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Describing general quantum many-body dynamics is a challenging task due to the exponential growth
of the Hilbert space with system size. The time-dependent variational principle (TDVP) provides a pow-
erful tool to tackle this task by projecting quantum evolution onto a classical dynamical system within a
variational manifold. In classical systems, periodic orbits play a crucial role in understanding the structure
of the phase space and the long-term behavior of the system. However, finding periodic orbits is gen-
erally difficult, and their existence and properties in generic TDVP dynamics over matrix product states
have remained largely unexplored. In this work, we develop an algorithm to systematically identify and
characterize periodic orbits in TDVP dynamics. Applying our method to the periodically kicked Ising
model, we uncover both stable and unstable periodic orbits. We characterize the Kolmogorov-Arnold-
Moser tori in the vicinity of stable periodic orbits and track the change of the periodic orbits as we modify
the Hamiltonian parameters. We observe that periodic orbits exist at any value of the coupling constant of
the kicked Ising model between prethermal and fully thermalizing regimes, but their relevance to quan-
tum dynamics and imprint on quantum eigenstates diminishes as the system leaves the prethermal regime.
Our results demonstrate that periodic orbits provide valuable insights into the TDVP approximation of
quantum many-body evolution and establish a closer connection between quantum and classical chaos.
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L. INTRODUCTION

The study of quantum chaos has traditionally focused
on few-body quantum systems with well-defined semi-
classical limits, drawing parallels between classical and
quantum dynamics [1]. A central diagnostic of chaos is
provided by level statistics [2,3] and out-of-time-ordered
correlators [4—7], which do not require an underlying semi-
classical description. Early works have explored these
criteria in systems with classical counterparts, but recent
advances in quantum simulation have shifted attention
toward discrete quantum many-body systems, such as
spin-1/2 chains, which, at first glance, are far from any
semiclassical description.

Although far from the usual semiclassical limit, generic
quantum models with small local Hilbert spaces are still
expected to be chaotic, as is often probed by their level
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statistics [8—10]. Typical dynamics in such models lead to
rapid equilibration, where the system forgets the details
of the initial state, relaxing to a state determined only by
values of globally conserved quantities, such as energy—a
process known as thermalization. Despite recent progress
in experiments [11-15] and numerical studies [16—19],
understanding chaos and thermalization in discrete inter-
acting quantum systems remains an open and active area
of research.

To investigate the dynamics of these many-body quan-
tum systems, matrix product states (MPSs) have emerged
as a powerful numerical tool [20,21]. Unlike the manifold
of all possible product states, MPSs systematically incor-
porate short-range entanglement, making them a more
expressive variational class. Several methods exist for
approximating full unitary quantum dynamics using MPSs
[22-24], with the TDVP [25-28] standing out due to its
special properties.

It has already been observed by Dirac that the TDVP
naturally leads to a symplectic classical dynamical sys-
tem [25]. When the TDVP is applied to project dynamics
onto the manifold of MPSs, it provides a unique per-
spective: the quantum unitary evolution can be mapped
onto an effective classical system that includes additional
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entanglement-related degrees of freedom, with the bond
dimension (rank) of the MPS, x, controlling the amount of
entanglement. This perspective provides a bridge between
classical and quantum chaos, where tools from dynamical
systems theory can be applied to study quantum thermal-
ization, integrability, and emergent classical-like structures
within quantum dynamics.

The emergence of classical dynamical systems from
TDVP projections onto the MPS manifold motivates a
systematic exploration of their properties [19,29,30]. How-
ever, these systems are typically high-dimensional: for a
spin-1/2 system, the TDVP, even with the simplest non-
trivial bond dimensions x = 2,3, ..., results in a classical
system with x2 = 4,9, ... pairs of canonical coordinates
and momenta. Classical chaos theory suggests that peri-
odic orbits serve as fundamental structures that organize
the phase space of a system [31-34], providing crucial
insights into stability, transport, and ergodicity [35]. For
classical systems, periodic orbits are treated as boundary-
value problems for systems of ordinary differential equa-
tions, and well-established numerical algorithms exist for
detecting periodic orbits [36—38]. Despite their impor-
tance, periodic orbits in generic TDVP-MPS dynamics
have remained largely unexplored due to the challenges of
identifying them in high-dimensional systems, where sym-
metries and gauge invariance complicate the navigation of
the phase space for the search for periodic orbits [31].

In this work, we formulate and implement a gen-
eral algorithm to search for periodic orbits within the
MPS variational manifold. Using the kicked Ising model
[9,18,39-51}—a paradigmatic model for studying quan-
tum thermalization—as an example, we identify periodic
orbits and classify them in terms of their stability by
computing their Floquet multipliers. For stable orbits,
we visualize the surrounding Kolmogorov-Arnold-Moser
(KAM) tori [52—55] and show that their dimensionality
scales as x2, in agreement with expectations. Then, we
track the change of these periodic orbits as system parame-
ters tune the kicked Ising model from a prethermal regime
[56] to a maximally chaotic dual-unitary point [39—43]. In
the prethermal regime, we demonstrate that our approach
can find variational approximations to eigenstates of the
unitary operator generating dynamics over one period in
the thermodynamic limit. As the system approaches the
chaotic point, periodic orbits do not vanish but become
unstable, shifting toward highly entangled regions of the
MPS manifold, where entanglement reaches its maximal
allowed value given the bond dimension, and leakage is
typically higher.

Our findings establish that periodic orbits are present in
TDVP-based projections of quantum many-body dynam-
ics onto MPS manifolds. These orbits, both stable and
unstable, offer a new perspective on quantum thermaliza-
tion, providing direct links between quantum and classical
chaos. Understanding their structure with increasing bond

dimension offers a promising route to uncovering deeper
connections between integrability, chaos, and entangle-
ment in quantum many-body systems.

