
× P2(Γ × Γ) : π ∈ Π(µ, ν)

}︃
is Borel, as it is the preimage of 0 through the continuous map(︂

(µ, ν), π
)︂

↦−→ W2
(︂
(prx,v)#π, µ

)︂
+ W2

(︂
(pry,w)#π, ν

)︂
.

Each section
Dµ,ν = Π(µ, ν) , µ, ν ∈ P2(Γ)

is compact by Prokhorov’s theorem and Lemma 3.3.3. Again by Lemma 3.3.3, the real-valued
function c is lower-semicontinuous on Dµ,ν , for every µ, ν. Furthermore, by Proposition 3.3.5,
for every µ, ν, there exists π ∈ Dµ,ν such that c(π) = inf π̃∈Dµ,ν c(π̃). Therefore, the hypotheses
of [BP73, Corollary 1] are satisfied, and there exists a measurable function (µ, ν) ↦→ πµ,ν ∈ Dµ,ν

such that c(πµ,ν) = inf π̃∈Dµ,ν c(π̃) for every µ, ν ∈ P2(Γ).

Remark 3.3.9. With a similar proof, one can show the existence of a measurable selec-
tion (T, µ, ν) ↦→ πT,µ,ν , where πT,µ,ν is a d̃T -optimal plan between µ and ν.
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3.3.2 Existence of kinetic optimal maps
Proposition 3.3.10 (Theorem 3.1.1, Statement 4). Let µ, ν ∈ P2(Γ). Assume that µ is
absolutely continuous with respect to the Lebesgue measure. Then, for every T > 0, there
exists a unique transport plan πT ∈ Π(µ, ν) optimal for d̃T (µ, ν). Moreover, πT is induced by
a measurable function MT := Γ → Γ, i.e., πT = (id,MT )#µ.
Furthermore, there exists a transport map M such that (id,M)#µ is optimal for the time-
independent discrepancy d(µ, ν), i.e., (id,M)#µ ∈ Πo,d(µ, ν).

Note that we state uniqueness of the map for d̃T , but not for d, see also §3.3.3 below.

Proof. The first part of the statement, namely the uniqueness of πT and its representation πT =
(id,MT )#µ, follows from the classical theory of optimal transport, see in particular [Vil09b,
Theorems 10.26 & 10.38]. To apply these theorems, we observe that

1. the function d̃2
T is smooth,

2. the twist condition is satisfied, i.e.,

(y, w) ↦−→ ∇x,vd̃
2
T

(︂
(x, v), (y, w)

)︂
is injective for every (x, v) ∈ Γ.

Let us now move to the proof of the second part of the statement. Let π ∈ Πo,d(µ, ν) be an
optimal transport plan. We will distinguish three cases.

Case 1. Assume that ∥y − x∥L2(π) = 0, i.e., y = x for π-a.e. (x, y). By disintegration, there
exists a measure-valued measurable map x ↦→ πx ∈ P(V × V) withˆ

φ(x, v, y, w) dπ =
¨

φ(x, v, x, w) dπx(v, w) dη(x) , φ ∈ Cb(Γ × Γ) , (3.3.9)

where η := (prx)#π = (prx)#µ. Note that we can also write η = (pry)#π = (prx)#ν. Set

µx := (prv)#πx , νx := (prw)#πx , x ∈ X . (3.3.10)

Since µ admits a density, so does µx for η-a.e. x ∈ X . In particular, there exists a unique
W2-optimal transport map from µx to νx for η-a.e. x, see [AGS08, Theorem 6.2.4]. Therefore,
we can apply [FGM10, Theorem 1.1] and get a Borel map M2 : Γ → V such that, for η-
a.e. x ∈ V , the transport plan

(︂
id,M2(x, ·)

)︂
#
µx is optimal for the 2-Wasserstein distance

between µx and νx. In particular,ˆ ⃓⃓
v −M2(x, v)

⃓⃓2 dµ =
ˆ ⃓⃓

v −M2(x, v)
⃓⃓2 dπ

(3.3.9)=
¨ ⃓⃓

v −M2(x, v)
⃓⃓2 d(prv)#πx(v) dη(x)

(3.3.10)=
¨ ⃓⃓

v −M2(x, v)
⃓⃓2 dµx(v) dη(x)

≤
¨

|w − v|2 dπx(v, w) dη(x)

(3.3.9)=
ˆ

|w − v|2 dπ = d2(µ, ν) ,
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where the inequality follows from the optimality of M2. Moreover, M : (x, v) ↦→
(︂
x,M2(x, v)

)︂
defines a transport map from µ to ν. We conclude that (id,M)#µ ∈ Πo,d(µ, ν).

Case 2. Assume that ∥y − x∥L2(π) > 0 and (y − x, v + w)π > 0. Define T as in (3.3.5). In
this case, π is optimal for d̃T (µ, ν), and it is induced by a map.

Case 3. Assume that ∥y − x∥L2(π) > 0 and (y − x, v + w)π ≤ 0. We apply disintegration
to µ and ν to find maps v ↦→ µv and v ↦→ νv such that

µ(dx, dv) = µv(dx)(prv)#µ(dv) and ν(dx, dv) = νv(dx)(prv)#ν(dv) .

Note that (prv)#µ and (prv)#µ-almost every measure µv are absolutely continuous.

Consider the cost (v, w) ↦→ 3|v + w|2 +|w − v|2. Since this function is smooth and satisfies
the twist condition, once again we infer the existence of a Borel map B := V → V optimal
for such a cost from (prv)#µ to (prv)#ν. Let A : Γ → X be any Borel function such
that A(·, v)#µv = νB(v) for (prv)#µ-a.e. v ∈ V . The existence of A can be deduced,
e.g., from [FGM10, Theorem 1.1]. We claim that the map M : (x, v) ↦→

(︂
A(x, v), B(v)

)︂
defines an optimal transport map between µ and ν. By construction, M#µ = ν and, by
optimality of B, we conclude the proof of our claim:

c
(︂
(id,M)#µ

)︂ (3.3.3)
≤ 3

⃦⃦
v +B(v)

⃦⃦2
L2(µ) +

⃦⃦
v − B(v)

⃦⃦2
L2(µ)

≤ 3∥v + w∥2
L2(π) +∥w − v∥2

L2(π) = d2(µ, ν) .

3.3.3 Additional results
Non-uniqueness

Fix µ, ν ∈ P2(Γ). If µ is absolutely continuous, then for every T > 0, there exists a unique
minimiser for c̃T in Π(µ, ν), and this plan is induced by a map. This fact follows from the
classical theory of optimal transport, cf. [Vil09b, Theorems 10.26 & 10.38]. Nonetheless,
non-uniqueness in Πo,d(µ, ν) may arise in several ways, for example:

• there may be two different times T1, T2 > 0 for which

d2(µ, ν) = inf
π∈Π(µ,ν)

c̃T1(π) = inf
π∈Π(µ,ν)

c̃T2(π)

• in the proof of Case 3 in Proposition 3.3.10 there is freedom in the choice of the
map A : Γ → X for which M : (x, v) ↦→

(︂
A(x, v), B(v)

)︂
is optimal.

Let us provide an example of non-uniqueness.

Example 3.3.11. Fix

X1 = (x1, v1) ∈ Γ , X2 = (x2, v2) ∈ Γ , S > 0 ,

and set
µ := 1

2δX1 + 1
2δX2 , ν := 1

2δGS(X1) + 1
2δX2 .

Note that Π(µ, ν) coincides with the set of all the convex combinations of

π1 := 1
2δ(X1,GS(X1)) + 1

2δ(X2,X2) , π2 := 1
2δ(X1,X2) + 1

2δ(X2,GS(X1)) .
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Let us assume that {x1, x2} ̸= {x1 + Sv1, x2}. Then, c = c̃ on Π(µ, ν). Taking also into
account the concavity of c̃ (see Proposition 3.3.2), we deduce that

d2(µ, ν) = inf
π∈Π(µ,ν)

c(π) = inf
π∈Π(µ,ν)

c̃(π) = min
{︁
c̃(π1), c̃(π2)

}︁
.

Straightforward computations yield

c̃(π1) = 6|v2|2 , c̃(π2) = 3|v1 + v2|2 − 3S2

2

(︂
|v1|2 + v1 · v2

)︂2

+

|x2 − x1|2 +|x2 − x1 + Sv1|2
+|v2 − v1|2 .

If, for example, we choose x1 = x2 and v1 ⊥ v2, we find

c̃(π1) = c̃S(π1) = 6|v2|2 , c̃(π2) = c̃2S(π2) = 5
2 |v1|2 + 4|v2|2 .

Therefore, when, additionally, 5|v1|2 = 4|v2|2, both plans π1 and π2 are optimal. Note that
they are induced by maps, and that their corresponding optimal times are different: S for π1
and 2S for π2. We also observe that S is exactly the optimal time for (3.1.5) between (x1, v1)
and (x1 + Sv1, v1), while 2S is the optimal time between (x1, v2) and (x1 + Sv1, v1). In this
case, the structure of c disadvantages intermediate times between S and 2S.

Characterisation of d = 0

We provide a characterisation of the measures µ, ν such that d(µ, ν) = 0, analogous to the
particle case of Remark 3.2.9.

Proposition 3.3.12. Let µ, ν ∈ P2(Γ). We have d(µ, ν) = 0 if and only if one of the
following holds:

1. ν = (GT )#µ for some T ≥ 0,

2. or (prv)#µ = (prv)#ν = δ0.

If (prv)#µ ̸= δ0 and ν = (GT )#µ for a T ≥ 0, then such a T is unique, and Πo,d(µ, ν) ={︂
(id,GT )#µ

}︂
.

Proof. If ν = (GT )#µ for some T ≥ 0, we have c
(︂
(id,GT )#µ

)︂
= 0. If (prv)#µ = (prv)#ν =

δ0, then every π ∈ Π(µ, ν) has zero cost.

Conversely, assume that d(µ, ν) = 0. By Proposition 3.3.5, there exists π ∈ Π(µ, ν)
with c(π) = 0. By the definition of c, we must have v = w for π-a.e. (v, w). If x = y
for π-a.e. (x, y), then π = (id, id)#µ. Otherwise, we have equality in the inequality

(y − x, v + w)π ≤∥y − x∥L2(π)∥v + w∥L2(π) .

This can happen only if v = w = 0 for π-a.e. (v, w), or if there exists T ≥ 0 such
that y = x+ Tv for π-a.e. (x, y, v).

Assume that (prv)#µ ̸= δ0. We have already proved that every π ∈ Πo,d(µ, ν) is of the
form π = (id,GT )#µ for some T . Let us assume, by contradiction, that ν = (GT1)#µ =
(GT2)#µ for some T1, T2 ≥ 0 with T1 < T2. By the semigroup property:

ν = (GT2)#µ = (GT2−T1)#(GT1)#µ = (GT2−T1)#ν = · · · = (G(T2−T1)k)#ν
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for every k ∈ N>0. For every φ ∈ Cc(Γ) and k ∈ N>0, we thus find
ˆ
φ(x, v) dν =

ˆ
φ
(︂
x+ k(T2 − T1)v, v

)︂
dν .

Note that limk→∞
⃓⃓
x+ k(T2 − T1)v

⃓⃓
= ∞ whenever v ̸= 0; hence, since φ is compactly

supported, the dominated convergence theorem yields
ˆ
φ(x, v) dν =

ˆ
{v=0}

φ(x, 0) dν .

Hence, ˆ
φ(x+ T1v, v) dµ =

ˆ
{v=0}

φ(x, 0) dµ ,

which can hold for every φ ∈ Cc(Γ) only if (prv)#µ = δ0.

Corollary 3.3.13. Let µk ⇀ µ and νk ⇀ ν be two narrowly convergent sequences in P2(Γ).
For every k ∈ N, pick one πk ∈ Πo,d(µk, νk). Assume:

(a) limk→∞ d(µk, νk) = 0,

(b) (prv)#µ ̸= δ0,

(c) supk min
{︂
∥v∥L2(µk) ,∥v∥L2(νk)

}︂
< ∞.

Then, d(µ, ν) = 0, so that ν = (GT )#µ for a T ≥ 0. Finally, πk ⇀ (id,GT )#µ ∈ Πo,d(µ, ν).

Remark 3.3.14. This corollary would easily follow from Proposition 3.3.12, Lemma 3.3.3,
and the lower semicontinuity of d if we assumed convergence of (µk)k and (νk)k w.r.t. W2.
Instead, we assume here only narrow convergence.

Proof of Corollary 3.3.13. Since (µk)k and (νk)k are convergent, they are tight. Therefore,
the same is true for (πk)k. By Prokhorov’s theorem, the sequence (πk)k admits at least one
narrow limit. If one such limit π satisfies c(π) = 0, then π ∈ Πo,d(µ, ν) and d(µ, ν) = 0,
which yields, by Proposition 3.3.12, ν = (GT )#µ and π = (id,GT )#µ for some unique T ≥ 0
(independent of the limit π). If, every limit π satisfies c(π) = 0, then there exists only one
limit of the sequence (πk)k, namely (id,GT )#µ.

Let us thus prove that every limit π satisfies c(π) = 0. Up to extracting a subsequence, πk ⇀ π.
To begin with, let us note that, by lower semicontinuity of the norm w.r.t. narrow convergence,

∥w − v∥L2(π) ≤ lim inf
k→∞

∥w − v∥L2(πk)

(3.1.10)
≤ lim inf

k→∞
d(µk, νk) = 0 .

Moreover, by the triangle inequality,

lim sup
k→∞

∥v + w∥L2(πk) ≤ lim sup
k→∞

(︃
∥w − v∥L2(πk) + 2 min

{︂
∥v∥L2(µk) ,∥v∥L2(νk)

}︂)︃
≤ 2 sup

k
min

{︂
∥v∥L2(µk) ,∥v∥L2(νk)

}︂
,

and the last term is bounded by Assumption (c). Thus, up to subsequences, we may assume
that ∥v + w∥L2(πk) converges to a number a ∈ R≥0. Up to subsequences, we can also assume

109
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that ∥y − x∥L2(πk) converges, to an either real or infinite quantity b ∈ R≥0 ∪ {∞}. If a = 0,
then, by lower semicontinuity of the norm w.r.t. narrow convergence,

c(π)
(3.3.3)

≤ 3∥v + w∥2
L2(π) +∥w − v∥2

L2(π) ≤ 3 lim inf
k→∞

∥v + w∥2
L2(πk) = 3a2 = 0 .

If b = 0, again by lower semicontinuity, ∥y − x∥L2(π) = 0, hence c(π) =∥w − v∥2
L2(π) = 0.

From now on, let us assume a, b > 0 and, possibly up to subsequences, that ∥v + w∥L2(πk)
and ∥y − x∥L2(πk) are strictly positive for every k. Define

ck :=
ˆ ⃓⃓⃓⃓
⃓⃓ v + w

∥v + w∥L2(πk)
− y − x

∥y − x∥L2(πk)

⃓⃓⃓⃓
⃓⃓
2

dπk , k ∈ N .

We find that

∥v + w∥2
L2(π) −

(︂
(y − x, v + w)π

)︂2

+

∥y − x∥2
L2(π)

=∥v + w∥2
L2(π) ·

(︄
1 −

(︃
1 − ck

2

)︃2

+

)︄

and, consequently,

lim sup
k→∞

min
{︃
ck

2 , 1
}︃

≤ lim sup
k→∞

(︄
1 −

(︃
1 − ck

2

)︃2

+

)︄
≤ lim sup

k→∞

d2(µk, νk)/3
∥v + w∥2

L2(π)
= 0
a2 = 0 .

This proves that ck → 0. Let φ ∈ Cc(Γ × Γ) be non-negative. The convergence⃓⃓⃓⃓
⃓⃓ v + w

∥v + w∥L2(πk)
− y − x

∥y − x∥L2(πk)

⃓⃓⃓⃓
⃓⃓
2

φ →
⃓⃓⃓⃓
⃓v + w

a
− y − x

b

⃓⃓⃓⃓
⃓
2

φ

is uniform. Thus, the narrow convergence πk ⇀ π yields

ˆ ⃓⃓⃓⃓
⃓v + w

a
− y − x

b

⃓⃓⃓⃓
⃓
2

φ dπ = lim
k→∞

ˆ ⃓⃓⃓⃓
⃓⃓ v + w

∥v + w∥L2(πk)
− y − x

∥y − x∥L2(πk)

⃓⃓⃓⃓
⃓⃓
2

φ dπk

≤∥φ∥∞ lim inf
k→∞

ck = 0 ,

and, by arbitrariness of φ,

v + w

a
= y − x

b
for π-a.e. (x, v, y, w) .

Using the definition (3.3.3) of c, we infer that c(π) =∥w − v∥2
L2(π) = 0.

Corollary 3.3.15. In the setting of Corollary 3.3.13, additionally set

Tk :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

∥y − x∥L2(πk)

(y − x, v + w)πk

if (y − x, v + w)πk
> 0 ,

0 if ∥y − x∥L2(πk) = 0 ,
∞ otherwise.

k ∈ N . (3.3.11)

Then, T := limk→∞ Tk exists, is finite, and ν = (GT )#µ.
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Proof. We know from Corollary 3.3.13 that πk ⇀ (id,GT̃ )#µ for some T̃ ≥ 0. Up to extracting
a subsequence, we may assume that T := limk→∞ Tk exists in R≥0 ∪ {∞}. We shall prove
that T = T̃ .
If ∥y − x∥L2(πk) = 0 frequently, then T = 0 and, by semicontinuity, we obtain

0 =∥y − x∥
L2
(︂

(id,GT̃ )#µ

)︂ = T̃∥v∥L2(µ) ;

hence, T̃ = 0. Up to subsequences, we can from now on assume that ∥y − x∥L2(πk) > 0 for
every k. By Proposition 3.3.2, we have

d(µk, νk) = c(πk) = c̃(πk) ≥
ˆ ⃓⃓⃓⃓
⃓y − x

Tk

− v + w

2

⃓⃓⃓⃓
⃓
2

dπk , k ∈ N .

Let φ ∈ Cc(Γ × Γ) be non-negative and assume that T > 0. Then, the convergence⃓⃓⃓⃓
⃓y − x

Tk

− v + w

2

⃓⃓⃓⃓
⃓
2

φ →
⃓⃓⃓⃓
⃓y − x

T
− v + w

2

⃓⃓⃓⃓
⃓
2

φ

is uniform; hence,
ˆ ⃓⃓⃓⃓
⃓⃓ T̃T v − v

⃓⃓⃓⃓
⃓⃓
2

φ dµ = lim
k→∞

ˆ ⃓⃓⃓⃓
⃓y − x

Tk

− v + w

2

⃓⃓⃓⃓
⃓
2

φ dπk ≤∥φ∥∞ lim inf
k→∞

d(µk, νk) = 0 .

This proves, by arbitrariness of φ, that T̃
T
v = v for (prv)#µ-a.e. v. Since, by assump-

tion, (prv)#µ ̸= δ0, we conclude that T̃ = T .
Let again φ ∈ Cc(Γ × Γ) be non-negative and assume that T = 0. Now the convergence⃓⃓⃓⃓

⃓y − x− Tk
v + w

2

⃓⃓⃓⃓
⃓
2

φ →|y − x|2 φ

is uniform; hence,
ˆ ⃓⃓⃓

T̃ v
⃓⃓⃓2
φ dµ = lim

k→∞

ˆ ⃓⃓⃓⃓
⃓y − x− Tk

v + w

2

⃓⃓⃓⃓
⃓
2

φ dπk ≤∥φ∥∞ lim inf
k→∞

Tkd(µk, νk) = 0 .

We conclude, as before, that T̃ = 0 = T .

3.4 Dynamical formulations of kinetic optimal transport
This section, devoted to the dynamical formulations of kinetic optimal transport that we
introduced in §3.1 (see (3.1.13) and (3.1.15)), is organised as follows.

• In §3.4.1, we explore dynamical transport plans in the kinetic setting and prove the
equality of d̃T and ñT , together with the existence of a minimiser for (3.1.13).

• In §3.4.2, we better characterise the optimal spline interpolations stemming from
Theorem 3.4.1 and we discuss injectivity of optimal-spline flows.

• In §3.4.3, we study Vlasov’s equation (3.1.14), and we conclude the proof of Theo-
rem 3.1.2 with the kinetic Benamou–Brenier formula of Theorem 3.4.10.

• In §3.4.4, we show propagation of second-order moments along solutions to (3.1.14).
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3.4.1 Dynamical plans
For a fixed T > 0, a T -dynamical (transport) plan between µ, ν ∈ P2(Γ) is a probability
measure m ∈ P

(︂
H2(0, T ; X )

)︂
subject to the endpoint conditions (3.1.12).

The theorem below shows that minimising the acceleration functional

α ↦−→ T

ˆ T

0

ˆ
H2(0,T ;X )

⃓⃓⃓
α′′(t)

⃓⃓⃓2
dm(α) dt

along T -dynamical plans between µ and ν is equivalent to computing d̃2
T (µ, ν) via (3.1.8).

The leading idea is that optimal T -dynamical plans between µ and ν are supported on T -splines
between points (x, v) ∈ supp(µ) and (y, w) ∈ supp(ν). Splines are uniquely determined
by their endpoints, and their total squared acceleration equals d̃2

T

(︂
(x, v), (y, w)). Endpoints

chosen according to an optimal coupling π for d̃2
T (µ, ν) determine an optimal m.

Theorem 3.4.1. For every µ, ν ∈ P2(Γ) and T > 0, the problem (3.1.13) admits a minimiser.
Moreover, we have the identity

ñT (µ, ν) = d̃T (µ, ν) . (3.4.1)

Proof. Fix T > 0. We build a correspondence between admissible dynamical transport plans for
(3.1.13) and plans in Π(µ, ν). If m ∈ P

(︂
H2(0, T ; X )

)︂
is admissible (i.e., it satisfies (3.1.12)),

we have that

πm :=
(︄

pr(︂
α(0),α′(0)

)︂, pr(︂
α(T ),α′(T )

)︂)︄
#

m ∈ Π(µ, ν) . (3.4.2)

Conversely, given π ∈ Π(µ, ν), we construct a T -dynamical plan as follows: mπ is the push-
forward of π through the map

(︂
(x, v), (y, w)

)︂
↦→ αT

x,v,y,w(·), see (3.2.2). Note πmπ = π

for π ∈ Π(µ, ν), and mπm = m for all T -dynamical plans m concentrated on T -splines.

Let m be any admissible dynamical transport plan in (3.1.13). For every α, it is clear from
(3.1.4) that T

´ T

0 |α′′(t)|2 dt ≥ 12
⃓⃓⃓

y−x
T

− v+w
2

⃓⃓⃓2
+ |v − w|2, where (x, v), (y, w) are the

endpoints of α. Equality holds if and only if α is minimal in (3.1.4). Thus,

T

ˆ T

0

ˆ
H2(0,T ;X )

|α′′(t)|2 dm(α) dt =
ˆ

H2(0,T ;X )
T

ˆ T

0
|α′′(t)|2 dt dm(α)

≥
ˆ

H2(0,T ;X )

⎛⎝12
⃓⃓⃓⃓
⃓α(T ) − α(0)

T
− α′(0) + α′(T )

2

⃓⃓⃓⃓
⃓
2

+ |α′(0) − α′(T )|2
⎞⎠ dm(α)

=
ˆ

Γ×Γ

⎛⎝12
⃓⃓⃓⃓
⃓y − x

T
− v + w

2

⃓⃓⃓⃓
⃓
2

+ |v − w|2
⎞⎠ dπm

(︂
(x, v), (y, w)

)︂
≥ d̃2

T (µ, ν) .

Optimising in m, we find ñT (µ, ν) ≥ d̃T (µ, ν).
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Turning to the converse inequality, let π be optimal in the definition (3.1.8) of d̃T (µ, ν). By
definition of mπ, we have

ñ2
T (µ, ν) ≤ T

ˆ T

0

ˆ
H2(0,T ;X )

|α′′(t)|2dmπ(α) dt

=
ˆ

Γ×Γ
T

ˆ T

0

⃓⃓⃓
(αT

x,v,y,w)′′(t)
⃓⃓⃓2

dt dπ
(︂
(x, v), (y, w)

)︂

=
ˆ

Γ×Γ

⎛⎝⃓⃓⃓⃓⃓y − x

T
− v + w

2

⃓⃓⃓⃓
⃓
2

+ |v − w|2
⎞⎠ dπ = d̃2

T (µ, ν) ,

thanks to the fact that mπ is supported on T -splines αT
x,v,y,w. As a by-product, we have that

mπ is optimal in the minimisation problem for ñT (µ, ν).

Remark 3.4.2. By optimising in T , and then taking the lower semi-continuous relaxation sc−
W2

in d̃T (µ, ν) = ñT (µ, ν), we also have that

d̃2(µ, ν) = inf
T >0

inf
m∈P

(︂
H2(0,T ;X )

)︂
⎧⎨⎩T

ˆ T

0

ˆ ⃓⃓⃓
α′′(t)

⃓⃓⃓2
dm(α) dt subject to (3.1.12)

⎫⎬⎭ ,

d2(µ, ν) = sc−
W2 inf

T >0
inf

m∈P
(︂

H2(0,T ;X )
)︂
⎧⎨⎩T

ˆ T

0

ˆ ⃓⃓⃓
α′′(t)

⃓⃓⃓2
dm(α) dt subject to (3.1.12)

⎫⎬⎭ .

3.4.2 Spline interpolation and injectivity
As pointed out in §3.1.2, interpolation of measures based on splines is relevant for various
applications. For all µ, ν ∈ P2(Γ), all T > 0, and π ∈ Π(µ, ν) such that π is optimal for
d̃T (µ, ν), the proof of Theorem 3.4.1 provides us with an optimal dynamical transport plan mπ.
The plan mπ is supported on splines (parametrised on [0, T ]) joining points of supp(µ) and
supp(ν). Hence, we can interpret the curve

[0, T ] ∋ t ↦−→ µ̄t :=
⎛⎝pr(︂

α(t),α′(t)
)︂⎞⎠

#

mπ (3.4.3)

as an optimal spline interpolation between µ and ν. In §3.4.3, we will show that the curve
(µ̄t)t satisfies an optimality criterion and it is a solution to Vlasov’s equation (3.1.14), for a
suitable force field (Ft)t.

We start with proving injectivity of the interpolation µ̄t, whenever µ ≪ dx dv.

Proposition 3.4.3 (Injective optimal spline interpolation). Fix T > 0 and µ, ν ∈ P2(Γ) such
that µ is absolutely continuous with respect to the Lebesgue measure on Γ. Then, there exists
a unique optimal T -dynamical transport plan m̄ for ñT (µ, ν) and, therefore, a unique spline
interpolation µ̄·. Moreover, for every t ∈ [0, T ], there exists a µ-a.e. injective (and measurable)
map Mt : Γ → Γ such that

µ̄t = (Mt)#µ . (3.4.4)

Proof. Existence of m̄ is ensured by Theorem 3.4.1. The plan πm̄ is a minimiser for c̃T

in Π(µ, ν). Since µ is absolutely continuous, Proposition 3.3.10 shows that πm̄ equals the
unique π̄ that is optimal for d̃T (µ, ν). Therefore,

m̄ = m̄πm̄ = m̄π̄ .
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Once (µ̄t)t∈[0,T ] has been defined as in (3.4.3), we use Proposition 3.3.10 to find, for every t ∈
[0, T ], an optimal map Mt for d̃t(µ, µ̄t). Injectivity of Mt follows from Lemma 3.4.4.

Lemma 3.4.4. Fix T > 0, and let µ, ν ∈ P2(Γ). Assume that, for a Borel map MT : Γ → Γ,
the transport plan π = (id,MT )#µ is optimal for d̃T (µ, ν). Then there exists a Borel set
A ⊆ Γ of full µ-measure such that, for every t ∈ (0, T ), the map

Mt(x, v) :=
(︃
αT

x,v,MT (x,v)(t),
(︂
αT

x,v,MT (x,v)

)︂′
(t)
)︃
, (x, v) ∈ A (3.4.5)

is injective, where αT
x,y,v,w is the solution of (3.1.4). Moreover, the set B := ⋃︁

t∈(0,T ){t} ×
Mt(A) and the map B ∋ (t, y, w) ↦→ M−1

t (y, w) are Borel measurable.

Proof. Define

A :=
{︃

(x, v) ∈ Γ :
(︂
(x, v),MT (x, v)

)︂
∈ supp π

}︃
= (id,MT )−1(supp π) ,

and notice that
µ(A) = µ

(︂
(id,MT )−1(supp π)

)︂
= π(supp π) = 1 .

By cyclical monotonicity [San15, Theorem 1.38], we know that

d̃2
T

(︂
(x1, v1),MT (x1, v1)

)︂
+ d̃2

T

(︂
(x2, v2),MT (x2, v2)

)︂
≤ d̃2

T

(︂
(x1, v1),MT (x2, v2)

)︂
+ d̃2

T

(︂
(x2, v2),MT (x1, v1)

)︂
,

for every (x1, v1), (x2, v2) ∈ A. Hence, injectivity for every t ∈ (0, T ) comes from Proposi-
tion 3.2.6. Consequently, the map

(0, T ) × A ∋ (t, x, v) ↦−→
(︂
t,Mt(x, v)

)︂
∈ B

is (Borel and) bijective. By the Lusin–Suslin theorem [Kec95b, Corollary 15.2], images of
Borel sets through injective maps are Borel, from which the second assertion follows.

3.4.3 Vlasov’s equations and the kinetic Benamou–Brenier formula
The class of Vlasov’s equations

Definition 3.4.5. Let a, b ∈ R∪ {±∞} with a < b. Let (µt)t∈(a,b) ⊆ P2(Γ) be a Borel family
of probability measures, and let F = (Ft)t : (a, b) × Γ → Rn be a time-dependent measurable
vector field. Assume that ˆ b

a

ˆ
Γ

(︂
|v| +|Ft|

)︂
dµt dt < ∞ . (3.4.6)

We say that (µt, Ft)t∈(a,b) is a solution to Vlasov’s equation

∂tµt + v · ∇xµt + ∇v · (Ft µt) = 0 (3.4.7)

if (3.4.7) is solved in the weak sense, namely

∀φ ∈ C∞
c

(︂
(a, b) × Γ

)︂ ˆ b

a

ˆ
Γ

(︂
∂tφ+ v · ∇xφ+ Ft · ∇vφ

)︂
dµt dt = 0 (3.4.8)

(or, equivalently, for every φ ∈ C1
c

(︂
(a, b) × Γ

)︂
, cf. [AGS08, Remark 8.1.1]).
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Proposition 3.4.6 ([San15, Section 4.1.2], [AGS08, Section 8.1]). Let (µt, Ft)t be a solution
to (3.4.7). Then, up to changing the representative of (µt)t (i.e., changing µt for a negligible
set of times t), the following hold.

• The curve (µt)t is continuous w.r.t. the narrow convergence of measures, and extends
continuously to the closure [a, b].

• For all functions ψ ∈ C∞
c (Γ), the mapping t ↦→

´
Γ ψ dµt(x, v) is absolutely continuous

and it holds true that
d
dt

ˆ
Γ
ψ dµt(x, v) =

ˆ
Γ

∇x,vψ · (v, Ft) dµt(x, v) , for a.e. t ∈ (a, b) . (3.4.9)

• If (µt)t has a Lipschitz continuous density (in t, x, v) and Ft is Lipschitz continuous in
x, v, then (3.4.7) is also solved in the a.e. sense.

Let (Ft)t be a vector field (a, b) × Γ → Rd, such that
ˆ b

a

(︄
sup

B
|Ft| + LipB(Ft)

)︄
dt < ∞ , (3.4.10)

for every compact set B ⋐ Γ. Then, for every (x, v) ∈ Γ, the associated flow t ↦→ Mt = (xt, vt)
given by ⎧⎨⎩Ma(x, v) = (x, v) ,

∂tMt =
(︂
vt, Ft(xt, vt)

)︂
,

(3.4.11)

is well-posed in an interval [a, a+ ϵ) with ϵ > 0, see [AGS08, Lemma 8.1.4]. In case
ˆ b

a

(︄
sup

Γ
|Ft| + LipΓ(Ft)

)︄
dt < ∞ , (3.4.12)

we have global existence of the flow Mt, i.e., (3.4.11) is well-posed in [a, b].

Proposition 3.4.7 ([AGS08, Lemma 8.1.6 & Proposition 8.1.8]). Let µ ∈ P2(Γ) and
let (Ft)t∈(a,b) be a vector field satisfying (3.4.6) and (3.4.10).

• Assume that, for µ-a.e. (x, v) ∈ Γ, the flow t ↦→ Mt(x, v) defined by (3.4.11) is
well-posed in the interval [a, b). Then, t ↦→ µt := (Mt)#µ is narrowly continuous
and (µt, Ft)t is a weak solution to (3.4.7) in (a, b).

• Conversely, given a narrowly continuous curve (µt)t∈[a,b) such that (µt, Ft)t solves (3.4.7)
on (a, b), and µa = µ, then the flow t ↦→ Mt(x, v) associated with (Ft)t is well-defined
on (a, b) for µ-a.e. (x, v), and

µt = (Mt)#µ , t ∈ (a, b) . (3.4.13)

We conclude the section by adapting the results of [AGS08, Section 8.2] to our framework.

Proposition 3.4.8 ([AGS08, Theorem 8.2.1]). Let (µt)t∈[a,b) ⊆ P2(Γ) be a narrowly continu-
ous curve such that (µt, Ft)t is a solution to (3.4.7) on (a, b), and

ˆ b

a

ˆ
Γ

(︂
|v|2 +|Ft|2

)︂
dµt dt < ∞ . (3.4.14)

Then, there exists η ∈ P
(︂
X × V × H2(a, b; X )

)︂
such that
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3. Second-Order Discrepancies Between Probability Measures

1. the measure η is supported on triples (x, v, α) such that (α, α′) is an absolutely
continuous curve solving (3.4.11), with initial conditions

(︂
α(a), α′(a)

)︂
= (x, v) ∈

supp(µa);

2. we have ⎛⎝pr(︂
α(t),α′(t)

)︂⎞⎠
#

η = µt , for all t ∈ [a, b] . (3.4.15)

Conversely, any η ∈ P
(︂
X × V × H2(a, b; X )

)︂
satisfying Condition 1 and

ˆ b

a

ˆ
H2(a,b;X )

(︂⃓⃓⃓
α′(t)

⃓⃓⃓2
+
⃓⃓⃓
Ft(α(t), α′(t))

⃓⃓⃓2)︂
dη dt < ∞ (3.4.16)

induces a solution to (3.4.7) via

µt :=
⎛⎝pr(︂

α(t),α′(t)
)︂⎞⎠

#

η , t ∈ (a, b) . (3.4.17)

The measure η is usually referred to as the lift of the curve (µt, Ft)t.

Regularising Vlasov’s equations

In various technical passages of the next sections, a suitable regularisation of Vlasov’s equation
(3.4.7) will be necessary. Namely, given a solution (µt, Ft)t to (3.4.7), we aim at finding a
family

(︂
(µϵ

t, F
ϵ
t )t

)︂
ϵ
, for ϵ > 0, such that each curve (µϵ

t, F
ϵ
t )t is a classical solution to (3.4.7)

and limϵ→0(µϵ
t, F

ϵ
t )t = (µt, Ft)t in a suitable sense. In particular, a desirable feature is that

the approximation is tight enough to ensure that limϵ→0
´ b

a
∥F ϵ

t ∥2
L2(µϵ

t) dt =
´ b

a
∥Ft∥2

L2(µt) dt,
where the non-trivial inequality is ≤.

Classically, such arguments are obtained by convolution with some regularising kernel (e.g.,
Gaussian mollifiers). A statement like [AGS08, Lemma 8.1.10]—where

´ T

0 ∥Ft∥2
L2(µt) dt is

proved to decrease under any convolution operation—holds true also in our setting, with
natural adaptations, see also the proof of the lemma below.

By contrast, we need a novel argument to get a counterpart of [AGS08, Lemma 8.1.9]. There,
distributional solutions to the continuity equation ∂tµt + ∇ · (Xtµt) = 0 are approximated
with regular solutions to the same equation, via standard convolution. Starting from a solution
to Vlasov’s equation ∂tµt + ∇x,v ·

(︂
(v, Ft)µt

)︂
= 0, the standard convolution simply yields a

solution to ∂tµ
ϵ
t + ∇x,v · (Xϵ

tµ
ϵ
t) = 0, without ensuring the structure Xϵ

t = (v, F ϵ
t ). Indeed,

the operator v · ∇x is not preserved under this regularisation.

To overcome this difficulty, we use a natural convolution product for kinetic equations, taken
from [Sil22]. Consider the Lie group of Galilean translations of R1+2n :

(t, x, v) ⋄ (s, y, w) = (t+ s, x+ sv + y, v + w) ,
s, t ∈ R , x, y ∈ X = Rn , v, w ∈ V = Rn . (3.4.18)

The Galilean inverse is given by (t, x, v)−1 = (−t,−(x − tv),−v). The Lebesgue measure
on R1+2n is invariant under left and right translations, i.e., the Galilean group is unimodular.
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3.4. Dynamical formulations of kinetic optimal transport

For finite Borel measures µ, ν on R1+2n, their Galilean convolution µ ⋆ ν is the Borel measure
defined byˆ

R1+2n

φ d(µ ⋆ ν) =
ˆ
R1+2n

ˆ
R1+2n

φ(a ⋄ b) dν(b) dµ(a) , φ ∈ Cb(R1+2n) . (3.4.19)

Measures that are absolutely continuous with respect to the Lebesgue measure will be identified
with their density. In particular, for f, g ∈ L1(R1+2n), we have

(f ⋆ ν)(a) =
ˆ
f(a ⋄ b−1) dν(b) , (µ ⋆ g)(b) =

ˆ
g(a−1 ⋄ b) dµ(a) . (3.4.20)

For vector-valued measures we apply this definition component-wise. For b ∈ R1+2n, we
consider the left shift Lb : a ↦→ b ⋄ a, and the right shift Rb : a ↦→ a ⋄ b. Then,

Lb
#(µ ⋆ ν) = (Lb

#µ) ⋆ ν , Rb
#(µ ⋆ ν) = µ ⋆ (Rb

#ν) . (3.4.21)

The relevance of the Galilean group for Vlasov’s equation becomes apparent when considering
infinitesimal Galilean translations. Indeed, for fixed b = (t, x, v) ∈ R1+2n with tv = 0, the left
translation operators

(︂
T b

s

)︂
s∈R

act on functions f ∈ L1(R1+2n) via(︂
T b

s f
)︂
(a) = f(a ⋄ sb) , a ∈ R1+2n .

These operators satisfy the group property T b
r ◦ T b

s = T b
s+r for r, s ∈ R, since tv = 0. For

smooth functions we have

d
ds

⃓⃓⃓⃓
⃓
s=0

T b
s f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tf + v · ∇xf if b = (1, 0, 0) ,
∂xi
f if b = (0, ei, 0) ,

∂vi
f if b = (0, 0, ei) .

Hence, in view of the commutation relation T b
s (f ⋆ g) = f ⋆ T b

s g, we infer that

(∂t + v · ∇x)(f ⋆ g) = f ⋆ (∂t + v · ∇x)g , ∂xi
(f ⋆ g) = f ⋆ (∂xi

g) ,
∂vi

(f ⋆ g) = f ⋆ (∂vi
g) .

(3.4.22)

Lemma 3.4.9. Let (µt, Ft)t be a solution on (a, b) to the Vlasov equation (3.4.7), with
ˆ b

a

ˆ
Γ

(︂
|v|2 +|Ft|2

)︂
dµt dt < ∞ . (3.4.23)

Then, there exists an approximating sequence
(︂
(µϵ

t, F
ϵ
t )t

)︂
ϵ>0

, such that

1. For all ϵ > 0, the function (µϵ
t, F

ϵ
t )t is smooth in (t, x, v), satisfies (3.4.6)-(3.4.10), and

solves the Vlasov equation (3.4.7) on (a, b) in the classical sense.

2. The following bounds hold true:
ˆ b

a

ˆ
Γ

|F ϵ
t |2 dµϵ

t dt ≤
ˆ b

a

ˆ
Γ

|Ft|2 dµt dt , (3.4.24)
ˆ b

a

ˆ
Γ

|v|2 dµϵ
t dt ≤

ˆ b

a

ˆ
Γ

|v|2 dµt dt+ C ϵ2 , (3.4.25)

for some constant C > 0, and for all ϵ > 0.
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3. Second-Order Discrepancies Between Probability Measures

3. The sequence
(︂
(µϵ

t, F
ϵ
t )t

)︂
ϵ

converges to (µt, Ft)t as ϵ ↓ 0 in the following sense:

∀t ∈ (a, b) µϵ
t ⇀ µt and F ϵ

t µ
ϵ
t ⇀ Ftµt , (3.4.26)

narrowly, and
∥(v, F ϵ

t )∥2
L2(µϵ

t dt) → ∥(v, Ft)∥2
L2(µt dt) . (3.4.27)

Proof. Let us take a smooth function η = η(t, x, v) : R1+2n → R≥0, with globally bounded
derivatives, unitary integral, and the moment bound

ˆ 1

−1

ˆ
Γ

|v|2η dx dv dt < ∞ ,

that is also symmetric w.r.t. the variable v (i.e., η(·, ·,−v) = η(·, ·, v), for all v ∈ V), strictly
positive when the variable t lies in (−1, 1), and equal to 0 otherwise. We introduce the
mollifiers

ηϵ(t, x, v) := ϵ−2−4nη(ϵ−2t, ϵ−3x, ϵ−1v) , ϵ > 0 .

Given (µt, Ft)t∈(a,b), we consider their trivial extension to curves defined on R:

Ft = 0 and ∂tµt + v · ∇xµt = 0 for t /∈ [a, b] .

We define E := F µ and consider the regularised measures

µϵ := ηϵ ⋆ µ , Eϵ := ηϵ ⋆ E , ϵ > 0 ,

Smoothness of µϵ and Eϵ are indeed a consequence of the last display in [Sil22, Page 6]:

(∇v + t∇x,∇t,x) (µϵ, Eϵ) = (∇v + t∇x,∇t,x)ηϵ ⋆ (µ,E) .

Let now F ϵ := Eϵ

µϵ , where we identify regular measures with their densities. Following the
proof of [Sil22, Lemma 4.2], we will show that (µϵ, F ϵ) solves the Vlasov equation

∂tµ
ϵ
t + v · ∇xµ

ϵ
t + ∇v · (F ϵ

t µ
ϵ
t) = 0 .

Indeed, write η̃ϵ(t, x, v) = ηϵ((t, x, v)−1) where (t, x, v)−1 denotes the Galilean inverse. Using
(3.4.22) and the fact that (µ, F ) solves the Vlasov equation, we obtain for any test function
φ ∈ C∞

c

(︂
(a, b) × Γ

)︂
,

ˆ
R

ˆ
Γ
(∂t + v · ∇x)φ dµϵ =

ˆ
R

ˆ
Γ
η̃ϵ ⋆ (∂t + v · ∇x)φ dµ =

ˆ
R

ˆ
Γ
(∂t + v · ∇x)(η̃ϵ ⋆ φ) dµ

= −
ˆ
R

ˆ
Γ

∇v(η̃ϵ ⋆ φ) d(Fµ) = −
ˆ
R

ˆ
Γ
η̃ϵ ⋆∇vφ d(Fµ) = −

ˆ
R

ˆ
Γ

∇vφ · F ϵ dµϵ ,

which proves the claim. Since ηϵ is an approximation of the identity, it holds true that

µϵ ⇀ µt dt , Eϵ ⇀ Ft µt , as ϵ → 0 .

Using Jensen’s inequality for the jointly convex function (E, µ) ↦→ |E|2
µ

as in [AGS08, Lemma
8.1.10], we obtain the pointwise inequality

|F ϵ|2 µϵ = |ηϵ ⋆ E|2

ηϵ ⋆ µ
≤ ηϵ ⋆ (|F |2 µ) .
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3.4. Dynamical formulations of kinetic optimal transport

Integration over R × Γ yields

∥F ϵ
t ∥2

L2(µϵ
t dt) ≤ ∥Ft∥2

L2(µt dt) , ϵ > 0 .

By [San15, Proposition 5.18], we have

∥(v, Ft)∥2
L2(µt dt) ≤ lim inf

ϵ↓0
∥(v, F ϵ

t )|2L2(µϵ
t dt) .

