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Abstract

In this paper we derive estimates for the Hessian of the logarithm (log-Hessian) for
solutions to the heat equation. For initial data in the form of log-Lipschitz perturbation
of strongly log-concave measures, the log-Hessian admits an explicit, uniform (in
space) lower bound. This yields a new estimate for the Lipschitz constant of a
transport map pushing forward the standard Gaussian to a measure in this class. On
the other hand, we show that assuming only fast decay of the tails of the initial datum
does not suffice to guarantee uniform log-Hessian upper bounds.
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1 Introduction

Let d > 1. We say that a function V: R — R U {+o0} is a-convex, and that a
probability density u € L! (R?) is a-log-concave, if, respectively, x — V(z) — %|x|2 is
convex, and pu(z) = e~V(® for some a-convex function such that [, e™V(®dz = 1. In
case a = 0, u is a log-concave probability density; if a > 0, u is strongly log-concave. We
also consider the heat flow over R%:

O f=1A
'tf S (1.1)
im0 f(t,-) = p.
Taking p = dp, the Dirac delta centered in zero, then the fundamental solution to (1.1) is
f(t,x) = v(x) := (27Tt)7d/2 e*|l’\2/2t’

where 7, is the isotropic Gaussian density with zero mean and covariance matrix equal to
tl;. Any other solution to (1.1) is then given by p*+;, where x is the symbol of convolution:
(g1 xg2)(x) = fRd g1(z —y) g2(y) dy. Denote by (P;); the corresponding heat semigroup

Pip:=pxy, t>0, (1.2)
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which is induced by the flow of (1.1). As solutions to (1.1) are Gaussian convolutions
of the initial datum g, it is expected that those would inherit some features from the
Gaussian. There is a vast literature on the subject, which can be roughly classified into
(1). Properties holding as soon as ¢ > 0. For example, for all ¢ > 0, f(¢,-) is smooth [25].
(2). Asymptotic behaviour, in the limit ¢ — oo, for which we refer to [2, 22, 48].

(3). Properties which are satisfied by f(¢,-) for t > T, after a finite time T > 0.

1.1 Log-concavity in finite time
As the fundamental solution to (1.1) is log-concave for all t > 0, we pose the following.

Question. Given a probability measure ;. on R¢, does there exist a time 7' > 0, such that
the solution f(¢,z) to (1.1) is log-concave for ¢t > 7?7

In general, we cannot expect instantaneous creation of log-concavity, as suggested
by the example = 1(5(1) + 6(—1)) € P(R), see [8]. In addition, some hypotheses on the
behaviour at infinity of 1 shall be required, as suggested by [28]. On the other hand, our
question has a positive answer in two known cases. First, if i is already log-concave, the
solution to (1.1) is log-concave at all times, as a consequence of the Prékopa-Leindler
inequality, see e.g. [45, 44, 39, 6]. Then, by the semigroup property, if a solution to (1.1)
is log-concave at a time 7" > 0, this property will be propagated to all ¢ > T. Second,
when 4 is supported in B(0, R), then f(t,-) is log-concave for all ¢ > R?, as pointed out
first in [38]. More precisely, in [4] it is shown that for all ¢ > 0

9 1 R?
—V<log(w* ) = n (1 — t) 14, (1.3)
as an elementary consequence of (2.2). One aim of ours is to extend the class of measures
for which creation of log-concavity in finite time holds, beyond the compactly supported
case, motivated also by the series of papers [31, 32, 30, 33], concerning various concavity
property of solutions for the heat flow. An analogous question can be posed in the context
of functional inequalities satisfied by the Gaussian distribution. Starting from the case
of compactly supported measures, previously analysed in [51, 50, 4], Chen, Chewi, and
Niles-Weed prove in [12] that if i is subgaussian, i.e. for some ¢, > 0

/ el y(dr) < K, (1.4)
R4

then the solution y; := f(¢,-) dx to (1.1) satisfies a log-Sobolev inequality, for ¢t > T'(¢, K).
Moreover, the subgaussianity assumption is also necessary. Indeed, if ur satisfies a
log-Sobolev inequality for some 7' > 0, then pur is also subgaussian [3, Prop. 5.4.1], which
implies that p is subgaussian in the first place. On the other hand, strongly log-concave
measures do also satisfy a logarithmic Sobolev inequality, see [2]. Then, one might
wonder if (1.4) would be sufficient for a measure to become log-concave along the heat
flow. The following theorem implies that this is not the case.

