Antagonistic SnRK2 and PID kinases' action on auxin transportmediated root gravitropism

Fang Sheng^{a,1}, Yu Gao^{a,1}, Yaping Wang^{b,1}, Yang Li^{c,1}, Ji-Ao Zhang^a, Zhaoheng Zhang^a, Xinyan Qin^a, Shujuan Zhang^d, Wen Song^a, Jigang Li^a, Yan Guo^a, Jiří Friml^a, Zhizhong Gong^{a,f}, Qun Zhang^{d,2}, and Jing Zhang^{a,2}

Edited by Natasha Raikhel, University of California Riverside Center for Plant Cell Biology, Riverside, CA; received May 16, 2025; accepted August 12, 2025

Plants have evolved sophisticated mechanisms to adapt to environmental changes, with root gravitropism playing a pivotal role in nutrient and water acquisition. Our study reveals that SnRK2 kinases (SnRK2.2 and SnRK2.3) are critical regulators of root gravitropism through their direct phosphorylation of the auxin transporter PIN2 at S259. We demonstrate that SnRK2s-mediated phosphorylation modulates both the polar localization and transport activity of PIN2. Importantly, SnRK2s function antagonistically to the AGCVIII kinase PID, which phosphorylates PIN2 at a distinct site (S258), establishing a regulatory balance essential for adaptive root growth. Structural modeling and phosphorylation assays further suggest that SnRK2s-mediated phosphorylation at S259 sterically hinders access of PID to \$258, providing a mechanistic basis for their antagonistic relationship. These findings uncover a novel regulatory mechanism, by which plants fine-tune root developmental programs to adapt to environmental stimuli, highlighting the evolutionary significance of multilayered kinase-mediated regulation in plant adaptation.

kinases | auxin transport | root gravitropism

Downloaded from https://www.pnas.org by IST AUSTRIA - LIBRARY; INSTITUTE OF SCIENCE & TECHNOLOGY on November 24, 2025 from IP address 81.223.14.210.

Plants have developed complex mechanisms to cope with environmental fluctuations. A key adaptive mechanism is the gravitropic response of plant roots, enabling deeper soil penetration for essential water and nutrient acquisition (1, 2). The root gravitropism is mediated by polar auxin transport through PIN-FORMED (PIN) exporters (3). Although phosphorylation modifications regulate PIN function (3-5), the involved kinases and their mechanisms remain incompletely understood, suggesting a greater diversity of regulatory components than presently identified.

We screened Arabidopsis kinase–deficient mutants and found sucrose non-fermenting-1 (SNF1)-related protein kinase 2s (SnRK2s) double mutants (snrk2.2 snrk2.3, snrk2.2 snrk2.6, and snrk2.3 snrk2.6) with impaired gravitropic responses (Fig. 1A). SnRK2 kinases are well-characterized components of abscisic acid signaling transduction, with established roles in root hydrotropism (6). Since root hydrotropic and gravitropic responses are mechanistically distinct (6, 7), we sought to investigate the specific role of SnRK2s in modulating root gravitropism.

Root gravitropism requires asymmetric auxin distribution (8). In snrk2.2 snrk2.3 mutant, auxin redistribution was impaired upon gravistimulation (Fig. 1 B and C), and both shoot-to-root and root-to-shoot auxin transport were reduced (Fig. 1 D and E). Given that auxin transport and gravitropic responses are mediated by PIN auxin transporters, particularly PIN2, which exhibits apical (shootward) localization in epidermal cells and basal (rootward) polarization in young cortical cells (9), we examined PIN2 distribution in the mutant. Notably, basal localization of PIN2 in cortical cells and apical localization in epidermal cells were both reduced in snrk2.2 snrk2.3 roots (Fig. 1 F-H). These results suggest SnRK2s are required for PIN2 polar localization, thereby enabling auxin transport and auxin distribution—driven root gravitropism.

To determine whether SnRK2s directly associate with PIN2, we performed coimmunoprecipitation (Co-IP) assays in Arabidopsis protoplasts coexpressing SnRK2.2/2.3-GFP and Flag-tagged PIN2 hydrophilic loop (PIN2HL). Both SnRK2s were specifically coprecipitated with PIN2HL (Fig. 11). This interaction was further validated by firefly luciferase complementation imaging (LCI) and in vitro pull-down assays (Fig. 1 *J* and *K*). In planta, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of anti-Flag immunoprecipitates from Super::SnRK2.3-Flag roots identified PIN2 peptides (Dataset S1), confirming that SnRK2s physically associate with PIN2 both in vitro and in vivo.

