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Plants have evolved sophisticated mechanisms to adapt to environmental changes, with root
gravitropism playing a pivotal role in nutrient and water acquisition. Our study reveals that
SnRK?2 kinases (SnRK2.2 and SnRK2.3) are critical regulators of root gravitropism through
their direct phosphorylation of the auxin transporter PIN2 at $259. We demonstrate that
SnRK2s-mediated phosphorylation modulates both the polar localization and transport
activity of PIN2. Importantly, SnRK2s function antagonistically to the AGCVIII kinase
PID, which phosphorylates PIN2 at a distinct site (S258), establishing a regulatory balance
essential for adaptive root growth. Structural modeling and phosphorylation assays further
suggest that SnRK2s-mediated phosphorylation at $259 sterically hinders access of PID
to $258, providing a mechanistic basis for their antagonistic relationship. These findings
uncover a novel regulatory mechanism, by which plants fine-tune root developmental
programs to adapt to environmental stimuli, highlighting the evolutionary significance of
multilayered kinase-mediated regulation in plant adaptation.

kinases | auxin transport | root gravitropism

Plants have developed complex mechanisms to cope with environmental fluctuations. A
key adaptive mechanism is the gravitropic response of plant roots, enabling deeper soil
penetration for essential water and nutrient acquisition (1, 2). The root gravitropism is
mediated by polar auxin transport through PIN-FORMED (PIN) exporters (3). Although
phosphorylation modifications regulate PIN function (3-5), the involved kinases and
their mechanisms remain incompletely understood, suggesting a greater diversity of reg-
ulatory components than presently identified.

We screened Arabidopsis kinase—deficient mutants and found sucrose non-fermenting-1
(SNFI)-related protein kinase 2s (SnRK2s) double mutants (snrk2.2 snrk2.3, snrk2.2 snrk2.6,
and snrk2.3 snrk2.6) with impaired gravitropic responses (Fig. 14). SnRK2 kinases are
well-characterized components of abscisic acid signaling transduction, with established
roles in root hydrotropism (6). Since root hydrotropic and gravitropic responses are mech-
anistically distinct (6, 7), we sought to investigate the specific role of SnRK2s in modu-
lating root gravitropism.

Root gravitropism requires asymmetric auxin distribution (8). In snrk2.2 snrk2.3
mutant, auxin redistribution was impaired upon gravistimulation (Fig. 1 B and C), and
both shoot-to-root and root-to-shoot auxin transport were reduced (Fig. 1 D and E).
Given that auxin transport and gravitropic responses are mediated by PIN auxin trans-
porters, particularly PIN2, which exhibits apical (shootward) localization in epidermal
cells and basal (rootward) polarization in young cortical cells (9), we examined PIN2
distribution in the mutant. Notably, basal localization of PIN2 in cortical cells and apical
localization in epidermal cells were both reduced in snrk2.2 snrk2.3 roots (Fig. 1 F-H).
These results suggest SnRK2s are required for PIN2 polar localization, thereby enabling
auxin transport and auxin distribution—driven root gravitropism.

To determine whether SnRK2s directly associate with PIN2, we performed coimmu-
noprecipitation (Co-IP) assays in Arabidopsis protoplasts coexpressing SnRK2.2/2.3-GFP
and Flag-tagged PIN2 hydrophilic loop (PIN2HL). Both SnRK2s were specifically copre-
cipitated with PIN2HL (Fig. 1/). This interaction was further validated by firefly luciferase
complementation imaging (LCI) and in vitro pull-down assays (Fig. 1 /and K). In planta,
liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis of anti-Flag
immunoprecipitates from Super::SnRK2.3-Flag roots identified PIN2 peptides (Dataset S1),
confirming that SnRK2s physically associate with PIN2 both in vitro and in vivo.

Given that PIN polarity is regulated by kinase-mediated phosphorylation (3-5), we tested
whether PIN2 serves as a SnRK2 substrate. In vitro phosphorylation assays revealed that
SnRK2.2/2.3 exhibited autophosphorylation activity and efliciently phosphorylated
PIN2HL (Fig. 1Z). In-gel kinase assays confirmed SnRK2 activity under normal growth
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conditions (Fig. 1M). LC-MS/MS analysis identified four putative
phosphorylation sites (5§210/5259/5331/5409), which we mutated
to non-phosphorylatable Alanine residues: S259A, S210A/S331A/
S409A (S3A), or S210A/S259A/S331A/S409A (S4A). Phosphory-
lation of GST-PIN2HL***** and GST-PIN2HL*** was signifi-
cantly reduced (Fig. 1N), indicating S259 being the primary
target. Notably, PIN2°**** exacerbated the root agravitropic phe-
notype in pin2 mutants and impaired basal cortical localization
compared to PIN2°%% (Fig. 1 O and P). Together with its dis-
rupted apical epidermal polarity (10), these results demonstrate
that $259 phosphorylation is critical for correct PIN2 polarity and
thus its function.

To determine whether SnRK2s directly activate PIN2-mediated
auxin efflux, we conducted transport assays in Xenopus oocytes and
tobacco BY-2 cells. While PIN2 expression alone showed no auxin
efflux activity, coexpression with SnRK2.2/2.3 significantly enhanced
transport in oocytes (Fig. 1Q). This activation required both kinase
activity and PIN2 phosphorylation, as neither kinase-dead SnRK2s
with wild-type PIN2 nor wild-type SnRK2s with phosphor-dead
PIN2%2 could stimulate auxin efflux (Fig. 1Q). Consistently, BY-2
cells coexpressing PIN2 with SnRK2.2/2.3 showed reduced "H-TAA
accumulation (Fig. 1R). Collectively, SnRK2s function as activators
of PIN2-mediated auxin efflux.