Theorem 1.1. For all non-decreasing function ¥: Ryo — Ry, there exists an explicit
probability measure on R such that

o Jre¥@pu(dz) < oo;

» forallt >0, infzeR{—% log 11 * %} = —00.
Remark 1.2. Similar conclusions hold in arbitrary dimension, as one can see by consid-
ering the product probability measure p X dg X ... x dp, with p given by Theorem 1.1.

Our result shows that the creation of log-concavity cannot be guaranteed by assuming
only some control on the tails of the distributions x. Therefore, we restrict our analysis
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to a perturbation regime, i.e. we take measures p which are close to being strongly
log-concave, and we show that they become log-concave after a finite time along (1.1).

Theorem 1.3. Suppose that = e~ (VTH) € L1 (R?), where V: RY — R U {+oc} is
a-convex and H: R? — R is L-Lipschitz for some o € R, L > 0. Then for everyt > 0
such that ot + 1 > 0 we have

2
1 1( L 1 1
“lioz I; < -V < =1 1.5
t t<a+1+ a+}> d og(p ) < 71a (1.5)

2
In particular, fora > 0 and t > (5 + \/g) , we have that i * ~, is strongly log-concave.

Note that the upper bound in (1.5) is classical, while the lower bound is new. Moreover,
for L = a = 0, we read that the heat flow preserves log-concavity. Equation (1.5) goes
beyond the problem of log-concavity, yielding interesting consequences.

1.2 Application to Lipschitz transport maps

In a seminal paper [9], Caffarelli showed that the Brenier map [7] from optimal
transport between the standard Gaussian v and an a-log-concave probability measure
p is (1/+4/a)-Lipschitz. This result is useful because Lipschitz transport maps transfer
functional inequalities (including isoperimetric, log-Sobolev and Poincaré inequalities)
from a probability measure to another one, and it is typically much easier to prove these
inequalities for the Gaussian measure in the first place. For example, suppose that a
probability measure p satisfies the log-Sobolev inequality LSI(C) for some C > 0, i.e. for
all regular enough probability measures p <

2
/d’ol oz % d 2C/‘V\/dp/du‘ dy, (LSI(C))

where the two sides of the inequalities go under the name of relative entropy and relative
Fisher information, respectively. Suppose, furthermore, that 7: R — R¢ is L-Lipschitz
and consider the pushforward probability measure v := T'#u. Then, v satisfies LSI(L? -
(). Therefore, Caffarelli’s result (together with the Gaussian LSI [27]) immediately
implies that strongly a-log-concave probability densities satisfy LSI(1/«a), recovering the
celebrated result by Bakry and Emery [2]. Further details and many more applications
of Lipschitz transport maps are discussed in [41, 20] and the references therein. More
recently, Kim and Milman [35] generalized Caffarelli’s result by constructing another
transport map, which is obtained by reverting an appropriate heat flow, and is referred to
as the heat-flow map (notation: Tfow) Other Lipschitz estimates for this transport map
were then provided in [41], where the authors considered different types of assumptions
on the target measure v (namely, measures that satisfy a combination of boundedness
and (semi-)log-concavity and some Gaussian convolutions). Several works dealt with the
study of Lipschitz transport maps [36, 17, 21, 40, 46, 18, 10, 16]; the recent paper [26] in
particular considers an analogous class of target measure as in the present contribution.
For comparison, we recall below its main result in the Euclidean setting.

Theorem ([26], Theorem 1). Let u = e~ (V*+H) 1 = ¢~V be probability densities on R
such that for all z € R? we have

IVH| <L, VV(z)>al;, |VV(2)(w,w)|<K  forallwe s,
for some o > 0, L, K > 0. Then, there exists a transport map 7': RY — R? such that

T#v = pand T is exp( L + 2L 4 L) Lipschitz.
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Since Lipschitz transport maps can be composed, this result (combined with Caffarelli’s
theorem [9]) implies in particular the existence of transport map 7" such that TH#H~y=pu
and T is Lipschitz with constant

2
1 (52 5\7L LK>. 1.6)

Va &P Ja |22
On the other hand, we will prove in Section 3 that our Theorem 1.3 implies new upper
bounds on the Lipschitz norm for the heat-flow map from v to p.
Theorem 1.4. Let u = e~ (V) € Ll (RY) be a probability density on R¢ such that
V' is a-convex for > 0 and H is L-Lipschitz for L > 0. Then, there exists a map
7w R — R* such that T™"#~ = yu and T"" is L exp(% + 2%)—L1’psch1’tz.