Finally, using that
´
v η(·, ·, v) dv = 0, we obtain

ˆ
R×Γ

|v|2 µϵ
t(x, v) dx dv dt =

ˆ
R×Γ

|v|2 d(ηϵ ⋆ µ) =
ˆ
R×Γ

ηϵ ⋆ |v|2 dµ

=
ˆ
R×Γ

ˆ
R×Γ

ηϵ(s, y, w) |v − w|2 ds dy dw dµt(x, v) dt

=
ˆ
R×Γ

ˆ
R×Γ

ηϵ(s, y, w)
(︂
|v|2 + |w|2

)︂
ds dy dw dµt(x, v) dt

= ∥v∥2
L2(µt dt) +

ˆ
R×Γ

ηϵ(s, y, w) |w|2 ds dy dw

≤ ∥v∥2
L2(µt dt) + Cϵ2,

with an explicit constant C > 0 independent of ϵ.

Proof of the kinetic Benamou–Brenier formula

In classical optimal transport, the Kantorovich problem admits an equivalent fluid-dynamics
formulation, as was shown by J.-D. Benamou and Y. Brenier [BB00]. The idea is that optimally
transporting ρ0 to ρ1 is equivalent to finding the minimal velocity field (Vt)t one should apply
to make particles flow from one measure to the other. This velocity field induces an evolution
of measures t ↦→ ρt that satisfies the continuity equation

∂tρt + ∇ · (Vtρt) = 0 .

Here, we recover a similar interpretation for the second-order discrepancy d. The kinetic
optimal transport between µ, ν is given by the minimal force field (Ft)t required to push
particles from µ to ν. In this case, t ↦→ µt evolves according to the Vlasov equation (3.4.7).

Theorem 3.4.10 (Kinetic Benamou–Brenier formula). For every µ, ν ∈ P2(Γ) and T > 0,
the problem (3.1.15) admits a minimiser. Moreover, we have the identities

ñT (µ, ν) = d̃T (µ, ν) = ˜︁MAT (µ, ν) . (3.4.28)

Proof. Fix T > 0. We say that a curve (µt)t : [0, T ] → P2(Γ) is admissible and belongs to
the class NT (µ, ν) if (µt, Ft)t solves (3.4.7) for a vector field (Ft)t satisfying

ˆ T

0

ˆ
Γ

(︂
|v|2 +|Ft|2

)︂
dµt dt < ∞ (3.4.29)

and
µ0 = µ , µT = ν . (3.4.30)
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3. Second-Order Discrepancies Between Probability Measures

We shall prove that d̃T ≥ ˜︁MAT ≥ ñT , which is sufficient, since ñT = d̃T , in view of Theorem
3.4.1. To this end, fix µ, ν ∈ P2(Γ) and, for now, assume that µ is absolutely continuous with
respect to the Lebesgue measure. We shall prove that

inf
π∈Π(µ,ν)

c̃T (π) ≥ inf
(µt)t∈NT (µ,ν)

T

ˆ T

0

ˆ
Γ

|Ft|2 dµt dt .

Notice first that the value infπ∈Π(µ,ν) c̃T (π) is attained at a transport plan of the form
π = (id,MT )#µ, for a map MT = (YT ,WT ) : Γ → Γ, see Theorem 3.1.1. Now define the
flow (Mt)t, for t ∈ [0, T ], via

Mt(x, v) = (xt, vt), (xt, vt) =
(︂
αT

x,v,MT (x,v)(t), (αT
x,v,MT (x,v))′(t)

)︂
, t ∈ [0, T ] ,

using the same notation as Lemma 3.4.4. For every t ∈ (0, T ), the map Mt is injective on a
full µ-measure set, as shown in Lemma 3.4.4. Let now

Ft(y, w) := d2

ds2

⃓⃓⃓⃓
⃓
s=t

αT
M−1

t (y,w),MT ◦M−1
t (y,w)(s) , t ∈ (0, T ) . (3.4.31)

It is clear that (MT )#µ = ν, and, setting µ̄t = (Mt)#µ, we claim that (µ̄t)t is a narrowly-
continuous curve such that (3.4.7) holds, with the vector field (Ft)t given above. To prove
this, we fix a smooth test function φ ∈ C∞

c

(︂
[0, T ] × Γ

)︂
and compute

ˆ T

0

ˆ
Γ
∂tφ(t, x, v) dµ̄t(x, v) dt =

ˆ T

0

ˆ
Γ
∂tφ(t, xt, vt) dµ0(x, v) dt

=
ˆ T

0

ˆ
Γ

(︄
d
dtφ(t, xt, vt) − vt · ∇xφ(t, xt, vt) − Ft(xt, vt) · ∇vφ(t, xt, vt)

)︄
dµ0(x, v) dt

=
ˆ

Γ
φ(0, x, v) dµ0 −

ˆ
Γ
φ(T, xT , vT ) dµ0 −

ˆ T

0

ˆ
Γ

(v · ∇xφ+ ∇vφ · ∇vFt) dµ̄t dt ,

which is the weak formulation of (3.4.7) with fixed endpoints, as
ˆ

Γ
φ(T, xT , vT ) dµ0(x, v) =

ˆ
Γ
φ(T, ·, ·) dµT =

ˆ
Γ
φ(T, ·, ·) dν .

It it easy to check—using (3.2.2)—that
ˆ T

0

ˆ
Γ

|vt|2 dµ̄t dt ≲T

¨ (︂
|x|2 + |v|2 + |y|2 + |w|2

)︂
dµ(x, v) dν(y, w) < ∞ .

In addition,

T

ˆ T

0

ˆ
Γ

|Ft|2dµ̄t dt = T

ˆ T

0

ˆ
Γ

|Ft(xt, vt)|2 dµ dt =
ˆ
T

ˆ T

0
|Ft(xt, vt)|2 dt dµ

=
ˆ

Γ

⎛⎝12
⃓⃓⃓⃓
⃓YT (x, v) − x

T
− WT (x, v) + v

2

⃓⃓⃓⃓
⃓
2

+ |v −WT (x, v)|2
⎞⎠ dµ(x, v)

= c̃T (π) = d̃2
T (µ, ν) ,

since π is optimal. Then, (µ̄t) solves (3.4.7)—in particular it belongs to the class NT (µ, ν)—
and ˜︂MAT

2
(µ, ν) ≤ d̃2

T (µ, ν), every time µ is absolutely continuous.
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3.4. Dynamical formulations of kinetic optimal transport

We get rid of this additional assumption. Let (µk)k be an approximation of µ in the Wasserstein
metric, such that µk is absolutely continuous for all k ∈ N, and let Mk

T be the optimal
transport map for d̃T (µk, ν). Define the splines flow (Mk

t )t associated with Mk
T via (3.4.5),

let µk
t := (Mk

t )#µ
k, and let (F k

t )t be given by (3.4.31). Note that (µk
t , F

k
t )t solves (3.4.7),

for all k ∈ N. Using the explicit expressions of (3.2.2), and indicating with (xt, vt)t = Mk
t the

solution of (3.4.11), we find
ˆ T

0

ˆ (︂
|v|2 + |F k

t |2
)︂

dµk
t dt =

ˆ T

0

ˆ (︂
|vt|2 + |F k(xt, vt)|2

)︂
dµk

0 dt

=
ˆ ˆ T

0

(︂
|vt|2 + |F k(xt, vt)|2

)︂
dt dµk

0 ≲T

ˆ (︂
|x|2 + |v|2 + |Mk

T (x, v)|2
)︂

dµk
0

≤
ˆ (︂

|x|2 + |v|2 + |y|2 + |w|2
)︂

dµk
0(x, v) dν(y, w)

≲ 1 +
ˆ (︂

|x|2 + |v|2 + |y|2 + |w|2
)︂

dµ0(x, v) dν(y, w) ≤ C < ∞ .

In addition,
ˆ

( |x|2 + |v|2) dµk
t (x, v) =

ˆ
(|xt|2 + |vt|2) dµk

0 ≤ C ′ < ∞, uniformly in t ∈ [0, T ], k ∈ N .

Then, following [DNS09, Lemma 4.5] we have that, up to a subsequence, µk
t ⇀ µ̄t for

all t ∈ [0, T ], and (v, F k
t )µk

t dt ⇀ Z narrowly, for some measures µ̄t ∈ P2(Γ) and Z ∈
M([0, T ] × Γ;R2n). By uniform integrability of t ↦→

´
|(v, F k

t )| dµt with respect to k, we
have that Z = Ξt dt, for a vector-valued measure Ξt satisfying

ˆ ˆ
Γ

|Ξt|2

µ̄t

dt ≤ lim inf
k→∞

ˆ T

0

ˆ
Γ

(︂
|v|2 + |F k

t |2
)︂

dµk
t dt .

Finally, by [San15, Proposition 5.18], we have that Ξt = Xt µ̄t for a vector field Xt =
(X(1)

t , X
(2)
t ) ∈ L2(µ̄t;R2n) and a.e. t ∈ [0, T ]. By weak convergence, ∇x · (X(1)

t µt) = v ·∇xµ̄t.
Let Ft := X

(2)
t . Passing to the limit in the weak formulation of (3.4.7), we have that (µ̄t, Ft)t

is a solution to (3.4.7), such that (µ̄t)t is admissible for ˜︂MAT (µ, ν).

Using lower semi-continuity (see again [San15, Proposition 5.18]), we achieve

˜︂MA2
T (µ, ν) ≤ T

ˆ T

0

ˆ
|Ft|2 dµ̄t dt ≤ lim inf

k→∞
T

ˆ T

0

ˆ
|F k

t |2 dµk
t dt = lim inf

k→∞
d̃2

T (µk, ν)

= d̃2
T (µ, ν) ,

where the second to last equality holds because (µk
t , F

k
t )t are optimal spline interpolations,

and the last equality is a consequence of the Wasserstein convergence µk → µ and of the
sequential Wasserstein continuity of d̃T .

For the inequality ñT ≤ ˜︁MAT , let (µt, Ft)t be any admissible curve in (3.1.15). By the
smoothing procedure of Lemma 3.4.9, we can find a sequence

(︂
(µϵ

t, F
ϵ
t )t

)︂
ϵ

of classical solutions
to (3.4.7) such that
ˆ T

0

ˆ
|F ϵ

t |2 dµϵ
t dt ≤

ˆ T

0

ˆ
|Ft|2 dµt dt ,

ˆ T

0

ˆ
|v|2 dµϵ

t dt ≤ 1 +
ˆ T

0

ˆ
|v|2 dµt dt .
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3. Second-Order Discrepancies Between Probability Measures

By Proposition 3.4.7—more precisely following [AGS08, Proposition 8.1.8]—for all ϵ > 0,
we have µϵ

t = (M ϵ
t )#µ

ϵ
0 for all t ∈ [0, T ], where M ϵ is the flow generated by the vector

field (v, F ϵ
t )t. Let mϵ ∈ P

(︂
H2(0, T ; X )

)︂
be defined via

mϵ :=
ˆ
δMϵ(x,v) dµϵ

0(x, v) .

For all ϵ > 0 and t ∈ [0, T ], it holds true that

(pr(α(t),α′(t)))#mϵ = µϵ
t and (pr(α(t),α′(t)))#

(︂⃓⃓⃓
α′′(t)

⃓⃓⃓2
mϵ
)︂

= |F ϵ
t |2 µϵ

t .

Then, as in [AGS08], we have that the sequence (mϵ)ϵ is tight, and we call m any nar-
row limit point of (mϵ)ϵ. Narrow convergence, together with Lemma 3.4.9, ensures that
(pr(α(t),α′(t)))#m = µt, for all t ∈ [0, T ], and, in particular, (pr(α(0),α′(0)))#m = µ, and
(pr(α(T ),α′(T )))#m = ν. By semicontinuity,

ñ2
T (µ, ν) ≤ T

ˆ T

0

ˆ
H2(0,T ;X )

|α′′(t)|2 dm(α) dt ≤ lim inf
ϵ↓0

T

ˆ T

0

ˆ
H2(0,T ;X )

|α′′(t)|2 dmϵ dt

= lim inf
ϵ↓0

T

ˆ T

0

ˆ
|F ϵ

t |2 dµϵ
t dt = T

ˆ T

0

ˆ
|Ft|2 dµt dt,

where we used the strong convergence induced by Lemma 3.4.9. This concludes the equivalence,
by taking the infimum over (µt, Ft)t. As a by-product, the curve (µ̄t)t built above is a minimiser
in (3.1.15).

Remark 3.4.11. A posteriori, the proof shows that optimal curves in (3.1.15) are given by
injective interpolation along splines, when µ is absolutely continuous, see also Proposition 3.4.3.
Indeed, in this case, when µ ≪ dx dv, the curve µt = (Mt)#µ is optimal in (3.1.15), where
Mt is the flow of (3.4.5). The general case is a mixture of spline interpolations.

Remark 3.4.12. Our result proves4 a conjecture of [CCG18], i.e., the equivalence of [CCG18,
Formula (14)] and [CCG18, Formula (3)]. Indeed, in our language [CCG18, Formula (14)]
reads

inf
µ0,µ1

{︂
ñ2

1(µ0, µ1) : (prx)#µi = ρi, i = 0, 1
}︂
,

while [CCG18, Formula (3)] corresponds to

inf
µ0,µ1

{︃
˜︁MA

2
1(µ0, µ1) : (prx)#µi = ρi, i = 0, 1

}︃
,

and equality between the two is a straightforward consequence of Theorem 3.4.10.

Y. Chen, G. Conforti, and T. T. Georgiou conjecture such an equivalence in [CCG18, Claim
4.1], and provide a formal argument in favour of it. At the same time, the authors remark
the lack of a rigorous proof. Our Theorem 3.4.10 fills the gap and completes the proof, by
building on the argument of [CCG18] with the crucial addition of two new ingredients: the
injectivity of the map Mt (allowing for the definition of Ft) and the Galilean approximation of
solutions to (3.4.7) via Lemma 3.4.9.

4in case only two measures are considered
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3.4.4 Moment estimates for Vlasov’s equations
In this section we prove propagation estimates for moments along solutions to (3.4.7). In
particular, the following results show that a solution (µt)t∈[a,b] of (3.4.7) stays in P2(Γ),
provided the initial datum µa ∈ P2(Γ).

Before turning to the rigorous estimates, let us give a heuristic argument. Let (µt, Ft)t be a
solution to (3.4.7). Then, formally,

d
dt∥v∥2

L2(µt) = −
ˆ

|v|2∇x,v · ((v, Ft)µt) = 2
ˆ
v · Ft dµt ≤ 2∥v∥L2(µt)∥Ft∥L2(µt) ,

from which we obtain d
dt

∥v∥L2(µt) ≤∥Ft∥L2(µt). Similarly,

d
dt∥x∥2

L2(µt) = −
ˆ

|x|2∇x · (v µt) = 2∥x∥L2(µt)∥v∥L2(µt) ,

and, therefore, d
dt

∥x∥L2(µt) ≤∥v∥L2(µt).

Lemma 3.4.13 (Moment estimate). Let (µt, Ft)t be a narrowly continuous solution on [a, b]
to the Vlasov equation (3.4.7) with µa ∈ P2(Γ) and

´ b

a

´
|Ft|2 dµt dt < ∞. Then, for every

t ∈ (a, b):

∥v∥L2(µt) ≤ ∥v∥L2(µa) +
ˆ t

a

∥Fs∥L2(µs) ds (3.4.32)

and

∥x∥L2(µt) ≤ ∥x∥L2(µa) +
ˆ t

a

∥v∥L2(µs) ds (3.4.33)

≤ ∥x∥L2(µa) + (t− a)∥v∥L2(µa) +
ˆ t

a

(t− s)∥Fs∥L2(µs) ds . (3.4.34)

Proof. Let ψ ∈ C∞
c ((a, b)×V) and ζ ∈ C∞

c (X ) with ζ(0) = 1. For every ϵ > 0, the definition
of solution to the Vlasov equation implies

ˆ b

a

ˆ (︁
ζ(ϵx)∂tψ + ϵψ v · (∇xζ)(ϵx) + ζ(ϵx)Ft · ∇vψ

)︁
dµt dt = 0 .

Note that vψ is compactly supported, hence bounded. The dominated convergence theorem
(for ϵ → 0) yields ˆ b

a

ˆ
(∂tψ + Ft · ∇vψ) dµt dt = 0 .

For every t, consider the disintegration µt =
´
µv

t d(prv)#µt, which gives
ˆ b

a

ˆ ⎛⎝∂tψ +
(︄ˆ

Ft dµv
t

)︄
· ∇vψ

⎞⎠ d(prv)#µt dt = 0 . (3.4.35)

By arbitrariness of ψ, this argument shows that
(︂
(prv)#µt,

´
Ft dµ

v
t

)︂
satisfies the classical

continuity equation. Note that the vector field satisfies [AGS08, (8.1.21)]: by assumption
ˆ b

a

ˆ ⃓⃓⃓⃓
⃓
ˆ
Ft dµv

t

⃓⃓⃓⃓
⃓
2

d(ev)#µt dt ≤
ˆ b

a

ˆ ˆ
|Ft|2 dµv

t d(prv)#µt dt < ∞ .

Therefore, by [AGS08, Theorem 8.2.1], there exists a probability measure η such that:
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(i) η is concentrated on the set of pairs (v, β) ∈ V × H1(a, b; V) such that β̇(t) =´
Ft(x, β(t)) dµβ(t)

t for a.e. t ∈ (a, b), with β(0) = v;

(ii) for every t ∈ [a, b], (prv)#µt equals the push-forward of η via the map (v, β) ↦→ β(t).

For t ∈ (a, b), using Property (ii), and the Minkowski and Cauchy–Schwarz inequalities,

∥v∥L2(µt) =
√︄ˆ

|v|2 d(prv)#µt =
√︄ˆ ⃓⃓

β(t)
⃓⃓2 dη

≤
√︄ˆ ⃓⃓

β(a)
⃓⃓2 dη +

⌜⃓⃓⃓
⎷ˆ ⃓⃓⃓⃓

⃓⃓
ˆ t

a

⃓⃓⃓
β̇(s)

⃓⃓⃓
ds

⃓⃓⃓⃓
⃓⃓
2

dη

= ∥v∥L2(µa) +

⌜⃓⃓⃓
⎷ˆ ⃓⃓⃓⃓

⃓⃓
ˆ t

a

ˆ
Fs(x, β(s)) dµβ(s)

s ds

⃓⃓⃓⃓
⃓⃓
2

dη

≤ ∥v∥L2(µa) +
ˆ t

a

⌜⃓⃓⎷ˆ ⃓⃓⃓⃓
⃓
ˆ
Fs(x, β(s)) dµβ(s)

s

⃓⃓⃓⃓
⃓
2

dη ds

≤ ∥v∥L2(µa) +
ˆ t

a

√︄ˆ ˆ ⃓⃓
Fs(x, β(s))

⃓⃓2 dµβ(s)
s dη ds

= ∥v∥L2(µa) +
ˆ t

a

√︄ˆ ⃓⃓
Fs(x, v)

⃓⃓2 dµs ds .

Let us focus on the other inequality we need to prove. The Vlasov equation can be seen as a
classical continuity equation with vector field (v, Ft). It follows from the previous estimates
that this vector field satisfies [AGS08, (8.1.21)] and, by [AGS08, Theorem 8.2.1], there exists
a probability measure ξ such that:

(i) ξ is concentrated on the set of triples (x, v, γ) ∈ X × V × H1(a, b; X × V) such
that γ̇x(t) = γv(t) and γ̇v(t) = Ft

(︂
γx(t), γv(t)

)︂
for a.e. t ∈ (a, b), with γ(0) = (x, v);

(ii) for every t ∈ [a, b], µt equals the push-forward of ξ via the map (x, v, γ) ↦→ γ(t).

Hence, for every t ∈ (a, b), we have:

∥x∥L2(µt) =
√︄ˆ

|x|2 dµt =
√︄ˆ ⃓⃓

γx(t)
⃓⃓2 dξ

≤
√︄ˆ ⃓⃓

γx(a)
⃓⃓2 dξ +

⌜⃓⃓⃓
⎷ˆ ⃓⃓⃓⃓

⃓⃓
ˆ t

a

γ̇x(s) ds

⃓⃓⃓⃓
⃓⃓
2

dξ

= ∥x∥L2(µa) +

⌜⃓⃓⃓
⎷ˆ ⃓⃓⃓⃓

⃓⃓
ˆ t

a

γv(s) ds

⃓⃓⃓⃓
⃓⃓
2

dξ

≤ ∥x∥L2(µa) +
ˆ b

a

√︄ˆ
|γv(s)|2 dξ ds

= ∥x∥L2(µa) +
ˆ b

a

√︄ˆ
|v|2 dµs ds .
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3.5 Hypoelliptic Riemannian structure
In this section, we develop a differential calculus induced by d, with the main contributions
organised as follows.

• In §3.5.1, we show that solutions (µt, Ft)t to (3.4.7) are physical and d-absolutely
continuous, with the optimal time for d(µt, µt+h) being asymptotically h, for h ↓ 0.

• In §3.5.2, we prove the converse: d-absolutely continuous curves of measures (µt)t

can be represented as solutions to (3.4.7), provided the optimal time for d(µt, µt+h) is
asymptotically h as h ↓ 0. Similarly, we show that physical curves solve (3.4.7).

• In §3.5.3, we show that the minimal L2(µt)-norm of a force field (Ft)t such that (µt, Ft)t

solves (3.4.7) can be interpreted as a metric derivative, namely, it is, for a.e. t, the limit
of d(µt,µt+h)

h
and d̃h(µt,µt+h)

h
as h ↓ 0.

• In §3.5.4, we extend these results to reparametrisations of (3.4.7) and complete the
proof of Theorem 3.1.7.

Henceforth, we assume that (µt)t∈(a,b) ⊆ P2(Γ) is a narrowly continuous curve. We set

Ω :=
{︂
t ∈ (a, b) : ∥v∥L2(µt) > 0

}︂
(3.5.1)

and define the spatial density

ρt := (prx)#µt ∈ P(X ) , t ∈ (a, b) . (3.5.2)

Using the disintegration theorem we write dµt(x, v) = dµt,x(v) dρt(x), where µt,x ∈ P(V)
denotes the distribution of velocities at x ∈ X , defined ρt-a.e.

For every t ∈ (a, b), let V t be the closure of the space V :=
{︁
∇ϕ : ϕ ∈ C∞

c (X )
}︁

in L2(ρt;Rd).
Additionally let prV t

: L2(ρt;Rd) → V t be the corresponding projection operator, and define
the flow velocity

jt(x) :=
ˆ

V
v dµt,x , (t, x) ∈ (a, b) × X , (3.5.3)

and the total momentum

⟨v⟩t :=
ˆ

Γ
v dµt =

ˆ
X
jt dρt , t ∈ (a, b) . (3.5.4)

Remark 3.5.1. For any ρ ∈ P(X ), the closure of V in L2(ρ;Rd) contains all constant vector
fields. Indeed, fix u0 ∈ Rd and a C∞

c (Rd) function ζ with support contained in the unit ball,
and such that ζ ≡ 1 in a neighbourhood of 0. For every ϵ > 0, set

ψϵ := ζ(ϵx) x · u0 , x ∈ X .

We have
∇ψϵ(x) = ζ(ϵx)u0 + ϵ(x · u0)∇ζ(ϵx) ∈ V , x ∈ X .

As ϵ → 0, the dominated convergence theorem gives

ζ(ϵx)u0
L2(ρ;Rd)−→ ζ(0)u0 = u0 ,
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3. Second-Order Discrepancies Between Probability Measures

as well as
ˆ

X

⃓⃓
ϵ(x · u0)∇ζ(ϵx)

⃓⃓2 dρ ≤|u0|2
ˆ
{|x|< 1

ϵ }
ϵ2|x|2

⃓⃓
∇ζ(ϵx)

⃓⃓
dρ ≤|u0|2

ˆ
X

⃓⃓
∇ζ(ϵx)

⃓⃓
dρ

→|u0|2
⃓⃓
∇ζ(0)

⃓⃓
= 0 .

Let (s, t) ↦→ πs,t ∈ Πo,d(µs, µt) be a measurable selection of d-optimal transport plans, and Ts,t

the corresponding optimal times,5 i.e.,

Ts,t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2

∥y − x∥2
L2(πs,t)

(y − x, v + w)πs,t

if (y − x, v + w)πs,t > 0 ,

0 if ∥y − x∥L2(πs,t) = 0 ,
∞ otherwise.

(3.5.5)

3.5.1 d-regularity of solutions to Vlasov’s equations
The results of this subsection are given under the following.

Assumption 3.5.2 (Solution to Vlasov’s equation). The curve (µt)t∈(a,b) in P2(Γ) is a
distributional solution to Vlasov’s equation (3.4.7) for a field (Ft)t∈(a,b) such that

ˆ b

a

(︂
∥v∥2

L2(µt) +∥Ft∥2
L2(µt)

)︂
dt < ∞ . (3.5.6)

Under this assumption, the curve t ↦→ µt is W2-2-absolutely continuous by [AGS08, Theo-
rem 8.3.1]. It is readily shown that the maps t ↦→∥x∥L2(µt) and t ↦→∥v∥L2(µt) are continuous.
Indeed, for any W2-optimal plan πs,t ∈ Π(µs, µt) we have

⃓⃓⃓
∥v∥2

L2(µt) −∥v∥2
L2(µs)

⃓⃓⃓
=
⃓⃓⃓⃓
⃓
ˆ

Γ×Γ
(v + w) · (v − w) dπs,t

⃓⃓⃓⃓
⃓ ≤ W2(µs, µt)

(︃
∥v∥L2(µt) +∥v∥L2(µs)

)︃
.

Since t ↦→∥x∥2
L2(µt) +∥v∥2

L2(µt) = W2
2(µt, δ(0,0)) is continuous and thus locally bounded, the

continuity of t ↦→∥v∥L2(µt) follows. In particular, the set Ω is open in (a, b). The continuity of
t ↦→∥x∥L2(µt) is proved analogously.

Lemma 3.5.3. Under Assumption 3.5.2, the space-marginal curve t ↦→ ρt is W2-2-a.c. with⃓⃓
⟨v⟩t

⃓⃓
≤
⃓⃓⃓
ρ′

t

⃓⃓⃓
W2

=
⃦⃦⃦
prV t

(jt)
⃦⃦⃦

L2(ρt)
≤∥v∥L2(µt) for a.e. t ∈ (a, b) . (3.5.7)

Proof. Fix ψ ∈ C∞
c

(︂
(a, b) × X

)︂
. With the same argument as in the proof of Lemma 3.4.13:

ˆ b

a

ˆ
Γ
(∂tψ + v · ∇xψ) dµt dt = 0 ,

from which we get

0 =
ˆ b

a

ˆ
X

(︁
∂tψ + jt(x) · ∇xψ

)︁
dρt dt =

ˆ b

a

ˆ
X

(︂
∂tψ + prV t

(jt) · ∇xψ
)︂

dρt dt , (3.5.8)

5All times T > 0 are optimal when ∥y − x∥L2(πs,t) = 0. In this case, we conventionally choose Ts,t = 0.
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where we used that ∇xψ(t, ·) ∈ V t in the last equality. Since ψ is arbitrary, we deduce
that t ↦→ ρt is a solution to the continuity equation with vector field

(︂
prV t

(jt)
)︂

t∈(a,b)
. The

identity |ρ′
t|W2

=
⃦⃦⃦
prV t

(jt)
⃦⃦⃦

L2(ρt)
thus follows from [AGS08, Proposition 8.4.5].

The inequality
⃦⃦⃦
prV t

(jt)
⃦⃦⃦

L2(ρt)
≤ ∥v∥L2(µt) follows from the definition of jt using Jensen’s

inequality. Finally, by definition of ⟨v⟩t and Remark 3.5.1, we write

⟨v⟩2
t =

ˆ
X
jt · ⟨v⟩t dρt =

ˆ
X

prV t
(jt) · ⟨v⟩t dρt ≤

⃓⃓
⟨v⟩t

⃓⃓⃦⃦⃦
prV t

(jt)
⃦⃦⃦

L2(ρt)
,

which yields
⃓⃓
⟨v⟩t

⃓⃓
≤
⃦⃦⃦
prV t

(jt)
⃦⃦⃦

L2(ρt)
.

Our goal is to prove the following three propositions.

Proposition 3.5.4. Under Assumption 3.5.2, for every s, t with a < s < t < b, we have

d(µs, µt) ≤ d̃t−s(µs, µt) ≤ 2
ˆ t

s

∥Fr∥L2(µr) dr . (3.5.9)

Proposition 3.5.5. Under Assumption 3.5.2, for almost every t ∈ (a, b), we have

lim sup
h↓0

d(µt, µt+h)
h

≤ lim sup
h↓0

d̃h(µt, µt+h)
h

≤∥Ft∥L2(µt) . (3.5.10)

Proposition 3.5.6. Under Assumption 3.5.2, the following assertions hold.

1. For a.e. t ∈ (a, b) such that |ρ′
t|W2

> 0, we have

lim
h↓0

Tt,t+h

h
= 1 for a.e. t ∈ (a, b) . (3.5.11)

2. For every [a′, b′] ⊆ Ω, there exist h̄ > 0 and g ∈ L2(a′, b′) such that

sup
h∈(0,h̄)

Tt,t+h

h
≤ g(t) for all t ∈ [a′, b′] . (3.5.12)

Consequently, if |ρ′
t|W2

> 0 for a.e. t ∈ Ω, we have T·,·+h

h
→ 1 in L2

loc(Ω) as h ↓ 0.

Proposition 3.5.4 and Proposition 3.5.5 provide upper bounds for the kinetic discrepancies
between successive states along (µt)t. The first one applies to any two times s, t with s < t,
while the second one concerns the infinitesimal change, i.e., it provides an upper bound on
the d-derivative. Proposition 3.5.6 shows that the optimal time for d between two successive
nearby states along a solution to Vlasov’s equation is comparable to the physical time. In
Proposition 3.5.20 below, the convergence Tt,t+h

h
→ 1 will be improved to Tt,t+h−h

h2 → 0 at
a.e. times t ∈ (a, b) where ⟨v⟩t ̸= 0.

Remark 3.5.7. Comparing Proposition 3.5.4 and Proposition 3.5.5, we see the presence
of an extra factor 2 in the former. Note that a version of Proposition 3.5.5 with the extra
factor 2 follows immediately from Proposition 3.5.4. Also notice that, if d were a distance,
these two propositions, together, would allow dropping the constant 2 in (3.5.9), see [AGS08,
Theorem 1.1.2]. However, this factor is sharp, as demonstrated by the following example.
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Example 3.5.8. Let X = V = R. For ϵ ∈ (0, 1) we define

α(t) :=

⎧⎪⎨⎪⎩ϵt
2 , for t ∈

[︂
0, 1

]︂
,

−ϵ+ 2ϵt− (t− 1)2 for t ∈
[︂
1, 1 +

√
ϵ
]︂
,

and, by means of α,
µt := δ(︂

α(t),α′(t)
)︂ , t ∈

[︂
0, 1 +

√
ϵ
]︂
.

This curve solves Vlasov’s equation with Ft(x, v) := α′′(t). In particular,
ˆ 1+

√
ϵ

0
∥Ft∥L2(µt) dt = 2ϵ+ 2

√
ϵ .

On the other hand, recalling the definition (3.1.7) of d,

d2
(︂
(α(0), α′(0)), (α(1 +

√
ϵ), α′(1 +

√
ϵ)
)︂

= d2
(︂
(0, 0), (2ϵ

√
ϵ, 2ϵ− 2

√
ϵ)
)︂

= 3
⃓⃓⃓
2ϵ− 2

√
ϵ
⃓⃓⃓2

− 3

⎛⎜⎝ 2ϵ
√
ϵ⃓⃓⃓

2ϵ
√
ϵ
⃓⃓⃓ · (2ϵ− 2

√
ϵ)

⎞⎟⎠
2

+

+
⃓⃓⃓
2ϵ− 2

√
ϵ
⃓⃓⃓2

= 4
⃓⃓⃓
2ϵ− 2

√
ϵ
⃓⃓⃓2

− 3(2ϵ− 2
√
ϵ)2

+ = 4
⃓⃓⃓
2ϵ− 2

√
ϵ
⃓⃓⃓2
,

where the last equality is true because ϵ < 1. Hence,

d
(︂
(α(0), α′(0)), (α(1 +

√
ϵ), α′(1 +

√
ϵ)
)︂

´ 1+
√

ϵ

0 ∥Ft∥L2(µt) dt
= 2

⃓⃓⃓
2ϵ− 2

√
ϵ
⃓⃓⃓

2ϵ+ 2
√
ϵ
,

and the latter tends to 2 as ϵ → 0.

Proof of Proposition 3.5.4. Let us fix s, t ∈ (a, b) with s < t. By [AGS08, Theorem 8.2.1],
there exists a measure η ∈ P

(︂
Γ × H1(s, t; Γ)

)︂
supported on tuples (x, v, γx, γv) such that:

1. γx(s) = x and γv(s) = v;

2. γ̇x(r) = γv(r) and γ̇v(r) = Fr

(︂
γx(r), γv(r)

)︂
for a.e. r ∈ (s, t);

3.
(︂
prγ(r)

)︂
#

η = µr for every r ∈ (s, t).

By definition of d̃t−s and by the properties of η, we write

d̃2
t−s(µs, µt) ≤ c̃t−s

(︃(︂
prγ(s),γ(t)

)︂
#

η
)︃

=
ˆ ⎛⎝12

⃓⃓⃓⃓
⃓γx(t) − γx(s)

t− s
− γv(t) + γv(s)

2

⃓⃓⃓⃓
⃓
2

+
⃓⃓
γv(t) − γv(s)

⃓⃓2⎞⎠ dη

= 3
ˆ ⃓⃓⃓⃓
⃓⃓
ˆ t

s

t+ s− 2r
t− s

Fr

(︂
γx(r), γv(r)

)︂
dr

⃓⃓⃓⃓
⃓⃓
2

dη +
ˆ ⃓⃓⃓⃓
⃓⃓
ˆ t

s

Fr

(︂
γx(r), γv(r)

)︂
dr

⃓⃓⃓⃓
⃓⃓
2

dη ,
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which yields, by Minkowski’s integral inequality,

d̃2
t−s(µs, µt) ≤ 3

⎛⎝ˆ t

s

|t+ s− 2r|
t− s

√︄ˆ ⃓⃓⃓⃓
Fr

(︂
γx(r), γv(r)

)︂⃓⃓⃓⃓2
dη dr

⎞⎠2

+
⎛⎝ˆ t

s

√︄ˆ ⃓⃓⃓⃓
Fr

(︂
γx(r), γv(r)

)︂⃓⃓⃓⃓2
dη dr

⎞⎠2

= 3
⎛⎝ˆ t

s

|t+ s− 2r|
t− s

∥Fr∥L2(µr) dr
⎞⎠2

+
⎛⎝ˆ t

s

∥Fr∥L2(µr) dr
⎞⎠2

. (3.5.13)

The conclusion follows by estimating |t+s−2r|
t−s

≤ 1.

Proof of Proposition 3.5.5. Let t ∈ (a, b) be a Lebesgue point for t̃ ↦→ ∥Ft̃∥L2(µt̃). By the
kinetic Benamou–Brenier formula of Theorem 3.4.10 we have, for every h > 0,

d̃2
h(µt, µt+h)

h2 ≤
˜︁MA

2
h(µt, µt+h)
h2 ≤

 t+h

t

∥Fs∥2
L2(µs) ds .

We conclude by letting h ↓ 0.

Proof of Proposition 3.5.6

The core idea in the proof of Proposition 3.5.6 is to equate two interpretations of µt and µt+h,
as marginals of two different plans in Π(µt, µt+h). One is the d-optimal plan πt,t+h, i.e., an
evolution along a Tt,t+h-long curve; while the other is the dynamical transport plan induced
by Vlasov’s equation, hence an evolution taking time h. One of the lemmas we prove
after this idea—namely, Lemma 3.5.10—will also be used to compute the d-derivative,
see Proposition 3.5.22.

Another key passage in the proof below is the derivation of the local L2-domination (3.5.12)
by means of the upper bound (3.5.9).

Lemma 3.5.9. Assume Assumption 3.5.2. Fix [a′, b′] ⊆ Ω. Then, there exist h̄ > 0 and a
function g ∈ L2(a′, b′) such that

Tt,t+h

h
≤ g(t) for all t ∈ [a′, b′] and every h ∈ (0, h̄) . (3.5.14)

In particular, for a.e. t ∈ Ω (hence, for a.e. t such that |ρ′
t|W2

> 0), we have

lim sup
h↓0

Tt,t+h

h
< ∞ . (3.5.15)

Proof. Recall that the functions t̃ ↦→ ∥x∥L2(µt̃) and t̃ ↦→ ∥v∥L2(µt̃) are continuous on (a, b).
Let c > 0 be an upper bound on the restriction of these functions to

[︂
a′, b′+b

2

]︂
, and ϵ > 0 be

the minimum of t̃ ↦→∥v∥L2(µt̃) on [a′, b′]. By Assumption 3.5.2 and Proposition 3.5.4, we can
find h̄ ∈

(︂
0, b−b′

2

)︂
depending on ϵ, c and

´ b

a
∥Ft∥2

L2(µt) dt, such that

h ∈ (0, h̄) =⇒ ∥w − v∥L2(πt,t+h) ≤ d(µt, µt+h) ≤ d̃h(µt, µt+h) ≤ ϵ2

6c . (3.5.16)
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Fix t ∈ [a′, b′] and h ∈ (0, h̄). Let η ∈ P
(︂
Γ × H1(t, t + h; Γ)

)︂
be as in the proof of

Proposition 3.5.4 (after replacing (s, t) with (t, t + h)) and let P be a probability measure
on Γ × Γ × H1(t, t+ h; Γ) constructed by gluing πt,t+h and η at µt, i.e., such that(︂

prx,v,y,w

)︂
#

P = πt,t+h and
(︂
prx,v,γ

)︂
#

P = η .

Using the properties of η and P, we write
ˆ
y · w dP −

ˆ
x · v dP

=
ˆ
γx(t+ h) · γv(t+ h) dP −

ˆ
γx(t) · γv(t) dP

=
ˆ ˆ t+h

t

(︁
γ̇x(s) · γv(t+ h) + γ̇v(s) · γx(t)

)︁
ds dP

=
ˆ ˆ t+h

t

(︃
γv(s) · γv(t+ h) + Fs

(︂
γx(s), γv(s)

)︂
· γx(t)

)︃
ds dP .

Rearranging terms, this identity writes, for every θ > 0, as
ˆ (︂

θ|v|2 + θ(w − v) · v + (y − x− θv) · w
)︂

dP

=
ˆ
x · (v − w) dP +

ˆ ˆ t+h

t

(︃
γv(s) · γv(t+ h) + Fs

(︂
γx(s), γv(s)

)︂
· γx(t)

)︃
ds dP .

By the triangle and Cauchy–Schwarz inequalities, we obtain

θ ·

⎛⎜⎝∥v∥2
L2(µt) −∥v∥L2(µt)∥w − v∥L2(πt,t+h) −∥v∥L2(µt+h)

⃦⃦⃦⃦
⃦y − x

θ
− v

⃦⃦⃦⃦
⃦

L2(πt,t+h)

⎞⎟⎠
≤∥x∥L2(µt)∥w − v∥L2(πt,t+h)+∥v∥L2(µt+h)

ˆ t+h

t

∥v∥L2(µs) ds+∥x∥L2(µt)

ˆ t+h

t

∥Fs∥L2(µs) ds ;

hence, since ∥v∥L2(µt) > ϵ and max
{︂
supt̃∥x∥L2(µt̃) , supt̃∥v∥L2(µt̃)

}︂
≤ c, we have

θ ·

⎛⎜⎝ϵ2 − c ∥w − v∥L2(πt,t+h) − c

⃦⃦⃦⃦
⃦y − x

θ
− v

⃦⃦⃦⃦
⃦

L2(πt,t+h)

⎞⎟⎠
≤ c ∥w − v∥L2(πt,t+h) + c2h+ c

ˆ t+h

t

∥Fs∥L2(µs) ds . (3.5.17)

It remains to bound the term
⃦⃦⃦

y−x
θ

− v
⃦⃦⃦

L2(πt,t+h)
for a suitable choice of θ.

If Tt,t+h ∈ (0,∞), we choose θ := Tt,t+h. Using the triangle inequality, the definition of c̃, the
fact that ∥y − x∥L2(πt,t+h) > 0, and the optimality of πt,t+h, we obtain
⃦⃦⃦⃦
⃦y − x

Tt,t+h

− v

⃦⃦⃦⃦
⃦

L2(πt,t+h)
+∥w − v∥L2(πt,t+h) ≤

⃦⃦⃦⃦
⃦y − x

Tt,t+h

− v + w

2

⃦⃦⃦⃦
⃦

L2(πt,t+h)
+ 3

2∥w − v∥L2(πt,t+h)

≤ 3
√︂

c̃(πt,t+h) = 3
√︂

c(πt,t+h) = 3 d(µt, µt+h)
(3.5.16)

≤ ϵ2

2c . (3.5.18)
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We arrive to the same conclusion in the case where Tt,t+h = ∞ by letting θ → ∞. In all cases
(trivially when Tt,t+h = 0), we get the inequality

ϵ2 Tt,t+h

2 ≤ c d(µt, µt+h) + c2h+ c

ˆ t+h

t

∥Fs∥L2(µs) ds ,

proving in particular that Tt,t+h < ∞. Bounding d(µt, µt+h) with Proposition 3.5.4, we find

Tt,t+h

h
≤ 1
ϵ2

 t+h

t

(︂
6c∥Fs∥L2(µs) + 2c2

)︂
ds ≤ 1

ϵ2 sup
h̃∈(0,h̄)

 t+h̃

t

(︂
6c∥Fs∥L2(µs) + 2c2

)︂
ds

⏞ ⏟⏟ ⏞
=:g(t)

.

Since t̃ ↦→∥Ft̃∥L2(t̃) is L2, so is g by the strong Hardy–Littlewood maximal inequality.

Lemma 3.5.10. Fix φ ∈ C1,1
b (Γ), i.e., φ is bounded and continuously differentiable, with

bounded and Lipschitz gradient. Under Assumption 3.5.2, for a.e.6 t ∈ Ω, we have

lim
h↓0

(︄ˆ
Γ×Γ

w − v

h
· ∇vφ dπt,t+h + Tt,t+h

h

ˆ
Γ
v · ∇xφ dµt

)︄
=
ˆ

Γ
(v, Ft)·∇x,vφ dµt . (3.5.19)

Proof. Fix t ∈ Ω satisfying (3.5.15). We also assume that t is a Lebesgue point of

s ↦−→
ˆ

Γ

(︂
ṽ, Fs

)︂
· ∇x,vφ dµs and s ↦−→∥Fs∥L2(µs) . (3.5.20)

Fix h ∈ (0, b− t) such that Tt,t+h < ∞, and let η,P be as in Lemma 3.5.9. In particularˆ
φ(y, w) dP −

ˆ
φ(x, v) dP =

ˆ
φ
(︂
γ(t+ h)

)︂
dP −

ˆ
φ
(︂
γ(t)

)︂
dP .

By the fundamental theorem of calculus and the properties of η and P, we deduce that

1
h

ˆ
Γ×Γ

ˆ 1

0
(y − x, w − v) · ∇x,vφ

(︂
x+ r(y − x), v + r(w − v)

)︂
dr dπt,t+h

=
 t+h

t

ˆ
γ̇(s)∇x,vφ

(︂
γ(s)

)︂
dη ds =

 t+h

t

ˆ
Γ

(︂
ṽ, Fs(x̃, ṽ)

)︂
· ∇x,vφ(x̃, ṽ) dµs ds .