We next investigated potential cooperation between SnRK2s and
PINOID (PID), an AGCVIII kinase that can phosphorylate PIN2
at the neighboring $258 and regulate PIN polarity (11-13). While
Co-IP, LCI, and pull-down assays confirmed SnRK2s—PID interac-
tions (Fig. 2 A-C), in vitro phosphorylation assays showed mutual
autophosphorylation but no cross-phosphorylation (Fig. 2 D and E).

To evaluate SnRK2s’ regulation of PID activity, we first tran-
siently expressed Super::PID-GFP in wild-type and snrk2.2
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snrk2.3 roots (n = 8 roots). Black arrow: gravity vector;
white arrows: auxin flow. (Scale bars, 50 um.) (F-H) Dis-
rupted PIN2 polarity in cortex and epidermis of snrk2.2
snrk2.3 roots (n = 46 cells). Arrowheads: PIN2 polarity.
(Scale bars, 5 um.) (I-K) SnRK2s-PIN2HL interaction by
Co-IP (/), LCI (/), pull-down (K). (L) In vitro phosphorylation
of PIN2HL by SnRK2s. (M) In-gel kinase assays of SnRK2s
0 activity. (N) S259 identified as the primary PIN2 phospho-
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snrk2.3 protoplasts. Notably, PID-mediated PIN2 phosphoryl-
ation was enhanced in the mutant (Fig. 2F). We next investigated
the effect of SnRK2s on the PID activity in heterologous expres-
sion systems. Coexpression of SnRK2.2/2.3 with PIN2 and PID
in oocytes resulted in significantly higher "H-IAA accumulation
than PIN2 and PID alone (Fig. 2G), consistent with PIN2 activ-
ity inhibition. Notably, kinase-dead SnRK2s did not inhibit
PID-mediated PIN2 activation, and wild-t Ee SnRK2s did not
suppress PID-driven activation of the PIN2°* variant (Fig, 2G).
Similarly, SnRK2s antagonized PID-dependent PIN2 activation
also in BY-2 cells (Fig. 2H). Genetic analysis further confirmed
this antagonistic relationship, with SnRK2.2 overexpression
delaying 35S::PID-induced root meristem collapse (Fig. 21).
Collectively, these findings suggest that SnRK2s negatively reg-
ulate PID activity.

Structural modeling using AlphaFold 3 revealed the molecular
basis for SnRK2s-PID antagonism. The PID-ATP-PIN2HL com-
plex showed PIN2HL***® optimally positioned for phosphoryla-
tion (Fig. 2/), which was stabilized by polar contacts of PIN2HL"**®
and PIN2HL*? with the adjacent residues in PID catalytic center
(Fig. 2 K and ). Phosphorylation at PIN2HL**’ would disrupt
this configuration through steric hindrance (Fig. 2M), exglaining
the reduced PID-mediated phosphorylation of PIN2HL>?P ver-
sus wild-type PIN2HL or PIN2HL** variant (Fig. 2N). These
results suggest that SnRK2s-mediated PIN2HL*** phosphoryla-
tion disruyts the PID-mediated phosphorylation efficiency of
PIN2HL**,

Root gravitropism is an essential adaptive strategy for nutrient
acquisition, particularly nitrate (NO;") (1, 2). We analyzed CRISPR/
Cas9 knockouts of maize ZmSnRK2.9 and ZmSnRK2. 10, orthologs
of Arabidopsis S$nRK2.2/2.3 (~74 to 80% similarity) with
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root-enriched expression (14). Under normal conditions, Zmsnrk2.9
and Zmsnrk2.10 mutants exhibited impaired gravitropism, with
aggravated defects under low NO;™ (Fig. 20). Concomitantly, these
mutants showed enhanced leaf yellowing under NO;™ limitation
compared to wild type (Fig. 2 P and Q). These results suggest that
ZmSnRK2s positively regulate gravitropism and stress adaptation,
potentially via root—nutrient coordination, though additional reg-
ulatory factors may contribute.

Our findings demonstrate that SnRK2.2/2.3 phosphorylate
PIN2 at $259, regulating both its polar localization and transport
activity. Importantly, SnRK2s function antagonistically to
PID-mediated PIN2 phosphorylation, establishing a regulatory
balance essential for maintaining proper root growth. These find-
ings uncover an unexpected mechanism, through which phospho-
rylation of one residue by one type of kinase will affect regulatory
phosphorylation of another residue by a different kinase. In our
uncovered case of regulation of PIN2 auxin transporter by PID
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2HL complex. (N) Reduced PID phosphorylation
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mutants showing impaired root gravitropism (O,
n = 8 roots) and accelerated leaf yellowing (P and
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and SnRK2 kinases, plants fine-tune their root development in
response to environmental cues.

Materials and Methods

Arabidopsis Columbia-0 (Col-0) and maize ND107 were used as wild-type con-
trols. Experimental details are provided in S/ Appendix. Materials and protocols
are available upon request.

Data, Materials, and Software Availability. All study data are included in the
article and/or supporting information.
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