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Abstract

In this paper we derive estimates for the Hessian of the logarithm (log-Hessian) for
solutions to the heat equation. For initial data in the form of log-Lipschitz perturbation
of strongly log-concave measures, the log-Hessian admits an explicit, uniform (in
space) lower bound. This yields a new estimate for the Lipschitz constant of a
transport map pushing forward the standard Gaussian to a measure in this class. On
the other hand, we show that assuming only fast decay of the tails of the initial datum
does not suffice to guarantee uniform log-Hessian upper bounds.
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1 Introduction

Let d > 1. We say that a function V : Rd → R ∪ {+∞} is α-convex, and that a
probability density µ ∈ L1

+(R
d) is α-log-concave, if, respectively, x → V (x) − α

2 |x|
2 is

convex, and µ(x) = e−V (x) for some α-convex function such that
∫
Rd e

−V (x)dx = 1. In
case α = 0, µ is a log-concave probability density; if α > 0, µ is strongly log-concave. We
also consider the heat flow over Rd:{

∂tf = 1
2 ∆f,

limt→0 f(t, ·) = µ.
(1.1)

Taking µ = δ0, the Dirac delta centered in zero, then the fundamental solution to (1.1) is

f(t, x) = γt(x) := (2πt)−d/2 e−|x|2/2t,

where γt is the isotropic Gaussian density with zero mean and covariance matrix equal to
tId. Any other solution to (1.1) is then given by µ∗γt, where ∗ is the symbol of convolution:
(g1 ∗ g2)(x) =

∫
Rd g1(x− y) g2(y) dy. Denote by (Pt)t the corresponding heat semigroup

Ptµ := µ ∗ γt, t > 0, (1.2)
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Heat flow, log-concavity, and Lipschitz transport maps

which is induced by the flow of (1.1). As solutions to (1.1) are Gaussian convolutions
of the initial datum µ, it is expected that those would inherit some features from the
Gaussian. There is a vast literature on the subject, which can be roughly classified into
(1). Properties holding as soon as t > 0. For example, for all t > 0, f(t, ·) is smooth [25].
(2). Asymptotic behaviour, in the limit t → ∞, for which we refer to [2, 22, 48].
(3). Properties which are satisfied by f(t, ·) for t > T, after a finite time T > 0.

1.1 Log-concavity in finite time

As the fundamental solution to (1.1) is log-concave for all t > 0, we pose the following.

Question. Given a probability measure µ on Rd, does there exist a time T > 0, such that
the solution f(t, x) to (1.1) is log-concave for t > T?

In general, we cannot expect instantaneous creation of log-concavity, as suggested
by the example µ = 1

2 (δ(1) + δ(−1)) ∈ P(R), see [8]. In addition, some hypotheses on the
behaviour at infinity of µ shall be required, as suggested by [28]. On the other hand, our
question has a positive answer in two known cases. First, if µ is already log-concave, the
solution to (1.1) is log-concave at all times, as a consequence of the Prékopa-Leindler
inequality, see e.g. [45, 44, 39, 6]. Then, by the semigroup property, if a solution to (1.1)
is log-concave at a time T > 0, this property will be propagated to all t > T. Second,
when µ is supported in B(0, R), then f(t, ·) is log-concave for all t > R2, as pointed out
first in [38]. More precisely, in [4] it is shown that for all t > 0

−∇2 log(µ ∗ γt) <
1

t

(
1− R2

t

)
Id, (1.3)

as an elementary consequence of (2.2). One aim of ours is to extend the class of measures
for which creation of log-concavity in finite time holds, beyond the compactly supported
case, motivated also by the series of papers [31, 32, 30, 33], concerning various concavity
property of solutions for the heat flow. An analogous question can be posed in the context
of functional inequalities satisfied by the Gaussian distribution. Starting from the case
of compactly supported measures, previously analysed in [51, 50, 4], Chen, Chewi, and
Niles-Weed prove in [12] that if µ is subgaussian, i.e. for some ε,K > 0∫

Rd

eε|x|
2

µ(dx) 6 K, (1.4)

then the solution µt := f(t, ·) dx to (1.1) satisfies a log-Sobolev inequality, for t > T (ε,K).
Moreover, the subgaussianity assumption is also necessary. Indeed, if µT satisfies a
log-Sobolev inequality for some T > 0, then µT is also subgaussian [3, Prop. 5.4.1], which
implies that µ is subgaussian in the first place. On the other hand, strongly log-concave
measures do also satisfy a logarithmic Sobolev inequality, see [2]. Then, one might
wonder if (1.4) would be sufficient for a measure to become log-concave along the heat
flow. The following theorem implies that this is not the case.