(3.5.21)

The right-hand side in the latter equality converges to the right-hand side of (3.5.19) as h ↓ 0,
since t is a Lebesgue point for (3.5.20).
Focusing on the left-hand side of (3.5.21), we observe that⃓⃓⃓⃓
⃓⃓1h

ˆ
Γ2

ˆ 1

0
(y − x, w − v) ·

(︃
∇x,vφ

(︂
x+ r(y − x), v + r(w − v)

)︂
− ∇x,vφ(x, v)

)︃
dr dπt,t+h

⃓⃓⃓⃓
⃓⃓

≲
∥y − x∥2

L2(πt,t+h) +∥w − v∥2
L2(πt,t+h)

h

≲
1
h

⎛⎜⎝⃦⃦⃦⃦⃦ y − x− Tt,t+h
w + v

2

⃦⃦⃦⃦
⃦

2

L2(πt,t+h)
+
(︂
1 + T 2

t,t+h

)︂
∥w − v∥2

L2(πt,t+h) + T 2
t,t+h∥v∥2

L2(µt)

⎞⎟⎠
≲

(︂
1 + T 2

t,t+h

)︂
d̃(µt, µt+h)2 + T 2

t,t+h∥v∥2
L2(µt)

h
, (3.5.22)

6We allow the negligible set of times where (3.5.19) does not hold to possibly depend on φ.
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where the constants hidden in ≲ do not depend on h. Combining the latter with Propo-
sition 3.5.4, (3.5.15), and the fact that t is a Lebesgue point for s ↦→ ∥Fs∥L2(µs), we infer
that (3.5.22) is o(1) for h ↓ 0. Finally, we notice that

⃓⃓⃓⃓
⃓
ˆ

Γ

y − x− Tt,t+hv

h
· ∇xφ dµt

⃓⃓⃓⃓
⃓ ≲

⃦⃦⃦
y − x− Tt,t+hv

⃦⃦⃦
L2(πt,t+h)

h

(∗)
≲
Tt,t+h

h
d̃(µt, µt+h) = o(1) ,

where (∗) can be proved as in (3.5.18) if Tt,t+h > 0, and is trivial otherwise. From (3.5.21)
and these observations, the conclusion follows.

Corollary 3.5.11. Under Assumption 3.5.2, for a.e. t ∈ (a, b) such that |ρ′
t|W2

> 0, we have

lim
h↓0

Tt,t+h

h
= 1 . (3.5.23)

Proof. Let {ϕk}k∈N be a C1-dense set of C∞
c (X ). We apply Lemma 3.5.10 with φ : (x, v) ↦→

ϕk(x) for every k ∈ N to deduce that, for a.e. t ∈ (a, b) such that |ρ′
t|W2

> 0, we have

lim
h↓0

Tt,t+h

h

ˆ
v · ∇xϕk dµt =

ˆ
v · ∇xϕk dµt , k ∈ N . (3.5.24)

Let us take any such t for which, additionally, (3.5.7) holds. By Lemma 3.5.3, there exists ϕ̄ ∈
C∞

c (X ) such that ∇ϕ̄ is sufficiently close to prV t
(jt) in L2(ρt;Rd), in the sense that⃓⃓⃓⃓

⃓
ˆ

∇ϕ̄(x) · v dµt

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓
ˆ

∇ϕ̄ · prV t
(jt) dρt

⃓⃓⃓⃓
⃓ > |ρ′

t|W2

2 > 0 .

To conclude, it suffices to choose k in (3.5.24) such that
⃦⃦⃦
ϕ̄− ϕk

⃦⃦⃦
C1

is sufficiently small.

Proof of Proposition 3.5.6. The result is immediate after Lemma 3.5.9 and Corollary 3.5.11.

3.5.2 Physical curves solve Vlasov’s equations
Let (µt)t∈(a,b) be a narrowly continuous curve in P2(Γ), let (s, t) ↦→ πs,t be a measurable
selection of optimal transport plans for d, and let Ts,t be the corresponding optimal times,
see (3.5.5). Recall ρt := (prx)#µt and Ω :=

{︂
t ∈ (a, b) : ∥v∥L2(µt) > 0

}︂
.

Choose measurable functions (s, t) ↦→ θs,t ∈ [0,∞] and (s, t) ↦→ πθ
s,t ∈ Π(µs, µt). Let ˆ︁Ω ⊆

(a, b) be an open set of times.

Proposition 3.5.12. Assume the following:

(a) The curve (µt)t∈(a,b) is W2-2-absolutely continuous. (Consequently, t ↦→ ρt is W2-2-
a.c., and t ↦→∥v∥L2(µt) is 2-a.c.)

(b) For every s < t such that θs,t = 0, we have y = x πθ
s,t-a.e.

(c) There exists a function ℓ ∈ L2(a, b) such that

∥w − v∥L2(πθ
s,t) ≤

ˆ t

s

ℓ(r) dr , a < s < t < b . (3.5.25)
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(d) The set ˆ︁Ω has full measure in (a, b). For every [a′, b′] ⊆ ˆ︁Ω, we have the limits

lim
h↓0

ˆ b′

a′

⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓ dt = 0 (3.5.26)

and
lim
h↓0

ˆ
{t∈(a′,b′) : θt,t+h∈(0,∞)}

θt,t+h

h

√︂
c̃θt,t+h

(πθ
t,t+h) dt = 0 . (3.5.27)

Then, there exists a force field (Ft)t such that (µt, Ft)t solves Vlasov’s equation (3.4.7),
and (Ft)t belongs to the L2(µt dt)-closure of

{︃
∇vφ : φ ∈ C∞

c

(︂
(a, b) × Γ

)︂}︃
.

We discuss the assumptions of Proposition 3.5.12 below, and give a proof at the end of this
section. Choosing θs,t := t− s and θs,t := Ts,t, we immediately obtain two corollaries.

Corollary 3.5.13. Assume (a) in Proposition 3.5.12 holds. If there exists ℓ ∈ L2(a, b) with

d̃t−s(µs, µt) ≤
ˆ t

s

ℓ(r) dr , a < s < t < b , (3.5.28)

then the conclusion of Proposition 3.5.12 holds.

Proof. Set θs,t := t− s, and let (s, t) ↦→ πθ
s,t ∈ Π(µs, µt) be a measurable selection of d̃t−s-

optimal plans. We set ˆ︁Ω := (a, b). Then, Assumption (b) in Proposition 3.5.12 is vacuously
true, (3.5.25) follows from (3.5.28) because d̃t−s(µs, µt) ≥∥w − v∥L2(πθ

s,t), (3.5.26) is obvious,
and (3.5.27) follows from (3.5.28).

Corollary 3.5.14. Assume (a) in Proposition 3.5.12 and, in addition, the following.

(c’) There exists a function ℓ ∈ L2(a, b) such that

d(µs, µt) ≤
ˆ t

s

ℓ(r) dr , a < s < t < b . (3.5.29)

(d’) The set ˆ︁Ω has full measure in (a, b). For every [a′, b′] ⊆ ˆ︁Ω, we have the limit

lim
h↓0

ˆ b′

a′

⃓⃓⃓⃓
⃓Tt,t+h

h
− 1

⃓⃓⃓⃓
⃓ dt = 0 . (3.5.30)

Then the conclusion of Proposition 3.5.12 holds.

Proof. Set θs,t := Ts,t and choose πθ
s,t := πs,t, which has the following property:

Ts,t ∈ (0,∞) =⇒ d2(µs, µt) = c(πs,t) = c̃Ts,t(πs,t) . (3.5.31)

Then, Assumption (b) in Proposition 3.5.12 follows from (3.5.5), and (3.5.25) follows
from (3.5.29) because d(µs, µt) ≥ ∥w − v∥L2(πs,t). Finally, (3.5.27) follows from (3.5.31),
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(3.5.29), and (3.5.30); indeed,
ˆ
{t∈(a′,b′) : Tt,t+h∈(0,∞)}

Tt,t+h

h

√︂
c̃Ts,t(πs,t) dt ≤

ˆ b′

a′

Tt,t+h

h

ˆ t+h

t

ℓ(r) dr dt ,

≤∥ℓ∥L1

ˆ b′

a′

⃓⃓⃓⃓
⃓Tt,t+h

h
− 1

⃓⃓⃓⃓
⃓ dt

+ h

ˆ b′+h

a′
ℓ(r) dr ,

which tends to 0 as h ↓ 0 by (3.5.30).

Remark 3.5.15. The combination of Corollary 3.5.14 and Proposition 3.5.6 yields a self-
improvement result for the convergence Tt,t+h

h
→ 1. Indeed, let us make the assumptions of

Corollary 3.5.14 with ˆ︁Ω = Ω. In particular, we assume the L1
loc(Ω) convergence of Tt,t+h

h
. From

Corollary 3.5.14, we get Assumption 3.5.2 and therefore, by Proposition 3.5.6, the L2
loc(Ω)-

and almost everywhere convergence of Tt,t+h

h
.

Proposition 3.5.12 and its corollaries reproduce [AGS08, Theorem 8.3.1] from the classical
OT theory. We will also adopt a similar proof strategy, namely we prove that a certain linear
functional is bounded, so as to apply the Riesz representation theorem. Naively, one could try
to work with the same functional as in [AGS08, Theorem 8.3.1], i.e.

φ ↦−→
ˆ b

a

ˆ
Γ
∂tφ dµt dt ,

and prove that the function representing it is of the form (v, F ). However, it turns out
being more natural to treat ∂t + v · ∇x as a single differential operator, in the spirit of
hypoellipticity [Hör67]. Then, we work with the linear functional L = L(φ) defined via

φ
L↦−→

ˆ b

a

ˆ
Γ
(∂tφ+ v · ∇xφ) dµt dt =

ˆ b

a

ˆ
Γ

lim
h↓0

φ(t, x, v) − φ(t− h, x− hv, v)
h

dµt dt .

We shall prove that, in fact, L = L(∇vφ), i.e., L is a linear and bounded functional of ∇vφ,
with operator norm∥L∥ ≤∥ℓ∥L2 . One key ingredient in the proof is that x and y−hw coincide
to the first order on the support of πθ

t,t+h. More precisely, by means of Assumption (d), we
show that

lim
h↓0

ˆ b′

a′

|y − x− hw|
h

dπθ
t,t+h dt = 0 , [a′, b′] ⊆ ˆ︁Ω .

Let us briefly comment on the assumptions of Proposition 3.5.12. Assumption (a) is certainly
true for any solution to Vlasov’s equation with moment bounds by [AGS08, Theorem 8.3.1].
Furthermore, it is independent of the other assumptions, and not even replaceable by Wasser-
stein BV-continuity of (µt)t∈(a,b). The following example produces a bounded variation curve
satisfying Assumptions (b) to (d) which does not solve (3.4.7).

Example 3.5.16. Let x0 : (0, 1) → (0, 1) be the Cantor function, namely a continuous, sur-
jective, nondecreasing function of bounded variation, having a Cantor measure—concentrated
on the Cantor set C—as derivative. In dimension n = 1, set

v(t) := inf
{︁
|t− c| : c ∈ C

}︁
, t ∈ (0, 1) ,

x(t) := x0(t) +
ˆ t

0
v(s) ds , t ∈ (0, 1) ,
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and define the curve µ· := δ(︂
x(·),v(·)

)︂. Choose ˆ︁Ω := (0, 1) \ C and

θs,t := Ts,t
(3.3.5)= 2

⃓⃓
x(t) − x(s)

⃓⃓2(︂
x(t) − x(s)

)︂(︂
v(t) + v(s)

)︂ =
x0(t) − x0(s) +

´ t

s
v(r) dr

v(t) + v(s) . (3.5.32)

In this case, there is only one admissible plan for every s, t, namely πθ
s,t = µs ⊗ µt.

Assumption (b) is vacuously true, because x is strictly increasing. Assumption (c) holds
because ⃓⃓

v(t) − v(s)
⃓⃓
≤ t− s , 0 < s < t < 1 .

The function v is uniformly bounded away from 0 on any compact subset of ˆ︁Ω, and x0 is
constant on any interval in ˆ︁Ω. Therefore, the convergence θt,t+h

h
→ 1 holds locally uniformly

on ˆ︁Ω. When θs,t ∈ (0,∞), we have√︂
c̃θs,t(πθ

s,t) =
⃓⃓
v(t) − v(s)

⃓⃓
≤ t− s ,

and with this we verify Assumption (d).

Nevertheless, this curve does not solve Vlasov’s equation for any force field (Ft)t such

that
´ 1

0

⃓⃓⃓⃓
Ft

(︂
x(t), v(t)

)︂⃓⃓⃓⃓2
dt < ∞. If it did, then, by Lemma 3.4.13, we would have

⃓⃓
x(t)

⃓⃓ (3.4.33)
≤

⃓⃓
x(0)

⃓⃓
+
ˆ t

0

⃓⃓
v(s)

⃓⃓
ds , t ∈ (0, 1) ,

which would imply x0 ≡ 0.

Assumption (b), Assumption (c), and (3.5.27), together, are a weakened version of the natural
absolute continuity condition

√︂
c̃θt,t+h

(πθ
t,t+h) ≤

ˆ t

s

ℓ(r) dr

(calling c̃0(πθ
t,t+h) the limit of c̃ϵ(πθ

t,t+h) for ϵ → 0), as can be easily checked (using (3.5.26)).

Assuming θt,t+h

h
→ 1 is needed to select a solution to Vlasov’s equation (3.4.7) among all

its possible reparametrisations. Recall also the hypothesis that ˆ︁Ω has full measure in (a, b).
This ensures that (µt)t solves Vlasov’s equation on the whole (a, b). In the next lemma, we
show that there are conditions under which Ω has full measure and, therefore, it may be a
viable choice for ˆ︁Ω. More precisely, we establish a connection between |ρ′|W2

and ∥v∥L2(µt)

in terms of lim infh↓0
θt,t+h

h
a priori, i.e., without knowing that (µt)t solves Vlasov’s equation.

For solutions to Vlasov’s equation, the analogous statement is Lemma 3.5.3.

Lemma 3.5.17. Let t ∈ (a, b) be a W2-differentiability point for t̃ → ρt̃, and assume that
there exists a sequence hk ↓ 0 such that

l := lim
k→∞

θt,t+hk

hk

< ∞ , θt,t+hk
∈ (0,∞) ∀ k , and lim

k→∞
c̃θt,t+hk

(πθ
t,t+hk

) = 0 . (3.5.33)

Then, ⃓⃓⃓
ρ′

t

⃓⃓⃓
W2

≤ l ∥v∥L2(µt) . (3.5.34)
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As a consequence, if

lim inf
h↓0

Tt,t+h

h
< ∞ , lim

h↓0
d(µt, µt+h) = 0 , and

⃓⃓⃓
ρ′

t

⃓⃓⃓
W2

> 0 (3.5.35)

for a.e. t ∈ (a, b), then Ω has full measure in (a, b).

Remark 3.5.18. If |ρ′
t|W2

> 0 and Assumption (b) holds, then θt,t+h > 0 for small h.

Proof of Lemma 3.5.17. We write
∥y − x∥L2(πθ

t,t+hk
)

θt,t+hk

≤
⃦⃦⃦⃦
⃦ y − x

θt,t+hk

− v + w

2

⃦⃦⃦⃦
⃦

L2(πθ
t,t+hk

)
+
⃦⃦⃦⃦
⃦w − v

2

⃦⃦⃦⃦
⃦

L2(πθ
t,t+hk

)
+∥v∥L2(µt)

≤
√︂

c̃θt,t+hk
(πθ

t,t+hk
) +∥v∥L2(µt) .

Therefore, by hypothesis,

⃓⃓⃓
ρ′

t

⃓⃓⃓
W2

≤ l lim inf
k→∞

∥y − x∥L2(πθ
t,t+hk

)

θt,t+hk

= l ∥v∥L2(µt) .

The proof that Ω has full measure under (3.5.35) is consequence of Remark 3.5.18 and the
fact that d(µt, µt+h) = c̃Tt,t+h

(πt,t+h) if Tt,t+h ∈ (0,∞).

Proof of Proposition 3.5.12. Let us fix [a′, b′] ⊆ ˆ︁Ω and φ ∈ C∞
c

(︂
(a′, b′) × X × V

)︂
. We write

L(φ) :=
ˆ b

a

ˆ
Γ
(∂tφ+ v · ∇xφ) dµt dt

≤

⃓⃓⃓⃓
⃓⃓
ˆ b′

a′

ˆ
Γ

lim
h↓0

φ(t, x, v) − φ(t− h, x− hv, v)
h

dµt dt

⃓⃓⃓⃓
⃓⃓

and, by the dominated convergence theorem and a change of time variable,

L(φ) ≤ lim
h↓0

⃓⃓⃓⃓
⃓⃓
ˆ b′

a′

ˆ
φ(t, x, v) − φ(t− h, x− hv, v)

h
dµt dt

⃓⃓⃓⃓
⃓⃓

= lim
h↓0

⃓⃓⃓⃓
⃓⃓⃓´ b′

a′

´
φ(t, x, v) dµt dt−

´ b′

a′

´
φ(t, x− hv, v) dµt+h dt

h

⃓⃓⃓⃓
⃓⃓⃓ .

Hence, we have

L(φ) ≤ lim
h↓0

⃓⃓⃓⃓
⃓⃓
ˆ b′

a′

ˆ
Γ

φ(t, x, v) − φ(t, y − hw,w)
h

dπθ
t,t+h dt

⃓⃓⃓⃓
⃓⃓

≤ lim inf
h↓0

ˆ b′

a′

ˆ
Γ×Γ

⃓⃓
φ(t, x, v) − φ(t, x, w)

⃓⃓
h

dπθ
t,t+h dt⏞ ⏟⏟ ⏞

=:Iφ,1

+ lim sup
h↓0

ˆ b′

a′

ˆ
Γ×Γ

⃓⃓
φ(t, x, w) − φ(t, y − hw,w)

⃓⃓
h

dπθ
t,t+h dt⏞ ⏟⏟ ⏞

=:Iφ,2

.
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We start by estimating Iφ,1. By the Cauchy–Schwarz inequality:

Iφ,1 ≤ lim inf
h↓0

⌜⃓⃓⎷ˆ b′

a′

ˆ
Γ×Γ

⃓⃓
φ(t, x, v) − φ(t, x, w)

⃓⃓2
|v − w|2

dπθ
t,t+h dt

·

⌜⃓⃓⎷ˆ b′

a′

ˆ
Γ×Γ

|v − w|2

h2 dπθ
t,t+h dt . (3.5.36)

By Assumption (c), we have ∥w − v∥L2(πθ
t,t+h

) → 0 for a.e. t. Therefore, the first square root
in (3.5.36) converges to ∥∇vφ∥L2(µt dt) by the dominated convergence theorem. As for the
second one, again by Assumption (c), we write

ˆ b′

a′

ˆ
Γ×Γ

|v − w|2

h2 dπθ
t,t+h dt ≤

ˆ b′

a′

⎛⎝ t+h

t

ℓ(r) dr
⎞⎠2

dt ≤
ˆ b′+h

a′
ℓ2(r) dr (3.5.37)

from which we conclude that Iφ,1 ≤∥∇vφ∥L2(µt dt)∥ℓ∥L2 .

We claim that Iφ,2 = 0. To prove it, we estimate

Iφ,2 ≤∥φ∥C1 lim sup
h↓0

ˆ b′

a′

ˆ
Γ×Γ

|y − x− hw|
h

dπθ
t,t+h dt .

Momentarily fix t and h. If θt,t+h ∈ (0,∞), then the triangle inequality gives

|y − x− hw|
h

≤
⃓⃓⃓⃓
⃓y − x

h
− θt,t+h

h

v + w

2

⃓⃓⃓⃓
⃓+ |w − v|

2 +
⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓ |v + w|

2 ,

and, therefore,
ˆ

Γ×Γ

|y − x− hw|
h

dπθ
t,t+h ≤ θt,t+h

h

√︂
c̃θt,t+h

(πθ
t,t+h) +

ˆ t+h

t

ℓ(r) dr

+
⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓∥v∥L2(µt) +∥v∥L2(µt+h)

2

If θt,t+h = 0, then by Assumption (b),
ˆ

Γ×Γ

|y − x− hw|
h

dπθ
t,t+h =∥v∥L2(µt+h) =

⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓∥v∥L2(µt+h) .

If θt,t+h = ∞, then, trivially,
ˆ

Γ×Γ

|y − x− hw|
h

dπθ
t,t+h ≤

⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓ .

Hence, we find
ˆ b′

a′

ˆ
Γ×Γ

|y − x− hw|
h

dπθ
t,t+h dt ≤

ˆ
{t∈(a′,b′) : θt,t+h∈(0,∞)}

θt,t+h

h

√︂
c̃θt,t+h

(πθ
t,t+h) dt

+ h

ˆ b′+h

a′
ℓ(r) dr

+

⎛⎜⎝ sup
a+a′

2 ≤t≤ b+b′
2

∥v∥L2(µt) + 1

⎞⎟⎠ˆ b′

a′

⃓⃓⃓⃓
⃓θt,t+h

h
− 1

⃓⃓⃓⃓
⃓ dt ,
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and Assumption (d) allows to conclude that Iφ,2 = 0.

We established that L(φ) ≤ ∥∇vφ∥L2(µt dt)∥ℓ∥L2 for every φ ∈ C∞
c

(︂
(a′, b′) × X × V

)︂
with [a′, b′] ⊆ Ω. By linearity of L and arbitrariness of a′, b′, we have, in fact, that

L(φ) ≤∥∇vφ∥L2(µt dt)∥ℓ∥L2 for every φ ∈ C∞
c (ˆ︁Ω × X × V) . (3.5.38)

We claim that the same inequality holds for every φ ∈ C∞
c

(︂
(a, b) × X × V

)︂
. Given one such φ,

and a function η ∈ C∞
c (ˆ︁Ω), we write

L(φ) =
ˆ b

a

ˆ
Γ
(∂tφ+ v · ∇xφ) dµt dt

=
ˆ b

a

(︂
1 − η(t)

)︂ ˆ
Γ
(∂tφ+ v · ∇xφ) dµt dt

+
ˆ b

a

(︄
η(t)

ˆ
Γ
(∂tφ+ v · ∇xφ) dµt + ∂tη(t)

ˆ
Γ
φ dµt

)︄
dt−

ˆ b

a

∂tη(t)
ˆ

Γ
φ dµt dt .

Since (µt)t∈(a,b) is W2-2-a.c., and φ is smooth and compactly supported, the function t ↦→´
φ(t, ·) dµt is 2-a.c. Therefore, an integration by parts yields

L(φ) =
ˆ b

a

(︂
1 − η(t)

)︂ ˆ
Γ
(∂tφ+ v · ∇xφ) dµt dt

+
ˆ b

a

ˆ
Γ

(︂
∂t(ηφ) + v · ∇x(ηφ)

)︂
dµt dt+

ˆ b

a

η(t) d
dt

ˆ
Γ
φ dµt dt .

Since ηφ ∈ C∞
c (ˆ︁Ω × X × V), we apply (3.5.38) to write

L(φ) ≤
ˆ b

a

(︂
1 − η(t)

)︂ ˆ
(∂tφ+ v · ∇xφ) dµt dt+∥η∇vφ∥L2(µt dt)∥ℓ∥L2(a,b)

+
ˆ b

a

η(t) d
dt

ˆ
Γ
φ dµt dt .

By Assumption (d), the complement of ˆ︁Ω is Lebesgue negligible. Thus, η can approximate
the constant function 1 in L2(ˆ︁Ω) = L2(a, b). This gives

L(φ) ≤∥∇vφ∥L2(µt dt)∥ℓ∥L2(a,b) +
ˆ b

a

d
dt

ˆ
Γ
φ dµt dt =∥∇vφ∥L2(µt dt)∥ℓ∥L2 ,

which was our claim.

Finally, we apply the Riesz representation theorem on the closure in L2(µt dt) of the set{︃
∇vφ : φ ∈ C∞

c

(︂
(a, b) × X × V

)︂}︃
to find (Ft)t such that (µt, Ft)t∈(a,b) solves (3.4.7).

3.5.3 First-order differential calculus
Let (µt)t∈(a,b) be a narrowly continuous curve in P2(Γ), let (s, t) ↦→ πs,t be a measurable
selection of optimal transport plans for d, and let Ts,t be the corresponding optimal times,
see (3.5.5). Recall that ρt := (prx)#µt and ⟨v⟩t =

´
v dµt.
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The tangent

In the light of the previous sections, we can now give a more rigorous description of the geometric
intuitions of Remark 3.1.9, Remark 3.1.12, and Remark 3.1.13. Given a solution (µt, Ft)t∈(a,b)
to Vlasov’s equation (3.4.7), we can see v as the infinitesimal x-variation (i.e. the velocity),
and the field (Ft)t driving (µt)t as the infinitesimal v-variation (i.e., the acceleration or force).
In the case of the particle model—Section 3.2—we have that, along a regular solution to
Newton’s equations ẋt = vt, v̇t = Ft(xt, vt), it holds true:

xt = x0 + t v0 + o(t), t → 0 ,
vt = v0 + t F0(x0, v0) + o(t), t → 0 ,

xt = x0 + tv0 + 1
2 t

2 F0(x0, v0) + o(t2) , t → 0 .

In the next propositions, we recover analogous formulae in the case of evolutions of measures
along Vlasov’s equations. The heuristic argument—given in Remark 3.1.12—is the following.
Along a solution (µt)t to (3.4.7), the optimal plan πt,t+h for d(µt, µt+h) is close to the
projection (︂

pr(α(t),α′(t)),(α(t+h),α′(t+h))

)︂
#

m

of the dynamical transport plan m induced by Vlasov’s equation itself (cf. [AGS08, Theo-
rem 8.2.1]). Quantitative statements are given below.

Proposition 3.5.19. Suppose that Assumption 3.5.2 holds (i.e., (µt, Ft)t is a solution to
Vlasov’s equation for a field (Ft)t), with (Ft)t belonging to the L2(µt dt)-closure of the
set

{︃
∇vφ : φ ∈ C∞

c

(︂
(a, b) × Γ

)︂}︃
. Then, for a.e. t ∈ (a, b) such that |ρ′

t|W2
> 0, we have

lim
h↓0

1
h

⃦⃦
w − v − hFt(x, v)

⃦⃦
L2(πt,t+h) = 0 , (3.5.39)

lim
h↓0

1
h2

⃦⃦⃦⃦
⃦y − x− Tt,t+h

v + w

2

⃦⃦⃦⃦
⃦

L2(πt,t+h)
= 0 . (3.5.40)

Proposition 3.5.20. In the setting of Proposition 3.5.19, for a.e. t such that ⟨v⟩t ̸= 0, we
have

lim
h↓0

Tt,t+h − h

h2 = 0 (3.5.41)

and
lim
h↓0

1
h2

⃦⃦⃦⃦
⃦y − x− hv − h2

2 Ft(x, v)
⃦⃦⃦⃦
⃦

L2(πt,t+h)
= 0 . (3.5.42)

Proof of Proposition 3.5.19. Let {φk}k∈N be a C1-dense set of C∞
c (Γ) functions. For almost

every t ∈ (a, b), we have

1. |ρ′
t|W2

> 0,

2. Tt,t+h

h
→ 1, cf. Corollary 3.5.11,

3. Equation (3.5.19) holds with φ := φk for every k ∈ N,

4. lim suph↓0
d(µt,µt+h)

h
≤∥Ft∥L2(µt) < ∞, cf. Proposition 3.5.5,
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5. Ft belongs to the L2(µt)-closure of
{︁
∇vφ : φ ∈ C∞

c (Γ)
}︁
.

Let t be one such time. To prove (3.5.39), we compute

⃦⃦
w − v − hFt(x, v)

⃦⃦2
L2(πt,t+h) =∥w − v∥2

L2(πt,t+h) + h2∥Ft∥2
L2(µt)

− 2h
ˆ

(w − v) · Ft(x, v) dπt,t+h ,

hence, resorting to Proposition 3.5.5,

lim sup
h↓0

∥w − v − hFt∥2
L2(πt,t+h)

h2

(3.5.10)
≤ 2∥Ft∥2

L2(µt) − 2 lim inf
h↓0

ˆ
w − v

h
· Ft(x, v) dπt,t+h .

(3.5.43)
We estimate the last integral. For every k, we have

ˆ
Ft · ∇vφk dµt

(3.5.19)= lim
h↓0

⎛⎝ˆ w − v

h
· ∇vφk(x, v) dπt,t+h +

(︄
Tt,t+h

h
− 1

)︄ ˆ
v · ∇xφk dµt

⎞⎠
(3.5.23)= lim

h↓0

ˆ
w − v

h
· ∇vφk(x, v) dπt,t+h

≤ lim inf
h↓0

ˆ
w − v

h
· Ft dπt,t+h +∥∇vφk − Ft∥L2(µt) lim sup

h↓0

∥w − v∥L2(πt,t+h)

h
(3.5.10)

≤ lim inf
h↓0

ˆ
w − v

h
· Ft dπt,t+h +∥∇vφk − Ft∥L2(µt)∥Ft∥L2(µt) .

By arbitrariness of k,
ˆ
Ft · ∇vφ dµt ≤ lim inf

h↓0

ˆ
w − v

h
· Ft dπt,t+h +∥∇vφ− Ft∥L2(µt)∥Ft∥L2(µt)

for every φ ∈ C∞
c (Γ). Since Ft belongs to the L2(µt)-closure of

{︁
∇vφ : φ ∈ C∞

c (Γ)
}︁
,

∥Ft∥2
L2(µt) ≤ lim inf

h↓0

ˆ
w − v

h
· Ft dπt,t+h ,

which, together with (3.5.43), yields (3.5.39).

Let us now prove (3.5.40). By definition of d̃, we write

12
h4

⃦⃦⃦⃦
⃦y − x− Tt,t+h

v + w

2

⃦⃦⃦⃦
⃦

2

L2(πt,t+h)
=
T 2

t,t+h

h2

d̃2(µt, µt+h) −∥w − v∥2
L2(πt,t+h)

h2 ,

therefore, it suffices that

lim
h↓0

d̃2(µt, µt+h) −∥w − v∥2
L2(πt,t+h)

h2 = 0 ,

which follows from (3.5.10) and (3.5.39).
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Proof of Proposition 3.5.20. Let t ∈ (a, b) be such that ⟨v⟩t ̸= 0. In the light of Lemma 3.5.3,
Corollary 3.5.11, Proposition 3.5.19, we may assume that (3.5.23), (3.5.39), (3.5.40) hold,
and, additionally, t is a Lebesgue point for

s ↦−→
ˆ
Fs dµs .

Fix h ∈ (0, b− t) such that Tt,t+h < ∞, and let η,P be as in Lemma 3.5.9. In particular,
ˆ
y · ⟨v⟩t dP −

ˆ
x · ⟨v⟩t dP =

ˆ
γx(t+ h) · ⟨v⟩t dP −

ˆ
γx(t) · ⟨v⟩t dP ,

thus,
ˆ

(y − x) · ⟨v⟩t dπt,t+h =
ˆ ˆ t+h

t

γ̇x(s) · ⟨v⟩t ds dη =
ˆ ˆ t+h

t

γv(s) · ⟨v⟩t ds dη

=
ˆ ˆ t+h

t

γv(s) · ⟨v⟩t ds dη =
ˆ ⎛⎝hγv(t) +

ˆ t+h

t

(t+ h− s)γ̇v(s) ds
⎞⎠ · ⟨v⟩t dη

=
ˆ ⎛⎝hγv(t) +

ˆ t+h

t

(t+ h− s)Fs

(︂
γx(r), γv(r)

)︂
ds
⎞⎠ · ⟨v⟩t dη

= h

ˆ
v · ⟨v⟩t dµt +

ˆ t+h

t

(t+ h− s)
ˆ
Fs · ⟨v⟩t dµs ds .

We infer that

Tt,t+h − h

h2 ⟨v⟩2
t =

 t+h

t

t+ h− s

h

(︄ˆ
Fs · ⟨v⟩t dµs −

ˆ
Ft · ⟨v⟩t dµt

)︄
ds

+
ˆ
Ft · ⟨v⟩t dµt

 t+h

t

t+ h− s

h
ds

+ Tt,t+h

h

ˆ
v − w

2h · ⟨v⟩t dπt,t+h − 1
h2

ˆ (︄
y − x− Tt,t+h

v + w

2

)︄
· ⟨v⟩t dπt,t+h .

Let us analyse the four terms at the right-hand side one by one. The first one is negligible,
because we can bound t+h−s

h
≤ 1 and use the Lebesgue differentiation theorem. The second

one is equal, for every h > 0, to 1
2

´
Ft · ⟨v⟩t dµt. The third one converges to this same

quantity with inverse sign (i.e., −1
2

´
Ft · ⟨v⟩t dµt) by (3.5.23) and (3.5.39). The fourth one

is negligible by (3.5.40).

Since ⟨v⟩t ̸= 0, the proof of (3.5.41) is complete, and (3.5.42) follows from (3.5.39), (3.5.40),
(3.5.41).

d-derivative

For a solution (µt)t to Vlasov’s equation, we are going to prove that the limits of the
incremental ratios d(µt,µt+h)

h
and d̃h(µt,µt+h)

h
as h ↓ 0 exist and are equal to the smallest norm

of a force field (Ft)t driving (µt)t. This is similar to a consequence of [AGS08, Theorem 1.1.2
& Theorem 8.3.1] in classical OT. A major obstacle in replicating these results is that d is not
a distance.

The classical way to show that d(µt,µt+h)
h

has a limit for almost every t—without extracting a
subsequence—is [AGS08, Thereom 1.1.2], which relies on the triangle inequality. The proof
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we give here is, instead, based on Lemma 3.5.10, which, for a.e. t ∈ (a, b) with |ρ′
t|W2

> 0,
identifies Ft with the direction of infinitesimal change of the velocities, which in turn bounds
the incremental ratio of d from below.

Remark 3.5.21. Proposition 3.5.22 below is a generalised version of Proposition 3.2.14, which
provided the d-derivative in the particle-model case.

Proposition 3.5.22. Under Assumption 3.5.2 with (Ft)t belonging to the L2(µt dt)-closure
of the set

{︃
∇vφ : φ ∈ C∞

c

(︂
(a, b) × Γ

)︂}︃
, for a.e. t such that |ρ′

t|W2
> 0, we have the limits

lim
h↓0

d(µt, µt+h)
h

= lim
h↓0

d̃h(µt, µt+h)
h

=∥Ft∥L2(µt) . (3.5.44)

Proof. The inequality ≤ is given by Proposition 3.5.5. The inequality ≥ follows from Proposi-
tion 3.5.19:

lim inf
h↓0

d̃h(µt, µt+h)
h

≥ lim inf
h↓0

d(µt, µt+h)
h

≥ lim inf
h↓0

∥w − v∥L2(πt,t+h)

h

(3.5.39)= ∥Ft∥L2(µt)

for a.e. t ∈ (a, b) such that |ρ′
t|W2

> 0.

The limit
lim
h↓0

d̃h(µt, µt+h)
h

=∥Ft∥L2(µt) , (3.5.45)

can be obtained without the assumption |ρ′
t|W2

> 0.

Proposition 3.5.23. Under Assumption 3.5.2 with (Ft)t belonging to the L2(µt dt)-closure
of the set

{︃
∇vφ : φ ∈ C∞

c

(︂
(a, b) × Γ

)︂}︃
, for a.e. t, we have (3.5.45).

Proof. The inequality ≤ is given by Proposition 3.5.5. To prove ≥, we adopt a similar
strategy as in the proof of Lemma 3.5.10 and Proposition 3.5.20. Let us fix a C1-dense set of
functions {φk}k∈N ⊆ C∞

c (Γ), and t such that:

1. t is a Lebesgue point of the functions

s ↦−→
ˆ

Γ
(ṽ, Fs) · ∇x,vφk dµs for every k ∈ N , and s ↦−→∥Fs∥L2(µs) .

2. Ft belongs to the L2(µt)-closure of
{︁
∇vφ : φ ∈ C∞

c (Γ)
}︁
.

The points t satisfying the previous conditions form a full-measure set in (a, b).

Fix h ∈ (0, b− t), let π̄ ∈ Π(µt, µt+h) be d̃h-optimal, let η ∈ P
(︂
Γ × H1(t, t+ h; Γ)

)︂
be as in

the proof of Proposition 3.5.4 (after replacing (s, t) with (t, t+ h)). By gluing π̄ and η at µt,
construct P ∈ P

(︂
Γ × Γ × H1(t, t+ h; Γ)

)︂
. For every k, we have

ˆ
φk(y, w) dP −

ˆ
φk(x, v) dP =

ˆ
φk

(︂
γ(t+ h)

)︂
dP −

ˆ
φk

(︂
γ(t)

)︂
dP ,
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which yields, by the fundamental theorem of calculus and the properties of η and P,

1
h

ˆ
Γ×Γ

ˆ 1

0
(y − x, w − v) · ∇x,vφk

(︂
x+ r(y − x), v + r(w − v)

)︂
dr dπ̄

=
 t+h

t

ˆ
Γ

(︂
ṽ, Fs(x̃, ṽ)

)︂
· ∇x,vφk(x̃, ṽ) dµs ds .

Observe that⃓⃓⃓⃓
⃓⃓1h

ˆ
Γ2

ˆ 1

0
(y − x, w − v) ·

(︃
∇x,vφk

(︂
x+ r(y − x), v + r(w − v)

)︂
− ∇x,vφk(x, v)

)︃
dr dπ̄

⃓⃓⃓⃓
⃓⃓

≲
∥y − x∥2

L2(π̄) +∥w − v∥2
L2(π̄)

h

≲
1
h

⎛⎝⃦⃦⃦⃦⃦ y − x− h
w + v

2

⃦⃦⃦⃦
⃦

2

L2(π̄)
+
(︂
1 + h2

)︂
∥w − v∥2

L2(π̄) + h2∥v∥2
L2(µt)

⎞⎠
≲

(︂
1 + h2

)︂
d̃h(µt, µt+h)2 + h2∥v∥2

L2(µt)

h
,

and the last contribution is negligible by Proposition 3.5.4. Furthermore,⃓⃓⃓⃓
⃓
ˆ

Γ

y − x− hv

h
· ∇xφk dπ̄

⃓⃓⃓⃓
⃓ ≲ ∥y − x− hv∥L2(π̄)

h
≲ d̃h(µt, µt+h) → 0 ,

as h ↓ 0. We deduce that

lim
h↓0

ˆ
Γ

w − v

h
· ∇vφk dπ̄ =

ˆ
Γ
Ft · ∇vφk dµt .

Consequently,
ˆ

Γ
Ft · ∇vφk dµt ≤∥∇vφk∥L2(µt) lim inf

h↓0

∥w − v∥L2(π̄)

h
≤∥∇vφk∥L2(µt) lim inf

h↓0

d̃h(µt, µt+h)
h

.

The conclusion follows, as Ft can be approximated by ∇vφk.

3.5.4 Reparametrisations
Let (µ̃s)s∈(ã,b̃) ⊆ P2(Γ) be a W2-2-absolutely continuous curve, and (s, t) ↦→ π̃s,t a measurable
selection of d-optimal transport plans. Define Ω̃, ρ̃s, T̃ s,t in the same way as in the introduction
to §3.5.

Theorem 3.5.24. Let λ̃ : (ã, b̃) → R>0 be measurable, bounded, and bounded away from
zero. Assume that |ρ̃′

s|W2
> 0 for a.e. s ∈ (ã, b̃). Then, the following are equivalent:

1. The curve (µ̃s)s∈(ã,b̃) is a distributional solution to

∂sµ̃s + λ̃(s) v · ∇xµ̃s + ∇v · (F̃ sµ̃s) = 0 (3.5.46)

for some force field (F̃ s)s∈(ã,b̃) with
ˆ b̃

ã

(︃
∥v∥2

L2(µ̃s) +
⃦⃦⃦
F̃ s

⃦⃦⃦2

L2(µ̃s)

)︃
ds < ∞ . (3.5.47)
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2. There exists ℓ̃ ∈ L2(ã, b̃) such that

d(µ̃s, µ̃t) ≤
ˆ t

s

ℓ̃(r) dr , ã < s < t < b̃ . (3.5.48)

Moreover,

lim
h̃↓0

T̃ s,s+h̃

h̃
= λ̃(s) for a.e. s ∈ (ã, b̃) . (3.5.49)

and, for every [ã′, b̃
′] ⊆ Ω̃, there exist h̄ > 0 and a function g̃ ∈ L1(ã′, b̃

′) such that

sup
h̃∈(0,h̄)

T̃ s,s+h̃

h̃
≤ g̃(s) for all s ∈ [ã′, b̃

′] . (3.5.50)

When the first statement holds for some (F̃ s)s∈(ã,b̃), we can choose l̃ := 2
⃦⃦⃦
F̃ ·

⃦⃦⃦
L2(µ·)

in (3.5.48).

When either of the two statements is true, a force field (F̃ s)s∈(ã,b̃) for which (3.5.46)

and (3.5.47) hold exists in the L2(µ̃s ds)-closure of
{︃

∇vφ̃ : φ̃ ∈ C∞
c

(︂
(ã, b̃) × Γ

)︂}︃
. Given

such a force field, for a.e. s ∈ (ã, b̃) we have

lim
h̃↓0

d(µ̃s, µ̃s+h̃)
h̃

=
⃦⃦⃦
F̃ s

⃦⃦⃦
L2(µs)

. (3.5.51)

Proof. Set a := 0, b :=
´ b̃

ã
λ̃(s) ds, and define the bi-Lipschitz continuous function

τ(s) :=
ˆ s

0
λ̃(r) dr , s ∈ (ã, b̃) .

Define
µt := µ̃τ−1(t) , t ∈ (a, b) ,

as well as
πs,t := π̃τ−1(s),τ−1(t) ∈ Πo,d(µs, µt) , a < s < t < b ,

so that
Ts,t = T̃ τ−1(s),τ−1(t) , a < s < t < b .

Note that (µt)t∈(a,b) is W2-2-absolutely continuous. Indeed, for all a < s < t < b, we have

W2(µs, µt) = W2
(︂
µ̃τ−1(s), µ̃τ−1(t)

)︂
≤
ˆ τ−1(t)

τ−1(s)

⃓⃓⃓
µ̃′

r̃

⃓⃓⃓
W2

dr̃ =
ˆ t

s

⃓⃓⃓
µ̃′

τ−1(r)

⃓⃓⃓
W2

λ̃
(︂
τ−1(r)

)︂ dr

and ˆ b

a

⃓⃓⃓
µ̃′

τ−1(r)

⃓⃓⃓2
W2

λ̃
(︂
τ−1(r)

)︂2 dr =
ˆ b̃

ã

|µ̃′
r̃|

2
W2

λ̃(r̃)
dr̃ ≤

⃦⃦⃦⃦
⃦1
λ̃

⃦⃦⃦⃦
⃦

L∞

ˆ b̃

ã

⃓⃓⃓
µ̃′

r̃

⃓⃓⃓2
W2

dr̃ < ∞ .

Moreover, at every differentiability point s for s̃ ↦→ ρ̃s̃ and τ , for which τ(s) is a W2-
differentiability point for t̃ ↦→ ρt̃ and τ ′(s) = λ̃(s) > 0, we have

0 <
⃓⃓⃓
ρ̃′

s

⃓⃓⃓
W2

= lim
h→0

W2(ρ̃s, ρ̃s+h)
|h|

≤ lim
h→0

W2
(︂
ρτ(s), ρτ(s+h)

)︂
⃓⃓
τ(s+ h) − τ(s)

⃓⃓ lim
h→0

⃓⃓
τ(s+ h) − τ(s)

⃓⃓
|h|

=
⃓⃓⃓
ρ′

τ(s)

⃓⃓⃓
τ ′(s) .

(3.5.52)
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This proves that |ρ′
t|W2

> 0 for a.e. t ∈ (a, b). Observe that

Ω =
{︂
t ∈ (a, b) : ∥v∥L2(µt) > 0

}︂
=
{︂
τ(s) : s ∈ (ã, b̃) , ∥v∥L2(µ̃s) > 0

}︂
= τ(Ω̃) .

Proof of 1 ⇒ 2. Define

Ft :=
F̃ τ−1(t)

λ̃
(︂
τ−1(t)

)︂ , t ∈ (a, b) .

We have

ˆ b

a

(︂
∥v∥2

L2(µt) +∥Ft∥2
L2(µt)

)︂
dt =

ˆ b̃

ã

⎛⎜⎜⎝λ̃(s)∥v∥2
L2(µ̃s) +

⃦⃦⃦
F̃ s

⃦⃦⃦2

L2(µ̃s)

λ̃(s)

⎞⎟⎟⎠ ds < ∞ . (3.5.53)

Fix φ ∈ C∞
c

(︂
(a, b) × Γ

)︂
and define φ̃(s, ·) := φ

(︂
τ(s), ·

)︂
. Let (τk)k∈N be a sequence of C∞

functions converging to τ in H1(ã, b̃) (hence uniformly), and let φ̃k(s, ·) := φ
(︂
τk(s), ·

)︂
for s ∈ (ã, b̃) and k ∈ N. At least when k is large, we have φ̃k ∈ C∞

c

(︂
(ã, b̃) × Γ

)︂
, so that

0 (3.5.46)= lim
k→∞

ˆ b̃

ã

ˆ
(∂sφ̃k + λ̃ v · ∇xφ̃k + F̃ s∇vφ̃k) dµ̃s ds

=
ˆ b̃

ã

ˆ
(∂sφ̃+ λ̃ v · ∇xφ̃+ F̃ s∇vφ̃) dµ̃s ds =

ˆ b

a

ˆ
(∂tφ+ v · ∇xφ+ Ft · ∇vφ) dµt dt .