II. METHOD FOR PERIODIC ORBITS SEARCH

In this section, we discuss the building blocks of the
algorithm used to find periodic orbits. First, we intro-
duce the MPS representation of the wave function and the
TDVP that we use to project the dynamics of quantum
systems onto the MPS manifold. After this, in Sec. I[IB
we explain the main idea behind the algorithm for peri-
odic orbit search, delegating the detailed description to
Appendix A.

A. iMPS and time-dependent variational principle

The MPS [57] representation of a wave function may be
viewed as a systematic improvement of uncorrelated prod-
uct states that introduces entanglement. In the MPS Ansatz,
the state is expressed as a contraction of tensors,

;=i M

S

with bond indices i and ; having bond dimensions yx;
and x,, and the physical index s running over d values
corresponding to the local Hilbert-space dimension. We
fix d = 2, corresponding to spin-1/2, for the rest of this
work. For finite systems, each physical degree of free-
dom is assigned a different tensor within the MPS Ansatz,
potentially making translational symmetry difficult to iden-
tify. In contrast, the infinite MPS (iMPS) [24,28] explicitly
resolves translational invariance by employing a single
tensor x x d x x that repeats infinitely, thus describing
translationally invariant states in the thermodynamic limit:

- HEOEHE -,

Sn—1 Sn Sn+l

[0(4)) =

The MPS representation of a wave function is not
unique, as different choices of tensors 4} can still describe
the same state. This nonuniqueness is known as the gauge
freedom of MPS. To partially fix the gauge in Eq. (2), we
use the mixed-canonical form of the iMPS, which is given
by

(AL, Ac, Ap)) = -+ )

Sn—1 Sn Sn+1
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where tensors A; and Ag obey the orthogonality conditions

L EE-SIPR

Tensors Ay, Ac, and Ay are obtained from the one ten-
sor 4 from Eq. (2), and both forms, Egs. (2) and (3),
represent the same physical state. Another tensor that we
are going to use in this work is the tensor C, which
is defined as (AL)‘;- Cit = (Ac)j;,, where summation over
repeated indices is implied. Tensor C allows us to express
the MPS state through tensors Ay and Ag, and store the
information about the bipartite-entanglement entropy of
the state. Naively, the number of variables of an iMPS with
a given bond dimension y corresponds to the total number
of entries in the tensor, i.e., dx? complex numbers. How-
ever, due to gauge transformations that leave the physical
state invariant, not all of these parameters are physi-
cally meaningful. After accounting for this redundancy by,
e.g., imposing the left- or right-canonical conditions, the
number of complex-valued variables describing the iMPS
reduces to (d — 1) x>.

Another key concept relevant to our work is the iMPS
tangent space. First, the tangent space is used in the
TDVP algorithm to perform the time evolution. Second,
we are using a tangent-space basis in our gradient-descent
algorithm to compute gradients. The tangent space for the
iMPS is defined as the set of all possible infinitesimal
changes of the iMPS that correspond to physical changes
of the quantum state. The most general form of the tangent
vector has the following form:

2V, Az, A} =3 - ()

Sn—1  Sn Sptl

where tensor V' parametrizes directions in the tangent
space. We leave the detailed discussion of the construc-
tion of the tangent space to Appendix A 2. Here, we only
introduce the tangent basis as two sets of tensors {¥®} and

{Vi(;)}, which satisfy the relation
e =V, (6)

where index « runs over @ € [1, (d — 1) x?].

To simulate the dynamics of the quantum state, we
employ the TDVP algorithm for the iMPS in the mixed
gauge. The core idea of this method is to project the action
of the Hamiltonian H onto the MPS tangent space, thus
ensuring that the state evolution remains within the MPS
manifold. Directly applying the Hamiltonian to a state
drives it out of the MPS manifold, and the TDVP performs
the orthogonal projection back to the MPS tangent space.

By making an orthogonal projection to the MPS tangent
space at each step, the TDVP provides an approximation
of the full quantum evolution restricted to the variational
manifold. The TDVP equation for the quantum system is
derived from the projected Schrédinger equation:

Ol (AL, Ac, AR)) = —iPH|Y (AL, Ac, Ap)),  (7)

where P here projects the action of the Hamiltonian on
the state to the tangent-space manifold, approximating the
derivative of the full Schrédinger equation.

The presence of the projector onto the MPS tangent
space in Eq. (7) above transforms the otherwise linear
Schodinger equation into a highly nonlinear differential
equation. In terms of iMPS tensors, these equations of
motion can be expressed as follows:

Ac = —iG(4c), (8a)
C =iG,(0), (8b)

where G| and G, are linear Hermitian maps that imple-
ment the action of the projected Hamiltonian on the state.
Although, as written, the equations for A¢ and C look
decoupled, in reality, they are interdependent. Indeed, as
we discuss in Appendix A2 (see also reviews [57,58]),
the linear Hermitian maps depend on tensors A4; g, which
can be obtained only from knowing both A¢- and C. We
note that the TDVP projection of unitary dynamics leads
to symplectic classical dynamics, meaning that it preserves
the symplectic structure of phase space, ensuring the con-
servation of fundamental geometric properties [59]. In
particular, the TDVP dynamics preserve the phase volume.
While the presence of symplectic structure in the equations
of motion [Eq. (8)] is not apparent, its consequences will
be demonstrated below.

Since the TDVP projects the true quantum dynam-
ics onto the MPS manifold, some information inevitably
gets lost over long-time evolution. This is related to the
instantaneous leakage [19,30], which is defined as

vi0) = W) + i HIW)I1P = IPHIY) — HIY) 1% (9)

where |¢) is a state in the MPS manifold. The leak-
age is fundamentally linked to entanglement growth as
an MPS with a fixed bond dimension x can only accu-
rately represent states with limited entanglement, which is
upper bounded by Se,r < In x (here and below, entangle-
ment is defined as the von Neumann entanglement entropy
of the reduced density matrix p;,, of half of the system:
Sent = — tr p1,2 In py/2). However, during real-time dynam-
ics, the entanglement entropy of a generic interacting
quantum system is expected to grow linearly in time [60].
Thus, as exact unitary dynamics would tend to depart
from the MPS manifold of a fixed bond dimension—a
phenomenon quantified by the leakage—this also leads to
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additional entanglement growth compared to that predicted
by the TDVP. The leakage computation involves evalu-
ating observables containing products of three operators,
such as (Yy|HPH |y), which poses a nontrivial challenge
in the iMPS framework due to the infinite nature of the
system and the complexity of handling nonlocal opera-
tor contractions. Therefore, in this work, we compute the
entanglement entropy from numerically exact time evolu-
tion and compare it with TDVP predictions to understand
how leaky trajectories are.