Theorem 1.1. For all non-decreasing function Ψ: R>0 → R>0, there exists an explicit
probability measure on R such that

•
∫
R
eΨ(x)µ(dx) < ∞;

• for all t > 0, infx∈R
{
− d2

dx2 logµ ∗ γt
}
= −∞.

Remark 1.2. Similar conclusions hold in arbitrary dimension, as one can see by consid-
ering the product probability measure µ× δ0 × . . .× δ0, with µ given by Theorem 1.1.

Our result shows that the creation of log-concavity cannot be guaranteed by assuming
only some control on the tails of the distributions µ. Therefore, we restrict our analysis
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to a perturbation regime, i.e. we take measures µ which are close to being strongly
log-concave, and we show that they become log-concave after a finite time along (1.1).

Theorem 1.3. Suppose that µ = e−(V+H) ∈ L1
+(R

d), where V : Rd → R ∪ {+∞} is
α-convex and H : Rd → R is L-Lipschitz for some α ∈ R, L > 0. Then for every t > 0

such that αt+ 1 > 0 we have

1

t

1− 1

t

(
L

α+ 1
t

+

√
1

α+ 1
t

)2
Id 4 −∇2log(µ ∗ γt) 4

1

t
Id. (1.5)

In particular, for α > 0 and t >
(

L
α +

√
1
α

)2
, we have that µ ∗ γt is strongly log-concave.

Note that the upper bound in (1.5) is classical, while the lower bound is new. Moreover,
for L = α = 0, we read that the heat flow preserves log-concavity. Equation (1.5) goes
beyond the problem of log-concavity, yielding interesting consequences.

1.2 Application to Lipschitz transport maps

In a seminal paper [9], Caffarelli showed that the Brenier map [7] from optimal
transport between the standard Gaussian γ and an α-log-concave probability measure
µ is (1/

√
α)-Lipschitz. This result is useful because Lipschitz transport maps transfer

functional inequalities (including isoperimetric, log-Sobolev and Poincaré inequalities)
from a probability measure to another one, and it is typically much easier to prove these
inequalities for the Gaussian measure in the first place. For example, suppose that a
probability measure µ satisfies the log-Sobolev inequality LSI(C) for some C > 0, i.e. for
all regular enough probability measures ρ � µ∫

dρ

dµ
log

dρ

dµ
dµ 6 2C

∫ ∣∣∣∇√dρ/dµ
∣∣∣2 dµ, (LSI(C))

where the two sides of the inequalities go under the name of relative entropy and relative
Fisher information, respectively. Suppose, furthermore, that T : Rd → Rd is L-Lipschitz
and consider the pushforward probability measure ν := T#µ. Then, ν satisfies LSI(L2 ·
C). Therefore, Caffarelli’s result (together with the Gaussian LSI [27]) immediately
implies that strongly α-log-concave probability densities satisfy LSI(1/α), recovering the
celebrated result by Bakry and Émery [2]. Further details and many more applications
of Lipschitz transport maps are discussed in [41, 20] and the references therein. More
recently, Kim and Milman [35] generalized Caffarelli’s result by constructing another
transport map, which is obtained by reverting an appropriate heat flow, and is referred to
as the heat-flow map (notation: T flow). Other Lipschitz estimates for this transport map
were then provided in [41], where the authors considered different types of assumptions
on the target measure ν (namely, measures that satisfy a combination of boundedness
and (semi-)log-concavity and some Gaussian convolutions). Several works dealt with the
study of Lipschitz transport maps [36, 17, 21, 40, 46, 18, 10, 16]; the recent paper [26] in
particular considers an analogous class of target measure as in the present contribution.
For comparison, we recall below its main result in the Euclidean setting.