(3.5.54)

This proves that (µt, Ft)t∈(a,b) satisfies Assumption 3.5.2. We apply Proposition 3.5.4 to write

d(µ̃s, µ̃t) = d
(︂
µτ(s), µτ(t)

)︂ (3.5.9)
≤ 2

ˆ τ(t)

τ(s)
∥Fr∥L2(µr) dr = 2

ˆ t

s

⃦⃦⃦
F̃ r

⃦⃦⃦
L2(µ̃r̃)

dr̃ (3.5.55)

and deduce (3.5.48).

Let [ã′, b̃
′] ⊆ Ω̃. By Lemma 3.5.9 there exist h̄ > 0 and a function g in L2 such that

Tt,t+h

h
≤ g(t) , for all t ∈

[︂
τ(ã′), τ(b̃′)

]︂
, and every h ∈ (0, h̄) .

Then, there exists a constant Cλ̃ > 0 such that

T̃ s,s+h̃

h̃
= τ(s+ h̃) − τ(s)

h̃

Tτ(s),τ(s+h̃)

τ(s+ h̃) − τ(s)
≤ Cλ̃ g

(︂
τ(s)

)︂
(3.5.56)

for s ∈ [ã′, b̃
′] and h ∈

(︂
0, h̄/Cλ̃

)︂
. Observe that s ↦→ g

(︂
τ(s)

)︂
is square-integrable (hence

integrable), thus (3.5.50) follows. By Corollary 3.5.11, we have

lim
h↓0

Tt,t+h

h
= 1 for a.e. t ∈ (a, b) ,

hence (3.5.49) thanks to

T̃ s,s+h̃

h̃
= τ(s+ h̃) − τ(s)

h̃

Tτ(s),τ(s+h̃)

τ(s+ h̃) − τ(s)
→ λ̃(s) as h ↓ 0 for a.e. s ∈ (ã, b̃) . (3.5.57)
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Proof of 2 ⇒ 1. By (3.5.49), for a.e. t ∈ (a, b), we have

Tt,t+h

h
= τ−1(t+ h) − τ−1(t)

h

T̃ τ−1(t),τ−1(t+h)

τ−1(t+ h) − τ−1(t) → 1
λ̃
(︂
τ−1(t)

)︂ λ̃(︂τ−1(t)
)︂

= 1 . (3.5.58)

For every s, t with a < s < t < b, we have

d(µs, µt) = d(µ̃τ−1(s), µ̃τ−1(t))
(3.5.48)

≤
ˆ τ−1(t)

τ−1(s)
ℓ̃(r̃) dr̃ =

ˆ t

s

ℓ̃
(︂
τ−1(r)

)︂
λ̃
(︂
τ−1(r)

)︂ dr ,

and we notice that ˆ b

a

ℓ̃
(︂
τ−1(r)

)︂2

λ̃
(︂
τ−1(r)

)︂2 dr =
ˆ b̃

ã

ℓ̃(r̃)2

λ̃(r̃)
dr̃ < ∞ .

This proves Assumption (c’) in Corollary 3.5.14, which together with (3.5.58), fulfil the
hypotheses of Lemma 3.5.17. Then, Ω has full measure in (a, b).

To prove Assumption (d’), let us fix [a′, b′] ⊆ Ω. For every t ∈ [a′, b′], we have

Tt,t+h

h
= τ−1(t+ h) − τ−1(t)

h

T̃ τ−1(t),τ−1(t+h)

τ−1(t+ h) − τ−1(t) ≤
⃦⃦⃦⃦
⃦1
λ̃

⃦⃦⃦⃦
⃦

L∞

T̃ τ−1(t),τ−1(t+h)

τ−1(t+ h) − τ−1(t) ,

and, by (3.5.50),
Tt,t+h

h
≤ Cλ̃g̃

(︂
τ−1(t)

)︂
for h ∈ (0, h̄/Cλ̃), for some constant Cλ̃. The function t ↦→ g̃

(︂
τ−1(t)

)︂
is integrable on [a′, b′],

therefore (3.5.30) follows from (3.5.58) and the dominated convergence theorem. Corol-
lary 3.5.14 provides a force field (Ft)t such that (µt, Ft)t solves (3.4.7) on (a, b) × Γ and (Ft)t

belongs to the L2(µt dt)-closure of
{︃

∇vφ : φ ∈ C∞
c

(︂
(a, b) × Γ

)︂}︃
. As we did in (3.5.54), it

is possible to prove that the curve (µ̃s)s and the field

F̃ s := λ̃(s)Fτ(s) , s ∈ (ã, b̃) ,

solve (3.5.46). From (3.5.53), we infer (3.5.47). By Proposition 3.5.22, we find (3.5.51): for
a.e. s,

d(µ̃s, µ̃s+h̃)
h̃

= τ(s+ h̃) − τ(s)
h̃

d(µτ(s), µτ(s+h̃))
τ(s+ h̃) − τ(s)

(3.5.44)→ λ̃(s)
⃦⃦⃦
Fτ(s)

⃦⃦⃦
L2(µτ(s))

=
⃦⃦⃦
F̃ s

⃦⃦⃦
L2(µ̃s)

.

We show that (F̃ s)s lies in the L2(µ̃s ds)-closure of
{︃

∇vφ̃ : φ̃ ∈ C∞
c

(︂
(ã, b̃) × Γ

)︂}︃
. Let

(φk)k∈N be a sequence of C∞
c

(︂
(a, b) × Γ

)︂
functions such that ∇vφk → F in L2(µt dt), and

let (τl)l∈N be a sequence of C∞ functions converging to τ in H1(ã, b̃). For every k,

φ̃k,l : (s, x, v) ↦−→ τ ′
l (s)φk

(︂
τl(s), x, v

)︂
belongs to C∞

c

(︂
(ã, b̃) × Γ

)︂
, at least for large l. As l → ∞, the sequence (∇vφk,l)l converges

to the v-gradient of the function

φ̃k : (s, x, v) ↦−→ λ̃(s)φk

(︂
τ(s), x, v

)︂
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in L2(µs ds), since τl → τ uniformly, τ ′
l → λ̃ in L2(ds), and ∇vφk

(︂
τl(s), x, v

)︂
is uniformly

bounded in l for fixed k. Moreover, by a change of variables

ˆ b̃

ã

ˆ ⃓⃓⃓⃓
λ̃(s)∇φk

(︂
τ(s), ·

)︂
− F̃ s

⃓⃓⃓⃓2
dµ̃s ds =

ˆ b̃

ã

⃓⃓⃓
λ̃(s)

⃓⃓⃓2 ˆ ⃓⃓⃓⃓
∇φk

(︂
τ(s), ·

)︂
− Fτ(s)

⃓⃓⃓⃓2
dµτ(s) ds

=
ˆ b

a

⃓⃓⃓
λ̃(τ−1(t))

⃓⃓⃓ ˆ
|∇φk − Ft|2 dµt dt ≤

⃦⃦⃦
λ̃
⃦⃦⃦

L∞

ˆ b

a

ˆ
|∇φk − Ft|2 dµt dt ,

and the latter tends to 0 as k → ∞.
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CHAPTER 4
Discrete-to-continuum limits

of optimal transport with linear growth
on periodic graphs

This chapter contains (with minimal modifications) the following publication [PQ24]:

L. Portinale and F. Quattrocchi. Discrete-to-continuum limits of optimal transport with linear
growth on periodic graphs. European Journal of Applied Mathematics, 2024, CC BY 4.0.
doi:10.1017/S0956792524000810

Abstract
We prove discrete-to-continuum convergence for dynamical optimal transport on Zd-periodic
graphs with cost functional having linear growth at infinity. This result provides an answer to
a problem left open by Gladbach, Kopfer, Maas, and Portinale (Calc Var Partial Differential
Equations 62(5), 2023), where the convergence behaviour of discrete boundary-value dynamical
transport problems is proved under the stronger assumption of superlinear growth. Our result
extends the known literature to some important classes of examples, such as scaling limits
of 1-Wasserstein transport problems. Similarly to what happens in the quadratic case, the
geometry of the graph plays a crucial role in the structure of the limit cost function, as we
discuss in the final part of this work, which includes some visual representations.

4.1 Introduction
In the Euclidean setting, the Benamou–Brenier [BB00] formulation of the distance on the
space P2(Rd) known as 2-Wasserstein or Kantorovich–Rubinstein distance is given by the
minimisation problem

W2(µ0, µ1)2 = inf

⎧⎨⎩
ˆ 1

0

ˆ
Rd

|νt|2

µt

dx dt : ∂tµt + ∇ · νt = 0, µt=0 = µ0, µt=1 = µ1

⎫⎬⎭ ,

(4.1.1)
for every µ0, µ1 ∈ P2(Rd). The PDE constraint is called continuity equation (we write
(µ,ν) ∈ CE when (µ,ν) is a solution). Over the years, the Benamou–Brenier formula (4.1.1)
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4. Discrete-to-continuum limits of optimal transport with linear growth

has revealed significant connections between the theory of optimal transport and different fields
of mathematics, including partial differential equations [JKO98], functional inequalities [OV00],
and the novel notion of Lott–Sturm–Villani’s synthetic Ricci curvature bounds for metric
measure spaces [LV07, LV09, Stu06a, Stu06b]. Inspired by the dynamical formulation (4.1.1),
in independent works, Maas [Maa11] (in the setting of Markov chains) and Mielke [Mie11] (in
the context of reaction-diffusion systems) introduced a notion of optimal transport in discrete
settings structured as a dynamical formulation à la Benamou–Brenier as in (4.1.1). One of
the features of this discretisation procedure is the replacement of the continuity equation with
a discrete counterpart: when working on a (finite) graph (X , E) (resp. vertices and edges),
the discrete continuity equation reads

∂tmt(x) +
∑︂
y∼x

Jt(x, y) = 0 , ∀x ∈ X ,
(︂
we write (mmm,JJJ) ∈ CEX

)︂

where (mt, Jt) corresponds to discrete masses and fluxes (s.t. Jt(x, y) = −Jt(y, x)). Maas’
proposed distance W [Maa11] is obtained by minimising, under the above constraint, a discrete
analogue of the Benamou–Brenier action functional with reference measure π ∈ P(X ) and
weight function ω ∈ RE

+, of the form

ˆ 1

0

1
2

∑︂
(x,y)∈E

|Jt(x, y)|2
r̂t(x, y) ω(x, y) dt , where r̂t(x, y) := θlog(rt(x), rt(y)) , rt(x) := mt(x)

π(x) ,

and where θlog(a, b) :=
´ 1

0 a
sb1−s ds denotes the 1-homogeneous, positive mean called log-

arithmic mean. With this particular choice of the mean, it was proved [Maa11, Mie11]
(see also [CHLZ12]) that the discrete heat flow coincides with the gradient flow of the rel-
ative entropy with respect to the discrete distance W. In discrete settings, the equivalence
between static and dynamical optimal transport breaks down, and the latter stands out
in applications to evolution equations, discrete Ricci curvature, and functional inequalities
[EM12, Mie13, EM14, EMT15, FM16, EHMT17, EF18]. Subsequently, several contributions
have been devoted to the study of the scaling behaviour of discrete transport problems, in
the setting of discrete-to-continuum approximation problems. The first convergence results
were obtained in [GM13] for symmetric grids on a d-dimensional torus, and by [GT20] in a
stochastic setting. In both cases, the authors obtained convergence of the discrete distances
towards W2 in the limit of the discretisation getting finer and finer.

Nonetheless, it turned out that the geometry of the graph plays a crucial role in the game. A
general result was obtained in [GKM20], where it is proved that the convergence of discrete
distances associated with finite-volume partitions with vanishing size to the 2-Wasserstein space
is substantially equivalent to an asymptotic isotropy condition on the mesh. The first complete
characterisation of limits of transport costs on periodic graphs in arbitrary dimension for
general action functionals (not necessarily quadratic) was established in [GKMP20, GKMP23]:
in this setting, the limit action functional (more precisely, the energy density) can be explicitly
characterised in terms of a cell formula, which is a finite-dimensional constrained minimisation
problem depending on the initial graph and the cost function at the discrete level. The action
functionals considered in [GKMP23] are of the form

(µ,ν) ∈ CE ↦→ A(µ,ν) :=
ˆ

(0,1)×Td

f
(︂
ρ, j

)︂
dL d+1 +

ˆ
(0,1)×Td

f∞
(︂
ρ⊥, j⊥

)︂
dσ ,

(4.1.2)
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4.1. Introduction

where we used the Lebesgue decomposition

µ = ρL d+1 + µ⊥, ν = jL d+1 + ν⊥ , and µ⊥ = ρ⊥σ , ν⊥ = j⊥σ
(︂
σ ⊥ L d+1

)︂
and where the energy density f : R+ × Rd → R ∪ {+∞} is some given convex, lower
semicontinuous function with at least linear growth, i.e. satisfying

f(ρ, j) ≥ c|j| − C(ρ+ 1) , ∀ρ ∈ R+ and j ∈ Rd , (4.1.3)

whereas f∞ denotes its recession function (see (4.2.3) for the precise definition). The choice
f(ρ, j) := |j|2/ρ corresponds to the W2 distance. At the discrete level, on a locally finite
connected graph (X , E) embedded in Rd, the natural counterpart is represented by action
functionals of the form

(mmm,JJJ) ∈ CEX ↦→ A(mmm,JJJ) :=
ˆ 1

0
F (m, J) dt , (4.1.4)

for a given lower semicontinuous, convex, and local cost function F which also has at least
linear growth with respect to the second variable (see (4.2.16) for the precise definition).

The main result in [GKMP23] is the Γ-convergence for constrained functionals as in (4.1.4),
after a suitable rescaling of the graph Xε := εX , Eε := εE , and of the cost Fε (and associated
action Aε), in the framework of Zd-periodic graphs. In particular, the limit action is of the
form (4.1.2), where the energy density f = fhom is given in terms of a cell formula, explicitly
reading

fhom(ρ, j) := inf
{︁
F (m, J) : (m, J) ∈ Rep(ρ, j)

}︁
, ρ ∈ R+ , j ∈ Rd , (4.1.5)

where Rep(ρ, j) denotes the set of discrete representatives of ρ and j, given by all Zd-periodic
functions m : X → R+ with ∑︂

x∈X ∩[0,1)d

m(x) = ρ (4.1.6)

and all Zd-periodic anti-symmetric discrete vector fields J : E → R with zero discrete
divergence and with effective flux equal to j, i.e.,

div J(x) :=
∑︂
y∼x

J(x, y) = 0 ∀x ∈ X and Eff(J) := 1
2

∑︂
(x,y)∈E
x∈[0,1)d

J(x, y)(y − x) = j .

(4.1.7)

The result covers several examples, both for what concerns the geometric properties of the
graph (such as isotropic meshes of Td, or the simple nearest-neighbors interaction on the
symmetric grid) as well as the choice of the cost functionals (including discretisation of
p-Wasserstein distances in arbitrary dimension and flow-based models, i.e. when F – or f –
does not depend on the first variable).

As a consequence of this Γ-convergence (in time-space) and a compactness result for curves of
measures with bounded action [GKMP23, Theorem 5.9], one obtains as a corollary [GKMP23,
Theorem 5.10] that, under the stronger assumption of superlinear growth on F , also the
corresponding discrete boundary-value problems (i.e. the associated squared distances, in the
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4. Discrete-to-continuum limits of optimal transport with linear growth

Figure 4.1: Example of Zd-periodic graph embedded in Rd

case of the quadratic Wasserstein problems) Γ-converge to the corresponding continuous one,
namely MAε

Γ→ MAhom (with respect to the weak topology), where

MAε(m0,m1) := inf
{︁
Aε(mmm,JJJ) : (mmm,JJJ) ∈ CEXε and mmmt=0 = m0, mmmt=1 = m1

}︁
,

MAhom(µ0, µ1) := inf
{︁
Ahom(µ,ν) : (µ,ν) ∈ CE and µt=0 = µ0, µt=1 = µ1

}︁
are the minimal discrete and homogenised action functionals, respectively. The superlinear
growth condition, at the continuous level, is a reinforcement of the condition (4.1.3) and
assumes the existence of a function θ : [0,∞) → [0,∞) with limt→∞

θ(t)
t

= ∞ and a constant
C ∈ R such that

f(ρ, j) ≥ (ρ+ 1)θ
(︄

|j|
ρ+ 1

)︄
− C(ρ+ 1) , ∀ρ ∈ R+ , j ∈ Rd . (4.1.8)

In particular, this forces every (µ,ν) ∈ CE with finite action to satisfy ν ≪ µ + L d+1

[GKMP23, Remark 6.1], and it ensures compactness in CKR
(︂
[0, 1]; M+(Td)

)︂
[GKMP23,

Theorem 5.9], i.e., with respect to the time-uniform convergence in the Kantorovich–Rubinstein
norm (recall that the KR norm metrises weak convergence on M+(Td), see [GKMP23,
Appendix A]). This compactness property makes the proof of the convergence MAε

Γ→ MAhom
an easy corollary of the convergence of the time-space energies.

Without the assumption of superlinear growth the situation is much more subtle: in particular,
the lower semicontinuity of MA obtained minimising the functional A associated to a function
f satisfying only (4.1.3) is not trivial. This is due to the fact that, in this framework, being
a solution to CE with bounded action only ensures bounds for µ ∈ BVKR

(︂
(0, 1); M+(Td)

)︂
,

which does not suffice to pass to the limit in the constraint given by the boundary conditions:
jumps may occur at t ∈ {0, 1} in the limit. Therefore, when the cost F grows linearly (linear
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bounds from both below and above), the scaling behaviour of the discrete boundary-value
problems MAε, as well as the lower semicontinuity of MA, cannot be understood with the
techniques utilised in [GKMP23]. The main goal of this work is, thus, to provide discrete-
to-continuum results for MAε for cost functionals with linear growth, as well as for every
flow-based type of cost, i.e. F (m, J) = F (J). With similar arguments, we can also show the
lower semicontinuity of MA for a general energy density f under the same assumptions, see
Section 4.3.3.

Theorem 4.1.1 (Main result). Assume that either F satisfies the linear growth condition, i.e.

F (m, J) ≤ C

⎛⎝1 +
∑︂

(x,y)∈E
|x|≤R

|J(x, y)| +
∑︂
x∈X

|x|≤R

m(x)
⎞⎠

for some constant C < ∞ and some R > 0, or that F does not depend on the m-variable
(flow-based type). Then, as ε → 0, the discrete functionals MAε Γ-converge to the continuous
functional MAhom with respect to weak convergence.

The contribution of this paper is twofold. On one side, thanks to our main result, we can
now include important examples, such as the W1 distance and related approximations, see
in particular Section 4.4 for some explicit computations of the cell formula, including the
equivalence between static and dynamical formulations (4.4.6), as well as some simulations.
As typical in this discrete-to-continuum framework, also for W1-type problems, the geometry
of the graph plays an important role in the homogenised norm obtained in the limit, giving
rise to a whole class of crystalline norms, see Proposition 4.4.4 as well as Figure 4.2. On
the other hand, this work provides ideas and techniques on how to handle the presence of
singularities/jumps in the framework of curves of measures which are only of bounded variation,
which is of independent interest.

Related literature. In their seminal work [JKO98], Jordan, Kinderlehrer, and Otto showed
that the heat flow in Rd can be seen as the gradient flow of the relative entropy with respect
to the 2-Wasserstein distance. In the same spirit, a discrete counterpart was proved in
[Maa11] and [Mie11], independently, for the discrete heat flow and discrete relative entropy
on Markov chains. In [FMP22], the authors proved the evolutionary Γ-convergence of the
discrete gradient-flow structures associated with finite-volume partitions and discrete Fokker–
Planck equations, generalising a previous result obtained in [DL15] in the setting of isotropic,
one-dimensional meshes. Similar results were later obtained in [HT23, HST24] for the study
of the limiting behaviour of random walks on tessellations in the diffusive limit. Generalised
gradient-flow structures associated to jump processes and approximation results of nonlocal and
local-interaction equations have been studied in a series of works [EPSS21, EPS23, EHPS23].
Recently, [EM24] considered the more general setting where the graph also depends on time.

4.2 General framework: continuous and discrete
transport problems

In this section, we first introduce the general class of problems at the continuous level we are
interested in, discussing main properties and known results. We then move to the discrete,
periodic framework in the spirit of [GKMP23], summarise the known convergence results, and
discuss the open problems we want to treat in this work. In contrast with [GKMP23], for the
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4. Discrete-to-continuum limits of optimal transport with linear growth

sake of the exposition we restrict our analysis to the time interval I := (0, 1). Nonetheless,
our main results easily extend to a general bounded, open interval I ⊂ R.

4.2.1 The continuous setting: transport problems on the torus
We start by recalling the definition of solutions to the continuity equation on Td.

Definition 4.2.1 (Continuity equation). A pair of measures (µ,ν) ∈ M+
(︂
(0, 1) × Td

)︂
×

Md
(︂
(0, 1) × Td

)︂
is said to be a solution to the continuity equation

∂tµ + ∇ · ν = 0 (4.2.1)

if, for all functions φ ∈ C1
c

(︂
(0, 1) × Td

)︂
, the identity

ˆ
(0,1)×Td

∂tφ dµ +
ˆ

(0,1)×Td

∇φ · dν = 0

holds. We use the notation (µ,ν) ∈ CE.

Throughout the whole paper, we consider energy densities f with the following properties.

Assumption 4.2.2. Let f : R+ × Rd → R ∪ {+∞} be a lower semicontinuous and convex
function, whose domain D(f) has nonempty interior. We assume that there exist constants c >
0 and C < ∞ such that the (at least) linear growth condition

f(ρ, j) ≥ c|j| − C(ρ+ 1) (4.2.2)

holds for all ρ ∈ R+ and j ∈ Rd.

The corresponding recession function f∞ : R+ × Rd → R ∪ {+∞} is defined by

f∞(ρ, j) := lim
t→+∞

f(ρ0 + tρ, j0 + tj)
t

, (4.2.3)

for every (ρ0, j0) ∈ D(f). It is well established that the function f∞ is lower semicontinuous,
convex, and it satisfies the inequality

f∞(ρ, j) ≥ c|j| − Cρ, ρ ∈ R+ , j ∈ Rd , (4.2.4)

see [AFP00, Section 2.6].

Let L d+1 denote the Lebesgue measure on (0, 1) × Td. For µ ∈ M+
(︂
(0, 1) × Td

)︂
and

ν ∈ Md
(︂
(0, 1) × Td

)︂
, we write their Lebesgue decompositions as

µ = ρL d+1 + µ⊥ , ν = jL d+1 + ν⊥ ,

for some ρ ∈ L1
+

(︂
(0, 1) × Td

)︂
and j ∈ L1

(︂
(0, 1) × Td;Rd

)︂
. Given these decompositions,

there always exists a measure σ ∈ M+
(︂
(0, 1) × Td

)︂
such that

µ⊥ = ρ⊥σ , ν⊥ = j⊥σ , (4.2.5)

for some ρ⊥ ∈ L1
+(σ) and j⊥ ∈ L1(σ;Rd) (take for example σ := |µ⊥| + |ν⊥|).
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4.2. General framework: continuous and discrete transport problems

Definition 4.2.3 (Action functionals). We define the action functionals by

A : M+
(︂
(0, 1) × Td

)︂
× Md

(︂
(0, 1) × Td

)︂
→ R ∪ {+∞} ,

A(µ,ν) :=
ˆ

(0,1)×Td

f
(︂
ρ, j

)︂
dL d+1 +

ˆ
(0,1)×Td

f∞
(︂
ρ⊥, j⊥

)︂
dσ ,

A(µ) := inf
ν

{︁
A(µ,ν) : (µ,ν) ∈ CE

}︁
.

Remark 4.2.4. This definition does not depend on the choice of σ, due to the 1-homogeneity
of f∞. As f(ρ, j) ≥ −C(1 + ρ) and f∞(ρ, j) ≥ −Cρ from (4.2.2) and (4.2.4), the fact that
µ
(︂
(0, 1) × Td

)︂
< ∞ ensures that A(µ,ν) is well-defined in R ∪ {+∞}.

The natural setting to work in is the space BVKR
(︂
(0, 1); M+(Td)

)︂
of the curves of measures

µ : (0, 1) → M+(Td) such that the BV-seminorm ∥µ∥ = ∥µ∥
BVKR

(︂
(0,1);M+(Td)

)︂ defined by

∥µ∥ := sup

⎧⎨⎩
ˆ

(0,1)

ˆ
Td

∂tφt dµt dt : φ ∈ C1
c

(︂
(0, 1); C1(Td)

)︂
, max

t∈(0,1)
∥φt∥C1(Td) ≤ 1

⎫⎬⎭
is finite. Note that, by the trace theorem in BV, curves of measures in BVKR

(︂
(0, 1); M+(Td)

)︂
have a well defined trace at t = 0 and t = 1. As shown in [GKMP23, Lemma 3.13], any
solution (µ,ν) ∈ CE can be disintegrated as dµ(t, x) = dµt(x) dt for some measurable
curve t ↦→ µt ∈ M+(Td) with finite constant mass. If A(µ) < ∞, then this curve belongs to
BVKR

(︂
(0, 1); M+(Td)

)︂
and

∥µ∥
BVKR

(︂
(0,1);M+(Td)

)︂ ≤ |ν|
(︂
(0, 1) × Td

)︂
. (4.2.6)

Boundary conditions and lower semicontinuity
Define the minimal homogenised action for µ0, µ1 ∈ M+(Td) with µ0(Td) = µ1(Td) as

MA(µ0, µ1) := inf
µ∈BVKR

(︂
(0,1);M+(Td)

)︂ {︁A(µ) : µt=0 = µ0,µt=1 = µ1
}︁
. (4.2.7)

Note that, in general, MA may be infinite (although the measures have equal masses).
Despite the lower semicontinuity property of A (cfr. [GKMP23, Lemma 3.14]), the lower
semicontinuity of MA with respect to the natural weak topology of M+(Td) × M+(Td) is,
in general, nontrivial. More precisely, it is a challenging question to prove (or disprove) that
for any two sequences µn

0 , µn
1 ∈ M+(Td), such that µn

i → µi weakly in M+(Td) as n → ∞
for i = 0, 1, the inequality

lim inf
n→∞

MA(µn
0 , µ

n
1 ) ≥ MA(µ0, µ1) (4.2.8)

holds. In this work, we provide a positive answer in the case when f has linear growth
or it is flow-based (i.e. it does not depend on the first variable), see Remark 4.3.14 and
Proposition 4.3.15 below. First, we discuss the main challenges and the setup where the lower
semicontinuity is already known to hold.
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4. Discrete-to-continuum limits of optimal transport with linear growth

Remark 4.2.5 (Lack of compatible compactness). We know from [GKMP23, Lemma 3.14]
that (µ,ν) ↦→ A(µ,ν) and µ ↦→ A(µ) are lower semicontinuous w.r.t. the weak topology.
Moreover, if µn is a sequence with

sup
n

A(µn) < ∞ and sup
n

µn
(︂
(0, 1) × Td

)︂
< ∞ (4.2.9)

then µn is weakly compact and any limit µ belongs to BVKR
(︂
(0, 1); M+(Td)

)︂
. This can be

proved as in [GKMP23, Theorem 5.4]. Nonetheless, this property does not ensure the lower
semicontinuity of MA, because weak convergence does not preserve the boundary conditions
(at time t = 0 and t = 1). For similar issues in the setting of functionals of Rd-valued curves
with bounded variations and their minimisation, see e.g. [AV98].
Remark 4.2.6 (Superlinear growth). Under the strengthened assumption of superlinear growth
on f (with respect to the momentum variable), it is possible to prove the lower semicontinuity
property (4.2.8), in the same way as in the proof of the discrete-to-continuum Γ-convergence
of boundary-value problems of [GKMP23, Theorem 5.10]. More precisely, we say that f is of
superlinear growth if there exists a function θ : [0,∞) → [0,∞) with limt→∞

θ(t)
t

= ∞ and a
constant C ∈ R such that

f(ρ, j) ≥ (ρ+ 1)θ
(︄

|j|
ρ+ 1

)︄
− C(ρ+ 1) , ∀ρ ∈ R+ , j ∈ Rd . (4.2.10)

Arguing as in [GKMP23, Remark 5.6], one shows that any function of superlinear growth must
satisfy the growth condition given by Assumption 4.2.2. Moreover, in this case, the recession
function satisfies f∞(0, j) = +∞, for every j ̸= 0. See [GKMP23, Examples 5.7 & 5.8] for
some examples belonging to this class. By arguing similarly as in the proof of [GKMP23,
Theorem 5.9], assuming superlinear growth one can show that if µn is a sequence with
bounded action A(µn) and bounded total mass µn

(︂
(0, 1) × Td

)︂
, then, up to a (nonrelabeled)

subsequence, we have µn → µ in M+((0, 1) × Td) and µn
t → µt in KR norm uniformly in

t ∈ (0, 1), with limit curve µ ∈ W 1,1
KR((0, 1); M+(Td)). Using this fact, it is clear that the

problem of “jumps” in the limit explained in Remark 4.2.5 does not occur, and the lower
semicontinuity (4.2.8) directly follows from the lower semicontinuity of A.
Remark 4.2.7. (Nonnegativity) Without loss of generality, we can assume that f ≥ 0. Indeed,
thanks to the linear growth assumption 4.2.2, we can define a new function˜︁f(ρ, j) := f(ρ, j) + C(ρ+ 1) ≥ c|j| ≥ 0 (4.2.11)

which is now nonnegative and with (at least) linear growth. Furthermore, we can compute the
recess ˜︁f∞ and from the definition we see that˜︁f∞(ρ, j) = f∞(ρ, j) + Cρ . (4.2.12)

Denote by ˜︁A the action functional obtained by replacing f with ˜︁f . Thanks to (4.2.11),
(4.2.12), we have that

˜︁A(µ) := inf
ν

{︂˜︁A(µ,ν) : (µ,ν) ∈ CE
}︂

(4.2.13)

= inf
ν

{︁
A(µ,ν) : (µ,ν) ∈ CE

}︁
+ C(µ

(︂
(0, 1) × Td

)︂
+ 1) . (4.2.14)

It follows that the corresponding boundary value problems are given by˜︃MA(µ0, µ1) = MA(µ0, µ1) + C(µ0(Td) + 1) , if µ0(Td) = µ1(Td) . (4.2.15)

Therefore, the (weak) lower semicontinuity for ˜︃MA is equivalent to that of MA.
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4.2.2 The discrete framework: transport problems on periodic
graphs

We recall the framework of [GKMP23]: let (X , E) be a locally finite and Zd-periodic connected
graph of bounded degree. We encode the set of vertices as X = Zd × V , where V is
a finite set, and we use coordinates x = (xz, xv) ∈ X . The set of edges E ⊆ X × X
is symmetric and Zd-periodic, and we use the notation x ∼ y whenever (x, y) ∈ E . Let
R0 := max(x,y)∈E |xz − yz|∞ be the maximal edge length in the supremum norm | · |∞ on Rd.
We use the notation X Q := {x ∈ X : xz = 0} and EQ :=

{︂
(x, y) ∈ E : xz = 0

}︂
. For a

discussion concerning abstract and embedded graphs, see [GKMP23, Remark 2.2].

In what follows, we denote by RX
+ the set of functions m : X → R+, and by RE

a the set of
anti-symmetric functions J : E → R, that is, such that J(x, y) = −J(y, x). The elements
of RE

a will often be called (discrete) vector fields.

Assumption 4.2.8 (Admissible cost function). The function F : RX
+ × RE

a → R ∪ {+∞} is
assumed to have the following properties:

(1) F is convex and lower semicontinuous.

(2) F is local, meaning that, for some number R1 < ∞, we have F (m, J) = F (m′, J ′)
whenever m,m′ ∈ RX

+ and J, J ′ ∈ RE
a agree within a ball of radius R1, i.e.

m(x) = m′(x) for all x ∈ X with |xz|∞ ≤ R1 , and

J(x, y) = J ′(x, y) for all (x, y) ∈ E with |xz|∞, |yz|∞ ≤ R1 .

(3) F is of at least linear growth, i.e. there exist c > 0 and C < ∞ such that

F (m, J) ≥ c
∑︂

(x,y)∈EQ

|J(x, y)| − C

⎛⎝1 +
∑︂
x∈X

|xz|∞≤Rmax

m(x)
⎞⎠ (4.2.16)

for any m ∈ RX
+ and J ∈ RE

a . Here, Rmax := max{R0, R1}.

(4) There exist a Zd-periodic function m◦ ∈ RX
+ and a Zd-periodic and divergence-free

vector field J◦ ∈ RE
a such that

(m◦, J◦) ∈ D(F )◦ . (4.2.17)

Remark 4.2.9. Important examples that satisfy the growth condition (4.2.16) are of the form

F (m, J) = 1
2

∑︂
(x,y)∈EQ

|J(x, y)|p

Λ
(︂
qxym(x), qyxm(y)

)︂p−1 , (4.2.18)

where 1 ≤ p < ∞, the constants qxy, qyx > 0 are fixed parameters defined for (x, y) ∈ EQ, and
Λ is a suitable mean. Functions of this type naturally appear in discretisations of Wasserstein
gradient-flow structures [Maa11, Mie11, CHLZ12], see also [GKMP23, Remark 2.6].

The rescaled graph. Let Td
ε = (εZ/Z)d be the discrete torus of mesh size ε ∈ 1/N. We

denote by [εz] for z ∈ Zd the corresponding equivalence classes. Equivalently, Td
ε = εZd

ε where
Zd

ε =
(︂
Z/1

ε
Z
)︂d

. The rescaled graph (Xε, Eε) is defined as

Xε := Td
ε × V and Eε :=

{︂(︂
T 0

ε (x), T 0
ε (y)

)︂
: (x, y) ∈ E

}︂
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4. Discrete-to-continuum limits of optimal transport with linear growth

where, for z̄ ∈ Zd
ε,

T z̄
ε : X → Xε , (z, v) ↦→

(︂
[ε(z̄ + z)], v

)︂
. (4.2.19)

For x =
(︂
[εz], v

)︂
∈ Xε we write

xz := z ∈ Zd
ε , xv := v ∈ V .

The equivalence relation ∼ on X is equivalently defined on Xε by means of Eε. Hereafter, we
always assume that εR0 <

1
2 .

The rescaled energies. Let F : RX
+ × RE

a → R ∪ {+∞} be a cost function satisfying
Assumption 4.2.8. For ε > 0 satisfying the conditions above, we can define a corresponding
energy functional Fε in the rescaled periodic setting: following [GKMP23], for z̄ ∈ Zd

ε, each
function ψ : Xε → R induces a 1

ε
Zd-periodic function

τ z̄
εψ : X → R ,

(︂
τ z̄

εψ
)︂
(x) := ψ

(︂
T z̄

ε (x)
)︂

for x ∈ X .

Similarly, each function J : Eε → R induces a 1
ε
Zd-periodic function

τ z̄
ε J : E → R ,

(︂
τ z̄

ε J
)︂
(x, y) := J

(︂
T z̄

ε (x), T z̄
ε (y)

)︂
for (x, y) ∈ E .

Definition 4.2.10 (Discrete energy functional). The rescaled energy is defined by

Fε : RXε
+ × REε

a → R ∪ {+∞} , (m, J) Fε↦−→
∑︂

z∈Zd
ε

εdF

(︄
τ z

εm

εd
,
τ z

ε J

εd−1

)︄
.

Remark 4.2.11. As observed in [GKMP23, Remark 2.8], the functional Fε(m, J) is well-defined
as an element in R ∪ {+∞}. Indeed, the condition (4.2.16) yields

Fε(m, J) =
∑︂

z∈Zd
ε

εdF

(︄
τ z

εm

εd
,
τ z

ε J

εd−1

)︄
≥ −C

∑︂
z∈Zd

ε

εd

⎛⎝1 +
∑︂
x∈X

|xz|∞≤Rmax

τ z
εm(x)
εd

⎞⎠

≥ −C
(︄

1 + (2Rmax + 1)d
∑︂

x∈Xε

m(x)
)︄
> −∞ .

Definition 4.2.12 (Discrete continuity equation). A pair (mmm,JJJ) is said to be a solution to
the discrete continuity equation if mmm : (0, 1) → RXε

+ is continuous, JJJ : (0, 1) → REε
a is Borel

measurable, and

∂tmt(x) +
∑︂
y∼x

Jt(x, y) = 0 (4.2.20)

holds for all x ∈ Xε in the sense of distributions. We use the notation

(mmm,JJJ) ∈ CEε .

Remark 4.2.13. We may write (4.2.20) as ∂tmt + div Jt = 0 using the discrete divergence
operator, given by

div J ∈ RXε , div J(x) :=
∑︂
y∼x

J(x, y) , ∀J ∈ REε
a .
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4.3. Statement and proof of the main result

The proof of the following lemma can be found in [GKMP23].

Lemma 4.2.14 (Mass preservation). Let (mmm,JJJ) ∈ CEε. Then we have ms(Xε) = mt(Xε) for
all s, t ∈ (0, 1).

We are now ready to define one of the main objects in this paper.

Definition 4.2.15 (Discrete action functional). For any continuous function mmm : (0, 1) → RXε
+

such that t ↦→ ∑︁
x∈Xε

mt(x) ∈ L1
(︂
(0, 1)

)︂
and any Borel measurable function JJJ : (0, 1) → REε

a ,
we define

Aε(mmm,JJJ) :=
ˆ 1

0
Fε(mt, Jt) dt ∈ R ∪ {+∞} .

Furthermore, we set

Aε(mmm) := inf
JJJ

{︃
Aε(mmm,JJJ) : (mmm,JJJ) ∈ CEε

}︃
.

Arguing as in Remark 4.2.11, one can show [GKMP23, Remark 2.13] that Aε(mmm,JJJ) is
well-defined as an element in R ∪ {+∞}, as a consequence of the growth condition (4.2.16).

Definition 4.2.16 (Minimal discrete action functional). For any pair of boundary data m0,
m1 ∈ RXε

+ , we define the associated discrete boundary value problem as

MAε(m0,m1) := inf
{︂
Aε(mmm) : mmm : (0, 1) → RXε

+ , mmmt=0 = m0 and mmmt=1 = m1
}︂
.

The aim of this work is to study the asymptotic behaviour of the energies MAε as ε → 0
under the Assumption 4.2.8.

4.3 Statement and proof of the main result
In this paper we extend the Γ-convergence result for the functionals MAε towards MAhom,
proved in [GKMP23] for superlinear cost functionals to two cases: under the assumption of
linear growth (bound both from below and above) and when the function F does not depend
on ρ.

Assumption 4.3.1 (Linear growth). We say that a function F : RX
+ × RE

a → R ∪ {+∞} has
linear growth if it satisfies

F (m, J) ≤ C

⎛⎝1 +
∑︂

(x,y)∈E
|xz|∞≤R

|J(x, y)| +
∑︂
x∈X

|xz|∞≤R

m(x)
⎞⎠

for some constant C < ∞ and some R > 0.

Assumption 4.3.2 (Flow-based). We say that a function F : RX
+ × RE

a → R ∪ {+∞} is
of flow-based type if it depends only on the the second variable, i.e. (with a slight abuse of
notation) F (m, J) = F (J), for some F : RE

a → R ∪ {+∞}.
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4. Discrete-to-continuum limits of optimal transport with linear growth

Similarly, we say that f : R+ × Rd → R is of flow-based type if it does not depend on the
ρ variable, i.e., f(ρ, j) = f(j). In this case, the problem simplifies significantly, and the
dynamical variational problem described in (4.2.7) admits an equivalent, static formulation
(see (4.3.35)).
Remark 4.3.3 (Linear growth vs Lipschitz). While working with convex functions, to assume a
linear growth condition (from above) is essentially equivalent to require Lipschitz continuity
with respect to the second variable.

Lemma 4.3.4 (Lipschitz continuity). Let f : R+ × Rd → R be a function, convex in the
second variable. Let C > 0. Then the following are equivalent:

1. for every ρ ∈ R+ and j ∈ Rd the inequality f(ρ, j) ≤ C(1 + ρ+|j|) holds.

2. for every ρ ∈ R+, the function f(ρ, ·) : Rd → R+ is Lipschitz continuous (uniformly in
ρ) with constant C, and the inequality f(ρ, 0) ≤ C(1 + ρ) holds.

In the very same spirit, one can show the analogous result at the discrete level.

Lemma 4.3.5 (Lipschitz continuity II). Let F : RX
+ × RE

a → R ∪ {+∞} be convex in the
second variable. Let C,R > 0. Then the following are equivalent:

1. F is of linear growth, in the sense of Assumption 4.3.1, with the same constants C
and R.

2. For every m ∈ RX
+ , we have that

F (m, 0) ≤ C

(︄
1 +

∑︂
x∈X

|xz|∞≤R

m(x)
)︄
,

as well as that F is Lipschitz continuous with constant C in the second variable, in the
sense that ⃓⃓

F (m, J1) − F (m, J2)
⃓⃓
≤ C

∑︂
(x,y)∈E

|xz|∞≤R

|J1(x, y) − J2(x, y)| , (4.3.1)

for every J1, J2 ∈ RE
a .

Proof of Lemma 4.3.4. Let us assume the first condition and fix ρ ∈ R+ as well as j1, j2 ∈ Rd.
It follows from the convexity in the second variable that the function

R ∋ t ↦→ f(ρ, j1 + t(j2 − j1))

is convex. In particular, the inequalities

f(ρ, j2) − f(ρ, j1) ≤ f(ρ, j1 + t(j2 − j1)) − f(ρ, j1)
t

≤
C
(︂
1 + ρ+

⃓⃓⃓
j1 + t(j2 − j1)

⃓⃓⃓)︂
− f(ρ, j1)

t
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4.3. Statement and proof of the main result

hold for every t ≥ 1. Letting t → ∞, we thus find

f(ρ, j2) − f(ρ, j1) ≤ C|j2 − j1|

and, by arbitrariness of the arguments, the claimed Lipschitz continuity. The fact that
f(ρ, 0) ≤ C(1 + ρ) trivially follows from the first condition.
Conversely, if the second condition holds, we necessarily have

f(ρ, j) ≤ C|j| + f(ρ, 0) ≤ C(1 + ρ+|j|) ,

for every ρ ∈ R+ and j ∈ Rd, which is precisely the first condition in the statement.

Let us recall the homogenised energy density fhom, which describes the limit energy and is
given by a cell formula. For given ρ ≥ 0 and j ∈ Rd, fhom(ρ, j) is obtained by minimising over
the unit cube the cost among functions m and vector fields J representing ρ and j. More
precisely, the function fhom : R+ × Rd → R+ is given by

fhom(ρ, j) := inf
m,J

{︂
F (m, J) : (m, J) ∈ Rep(ρ, j)

}︂
, (4.3.2)

where the set of representatives Rep(ρ, j) consists of all Zd-periodic functions m : X → R+
and all Zd-periodic anti-symmetric discrete vector fields J : E → R satisfying∑︂

x∈X Q

m(x) = ρ , div J = 0 , and Eff(J) := 1
2

∑︂
(x,y)∈EQ

J(x, y)(yz − xz) = j . (4.3.3)

The set of representatives is nonempty for every choice of ρ and j by [GKMP23, Lemma 4.5
(iv)]. In the case of embedded graphs, the definition of effective flux coincide with the one
provided in the introduction (cfr. (4.1.7)), see [GKMP23, Proposition 9.1].
Remark 4.3.6. It is not hard to show that if F is of linear growth, then fhom is also of linear
growth (and therefore, in view of Lemma 4.3.4, it is Lipschitz in the second variable uniformly
w.r.t. the first one), see e.g. [GMP25].

We denote by Ahom and MAhom the action functionals corresponding to the choice f = fhom.
In order to talk about Γ-convergence, we need to specificy which type of discrete-to-continuum
topology/convergence we adopt (in the same spirit of [GKMP23]).