NG
Remark 1.5. Consider the case where d = 1, V(z) = 12% and H(z) = L|z| + log(Z) for a
normalizing constant Z, so that the assumptions of Theorem 1.4 are satisfied with o = 1.
Then, it was observed in [26] that the Lipschitz norm of any map 7" such that T#~ = u is
at least eLTQ. Hence, the dependence on L? in Theorem 1.4 is sharp.

The estimate for the Lipschitz constant of 7°% in Theorem 1.4 improves in particular
on the value in (1.6), yielding the best available bound in this setting. Moreover, Theorem
1.4 does not need any assumption on V3V. On the technical side, in Theorem 1.4 we
transport directly v to p via the heat-flow map, and our proof only exploits elementary
log-Hessian estimates for the heat semigroup, as in Theorem 1.3. On the other hand,
[26] employs a construction based on reverting the overdamped Langevin dynamics
targeting the measure v = e~V : this requires estimates for the corresponding semigroup
(cf. [26, Proposition 2]), which is less explicit and needs more sophisticated arguments.
We remark that the results of [26] are of independent interest, due to the construction of
a Lipschitz map transporting v to u therein, and the extension to non-Euclidean spaces.

1.3 Score-based diffusions models

A similar construction as in Section 1.2, based on reverting an ergodic diffusion
process, has also recently found application in the machine learning community, within
the framework of score-based diffusion models [47, 29]. Let i be a probability measure,
from which we want to generate random samples. Consider the Ornstein-Uhlenbeck
process (initialized at u)

Xor~p,  dX, =—X,dt +2dB,,

and denote by ); the associate semigroup, i.e.

Qif(z) = /f(e_tx +4/1— 6*21‘/)7(:10) dx. (1.7)

The key observation is that this process can be reverted, i.e. for 77 > 0 the reverse SDE

d
Yo ~ law(Xp), dY; = —Yidt +2Vlog Qr, ¢ (J;) (Yy)dt + \/ﬁdBt (1.8)
is such that Y, ~ u, see [1, 11, 47]. Therefore, one wishes simulate the process (Y;);

until time 73 to sample from p. In practice, this requires to approximate the unknown
“score functions” log Qr, —¢ (Z—:) with appropriate “score matching” techniques and, since
law (X, ) is not known too, the reverse process is initialized according to 7, which is a
good approximation provided that T} is big enough.

A common assumption in theoretical works aimed at analysing this method is some

control on the Lipschitz constant of V log Q; (‘;—5) [14, 15, 13] or on the one-sided one
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[37, 43]. These assumptions are indeed useful to control the discretization errors when
employing a numerical scheme to simulate the process or some sort of “contractivity”
along the reverse dynamics. On the one hand, Theorem 1.3 enlarges the class of
distributions p for which these assumptions can be justified, by implying bounds on
the Hessian V?log Qt(%) (cf. Corollary 3.2), beyond the setting where the initial
distribution i has bounded support. On the other hand, Theorem 1.1 shows that, for
some distributions p, such assumptions can be too restrictive. Thus, complementary
analysis is needed, as done in [19, 5, 13].

2 Log-Lipschitz perturbations of log-concave measures: Proof of
Theorem 1.3
Let i be a probability measure on R?. Fort > 0 and z € R¢, define the probability
measure [ ; by
2
zZ-X X
Mz X eXP<t - |2L>M(I) < Yzt (@)p(w), (2.1)

where v, ; is the Gaussian density with mean 2z and covariance matrix ¢tI;. We will make
frequent use of the following well-known probabilistic characterization of the Hessian of
log(u * 7¢), cf. [4, 36]:

1 C
—V2log(p*v:)(2) = n (Id - 0;“”) (2.2)

Consequently, bounds on V?log(u * ;) are given by bounds on covariance matrices.
For this purpose, we provide the following lemma, which gives an upper bound for
the covariance matrix of a probability measure u in terms of the covariance of another
probability measure v and of the Wasserstein distance between the two.