Theorem ([26], Theorem 1). Let µ = e−(V+H), ν = e−V be probability densities on Rd

such that for all x ∈ Rd we have

|∇H| 6 L, ∇2V (x) > αId,
∣∣∇3V (x)(w,w)

∣∣ 6 K for all w ∈ Sd−1,

for some α > 0, L, K > 0. Then, there exists a transport map T : Rd → Rd such that

T#ν = µ and T is exp
(

5L2

α + 5
√
πL√
α

+ LK
2α2

)
-Lipschitz.
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Since Lipschitz transport maps can be composed, this result (combined with Caffarelli’s
theorem [9]) implies in particular the existence of transport map T̃ such that T̃#γ = µ

and T̃ is Lipschitz with constant

1√
α
exp

(
5L2

α
+

5
√
πL√
α

+
LK

2α2

)
. (1.6)

On the other hand, we will prove in Section 3 that our Theorem 1.3 implies new upper
bounds on the Lipschitz norm for the heat-flow map from γ to µ.

Theorem 1.4. Let µ = e−(V+H) ∈ L1
+(R

d) be a probability density on Rd such that
V is α-convex for α > 0 and H is L-Lipschitz for L > 0. Then, there exists a map

T flow : Rd → Rd such that T flow#γ = µ and T flow is 1√
α
exp
(

L2

2α + 2 L√
α

)
-Lipschitz.

Remark 1.5. Consider the case where d = 1, V (x) = 1
2x

2 and H(x) = L|x|+ log(Z) for a
normalizing constant Z, so that the assumptions of Theorem 1.4 are satisfied with α = 1.
Then, it was observed in [26] that the Lipschitz norm of any map T such that T#γ = µ is

at least e
L2

2 . Hence, the dependence on L2 in Theorem 1.4 is sharp.

The estimate for the Lipschitz constant of T flow in Theorem 1.4 improves in particular
on the value in (1.6), yielding the best available bound in this setting. Moreover, Theorem
1.4 does not need any assumption on ∇3V . On the technical side, in Theorem 1.4 we
transport directly γ to µ via the heat-flow map, and our proof only exploits elementary
log-Hessian estimates for the heat semigroup, as in Theorem 1.3. On the other hand,
[26] employs a construction based on reverting the overdamped Langevin dynamics
targeting the measure ν = e−V : this requires estimates for the corresponding semigroup
(cf. [26, Proposition 2]), which is less explicit and needs more sophisticated arguments.
We remark that the results of [26] are of independent interest, due to the construction of
a Lipschitz map transporting ν to µ therein, and the extension to non-Euclidean spaces.

1.3 Score-based diffusions models

A similar construction as in Section 1.2, based on reverting an ergodic diffusion
process, has also recently found application in the machine learning community, within
the framework of score-based diffusion models [47, 29]. Let µ be a probability measure,
from which we want to generate random samples. Consider the Ornstein–Uhlenbeck
process (initialized at µ)

X0 ∼ µ, dXt = −Xtdt+
√
2dBt,

and denote by Qt the associate semigroup, i.e.

Qtf(x) =

∫
f
(
e−tx+

√
1− e−2t

)
γ(x) dx. (1.7)

The key observation is that this process can be reverted, i.e. for T1 > 0 the reverse SDE

Y0 ∼ law(XT1
), dYt = −Yt dt+ 2∇ logQT1−t

(
dµ

dγ

)
(Yt)dt+

√
2dBt (1.8)

is such that YT1 ∼ µ, see [1, 11, 47]. Therefore, one wishes simulate the process (Yt)t
until time T1 to sample from µ. In practice, this requires to approximate the unknown

“score functions” logQT1−t

(
dµ
dγ

)
with appropriate “score matching” techniques and, since

law(XT1
) is not known too, the reverse process is initialized according to γ, which is a

good approximation provided that T1 is big enough.
A common assumption in theoretical works aimed at analysing this method is some

control on the Lipschitz constant of ∇ logQt

(
dµ
dγ

)
[14, 15, 13] or on the one-sided one
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[37, 43]. These assumptions are indeed useful to control the discretization errors when
employing a numerical scheme to simulate the process or some sort of “contractivity”
along the reverse dynamics. On the one hand, Theorem 1.3 enlarges the class of
distributions µ for which these assumptions can be justified, by implying bounds on

the Hessian ∇2 logQt

(
dµ
dγ

)
(cf. Corollary 3.2), beyond the setting where the initial

distribution µ has bounded support. On the other hand, Theorem 1.1 shows that, for
some distributions µ, such assumptions can be too restrictive. Thus, complementary
analysis is needed, as done in [19, 5, 13].