Definition 4.3.7 (Embedding). For ε > 0 and z ∈ Rd, let Qz
ε := εz + [0, ε)d ⊆ Td denote

the projection of the cube with side length ε based at εz to the quotient Td = Rd/Zd. For
m ∈ RXε

+ and J ∈ REε
a , we define ιεm ∈ M+(Td) and ιεJ ∈ Md(Td) by

ιεm := ε−d
∑︂

x∈Xε

m(x)L d|Qxz
ε
, (4.3.4)

ιεJ := ε−d+1 ∑︂
(x,y)∈Eε

J(x, y)
2

(︄ ˆ 1

0
L d|

Q
(1−s)xz+syz
ε

ds
)︄

(yz − xz) . (4.3.5)

With a slight abuse of notation, given mmm : (0, 1) → RXε
+ we also write ιεmmm ∈ M+

(︂
(0, 1)×Td

)︂
for the continuous space-time measure with time disintegration given by t ↦→ ιεmt. Moreover,
for a given sequence of nonnegative discrete measures mε ∈ RXε

+ , we write

mε → µ ∈ M+(Td) weakly iff ιεm
ε → µ weakly in M+(Td) .

Similarly, for mmmε : (0, 1) → RXε
+ we write mmmε → µ ∈ M+

(︂
(0, 1) × Td

)︂
with an analogous

meaning. Similar notation is used for (Borel, possibly discontinuous) curves of fluxes JJJ :
(0, 1) → REε

a and convergent sequences of (curves of) fluxes.
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4. Discrete-to-continuum limits of optimal transport with linear growth

Remark 4.3.8 (Preservation of the continuity equation). The definition of this embedding for
masses and fluxes ensures that solutions to the discrete continuity equation are mapped to
solutions of CE, cfr. [GKMP23, Lemma 4.9].

We are ready to state our main result.

Theorem 4.3.9 (Main result). Let (X , E , F ) be as described in Section 4.2.2 and Assump-
tion 4.2.8. Assume that F is either of flow-based type (Assumption 4.3.2) or with linear
growth (Assumption 4.3.1). Then, in either case, the functionals MAε Γ-convergence to
MAhom as ε → 0 with respect to the weak topology of M+(Td) × M+(Td). More precisely,
we have:

(1) Liminf inequality: For any sequences mε
0,m

ε
1 ∈ M+(Xε) such that mε

i → µi weakly
in M+(Td) for i = 0, 1, we have that

lim inf
ε→0

MAε(mε
0,m

ε
1) ≥ MAhom(µ0, µ1) . (4.3.6)

(2) Limsup inequality: For any µ0, µ1 ∈ M+(Td), there exist sequences mε
0,m

ε
1 ∈

M+(Xε) such that mε
i → µi weakly in M+(Td) for i = 0, 1, and

lim sup
ε→0

MAε(mε
0,m

ε
1) ≤ MAhom(µ0, µ1) . (4.3.7)

Remark 4.3.10 (Convergence of the actions and superlinear regime). The Γ-convergence
of the energies Aε towards Ahom under Assumption 4.2.8 is the main result of [GKMP23,
Theorem 5.1]. Related to it, similarly as discussed in Remark 4.2.6, the superlinear case
[GKMP23, Assumption 5.5], not included in the statement, has already been proved in
[GKMP23], and it follows directly from the aforementioned convergence Aε

Γ−→ Ahom and
a strong compactness result which holds in such a framework, see in particular [GKMP23,
Theorems 5.9 & 5.10]. Without the superlinear growth assumption, the proof is much more
involved and requires extra work and new ideas, which are the main contribution of this paper.
Remark 4.3.11 (Compactness under linear growth from below). Just assuming Assumption 4.2.8,
the following compactness result for sequences of bounded action was proved in [GKMP23,
Theorem 5.4]: if mmmε : (0, 1) → RXε

+ is such that

sup
ε>0

Aε(mmmε) < ∞ and sup
ε>0

mmmε
(︂
(0, 1) × Xε

)︂
< ∞ ,

then there exists a curve µ = µt( dx) dt ∈ BVKR
(︂
(0, 1); M+(Td)

)︂
such that, up to a

(nonrelabeled) subsequence, we have

mmmε → µ weakly in M+
(︂
(0, 1) × Td

)︂
and mε

t → µt weakly in M+(Td) ,

for a.e. t ∈ (0, 1). This is going to be an important tool in the proof of our main result.

4.3.1 Proof of the limsup inequality
In this section, we prove the limsup inequality in Theorem 4.3.9. This proof does not require
Assumption 4.3.1 or Assumption 4.3.2, but rather a weaker hypothesis, which is satisfied under
either of the two assumptions.
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4.3. Statement and proof of the main result

Proposition 4.3.12 (Γ-limsup). Let µ0, µ1 be nonnegative measures on Td. Assume that
there exists a Zd-periodic and divergence-free vector field J̄ ∈ RE

a such that

F (m, J̄) ≤ C

⎛⎝1 +
∑︂
x∈X

|x|∞≤R

m(x)
⎞⎠ , m ∈ RX

+ , (4.3.8)

for some finite constants C and R. Then there exist two sequences (mε
0)ε>0 and (mε

1)ε>0 in
RXε

+ such that mε
i → µi weakly in M+(Td) for i = 0, 1, and

lim sup
ε→0

MAε(mε
0,m

ε
1) ≤ MAhom(µ0, µ1) . (4.3.9)

Proof. We may and will assume that MAhom(µ0, µ1) < ∞. We also claim that it suffices
to prove the statement with MA(µ0, µ1) + 1/k in place of the right-hand side of (4.3.9) for
every k ∈ N1. Indeed, assume that we know of the existence of sequences (mε,k

i )ε such that
mε,k

i → µi, and

lim sup
ε→0

MAε(mε,k
0 ,mε,k

1 ) ≤ MA(µ0, µ1) + 1/k ,

for every k ∈ N1. Since Td is compact, the weak convergence is equivalent to convergence in
the Kantorovich–Rubinstein norm. Hence, for every k we can find εk such that, when ε ≤ εk,

MAε(mε,k
0 ,mε,k

1 ) ≤ MAhom(µ0, µ1) + 2/k and max
i=0,1

⃦⃦⃦
ιεm

ε,k
i − µi

⃦⃦⃦
KR

≤ 1/k .

We can also assume that εk+1 ≤ εk

2 , for every k. It now suffices to set

kε := max{k ∈ N1 : εk ≥ ε} and mε
i := mε,kε

i ,

for every ε and i = 0, 1 to get

lim sup
ε→0

MAε(mε
0,m

ε
1) ≤ MAhom(µ0, µ1) + lim sup

ε→0

2
kε

as well as

lim sup
ε→0

max
i=0,1

∥ιεmε
i − µi∥KR ≤ lim sup

ε→0

1
kε

.

The claim is proved, since kε →ε ∞, as can be readily verified.

Thus, let us now choose k and keep it fixed. By definition of MAhom, there exists µ =
µt( dx) dt ∈ BVKR

(︂
(0, 1); M+(Td)

)︂
with µt=0 = µ0,µt=1 = µ1 and such that

Ahom(µ) ≤ MAhom(µ0, µ1) + 1/k .

Recall from Remark 4.3.10 that Aε
Γ−→ Ahom; in particular, there exists a recovery sequence

(mmmε, JJJε) ∈ CEε such that mmmε → µ weakly and

lim sup
ε→0

Aε(mmmε, JJJε) ≤ Ahom(µ) .

We shall prove that ∥ιεmε
t − µt∥KR(Td) → 0 in (L 1-)measure or, equivalently, that

lim
ε→0

ˆ 1

0
min

{︂
∥ιεmε

t − µt∥KR(Td) , 1
}︂

dt = 0 . (4.3.10)
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4. Discrete-to-continuum limits of optimal transport with linear growth

In order to do this, assume by contradiction that there exists a subsequence such that
ˆ 1

0
min

{︂
∥ιεnm

εn
t − µt∥KR(Td) , 1

}︂
dt > δ , n ∈ N ,

for some δ > 0. Up to possibly extracting a further subsequence, it can be easily checked that
the hypotheses of [GKMP23, Theorem 5.4] are satisfied (cfr. Remark 4.3.11); hence, there
exists a further (not relabeled) subsequence such that, for almost every t ∈ (0, 1), mεn

t → µt

weakly and thus ∥ιεnm
εn
t − µt∥KR(Td) → 0. The dominated convergence theorem yields an

absurd.

From (4.3.10) we deduce that for every T ∈ (0, 1/2) there exists a sequence of times
(aT

ε )ε ⊆ (0, T ) such that

lim
ε→0

⃦⃦⃦
ιεm

ε
aT

ε
− µaT

ε

⃦⃦⃦
KR(Td)

= 0 .

With a diagonal argument, we find a sequence (aε)ε ⊆ (0, 1/2) such that

lim
ε→0

aε = 0 and lim
ε→0

⃦⃦⃦
ιεm

ε
aε

− µaε

⃦⃦⃦
KR(Td)

= lim
ε→0

⃦⃦⃦
ιεm

ε
aε

− µ0

⃦⃦⃦
KR(Td)

= 0 .

Similarly, we can find another sequence (bε)ε ⊆ (1/2, 1) such that

lim
ε→0

bε = 1 and lim
ε→0

⃦⃦⃦
ιεm

ε
bε

− µ1

⃦⃦⃦
KR(Td)

= 0 .

We claim the sought recovery sequences is provided by mε
0 := mε

aε
and mε

1 := mε
bε

. In order
to show this, let us define Ĵε : Eε → R via the formula1 (recall the assumption (4.3.8))

τ z
ε Ĵ

ε

εd−1 := J̄ , z ∈ Zd
ε ,

so that Ĵε is divergence-free. Now define

˜︂mε
t :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mε

aε
if t ∈ [0, aε)

mε
t if t ∈ [aε, bε]

mε
bε

if t ∈ (bε, 1]
and ˜︁Jε

t :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĵ

ε if t ∈ [0, aε)
Jε

t if t ∈ [aε, bε]
Ĵ

ε if t ∈ (bε, 1]
.

It is readily verified that (˜︂mmmε, ˜︁JJJε) solves the continuity equation for every ε. Therefore

MAε(mε
0,m

ε
1) ≤ Aε(˜︂mmmε, ˜︁JJJε) =

ˆ 1

0

∑︂
z∈Zd

ε

εdF

⎛⎝τ z
ε˜︂mε

t

εd
,
τ z

ε
˜︁Jε
t

εd−1

⎞⎠ dt (4.3.11)

=
ˆ aε

0

∑︂
z∈Zd

ε

εdF

(︄
τ z

εm
ε
aε

εd
, J̄

)︄
dt+

ˆ bε

aε

∑︂
z∈Zd

ε

εdF

(︄
τ z

εm
ε
t

εd
,
τ z

ε J
ε
t

εd−1

)︄
dt

(4.3.12)

+
ˆ 1

bε

∑︂
z∈Zd

ε

εdF

(︄
τ z

εm
ε
bε

εd
, J̄

)︄
dt (4.3.13)

=: I1 + I2 + I3 . (4.3.14)

1The definition is well-posed because εR0 is assumed to be smaller than 1/2.
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The first and last integral can be estimated using the assumption (4.3.8). Indeed,

I1 + I3 ≤ C
∑︂

z∈Zd
ε

⎛⎝(aε + 1 − bε)εd +
∑︂
x∈X

|xz|∞≤R

(︂
aε(τ z

εm
ε
aε

)(x) + (1 − bε)(τ z
εm

ε
bε

)(x)
)︂⎞⎠

≤ C

⎛⎝(aε + 1 − bε) + (2R + 1)d
∑︂

x∈Xε

(︂
aεm

ε
aε

(x) + (1 − bε)mε
bε

(x)
)︂⎞⎠

= C
(︃

(aε + 1 − bε) + (2R + 1)d
(︂
aειεm

ε
aε

(Td) + (1 − bε)ιεmε
bε

(Td)
)︂)︃

,

and in the limit we find

lim sup
ε→0

I1 + I3 ≤ C
(︂
0 + (2R + 1)d(0 · µ0(Td) + 0 · µ1(Td))

)︂
= 0 . (4.3.15)

As for the second integral, thanks to Assumption 4.2.8(c) we have that

I2 − Aε(mmmε, JJJε) = −
ˆ

(0,aε)∪(bε,1)

∑︂
z∈Zd

ε

εdF

(︄
τ z

εm
ε
t

εd
,
τ z

ε J
ε
t

εd−1

)︄
dt (4.3.16)

≤ C ′
(︃

(aε + 1 − bε) + (2Rmax + 1)dιεmmm
ε
(︂(︁

(0, aε) ∪ (bε, 1)
)︁

× Td
)︂)︃

.

(4.3.17)

Since (ιεmmmε)ε converges weakly, for every a, b ∈ (0, 1), we have that

lim sup
ε→0

ιεmmm
ε
(︂(︁

(0, aε) ∪ (bε, 1)
)︁

× Td
)︂

≤ lim sup
ε→0

ιεmmm
ε
(︃(︂

(0, a] ∪ [b, 1)
)︂

× Td
)︃

≤ µ
(︃(︂

(0, a] ∪ [b, 1)
)︂

× Td
)︃
.

Using the fact that the previous estimate holds for every a, b ∈ (0, 1), we obtain that

lim sup
ε→0

ιεmmm
ε
(︂(︁

(0, aε) ∪ (bε, 1)
)︁

× Td
)︂

= 0 .

This, together with the estimate obtained in (4.3.16), gives us the inequality

lim sup
ε→0

I2 ≤ lim sup
ε→0

Aε(mmmε, JJJε) . (4.3.18)

In conclusion, from (4.3.11), (4.3.15), and (4.3.18) we find

lim sup
ε→0

MAε(mε
0,m

ε
1) ≤ lim sup

ε→0
Aε(mmmε, JJJε) ≤ A(µ) ≤ MA(µ0, µ1) + 1/k ,

which is sought upper bound.

4.3.2 Proof of the liminf inequality
In this section, we provide the proof of the liminf inequality in Theorem 4.3.9. Let mε

0, mε
1 be

sequences of measures weakly converging to µ0, µ1, respectively. We want to show that

lim inf
ε→0

MAε(mε
0,m

ε
1) ≥ MAhom(µ0, µ1) . (4.3.19)

Without loss of generality, we will assume that the limit inferior in the latter is a true finite
limit, and that mε

0(Xε) = mε
1(Xε) for every ε > 0.

We split the proof into two parts: first for F with linear growth and then for F of flow-based
type, respectively Assumption 4.3.1 and Assumption 4.3.2.
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4. Discrete-to-continuum limits of optimal transport with linear growth

Case 1: F with linear growth

Assume that F satisfies Assumption 4.3.1. Recall that, as a consequence of Lemma 4.3.5, F
is Lipschitz continuous as well, in the sense of (4.3.1).

Proof of the liminf inequality (linear growth). With a very similar argument as the one pro-
vided by Remark 4.2.7 in the continuous setting, we can with no loss of generality assume
that F is nonnegative. Let (mmmε, JJJε) ∈ CEε be approximate optimal solutions associated to
MAε(mε

0,m
ε
1), i.e. such that

lim
ε→0

(︂
Aε(mmmε, JJJε) − MAε(mε

0,m
ε
1)
)︂

= 0 . (4.3.20)

As usual, we write dmmmε(t, x) = mε
t( dx) dt for some measurable curve t ↦→ mε

t ∈ RXε
+ of

constant, finite mass. By compactness (Remark 4.3.11), we know that up to a further non-
relabeled subsequence,mmmε → µ weakly in M+

(︂
(0, 1)×Td

)︂
with µ ∈ BVKR

(︂
(0, 1); M+(Td)

)︂
.

Due to the lack of continuity of the trace operators in BV, a priori we cannot conclude that
µt=0 = µ0 and µt=1 = µ1. In other words, there might be a “jump” in the limit as ε → 0 at
the boundary of (0, 1). In order to take care of this problem, we rescale our measures mmmε in
time, so as to be able to “see” the jump in the interior of (0, 1).

To this purpose, for δ ∈ (0, 1/2), we define Iδ := (δ, 1−δ) andmmmε,δ ∈ BVKR
(︂
(0, 1); M+(Td)

)︂
as

mε,δ
t :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mε

0 if t ∈ (0, δ]
mε

t−δ
1−2δ

if t ∈ Iδ

mε
1 if t ∈ [1 − δ, 1)

, dmmmε,δ(t, x) := mε,δ
t ( dx) dt . (4.3.21)

By construction, the convergence of the boundary data, and the fact that, by assumption,
mmmε → µ weakly, it is straightforward to see that mmmε,δ → µ̂δ weakly, where

µ̂δ
t :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ0 if t ∈ (0, δ]
µ t−δ

1−2δ
if t ∈ Iδ

µ1 if t ∈ [1 − δ, 1)
, dµ̂δ(t, x) := µ̂δ

t ( dx) dt . (4.3.22)

Note that the rescaled curve t ↦→ µ̂δ
t might have discontinuities at t = δ and t = 1 − δ, which

correspond to the possible jumps in the limit as ε → 0 for mmmε at {0, 1}. Nevertheless, µ̂δ is a
competitor for MA(µ0, µ1), which, by the Γ-convergence of Aε towards Ahom (Remark 4.3.10),
ensures that

lim inf
ε→0

Aε(mmmε,δ) ≥ Ahom(µ̂δ) ≥ MAhom(µ0, µ1) . (4.3.23)

We are left with estimating from above the left-hand side of the latter displayed equation.
To do so, we seek a suitable curve of discrete vector fields JJJε,δ with (mmmε,δ, JJJε,δ) ∈ CEε and
having an action Aε(mmmε,δ, JJJε,δ) comparable with Aε(mmmε, JJJε) for small δ > 0. We set

Jε,δ
t :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t ∈ (0, δ]

1
1 − 2δJ

ε
t−δ

1−2δ
if t ∈ Iδ

0 if t ∈ [1 − δ, 1)

, dJJJε,δ(t, x) := Jε,δ
t ( dx) dt .
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We claim that (mmmε,δ, JJJε,δ) ∈ CEε and

Aε(mmmε,δ, JJJε,δ) ≤
(︂
1 + C(F )δ

)︂
Aε(mmmε, JJJε) + C(F )δ

(︃
1 + ιεmmm

ε((0, 1) × Td)
)︃
, (4.3.24)

where C(F ) ∈ R+ only depends on F (specifically on the constants in Assumption 4.2.8 and
Assumption 4.3.1). This would suffice to conclude the proof of the sought liminf inequality.
Indeed, from (4.3.20) and (4.3.24) we infer

lim inf
ε→0

MAε(mε
0,m

ε
1) = lim inf

ε→0
Aε(mmmε, JJJε)

≥ 1
1 + C(F )δ lim inf

ε→0
Aε(mmmε,δ, JJJε,δ) − C(F )δ

1 + C(F )δ

(︃
1 + ιεmmm

ε((0, 1) × Td)
)︃

which, combined with (4.3.23), yields

lim inf
ε→0

MAε(mε
0,m

ε
1) ≥ MAhom(µ0, µ1)

1 + C(F )δ − C(F )δ
1 + C(F )δ

(︃
1 + µ0(Td)

)︃

for any δ ∈ (0, 1/2). We conclude by letting δ → 0.

We are left with the proof of (mmmε,δ, JJJε,δ) ∈ CEε and of the claim (4.3.24).

Proof of (mmmε,δ, JJJε,δ) ∈ CEε. Let us fix x ∈ Xε and φ ∈ C1
c

(︂
(0, 1)

)︂
. Set ˜︁φ := φ ◦ rδ,

with rδ(s) := (1 − 2δ)s+ δ. We have
ˆ 1

0
∂tφm

ε,δ
t (x) dt =

ˆ δ

0
∂tφm

ε
0(x) dt+

ˆ 1

1−δ

∂tφm
ε
1(x) dt+

ˆ
Iδ

∂tφm
ε
r−1

δ
(t)(x) dt

= φ(δ)mε
0(x) − φ(1 − δ)mε

1(x) + (1 − 2δ)
ˆ 1

0
(∂tφ) ◦ rδ m

ε
s(x) ds

= ˜︁φ(0)mε
0(x) − ˜︁φ(1)mε

1(x) +
ˆ 1

0
∂s ˜︁φmε

s(x) ds

=
ˆ 1

0
˜︁φ ∑︂

y∼x

Jε
s (x, y) ds = 1

1 − 2δ

ˆ
Iδ

φ
∑︂
y∼x

Jε
r−1

δ
(t)(x, y) dt

=
ˆ 1

0
φ
∑︂
y∼x

Jε,δ
t (x, y) dt , (4.3.25)

where, in the fourth equality, we used that (mmmε, JJJε) ∈ CEε.

Proof of the action estimate. Define rδ(s) := (1 − 2δ)s+ δ. Note that, by construction, for
(t, (x, y)) ∈ Iδ × Eε,

mε,δ
t (x) = mε

r−1
δ

(t)(x) , Jε,δ
t (x, y) = 1

1 − 2δJ
ε
r−1

δ
(t)(x, y) . (4.3.26)

On the other hand, for (t, (x, y)) ∈
(︂
(0, δ] ∪ [1 − δ, 1)

)︂
× Eε, we have that

mε,δ
t (x) =

⎧⎨⎩mε
0(x) if t ∈ (0, δ]

mε
1(x) if t ∈ [1 − δ, 1)

and Jε,δ
t (x, y) = 0 .
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4. Discrete-to-continuum limits of optimal transport with linear growth

It follows that the action of (mmmε,δ, JJJε,δ) is given by

Aε(mmmε,δ, JJJε,δ) =
ˆ 1

0
Fε(mε,δ

t , Jε,δ
t ) dt = AIδ

ε (mmmε,δ, JJJε,δ) + δ
∑︂

i=0,1
Fε(mε

i , 0) , (4.3.27)

where we used the notation

AIδ
ε (mmmε,δ, JJJε,δ) :=

ˆ
Iδ

Fε(mε,δ
t , Jε,δ

t ) dt = (1 − 2δ)
ˆ 1

0
Fε

(︃
mε

t ,
1

1 − 2δJ
ε
t

)︃
dt . (4.3.28)

Using Assumption 4.3.1, we see that, for i = 0, 1,

Fε(mε
i , 0) ≤ C(mε

i (Xε) + 1) = C
(︂
ιεmmm

ε
(︂
(0, 1) × Td

)︂
+1
)︂

and, by the Lipschitz continuity exhibited in Lemma 4.3.5, we also infer that

AIδ
ε (mmmε,δ, JJJε,δ) ≤ (1 − 2δ)

⎛⎜⎜⎜⎜⎝Aε(mmmε, JJJε) + C
(︃ 1

1 − 2δ − 1
)︃ ∑︂

z∈Zd
ε

εd
∑︂

(x,y)∈E
|xz|∞≤R

ˆ 1

0

⃓⃓
τ z

ε J
ε
t (x, y)

⃓⃓
εd−1 dt

⎞⎟⎟⎟⎟⎠
≤ (1 − 2δ)Aε(mmmε, JJJε) + 2δC(2R + 1)d

∑︂
z∈Zd

ε

εd
∑︂

(x,y)∈EQ

ˆ 1

0

⃓⃓
τ z

ε J
ε
t (x, y)

⃓⃓
εd−1 dt .

Since we assumed F to be nonnegative, we can estimate

(1 − 2δ)Aε(mmmε, JJJε) ≤ Aε(mmmε, JJJε)

and, using (4.2.16),

∑︂
z∈Zd

ε

εd
∑︂

(x,y)∈EQ

ˆ 1

0

⃓⃓
τ z

ε J
ε
t (x, y)

⃓⃓
εd−1 dt ≤ 1

c
Aε(mmmε, JJJε) + C

c

(︂
1 + (1 + 2Rmax)d∥ιεmmmε∥TV

)︂
.

Combining these estimates with (4.3.27), we find (4.3.24).

Case 2: F is flow-based

In this section we show (4.3.19) in the case F (and hence fhom) is of flow-based type, i.e. it
satisfies Assumption 4.3.2. We start by observing that, in this particular setting, both the
discrete and the continuous formulations of the boundary-value problems admit an equivalent,
static formulation.

Let (µ,ν) ∈ CE, and consider the Lebesgue decomposition

µ = ρL d+1 + ρ⊥σ , ν = jL d+1 + j⊥σ .

We know that every solution to the continuity equation can be disintegrated in the form
µ( dt, dx) = µt( dx) dt for some measurable curve t ↦→ µt ∈ M+(Td) of constant, finite
mass. If f is a function as in Assumption 4.2.2 that further does not depend on ρ, then
Jensen’s inequality yields

ˆ 1

0

ˆ
Td

f(jt) dx dt ≥
ˆ
Td

f

⎛⎝ˆ 1

0
jt dt

⎞⎠ dx . (4.3.29)
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In order to take care of the singular part, consider the disintegration of σ with respect to the
projection map π : (t, x) ↦→ x, in the form

σ( dt, dx) = σx( dt)(π#σ)( dx) , (4.3.30)

for some measurable x ↦→ σx ∈ P
(︂
(0, 1)

)︂
. Due to the convexity of f∞, by Jensen’s inequality

we also obtain ˆ
(0,1)×Td

f∞(j⊥) dσ ≥
ˆ
Td

f∞
(︄ˆ

j⊥ dσx

)︄
dπ#σ(x) . (4.3.31)

Now, we define the new space-time measures

˜︁µ := ˜︁µt( dx) dt and ˜︁ν := ĵL d+1 + ĵ
⊥ dt⊗ π#σ , where

˜︁µt := µ0 + t(µ1 − µ0) , ĵ(x) :=
ˆ 1

0
jt(x) dt , and ĵ

⊥(x) :=
ˆ
j⊥ dσx ,

(4.3.32)

and note that (˜︁µ, ˜︁ν) ∈ CE. By (4.3.29) and (4.3.31), we therefore have

A(µ,ν) ≥
ˆ
Td

f(ĵ) dx+
ˆ
Td

f∞(ĵ⊥) dπ#σ(x) . (4.3.33)

We need to be careful here: the decomposition of ˜︁ν in (4.3.32) may not be a Lebesgue
decomposition, in the sense that dt⊗ π#σ can have a nonzero absolutely continuous part.
Let ˜︁σ ∈ M+(Td) be singular w.r.t. L d and such that µ0, µ1, π#σ ≪ L d + ˜︁σ. We can write
the Lebesgue decompositions

˜︁µ = ˜︁ρL d+1 + ˜︁ρ⊥ dt⊗ ˜︁σ , ˜︁ν = ˜︁jL d+1 + ˜︁j⊥ dt⊗ ˜︁σ .
If we write

π#σ = αL d + β˜︁σ
for some functions α, β : Td → R+, then

˜︁j = ĵ + αĵ
⊥ and ˜︁j⊥ = βĵ

⊥
.

The inequality (4.3.33) becomes, recalling that f∞ is 1-homogeneous,

A(µ,ν) ≥
ˆ
Td

(︂
f(ĵ) + f∞(αĵ⊥)

)︂
dx+

ˆ
Td

f∞(βĵ⊥) d˜︁σ . (4.3.34)

At this point, we need a lemma.

Lemma 4.3.13. For every j1, j2 ∈ Rd, we have that f(j1 + j2) ≤ f(j1) + f∞(j2).

Proof. Let g ≤ f be a convex and Lipschitz continuous function. By convexity, for every ϵ ∈
(0, 1), we have

g(j1 + j2) = g

(︄
(1 − ϵ) j1

1 − ϵ
+ ϵ

j2

ϵ

)︄
≤ (1 − ϵ)g

(︄
j1

1 − ϵ

)︄
+ ϵg

(︄
j2

ϵ

)︄
.

Let j0 ∈ D(f). By the Lipschitz continuity of g,

g(j1 + j2) ≤ (1 − ϵ)
⎛⎝g(j1) + (Lipg)

(︄
1

1 − ϵ
− 1

)︄
|j1|

⎞⎠+ ϵg

(︄
j2

ϵ
+ j0

)︄
+ ϵ(Lipg)|j0|
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and, since g ≤ f ,

g(j1 + j2) ≤ (1 − ϵ)f(j1) + ϵf

(︄
j2

ϵ
+ j0

)︄
+ ϵ(Lipg)

(︂
|j0| +|j1|

)︂
.

As we let ϵ → 0, we find
g(j1 + j2) ≤ f(j1) + f∞(j2) .

Since f is convex and lower semicontinuous, we conclude by an approximation argument.

Applying this lemma with j1 = ĵ(x) and j2 = αĵ
⊥(x) for every x ∈ Td, (4.3.34) finally

becomes
A(µ,ν) ≥

ˆ
Td

f(˜︁j) dx+
ˆ
Td

f∞(˜︁j⊥) d˜︁σ = A(˜︁µ, ˜︁ν) .

In other words, we have shown that an optimal curve µ between two given boundary data is
always given by the affine interpolation (and a constant-in-time flux). We conclude that

MA(µ0, µ1) = A( ˜︁µ) (4.3.35)

= inf
ν

{︄ˆ
Td

f(˜︁j) dx+
ˆ
Td

f∞(˜︁j⊥) d˜︁σ : ν = ˜︁jL d + ˜︁j⊥˜︁σ , L d ⊥ ˜︁σ and ∇ · ν = µ0 − µ1

}︄
.

We refer to the latter expression as the static formulation of the boundary value problem
described by MA(µ0, µ1) (in the case when f is of flow-based type).
Remark 4.3.14. Using this equivalence, the lower semicontinuity of MA directly follows from
the semicontinuity of A given by [GKMP23, Lemma 3.14].

Arguing in a similar way (in fact, via an even simpler argument, due to the lack of singularities),
we obtain a static formulation of the discrete transport problem in terms of a discrete divergence
equation, when F (m, J) = F (J). Precisely, in this case we obtain

MAε(m0,m1) = inf
{︂
Fε(J) : J ∈ REε

a , div J = m0 −m1
}︂
. (4.3.36)

The sought Γ-liminf inequality easily follows from such static formulations.

Proof of the liminf inequality (flow-based type). Let mε
0, mε

1 ∈ RXε
+ be a sequence of discrete

nonnegative measures which converge weakly (via ιε in the usual sense) to µ0, µ1, and such
that mε

0(Xε) = mε
1(Xε) for every ε > 0. Let (mmmε, JJJε) ∈ CEε be (almost-)optimal solutions

associated with MAε(mε
0,m

ε
1), namely

lim inf
ε→0

MAε(mε
0,m

ε
1) = lim inf

ε→0
Aε(mmmε) = lim inf

ε→0
Aε(mmmε, JJJε) . (4.3.37)

Consider the discrete equivalent of the measure constructed in (4.3.32), namely

˜︂mε
t := mε

0 + t(mε
1 −mε

0) and ˜︁Jε
t ≡ ˜︁Jε :=

ˆ 1

0
Jε

s ds ,

which still solves the continuity equation. By applying Jensen’s inequality, the convexity of F
ensures that

Aε(mmmε, JJJε) ≥ Aε(˜︂mmmε, ˜︁JJJε) = Fε( ˜︁Jε) and (˜︂mmmε, ˜︁JJJε) ∈ CEε . (4.3.38)
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Thus Aε(mmmε, JJJε) ≥ Aε(˜︂mmmε). Note that, by construction, ˜︂mmmε → ˜︁µ weakly, where

˜︁µ := ˜︁µt( dx) dt with ˜︁µt := µ0 + t(µ1 − µ0) .

Hence, from (4.3.37), (4.3.38), and the Γ-convergence of Aε to Ahom (cfr. [GKMP23, Theo-
rem 5.1]), we infer that

lim inf
ε→0

MAε(mε
0,m

ε
1) ≥ Ahom(˜︁µ) ≥ MAhom(µ0, µ1) ,

which concludes the proof of the liminf inequality.

4.3.3 About the lower semicontinuity of MA
In view of our main result, whenever F satisfies either Assumption 4.3.1 or Assumption 4.3.2,
the limit boundary-value problem MAhom(·, ·) is necessarily jointly lower semicontinuous with
respect to the weak topology on M+(Td) × M+(Td). This indeed follows from the general
fact that any Γ-limit with respect to a given topology is always lower semicontinuous with
respect to that same topology. Using a very similar proof to that of the Γ-liminf inequality, we
can actually show that, if f is with linear growth or it is of flow-based type, then the associated
MA is always lower semicontinuous (even if, a priori, f is not of the form f = fhom), thus
providing a positive answer in this framework to the validity of (4.2.8). In the flow-based
setting, this fact has been observed in Remark 4.3.14.

Proposition 4.3.15. Assume that f is with linear growth, namely it satisfies one of the
two equivalent conditions appearing in Lemma 4.3.4, and assume that (µn

0 , µn
1 ) → (µ0,

µ1) ∈ M+(Td) × M+(Td) weakly. Then:

lim inf
n→∞

MA(µn
0 , µ

n
1 ) ≥ MA(µ0, µ1) .

The proof goes along the same line of the proof of the Γ-liminf inequality for discrete energies
F with linear growth. We sketch it here and add details whenever we encounter nontrivial
differences between the two proofs.

Proof. Let (µn,νn) ∈ CE be (almost-)optimal solutions associated to MA(µn
0 , µ

n
1 ), i.e.,

lim inf
n→∞

MA(µn
0 , µ

n
1 ) = lim inf

n→∞
A(µn,νn) . (4.3.39)

With no loss of generality we can assume supn A(µn,νn) < ∞ and that the limits inferior
are true limits. By the compactness of Remark 4.2.5, we know that, up to a non-relabeled
subsequence, µn → µ weakly in M+

(︂
(0, 1) × Td

)︂
. Moreover, we also have dµ(t, x) =

µt( dx) dt ∈ BVKR
(︂
(0, 1); M+(Td)

)︂
for some measurable curve t ↦→ µt ∈ M+(Td) of

constant, finite mass. Once again, due to the lack of continuity of the trace operators in BV,
we cannot ensure that µt=0 = µ0 and µt=1 = µ1. To solve this issue, we rescale our measures
µn in time in the same spirit as in (4.3.21). For a given δ > 0, we define Iδ := (δ, 1 − δ) and
µn,δ ∈ BVKR

(︂
(0, 1); M+(Td)

)︂
as

µn,δ
t :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µn

0 if t ∈ (0, δ]
µn

t−δ
1−2δ

if t ∈ Iδ

µn
1 if t ∈ [1 − δ, 1)

, dµn,δ(t, x) := µn,δ
t ( dx) dt . (4.3.40)
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By construction, it is not hard to see that µn,δ → µ̂δ weakly, where

µ̂δ
t :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ0 if t ∈ (0, δ]
µ t−δ

1−2δ
if t ∈ Iδ

µ1 if t ∈ [1 − δ, 1)
, dµ̂δ(t, x) := µ̂δ

t ( dx) dt . (4.3.41)

We stress that, as in (4.3.22), the rescaled curve t ↦→ µ̂δ
t could have discontinuities at t = δ

and t = 1 − δ, corresponding to the possible jumps in the limit as n → ∞ for µn at {0, 1}.
Nevertheless, µ̂δ is a competitor for MA(µ0, µ1), which, by lower semicontinuity of A, ensures
that

lim inf
n→∞

A(µn,δ) ≥ A(µ̂δ) ≥ MA(µ0, µ1) . (4.3.42)

In order to estimate the left-hand side of the latter displayed equation, we seek a suitable
vector meausure νn,δ so that (µn,δ,νn,δ) ∈ CE and whose action A(µn,δ,νn,δ) is comparable
with A(µn,νn) for small δ > 0.

It is useful to introduce the following notation: for δ ∈ (0, 1/2),

rδ : (0, 1) → Iδ , rδ(s) := (1 − 2δ)s+ δ , (4.3.43)
Rδ : (0, 1) × Td → Iδ × Td , Rδ(s, x) := (rδ(s), x) . (4.3.44)

Define ι̂δ : Md(Iδ ×Td) → Md
(︂
(0, 1) ×Td

)︂
as the natural embedding obtained by extending

to 0 any measure outside Iδ, and set

νn,δ := ι̂δ
[︂
(Rδ)#νn

]︂
∈ Md((0, 1) × Td) . (4.3.45)

The proof that (µn,δ,νn,δ) ∈ CE works as in (4.3.25). In the same spirit as in (4.3.24), we
claim that

A(µn,δ,νn,δ) ≤
(︂
1 + C(f)δ

)︂
A(µn,νn) + C(f)δ

(︃
1 + µn((0, 1) × Td)

)︃
, (4.3.46)

where C(f) ∈ R+ only depends on f . The combination of (4.3.39), (4.3.42) and (4.3.46),
and the arbitrariness of δ would then suffice to conclude the proof.

We are left with the proof of the claim (4.3.46), which is a bit more involved, compared to
that of (4.3.24), due to the presence of the singular part at the continuous level. We need
the following.

Lemma 4.3.16. Let σ ∈ M+
(︂
(0, 1) × Td

)︂
be a singular measure with respect to L d+1.

Then, the measure (Rδ)#σ ∈ M+(Iδ × Td) is also singular with respect to L d+1. Moreover,
for every measure ξ = fL d+1 + f⊥σ ∈ Mn((0, 1) × Td), we have the decomposition

(Rδ)#ξ = f δL d+1 + f δ,⊥(Rδ)#σ , (4.3.47)

where the respective densities are given by the formulas

f δ(t, x) = 1
1 − 2δ f

(︂
r−1

δ (t), x
)︂

and f δ,⊥(t, x) = f⊥
(︂
r−1

δ (t), x
)︂
. (4.3.48)
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Proof. By assumption, σ is singular with respect to L d+1, which means there exists a set
A ⊂ (0, 1) × Td such that L d+1(A) = 0 = σ(Ac). By the very definition of push-forward
and the bijectivity of Rδ, we then have that

(Rδ)#σ
(︂
(Rδ(A))c

)︂
= σ

(︃
R−1

δ

(︂
Rδ(Ac)

)︂)︃
= σ(Ac) = 0 , (4.3.49)

whereas, by the scaling properties of the Lebesgue measure, we have that L d+1(Rδ(A)) =
(1 − 2δ)L d+1(A) = 0, which shows the claimed singularity. The second part of the lemma
follows from the fact that (Rδ)#L d+1 = (1 − 2δ)−1L d+1 and the following statement: for
every ξ′ = f ′σ′ with σ′ ∈ M+((0, 1) × Td), we claim that

d(Rδ)#ξ′

d(Rδ)#σ′ (t, x) = f ′(R−1
δ (t, x)) , ∀(t, x) ∈ Iδ × Td . (4.3.50)

Indeed, by definition of push-forward, we have for every test function φ ∈ Cb

ˆ
φ d(Rδ)#ξ′ =

ˆ
(φ ◦Rδ) dξ′ =

ˆ
(φ ◦Rδ)f ′ dσ′ =

ˆ
φ · (f ′ ◦R−1

δ ) d(Rδ)#σ′ ,

which indeed shows (4.3.50).

Let

µn = ρn dL d+1 + ρn,⊥ dσ and νn = jn dL d+1 + jn,⊥ dσ (4.3.51)

be Lebesgue decompositions. We apply Lemma 4.3.16 to both µn and νn and find that,
on Iδ × Td, we have

µn,δ = ρn,δ dL d+1 + ρn,δ,⊥ d(Rδ)#σ and νn,δ = jn,δ dL d+1 + jn,δ,⊥ d(Rδ)#σ ,

with (Rδ)#σ singular with respect to L d+1 and

ρn,δ(t, x) =
(︂
ρn ◦R−1

δ

)︂
(t, x) , ρn,δ,⊥(t, x) = (1 − 2δ)

(︂
ρn,⊥ ◦R−1

δ

)︂
(t, x) ,

jn,δ(t, x) = 1
1 − 2δ

(︂
jn ◦R−1

δ

)︂
(t, x) , jn,δ,⊥(t, x) =

(︂
jn,⊥ ◦R−1

δ

)︂
. (4.3.52)

Further consider the Lebesgue decompositions

µn
i = ρn

i dL d + ρn,⊥
i dσi , i ∈ {0, 1}

for some σ1, σ2 ∈ M+(Td) singular w.r.t. L d. The action of (µn,δ,νn,δ) is given by2

A(µn,δ,νn,δ) = AIδ(µn,δ,νn,δ) +
∑︂

i=0,1
δ
(︃ ˆ

Td

f(ρn
i , 0) dL d +

ˆ
Td

f∞(ρn,⊥
i , 0) dσi

)︃
,

where we used the notation

AIδ(µn,δ,νn,δ) :=
ˆ

Iδ×Td

f(ρn,δ, jn,δ) dL d+1 +
ˆ

Iδ×Td

f∞(ρn,δ,⊥, jn,δ,⊥) d(Rδ)#σ .

2Note that the definition of the action does not depend on the choice of the measure which is singular
with respect to L d+1, therefore we can use (Rδ)#σ instead of σ.

173



4. Discrete-to-continuum limits of optimal transport with linear growth

Making use of the formulas (4.3.52) and the homogeneity of f∞, we find

AIδ(µn,δ,νn,δ) (4.3.53)

= (1 − 2δ)
ˆ

(0,1)×Td

f
(︃
ρn,

jn

1 − 2δ

)︃
dL d+1 +

ˆ
(0,1)×Td

f∞
(︂
(1 − 2δ)ρn,⊥, jn,⊥

)︂
dσ

= (1 − 2δ)
(︄ ˆ

(0,1)×Td

f
(︃
ρn,

jn

1 − 2δ

)︃
dL d+1 +

ˆ
(0,1)×Td

f∞
(︃
ρn,⊥,

jn,⊥

1 − 2δ

)︃
dσ

)︄
.

(4.3.54)

Furthermore, it follows from the linear growth assumption that, for i = 0, 1,
ˆ
Td

f(ρn
i , 0) dL d +

ˆ
Td

f∞(ρn,⊥
i , 0) dσi ≤ C(µn

i (Td) + 1) = C
(︂
µn((0, 1) × Td) + 1

)︂
as well as, by (4.3.53), the nonnegativity of f , and Assumption 4.2.2,

AIδ(µn,δ,νn,δ) ≤ A(µn,νn) + 2δ(Lipf)
(︄ ˆ

(0,1)×Td

|jn| dL d+1 +
ˆ

(0,1)×Td

|jn,⊥| dσ

)︄

≤ A(µn,νn) + 2δ(Lipf)
c

(︄
A(µn,νn) + C(1 + ∥µn∥TV)

)︄
.

We thus conclude (4.3.46).

4.4 Analysis of the cell problem with examples
This section is devoted to the characterisation and illustration of fhom in the case where the
function F is of the form

F (m, J) = F (J) =
∑︂

(x,y)∈EQ

αxy

⃓⃓
J(x, y)

⃓⃓
(4.4.1)

for some strictly positive function α : EQ ∋ (x, y) ↦→ αxy > 0. A natural problem of interest
is to determine whether/when the Γ-limit MAhom can be the W1-distance. The analogous
problem for the W2-distance has been extensively studied in [GKM20] and [GKMP23] in the
case where the graph stucture is associated with finite-volume partitions.

4.4.1 Discrete 1-Wasserstein distance
We start the analysis of this special setting by observing that, in this case, the discrete
functional MAε actually coincides with the W1 distance associated to a natural induced
metric structure. In order to prove this fact, we first define ˜︁αε : Eε → R+ as the unique
function such that

τ z
ε ˜︁αε

ε

⃓⃓⃓⃓
EQ

:= α z ∈ Zd
ε .

It is easy to check that this definition is well-posed and determines the value of ˜︁αxy for
every (x, y) ∈ Eε. Further let

αε
xy =

˜︁αε
xy + ˜︁αε

yx

2 , (x, y) ∈ Eε
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be the symmetrisation of ˜︁αε. Given J ∈ REε
a , we can write Fε(J) in terms of αε. Precisely,

Fε(J) =
∑︂

z∈Zd
ε

εdF

(︄
τ z

ε J

εd−1

)︄
=
∑︂

z∈Zd
ε

εd
∑︂

(x̂,ŷ)∈EQ

αx̂ŷ

⃓⃓
τ z

ε J(x̂, ŷ)
⃓⃓

εd−1

=
∑︂

z∈Zd
ε

∑︂
(x̂,ŷ)∈EQ

τ z
ε ˜︁αε(x̂, ŷ)

⃓⃓
τ z

ε J(x̂, ŷ)
⃓⃓
=

∑︂
(x,y)∈Eε

˜︁αε
xy

⃓⃓
J(x, y)

⃓⃓
=

∑︂
(x,y)∈Eε

αε
xy

⃓⃓
J(x, y)

⃓⃓
,

where in the last passage we used that |J | is symmetric. We define a distance on Xε given by

dε(x, y) := MAε(δx, δy) , ∀x, y ∈ Xε . (4.4.2)

One can easily show that dε indeed defines a metric on Xε. In fact, dε can be seen as a
weighted graph distance.