Lemma 2.1. Let y, v be probability measures on R?. For any unit vector w € $¢~!
2
(w, Cov, w) < (Wg(u,u) + v/ (w, Cov,, w)) . (2.3)

Proof. Let (X,Y) be an optimal coupling for Wy (y, v). Fix a unit vector w € R and let
Xy = (w,X) and Y, := (w,Y’). We have that

(w, Cov,, w) = E{(Xw - E[Xw])ﬂ < E[(Xw - E[Yw])z] - E[(Xw Yyt Yy — E[Yw])z]

< <\/]E {(Xw — Ywﬂ i \/]E [(Yw - E[Yw])2]>2 (by Cauchy-Schwarz)

2 2
< (Wz(u,V) + \/]E[(Yw ]E[Yw])QD = <W2(M, V) + 4/ (w, COV/Lw>) .0

Proof of Theorem 1.3. The upper bound in (1.5) is well known, and holds for arbitrary
probability measures p, as it follows from (2.2) and the fact that covariance matrices
are positive semidefinite (cf., [23, Lemma 1.3]). Let us then turn to the first inequality.
Fix t > 0 and z € R?. Define the probability density v.; € L. (R?) by v.; < e V...
Notice that v, ; is (a + %)-log-concave: therefore, Cov,,Lt < (H%Id by the Brascamp-Lieb
inequality [6] (cf. also [24, Lemma 5]). To turn this into an up};er bound for Covum with
Lemma 2.1, the key step is now to control Wa(p, ¢, v, ). Observe that p,; oc e v,
hence, p. ; is a log-Lipschitz perturbation of the strongly log-concave measure v, ;. This
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is precisely the setting of [34, Corollary 2.4], which provides an upper bound for even
the stronger L°°-Wasserstein distance between the two:

W2(Mz,tayz,t) < Woo(ﬂz,tal/z,t) <

We are now in position to apply Lemma 2.1: for any unit vector v € R? we have

2
2 L [ 1
<U,COVHM U> < (WQ(NZ,hVZ,t) + <U7COVVz,t, v>) < <a+1 =+ o+ 115) .

2
This shows that Cov,,_, < (af—l + 4 /er1> I, and the conclusion follows from (2.2). O

Remark 2.2. In the proof of Theorem 1.3, we estimated from above W5 (u, ¢, v, ¢) with

the L°>°-Wasserstein distance W (2,1, v2,1). Alternatively, we could have achieved the

t
at+1

inequality [42] allows to estimate W5 (u, ¢, V,¢) in terms of the relative entropy of u, ;
with respect to v, ;; then, the relative entropy is bounded from above by the relative
Fisher information using the logarithmic Sobolev inequality of v, ;; finally, the relative
Fisher information is easily estimated using that 1, ; e H v, and H is L-Lipschitz.

same conclusion as follows, using that v, ; satisfies LSI( ) First, a transport-entropy

2.1 Sufficient conditions

By Theorem 1.3, log-Lipschitz perturbations of strongly log-concave measures become
log-concave in finite time along (1.1); by Theorem 1.4, they are the pushforward of the
Gaussian measure via a Lipschitz transport map. The purpose of this subsection is to
give sufficient conditions for a measure p to be a log-Lipschitz perturbation of a strongly
log-concave measure. Consider hence a probability density = e~V € LiL(]Rd) for some
U € C?(RY). The following result asserts that, if we have a uniform positive lower bound
for the Hessian of U outside some Euclidean ball, then we can rewrite y as a log-Lipschitz
perturbation of a strongly log-concave measure.

Lemma 2.3. Let U € C?(R?) be such that for some «, 3, R > 0 it holds that

V2U(z) = aly if |z| > R,
V2U(x) = =814 if|z| < R.

Then, there exist V, H € C*(R%) such thatU =V + H, V is a-convex and H is 2(a + B) R-
Lipschitz.

Proof. Let H: R¢ — R be defined by

CH(x) = (a+ )|z if |z
2(a+ B)R|z| — 2(a+ B)R?  if |x

and set V(z) = U(x) — H(x). Then we have that U = V + H, V € C'(R?) is a-convex and
|VH| < 2(a + B)R, as desired. O

Lemma 2.3 can be useful to study linear combinations of strongly log-concave densi-
ties, via the following
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Proposition 2.4. Consider a measure p = Zf\;l a; e Ui for some N > 0, weights a; > 0
and potentials U; € C*(R?) such that eV € L (R?). Assume V?U; = KI, for all i and
some K > 0. Then

Zi>j OziOéje_Ui_Uj (VUl — VUj)®2

112
VU; — VU;)®?
KL= ( ) : (2.5)
i>j (2 + z—;eUJ—Ui + %jeUi—Ui)

—V2log p = K1 — (2.4)