B. Gradient-descent method for periodic orbits

To find periodic orbits, we need a reliable way to com-
pare MPSs to determine their similarity. For this purpose,
we introduce a measure of distance between two states
(fidelity) using the mixed transfer matrix defined for two
iMPSs specified by tensors 4; and 4; as follows:

TM(A;, 4j) = (10)

where A denotes complex conjugate tensor. Merging the
left and right indices allows us to represent TM(4;,4;)
as a x? x x? matrix and study its spectra. In what fol-
lows, we focus on injective normalized MPSs [61,62]
which have a unique dominant eigenvalue of the transfer
matrix TM(4, 4) with magnitude 1 [63]. Having two such
states specified by tensors 4; and 4;, we define the fidelity
density (fidelity per site, hereafter referred to simply as
fidelity) as

D(4;,4;) = p[TM(4;, 4))], an

where p[-] denotes the spectral radius, i.e., the largest abso-
lute value among the eigenvalues of the transfer matrix.
This function is invariant with respect to MPS gauge trans-
formations. Nevertheless, we will be using a left-canonical
form of tensors in what follows. When D(4;,4;) = 1,
the two MPSs (4; and 4;) represent the same state in
the thermodynamic limit. Additional information about the
properties of the transfer matrix can be found in Ref. [64].

To find periodic orbits, we want to maximize the
fidelity between the initial and time-evolved states. The
evolved state is obtained as A, (T) = U;DVP (Ar), where the
UIPYP(.) is the TDVP time propagation to time T accord-
ing to Eq. (7). Using the fidelity density introduced above,
we define the cost function as the fidelity between the
initial state and its time-evolved counterpart:

F(Ar) = DWUPPYF(4r), Ap). (12)

In this notation, finding a closed orbit of the Floquet sys-
tem with fixed period 7 is equivalent to finding an initial

tensor A;(0) such that F(4,(0)) = 1 (optimization over
the period and corresponding results for the Hamiltonian
systems we discuss in Appendix D). A naive approach
to finding the periodic orbit would be to apply a stan-
dard gradient-based optimization algorithm to maximize
the cost function in Eq. (12). However, the MPS has
redundancies due to the gauge freedom, and such a naive
approach will also calculate gradients corresponding to the
gauge directions that do not change the quantum state.
This results in an additional overhead (e.g., for spin-1/2
systems, the MPS has 4y? real parameters, however, the
tangent space has only 2x? independent vectors), and
also leads to spurious flat directions in the optimization
landscape.

Therefore, in our algorithm, we maximize the cost
function in Eq. (12) by restricting the gradients to the
MPS tangent-space basis, improving computational effi-
ciency and avoiding the unphysical directions. We use the
tangent-space-basis construction discussed in Sec. II A and
apply the central-difference method to compute the gradi-
ent. We combine the gradient components into an update
term 84y, summing each gradient component with the
corresponding basis vector. The overall scheme for calcu-
lating an update for the tensor A;, §4,, is the following:

_F( + AV Y F(4, — AV

re,im re,im)
>

gre,im - 2A

84 = (g% +igk)VY,

(13)

where Vigzm are the tangent space basis vectors from
Sec. IT A, and we have used Eq. (6) to simplify the sec-
ond equation. Here we work only with the left-canonical
(4r) form, as we use the left gauge fixing for the tan-
gent basis, but a similar procedure is also possible for
the right-canonical form and corresponding tangent-space
basis.

In Eq. (13), 64; plays the role of the direction along
which the tensor 4; should be updated. To ensure numer-
ical stability, we normalize §4; by dividing it by the
square root of the largest eigenvalue of its transfer matrix
TM(8AL,8A41). Then, the tensor A4; is updated by the

normalized 84, times the learning rate c,
A, = A, + ¢S4, (14)

The learning rate ¢ is adjusted adaptively during opti-
mization: to mitigate slow convergence in flat regions,
whenever the learning rate leads to an improvement in the
cost function during the current iteration, we increase it
by a factor of £. Conversely, if the current learning rate is
too large, causing the update step to fail in improving the
objective function, we iteratively reduce it by a factor of
7 until a valid update step is found. Finally, if the learning
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rate shrinks to very small values below a certain threshold,
the algorithm is halted. We summarize this procedure as
Algorithm 4 in Appendix A 3.

III. RESULTS

In this section, we present the results of the peri-
odic orbit search with the tangent-space gradient-descent
algorithm. First, in Sec. III A we introduce the kicked Ising
model used in our example. Next, in Sec. III B, we present
the periodic orbits identified by our algorithm for differ-
ent values of bond dimension, analyze their stability, and
visualize the KAM tori surrounding the stable orbits. After
this, in Sec. III C we study the deformation of the peri-
odic orbits as we vary the coupling strengths of the Ising
model and discuss the relation between periodic orbits and
the eigenstates of the unitary propagator of the quantum
model.