Given that PIN polarity is regulated by kinase-mediated phosphorylation (3–5), we tested whether PIN2 serves as a SnRK2 substrate. In vitro phosphorylation assays revealed that SnRK2.2/2.3 exhibited autophosphorylation activity and efficiently phosphorylated PIN2HL (Fig. 1L). In-gel kinase assays confirmed SnRK2 activity under normal growth

Author affiliations: aState Key Laboratory of Plant Environmental Resilience, Department of Plant Science, College of Biological Sciences, China Agricultural University, Beijing 100193, China; ^bClinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China; ^cState Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; dState Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Department of Plant Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; ^eInstitute of Science and Technology Austria, Klosterneuburg 3400, Austria; and ^fDepartment of Biological Sciences, College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China

Author contributions: Jing Zhang designed research; F.S., Y. Gao, Y.W., Y.L., Ji-Ao Zhang, Z.Z., X.Q., and S.Z. performed research; F.S., Y. Gao, Y.W., Y.L., W.S., J.L., Y. Guo, J.F., Z.G., Q.Z., and Jing Zhang analyzed data; and F.S., J.F., Z.G., Q.Z., and Jing Zhang wrote the paper.

The authors declare no competing interest.

Copyright © 2025 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

¹F.S., Y.G., Y.W., and Y.L. contributed equally to this work.

²To whom correspondence may be addressed. Email: zhangqun@njau.edu.cn or zhangj@cau.edu.cn.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 2512274122/-/DCSupplemental.

Published September 23, 2025.

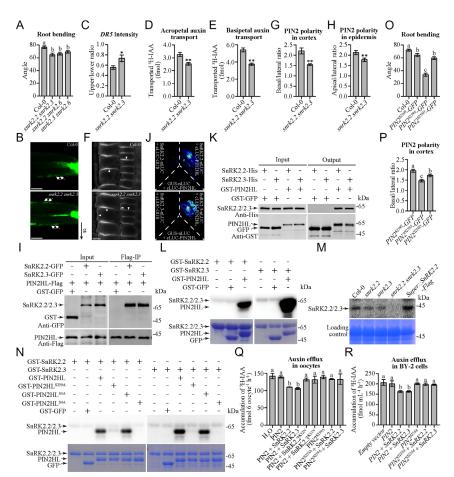


Fig. 1. SnRK2s phosphorylate PIN2 and regulate its function. (A) Gravitropic defects in SnRK2 double mutants (n \geq 13 roots). (B–E) Impaired auxin translocation (B and C), acropetal and basipetal transport (D and E) in snrk2.2 snrk2.3 roots ($n \ge 8$ roots). Black arrow: gravity vector; white arrows: auxin flow. (Scale bars, 50 μm.) (F-H) Disrupted PIN2 polarity in cortex and epidermis of snrk2.2 snrk2.3 roots ($n \ge 46$ cells). Arrowheads: PIN2 polarity. (Scale bars, 5 µm.) (I-K) SnRK2s-PIN2HL interaction by Co-IP (I), LCI (J), pull-down (K). (L) In vitro phosphorylation of PIN2HL by SnRK2s. (M) In-gel kinase assays of SnRK2s activity. (N) S259 identified as the primary PIN2 phosphosite for SnRK2s. (O and P) Gravitropism (O, n = 15 roots) and cortical PIN2 polarity (P, $n \ge 35$ cells) in PIN2^{S259A}/ PIN2^{S259D}-GFP lines. (Q and R) Auxin efflux in oocytes (Q) and BY-2 cells (R) (n = 3 replicates).

conditions (Fig. 1*M*). LC–MS/MS analysis identified four putative phosphorylation sites (S210/S259/S331/S409), which we mutated to non-phosphorylatable Alanine residues: S259A, S210A/S331A/S409A (S3A), or S210A/S259A/S331A/S409A (S4A). Phosphorylation of GST-PIN2HL S259A and GST-PIN2HL was significantly reduced (Fig. 1*N*), indicating S259 being the primary target. Notably, PIN2 exacerbated the root agravitropic phenotype in *pin2* mutants and impaired basal cortical localization compared to PIN2 (Fig. 1 *O* and *P*). Together with its disrupted apical epidermal polarity (10), these results demonstrate that S259 phosphorylation is critical for correct PIN2 polarity and thus its function.