Proof. Notice that —V?log = pu~2(Vu ® Vi — uV2u). Set u; = a;eYi so that u =
Ef\il w;. By construction Vu; = —VU, u;, and V2u; = (—V2U; + VU; ® VU;)u,, for all
i=1,...,N. Then,

(Zfil VU, ui)m - (Zfil ﬂi) (ZL(—WUi LV ® VUi)ui)

—V?log 1 = 2
,LLZ?;l VQUL‘ i — Z?fj:l i /,Lj(VUfL' ® VUJ - VUJ & VU])
= 2
o
C K1, Zi>j pip; (VU; — VU;)®?

p? ’

which shows (2.4). Since 2 = 320" 1 ftm > 2pi ptj +p2 + 12 for i # j, (2.5) follows. O

From the above proposition, it is clear that when the right-hand-side of (2.4) is
uniformly positive definite outside a Euclidean ball, then by Lemma 2.3 we can recast
w1 as a log-Lipschitz perturbation of a strongly log-concave measure. Therefore, the
assumptions of Theorem 1.3 are satisfied, and u * 7y, becomes strongly log-concave in
finite time along the heat flow (1.1). We illustrate this in the following example, where u
is a finite mixture of Gaussians in dimension 1.

Example 2.5. Let ¢ be a linear combination of one-dimensional Gaussians, i.e. y =
Zil a; e~ Vi for some N > 2, weights a; > 0 and potentials U; of the form U;(z) =
(x — m;)?/o? for some m; € R,0? > 0. Without loss of generality we can assume that
U; # U; for ¢ # j. By Proposition 2.4, we have that

d? 1 (Ul — U]’-)2
7@10gu>; max; o2 72 a; aj ’
% sy (2 + a—;eUf_U'i + OTZeU'i—UJ)

It is then not difficult to see that the argument of the sum in the right-hand-side converges
to 0 as |z| — co. By the previous discussion, it follows that the assumptions of Theorem
1.3 are satisfied for some L, > 0: hence, a finite linear combination of Gaussian
densities on R becomes strongly log-concave in finite time along the heat flow.

3 Lipschitz transport maps: Proof of Theorem 1.4

Construction of the heat-flow map by Kim and Milman Let p € L}r(IRd) be a
probability density on RY. Assume, furthermore, that . has finite second-order moment.
We begin by sketching the construction of the heat-flow map, and refer the reader to
[35, 41] for details. The idea is to interpolate between p and v along the Ornstein-
Uhlenbeck flow

Xo~p,  dX, =—X,dt + V2dB;. (3.1)
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Let us denote by @Q; the associated transition semigroup (1.7) and by yu; the law of X;.
Then, u: satisfies the Fokker-Planck equation

d
8ut -V {,utVIOg Qt <d/1>:| =0.
2l

Correspondingly, we can consider the flow maps (S;):>0 obtained by solving

Sola) =2, SS,(r) =~V log Qt(j’;)

for all z € R%. Under some regularity assumptions (cf. [35, 41, 42, 49]), this defines
a flow of diffeomorphisms such that S;#u = p; conversely, T, == S; ' is such that
T, #; = p. The heat-flow map is then heuristically defined by 7%°% = lim,_,., 7} and is
such that 71°V+#~ = ;. To make things rigorous, we recall the following result from [41].

Lemma 3.1. Suppose that i € L}r(IRd) is a probability density with finite second-order
moment. Suppose, furthermore, that for all t > 0 there exist 73 ™2 ¢ R such that

A d
ominT, < V2 log Q, (d“> < omax, (3.2)
v

and for all s > 1, sup1 ,, max{|0{2], ||} < oco.
Then, provided that L = limsup,_, ., [+ ™®dt < oo, there exists a map T: R% — R4
t
such that T#~ = u and T is e”-Lipschitz.

Proof. Notice first of all that u; is a smooth density for every ¢ > 0. Fix s > 0: by the
assumptions in the Lemma and by [41, Lemma 10 and 11] there exists a map 75 which

is exp (f orex dt) Lipschitz and such that T #us = pr1. Since pg — 7y and p1 — pin
Ws-distance (hence weakly) as s — oo, the conclusion follows from [41, Lemma 9]. O

New estimates Inview of Lemma 3.1, the goal is to provide estimates on V2 log Q, (%‘),
for some probability measures 1 on R%. The following is a consequence of Theorem 1.3.