A. Kicked Ising model

To demonstrate the application of our general algorithm
for finding periodic orbits, we must choose a specific
quantum model. Specifically, we consider a translation-
ally invariant chain of spin-1/2 degrees of freedom, the
dynamics of which are described by the kicked Ising model
(to avoid confusion, we reserve the use of the term “Flo-
quet” to describe properties of periodic orbits except in
Sec. 1V). The model can be described by the following
translationally invariant Hamiltonian that is periodic in
time:

H = ZiJafaf+1 +hof, tmodT €[0,7/2),
H, =), go}, tmod T € [T/2,T),
(15)

H( =

where o] are Pauli matrices. In our work, we fix the
z-direction magnetic field # = 1, set the period 7T =1,
and choose the two remaining couplings to be equal to
each other, g = J, leaving only a single parameter (J).
The quantum dynamics of this model over one period is
described by the unitary operator

1 1
Ur = exp (—iEH2> exp <—i§H1) . (16)

This will be used below to compare the eigenvalues of Ur
to the periodic orbits identified from the TDVP.

We note that the TDVP algorithm and our orbit-finding
method are not sensitive to the time dependence of the
Hamiltonian and can be applied in both time-constant and
time-dependent settings. However, considering a driven
system where the Hamiltonian is time periodic has the
advantage of fixing the period of the periodic orbits to
be multiples of the driving period. Therefore, the driven

setting slightly simplifies the search for periodic orbits,
by removing the requirement to optimize for an a priori
unknown orbit period. An additional advantage of consid-
ering the driven system is the absence of any conservation
laws, as the time dependence of the Hamiltonian breaks the
conservation of energy. As a result, the kicked Ising model
in Eq. (15) exhibits translation invariance, which is natu-
rally incorporated through the iMPS Ansatz. In addition,
it possesses a discrete spatial inversion symmetry and no
other conservation laws or symmetries.

The kicked Ising model in Eq. (15) has actively been
studied in the literature in the context of quantum ther-
malization and has several special points in the parameter
space. First, when J = g = /2, the model in Eq. (15)
is known to be maximally chaotic. This is the so-called
dual-unitary point, where the two-site unitary gates that
constitute the building blocks of the unitary propagator
Ur have a special property of maintaining unitarity when
one swaps spatial and temporal directions [39—43]. The
dual-unitary property allows one to obtain exact results
for certain properties of the model, such as the correlation
functions [41] and spectral form factor [40]. These exact
results suggest that, at this point, parts of the system act
as an ideal Markovian bath for the remaining degrees of
freedom [44].

Upon reducing the coupling J = g away from the uni-
tary point, J = g = /2, the model no longer admits
treatment with analytical techniques. Nevertheless, numer-
ical studies [44] suggest that the model stays chaotic
for coupling J = g not too far away from 7 /2. This is
witnessed by the properties of eigenstates of the unitary
operator, Ur, defined in Eq. (16). The eigenstates, encod-
ing infinite-time properties of the system, feature large
volume-law entanglement and small expectation values of
all local observables, consistent with the expectations from
thermalization to infinite temperature [9,45-48] (see also
Appendix C 1). Upon decreasing the coupling further, due
to the fact that we keep the period and £ fixed, the model
enters the so-called prethermal regime where the coupling
J = g takes the role of an effective small parameter. In this
regime, an effective prethermal Hamiltonian can describe
the behavior of the system over extended periods before
heating effects drive the system toward infinite tempera-
ture [49,50]. The prethermal phase depends on system size,
and at sufficiently large system sizes, it ceases to exist.
The model has also been studied experimentally at the
dual-unitary point, repeating analytical calculations, and
beyond [65].

Recently, additional insights into the prethermal regime
and the existence of an effective prethermal Hamiltonian
have been obtained using geometric Floquet theory [18]. In
Ref. [18], it is revealed that many of the long-standing fea-
tures of periodically driven systems, such as quasienergy
folding and ambiguities in state ordering, come from a
broken gauge symmetry in the adiabatic gauge potential.
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Related research shows that the kicked Ising Hamiltonian
maintains a low entangled eigenstate—the ground state
(GS) of the effective Floquet Hamiltonian—that avoids
heating up to some values of J [51]. In the following, we
will argue that our method for finding periodic orbits gives
complementary insights into the prethermal regime and we
discuss our findings in the context of the earlier works.

B. Periodic orbits, stability, and KAM tori

We use the tangent-space gradient-descent algorithm
introduced in Sec. II B to find periodic orbits for the kicked
Ising Hamiltonian in Eq. (16). We choose an intermedi-
ate value of the coupling, J = 1.09 (J = g), that puts the
model in the prethermal regime (see Appendix C1). For
each bond dimension x € [1,4] we run the tangent-space
gradient-descent optimization of the fidelity [Eq. (12)]
using over one hundred random initial conditions [66]. For
small bond dimensions, ¥ = 1,2, we use the TDVP with a
small time step df = 0.001, but for x = 3,4 for increased
efficiency, we first find approximations for periodic orbits
with df = 0.01 and then run a second, refining tangent-
space gradient-descent optimization with a smaller TDVP
time step dt = 0.001, to converge to the desired precision.

From the converged instances of the tangent-space gra-
dient descent optimization, we select instances where the
optimized cost function differs from 1 by less than 10~°.
For small bond dimensions (x = 1,2), most of the ran-
dom initializations converge to such values. Notably, with
increasing bond dimension, we obtain more instances con-
verging to local minima with fidelity being significantly
below one. Hence, the success rate of converging to a
periodic orbit decreases with increasing bond dimension.
To filter out the duplicate orbits, we analyze the fidelity
between all pairs of initial points of converged periodic
orbits, D(Ay,A;) defined in Eq. (11), and identify dupli-
cate orbits if D(4,4;) > 1 — 10~°. Additionally, we dis-
card near-singular orbits, where the second-largest eigen-
value of the transfer matrix TM(A4;,4;) from Eq. (10)
exceeds 1 — 107°, as our algorithm assumes an injective
MPS.