To determine whether SnRK2s directly activate PIN2-mediated auxin efflux, we conducted transport assays in *Xenopus oocytes* and tobacco BY-2 cells. While PIN2 expression alone showed no auxin efflux activity, coexpression with SnRK2.2/2.3 significantly enhanced transport in oocytes (Fig. 1*Q*). This activation required both kinase activity and PIN2 phosphorylation, as neither kinase-dead SnRK2s with wild-type PIN2 nor wild-type SnRK2s with phosphor-dead PIN2^{S259A} could stimulate auxin efflux (Fig. 1*Q*). Consistently, BY-2 cells coexpressing PIN2 with SnRK2.2/2.3 showed reduced ³H-IAA accumulation (Fig. 1*R*). Collectively, SnRK2s function as activators of PIN2-mediated auxin efflux.

We next investigated potential cooperation between SnRK2s and PINOID (PID), an AGCVIII kinase that can phosphorylate PIN2 at the neighboring S258 and regulate PIN polarity (11–13). While Co-IP, LCI, and pull-down assays confirmed SnRK2s–PID interactions (Fig. 2 *A*–*C*), in vitro phosphorylation assays showed mutual autophosphorylation but no cross-phosphorylation (Fig. 2 *D* and *E*).

To evaluate SnRK2s' regulation of PID activity, we first transiently expressed *Super::PID-GFP* in wild-type and *snrk2.2*

snrk2.3 protoplasts. Notably, PID-mediated PIN2 phosphorylation was enhanced in the mutant (Fig. 2F). We next investigated the effect of SnRK2s on the PID activity in heterologous expression systems. Coexpression of SnRK2.2/2.3 with PIN2 and PID in oocytes resulted in significantly higher ³H-IAA accumulation than PIN2 and PID alone (Fig. 2G), consistent with PIN2 activity inhibition. Notably, kinase-dead SnRK2s did not inhibit PID-mediated PIN2 activation, and wild-type SnRK2s did not suppress PID-driven activation of the PIN2^{S259A} variant (Fig. 2G). Similarly, SnRK2s antagonized PID-dependent PIN2 activation also in BY-2 cells (Fig. 2H). Genetic analysis further confirmed this antagonistic relationship, with SnRK2.2 overexpression delaying 35S::PID-induced root meristem collapse (Fig. 2I). Collectively, these findings suggest that SnRK2s negatively regulate PID activity.

Structural modeling using AlphaFold 3 revealed the molecular basis for SnRK2s–PID antagonism. The PID–ATP–PIN2HL complex showed PIN2HL S258 optimally positioned for phosphorylation (Fig. 2*J*), which was stabilized by polar contacts of PIN2HL R256 and PIN2HL S259 with the adjacent residues in PID catalytic center (Fig. 2 *K* and *L*). Phosphorylation at PIN2HL S259 would disrupt this configuration through steric hindrance (Fig. 2*M*), explaining the reduced PID-mediated phosphorylation of PIN2HL S259D versus wild-type PIN2HL or PIN2HL S259A variant (Fig. 2*N*). These results suggest that SnRK2s-mediated PIN2HL S2599 phosphorylation disrupts the PID-mediated phosphorylation efficiency of PIN2HL S258.

Root gravitropism is an essential adaptive strategy for nutrient acquisition, particularly nitrate (NO_3^-) (1, 2). We analyzed CRISPR/Cas9 knockouts of maize *ZmSnRK2.9* and *ZmSnRK2.10*, orthologs of Arabidopsis *SnRK2.2/2.3* (~74 to 80% similarity) with