Proposition 4.4.1. For every x, y ∈ Xε, we have

dε(x, y) = inf

⎧⎨⎩
k−1∑︂
i=0

2αε
xixi+1

: x0 = x , xk = y , (xi, xi+1) ∈ Eε ∀i , k ∈ N

⎫⎬⎭ .

Proof. The inequality ≤ directly follows by choosing unit fluxes along admissible paths:
let x0 = x, x1, . . . , xk−1, xk = y be a path, i.e., (xi, xi+1) ∈ Eε for every i = 0, 1, . . . , k, and
consider

JP :=
k−1∑︂
i=0

(︂
δ(xi,xi+1) − δ(xi+1,xi)

)︂
, (4.4.3)

which has divergence equal to δx − δy. Then,

dε(x, y) = MAε(δx, δy) = inf
{︂
Fε(J) : div J = δx − δy

}︂
= inf

⎧⎪⎨⎪⎩
∑︂

(x,y)∈Eε

αε
xy

⃓⃓
J(x, y)

⃓⃓
: div J = δx − δy

⎫⎪⎬⎪⎭
≤

∑︂
(x,y)∈Eε

αε
xy

⃓⃓⃓
JP (x, y)

⃓⃓⃓
≤

k−1∑︂
i=0

2αε
xixi+1

,

where in the last inequality we used that αε is symmetric.

To prove the converse, let J̄ ∈ REε
a be an optimal flux for MAε(δx, δy), that is,

div J̄ = δx − δy and MAε(δx, δy) =
∑︂

(x,y)∈Eε

αε
xy

⃓⃓⃓
J̄(x, y)

⃓⃓⃓
.

Since the graph Eε is finite, in order for J̄ to satisfy the divergence condition, there must
exist a simple path x0 = x, x1, . . . , xk = y such that (xi, xi+1) ∈ Eε and J̄(xi, xi+1) > 0 for
every i. Let JP be the associated vector field as in (4.4.3). Note that, for every λ ∈ R, we
have div

(︂
(1 − λ)J̄ + λJP

)︂
= δx − δy. Furthermore, the function

λ ↦→ Fε((1 − λ)J̄ + λJP
)︂

=
∑︂

(x,y)∈Eε

αε
xy

⃓⃓⃓
(1 − λ)J̄(x, y) + λJP (x, y)

⃓⃓⃓
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is differentiable at λ = 0, since (J̄(x, y) = 0) ⇒ (JP (x, y) = 0). By optimality, the derivative
at λ = 0 must equal 0, i.e.,

0 =
∑︂

(x,y)∈Eε

αε
xy

(︂
JP (x, y) − J̄(x, y)

)︂
sgn J̄(x, y) =

∑︂
(x,y)∈Eε

αε
xyJ

P (x, y) sgn J̄(x, y) −dε(x, y) ,

and, since (JP (x, y) ̸= 0) ⇒ (sgn JP (x, y) = sgn J̄(x, y)), we have

dε(x, y) =
∑︂

(x,y)∈Eε

αε
xy

⃓⃓⃓
JP (x, y)

⃓⃓⃓
= 2

k∑︂
i=1

αε
xixi+1

,

where, in the last equality, we used that the path is simple (and the symmetry of αε). This
shows the inequality ≥ and concludes the proof.

Consider the 1-Wasserstein distance associted to dε, that is,

W1,ε(m0,m1) = inf
{︄ˆ

Xε×Xε

dε(x, y) dπ(x, y) : (e0)#π = m0 , (e1)#π = m1

}︄
, (4.4.4)

as well as, by Kantorovich duality,

W1,ε(m0,m1) = sup
{︄ˆ

Xε

φ d(m0 −m1) : Lipdε
(φ) ≤ 1

}︄
, (4.4.5)

for every m0,m1 ∈ P(Xε).

Proposition 4.4.2. For every m0,m1 ∈ P(Xε), we have

MAε(m0,m1) = W1,ε(m0,m1) . (4.4.6)

Proof of ≥. Fix m0,m1 ∈ P(Xε) and set m := m0 − m1. Let J̄ ∈ REε
a be an optimal flux

for MAε(m0,m1), that is,

div J̄ = m and MAε(m0,m1) =
∑︂

(x,y)∈Eε

αε
xy

⃓⃓⃓
J̄(x, y)

⃓⃓⃓
. (4.4.7)

Let φ : Xε → R be such that Lipdε
φ ≤ 1, i.e.,

⃓⃓
φ(y) − φ(x)

⃓⃓
≤ dε(x, y) for x, y ∈ Xε . Then,

ˆ
Xε

φ dm =
ˆ

Xε

φ d div J̄ =
∑︂

x∈Xε

φ(x)
∑︂
y∼x

J̄(x, y) = 1
2

∑︂
(x,y)∈Eε

φ(x)
(︂
J̄(x, y) − J̄(y, x)

)︂
(4.4.8)

= 1
2

∑︂
(x,y)∈Eε

(︂
φ(y) − φ(x)

)︂
J̄(x, y) ≤ 1

2
∑︂

(x,y)∈Eε

dε(x, y)
⃓⃓⃓
J̄(x, y)

⃓⃓⃓
. (4.4.9)

In order to conclude, we make the following crucial observation: as a consequence of the
optimality of J̄ , we claim that

J̄(x, y) ̸= 0 =⇒ dε(x, y) = 2αε
xy . (4.4.10)

To this end, assume that J̄(x, y) ̸= 0 and consider an optimal J (x,y) for dε(x, y) = MAε(δx, δy).
Note that, by construction,

div
(︂
J (x,y)

)︂
= δx − δy = div ˜︁J , where ˜︁J := δ(x,y) − δ(y,x) , (4.4.11)
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which in turns also implies that

div
(︂
J̄ + J̄(x, y)

(︂
J (x,y) − ˜︁J)︂)︂ = div J̄ . (4.4.12)

By optimality of J (x,y), we have

Fε( ˜︁J) = 2αε
xy ≥ Fε

(︂
J (x,y)

)︂
=

∑︂
(˜︁x,˜︁y)∈Eε

αε˜︁x,˜︁y ⃓⃓⃓J (x,y)(˜︁x, ˜︁y)
⃓⃓⃓
, (4.4.13)

whereas the optimality of J̄ yields

Fε

(︂
J̄ + J̄(x, y)

(︂
J (x,y) − ˜︁J)︂)︂ =

∑︂
(˜︁x,˜︁y)∈Eε\{(x,y),(y,x)}

αε˜︁x˜︁y ⃓⃓⃓J̄(˜︁x, ˜︁y) + J̄(x, y)J (x,y)(˜︁x, ˜︁y)
⃓⃓⃓

+ αε
xy

⃓⃓⃓
J̄(x, y)J (x,y)(x, y)

⃓⃓⃓
+ αε

yx

⃓⃓⃓
J̄(x, y)J (x,y)(y, x)

⃓⃓⃓
≥ Fε(J̄) =

∑︂
(˜︁x,˜︁y)∈Eε

αε˜︁x˜︁y ⃓⃓⃓J̄(˜︁x, ˜︁y)
⃓⃓⃓
.

By applying the triangle inequality and simplifying the latter formula, we find∑︂
(˜︁x,˜︁y)∈Eε

αε˜︁x˜︁y ⃓⃓⃓J̄(x, y)J (x,y)(˜︁x, ˜︁y)
⃓⃓⃓
≥ 2αε

xy

⃓⃓⃓
J̄(x, y)

⃓⃓⃓
. (4.4.14)

The combination of (4.4.13) and (4.4.14) implies dε(x, y) = 2αε
xy. With (4.4.10) at hand, we

can write ˆ
Xε

φ dm ≤
∑︂

(x,y)∈Eε

αε
xy

⃓⃓⃓
J̄(x, y)

⃓⃓⃓
= MAε(m0,m1) ,

and we conclude by arbitrariness of φ.

Proof of ≤. Let π be such that (ei)#π = mi for i = 0, 1. Further, for every x, y ∈ Xε,
let J (x,y) ∈ REε

a be optimal for MAε(δx, δy). It follows from a direct computation that the
divergence of the asymmetric flux

J :=
∑︂

x,y∈Xε

π(x, y)J (x,y)

is equal to m0 −m1. Thus,

MAε(m0,m1) ≤
∑︂

(˜︁x,˜︁y)∈Eε

αε˜︁x˜︁y ⃓⃓J(˜︁x, ˜︁y)
⃓⃓
≤

∑︂
x,y∈Xε

π(x, y)
∑︂

(˜︁x,˜︁y)∈Eε

αε˜︁x˜︁y ⃓⃓⃓J (x,y)(˜︁x, ˜︁y)
⃓⃓⃓

=
ˆ

Xε×Xε

dε dπ ,

and we conclude by arbitrariness of π.

In view of the equality MAε = W1,ε, it is worth noting that for cost functions of the form
(4.4.1) there are (at least) two different possible methods to show discrete-to-continuum
limits for MAε. One such method is provided by the current work and makes use of the Γ-
convergence of Aε to Ahom proved in [GKMP23, Theorem 5.4]. The convergence of the
“weighted graph distance” dε follows a posteriori. Another approach is to study directly the
scaling limits of the distance dε as ε → 0 and, from that, infer the convergence of the
associated 1-Wasserstein distances, in a similar spirit as in [BDPF+01].
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4.4.2 General properties of fhom

For j ∈ Rd, recall that

fhom(j) := inf
{︁
F (J) : J ∈ Rep(j)

}︁
, (4.4.15)

where Rep(j) is the set of all Zd-periodic functions J ∈ RE
a such that

Eff(J) := 1
2

∑︂
(x,y)∈EQ

J(x, y)(yz − xz) = j and div J ≡ 0 .

As noted in [GKMP23, Lemma 4.7], we may as well write min in place of inf in (4.4.15).

Our first observation is that, indeed, the homogenised density is a norm. This has already been
proved in [GKMP23, Corollary 5.3]; for the sake of completeness we provide here a simple
proof in our setting.

Proposition 4.4.3. The function fhom is a norm.

Proof. Finiteness follows from the nonemptiness of the set of representatives proved in
[GKMP23, Lemma 4.5]. To prove positiveness, take any j ∈ Rd and J ∈ Rep(j). For every
norm ∥·∥, we have

∥j∥ =
⃦⃦
Eff(J)

⃦⃦
≤ 1

2
∑︂

(x,y)∈EQ

⃓⃓
J(x, y)

⃓⃓
∥yz − xz∥ ≤ F (J)

2 max
(x,y)∈EQ

∥yz − xz∥
αxy

. (4.4.16)

The constant that multiplies F (J) at the right-hand side is finite because every αxy is
strictly positive and the graph (X , E) is locally finite. Absolute homogeneity and the triangle
inequality follow from the absolute homogeneity and subadditivity of F , and the affinity of the
constraints.

Hence, MAhom is always (i.e. for any choice of (αxy)x,y and of the graph (X , E)) the W1-
distance w.r.t. some norm. However, the norm fhom can equal the 2-norm |·|2 only in
dimension d = 1. In fact, the unit ball for fhom has to be a polytope, namely the associated
sphere is contained in the union of finitely many hyperplanes. These types of norms are also
known as crystalline norms.

Proposition 4.4.4. The unit ball associated to the norm fhom, namely

B :=
{︂
j ∈ Rd : fhom(j) ≤ 1

}︂
,

is the convex hull of finitely many points. In particular, the associated unit sphere is contained
in the union of finitely many hyperplanes, i.e., fhom is a crystalline norm.

Proof. Let X be the vector space of all Zd-periodic functions J ∈ RE
a such that div J ≡ 0.

The sublevel set
X1 :=

{︁
J ∈ X : F (J) ≤ 1

}︁
is clearly compact (due to the strict positivity of (αxy)x,y) and can be written as finite
intersection of half-spaces, namely

X1 =
⋂︂

r∈{−1,1}EQ

⎧⎪⎨⎪⎩J ∈ X :
∑︂

(x,y)∈EQ

αxyrxyJ(x, y) ≤ 1

⎫⎪⎬⎪⎭ .
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Thus, X1 is the convex hull of some finite set of points A, that is, X1 = conv(A). Since fhom
is defined as a minimum, we have

B =
{︂
j ∈ Rd : ∃J ∈ Rep(j), F (J) ≤ 1

}︂
= Eff(X1) = Eff(conv(A)) = conv(Eff(A)) ,

where the last equality is due to the linearity of Eff.

4.4.3 Embedded graphs
To visualise some examples, we shall now focus on the case where (X , E) is embedded, in
the sense that V is a subset of [0, 1)d and we use the identification (z, v) ≡ z + v (see
also [GKMP23, Remark 2.2]). It has been proved in [GKMP23, Proposition 9.1] that, for
embedded graphs, the identity

Eff(J) = 1
2

∑︂
(x,y)∈EQ

J(x, y)(y − x) (4.4.17)

holds for every Zd-periodic and divergence-free vector field J ∈ RE
a . In what follows, we also

make the choice
αxy := 1

2 |x− y|2 , (x, y) ∈ EQ .

One-dimensional case with nearest-neighbor interaction

Assume d = 1, let x1 < x2 < · · · < xk be an enumeration of V , and set

E := {(x, y) ∈ X × X s.t. there is no z ∈ X strictly between x and y}.

In other words, denoting x0 = xk − 1 and xk+1 = x1 + 1,

E =
⋃︂
z∈Z

k⋃︂
i=1

{︁
(xi, xi+1)

}︁
∪
{︁
(xi, xi−1)

}︁
.

By rewriting (4.4.16) using (4.4.17), and by the definition of fhom, we find

|j| ≤ fhom(j) , j ∈ Rd .

On the other hand, given j ∈ Rd, choose

J(x, y) := j sgn(y − x) , (x, y) ∈ E .

This vector field is in Rep(j), because

div J(xi) = J(xi, xi+1) + J(xi, xi−1) = j − j = 0 ,

for every i, and

Eff(J) = 1
2

k∑︂
i=1

(︂
J(xi, xi+1)(xi+1 − xi) + J(xi, xi−1)(xi−1 − xi)

)︂

= j

2

k∑︂
i=1

(︂
|xi+1 − xi| +|xi − xi−1|

)︂
= j

2
(︂
xk+1 − x1 + xk − x0

)︂
= j.

A similar computation shows that F (J) = |j|, from which fhom(j) = |j|.
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4. Discrete-to-continuum limits of optimal transport with linear growth

Cubic partition

Consider the case where X = Zd and

E :=
{︂
(x, y) ∈ Zd × Zd : |x− y|∞ = 1

}︂
.

It is a result of [GKMP23, Section 9.2] that

fhom(j) = |j|1 , j ∈ Rd .

Notice that, in this case, the 2-norm is evaluated only at vectors on the coordinate axes.
Therefore, the same result holds when αxy = 1

2 |x− y|p, for any p.

Graphs in R2

A few other examples in dimension d = 2 are shown in Figure 4.2: for each one, we display the
graph and the unit ball in the corresponding norm fhom. To algorithmically construct the unit
balls, we solve the variational problem (4.4.15) for every j on a discretisation of the circle S1.
In turn, this is achieved with the help of the Python library CVXPY [DB16, AVDB18]. For
visualisation, we make use of the library matplotlib [Hun07].
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Figure 4.2: Examples of graphs in R2 and corresponding unit balls for fhom
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CHAPTER 5
Asymptotics for Optimal Empirical

Quantization of Measures

This chapter contains (with minimal modifications) the following preprint [Qua24]:

F. Quattrocchi. Asymptotics for Optimal Empirical Quantization of Measures. arXiv preprint
arXiv:2408.12924v1, 2024.

I wrote this preprint during my PhD at ISTA, but some partial results were already included
in my Master’s thesis [Qua21], written under the supervision of Prof. Dario Trevisan at the
University of Pisa. More precisely:

• the upper bound (U) in Theorem 5.1.1, in the special case of absolutely continuous
and compactly supported measures, is the statement of [Qua21, Theorem 3.2.3]. The
generalization to arbitrary measures with a moment condition, and the lower bound (L)
are new;

• Theorem 5.1.3 was proven in [Qua21, Theorem 3.2.1] in the special case where A is
a bounded 2-dimensional convex set. The generalisation to sets that are bi-Lipschitz
equivalent to a disk is new. The other special cases in which existence of the renormalized
limit is proven are Proposition 5.6.1 and Corollary 5.9.1, which correspond to [Qua21,
Theorem 3.2.2] and [Qua21, Corollary 3.5.7], respectively;

• Corollary 5.1.4 is new;

• Theorem 5.1.7 is new.

Abstract
We investigate the minimal error in approximating a general probability measure µ on Rd by
the uniform measure on a finite set with prescribed cardinality n. The error is measured in
the p-Wasserstein distance. In particular, when 1 ≤ p < d, we establish asymptotic upper and
lower bounds as n → ∞ on the rescaled minimal error that have the same, explicit dependency
on µ.

In some instances, we prove that the rescaled minimal error has a limit. These include general
measures in dimension d = 2 with 1 ≤ p < 2, and uniform measures in arbitrary dimension
with 1 ≤ p < d. For some uniform measures, we prove the limit existence for p ≥ d as well.
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5. Asymptotics for Optimal Empirical Quantization of Measures

For a class of compactly supported measures with Hölder densities, we determine the conver-
gence speed of the minimal error for every p ≥ 1.

Furthermore, we establish a new Pierce-type (i.e., nonasymptotic) upper estimate of the
minimal error when 1 ≤ p < d.

In the initial sections, we survey the state of the art and draw connections with similar problems,
such as classical and random quantization.

5.1 Introduction
Quantization is the problem of optimally approximating a probability measure µ on Rd by
another one, say µn, supported on a finite number n of points. For instance, we can think
of µ as the description of a picture and of µn as its digital compression. Another typical
example comes from urban planning : if µ represents the population distribution in a city, then
the support of the approximating measure µn determines good locations to build schools,
supermarkets, parks, etc.

The mathematical formulation is as follows: for a given number of points n and a fixed
parameter p ∈ [1,∞), find a solution to the minimization problem

ep,n(µ) := min
µn∈P(Rd)

{︂
Wp(µ, µn) : # supp(µn) ≤ n

}︂
, (5.1.1)

where Wp is the p-Wasserstein–Kantorovich–Rubinstein distance [Vil09b, San15]. We will
call this minimal number the nth optimal quantization error of order p for µ. Equivalently
(see [GL00]), ep,n(µ) can be written as the following minimum over maps T : Rd → Rd onto
at most n points :

ep,n(µ) = min
T

(︄ˆ ⃦⃦
x− T (x)

⃦⃦p dµ
)︄1/p

= min
T

EX∼µ

[︂
X − T (X)

⃦⃦p
]︂1/p

,

or, also,

ep,n(µ) = min
x1,...,xn∈Rd

(︄ˆ
min

i
∥x− xi∥p dµ

)︄1/p

. (5.1.2)

One of the questions that have attracted considerable attention over the years is the asymptotic
behavior of ep,n(µ) as n → ∞, see [GL00]. The most fundamental result in this direction is
Zador’s Theorem: given a probability measure µ on Rd enjoying a suitable moment condition,
and denoting by ρ the density of its absolutely continuous part, we have

lim
n→∞

n1/dep,n(µ) = qp,d

(︄ˆ
ρ

d
d+p dL d

)︄ d+p
dp

, (5.1.3)

with
qp,d := inf

n∈N1
n1/dep,n

(︂
L d|[0,1]d

)︂
> 0 , (5.1.4)

see [Zad64, Zad82, BW82, GL00] and Theorem 5.4.1 below. That is, when µ is not purely
singular (otherwise the limit (5.1.3) equals zero), Zador’s Theorem determines the speed of
convergence n−1/d of ep,n(µ) and the explicit dependency of the prefactor on µ. For a heuristic
derivation, see [Der09] or Section 5.2 below.
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We will focus on a variation of the classical quantization problem: optimal (or deterministic)
empirical quantization (also known as optimal/deterministic uniform quantization). The
subject of our study is the optimal empirical quantization error ẽp,n(µ), defined by

ẽp,n(µ) := min
µn∈P(Rd)

⎧⎨⎩Wp(µ, µn) : µn = 1
n

n∑︂
i=1

δxi
for some x1, . . . , xn ∈ Rd

⎫⎬⎭ , (5.1.5)

or, equivalently,

ẽp,n(µ) = min
x1,...,xn∈Rd

min
µ1,...,µn

⎛⎝ n∑︂
i=1

ˆ
∥x− xi∥p dµi

⎞⎠1/p

,

where µ1, . . . , µn are subprobabilities, each having total mass equal to 1/n, that sum up to µ.
The two numbers ep,n(µ) and ẽp,n(µ) are similarly defined, but the second one is a minimum
over a smaller set of measures, hence ep,n(µ) ≤ ẽp,n(µ). Our aim is to find formulas analogous
to (5.1.3) for ẽp,n(µ).

Several results are available, both for the case d = 1 [JR16, XB19, GHMR19b, BJ22a, BJ22b,
GSM23], and in arbitrary dimension [GHMR19b, MM16, Che18, GHMR19a, BS20], but a
general statement like Zador’s Theorem is still missing. As we will see in greater detail in
Section 5.4, the works [MM16, Che18] contain the proof of the following. For “sufficiently
nice” probability measures µ (and assuming, for simplicity, p ̸= d), we have

0 < lim inf
n→∞

n1/dẽp,n(µ) and lim sup
n→∞

n
1

max(p,d) ẽp,n(µ) < ∞ .

In particular, the speed of convergence to 0 of ẽp,n(µ) is n−1/d in the regime p < d. However,
the known bounds from below and above of the limits inferior and superior are rather loose, in
that they do not depend in the same way on µ (see (5.4.5) below), and the existence of this
limit is unknown.

5.1.1 Main theorem
Our main theorem addresses the first of the two matters above by providing a high-resolution
formula for p < d (in the same spirit of [DSS13] for random empirical quantization).

Theorem 5.1.1. Assume that 1 ≤ p < d and let p∗ := dp
d−p

be the Sobolev conjugate of p.
Let µ be a probability measure on Rd and assume that, for some θ > p∗, the θth moment of µ
is finite. Let ρ be the density of the absolutely continuous part of µ and let suppµs be the
support of the singular part of µ (w.r.t. the Lebesgue measure L d). Then:

qp,d

⎛⎝ˆ
Rd\supp(µs)

ρ
d−p

d dL d

⎞⎠1/p

≤ lim inf
n→∞

n1/dẽp,n(µ) , (L)

lim sup
n→∞

n1/dẽp,n(µ) ≤ q̃p,d

(︄ˆ
Rd

ρ
d−p

d dL d

)︄1/p

, (U)

where

qp,d := inf
n∈N1

n1/dep,n

(︂
L d|[0,1]d

)︂
> 0 and q̃p,d := inf

n∈N1
n1/dẽp,n

(︂
L d|[0,1]d

)︂
> 0 . (5.1.6)
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Note that the dependence on the measure in (5.1.3) and in Theorem 5.1.1 is different; we will
give a heuristic explanation of this phenomenon in Section 5.2. It is also worth noting that the
integral

´
ρ

d−p
d dL d has already appeared in the asymptotic study of other (related) problems

in combinatorial optimization [BHH59, Ste97, Yuk98, BB13, GT24] and random (empirical)
quantization [GL00, DSS13].

In general, the two constants qp,d and q̃p,d in (5.1.6) are not known explicitly, but it is possible
to establish upper and lower bounds, see [GL00, Chapters 8 & 9]. We pose the following.

Conjecture 5.1.2. The identity qp,d = q̃p,d holds (for every p ≥ 1 and d ∈ N1).

This is tightly linked with a famous conjecture by A. Gersho [Ger79], which, in essence, states
the following: if A ⊆ Rd is convex and we denote by UA its uniform measure, then the
optimal quantizers µn for ep,n(UA) are asymptotically uniform, and “most” of the Voronoi
regions generated by supp(µn) are congruent to one another. Weak versions of Gersho’s
Conjecture have been proven in [GLP12, Zhu11, Zhu20], but they seem to be insufficient to
settle Conjecture 5.1.2. As noted in [DSS13, Remark 2], proving the equality of the constants
appearing in the upper and lower bounds «seems to be a general open problem in transport
problems» (see also [BB13, GT24]).

Nonetheless, with Remark 5.6.3 and Theorem 5.1.3 (see below), we show that Conjecture 5.1.2
is true for d = 1 and d = 2.

5.1.2 Existence of the limit
The second matter, namely the convergence of the renormalized error (i.e., n1/dẽp,n(µ)
if the speed of convergence of ẽp,n(µ) is n−1/d), remains, in general, an open question.
For p < d, however, Theorem 5.1.1 reduces this problem to Conjecture 5.1.2. Indeed,
assuming Conjecture 5.1.2, that 1 ≤ p < d, that the θth moment of µ is finite for some θ > p∗,
and

´
supp(µs) ρ dL d = 0, the limit of n1/dẽp,n(µ) exists by the combination of (L) and (U).

Moreover, with the results of this work, we are able to prove the limit existence in some cases:

1. for every p ≥ 1 and d ∈ N1, when µ is the uniform measure on a cube, see Proposi-
tion 5.6.1;

2. when 1 ≤ p < d and µ is the uniform measure on a bounded nonnegligible Borel set,
see Corollary 5.9.1;

3. for every p ≥ 1, when d = 2 and µ is the uniform measure on a set which is bi-Lipschitz
equivalent to a closed disk;

4. when 1 ≤ p < d = 2, the θth moment of µ is finite for some θ > p∗, and supp(µs)
is µa-negligible, where µa and µs are the absolutely continuous and singular parts of µ,
respectively.

In all these cases, the upper bound (U) is attained in the limit:

lim
n→∞

n1/dẽp,n(µ) = q̃p,d

⎛⎝ˆ
{ρ>0}

ρ
d−p

d dL d

⎞⎠1/p

. (5.1.7)

The points (3),(4) descend directly from Theorem 5.1.1 and the following.
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Theorem 5.1.3. Let A ⊆ R2 be bi-Lipschitz equivalent to a closed disk1 and let UA be
its uniform measure. Then, for every p ≥ 1, the limit of √

nẽp,n(UA) exists and coincides
with limn→∞

√
nep,n(UA), that is (by (5.1.3)),

lim
n→∞

√
nẽp,n(UA) = qp,2

√︂
|A| . (5.1.8)

In particular, we can choose A := [0, 1]2 and obtain qp,2 = q̃p,2.

By [XB19, Theorem 5.15] (restated as Theorem 5.4.2 below), the limit exists also when d = 1
and the upper quantile function of µ is absolutely continuous.

5.1.3 Asymptotic behavior for p ∈ [1,∞)
As a first step towards the proof of Theorem 5.1.1, we will prove (5.1.7) for the uniform
measure L d|[0,1]d for every p ≥ 1 (Proposition 5.6.1). In particular, we have2

lim sup
n→∞

n1/dẽp,n

(︂
L d|[0,1]d

)︂
< ∞ , (5.1.9)

from which we derive one corollary which may be of independent interest. Note that, while
Theorem 5.1.1 assumes p < d, this corollary applies when p ≥ d as well.

Corollary 5.1.4. Let Ω̃,Ω be open bounded sets in Rd and let µ = ρL d be an absolutely
continuous probability measure concentrated on Ω. Assume that:

1. the set Ω̃ is convex with C1,1 boundary;

2. there exists a diffeomorphism M : Ω̃ → Ω of class C1 with (globally) Hölder continuous
and uniformly nonsingular Jacobian;

3. the restriction ρ|Ω is uniformly positive and Hölder continuous (globally on Ω).

Then, for every p ≥ 1,

0 < lim inf
n→∞

n1/dẽp,n(µ) ≤ lim sup
n→∞

n1/dẽp,n(µ) < ∞ . (5.1.10)

For general measures and p ≥ d, it is possible, and often expected, that

lim sup
n→∞

n1/dẽp,n(µ) = ∞ ,

see [XB19, Example 5.8 & Remark 5.22] and Example 5.4.4 below. Corollary 5.1.4 states
that the error convergence is still fast (of order n−1/d) if the measure is “smooth and well-
concentrated”.

1Note that every convex body A is bi-Lipschitz equivalent to a closed disk: further assuming, without loss
of generality, that 0 lies in the interior part of A, the map

A ∋ x ↦−→ inf {r > 0 : x ∈ rA}
∥x∥

x

(deformation by the Minkowski functional) is bi-Lipschitz onto the unit disk.
2For d ≥ 3, the bound (5.1.9) can also be easily derived from the theory of random empirical quantization,

see [Led23, Formula (8)].
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Remark 5.1.5. Corollary 5.1.4 applies in particular when Ω itself is convex with C1,1 boundary
and ρ|Ω is uniformly positive and Hölder: the identity is admissible as a diffeomorphism M
onto Ω.

Remark 5.1.6. The proof of Corollary 5.1.4 relies on a theorem by S. Chen, J. Liu, and
X.-J. Wang [CLW21] on the regularity of optimal transport maps. Using other results from this
field, e.g. [CLW19, CLW18], it is possible to adapt Corollary 5.1.4 to other sets of assumptions.

5.1.4 Nonasymptotic upper bound
Along the way, we also prove a nonasymptotic upper bound on the optimal empirical quan-
tization error. This is analogous to what is known as Pierce’s Lemma [Pie70] in classical
quantization.

Theorem 5.1.7. Under the assumptions of Theorem 5.1.1, there exists a constant cp,d,θ

(independent of µ and n) such that

n1/dẽp,n(µ) ≤ cp,d,θ

(︄ˆ
∥x∥θ dµ

)︄1/θ

, n ∈ N1 . (5.1.11)

5.1.5 Related literature
The theory of quantization has been studied since the 1940s by electrical engineers interested
in the compression of analog signals. Early works include [Sha48] by C. E. Shannon, [OPS48]
by B. M. Oliver, J. R. Pierce and C. E. Shannon, [Ben48] by W. R. Bennett, and [PD51] by
P. F. Panter and W. Dite. We refer the reader to [GN98] for a survey of the related literature
in the fields of signal processing and information theory until the late 1990s.

Algorithms to solve the quantization problem in Rd are known since the works of H. Stein-
haus [Ste56] and S. P. Lloyd [Llo82]. Arguably, the most popular ones are Lloyd’s method (also
known as k-means algorithm) and the Competitive Learning Vector Quantization, see [Pag15,
Section 3].

Over the years, quantization theory has found applications to data science (clustering, rec-
ommender systems, etc.) [LP20, LDX+24], mathematical models in economics [BS72, Bol73,
BS09], computer graphics [BD23], geometry (approximation of convex bodies and Alexandrov’s
Problem) [Gru04, MO16]. The survey [Pag15] describes its applications to numerics, particu-
larly to numerical integration [Pag98], numerical probability [PP05], and numerical solving
of (stochastic) (partial) differential equations, relevant, e.g., in mathematical finance [PP09].
Quantization has been studied also beyond the finite-dimensional Euclidean setting, partic-
ularly in Riemannian manifolds [Gru01, Gru04, Klo12, Iac16, AI25, LBP19b, LBP19a] and
infinite-dimensional Banach spaces (functional quantization), see [LP23b] and references
therein.

For a more comprehensive and detailed picture of this extensive mathematical subject, we refer
to the following monographs. In chronological order: [GG92] by A. Gersho and R. M. Gray,
[GL00] by S. Graf and H. Luschgy, and [LP23b] by H. Luschgy and G. Pagès.

As previously noted, asymptotics for ẽp,n(µ) have been investigated in [JR16, MM16, Che18,
XB19, GHMR19b, BJ22a, BJ22b, GSM23, GHMR19a, BS20], see also Section 5.4. Al-
gorithms and other theoretical properties of optimal empirical quantization (and of the
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slightly more general capacity-constrained quantization3) have been proposed and studied,
e.g., in [AHA98, BHM08, dGBOD12, Bak15, XLC+16, MSS24, BSD09, Cor10, PFB14]. Fur-
thermore, this theory has been used as a tool, e.g., for the approximation of variational prob-
lems and (stochastic) differential equations [MM16, Sar22, BJ22b, KX22, LP23a, GKX25],
to prove convergence rates for regularized optimal transport [EN24], to analyze restricted
Monte Carlo methods for quadrature [GHMR19b], to optimally place robots in an environ-
ment [Cor10, PFB14, CE17], in computer graphics (e.g., to generate blue-noise distributions)
[BSD09, dGBOD12, XLC+16], in neuronal evolution modeling [CDLO19], and in material
modeling [DZW+23, ZYS+24].

Several versions of optimal empirical quantization with respect to different metrics/diver-
gences/discrepancies (in place of Wp) have also been studied. We mention [MJ18, BX20,
XKS22], as well as the series of works [Bec84, AD14, ABN18, FGW21, Wei23] on the
generalized star-discrepancy, which is used to bound numerical integration error by means of
the generalized Koksma–Hlawka inequality [AD15].

Closely related to optimal empirical quantization is random empirical quantization, i.e., the
problem of approximating a measure µ using random empirical measures µn = 1

n

∑︁n
i=1 δXi

,
where (Xi)i∈N is a sequence of random variables (typically independent and identically dis-
tributed), see [WB19, Led23] and references therein. In recent times, some asymptotic results
for this problem have been proven using the theory of partial differential equations [AST19]
and Fourier analysis [BL21].

5.1.6 Open questions
It may be interesting to further investigate the following problems.

1. In (L), the domain of the integral is Rd \ supp(µs). Is this just an artifact of our proof?
That is: Can we replace this domain with the whole space Rd?

2. We already stated Conjecture 5.1.2 on the equality qp,d = q̃p,d. Unclear is also the relation
between qp,d, q̃p,d and the constants that appear in [DSS13, Theorem 2] and [CGPT24,
Theorem 1.6] in the context of random empirical quantization. Numerical estimates of
the constants may also help understand this relation.

3. Depending on µ, several asymptotic behaviors are possible for the error ẽp,n(µ) when p ≥
d, see [BJ22a, Table 1] as well as Corollary 5.1.4, Example 5.4.4, and Proposition 5.6.1.
It may be worth determining precise characterizations of the measures that exhibit a
certain error decay. For example, given p ≥ d, for which absolutely continuous and
compactly supported measures µ is the limit superior of n1/dẽp,n(µ) finite?

4. What can we say about the error asymptotics for singular measures?

5. It would be natural to also study the problem on manifolds (as in [Klo12, Iac16, AI25]
for classical quantization) and infinite-dimensional spaces.

3In this version, the competitors µn are of the form µn =
∑︁n

i=1 λiδxi
, where n and λ1, . . . , λn ∈ [0, 1]

are prescribed, and x1, . . . , xn are free.
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5.1.7 Plan of the work
The first four sections are preparatory. In Section 5.2, we give a simple heuristic argument
that justifies the integral

´
ρ

d−p
d dL d in Theorem 5.1.1. In Section 5.3, we fix the notation

and give all necessary definitions. In Section 5.4, we present some of the existing results in
the literature, both to provide context and because we will use some of them.

The subsequent sections contain proofs. The major ones will be preceded by comments on
the core ideas and techniques. In Section 5.5, we prove the nonasymptotic upper bound of
Theorem 5.1.7. In Section 5.6, we begin the proof of Theorem 5.1.1 by proving the limit (5.1.7)
for the uniform measure on the unit cube. In Section 5.7, we prove Corollary 5.1.4. In
Section 5.8, we complete the proof of Theorem 5.1.1. In Section 5.9, we prove the limit (5.1.7)
for uniform measures in the regime p < d. In Section 5.10, we prove Theorem 5.1.3.

Not all sections are necessary for the later arguments in this manuscript. The following scheme
outlines the logical dependencies among Sections 5.5-5.10.

Sec. 5.5 Sec. 5.6 Sec. 5.7 Sec. 5.8 Sec. 5.9 Sec. 5.10

5.2 Heuristics
Firstly, let us formally derive Zador’s Theorem. A similar heuristic argument is given in [Der09].
Fix a “nice” probability measure µ, say absolutely continuous, compactly supported, and
with continuous density ρ. Let Sn = {x1, . . . , xn} ⊆ Rd be the support of an optimal
classical quantizer (i.e., a minimizer in (5.1.2)) and let σnL d be a “nice” approximation of the
measure 1

n

∑︁n
i=1 δxi

. For n large, the number of points in Sn that fall within a small ball Bϵ(x̄)
of radius ϵ centered at x̄ ∈ Rd is, approximately and up to a dimensional constant, ϵdnσn(x̄).
Since ρ is continuous and ϵ is small, we can expect the points of Sn ∩Bϵ(x̄) to be evenly spread
on Bϵ(x̄); therefore, the distance r of a generic point in such a ball from Sn is roughly equal
to the dth root of the ratio between the volume of the ball and the cardinality #(Sn ∩Bϵ(x̄)),
i.e.,4 r ≈ d

√︃
ϵd

ϵdnσn(x̄) =
(︂
nσn(x̄)

)︂−1/d
. Hence,

ˆ
min

i
∥x− xi∥p dµ ≈ n−p/d

ˆ
σ−p/d

n ρ dL d .

Thus, we can rephrase the problem in (5.1.2) as a minimization over functions:

ep
p,n(µ) ≈ n−p/d inf

σ

ˆ
σ−p/dρ dL d ,

4In this work, the symbols ≈,⪅,⪆ do not have a rigorous meaning. They are used in heuristic arguments
as shorthands for ‘is approximately equal to’ and ‘is approximately smaller/greater than’.
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under the constraint
´
σ dL d = 1. By Hölder’s inequality,

ˆ
ρ

d
d+p dL d ≤

⎛⎝ˆ (︃
ρ

d
d+pσ− p

d+p

)︃ d+p
d

dL d

⎞⎠ d
d+p (︄ˆ (︂

σ
p

d+p

)︂ d+p
p dL d

)︄ p
d+p

=
(︄ˆ

σ−p/dρ dL d

)︄ d
d+p

(︄ˆ
σ dL d

)︄ p
d+p

⏞ ⏟⏟ ⏞
=1

,

and the inequality is an equality for σ := c ρ
d

d+p , where c is a normalizing constant.

In the case of optimal empirical quantization, we expect that the optimal locations Sn =
{x1, . . . , xn} are, instead, approximately distributed according to ρ: to keep the Wasserstein
distance minimal, we should approximately match the mass in every small ball Bϵ(x̄) to the
points in (or closest to) such a ball, which means, in particular,

ϵdρ(x̄) ≈ µ(Bϵ(x̄)) ≈ n−1#(Sn ∩ Bϵ(x̄)) ≈ ϵdσn(x̄) ,

where, as before, σn is an approximation of the uniform measure on Sn.5 Since, once again,
the points Sn ∩ Bϵ(x̄) are evenly spread on Bϵ(x̄), a generic point x ∈ Bϵ(x̄) should be
matched by an optimal transport plan to the closest xi ∈ Sn. Recall that the typical distance
from Sn is of order

(︂
nσn(x̄))−1/d, which, combined with the considerations above, yields

ẽp
p,n(µ) ≈ n−p/d

ˆ
ρ−p/dρ dL d .

We conclude this section with another simple observation. Postulate that

ẽp,n(µ) ≈ n−a

(︄ˆ
ρb dL d

)︄c

for some a, b, c ∈ R and for every (sufficiently “nice”) probability measure µ = ρL d. It is
easy to check that ẽp,n(λ−dρ

(︂
λ−1·

)︂
L d) = λẽp,n(µ) for every λ > 0. Therefore,

λ

(︄ˆ
ρb dL d

)︄c

=
(︄ˆ

Rd

(︂
λ−dρ(λ−1·)

)︂b
dL d

)︄c

= λdc(1−b)
(︄ˆ

ρb dL d

)︄c

,

from which we obtain the identity 1 = dc(1− b). Note that this is coherent with the statement
of Theorem 5.1.1.

5.3 Preliminaries
5.3.1 Notation
We regard Rd as a measure space endowed with the σ-algebra of Borel sets B(Rd), on
which the Lebesgue measure L d is defined, and as a normed space with the Euclidean

5This explains why the same formula (up to constant) appears in random empirical quantization, see [DSS13,
Theorem 2].
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norm ∥·∥ =∥·∥2. For every x ∈ Rd, we let δx be the Dirac delta measure at x. Given a Borel
set A ∈ B(Rd), we sometimes write |A| in place of L d(A). If |A| ̸= 0,∞, it is well defined
the uniform measure

UA := L d|A
|A|

of A. For convenience, we further define

Ud := U[0,1]d .

For every set A ⊆ Rd, we denote by diam(A) its diameter, i.e.,

diam(A) :=

⎧⎨⎩0 if A = ∅ ,
supx,y∈A∥x− y∥ otherwise,

and by #A ∈ N0 ∪ {∞} its cardinality. We write int(A) and A for its interior part and
topological closure, respectively.

For every pair of sets A,B ⊆ Rd, we denote by dist(A,B) their minimal distance

dist(A,B) :=

⎧⎨⎩inf
{︁
∥x− y∥ : x ∈ A , y ∈ B

}︁
if A,B ̸= ∅ ,

∞ otherwise,

and, similarly, we write dist(x,A) := dist({x} , A).

We denote by P(Rd) the space of Borel probability measures on Rd and by M(Rd) the space
of Borel nonnegative finite measures on Rd, i.e., M(Rd) := R≥0 · P(Rd). For every p ≥ 1,
it is also convenient to introduce the space Pp(Rd) of probability measures with finite pth

moment
Pp(Rd) :=

{︄
µ ∈ P(Rd) :

ˆ
∥x∥p dµ(x) < ∞

}︄
and the space Pc(Rd) of compactly supported probability measures

Pc(Rd) :=
{︂
µ ∈ P(Rd) : ∃K ⊆ Rd compact such that µ(K) = 1

}︂
.

For n ∈ N1, we further define the set

P(n)(Rd) :=

⎧⎨⎩µn ∈ P(Rd) : ∃x1, x2, . . . , xn ∈ Rd , µn = 1
n

n∑︂
i=1

δxi

⎫⎬⎭ .

Analogously, we set

Mp(Rd) := R≥0 · Pp(Rd) , Mc(Rd) := R≥0 · Pc(Rd) , M(n)(Rd) := R≥0 · P(n)(Rd) ,

and M(0)(Rd) := {0}.

The (total variation) norm of a measure µ ∈ M(Rd) is ∥µ∥ := µ(Rd). For every measurable
function T : Rd1 → Rd2 , we denote by T# : M(Rd1) → M(Rd2) the pushforward operator,
defined by

T#µ(A) := µ
(︂
T−1(A)

)︂
, A ∈ B(Rd2) .

Note that the norm is invariant under pushforward, i.e.,
⃦⃦⃦
T#µ

⃦⃦⃦
=∥µ∥. For µ ∈ M(Rd), we

write supp(µ) for the support of µ, i.e., the smallest closed set on which µ is concentrated.
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For ease of notation, when ρ ∈ L1
≥0(Rd), we sometimes write ρ to denote the measure ρL d ∈

M(Rd).

We use the notation a ≲ b when there exists a constant c > 0 for which a ≤ cb. Given two
sequences (an)n and (bn)n of positive real numbers (defined for an unbounded set of natural
indices), we write an ≍ bn if

1
c

≤ lim inf
n→∞

an

bn

≤ lim sup
n→∞

an

bn

≤ c

for some constant c > 0. Possible dependencies of the constant c are explicitly displayed as
subscripts of the symbols ≲ and ≍.

5.3.2 Wasserstein distance
Let p ≥ 1, and take two measures µ, ν ∈ Mp(Rd) such that∥µ∥ =∥ν∥. We denote by Γ(µ, ν)
the set of couplings between µ and ν, i.e., the nonnegative Borel measures γ on Rd ×Rd that
have µ and ν as marginals. The Wasserstein distance of order p between µ and ν is given by
the formula

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(︄ˆ
∥x− y∥p dγ(x, y)

)︄1/p

. (5.3.1)

The function Wp is really a distance on λPp(Rd) for every λ ≥ 0 (the case λ = 0 is trivial), as
shown, for instance, in [San15, Proposition 5.1], and we have Wp(λµ, λν) = λ1/pWp(µ, ν) for
every admissible choice of µ, ν, λ. Moreover, by a simple compactness argument (see [San15,
Theorem 1.7]), the infimum in (5.3.1) is actually a minimum.

The following two nice features of Wp will be used in this work. The first one is a subadditivity
property.