2 Log-Lipschitz perturbations of log-concave measures: Proof of
Theorem 1.3

Let µ be a probability measure on Rd. For t > 0 and z ∈ Rd, define the probability
measure µz,t by

µz,t ∝ exp

(
z · x
t

− |x|2

2t

)
µ(x) ∝ γz,t(x)µ(x), (2.1)

where γz,t is the Gaussian density with mean z and covariance matrix tId. We will make
frequent use of the following well-known probabilistic characterization of the Hessian of
log(µ ∗ γt), cf. [4, 36]:

−∇2 log(µ ∗ γt)(z) =
1

t

(
Id −

Covµz,t

t

)
. (2.2)

Consequently, bounds on ∇2 log(µ ∗ γt) are given by bounds on covariance matrices.
For this purpose, we provide the following lemma, which gives an upper bound for
the covariance matrix of a probability measure µ in terms of the covariance of another
probability measure ν and of the Wasserstein distance between the two.

Lemma 2.1. Let µ, ν be probability measures on Rd. For any unit vector w ∈ Sd−1

〈w,Covµ w〉 6
(
W2(µ, ν) +

√
〈w,Covν w〉

)2
. (2.3)

Proof. Let (X,Y ) be an optimal coupling for W2(µ, ν). Fix a unit vector w ∈ Rd and let
Xw := 〈w,X〉 and Yw := 〈w, Y 〉. We have that

〈w,Covµ w〉 = E
[
(Xw − E[Xw])

2
]
6 E

[
(Xw − E[Yw])

2
]
= E

[
(Xw − Yw + Yw − E[Yw])

2
]

6

(√
E
[
(Xw − Yw)

2
]
+

√
E
[
(Yw − E[Yw])

2
])2

(by Cauchy–Schwarz)

6

(
W2(µ, ν) +

√
E
[
(Yw − E[Yw])

2
])2

=

(
W2(µ, ν) +

√
〈w,Covµ w〉

)2

.

Proof of Theorem 1.3. The upper bound in (1.5) is well known, and holds for arbitrary
probability measures µ, as it follows from (2.2) and the fact that covariance matrices
are positive semidefinite (cf., [23, Lemma 1.3]). Let us then turn to the first inequality.
Fix t > 0 and z ∈ Rd. Define the probability density νz,t ∈ L1

+(R
d) by νz,t ∝ e−V γz,t.

Notice that νz,t is (α+ 1
t )-log-concave: therefore, Covνz,t

4 1
α+ 1

t

Id by the Brascamp–Lieb

inequality [6] (cf. also [24, Lemma 5]). To turn this into an upper bound for Covµz,t
with

Lemma 2.1, the key step is now to control W2(µz,t, νz,t). Observe that µz,t ∝ e−Hνz,t:
hence, µz,t is a log-Lipschitz perturbation of the strongly log-concave measure νz,t. This
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is precisely the setting of [34, Corollary 2.4], which provides an upper bound for even
the stronger L∞-Wasserstein distance between the two:

W2(µz,t, νz,t) 6 W∞(µz,t, νz,t) 6
L

α+ 1
t

.

We are now in position to apply Lemma 2.1: for any unit vector v ∈ Rd we have

〈v,Covµz,t
v〉 6

(
W2(µz,t, νz,t) +

√
〈v,Covνz,t

v〉
)2

6

(
L

α+ 1
t

+

√
1

α+ 1
t

)2

.

This shows that Covµz,t 4

(
L

α+ 1
t

+
√

1
α+ 1

t

)2

Id, and the conclusion follows from (2.2).

Remark 2.2. In the proof of Theorem 1.3, we estimated from above W2(µz,t, νz,t) with
the L∞-Wasserstein distance W∞(µz,t, νz,t). Alternatively, we could have achieved the

same conclusion as follows, using that νz,t satisfies LSI
(

t
αt+1

)
. First, a transport-entropy

inequality [42] allows to estimate W2(µz,t, νz,t) in terms of the relative entropy of µz,t

with respect to νz,t; then, the relative entropy is bounded from above by the relative
Fisher information using the logarithmic Sobolev inequality of νz,t; finally, the relative
Fisher information is easily estimated using that µz,t ∝ e−Hνz,t and H is L-Lipschitz.