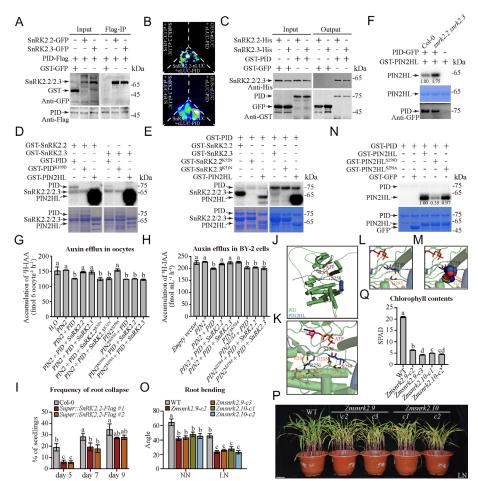


Fig. 2. SnRK2s interact with and inhibit PID activity. (A-C) SnRK2s-PID interaction by Co-IP (A), LCI (*B*), pull-down (*C*). (*D* and *E*) Nonphosphorylation of kinase-dead PID^{K109D} (*D*) or SnRK2.2^{K52N}/SnRK2.3^{K51N} (E) by SnRK2s or PID. (F) Enhanced PID-mediated phosphorylation in snrk2.2 snrk2.3 protoplasts. (G and H) Auxin efflux in oocytes (G) and BY-2 cells (H) (n = 3 replicates). (I) SnRK2.2 overexpression delayed 35S::PID-mediated root collapse (n = 3replicates). (J-M) Structural model of PID-ATP-PIN-2HL complex. (N) Reduced PID phosphorylation of phospho-mimic PIN2HL^{S259D}. (*O-Q*) *Zmsnrk2* mutants showing impaired root gravitropism (O, n = 8 roots) and accelerated leaf yellowing (P and Q, n = 16 leaves) under normal- and/or low-NO₃ conditions. (Scale bars, 10 cm.)

root-enriched expression (14). Under normal conditions, Zmsnrk2.9 and Zmsnrk2.10 mutants exhibited impaired gravitropism, with aggravated defects under low NO₃⁻ (Fig. 20). Concomitantly, these mutants showed enhanced leaf yellowing under NO₃⁻ limitation compared to wild type (Fig. 2 P and Q). These results suggest that ZmSnRK2s positively regulate gravitropism and stress adaptation, potentially via root-nutrient coordination, though additional regulatory factors may contribute.

Our findings demonstrate that SnRK2.2/2.3 phosphorylate PIN2 at S259, regulating both its polar localization and transport activity. Importantly, SnRK2s function antagonistically to PID-mediated PIN2 phosphorylation, establishing a regulatory balance essential for maintaining proper root growth. These findings uncover an unexpected mechanism, through which phosphorylation of one residue by one type of kinase will affect regulatory phosphorylation of another residue by a different kinase. In our uncovered case of regulation of PIN2 auxin transporter by PID

R. F. Giehl, N. von Wirén, Root nutrient foraging. Plant Physiol. 166, 509-517 (2014).

and SnRK2 kinases, plants fine-tune their root development in response to environmental cues.

Materials and Methods

Arabidopsis Columbia-0 (Col-0) and maize ND101 were used as wild-type controls. Experimental details are provided in SI Appendix. Materials and protocols are available upon request.

Data, Materials, and Software Availability. All study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. This research was funded by Biological Breeding-National Science and Technology Major Project (2023ZD0407201), China Postdoctoral Science Foundation (2024M763575), China Agricultural University Fund (2025RC042), Chinese Universities Scientific Fund (2024RC031), and Austrian Science Fund (FWF; I 6123-B).

- C. Luschnig, J. Friml, Over 25 years of decrypting PIN-mediated plant development. Nat. Commun. 15, 9904 (2024).
- H. Lee, A. Ganguly, S. Baik, H. T. Cho, Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code. Plant Cell 33, 3513-3531
- P. Dhonukshe et al., Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245-3255 (2010).
- M. Glanc et al., AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Curr. Biol. 31, 1918-1930 (2021).
- J. Friml et al., A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862-865 (2004).
- T. Long et al., Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L). BMC Plant Biol. 21, 309 (2021).

J. P. Lynch, Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347-357 (2013).

J. Friml, Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 14, a039859 (2022)

I. C. R. Barbosa, U. Z. Hammes, C. Schwechheimer, Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 23, 523-538 (2018).

S. Tan, C. Luschniq, J. Friml, Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Mol. Plant. 14, 151-165 (2021).

D. Dietrich et al., Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057 (2017).

Y. Zhang et al., Foraging for water by MIZ1-mediated antagonism between root gravitropism and hydrotropism, Proc. Natl. Acad. Sci. U.S.A. 122, e2427315122 (2025).

C. Luschnig, R. A. Gaxiola, P. Grisafi, G. R. Fink, EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175-2187 (1998).