Lemma 5.3.1 (Subadditivity). Let µ1, µ2, ν1, ν2 ∈ Mp(Rd) be such that
⃦⃦⃦
µ1
⃦⃦⃦

=
⃦⃦⃦
ν1
⃦⃦⃦

and
⃦⃦⃦
µ2
⃦⃦⃦

=
⃦⃦⃦
ν2
⃦⃦⃦
. Then we have

W p
p

(︂
µ1 + µ2, ν1 + ν2

)︂
≤ W p

p (µ1, ν1) +W p
p (µ2, ν2) . (5.3.2)

Proof. This result follows from the implication

γi ∈ Γ(µi, νi) , i ∈ {1, 2} =⇒ γ1 + γ2 ∈ Γ
(︂
µ1 + µ2, ν1 + ν2

)︂
and the linearity of

γ ↦→
ˆ

∥x− y∥p dγ(x, y) .

The second one is: on a fixed compact set, the Wasserstein distance of two a.c. measures can
be controlled by the L1-distance of their densities.

Lemma 5.3.2 (Comparison with ∥·∥L1). Let µ = ρL d, ν = σL d be compactly supported
and absolutely continuous measures, with ∥µ∥ =∥ν∥. Let A ⊆ Rd be a bounded set on which
both µ and ν are concentrated. Then:

Wp(µ, ν) ≤ diam(A)∥ρ− σ∥1/p
L1 . (5.3.3)
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Proof. We can and will assume that µ ̸= ν. Set

µ1 = ν1 := min(ρ, σ)L d , µ2 = max(ρ− σ, 0)L d , ν2 = max(σ − ρ, 0)L d ,

and notice that neither µ2 nor ν2 is equal to the zero measure. The hypotheses of Lemma 5.3.1
are satisfied. Hence,

W p
p (µ, ν) ≤ W p

p (µ1, ν1)⏞ ⏟⏟ ⏞
=0

+W p
p (µ2, ν2) .

Therefore, it suffices to find a suitable coupling between µ2 and ν2. We choose

γ := µ2 ⊗ ν2

∥µ2∥
= µ2 ⊗ ν2

∥ν2∥
,

which yields
ˆ

∥x− y∥p dγ(x, y) ≤
ˆ

∥x− y∥p µ
2 ⊗ ν2

∥ν2∥
(x, y) dx dy

≤ diam(A)p

⃦⃦⃦
µ2
⃦⃦⃦⃦⃦⃦
ν2
⃦⃦⃦

∥ν2∥
= diam(A)p

⃦⃦⃦
µ2
⃦⃦⃦
.

We conclude by the inequality
⃦⃦⃦
µ2
⃦⃦⃦

≤∥ρ− σ∥L1 .

5.3.3 Boundary Wasserstein pseudodistance
A. Figalli and N. Gigli introduced in [FG10] a modified Wasserstein distance Wb for measures
defined on a bounded Euclidean domain, giving a special role to the boundary of such a
domain: it can be interpreted as an infinite reservoir, where mass can be deposited and taken
freely. We give here a slightly modified definition of a pseudodistance between measures
defined on the whole Rd.

Let p ≥ 1 and fix an open bounded nonempty set Ω ⊆ Rd. Take two measures µ, ν ∈ M(Rd),
possibly having different total mass. Let ΓbΩ(µ, ν) be the set of the nonnegative Borel
measures γ on the closure Ω×Ω such that γ|Ω×Ω has µ|Ω as first marginal, and γ|Ω×Ω has ν|Ω
as second marginal.

Definition 5.3.3. The boundary Wasserstein pseudodistance of order p for Ω between µ
and ν is given by the formula

WbΩ,p(µ, ν) := inf
γ∈ΓbΩ(µ,ν)

(︄ˆ
∥x− y∥p dγ(x, y)

)︄1/p

. (5.3.4)

It is easy to check that WbΩ,p(µ, ν) is nonnegative and finite for every µ, ν, that the symmetry
property WbΩ,p(µ, ν) = WbΩ,p(ν, µ) holds, and that WbΩ,p(µ, µ) = 0. The triangle inequality
can be proven as in [FG10, Theorem 2.2] (or directly deduced from this theorem). Clearly,
with our definition, WbΩ,p cannot be a true distance, as it does not distinguish measures
that differ out of Ω: for every µ, ν ∈ M(Rd), we have WbΩ,p(µ, ν) = WbΩ,p(µ|Ω, ν|Ω). As
with Wp, we have the identity WbΩ,p(λµ, λν) = λ1/pWΩ,p(µ, ν) for λ ≥ 0. Further notice
that WbΩ,p(µ, ν) ≤ Wp(µ, ν) when µ, ν ∈ Mp(Rd) and ∥µ∥ =∥ν∥, for any Ω.

A crucial property of WbΩ,p is its geometric superadditivity, which will be used in the proof of
the lower bound (L).
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Lemma 5.3.4 (Superadditivity). If {Ωi}i is a (finite or countably infinite) family of open,
bounded, nonempty, and pairwise disjoint subsets of Ω, then

Wbp
Ω,p(µ, ν) ≥

∑︂
i

Wbp
Ωi,p

(µ, ν) , µ, ν ∈ M(Rd) . (5.3.5)

Proof. The proof of this lemma can be found in [AGT22, Section 2.2].

5.3.4 Quantization errors and coefficients

Definition 5.3.5. The nth optimal quantization error of order p is

ep,n(µ) := inf
{︂
Wp(µ, µn) : # supp(µn) ≤ n and ∥µ∥ =∥µn∥

}︂
, µ ∈ Mp(Rd) ,

(5.3.6)
and the optimal quantization coefficient of order p is

qp,d := inf
n∈N1

n1/dep,n(Ud) . (5.3.7)

Definition 5.3.6. The nth optimal empirical quantization error of order p is

ẽp,n(µ) := inf
{︂
Wp(µ, µn) : µn ∈ M(n)(Rd) , ∥µn∥ =∥µ∥

}︂
, µ ∈ Mp(Rd) , (5.3.8)

and the optimal empirical quantization coefficient of order p is

q̃p,d := inf
n∈N1

n1/dẽp,n(Ud) . (5.3.9)

We leave ep,0(µ) and ẽp,0(µ) undefined when µ ̸= 0.

In words, the optimal quantization error measures the minimal distance to atomic measures
supported on at most n points (with the same total mass); the optimal empirical quantization
error measures the minimal distance to (appropriately rescaled) sums of n Dirac deltas.
Remark 5.3.7. For every µ ∈ Mp(Rd), the following inequality holds:

ep,n(µ) ≤ ẽp,n(µ) . (5.3.10)

Both errors are 1
p
-homogeneous and ep,n(0) = ẽp,n(0) = 0 for every n, including n = 0.

Moreover, if T : Rd → Rd is an affine transformation of the form T (x) = v+ λx, with v ∈ Rd

and λ ∈ R then

ep,n(T#µ) = |λ| ep,n(µ) , ẽp,n(T#µ) = |λ| ẽp,n(µ) . (5.3.11)

Remark 5.3.8. From (5.3.10), we deduce also qp,d ≤ q̃p,d. Moreover, the quantization
coefficients are strictly positive, see Theorem 5.4.1.
Remark 5.3.9. Let µ1, µ2 ∈ Mp(Rd) and n1, n2 ∈ N0 be such that[︂

ni = 0 ⇒ µi = 0
]︂
, i ∈ {1, 2} .

Then it follows from Lemma 5.3.1 that

ep
p,n1+n2(µ1 + µ2) ≤ ep

p,n1(µ1) + ep
p,n2(µ2) . (5.3.12)

If, moreover,
⃦⃦⃦
µ1
⃦⃦⃦
n2 =

⃦⃦⃦
µ2
⃦⃦⃦
n1, then

ẽp
p,n1+n2(µ1 + µ2) ≤ ẽp

p,n1(µ1) + ẽp
p,n2(µ2) . (5.3.13)
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The infima in (5.3.6) and (5.3.8) are, in fact, minima. For ep,n(µ), the proof can be found
in [GL00, Theorem 4.12] (which, in turn, follows the lines of [Pol82, Lemma 8]) or in [Qua21,
Appendix A.4]. Let us prove the existence of the minimum in (5.3.8).

Lemma 5.3.10. Let µ ∈ Mp(Rd). For every n ∈ N1 there exists a measure µn ∈ M(n)(Rd)
with ∥µn∥ =∥µ∥ and such that ẽp,n(µ) = Wp(µ, µn).

Proof. If µ = 0, then µn := 0 ∈ M(n)(Rd) is the sought measure. Otherwise, we may
renormalize and assume that ∥µ∥ = 1, we have to prove that the function

ψ : Rnd ∋ (x1, . . . , xn) ↦−→ Wp

⎛⎝µ, 1
n

n∑︂
i=1

δxi

⎞⎠
admits a minimizer. This function is continuous: by the triangle inequality and Lemma 5.3.1,

⃓⃓
ψ(x1, . . . , xn) − ψ(y1, . . . , yn)

⃓⃓p ≤ W p
p

⎛⎝ 1
n

n∑︂
i=1

δxi
,

1
n

n∑︂
i=1

δyi

⎞⎠
≤ 1
n

n∑︂
i=1

W p
p (δxi

, δyi
) = 1

n

n∑︂
i=1

∥xi − yi∥p

for every x1, . . . , xn, y1, . . . , yn ∈ Rd. Again by the triangle inequality,

ψ(x1, . . . , xn) ≥ Wp

⎛⎝δ0,
1
n

n∑︂
i=1

δxi

⎞⎠−Wp(µ, δ0) = 1
n

n∑︂
i=1

∥xi∥p −
ˆ

∥x∥p dµ⏞ ⏟⏟ ⏞
<∞

,

which implies that the sublevels of ψ are bounded. We conclude by applying the extreme value
theorem on a sufficiently large compact set.

Let us show that the sequence
(︂
ẽp,n(µ)

)︂
n

is infinitesimal as n → ∞ for every µ with finite pth

moment. In dimension d = 1, this was established in [XB19, Corollary 5.12]. The analogous
result for ep,n(µ) follows as a corollary, but was also proven, e.g., in [GL00, Lemma 6.1].

Proposition 5.3.11. For every µ ∈ Mp(Rd), we have

lim
n→∞

ẽp,n(µ) = 0 . (5.3.14)

Proof. We may and will assume that µ is a probability measure, not concentrated on a single
point. Set

M :=
ˆ

∥x∥p dµ ,

and fix r > 0 large enough for the ball Br :=
{︁
x : ∥x∥ < r

}︁
to have nonzero µ-measure.

If µ is concentrated on Br, then the conclusion follows from Theorem 5.4.3. Otherwise, let us
define

R :=
(︄

2M
1 − µ(Br)

)︄1/p

and notice that, by Markov’s inequality,

µ
{︁
x : ∥x∥ ≥ R

}︁
≤ M

Rp
= 1 − µ(Br)

2 . (5.3.15)
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For every natural number n > 2
1−µ(Br) , define n1 :=

⌈︂
nµ(Br)

⌉︂
and n2 := n − n1. Since

the µ-measure of the ball BR :=
{︁
x : ∥x∥ < R

}︁
can be estimated with

µ(BR)
(5.3.15)

≥ 1 − 1 − µ(Br)
2 ≥ µ(Br) + 1 − µ(Br)

2 > µ(Br) + 1
n
,

there exists a measure µ1 (dependent on n) such that µ|Br ≤ µ1 ≤ µ|BR
and

⃦⃦⃦
µ1
⃦⃦⃦

= n1/n.
Let µ2 := µ− µ1. By Remark 5.3.9,

ẽp
p,n(µ) ≤ ẽp

p,n1(µ1) + ẽp
p,n2(µ2) .

By Theorem 5.4.3, there exists an infinitesimal function fp,d such that

ẽp
p,n1(µ1) ≤ n1

n
Rpfp,d(n1) ,

and, since µ2 is concentrated on Rd \Br,

ẽp
p,n2(µ2) ≤ W p

p

(︃
µ2,
⃦⃦⃦
µ2
⃦⃦⃦
δ0

)︃
=
ˆ

∥x∥p dµ2 ≤
ˆ
Rd\Br

∥x∥p dµ .

Note that
lim sup

n→∞

n1

n
Rpfp,d(n1) = µ(Br)Rp lim sup

n1→∞
fp,d(n1) = 0 ;

therefore, we infer that
lim sup

n→∞
ẽp

p,n(µ) ≤
ˆ
Rd\Br

∥x∥p dµ ,

and we conclude by arbitrariness of r.

Remark 5.3.12. The minimizers of (5.3.6) and (5.3.8) are not, in general, unique. For example,
let µ be invariant under orthogonal transformations and not concentrated at the origin. If n
is large enough, by Proposition 5.3.11, no minimizer can be concentrated at the origin;
hence, infinitely many orthogonal transformations map any minimizer to other minimizers (via
pushforward).

Let us conclude this section with a lemma that relates the classical quantization error and
the boundary Wasserstein pseudodistance. This result will be used in the proof of the lower
bound (L).

Lemma 5.3.13. Let Ω be an open bounded nonempty subset of Rd. Choose ϵ > 0 and define
the “tightened” open set

Ω−
ϵ :=

{︂
x ∈ Ω : dist(x,Rd \ Ω) > ϵ

}︂
. (5.3.16)

Fix µ ∈ M(Rd). Then, for every n ∈ N0 and µn ∈ M(Rd) with # supp(µn|Ω) ≤ n, we have

WbΩ,p(µ, µn) ≥ ep,n+N(µ|Ω−
ϵ

) , where N :=
⎡⎢⎢⎢

√
d diam(Ω)

ϵ

⎤⎥⎥⎥
d

. (5.3.17)
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Proof. By considering the vertices of a suitable regular grid, it is easy to check that there exist
a set Y ⊆ Rd with #Y ≤ N and a Borel function T : Ω−

ϵ → Y such that
⃦⃦
x− T (x)

⃦⃦
≤ ϵ

for every x ∈ Ω−
ϵ . Given µ, µn as in the statement, let γ be a nonnegative Borel measure

on Ω × Ω such that γ|Ω×Ω has µ|Ω as first marginal, and γ|Ω×Ω has µn|Ω as second marginal.
Let π1 : Rd × Rd → Rd be the projection onto the first d coordinates, and define

γ′ := γ|Ω−
ϵ ×Ω + (π1, T ◦ π1)#(γ|Ω−

ϵ ×∂Ω) .

Let ν be the second marginal of γ′. Notice that supp(ν) ⊆ supp(µn|Ω) ∪ Y , which im-
plies # supp(ν) ≤ n+N . Moreover, since the norm is invariant under pushforward,

∥ν∥ =
⃦⃦⃦
γ|Ω−

ϵ ×Ω

⃦⃦⃦
+
⃦⃦⃦
γ|Ω−

ϵ ×∂Ω

⃦⃦⃦
=
⃦⃦⃦
γ|Ω−

ϵ ×Ω

⃦⃦⃦
=
⃦⃦⃦
µ|Ω−

ϵ

⃦⃦⃦
.

Consequently, ep,n+N(µ|Ω−
ϵ
) ≤ Wp(µ|Ω−

ϵ
, ν). By noticing that γ′ ∈ Γ(µ|Ω−

ϵ
, ν), we deduce

that
ep

p,n+N(µ|Ω−
ϵ

) ≤
ˆ

∥x− y∥p dγ|Ω−
ϵ ×Ω +

ˆ ⃦⃦
x− T (x)

⃦⃦p dγ|Ω−
ϵ ×∂Ω .

Moreover, by definition of T and Ω−
ϵ ,

ˆ ⃦⃦
x− T (x)

⃦⃦p dγ|Ω−
ϵ ×∂Ω ≤

ˆ
ϵp dγ|Ω−

ϵ ×∂Ω ≤
ˆ

∥x− y∥p dγ|Ωϵ×∂Ω ;

therefore,

ep
p,n+N(µ|Ω−

ϵ
) ≤

ˆ
∥x− y∥p dγ|Ω−

ϵ ×Ω ≤
ˆ

∥x− y∥p dγ .

We conclude by arbitrariness of γ.

5.4 Previous results
There is a rich literature studying asymptotics for classical quantization, see, e.g., [GL00,
LP23b]. The following is a fundamental result by P. Zador [Zad64, Zad82].

Theorem 5.4.1 (Zador’s Theorem, [GL00, Theorem 6.2]). Let µ ∈ Pθ(Rd) for some θ > p ≥ 1
and let ρ be the density of the absolutely continuous part of µ. Then:

lim
n→∞

n1/dep,n(µ) = qp,d

(︄ˆ
ρ

d
d+p dL d

)︄ d+p
dp

, (5.4.1)

and the optimal quantization coefficient qp,d is strictly positive.

This theorem establishes the exact asymptotic of ep,n(µ) as n → 0 for every µ which is not
purely singular, under a moment condition (which is not dispensable, see [GL00, Example
6.4]).

Less is known about the rate of convergence of ẽp,n(µ). The case d = 1 has been studied
in [JR16, XB19, GHMR19b, BJ22a, BJ22b, GSM23]. In particular, the following theorem
determines the exact convergence rate under a suitable assumption.
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Theorem 5.4.2 (C. Xu and A. Berger, [XB19, Theorem 5.15]). Let µ ∈ Pp(R). If the (upper)
quantile function

F−1
µ (t) := sup

{︃
x ∈ R : µ

(︂
(−∞, x]

)︂
≤ t

}︃
, t ∈ (0, 1) (5.4.2)

is absolutely continuous, then

lim
n→∞

nẽp,n(µ) = qp,1

⃦⃦⃦⃦
⃦⃦dF−1

µ

dt

⃦⃦⃦⃦
⃦⃦

Lp

. (5.4.3)

For general measures in arbitrary dimension, we have the following theorem, independently
proven in [MM16] (only for p = 2) and [Che18].

Theorem 5.4.3 (Q. Mérigot and J.-M. Mirebeau, [MM16, Proposition 12]; J. Cheval-
lier, [Che18, Theorem 3]). If µ ∈ Pc(Rd) is supported in [−r, r]d for some r > 0, then:

ẽp,n(µ) ≲p,d r ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−1/d if p < d ,

(1 + log n)1/dn−1/d if p = d ,

n−1/p if p > d ,

n ∈ N1 . (5.4.4)

Combined with Theorem 5.4.1 and Remark 5.3.7, this theorem determines the speed of
convergence ẽp,n(µ) ≍p,d,µ n

−1/d in the regime p < d for every µ which is compactly supported
and not purely singular:

qp,d

(︄ˆ
ρ

d
d+p dL d

)︄ d+p
dp

≤ lim inf
n→∞

n1/dẽp,n(µ) ≤ lim sup
n→∞

n1/dẽp,n(µ) ≲p,d r , (5.4.5)

where ρ is as in Theorem 5.4.1 and r is as in Theorem 5.4.3.

We note that also for p > d the upper bound (5.4.4) is tight, in the sense that there exist
compactly supported measures—even absolutely continuous and with smooth densities—for
which

lim sup
n→∞

n1/pẽp,n(µ) > 0 , (5.4.6)

as demonstrated by the following example; see also the 1-dimensional case in [XB19, Re-
mark 5.22].

Example 5.4.4. Assume that µ ∈ Pp(Rd) is concentrated on the union of two distant
sets A,B ⊆ Rd with µ(A) > 0 and µ(B) > 0. Then (5.4.6) holds.

Proof. Le us write r := dist(A,B). Define

Ã :=
{︂
x ∈ Rd : dist(x,A) ≤ dist(x,B)

}︂
, B̃ := Rd \ Ã .

Given n ∈ N1, take any µn ∈ P(n)(Rd) and γ ∈ Γ(µ, µn). We have
ˆ

∥x− y∥p dγ ≥
(︃
r

2

)︃p (︂
γ(A× B̃) + γ(B × Ã)

)︂
≥
(︃
r

2

)︃p ⃓⃓⃓
γ(A× B̃) − γ(B × Ã)

⃓⃓⃓
=
(︃
r

2

)︃p ⃓⃓⃓
µn(B̃) − γ(B × B̃) − γ(B × Ã)

⃓⃓⃓
=
(︃
r

2

)︃p ⃓⃓⃓
µn(B̃) − µ(B)

⃓⃓⃓
.
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5. Asymptotics for Optimal Empirical Quantization of Measures

Let us denote by τ(n) the fractional part of nµ(B). Since nµn(B̃) ∈ N0, we get
ˆ

∥x− y∥p dγ ≥ 1
n

(︃
r

2

)︃p

min
(︂
τ(n), 1 − τ(n)

)︂
,

and, by arbitrariness of γ and µn, we find

n1/pẽp,n(µ) ≥ r

2 min
(︂
τ(n), 1 − τ(n)

)︂1/p
, n ∈ N1 .

To conclude (5.4.6), it suffices to prove that, for infinitely many numbers n ∈ N1, we
have τ(n) ∈ [1/3, 2/3]. Firstly, we note that

τ(n) = 0 ⇒ τ(n+ 1) = µ(B) ∈ (0, 1) ;

hence τ(n) ∈ (0, 1) frequently. Finally, it is easy to check that

τ(n) ∈ (0, 1) \ [1/3, 2/3] ⇒ τ

⎛⎜⎜⎝
⎡⎢⎢⎢⎢

1
3 min

(︂
τ(n), 1 − τ(n)

)︂
⎤⎥⎥⎥⎥n
⎞⎟⎟⎠ ∈ [1/3, 2/3] .

For p = d, it is still unknown whether the logarithmic term in (5.4.4) is necessary (for compactly
supported measures), see [Che18, Remark 1].

In addition to Theorem 5.4.3, we mention the results in [GHMR19b, GHMR19a], applicable
to certain measures in infinite-dimensional Banach spaces, [BS20] for the volume measure on
a compact manifold, and the upper bounds that can be deduced from the theory of random
empirical quantization [Led23] using the trivial inequality

ẽp,n(µ) ≤ E

⎡⎢⎣Wp

⎛⎝µ, 1
n

n∑︂
i=1

δXi

⎞⎠
⎤⎥⎦ ,

valid for every family of random variables {X1, . . . , Xn}. In particular, the following theo-
rems already provide an upper estimate of the form (U) and a nonasymptotic upper bound
like Theorem 5.1.7 in the regime p < d/2.

Theorem 5.4.5 (S. Dereich, M. Scheutzow, and R. Schottstedt, [DSS13, Theorem 2]). Under
the assumptions of Theorem 5.1.1, further suppose that p < d/2, and that ρ is Riemann
integrable or p = 1. If X1, X2, . . . is a sequence of µ-distributed i.i.d. random variables, then

E

⎡⎢⎣W p
p

⎛⎝µ, 1
n

n∑︂
i=1

δXi

⎞⎠
⎤⎥⎦

1/p

≍p,d n
−1/d

(︄ˆ
Rd

ρ
d−p

d dL d

)︄1/p

as n → ∞ . (5.4.7)

Theorem 5.4.6 (S. Dereich, M. Scheutzow, and R. Schottstedt, [DSS13, Theorem 1]). Under
the assumptions of Theorem 5.1.1, further suppose that p < d/2. If X1, X2, . . . is a sequence
of µ-distributed i.i.d. random variables, then

E

⎡⎢⎣W p
p

⎛⎝µ, 1
n

n∑︂
i=1

δXi

⎞⎠
⎤⎥⎦

1/p

≲p,d,θ n
−1/d

(︄ˆ
∥x∥θ dµ

)︄1/θ

, n ∈ N1 . (5.4.8)
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5.5. Nonasymptotic upper bound (Theorem 5.1.7)

In a recent preprint, E. Caglioti, M. Goldman, F. Pieroni, and D. Trevisan [CGPT24] ex-
tended [DSS13, Theorem 2] to p ≤ d (with some modifications when p = d) for µ in a certain
class of radially symmetric and rapidly decaying probability laws, including, e.g., the normal
distribution.
As noted in the introduction, it remains unknown whether any of the hidden constants
appearing in (5.4.7) and in [CGPT24, Theorem 1.6] coincides with qp,d or q̃p,d.
With our Theorem 5.1.1 and Theorem 5.1.7, we obtain several improvements over what was
previously known:

• We establish the speed of convergence ẽp,n(µ) ≍p,d,µ n−1/d for general (not purely
singular) measures in the whole range p ∈ [1, d), under a moment condition, but without
assuming compactness of the support or Riemann integrability of the density.

• We prove a nonasymptotic upper bound also for d/2 ≤ p < d without assuming
compactness of the support.

• We find the same explicit dependence on the measure in the asymptotic upper and lower
bounds (L) and (U) (assuming µa(supp(µs)) = 0, where µa and µs are the absolutely
continuous and singular parts of µ, respectively).

• We establish the asymptotic upper bound with the constant q̃p,d, which is optimal,
since (U) is an equality for µ = Ud.

Furthermore, we determine the existence of the limit in some instances (Section 5.1.2) and
we find the speed of convergence ẽp,n(µ) ≍p,d,µ n

−1/d for every p ≥ 1 for a certain class of
measures (Corollary 5.1.4).

5.5 Nonasymptotic upper bound (Theorem 5.1.7)
The proof of Theorem 5.1.7 is similar to those of its counterpart for compactly supported
measures in [MM16, Che18] (Theorem 5.4.3). Iteratively n times, we extract from the given
measure µ a sufficiently concentrated subprobability with mass equal to 1/n. In [MM16, Che18],
where µ is compactly supported, the subprobabilities are found by splitting the support into a
finite number of pieces (of small, comparable size) and applying a pigeonhole-like principle: the
measure of at least one of these pieces is sufficiently large. Since our measure is not compactly
supported, we use the moment condition to first identify, at each iteration, a compact region
(small relative to the moment of µ) where enough mass is concentrated; we then proceed as
before.

Proof of Theorem 5.1.7. Fix n ∈ N1, let M :=
´

∥x∥θ dµ, and define

rk :=
(︄

2nM
n− k

)︄ 1
θ

, k ∈ {1, 2, . . . , n− 1} .

With this choice, for every k we have

µ
(︂
[−rk, rk]d

)︂
= 1 −

ˆ
Rd\[−rk,rk]d

dµ ≥ 1 − r−θ
k

ˆ
Rd\[−rk,rk]d

∥x∥θ dµ

≥ 1 − n− k

2nM M = 1
2 + k

2n .
(5.5.1)
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5. Asymptotics for Optimal Empirical Quantization of Measures

Using [Che18, Lemma 1], we now argue as in the proof of [Che18, Theorem 2]. By applying this
lemma to the measure ν1 := µ|[−r1,r1]d , we find a measure η1 ≤ ν1 with total mass∥η1∥ = 1/n
and supported on a set with diameter bounded by 4

√
d r1(n∥ν1∥)−1/d. We repeat this procedure

with ν2 := µ|[−r2,r2]d − η1 to find η2, then with ν3 := µ|[−r3,r3]d − η1 − η2, and so on. At the
end, we have a family of measures η1, η2, . . . , ηn−1 with

η1 + η2 + · · · + ηn−1 ≤ µ and ∥η1∥ =∥η2∥ = · · · =∥ηn−1∥ = 1
n
,

and

diam(supp(ηk)) ≲d rk(n∥νk∥)−1/d = rk

(︃
nµ
(︂
[−rk, rk]d

)︂
− (k − 1)

)︃−1/d

(5.5.1)
≤ rk

(︄
n− k

2

)︄−1/d (5.5.2)

for every k ∈ {1, 2, . . . , n− 1}.

Let us pick a point xk from each supp(ηk). After defining ηn := µ−η1 −· · · ηn−1, Lemma 5.3.1
gives

ẽp
p,n(µ) ≤ W p

p (η1 + · · · + ηn−1 + ηn, n
−1
(︂
δx1 + · · · + δxn−1 + δ0)

)︂
≤ W p

p (ηn, n
−1δ0) +

n−1∑︂
k=1

W p
p (ηk, n

−1δxk
)

≤
ˆ

∥x∥p dηn +
n−1∑︂
k=1

(︂
diam(supp(ηk))

)︂p

n
.

(5.5.3)

Hölder’s inequality and the fact that θ > p∗ yield
ˆ

∥x∥p dηn ≤ Mp/θ∥ηn∥1− p
θ ≤ Mp/θn

p
θ

−1 ≤ Mp/θn−p/d . (5.5.4)

Moreover,

n−1∑︂
k=1

(︂
diam(supp(ηk))

)︂p

n

(5.5.2)
≲p,d,θ M

p/θn
p
θ

−1
n−1∑︂
k=1

(n− k)− p
θ

− p
d ≲p,d,θ M

p/θn−p/d , (5.5.5)

where, in the last inequality, we used that p
θ
+ p

d
< 1. We conclude by combining (5.5.3), (5.5.4),

and (5.5.5).

5.6 Uniform measure on a cube
In this section, we establish the limiting behavior of the optimal empirical quantization error
for the uniform measure Ud on [0, 1]d.

Proposition 5.6.1. For every p ≥ 1, we have the identity

lim
n→∞

n1/dẽp,n(Ud) = inf
n∈N1

n1/dẽp,n(Ud) =: q̃p,d . (5.6.1)
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5.6. Uniform measure on a cube

0 1

Figure 5.1: The points on which the optimal measure µn for U1 is concentrated are evenly
separated on [0, 1].

Note that this proposition applies also when p ≥ d.

Proposition 5.6.1 is easy to prove in dimension d = 1, see Remark 5.6.3 below. Moreover,
exploiting the self-similarity of the cube, we can build a simple “scale-and-copy” argument
(Lemma 5.6.4, inspired by [GL00, Step 1 in Theorem 6.2], see also Figure 5.2) to write

q̃p,d = inf
m∈N1

lim sup
k→∞

km1/dẽp,kdm(Ud) .

In order to prove that

lim sup
n→∞

n1/dẽp,n(Ud) ≤ inf
m∈N1

lim sup
k→∞

km1/dẽp,kdm(Ud) ,

we estimate the increase rate of the function n ↦→ ẽp,n(Ud): given n and m, we want to know
how far n1/dẽp,n(Ud) is from the sequence k ↦→ km1/dẽp,kdm(Ud). The bound on the increase
rate is proven in Lemma 5.6.5 by constructing a suitable competitor for the minimization
problem that defines ẽp,n(Ud). This competitor is built by combining two optimal empirical
quantizers: one for Ud and one for the uniform measure Ud−1 on the (d − 1)-dimensional
(!) cube. In the end, this procedure shifts the problem to estimating the optimal empirical
quantization error for the uniform measure on a lower dimensional cube. In fact, (5.6.1) is
proven by induction on the dimension.
Remark 5.6.2. While it is obvious that n ↦→ ep,n(µ) is nonincreasing, the same cannot in
general be said for the optimal empirical quantization error. For example, if µ = δx+δy

2 for two
distinct points x, y ∈ Rd, then ẽp,2(µ) = 0 but ẽp,3(µ) > 0.
Remark 5.6.3 (1-dimensional case). The values of ep,n(U1) and ẽp,n(U1) are easy to compute
and coincide. For both the problems, the optimal measure µn ∈ P(n)(Rd) and the optimal
transport plan γ ∈ Γ(U1, µn) are simply:

µn := 1
n

n∑︂
i=1

δ 2i−1
2n

, γ :=
n∑︂

i=1
L 1|( i−1

n
, i

n) ⊗ δ 2i−1
2n

∈ Γ(U1, µn) ,

see [GL00, Theorem 4.16], [XB19, Theorem 5.5], and Figure 5.1. Hence,

ep
p,n(U1) = ẽp

p,n(U1) =
n∑︂

i=1

ˆ i
n

i−1
n

⃓⃓⃓⃓
⃓x− 2i− 1

n

⃓⃓⃓⃓
⃓
p

dx = 1
(p+ 1)(2n)p

.

Proof of Proposition 5.6.1. For simplicity, we write ẽp,n,d in place of ẽp,n(Ud). The proof is
by induction on the dimension d. Base step: By Remark 5.6.3, nẽp,n,1 is constantly equal
to 1

2 p√p+1 .

For the inductive step, we make use of two lemmas.
Lemma 5.6.4. For every m, k ∈ N1, we have the inequality

ẽp,kdm,d ≤ 1
k
ẽp,m,d . (5.6.2)
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5. Asymptotics for Optimal Empirical Quantization of Measures

Figure 5.2: Idea for Lemma 5.6.4. Given the measure µn, concentrated on the black dots in
the left square, the competitor µ′

kdn is built by making kd rescaled copies of µn.

Proof. Let µm ∈ P(m)(Rd) and γ ∈ Γ(Ud, µm). For every i ∈ {0, 1, . . . , k − 1}d, we define

Ti(x) := 1
k

(i+ x) , x ∈ [0, 1]d .

Notice that Ti maps [0, 1]d to i/k+[0, 1/k]d. The idea is to use these transformations to make
smaller copies of µn, which, together, constitute an appropriate competitor for the infimum
that defines ep,kdm,d. Precisely, we set

µ′
kdm := 1

kd

∑︂
i

(Ti)#µm ∈ P(kdm)(Rd) ,

γ′ := 1
kd

∑︂
i

(Ti, Ti)#γ ∈ Γ(Ud, µ
′
kdm) .

With these choices, we obtain

ẽp
p,kdm,d ≤

ˆ
∥x− y∥p dγ′ = 1

kd

∑︂
i

ˆ ⃓⃓
Ti(x) − Ti(y)

⃓⃓p dγ

= 1
kp+d

∑︂
i

ˆ
∥x− y∥p dγ = 1

kp

ˆ
∥x− y∥p dγ .

We conclude by arbitrariness of γ and µm.

Lemma 5.6.5. There exists a constant cp > 0 such that, for every n, l ∈ N1, we have

ẽp
p,n+l,d+1 ≤ n

n+ l
ẽp

p,n,d+1 + cp
l

n+ l
ẽp

p,l,d + cp

(︄
l

n+ l

)︄p+1

. (5.6.3)

Proof. Let µn, νl be probability measures of the form

µn = 1
n

n∑︂
i=1

δ(xi,ti) ∈ P(n)(Rd+1) , νl = 1
l

n+l∑︂
i=n+1

δxi
∈ P(l)(Rd),

for some x1, . . . , xn, xn+1, . . . , xn+l ∈ Rd and t1, . . . , tn ∈ R. Pick γ ∈ Γ(Ud+1, µn) and η ∈
Γ(Ud, νl). Consider the linear 1-Lipschitz function T : Rd+1 → Rd+1 given by the formula

T (x, t) :=
(︄
x,

n

n+ l
t

)︄
, x ∈ Rd , t ∈ R ,
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1

1

4
7

3
7

Figure 5.3: Idea for Lemma 5.6.5 with d = 1, n = 4, l = 3. From a transport plan for Ud+1
with n points and one for Ud with l points, we construct a new plan for Ud+1 with n+ l points
by “shrinking” the first one and “expanding” the second one.

and define γ′ ∈ P(Rd+1 × Rd+1) via
ˆ
φ dγ′ := n

n+ l

ˆ
φ
(︂
T (x, t), T (x′, t′)

)︂
dγ +

ˆ 1

n
n+l

ˆ
φ(x, t, x′, 1) dη(x, x′) dt ,

for every continuous and bounded test function φ : Rd+1 × Rd+1 → R. It is not difficult to
check that the first marginal of γ′ is Ud+1. Indeed, given a test function ψ : Rd+1 → R and
denoting by π1 : Rd+1 ×Rd+1 → Rd+1 the projection onto the first d+ 1 coordinates, we haveˆ

ψ dπ1
#γ

′ = n

n+ l

ˆ
ψ
(︂
T (x, t)

)︂
dπ1

#γ +
ˆ 1

n
n+l

ˆ
ψ(x, t) dπ1

#η(x) dt

= n

n+ l

ˆ 1

0

ˆ
ψ

(︄
x,

nt

n+ l

)︄
dUd(x) dt+

ˆ 1

n
n+l

ˆ
ψ(x, t) dUd(x) dt

=
ˆ
ψ dUd+1 .

The second marginal is

π2
#γ

′ = 1
n+ l

n∑︂
i=1

δT (xi,ti) + 1
n+ l

n+l∑︂
i=n+1

δ(xi,1) ∈ P(n+l)(Rd) ,

because ˆ
ψ dπ2

#γ
′ = n

n+ l

ˆ
ψ
(︂
T (x, t)

)︂
dπ2

#γ +
ˆ 1

n
n+l

ˆ
ψ(x′, 1) dπ2

#η(x′) dt

= ✚n

n+ l

1
✚n

n∑︂
i=1

ψ
(︂
T (xi, ti)

)︂
+ ▷▷l

n+ l

1
▷▷l

n+l∑︂
i=n+1

ψ(xi, 1) .

We infer the inequality

ẽp
p,n+l,d+1 ≤ n

n+ l

ˆ ⃦⃦⃦
T (x, t) − T (x′, t′)

⃦⃦⃦p
dγ

+
ˆ 1

n
n+l

ˆ ⃦⃦⃦
(x, t) − (x′, 1)

⃦⃦⃦p
dη(x, x′) dt .

Now we make the following two observations:
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1. since T is 1-Lipschitz,
⃦⃦
T (x, t) − T (x′, t′)

⃦⃦
≤
⃦⃦
(x, t) − (x′, t′)

⃦⃦
,

2. there exists a constant cp such that⃦⃦⃦
(x, t) − (x′, t′)

⃦⃦⃦p
≤ cp

(︃
x− x′

⃦⃦⃦p
+
⃓⃓⃓
t− t′

⃓⃓⃓p)︃

for every x, x′ ∈ Rd and t, t′ ∈ R. Precisely, cp = max
(︂
1, 2 p

2 −1
)︂
.

Therefore, we obtain

ẽp
p,n+l,d+1 ≤ n

n+ l

ˆ ⃦⃦⃦
(x, t) − (x′, t′)

⃦⃦⃦p
dγ + cp

l

n+ l

ˆ ⃦⃦⃦
x− x′

⃦⃦⃦p
dη

+ cp

ˆ 1

n
n+l

(1 − t)p dt .

By arbitrariness of µn, νl, γ, η,

ẽp
p,n+l,d+1 ≤ n

n+ l
ẽp

p,n,d+1 + cp
l

n+ l
ẽp

p,l,d + cp

ˆ 1

n
n+l

(1 − t)p dt ,

and the conclusion follows.

Assume that (5.6.1) is true for a certain dimension d, and fix m ∈ N1. For every n ≥ 2d+1m,
set

kn :=

⎢⎢⎢⎣(︃ n
m

)︃ 1
d+1

⎥⎥⎥⎦− 1 , ln := n− kd+1
n m.

Observe that kn, ln ≥ 1 for every n (they are integer and strictly positive), and that ln ≍d,m

n
d

d+1 . Indeed, on the one hand,

n

m
≤

⎛⎜⎝
⎢⎢⎢⎣(︃ n
m

)︃ 1
d+1

⎥⎥⎥⎦+ 1

⎞⎟⎠
d+1

= (kn + 2)d+1 ,

from which we get

ln ≤
(︂
(kn + 2)d+1 − kd+1

n

)︂
m ≲d k

d
nm ≤ n

d
d+1m

1
d+1 .

On the other hand,

ln ≥
(︂
(kn + 1)d+1 − kd+1

n

)︂
m ≳d (kn + 2)dm ≥ n

d
d+1m

1
d+1 .

Lemma 5.6.5 gives the estimate

ẽp
p,n,d+1 − ẽp

p,kd+1
n m,d+1 ≲p

ln
n
ẽp

p,ln,d +
(︄
ln
n

)︄p+1

,

and, by inductive hypothesis, ẽp
p,ln,d ≲p,d l

−p/d
n . Thus,

ẽp
p,n,d+1 − ẽp

p,kd+1
n m,d+1 ≲p,d

l
1− p

d
n

n
+
(︄
ln
n

)︄p+1

.
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The combination of the latter with ln ≍d,m n
d

d+1 gives

lim sup
n→∞

n
p

d+1 ẽp
p,n,d+1 ≤ lim sup

n→∞
n

p
d+1 ẽp

p,kd+1
n m,d+1 .

Now we use Lemma 5.6.4 to write

lim sup
n→∞

n
1

d+1 ẽp,n,d+1 ≤ ẽp,m,d+1 lim sup
n→∞

n
1

d+1

kn

= m
1

d+1 ẽp,m,d+1 .

We conclude the inductive step (and therefore the proof) by arbitrariness of m.

5.7 Asymptotic behavior for p ∈ [1,∞) (Corollary 5.1.4)
This section is devoted to Corollary 5.1.4. Note that this result will not be used later in this
work. The following simple observation is at the core of the proof.
Remark 5.7.1. The property

lim sup
n→∞

n1/dẽp,n(µ) < ∞ (5.7.1)

is invariant under pushforward via Lipschitz maps. In particular, if T : [0, 1]d → Rd is Lipschitz,
then (5.7.1) holds with µ := T#Ud for every p ≥ 1.

Proof of Corollary 5.1.4. Step 1 (Ω = Ω̃). Assume at first that Ω = Ω̃, i.e., Ω itself is convex
and with C1,1 boundary. The idea is to use the regularity theory for optimal transport to
find a Lipschitz map T such that µ = T#Ud in order to apply Remark 5.7.1. Precisely, we
use [CLW21, Theorem 1.1] (see also [CLW19, Theorem 1.1 (i)]): given a measure µ0 = ρ0L d

concentrated on an open set Ω0, with the same assumptions as ρ and Ω, there exists a
Lipschitz transport map6 T1 pushing µ0 to µ. If we manage to find one such µ0 of the
form µ0 = (T0)#Ud for some Lipschitz map T0, then we can set T := T1 ◦ T0 and conclude.
The obstruction to simply taking µ0 = Ud is that the boundary of [0, 1]d is not of class C1,1.
Let us also note that it makes no difference if we find µ0 as Lipschitz pushforward of the
uniform measure on another d-dimensional cube, such as the unit ball w.r.t. 1-norm ∥·∥1.

In light of the previous discussion, proving the following lemma suffices to complete this Step.
Lemma 5.7.2. The map

T0(x) :=
⎛⎝1 −∥x∥1 + ∥x∥2

1
∥x∥2

⎞⎠x , ∥x∥1 < 1 ,

is Lipschitz continuous. Moreover, the measure µ0 := (T0)#U
(︂{︂

∥·∥1 < 1
}︂)︂

is concentrated
on the Euclidean ball Ω0 :=

{︂
∥·∥2 < 1

}︂
and, therein, it has Lipschitz continuous and uniformly

positive density.

Proof. We omit the simple proofs that T0 is Lipschitz and that µ0 is concentrated on Ω0, and
focus on the computation of the density of µ0. Let φ : Ω0 → R be a Borel measurable and
bounded test function. We have

ˆ
φ dµ0 = 1

cd

ˆ
Sd−1

ˆ ∥v∥−1
1

0
φ
(︂
T0(rv)

)︂
rd−1 dr dH d−1(v) ,

6In fact, the map T1 is of class C1 with Hölder Jacobian. Since Ω0 is convex, T1 is Lipschitz.
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where cd :=
⃓⃓⃓⃓{︂

∥·∥1 < 1
}︂⃓⃓⃓⃓

= 2d

d! , the set Sd−1 is the (d − 1)-dimensional sphere (w.r.t. the 2-
norm), and H d−1 is the (d− 1)-dimensional Hausdorff measure on it. Let us write

T0(rv) = r
(︂
1 − r∥v∥1 + r∥v∥2

1

)︂
⏞ ⏟⏟ ⏞

=:ξv(r)

v , r ∈
(︂
0,∥v∥−1

1

)︂
, v ∈ Sd−1 ,

and notice that
(∂rξv)(r) = 1 + 2r∥v∥1

(︂
∥v∥1 − 1

)︂
≥ 1 ,

where, in the last inequality, we used that ∥·∥2 ≤∥·∥1. In particular, ξv is invertible. Thus, by
changing variables, we find

ˆ
φ dµ0 = 1

cd

ˆ
Sd−1

ˆ 1

0
φ(r̃v) ξ−1

v (r̃)d−1

(∂rξv)
(︂
ξ−1

v (r̃)
)︂ dr̃ dH d−1(v) ,

and, therefore, the density of µ0 on Ω0 is

ρ0(x) :=
ξ−1

vx

(︂
∥x∥2

)︂d−1

cd∥x∥d−1
2 (∂rξvx)

(︃
ξ−1

vx

(︂
∥x∥2

)︂)︃ , where vx := x

∥x∥2
, ∥x∥2 < 1 .

If we set

α(t) :=

⎧⎪⎨⎪⎩
1
cd

if t = 0 ,
1

cd

√
1+4t

(︂√
1+4t−1

2t

)︂d−1
if t > 0 ,

β(x) :=∥x∥1

(︄
∥x∥1
∥x∥2

− 1
)︄
,

tedious but simple computations (passing through the explicit formula for ξ−1
v ) reveal

that ρ0|Ω0 = α ◦ β. When ∥x∥2 < 1, the values of β(x) range between 0 and d −
√
d.

On this interval, the function α is Lipschitz continuous and positive. Since β|Ω0 is Lipschitz
too, the proof is complete.