Periodic orbits obtained after the postprocessing proce-
dure described above are shown in Fig. 1 for different bond
dimensions. First, in Fig. 1(a) we show the expectation
values of local observables (o (¢)) = (¥ (&)|oc™ | (1)),
where 1 (¢) is an orbit at time ¢ in the form of the iMPS.
The perfect return of the quantum wave function to itself
after one period results in closed curves. Moreover, the part
of the periodic evolution from Eq. (15) where the dynam-
ics are generated by the x magnetic field results in straight
segments, where (o*) is unchanged. While the presence of
entanglement is not apparent in Fig. 1(a), in Fig. 1(b) we
illustrate that all orbits with x > 1 have nonzero bipartite
entanglement at all times. The relatively poor agreement
between the entanglement dynamics on the orbit with the

(a) (b) — TDVP - TEBD
0.50 S log(4)
_
0.25 = log(3)
0.00 UUPPPTLLL AP
—~ —=— .
£ 095 S log(2) v3
—0.50 GS
—0.75 U |\—/|
cs
—1.00 b | log(1)
—0.5 0.0 05  0.00 0.25 0.50
(o) t
FIG. 1. (a)The dynamics of the local expectation values (o)

along periodic orbits of different bond dimensions. Two differ-
ent orbits for x = 1 are represented by violet colors, and three
unique orbits for x =2 and 4 are shown in different shades
of blue and red, respectively. Finally, four orbits for y = 3 are
shown in shades of green. (b) All orbits for y > 1 are character-
ized by nonvanishing entanglement that is a periodic function of
time. Entanglement is shown only during the half-period since
it is not affected by the evolution with the single-site x mag-
netic field during the second half-period. Dots correspond to
the dynamics of entanglement in full (numerically exact) uni-
tary dynamics obtained with time-evolving block decimation
(TEBD). All orbits have been obtained for J = 1.09. The two
orbits in the boxes are marked as the ground state and the ceiling
state (CS), the reason for which we discuss in the next section.

entanglement dynamics from exact simulations (we use
time-evolving block decimation (TEBD) [22] from the
ITensor [67] software package for L = 50 and cutoff =
10732) observed for most periodic obits indicates that these
orbits are “high leakage.” In other words, they provide a
relatively poor approximation of the exact unitary dynam-
ics. Two orbits, which we call the ground state and the
ceiling state (CS) in Fig. 1 (we discuss the meaning of the
names in the next section), have the smallest leakage. The
high leakage of the periodic orbits obtained above may be
viewed as instability with respect to the degrees of freedom
outside the MPS manifold with a fixed bond dimension.
We defer further investigation of leakage and its effect on
the correspondence between the TDVP and full unitary
dynamics until Sec. III C, and instead turn to the investi-
gation of the stability of the orbits within a fixed-y MPS
manifold.

To study the stability of periodic orbits with respect
to small perturbations in the initial state, we look at
the dynamics initiated in the vicinity of the periodic
orbit. Specifically, for each orbit, we perturb the initial
MPS tensor randomly (by perturbing the individual ten-
sor entries by small random values) with a perturbation
of size A = 1077, and visualize the resulting long-time
dynamics in Fig. 2. First, we observe that the distance
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—
o
~

Fourier spectrum of (o*(t))

0.010 ~

0.005 ~

N
Magnitude

0.000 -

FIG. 2. (a) The distance between the time-evolved initial state on the periodic orbit and the trajectory obtained by a small defor-
mation of the orbit, quantified by 1 — D(A4, (1), 4, (¢)). The trajectories and their color coding coincide with the orbits in Fig. 1 for
J = 1.09. Both x = 1 orbits and one of the x = 2 orbits are stable, while the remaining orbits are unstable, and small deformations
lead to an exponential increase in distance with time. The Floquet exponents for the periodic orbits starting from x = 2 have the
following values: [1073,0.3,0.72,0.35,0.17,0.45,0.35,0.29, 0.35, 0.48]. (b) The stroboscopic dynamics of the expectation values of
the local spin projections for the GS perturbed by a random perturbation with strength § = 0.01 may be understood as a projection of
the KAM torus. The blue star here corresponds to the original periodic orbit values of the local observables. (c) The Fourier spectra
(without the @ = 0 component) of the (o (f)) expectation values have sharp peaks that can be interpreted as the frequencies associated
with the motion on the four-dimensional KAM torus. The black dashed lines correspond to phases of the four Floquet multipliers
defined in Eq. (17) that match the location of the peaks (we ignore the small peak at w ~ 3.05 as it is perturbation dependent and does

not appear for all observables).

between the state on the periodic orbit and the trajectory
resulting from the perturbed orbit has two qualitatively
different behaviors [see Fig. 2(a)]. For most orbits, this
distance shows an exponential increase with time, imply-
ing that they are unstable and can be associated with a
nonzero Lyapunov exponent. However, a few orbits show
robustness with respect to random perturbations, where the
distance between the orbit and the perturbed state remains
bounded with time, suggesting stability. The coexistence
of unstable and stable orbits provides evidence for a mixed
phase space, which has been reported earlier only for
restricted MPS Ansdtze with bond dimension x = 2 [19].

To quantify the (in)stability of periodic orbits, we com-
pute their Floquet multipliers, which measure how a small
volume (box) around the initial point of an orbit deforms
after one cycle of evolution. Since the TDVP dynamics
are symplectic, the phase-space volume is preserved. As a
result, the product of all Floquet multipliers is 1, reflecting
the conservation of phase space volume. Mathematically,
the set of Floquet multipliers, A, is defined via the eigen-
values of the Jacobian matrix resulting from the dynamics
over the period of the orbit 7,

T
A =eigJ, Ju =T exp / dt—= . 317
o 04y P
1 —~AL®)

Here, we have schematically denoted our dynamical vari-
ables by A;, and A;, (see the discussion below for
details). For stable orbits, we expect |A;| = 1, implying
that such a box, after one period, rotates but maintains its
dimensions. In this case, the eigenvalues come in complex-
conjugate pairs, and the phases of A; from each pair give
the frequency of motion along the KAM torus surrounding

the orbit. In contrast, the box surrounding the unstable orbit
will expand in the direction corresponding to an eigenvalue
outside the unit circle, |A;| > 1, and shrink in the direc-
tion corresponding to an eigenvalue within the unit circle,
|A;] < 1. We can also use the largest-magnitude Floquet
multiplier, Amax, to define an effective Floquet exponent,

1
A= ?lnlAmaxh (18)

that loosely corresponds to the period-averaged Lyapunov
exponent, akin to a finite-time or local Lyapunov expo-
nent [68,69]. In general, we expect that the most unsta-
ble Floquet exponent has a dominant influence on the
evolution of trajectories near the solution at longer times.