2.1 Sufficient conditions

By Theorem 1.3, log-Lipschitz perturbations of strongly log-concave measures become
log-concave in finite time along (1.1); by Theorem 1.4, they are the pushforward of the
Gaussian measure via a Lipschitz transport map. The purpose of this subsection is to
give sufficient conditions for a measure µ to be a log-Lipschitz perturbation of a strongly
log-concave measure. Consider hence a probability density µ = e−U ∈ L1

+(R
d) for some

U ∈ C2(Rd). The following result asserts that, if we have a uniform positive lower bound
for the Hessian of U outside some Euclidean ball, then we can rewrite µ as a log-Lipschitz
perturbation of a strongly log-concave measure.

Lemma 2.3. Let U ∈ C2(Rd) be such that for some α, β,R > 0 it holds that{
∇2U(x) < αId if |x| > R,

∇2U(x) < −βId if |x| < R.

Then, there exist V,H ∈ C1(Rd) such that U = V +H, V is α-convex and H is 2(α+ β)R-
Lipschitz.

Proof. Let H : Rd → R be defined by

−H(x) =

{
(α+ β)|x|2 if |x| 6 R,

2(α+ β)R|x| − 2(α+ β)R2 if |x| > R,

and set V (x) = U(x)−H(x). Then we have that U = V +H, V ∈ C1(Rd) is α-convex and
|∇H| 6 2(α+ β)R, as desired.

Lemma 2.3 can be useful to study linear combinations of strongly log-concave densi-
ties, via the following
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Proposition 2.4. Consider a measure µ =
∑N

i=1 αi e
−Ui for some N > 0, weights αi > 0

and potentials Ui ∈ C2(Rd) such that e−Ui ∈ L1
+(R

d). Assume ∇2Ui < KId for all i and
some K > 0. Then

−∇2 log µ < KId −
∑

i>j αiαje
−Ui−Uj (∇Ui −∇Uj)

⊗2

µ2
(2.4)

< KId −
∑
i>j

(∇Ui −∇Uj)
⊗2(

2 + αi

αj
eUj−Ui +

αj

αi
eUi−Uj

) . (2.5)

Proof. Notice that −∇2 log µ = µ−2(∇µ ⊗ ∇µ − µ∇2µ). Set µi := αie
−Ui so that µ =∑N

i=1 µi. By construction ∇µi = −∇Ui µi, and ∇2µi = (−∇2Ui + ∇Ui ⊗ ∇Ui)µi, for all
i = 1, . . . , N. Then,

−∇2 log µ =

(∑N
i=1 ∇Ui µi

)⊗2

−
(∑N

i=1 µi

) (∑N
i=1(−∇2Ui +∇Ui ⊗∇Ui)µi

)
µ2

=
µ
∑N

i=1 ∇2Ui µi −
∑N

i,j=1 µi µj(∇Ui ⊗∇Uj −∇Uj ⊗∇Uj)

µ2

< K Id −
∑

i>j µiµj(∇Ui −∇Uj)
⊗2

µ2
,

which shows (2.4). Since µ2 =
∑N

l,m=1 µl µm > 2µi µj+µ2
i + µ2

j for i 6= j, (2.5) follows.

From the above proposition, it is clear that when the right-hand-side of (2.4) is
uniformly positive definite outside a Euclidean ball, then by Lemma 2.3 we can recast
µ as a log-Lipschitz perturbation of a strongly log-concave measure. Therefore, the
assumptions of Theorem 1.3 are satisfied, and µ ∗ γt becomes strongly log-concave in
finite time along the heat flow (1.1). We illustrate this in the following example, where µ

is a finite mixture of Gaussians in dimension 1.