Step 2 (Ω ̸= Ω̃). Let us now generalize to the case where, possibly, Ω ̸= Ω̃, but there
exists M : Ω̃ → Ω as in the assumptions. Consider the probability measure µ̃ defined by

ρ̃ :=

⎧⎨⎩(ρ ◦M)|det ∇M | on Ω̃ ,

0 on Rd \ Ω̃ ,
µ̃ := ρ̃L d .

Thanks to the assumptions on M and ρ, to this new measure we can apply Step 1; thus (5.7.1)
holds for µ̃. Moreover, by the change of variables formula, µ = M#µ̃, and the map M
is Lipschitz because its Jacobian is bounded and Ω̃ is convex. Hence, we conclude by
Remark 5.7.1.

5.8 Main theorem (Theorem 5.1.1)
This section is subdivided into four parts: we first establish two preliminary lemmas, then we
prove Theorem 5.1.1 for singular measures, the upper bound (U) (in general), and eventually
the lower bound (L).
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5.8.1 Preliminary lemmas

Lemma 5.8.1. Let (bk)k∈N1 be a sequence of nonnegative numbers, infinitesimal as k → ∞.
Then there exists a sequence (kn)n∈N1 ⊆ N1 such that kn → ∞ as n → ∞ and

lim
n→∞

n−1/d2kn = lim
n→∞

n1/d2−knbkn = 0 . (5.8.1)

Proof. The existence of such a sequence is established in the proof of [BB13, Theorem 5] by
F. Barthe and C. Bordenave.

Lemma 5.8.2. Let C ⊆ Rd be a closed set and let ρ ∈ L1
≥0(Rd). For every k ∈ N1 and s ≥ 0

define the open sets
Ωi := (0, 2−k)d + 2−ki , i ∈ Zd , (5.8.2)

and

Ω(k) := int

⎛⎜⎝ ⋃︂
i∈Zd : Ωi∩C=∅

Ωi

⎞⎟⎠ , (5.8.3)

(see Figure 5.4), the set of indices

Ik,s :=
{︂
i ∈ Zd : ∥x− y∥ > s ∀x ∈ Ωi ∀y ∈ Rd \ Ω(k)

}︂
, (5.8.4)

and the function

ρk,s :=
∑︂

i∈Ik,s

⎛⎝ 
Ωi

ρ dL d

⎞⎠1Ωi
. (5.8.5)

Then ρk,s → ρ|Rd\C almost everywhere and in L1(Rd) as k → ∞ and s → 0.

Proof. Almost every point x ∈ Rd \ C (for example, the points out of C for which all
coordinates are irrational) is contained in some Ωi with i ∈ Ik,s as soon as its distance from C
is larger than

√
d21−k + s. Therefore, by [Coh13, Theorem 6.2.3], we have ρk,s → ρ|Rd\C

almost everywhere and, by Scheffé’s Lemma [Wil91, Theorem 5.10], in L1(Rd).

Remark 5.8.3. With the notation of Lemma 5.8.2, note the following:⋃︂
i∈Ik,s

Ωi ⊆
⋃︂

i∈Ik,0

Ωi ⊆ Ω(k) ⊆
⋃︂

i∈Ik,0

Ωi ⊆ Rd \ C , k ∈ N1 , s ≥ 0 .

5.8.2 Singular measures
The proof of Theorem 5.1.1 for singular measures is inspired by [DSS13, Proposition 3]. We
will combine the following three observations:

• we can split µ into measures µi supported on small cubes (plus a remainder that we
control with Theorem 5.1.7);

• the error ẽp
p,n(µ) is subadditive in the sense of Remark 5.3.9 and, by Theorem 5.4.3, for

every µi ∈ Pc(Rd), we can bound n1/dẽp,n(µi) in terms of the diameter of the support
of µi;

• since µ is singular, it is concentrated on open sets with arbitrarily small Lebesgue
measure.
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Proof of Theorem 5.1.1 for µ ⊥ L d. Choose any open set Ω ⊆ Rd such that µ(Ω) = 1,
and write it as a countable disjoint union of (half-open) cubes {Qi}i∈N1

, see, e.g., [WZ15,
Theorem 1.11]. Note, in particular, that diam(Qi) ≲d |Qi|1/d.

Pick two numbers n, imax ∈ N1 and define

ni := ⌊nµ(Qi)⌋ , µi :=

⎧⎨⎩
ni

nµ(Qi)µ|Qi
if ni ≥ 1 ,

0 otherwise,
i ∈ {1, . . . , imax} .

Notice that µi ≤ µ for every i and, since the cubes are all disjoint, also the sum ∑︁imax
i=1 µ

i is
not larger than µ. Define

n0 := n−
imax∑︂
i=1

ni , µ0 := µ−
imax∑︂
i=1

µi ,

and notice that
⃦⃦⃦
µ0
⃦⃦⃦

= n0/n.

Owing to Remark 5.3.9, we have

ẽp
p,n(µ) ≤

imax∑︂
i=0

ẽp
p,ni

(µi) .

Theorem 5.1.7 (or Theorem 5.4.3 for i ≥ 1) yields

ẽp
p,n(µ) ≲p,d,θ n

p
θ

−1n
1− p

d
− p

θ
0

(︄ˆ
∥x∥θ dµ0

)︄ p
θ

+
imax∑︂
i=1

n−1n
1− p

d
i diam(Qi)p

≲p,d,θ,µ n
p
θ

−1n
1− p

d
− p

θ
0 + n−1

imax∑︂
i=1

n
1− p

d
i |Qi|p/d ,

(5.8.6)

where θ > p∗ is such that µ ∈ Pθ(Rd). Note that a := 1 − p
d

− p
θ
> 0. Since p < d, we can

apply Hölder’s inequality to the last sum and obtain

imax∑︂
i=1

n
1− p

d
i |Qi|p/d ≤

⎛⎝imax∑︂
i=1

ni

⎞⎠1− p
d
⎛⎝imax∑︂

i=1
|Qi|

⎞⎠p/d

≤ n1− p
d |Ω|p/d . (5.8.7)

Furthermore, we notice that

n0 ≤ n−
imax∑︂
i=1

(︂
nµ(Qi) − 1

)︂
= n

⎛⎝1 −
imax∑︂
i=1

µ(Qi)
⎞⎠+ imax . (5.8.8)

We now combine (5.8.6), (5.8.7), and (5.8.8) to infer

np/dẽp
p,n(µ) ≲p,d,θ,µ

⎛⎝1 −
imax∑︂
i=1

µ(Qi) + imax

n

⎞⎠a

+|Ω|p/d ;

hence,

lim sup
n→∞

np/dẽp
p,n(µ) ≲p,d,θ,µ

⎛⎝1 −
imax∑︂
i=1

µ(Qi)
⎞⎠a

+|Ω|p/d . (5.8.9)

Since µ is concentrated on ⋃︁i∈N1 Qi, the first term at the right-hand side of (5.8.9) tends
to 0 as imax → ∞. Moreover, when µ is singular, |Ω| can be made arbitrarily small.
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5.8.3 Upper bound
To prove the upper bound, we first assume that the measure µ is compactly supported and
absolutely continuous. We split the domain into cubes {Ωi}i with edge length 2−k and consider
an approximating density ρk that is constant on each of these cubes. We then construct a
further approximation ρ(n)

k having mass on each cube equal to an integer multiple of 1/n, i.e.,
of the form

ρ
(n)
k :=

∑︂
i

ni

n

1Ωi

|Ωi|

with ni ≈ nµ(Ωi). Using Remark 5.3.7, Remark 5.3.9, and Proposition 5.6.1, it is possible to
show that

lim sup
k→∞

lim sup
n→∞

n1/dẽp,n

(︂
ρ

(n)
k

)︂
≤ q̃p,d

(︄ˆ
Rd

ρ
d−p

d dL d

)︄1/p

.

Indeed, heuristically:

ẽp
p,n

(︂
ρ

(n)
k

)︂
≤
∑︂

i

ni

n
|Ωi|p/d ẽp

p,ni
(Ud) (Rmk. 5.3.7, Rmk. 5.3.9)

≈ q̃p
p,d

∑︂
i

ni

n
|Ωi|p/d n

−p/d
i (Prop. 5.6.1)

≈ n−p/dq̃p
p,d

∑︂
i

µ(Ωi)
d−p

d |Ωi|p/d (ni ≈ nµ(Ωi))

≈ n−p/dq̃p
p,d

ˆ
Rd

ρ
d−p

d dL d .

Our argument is similar to the proof of Zador’s Theorem (see [GL00, Steps 2 & 3 in
Theorem 6.2]), but we have an additional obstacle: for fixed k, the approximating error
explodes as n → ∞. Even worse: the two errors made by replacing µ with ρk, and ρk

with ρ(n)
k compete with each other, in the sense that (up to constant), each one is almost

equal to a negative power of the other. However, in the upper bound for the error W p
p (µ, ρk),

thanks to Lemma 5.3.2, there is also the additional term ∥ρ− ρk∥L1 . This term is infinitesimal
as k → ∞ (here we use that µ is absolutely continuous and Lemma 5.8.2). Taking advantage
of Lemma 5.8.1, we can let k tend to infinity with n in such a way that both approximating
errors become negligible. This solution is partly inspired by the proof of [BB13, Theorem 5].

To deal with a general measure, we split it into its singular part, a compactly supported and
absolutely continuous part, and a remainder. To the latter, we apply Theorem 5.1.7.

Proof of the upper bound in Theorem 5.1.1. Step 1 (µ ∈ Pc(Rd) and µ ≪ L d). We start by
proving the upper bound (U) under the additional assumption that µ is absolutely continuous,
i.e., µ = ρL d, and compactly supported. It is easy to check that, if T : Rd → Rd is a
homothety, then (U) for µ and for T#µ are equivalent. Thus, without loss of generality, we
assume that µ is concentrated on (0, 1)d.

Fix k, n ∈ N1. Let us define {Ωi}i∈Zd , Ik = Ik,0, and ρk = ρk,0 as in Lemma 5.8.2
with C := Rd \ (−1, 2)d and s = 0. Notice that ∥ρk∥L1 = ∥µ∥ = 1. For every i ∈ Ik, we
define ni = ni(n, k) := ⌊nµ(Ωi)⌋, and we let n0 := n−∑︁

i∈Ik
ni. We then set

ρ
(n)
k :=

∑︂
i∈Ik

ni

n
2kd1Ωi

≤ ρk .
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By using the triangle inequality, it is immediate to check that

ẽp,n(µ) ≤ ẽp,n(ρk) +Wp(µ, ρk) . (5.8.10)

Remark 5.3.9 yields

ẽp
p,n(ρk) ≤ ẽp

p,n0

(︂
ρk − ρ

(n)
k

)︂
+
∑︂
i∈Ik

ẽp
p,ni

(︃
ni

n
U(Ωi)

)︃
, (5.8.11)

and can use Remark 5.3.7 to write

ẽp
p,ni

(︃
ni

n
U(Ωi)

)︃
= ni

n
ẽp

p,ni

(︂
U(Ωi)

)︂
= ni

n2kp
ẽp

p,ni
(Ud) , i ∈ Ik s.t. ni ≥ 1 . (5.8.12)

The 1
p
-homogeneity of ẽp,n0 , combined with Theorem 5.4.3 (recall that, currently, all measures

are concentrated on (0, 1)d) gives

ẽp
p,n0

(︂
ρk − ρ

(n)
k

)︂
≲p,d

⃦⃦⃦⃦
ρk − ρ

(n)
k

⃦⃦⃦⃦
L1
n

−p/d
0 = n

d−p
d

0
n

.

Thus, since

n0 = n−
∑︂
i∈Ik

⌊nµ(Ωi)⌋ ≤ n−
∑︂
i∈Ik

nµ(Ωi) + #Ik = #Ik ≲d 2kd ,

we have
ẽp

p,n0

(︂
ρk − ρ

(n)
k

)︂
≲p,d

2k(d−p)

n
(5.8.13)

(here we use p < d). Moreover, by applying Lemma 5.3.1 and Lemma 5.3.2, we get

W p
p (µ, ρk) ≤

∑︂
i∈Ik

W p
p

(︂
µ|Ωi

, µ(Ωi)U(Ωi)
)︂

≤
∑︂
i∈Ik

diam(Ωi)p
⃦⃦⃦
(ρ− ρk)|Ωi

⃦⃦⃦
L1

≲p,d 2−kp∥ρ− ρk∥L1 .
(5.8.14)

By Lemma 5.8.1 and since ρk
L1
→ ρ as k → ∞ (Lemma 5.8.2), we can choose k = kn as a

function of n in such a way that

lim
n→∞

n−1/d2kn = lim
n→∞

n1/d2−kn∥ρ− ρkn∥1/p
L1 = 0 , (5.8.15)

By (5.8.10), (5.8.11), (5.8.12), (5.8.13), (5.8.14), and (5.8.15) we thus have

lim sup
n→∞

np/dẽp
p,n(µ) ≤ lim sup

n→∞
2−knp

∑︂
i∈Ikn : ni≥1

(︃
ni

n

)︃ d−p
d

n
p/d
i ẽp

p,ni
(Ud)

≤ lim sup
n→∞

ˆ
ρ

d−p
d

kn
h(⌊n2−kndρkn⌋) dL d ,

where

h(m) :=

⎧⎨⎩mp/dẽp
p,m(Ud) if m ∈ N1 ,

0 if m = 0 .
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Note that h is nonnegative, bounded, and converges to q̃p
p,d as m → ∞ by Proposition 5.6.1.

In particular, since n2−knd → ∞ and ρkn → ρ a.e., we have

lim
n→∞

h(⌊n2−kndρkn⌋) dL d = q̃p
p,d , a.e. on {ρ > 0} . (5.8.16)

Since d−p
d

∈ (0, 1), the function t ↦→ t
d−p

d is subadditive. Therefore,
ˆ
ρ

d−p
d

kn
h(⌊n2−kndρkn⌋) dL d ≤

ˆ
ρ

d−p
d h(⌊n2−kndρkn⌋) dL d

+ sup
m∈N0

h(m)
ˆ

|ρ− ρkn |
d−p

d dL d .

Using that ρ and ρkn are supported on [0, 1]d, Jensen’s inequality givesˆ
|ρ− ρkn |

d−p
d dL d ≤∥ρ− ρkn∥

d−p
d

L1 → 0 , as n → ∞ .

In the end, we obtain

lim sup
n→∞

np/dẽp
p,n(µ) ≤ lim sup

n→∞

ˆ
ρ

d−p
d h(⌊n2−kndρkn⌋) dL d = q̃p

p,d

ˆ
ρ

d−p
d dL d ,

where the last identity follows from (5.8.16) and the dominated convergence theorem.

Step 2 (conclusion). Let µ ∈ Pθ(Rd) and fix r > 0. We let:

• µ1 be the absolutely continuous part of µ|[−r,r]d ,

• µ2 be the singular part of µ|[−r,r]d ,

• µ3 := µ|Rd\[−r,r]d .

Furthermore, for n ∈ N1, we define

ni :=
⌊︃
n
⃦⃦⃦
µi
⃦⃦⃦⌋︃

, µi,n :=

⎧⎪⎨⎪⎩
ni

n∥µi∥µ
i if ni ≥ 1 ,

0 otherwise,
i ∈ {1, 2, 3} ,

as well as n0 := n− n1 − n2 − n3 and µ0,n := µ− µ1,n − µ2,n − µ3,n. Note that n0 ≤ 3.

By Remark 5.3.9, we can make the estimate

lim sup
n→∞

np/dẽp
p,n(µ) ≤

3∑︂
i=0

lim sup
n→∞

np/dẽp
p,ni

(µi,n) . (5.8.17)

We shall bound the four terms in the sum separately.

When n0 ≥ 1, Remark 5.3.7 and Theorem 5.1.7 yield

np/dẽp
p,n0(µ0,n) =

(︃
n0

n

)︃1− p
d

n
p/d
0 ẽp

p,n0

(︄
µ0,n

∥µ0,n∥

)︄
(5.1.11)
≲p,d,θ

(︃
n0

n

)︃1− p
d

(︄ˆ
∥x∥θ d µ0,n

∥µ0,n∥

)︄p/θ

≤
(︃
n0

n

)︃1− p
d

− p
θ

(︄ˆ
∥x∥θ dµ

)︄p/θ

.
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The exponent a := 1 − p
d

− p
θ

is positive; hence (the case n0 = 0 is trivial),

np/dẽp
p,n0(µ0,n) ≲p,d,θ,µ n

−a ,

which means that the 0th term of the sum in (5.8.17) is zero.

When n3 ≥ 1, similar computations give

np/dẽp
p,n3(µ3,n) ≲p,d,θ

(︃
n3

n

)︃a
(︄ˆ

∥x∥θ dµ3
)︄p/θ

.

Using that n3 ≤ n
⃦⃦⃦
µ3
⃦⃦⃦

≤ n∥µ∥, we thus obtain (trivially if n3 = 0)

np/dẽp
p,n3(µ3,n) ≲p,d,θ,µ

(︄ˆ
∥x∥θ dµ|Rd\[−r,r]d

)︄p/θ

.

If
⃦⃦⃦
µ2
⃦⃦⃦
> 0, then n2 → ∞ as n → ∞; therefore Theorem 5.1.1 for singular measures yields

lim sup
n→∞

np/dẽp
p,n2(µ2,n) = lim sup

n→∞

(︃
n2

n

)︃ d−p
d

n
p/d
2 ẽp

p,n2

(︄
µ2

∥µ2∥

)︄
= 0 ,

and the same conclusion holds trivially if
⃦⃦⃦
µ2
⃦⃦⃦

= 0.

If
⃦⃦⃦
µ1
⃦⃦⃦
> 0, then n1 → ∞ as n → ∞; therefore the previous Step gives

lim sup
n→∞

np/dẽp
p,n1(µ1,n) = lim sup

n→∞

(︃
n1

n

)︃ d−p
d

n
p/d
1 ẽp

p,n1

(︄
µ1

∥µ1∥

)︄

≤ q̃p
p,d

⃦⃦⃦
µ1
⃦⃦⃦ d−p

d

ˆ
[−r,r]d

(︄
ρ

∥µ1∥

)︄ d−p
d

dL d

= q̃p
p,d

ˆ
[−r,r]d

ρ
d−p

d dL d ,

and the same conclusion holds trivially if
⃦⃦⃦
µ1
⃦⃦⃦

= 0.

In the end, (5.8.17) and the subsequent estimates prove that

lim sup
n→∞

np/dẽp
p,n(µ) ≤ q̃p

p,d

ˆ
[−r,r]d

ρ
d−p

d dL d + cp,d,θ,µ

(︄ˆ
∥x∥θ dµ|Rd\[−r,r]d

)︄p/θ

for some constant cp,d,θ,µ independent of r. We conclude by letting r → ∞.

5.8.4 Lower bound
To prove the lower bound, we again split the domain into cubes {Ωi}i with edge length 2−k

and approximate the density ρ of the given measure µ by the piecewise constant function

ρk,0 =
∑︂

i

µ(Ωi)
1Ωi

|Ωi|
.
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Given an optimal empirical quantizer µn for µ, we aim to bound from below the boundary
Wasserstein pseudodistance between ρk,0 and µn. We make use of this pseudodistance—
smaller than the Wasserstein distance—because its geometric superadditivity (Lemma 5.3.4)
is well-suited to reduce the lower bound problem to the single cubes. On each cube, we use
Lemma 5.3.13 and the definition of qp,d to obtain the integral of ρ d−p

d . The argument can be
sketched as follows:

W p
p (ρk,0, µn) ≥

∑︂
i

Wbp
Ωi,p

(︂
µ(Ωi)U(Ωi), µn|Ωi

)︂
(Lem. 5.3.4)

⪆
∑︂

i

ep
p,ni

(︂
µ(Ωi)U(Ωi)

)︂
with ni ≈ nµn(Ωi) (Lem. 5.3.13)

≥ qp
p,d

∑︂
i

n
−p/d
i µ(Ωi)|Ωi|p/d (Rmk. 5.3.7, Def. 5.3.5)

and, since it is reasonable to expect that µn(Ωi) ≈ µ(Ωi), we get

np/dW p
p (ρk,0, µn) ⪆ qp

p,d

ˆ
Rd

ρ
d−p

d dL d .

The idea of using the boundary Wasserstein pseudodistance (or a similar object) to exploit
its geometric superadditivity is not new. It has been used to prove lower bounds in similar
problems, see, e.g., [BB13, DSS13, AGT22]. There is, however, a technical difference between
these works, which estimate the expected value of a functional of i.i.d. random variables, and
the current one. Given a set of µ-distributed i.i.d. random variables, the random number of
those that fall within a certain region (cube) is a binomial r.v. whose law can be explicitly
determined in terms of µ. Instead, given an optimal empirical quantizer µn, it does not seem
immediate to rigorously justify the heuristic µn(Ωi) ≈ µ(Ωi). A considerable part of the proof
is indeed devoted to this problem.

Proof of the lower bound in Theorem 5.1.1. Fix k, n ∈ N1 and s ∈ (0, 2−k), choose two
numbers ϵ1, ϵ2 ∈ (0, 1), and define {Ωi}i∈Zd ,Ω(k), Ik,0, Ik,s, ρk,0, ρk,s as in Lemma 5.8.2
with C := supp(µs). Set

Ω−
i :=

{︂
x ∈ Ωi : dist(x,Rd \ Ωi) > ϵ12−k−1

}︂
, i ∈ Zd .

Note that each Ω−
i is an open cube with edge length equal to (1− ϵ1)2−k. It is also convenient

to define the “enlarged” sets

Ω+
i :=

{︂
x ∈ Rd : dist(x,Ωi) < s

}︂
, i ∈ Zd .

An important observation that we are going to use later is:⃓⃓⃓
Ω+

i ∩ Ωj

⃓⃓⃓
≤ s2−k(d−1) if i ̸= j . (5.8.18)

We say that two cubes Ωi and Ωj are adjacent, and we write i ∼ j, if Ωi ∩ Ωj ̸= ∅ (it
suffices that their closures share a single vertex). Notice that each cube has 3d adjacent cubes,
including itself, and that, since s < 2−k, the intersection Ω+

i ∩ Ωj is nonempty iff i ∼ j.

Using Lemma 5.3.10, pick µn ∈ P(n)(Rd) such that ẽp,n(µ) = Wp(µ, µn). We have

ẽp,n(µ) ≥ WbΩ(k),p(µ, µn) ≥ WbΩ(k),p(ρk,0, µn) −WbΩ(k),p(ρk,0, µ)
≥ WbΩ(k),p(ρk,0, µn) −Wp(ρk,0, µ|Ω(k)) ,

(5.8.19)
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Figure 5.4: Geometric setup in the proof of the lower bound. In this example, i ∈ Ik,s

and j ∈ Ik,0 \ Ik,s.

where, in the last inequality, we used that µ
(︂
Ω(k)

)︂
=
⃦⃦⃦
ρk,0

⃦⃦⃦
L1

(recall Remark 5.8.3). Note
that, in the same way we derived (5.8.14), we can deduce

Wp(ρk,0, µ|Ω(k)) ≲p,d 2−k
⃦⃦⃦
ρ|Ω(k) − ρk,0

⃦⃦⃦1/p

L1
. (5.8.20)

Let us focus on WbΩ(k),p(ρk,0, µn). Set ni := nµn(Ωi) ∈ N0 for every i ∈ Ik,s. By the
superadditivity property of Lemma 5.3.4,

Wbp

Ω(k),p

(︂
ρk,0, µn

)︂
≥

∑︂
i∈Ik,s : µ(Ωi)≥ϵ22−kd

Wbp
Ωi,p

(︂
ρk,0, µn

)︂
,

and, by Lemma 5.3.13,

Wbp
Ωi,p

(︂
ρk,0, µn

)︂
≥ ep

p,ni+N

(︂
ρk,0|Ω−

i

)︂
= (1 − ϵ1)p+d

2kp
µ(Ωi)ep

p,ni+N(Ud) ,

where N :=
⌈︁
2d/ϵ1

⌉︁d. Hence, by the definition of qp,d, we have

Wbp

Ω(k),p
(ρk,0, µn) ≥

qp
p,d (1 − ϵ1)p+d

2kp

∑︂
i∈Ik,s : µ(Ωi)≥ϵ22−kd

µ(Ωi)
(︂
ni +N

)︂−p/d
. (5.8.21)

At this point, we need to estimate ni from above. To this aim, pick γ ∈ ΓbΩ(k)(ρk,0, µn),
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which gives:
ni

n
= µn(Ωi) = γ

(︂
Ω(k) × Ωi

)︂
= γ

(︃(︂
Ω(k) \ Ω+

i

)︂
× Ωi

)︃
+ γ

(︃(︂
Ω(k) ∩ Ω+

i

)︂
× Ωi

)︃
+ γ

(︃(︂
∂Ω(k) ∩ Ω+

i

)︂
× Ωi

)︃
≤ 1
sp

ˆ
∥x− y∥p dγ|Ω(k)×Ωi⏞ ⏟⏟ ⏞

=:αi

+
ˆ

Ω+
i

ρk,0 dL d + γ
(︃(︂
∂Ω(k) ∩ Ω+

i

)︂
× Ωi

)︃
.

If i ∈ Ik,s, then the last term is zero since ∂Ω(k) ∩ Ω+
i = ∅ by the definitions of Ik,s and Ω+

i .
Moreover, since s < 2−k, we haveˆ

Ω+
i

ρk,0 dL d =
∑︂

j∈Ik,0 : j∼i

2kdµ(Ωj)
⃓⃓⃓
Ω+

i ∩ Ωj

⃓⃓⃓ (5.8.18)
≤ µ(Ωi) +

∑︂
j∈Ik,0 : j∼i

2ksµ(Ωj) .

We thus obtain

ni +N ≤ nµ(Ωi) +N + n

⎛⎜⎝αi

sp
+

∑︂
j∈Ik,0 : j∼i

2ksµ(Ωj)

⎞⎟⎠ .

The elementary inequality (a+ b)−ζ ≥ a−ζ − ζ b
aζ+1 , which holds for every a, ζ > 0 and b ≥ 0,

yields

µ(Ωi)(︂
ni +N

)︂p/d
≥ µ(Ωi)(︂

nµ(Ωi) +N
)︂p/d

− p

d⏞⏟⏟⏞
<1

·

nµ(Ωi)

⎛⎜⎝αi

sp
+

∑︂
j∈Ik,0 : j∼i

2ksµ(Ωj)

⎞⎟⎠
(︂
nµ(Ωi) +N

)︂ p+d
d⏞ ⏟⏟ ⏞

=:βi

,

i ∈ Ik,s . (5.8.22)
Note that

µ(Ωi)(︂
nµ(Ωi) +N

)︂p/d
≥ n−p/dµ(Ωi)

d−p
d(︂

1 + N2kd

ϵ2n

)︂p/d
if µ(Ωi) ≥ ϵ22−kd .

Let us focus on the sum of the last terms in (5.8.22):

∑︂
i∈Ik,s : µ(Ωi)≥ϵ22−kd

βi ≤ ϵ
−p/d
2 n−p/d2kp

∑︂
i∈Ik,s

⎛⎜⎝αi

sp
+

∑︂
j∈Ik,0 : j∼i

2ksµ(Ωj)

⎞⎟⎠
≤ ϵ

−p/d
2 n−p/d2kp

⎛⎜⎝∑︁i∈Ik,s
αi

sp
+

∑︂
i,j∈Ik,0 : i∼j

2ksµ(Ωj)

⎞⎟⎠
≤ ϵ

−p/d
2 n−p/d2kp

(︄
1
sp

ˆ
∥x− y∥p dγ + 3d2ks

)︄
.

(5.8.23)

We plug these estimates into (5.8.21), take the infimum over γ ∈ ΓbΩ(k)(ρk,0, µn), and find

np/dWbp

Ω(k),p
(ρk,0, µn) ≥

qp
p,d (1 − ϵ1)p+d

2kp

∑︂
i∈Ik,s : µ(Ωi)≥ϵ22−kd

µ(Ωi)
d−p

d(︂
1 + N2kd

ϵ2n

)︂p/d

− qp
p,d (1 − ϵ1)p+d⏞ ⏟⏟ ⏞

<1

ϵ
−p/d
2

⎛⎝ 1
sp
Wbp

Ω(k),p
(ρk,0, µn) + 3d2ks

⎞⎠ .

217



5. Asymptotics for Optimal Empirical Quantization of Measures

Now we make a choice for the values of s and k. Thanks to Lemma 5.8.1, Lemma 5.8.2, and
the observation that Ω(k) ↗ Rd \ C as k → ∞, we can find k = kn such that

lim
n→∞

n−1/d2kn = lim
n→∞

n1/d2−kn

⃦⃦⃦
ρ|Ω(kn) − ρkn,0

⃦⃦⃦1/p

L1
= 0 . (5.8.24)

We set sn :=
√

2−knn−1/d, which is smaller than 2−kn , at least for large values of n, and
obtain⎛⎜⎝np/d +

qp
p,d 2 knp

2 n
p

2d

ϵ
p/d
2

⎞⎟⎠Wbp

Ω(kn),p
(ρkn,0, µn)

≥ qp
p,d

(1 − ϵ1)p+d(︂
1 + N2knd

ϵ2n

)︂p/d

ˆ
{ρkn,sn ≥ϵ2}

ρ
d−p

d
kn,sn

dL d − 3dqp
p,d ϵ

−p/d
2

√
2knn−1/d .

If we pass to the limit, keeping (5.8.24) in mind, we get

lim inf
n→∞

np/dWbp

Ω(kn),p
(ρkn,0, µn) ≥ qp

p,d(1 − ϵ1)p+d lim inf
n→∞

ˆ
{ρkn,sn ≥ϵ2}

ρ
d−p

d
kn,sn

dL d

≥ qp
p,d(1 − ϵ1)p+d

ˆ
{ρ>ϵ2}\C

ρ
d−p

d dL d ,

(5.8.25)

where the last inequality follows from Lemma 5.8.2 and Fatou’s Lemma. By combining the
formulas (5.8.19), (5.8.20), and (5.8.25), and by arbitrariness of ϵ2, ϵ1, we conclude:

lim inf
n→∞

n1/dẽp,n(µ) ≥ qp,d

⎛⎝ˆ
Rd\C

ρ
d−p

d dx
⎞⎠1/p

− cp,d lim sup
n→∞

⃦⃦⃦
ρ|Ω(kn) − ρkn,0

⃦⃦⃦1/p

L1

2knn−1/d⏞ ⏟⏟ ⏞
=0

.

5.9 Limit existence for uniform measures
Combining the upper bound (U) and the existence of the limit for the uniform measure on a
cube, it is possible to prove (for p < d) the existence of the limit for any uniform measure on
a bounded set. The proof is inspired by [BB13, Theorem 24].

Corollary 5.9.1. If p < d and A ⊆ Rd is a bounded Borel set with |A| ̸= 0, then

lim
n→∞

n1/dẽp,n(UA) = q̃p,d|A|1/d . (5.9.1)

Proof. Note that this result easily follows from Proposition 5.6.1 if A is a cube. Moreover, in
general, one inequality is already given by (U) in Theorem 5.1.1.

We may and will assume that A is contained in (and not essentially equal to) [0, 1]d. Consider
the measures:

• µ1 := Ud|A = |A|UA,

• µ2 := Ud − µ1 =
(︁
1 −|A|

)︁
U[0,1]d\A.
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For n ∈ N1, define

n̂ :=
⌊︄
n

|A|

⌋︄
+ 1 , n1 := n , n2 := n̂− n− 1 , n0 := 1 .

Observe that that 0 ≤ ni ≤ n̂
⃦⃦⃦
µi
⃦⃦⃦

for i ∈ {1, 2} and define

µi,n := ni

n̂ ∥µi∥
µi for i ∈ {1, 2} , µ0,n := Ud − µ1,n − µ2,n .

By definition of q̃p,d and Remark 5.3.9, we have

q̃p
p,dn̂

−p/d ≤ ẽp
p,n̂(Ud) ≤

2∑︂
i=0

ẽp
p,ni

(µi,n) .

The 0th term at the right-hand side can be easily bounded:

ẽp
p,1(µ0,n) ≤ W p

p

(︃
µ0,n,

⃦⃦⃦
µ0,n

⃦⃦⃦
δ0

)︃
=
ˆ

∥x∥p dµ0,n ≤ dp/2

n̂
.

Hence,

q̃p
p,d ≤ dp/2

(︄
1
n̂

)︄ d−p
d

+
(︃
n

n̂

)︃ d−p
d

np/dẽp
p,n (UA) +

(︃
n2

n̂

)︃ d−p
d

n
p/d
2 ẽp,n2

(︂
U[0,1]d\A

)︂
,

which yields

q̃p
p,d ≤|A|

d−p
d lim inf

n→∞
np/dẽp

p,n(UA) + (1 −|A|)
d−p

d lim sup
n→∞

np/dẽp,n

(︂
U[0,1]d\A

)︂
(U)
≤ |A|

d−p
d lim inf

n→∞
np/dẽp

p,n(UA) + q̃p
p,d(1 −|A|) .

We conclude by rearranging the terms.

5.10 Proof of Theorem 5.1.3
The proof of Theorem 5.1.3 is based on a fundamental result by L. Fejes Tóth [FT53, p. 81],
see also [Gru99].

Theorem 5.10.1 (L. Fejes Tóth [FT53]). Let f : [0,∞) → R be a nondecreasing function,
let H ⊆ R2 be a convex hexagon centered at the origin, let n ∈ N1, and let x1, . . . , xn ∈ R2.
Then ˆ

H

f
(︂
∥x∥

)︂
dx ≤ 1

n

ˆ
√

nH

min
{︃
f
(︂
∥x− xi∥

)︂
: i ∈ {1, . . . , n}

}︃
dx . (5.10.1)

Let us fix n ∈ N1. To prove Theorem 5.1.3, we consider a hexagonal tiling
{︂
Hi,n

}︂
i

of the
plane, with the area of each Hi,n being equal to |A| /n. The idea is to define an empirical
quantizer by taking the centers of the hexagons contained in A. Theorem 5.10.1 (together
with Theorem 5.4.1) is used to show that this quantizer is asymptotically optimal for the
classical quantization problem; hence, ep,n(UA) ≤ ẽp,n(UA) ⪅ ep,n(UA). The issue is that, in
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general, we cannot tile A perfectly with hexagons. Therefore, we carry out this construction
only for the hexagons that are “well-contained” in A and leave out a strip of approximate
thickness n−1/2. We complete the quantizer by splitting the strip into approximately (and up
to constant)

√
n square-looking pieces

{︂
Bj

}︂
j

of approximate size n−1/2 × n−1/2 and taking
one point xj from each piece. In this way, the contribution of the strip to the pth power of
the quantization error is bounded by

W p
p

⎛⎝ 1
n

∑︂
j

U(Bj),
1
n

∑︂
j

δxj

⎞⎠ (5.3.2)
≤ 1

n

∑︂
j

W p
p

(︂
U(Bj), δxj

)︂
≤ 1
n

∑︂
j

diam(Bj)p

⪅
1
n

√
nn−p/2 ,

which is negligible, i.e., much smaller than n−p/2.

We use the bi-Lipschitz map to make the argument rigorous, by transforming the strip into a
more explicit approximate annulus.

Lemma 5.10.2. Let D ⊆ R2 be the open unit disk and D be its closure. Let T : D → R2

be a homeomorphism onto its image. Then ∂
(︂
T (D)

)︂
= T (∂D).

Proof. By the Jordan–Schönflies Theorem (cf. [Tho92, Theorem 3.1]), there exists a homeomor-
phism Φ: R2 → R2 such that Φ|∂D = T |∂D. In particular, the connected set Φ−1

(︂
T (D)

)︂
is con-

tained in R2\∂D, implying that, in fact, it is entirely contained in either D or R2\D. The latter
case is impossible: any retraction r1 : R2\D → ∂D would induce a retraction r1◦Φ−1◦T : D →
∂D, which is absurd by the No-Retraction Theorem. Hence, Φ−1

(︂
T (D)

)︂
⊆ D. We claim

that equality holds. Indeed, if there exists z ∈ D \ Φ−1
(︂
T (D)

)︂
, then we can find a retrac-

tion r2 : D \ {z} → ∂D, which induces a retraction r2 ◦ Φ−1 ◦ T : D → ∂D. Once again, this
is absurd. Thus, T (D) = Φ(D) and, using that Φ is a homeomorphism and that it coincides
with T on ∂D, we conclude:

∂
(︂
T (D)

)︂
= ∂

(︂
Φ(D)

)︂
= Φ(∂D) = T (∂D) .

Proof of Theorem 5.1.3. Fix a regular hexagon H ⊆ R2 with unit area, centered at the origin.
For n ∈ N1, choose x1, . . . , xn ∈ R2. By Theorem 5.10.1 with f(t) := tp, we have

ˆ
H

∥x∥p dx ≤ 1
n

ˆ
√

nH

min
i

⃦⃦⃦
x−

√
nxi

⃦⃦⃦p
dx = np/2

ˆ
H

min
i

∥x− xi∥p dx .

Hence, by arbitrariness of the points x1, . . . , xn and by Theorem 5.4.1,
ˆ

H

∥x∥p dx ≤ lim
n→∞

np/2ep
p,n(UH) = qp

p,2 .

Therefore, again thanks to Theorem 5.4.1, it will suffice to prove that

lim sup
n→∞

np/2ẽp
p,n(UA) ≤|A|p/2

ˆ
H

∥x∥p dx . (5.10.2)

We can and will assume that |A| = 1. Let T : D → A be a (bijective) bi-Lipschitz map and
let cT > 1 be a Lipschitz constant for both T and T−1. Let {Hi}i∈N0

be a family of regular,
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unit-area, pairwise disjoint hexagons that cover R2. For n ∈ N1, define Hi,n := Hi/
√
n and

In :=
{︄
i ∈ N0 : Hi,n ⊆ T (D) and dist

(︂
Hi,n, T (∂D)

)︂
>

cT√
n

}︄
, An :=

⋃︂
i∈In

Hi,n .

(5.10.3)
Note that we have An ⊆ T (D) and

D \ T−1(An) ⊆
{︄
x ∈ D : dist(x, ∂D) ≤ n−1/2 cT

(︂
cT + diam(H)

)︂
⏞ ⏟⏟ ⏞

=:c̄

}︄
. (5.10.4)

Indeed, for every x ∈ D \ T−1(An) there exists i ̸∈ In such that T (x) ∈ Hi,n. There are two
cases. If dist

(︂
Hi,n, T (∂D)

)︂
≤ cT√

n
, then

inf
y∈∂D

∥x− y∥ ≤ cT inf
y∈∂D

⃦⃦
T (x) − T (y)

⃦⃦
≤ cT diam

(︂
Hi,n

)︂
⏞ ⏟⏟ ⏞
=n−1/2 diam(H)

+cT dist
(︂
Hi,n, T (∂D)

)︂
⏞ ⏟⏟ ⏞

≤n−1/2cT

.

If Hi,n ̸⊆ T (D), then, since Hi,n is connected, we have Hi,n∩∂
(︂
T (D)

)︂
̸= ∅. By Lemma 5.10.2,

we know that ∂
(︂
T (D)

)︂
= T (∂D); hence dist(x, ∂D) ≤ cT diam

(︂
Hi,n

)︂
.

By the measure-theoretic properties of Lipschitz maps (cf. [Mat95, Theorem 7.5]), we
have

⃓⃓
T (∂D)

⃓⃓
= 0 and⃓⃓

A \ An

⃓⃓
=
⃓⃓
T (D) \ An

⃓⃓
≤ c2

T

⃓⃓⃓
D \ T−1(An)

⃓⃓⃓
→ 0 as n → ∞ by (5.10.4). (5.10.5)

Let kn := #In. By Remark 5.3.9, we have the inequality

ẽp
p,n(UA) ≤

∑︂
i∈In

ẽp
p,1

(︂
UA|Hi,n

)︂
+ ẽp

p,n−kn

(︂
UA|A\An

)︂
,

and the sum over i ∈ In is easy to bound:∑︂
i∈In

ẽp
p,1

(︂
UA|Hi,n

)︂
≤ kn

ˆ
H/

√
n

∥x∥p dx ≤ n−p/2
ˆ

H

∥x∥p dx .

Therefore, (5.10.2) is verified once we prove that

lim sup
n→∞

np/2ẽp
p,n−kn

(︂
UA|A\An

)︂
= 0 . (5.10.6)

From now on, we use polar coordinates on D. Consider the function

g(θ) :=
⃓⃓⃓⃓
T
{︂
(r, ϕ) ∈ D \ T−1(An) : ϕ ∈ [0, θ]

}︂⃓⃓⃓⃓
, θ ∈ [0, 2π] , (5.10.7)

and note that g is continuous, g(0) = 0, and g(2π) =
⃓⃓
T (D) \ An

⃓⃓
=
⃓⃓
A \ An

⃓⃓
= 1 − kn

n
.

Furthermore, g is strictly increasing: for 0 ≤ θ1 < θ2 ≤ 2π, we have

g(θ2) − g(θ1) =
⃓⃓⃓⃓
T
{︂
(r, ϕ) ∈ D \ T−1(An) : ϕ ∈ (θ1, θ2]

}︂⃓⃓⃓⃓
≥ c−2

T

⃓⃓⃓⃓{︂
(r, ϕ) ∈ D \ T−1(An) : ϕ ∈ (θ1, θ2]

}︂⃓⃓⃓⃓
≥ c−2

T

⃓⃓⃓⃓{︂
(r, ϕ) ∈ D \ T−1(An) : r ∈ [1 − n−1/2, 1] , ϕ ∈ (θ1, θ2]

}︂⃓⃓⃓⃓
≥ c−2

T

⃓⃓⃓⃓{︂
(r, ϕ) ∈ D : r ∈ [1 − n−1/2, 1] , ϕ ∈ (θ1, θ2]

}︂⃓⃓⃓⃓
,
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Figure 5.5: Idea for Theorem 5.1.3. We select the hexagons inside T (D) that are sufficiently
far from T (∂D). We define the sets Bi as T -images of intersections of D \ T−1(An) with
angles.

where the last inequality follows from the definition of An in (5.10.3). Indeed, if 1 − r ≤ n−1/2

and T (r, ϕ) ∈ Hi,n, then

dist
(︂
Hi,n, T (∂D)

)︂
≤
⃦⃦
T (r, ϕ) − T (1, ϕ)

⃦⃦
≤ cT

⃦⃦
(r, ϕ) − (1, ϕ)

⃦⃦
≤ cT√

n
.

Therefore,
g(θ2) − g(θ1) ≥ c−2

T

θ2 − θ1√
n

(︄
1 − 1

2
√
n

)︄
≥ c−2

T

θ2 − θ1

2
√
n

. (5.10.8)

Let us define
θ̄j := g−1(j/n) , j ∈ {0, . . . , n− kn}
Bj := T

{︂
(r, ϕ) ∈ D \ T−1(An) : ϕ ∈ (θ̄j−1, θ̄j]

}︂
, j ∈ {1, . . . , n− kn} .

(5.10.9)

These sets enjoy two important properties: firstly, by (5.10.7) and (5.10.9),⃓⃓⃓
Bj

⃓⃓⃓
= g(θ̄j) − g(θ̄j−1) = 1

n
; (5.10.10)

secondly, by (5.10.4),

Bj ⊆ T
{︂
(r, ϕ) ∈ D : r ≥ 1 − n−1/2c̄ , ϕ ∈ (θ̄j−1, θ̄j]

}︂
,

which implies7

diam(Bj) ≤ cT (θ̄j − θ̄j−1) + 2cT
c̄√
n

(5.10.8)
≤ 2c3

T

√
n
(︂
g(θ̄j) − g(θ̄j−1)

)︂
+ 2cT

c̄√
n

(5.10.9)= 2c3
T

1√
n

+ 2cT
c̄√
n
≲T n

−1/2 .

(5.10.11)

We can conclude: by Remark 5.3.9,

ẽp
p,n−kn

(︂
UA|A\An

)︂ (5.10.10)
≤

n−kn∑︂
j=1

ẽp
p,1

(︂
UA|Bj

)︂
≤

n−kn∑︂
i=1

diam(Bj)p

n

(5.10.11)
≲T,p

(︄
1 − kn

n

)︄
n−p/2 =

⃓⃓
A \ An

⃓⃓
n−p/2 ,

which, together with (5.10.5), implies (5.10.6).
7To move from one point of D to another, one can (inefficiently) walk radially up to the circle ∂D, then

along ∂D, and radially again.
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