In the present case, where the dynamics are generated by
TDVP projection onto the MPS manifold, we use a tangent
space basis to remove the unphysical directions corre-
sponding to gauge transformations and construct the Jaco-
bian in Eq. (17) numerically (see details in Appendix B 2).
Intuitively, this corresponds to indices a and b in Eq. (17)
running over tangent space directions. In Fig. 2(a), we list a
few values of resulting Floquet exponents X [see Eq. (18)]
obtained from numerical diagonalization of the Jacobian,
illustrating that larger values of A indeed correspond to
orbits that are more unstable.

For stable orbits, in agreement with expectations, our
numerical study yields small values A &~ 107>, which are
consistent with zero. To further gain insights into the vicin-
ity of such stable periodic orbits, we perturb the stable orbit
for x = 2 and plot the dynamics of local spin excitation
values, (o), at stroboscopic times n7, n € [1,500]. In
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FIG. 3.

(a) The smooth evolution of the low-leakage GS orbit with respect to the propagator parameter ./, visualized via the dynamics

of the local spin expectation values. (b) The dynamics of entanglement entropy for the first half-period of the orbit and from exact
unitary dynamics for L = 50 TEBD. As we increase J, the orbit moves to a more entangled region of the MPS manifold, and the
leakage along the orbit increases. (c) The difference between the entanglement entropy in the exact unitary and TDVP dynamics (§Sent)
at t = T (top panel), and the corresponding Floquet exponent (bottom panel). We observe that both quantities behave in a similar way
as functions of J. AtJ &~ 1.27, the orbit becomes unstable, and for similar values of J, § S,y starts to increase more rapidly.

Fig. 2(b), we show that these stroboscopic expectation val-
ues stay in the vicinity of the expectation value correspond-
ing to the periodic orbit for long times. This is consistent
with a mixed phase space, commonly observed in Hamil-
tonian dynamics [55], where stable orbits are expected to
be surrounded by KAM tori [52-54]. Interpreting 2 non-
trivial complex parameters of the MPS as x? canonically
conjugate pairs of real momenta and coordinates, we sug-
gest that in the general case, the dimensionality of the
torus is equal to x2. In Fig. 2(c), we show the Fourier
spectra of the observable (6*(nT)). The frequency peaks
coincide well with the frequencies obtained from the Flo-
quet multipliers of the stable periodic orbit, meaning that
the dynamics of the observables at stroboscopic times nT
is consistent with the motion on the surface of a x> =4
dimensional KAM torus. In Appendix B4, we also show
evidence of a nine-dimensional torus for the stable y = 3
periodic orbit.

C. Deformation of orbits and their relation to
eigenstates with the Ising coupling

After analyzing the set of orbits across different bond
dimensions for a fixed value of the coupling, we consider
the fate of the most stable y = 2 orbit when changing the
parameter J = g. The expectations from classical dynam-
ical systems suggest that the orbit should be smoothly
changing with J. This is confirmed in Fig. 3(a), which
shows the smooth change in the dynamics of the local
spin expectation values with J € [0.6,7/2]. In Fig 3(b),
we show the evolution of the entanglement dynamics for
the same family of orbits. We observe that, as J changes
from a small value to values close to the maximally
chaotic dual-unitary point, J = /2, the entanglement on
the orbit approaches In 2—the maximal value allowed by
the fixed bond dimension x = 2. Moreover, the disagree-
ment between the TDVP and the exact unitary dynamics
increases upon increasing .J.

In Fig. 3(c), we quantify the leakage of the orbit
using the differences in the entanglement-entropy dynam-
ics between the exact and TDVP evolutions and also shows
the evolution of the Floquet exponent, A, with the coupling.
The orbit becomes unstable at J &~ 1.27, where X begins to
deviate from zero (see Appendix B 3, where we discuss the
additional insights into this instability from the full analy-
sis of Floquet multipliers in the complex plane). Around
somewhat smaller values of the coupling J, the leakage
also begins to increase more rapidly, as witnessed by the
entanglement dynamics. The fact that these phenomena
occur simultaneously with the entire orbit moving to more
entangled regions of the x = 2 MPS manifold highlights
the potential relation between the average entanglement on
the orbit, its stability, and leakage. Intuitively, we expect
that orbits in nearly maximally entangled regions of a
given MPS manifold, with S, approaching its strict upper
bound, In yx, to feature higher leakage and to typically be
unstable. Indeed, in this region, the bond dimension is
nearly saturated, and the MPS Ansatz cannot capture addi-
tional correlations created by unitary dynamics, giving rise
to high leakage.

Additional support to this conjecture may be obtained by
analyzing the effect of the periodic orbit on the exact uni-
tary dynamics of the kicked Ising model generated by the
unitary operator in Eq. (16). Specifically, we consider the
inverse participation ratio (IPR) of the MPS corresponding
to the initial point of the orbit,

D

BT =3 [(Ywrslon |, (19)

i=1

defined over the complete basis of eigenstates {|g0,»)}lD: , of
the unitary operator, where D is the Hilbert-space dimen-
sion. The IPR quantifies how delocalized the MPS is on the
basis of eigenstates, and in the case where the eigenstates
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of the unitary operator are fully chaotic, the weakly entan-
gled MPS is expected to show IPR scaling as the inverse
size of the Hilbert-space dimension, I, ~ 1/D ~ e~ thus
decreasing exponentially with the system size.