Example 2.5. Let µ be a linear combination of one-dimensional Gaussians, i.e. µ =∑N
i=1 αi e

−Ui for some N > 2, weights αi > 0 and potentials Ui of the form Ui(x) =

(x −mi)
2/σ2

i for some mi ∈ R, σ2
i > 0. Without loss of generality we can assume that

Ui 6= Uj for i 6= j. By Proposition 2.4, we have that

− d2

dx2
logµ <

1

maxi σ2
i

−
∑
i>j

(U ′
i − U ′

j)
2(

2 + αi

αj
eUj−Ui +

αj

αi
eUi−Uj

) .
It is then not difficult to see that the argument of the sum in the right-hand-side converges
to 0 as |x| → ∞. By the previous discussion, it follows that the assumptions of Theorem
1.3 are satisfied for some L,α > 0: hence, a finite linear combination of Gaussian
densities on R becomes strongly log-concave in finite time along the heat flow.

3 Lipschitz transport maps: Proof of Theorem 1.4

Construction of the heat-flow map by Kim and Milman Let µ ∈ L1
+(R

d) be a
probability density on Rd. Assume, furthermore, that µ has finite second-order moment.
We begin by sketching the construction of the heat-flow map, and refer the reader to
[35, 41] for details. The idea is to interpolate between µ and γ along the Ornstein–
Uhlenbeck flow

X0 ∼ µ, dXt = −Xtdt+
√
2dBt. (3.1)
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Let us denote by Qt the associated transition semigroup (1.7) and by µt the law of Xt.
Then, µt satisfies the Fokker–Planck equation

∂µt −∇ ·
[
µt∇ logQt

(
dµ

dγ

)]
= 0.

Correspondingly, we can consider the flow maps (St)t>0 obtained by solving

S0(x) = x,
d

dt
St(x) = −∇ logQt

(
dµ

dγ

)
for all x ∈ Rd. Under some regularity assumptions (cf. [35, 41, 42, 49]), this defines
a flow of diffeomorphisms such that St#µ = µt; conversely, Tt := S−1

t is such that
Tt#µt = µ. The heat-flow map is then heuristically defined by T flow = limt→∞ Tt and is
such that T flow#γ = µ. To make things rigorous, we recall the following result from [41].

Lemma 3.1. Suppose that µ ∈ L1
+(R

d) is a probability density with finite second-order
moment. Suppose, furthermore, that for all t > 0 there exist θmax

t , θmin
t ∈ R such that

θmin
t Id 4 ∇2 logQt

(
dµ

dγ

)
4 θmax

t Id (3.2)

and for all s > 1, sup 1
s<t<s max

{
|θmin

t |, |θmax
t |

}
< ∞.

Then, provided that L := lim supt→∞
∫ t

1
t
θmax
t dt < ∞, there exists a map T : Rd → Rd

such that T#γ = µ and T is eL-Lipschitz.

Proof. Notice first of all that µt is a smooth density for every t > 0. Fix s > 0: by the
assumptions in the Lemma and by [41, Lemma 10 and 11] there exists a map Ts which

is exp
(∫ s

1
s
θmax
t dt

)
-Lipschitz and such that Ts#µs = µ 1

s
. Since µs → γ and µ 1

s
→ µ in

W2-distance (hence weakly) as s → ∞, the conclusion follows from [41, Lemma 9].

New estimates In view of Lemma 3.1, the goal is to provide estimates on∇2 logQt

(
dµ
dγ

)
,

for some probability measures µ on Rd. The following is a consequence of Theorem 1.3.

Corollary 3.2 (Corollary of Thm. 1.3). Let µ = e−V−H ∈ L1
+(R

d) be a probability density
on Rd such that V is α-convex and H is L-Lipschitz, for some α ∈ R, L > 0. Then for
every t > 0 such that α(e2t − 1) + 1 > 0 we have

− 1

e2t − 1
Id 4∇2 logQt

(
dµ

dγ

)
4

(
1− α

α(e2t − 1) + 1
+

e2tL2

(α(e2t − 1) + 1)2
+

2Le2t√
(e2t − 1) (α(e2t − 1) + 1)3/2

)
Id.

(3.3)

Proof. Let us consider Xt as in (3.1) and denote by µt = law(Xt) the probability density

of Xt. It is well known that Qt

(
dµ
dγ

)
= dµt

dγ and that µt = law
(
e−t
[
X0 +

√
e2t − 1Z

])
,

where Z ∼ γ is independent of X0. The conclusion then follows easily from Theorem 1.3
by rescaling and noticing that ∇2 log dµt

dγ = ∇2 logµt + Id.