Corollary 3.2 (Corollary of Thm. 1.3). Let p = e~V = € L} (R?) be a probability density
on RY such that V is a-convex and H is L-Lipschitz, for some o € R, L > 0. Then for
every t > 0 such that a(e? — 1) + 1 > 0 we have

1 dp
I, <V?1 e
TR a =V Oth<d’Y>

( 1—a 22 2Le2t

ale?t —1)+1 + (a(e?t — 1) +1)2 * (e2t —1) (e — 1) + 1)3/2>

I,.
(3.3)

Proof. Let us consider X; as in (3.1) and denote by u; = law(X;) the probability density

of X;. It is well known that Qt<%> = dd—‘j; and that p, = law(e™"[Xo + Ve¥ —1Z]),
where Z ~ + is independent of X. The conclusion then follows easily from Theorem 1.3

by rescaling and noticing that V2 log dd—‘;t = V2%log s + I4. O

Proof of Theorem 1.4. We integrate the upper bound in (3.3). An elementary computa-
tion using the change of variable 7 = €2! — 1 shows that

e 11—« 2tr2 2Le%
2t + 2t 2 + dt
o \aEe@=1)+1 (a(e*—1)+1) (€2t — 1) (a(e?t — 1) + 1)3/2
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/1 —-a T+1 T+1 1
L? 2L - d
/0 (7’044—1 + (Ta+1)2 * ﬁ(7a+1)3/2>2(7—|—1) T

1 L? L
= —=1 2—.
5 og(a) + 5 + s
The desired conclusion then follows from Lemma 3.1. O

4 The negative result: Proof of Theorem 1.1

Before proving the actual theorem, we give some heuristics behind the proof. The
leading idea is the following. If one considers (1.1) with u = dy, then the solution is
immediately log-concave for ¢t > 0. However, this behaviour is not stable.

Proposition 4.1. Fixxzg € R. Let p = QLJFB(SU + %610, for some «, 3 > 0. Then, p * 7y, is

log-concave (if and) only ift > iﬂc%.

Proof. We prove only the only if part, since the other implication follows directly from
(1.3). It is not difficult to see that with xg, ¢, o, 5 > 0 fixed, there exists Z € R for which

£2 (z=zg)?
ae” 2t = e T
Then, using (2.2), we have (;‘;—22(— log 1 % v¢)(2) = %( - Z—é) <0 whent < z2/4. O

From equation (1.3) we see that a compactly-supported distribution becomes log-
concave along (1.1) after a time T' = O(RQ). Proposition 4.1 gives a simple account of
this time scale being correct. In addition, we see that the time needed for the measure p
of Proposition 4.1 to become log-concave along (1.1) does not depend on the mass of
the perturbation §,,. Exploiting these observations allows us to create mixtures of Dirac
deltas with arbitrarily thin tails, which never become log-concave along (1.1).

Proof of Theorem 1.1. Fori¢ > 0, set x; = @
on R by

> 0. Define the probability measure p

L v
05,
H X ; G+ 1)26 ;

and let X ~ p. It is immediate that E[e¥(¥)] < co. Fix ¢t > 0 and recall from (2.2) that

d? 1 Var,,, ,
- Elogu*%(z) = t(l - t)’

L e~ V@)t =5ts,
(i+1)2 i

2
zx; T

o0
zx ﬁ
poal@) ox e 7B p(a) o< Y
i=0
Therefore, it suffices to prove that, for every M > 0, there exists z such that Var,_, > M?.
To this end, fix M and choose j > v/2M so that |z; — z;_1|* = j2 > 2M?. To conclude, it
suffices to show that there exists z € R such that

1

pza ([0 2j-1]) = 5 = pza(lzg, +oo)). 4.1)

Indeed, the above implies that Varﬂzyt > M?. Notice now that (4.1) is equivalent to
finding a solution to the equation F'(z) = 0, where

i1 1 zw;  @F e 1 sws @2
Fz)= 3 e Vo5 VeI 42
(=) ;(i—&—lP ;(i—!—l)? (4.2)
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It is straightforward to check that F(0) > 0, e.g. using that 1 > >°°°, ﬁ and that ¥
is non-decreasing. Moreover, F' is continuous, since for any compact interval [a,b] C R,
the series in (4.2) converges uniformly in C([a,b]). To conclude, we show now that

lim,_, o, F'(z) = —oo. To this end, notice that
22
] 22 g zx - ,')——] 23
F(z) < je MO+ 1 wy)-g+2a _ 2 jemvO _ & (@)=t e ,
(G+1)? (G+1)?
which yields the desired conclusion since j > 0. O
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