In Fig. 4(a), we show the IPR in the basis of eigenstates
for all orbits found for a fixed value of the coupling J =
1.09 (see Fig. 1). Note that the Hilbert-space dimension D
corresponds to the size of the translationally invariant zero-
momentum sector (we do not fix the parity sector since
not all orbits are parity symmetric; see Appendix B 1).
While the majority of MPSs corresponding to periodic
orbits show the expected exponential scaling of the IPR
with L, MPSs corresponding to low-leakage x =1 and
2 orbits in Fig. 1 have an IPR close to 1 that is slowly
decreasing with L. These two states also appear to be
the ground state (x =2 low-leakage orbit) and ceiling
state (x = 1 low-leakage orbit) of the effective Hamilto-
nian (see Appendix C), justifying their names, which were
introduced earlier.

Focusing on the GS in Fig. 4(b), we show how its IPR
scaling changes with the coupling J. The evolution of the
IPR scaling with J should be compared to the dependence
of leakage on J of the same orbit shown in Fig. 3(c). At
the smallest values of J, where the orbit has very small
leakage, the IPR is close to 1 and shows almost no decay
with the system size, L. This implies that at small values
of J, our gradient-based orbit search is capable of obtain-
ing approximate eigenstates. From this perspective, our
method bears similarity to the density matrix renormaliza-
tion group (DMRGQG) approach [70,71] for finding ground
states of local Hamiltonians. In DMRG, the MPS approx-
imation to the ground state is obtained by minimizing the
energy of the Hamiltonian, and the quality of the eigen-
states can be checked by computing the variance of the
Hamiltonian for the approximate MPS eigenstate. Simi-
larly, in our case, we maximize the fidelity in Eq. (12) to
find periodic orbits and check their quality via the leak-
age in Eq. (9). As a result, the low-leakage orbits can
be interpreted as approximate eigenstates of the unitary
operator generating dynamics over one period, with the
dynamics on the periodic orbit corresponding to the micro-
motion (dynamics happening inside the period) of the
driven system, with the deviation bounded by the leakage
in Eq. (9).

From the above discussion, we conclude that low-
leakage periodic orbits imply the existence of weakly
entangled eigenstates of the unitary operator [see Eq. (16)].
Generic many-body systems are not expected to have
such low-entangled eigenstates. Rather, on the contrary, all
eigenstates are expected to realize an infinite-temperature
ensemble [9,45-48]. However, as discussed in Sec. IIT A,
for small coupling J, the kicked Ising model features a
prethermal regime. Here, the dynamics show long-lived,
quasistationary behavior before eventually thermalizing.
The system effectively evolves as if governed by an

(a)
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FIG. 4. (a) The inverse participation ratio (IPR) of the MPSs

corresponding to periodic orbits from Fig. 1 for J = 1.09 over
the basis of eigenstates of the unitary from Eq. (16). For all cases,
IPR decays exponentially with L, but two orbits with the low-
est leakage show a parametrically slower decay of IPR. (b) The
IPR scaling with L for the lowest-leakage x = 2 orbit (GS) at
five different values of the coupling, J = 0.6,1.0,1.2, 1.4, /2.
For J = 0.6, the IPR is close to one and stays nearly constant,
whereas at the dual-unitary point J = /2, the IPR decays as
~ e 03 in agreement with expectations for a random state,
~ ¢ 93%L Due to MPSs being translation and inversion sym-
metric for this family of orbits, we consider the zero-momentum
sector with parity +1.

approximately conserved effective Hamiltonian [49,50],
leading to the existence of eigenstates with small entan-
glement. Thus, prethermal behavior explains the success
in finding low-leakage periodic orbits for small J (see also
Appendix C for additional details). To clarify, the prether-
mal behavior of eigenstates exists only in finite systems.
This does not contradict our observations of stable tra-
jectories in infinite systems, which apply to finite-time
dynamics. Perfect eigenstates in infinite systems would
require vanishing leakage, but, in practice, leakage is
always present. Therefore, periodic trajectories do not cor-
respond to exact eigenstates. At small system sizes, these
trajectories approximate eigenstates well, but the overlap
decays exponentially with system size.
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IV. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a new method for
finding periodic orbits in the TDVP equations of motion
projected onto the manifold of MPS for general bond
dimensions. Our method maximizes the fidelity using gra-
dient descent, therefore having complexity parametrically
larger compared to the TDVP, O(d ) versus O(dx?), with
the additional factor emerging due to the computation of
x? gradients. Applying this method to the kicked Ising
model, we have found a number of periodic orbits for
a range of bond dimensions x € [1,4]. We have demon-
strated that various techniques from classical chaos can
also be applied to the variational projection of quantum
dynamics. In particular, we have performed orbit stability
analysis via Floquet multipliers, visualized the KAM tori
surrounding the stable orbits, and characterized the dimen-
sion of KAM tori via Fourier transforms of time series of
local observables.

By adjusting the Ising coupling, we have tuned the quan-
tum dynamics between prethermal and chaotic regimes. At
the same time, we have tracked the fate of periodic orbits
and observed their smooth deformation and the onset of
instability upon approaching the maximally chaotic point.
In the prethermal regime, our method for finding orbits
results in approximate eigenstates of the unitary opera-
tor generating the exact dynamics over one period and,
thus, may be viewed as a generalization of the DRMG to
the periodically driven setting. In the chaotic regime, we
observe that although periodic orbits survive, they become
unstable and no longer correspond to approximate eigen-
states. It remains to be seen if they still leave imprints on
quantum dynamics, despite their high leakage.

The TDVP projection of quantum dynamics onto the
MPS manifold is known to result in a classical dynamical
system with a symplectic structure. Yet, the resulting clas-
sical dynamics have not been studied in detail until now,
with the exception of a few works that have analyzed the
spectrum of Lyapunov exponents resulting from long-time
dynamics [29] and analytically studied TDVP projection
for a special class of MPSs with a small number of param-
eters [19,30]. The main achievement of the present work
is the demonstration that such dynamics, despite the com-
plex nature of dynamical variables, can be systematically
studied with tools from classical chaos. The key insight,
consistent with the general approach to MPS [57], is to
consider only gauge-invariant quantities, such as fidelity
and local observables, and use these to infer the properties
of the classical dynamical system, while never unpacking
the dynamical variables, leaving them hidden inside MPS
tensors.