Proof of Theorem 1.4. We integrate the upper bound in (3.3). An elementary computa-
tion using the change of variable τ = e2t − 1 shows that∫ ∞

0

(
1− α

α(e2t − 1) + 1
+

e2tL2

(α(e2t − 1) + 1)2
+

2Le2t√
(e2t − 1) (α(e2t − 1) + 1)3/2

)
dt
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=

∫ ∞

0

(
1− α

τα+ 1
+ L2 τ + 1

(τα+ 1)2
+ 2L

τ + 1√
τ (τα+ 1)3/2

)
1

2(τ + 1)
dτ

= − 1

2
log(α) +

L2

2α
+ 2

L√
α
.

The desired conclusion then follows from Lemma 3.1.

4 The negative result: Proof of Theorem 1.1

Before proving the actual theorem, we give some heuristics behind the proof. The
leading idea is the following. If one considers (1.1) with µ = δ0, then the solution is
immediately log-concave for t > 0. However, this behaviour is not stable.

Proposition 4.1. Fix x0 ∈ R. Let µ = α
α+β δ0 +

β
α+β δx0

, for some α, β > 0. Then, µ ∗ γt is
log-concave (if and) only if t > 1

4x
2
0.

Proof. We prove only the only if part, since the other implication follows directly from
(1.3). It is not difficult to see that with x0, t, α, β > 0 fixed, there exists z̄ ∈ R for which

αe−
z̄2

2t = βe−
(z̄−x0)2

2t .

Then, using (2.2), we have d2

dx2 (− logµ ∗ γt)(z̄) = 1
t

(
1− x2

0

4t

)
< 0 when t < x2

0/4.

From equation (1.3) we see that a compactly-supported distribution becomes log-
concave along (1.1) after a time T = O(R2). Proposition 4.1 gives a simple account of
this time scale being correct. In addition, we see that the time needed for the measure µ

of Proposition 4.1 to become log-concave along (1.1) does not depend on the mass of
the perturbation δx0

. Exploiting these observations allows us to create mixtures of Dirac
deltas with arbitrarily thin tails, which never become log-concave along (1.1).

Proof of Theorem 1.1. For i > 0, set xi =
i(i+1)

2 > 0. Define the probability measure µ

on R by

µ ∝
∞∑
i=0

1

(i+ 1)2
e−Ψ(xi)δxi

and let X ∼ µ. It is immediate that E
[
eΨ(X)

]
< ∞. Fix t > 0 and recall from (2.2) that

− d2

dx2
logµ ∗ γt(z) =

1

t

(
1−

Varµz,t

t

)
,

µz,t(x) ∝ e
zx
t − x2

2t µ(x) ∝
∞∑
i=0

1

(i+ 1)2
e−Ψ(xi)+

zxi
t − x2

i
2t δxi

.

Therefore, it suffices to prove that, for everyM > 0, there exists z such that Varµz,t > M2.

To this end, fix M and choose j >
√
2M so that |xj − xj−1|2 = j2 > 2M2. To conclude, it

suffices to show that there exists z ∈ R such that

µz,t([0, xj−1]) =
1

2
= µz,t([xj ,+∞]). (4.1)

Indeed, the above implies that Varµz,t
> M2. Notice now that (4.1) is equivalent to

finding a solution to the equation F (z) = 0, where

F (z) =

j−1∑
i=0

1

(i+ 1)2
e−Ψ(xi)+

zxi
t − x2

i
2t −

∞∑
i=j

1

(i+ 1)2
e−Ψ(xi)+

zxi
t − x2

i
2t . (4.2)
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It is straightforward to check that F (0) > 0, e.g. using that 1 >
∑∞

i=1
1

(i+1)2 and that Ψ

is non-decreasing. Moreover, F is continuous, since for any compact interval [a, b] ⊂ R,
the series in (4.2) converges uniformly in C([a, b]). To conclude, we show now that
limz→∞ F (z) = −∞. To this end, notice that

F (z) 6 je−Ψ(0)+
zxj−1

t − 1

(j + 1)2
e−Ψ(xj)−

x2
j

2t +
zxj
t = e

zxj−1
t

je−Ψ(0) − e−Ψ(xj)−
x2
j

2t e
zj
t

(j + 1)2

,

which yields the desired conclusion since j > 0.
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