The possibility of obtaining the classical limit of quan-
tum dynamics with TDVP projection onto the MPS man-
ifold opens a number of exciting directions. First, a
practical application of our algorithm is the systematic

search for nonthermal eigenstates that may appear at
high energy densities in Hamiltonian systems and are
known as quantum many-body scars [72—77] (Correspond-
ing results are discussed in Appendix D.). The appearance
of scars has been linked to MPS periodic orbits with suffi-
ciently slow entanglement growth (small leakage) [19,30],
and to unstable orbits in the semiclassical description of
many-body quantum systems [78—82]. We note that the
MPS-based approach also includes a naive semiclassical
limit (dynamic mean field) for the smallest bond dimension
x = 1, but can also systematically go beyond the dynam-
ical mean field by including additional degrees of free-
dom describing correlations (equivalently, entanglement).
This is also potentially possible in dynamical mean-field
approaches, by including fluctuations around the trajec-
tories, but for local spin-1/2 degrees of freedom, such an
approach is a priori not well controlled. In contrast, MPSs
are guaranteed to capture the dynamics up to times that
are logarithmic in the bond dimension [61,62]. Moreover,
by finding MPS periodic orbits in regions characterized
by small leakage, it may be possible to observe quantum
signatures of phenomena established in classical dynami-
cal systems, such as bifurcation transitions in the periodic
orbits, Arnold diffusion [83,84], and others.

The dynamics of other classes of quantum systems
that avoid thermalization are another attractive avenue for
the application of our method. In particular, a straight-
forward extension of our algorithm to finite-size MPS
simulations without translational invariance will open the
door to the study of the kicked Ising model with dis-
order—one of the models realizing Floquet many-body
localization [45,85—88]. It would be interesting to check
if the present algorithm is capable of finding eigenstates
within the Floquet many-body localized phase for system
sizes beyond those that can be reached with exact diag-
onalization. It also remains to be understood whether the
classical phase portraits in the many-body localized phase
feature large regular regions of the phase space, thereby
directly establishing an analogy between many-body local-
ization and the Kolmogorov-Arnold-Moser theorem [89].
In a different direction, the study of similar questions
for Bethe-Ansatz integrable models [90] with translational
invariance is also an attractive avenue. For such models,
however, additional research is needed, as it may require
the nontrivial extension of the TDVP that is potentially
capable of preserving additional conservation laws.

Finally, we expect that our approach may also pro-
vide useful insights for chaotic, periodically driven, or
Hamiltonian systems. In particular, we conjecture that in
a chaotic regime of quantum dynamics, periodic orbits
are hidden in the regions with nearly maximal entangle-
ment allowed by the MPS manifold and are generally
unstable. It remains to be understood if the properties of
such orbits can nevertheless provide useful insights into
quantum thermalization.
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Note added. We have recently become aware of a related
study by Ren et al. [91], where a method based on an
iterative sequence of finite time evolution and projection
back onto an MPS manifold has been developed to identify
periodic orbits related to quantum many-body scars.
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APPENDIX A: IMPLEMENTATION OF TDVP AND
GRADIENT DESCENT

In this appendix, we discuss the construction of the
mixed gauge of the iMPS, the iMPS tangent bases, and
the TDVP algorithm that we implement in our work
based on Refs. [57,58]. After this, we provide the details
for the implementation of the gradient-descent algorithm
introduced in Sec. II B for the search for closed orbits.

1. Mixed-canonical form

The first step in numerical algorithms dealing with the
iMPS is to obtain the mixed-canonical form, which fixes
part of the gauge freedom, as shown in Eq. (3). The
algorithm implemented in our code follows the approach
described in Ref. [57], which we briefly review here for
completeness.

The concept of gauge fixing arises from the observation
that, given an MPS representation as in Eq. (2), the tensor
A can be transformed via an invertible matrix X accord-
ingtotherule 43 = X, IA‘,"MX,,] (throughout the following,
we denote such a transformation compactly as X ~'4X
unless otherwise specified). Importantly, this transforma-
tion leaves the physical state invariant. This gauge freedom
allows us to impose additional structure on the MPS. In

particular, it enables us to choose a transformation X that
brings the tensors into a form satisfying either the left or
right orthonormalization condition,

therefore, partially fixing the gauge.

In this section, we use the following notation. To find
the left-canonical form, we call such a transformation L,
and so have 4; = LAL™', and analogously for the right-
canonical form, we call the transformation R. The matrix L
can be found from the left fixed point of the transfer matrix
T™(4, 4),

(A2)

by solving the equation / = LTL for L. Then the left gauge-
fixing condition is satisfied as

g

The same procedure can be applied to the right-canonical
form. After finding 4; and A4g, the only degrees of freedom
that are left are unitary transformations,

(A3)

A, = U4, U,

o (A%)
Ap = VARV,
which leave the tensors left or right orthonormal.

The procedure for obtaining the left- and right-canonical
forms of an MPS tensor can be formulated as an iterative
process. Given a tensor A, our goal is to find a transforma-
tion matrix L such that the transformed tensor 4; = LAL™!
satisfies the left gauge-fixing condition in Eq. (A3). The
optimal way to find 4y is to solve L4 = A L. The iterative
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algorithm for that proceeds as follows. Starting from an
initial guess L', we compute the product L'4 and perform
a QR decomposition (a decomposition of a matrix into a
product of an orthonormal matrix Q and an upper triangu-
lar matrix R) on the result. This yields a new tensor AT]
and an updated matrix L'*! as

oB-B6

The updated matrix is then used as the input for the next
iteration, and the process is repeated until convergence.

The QR decomposition is unique up to the signs inside
the decomposition. That is why we fix the diagonal ele-
ments of the triangular matrix to be positive. The algorithm
reaches a fixed point when LO+D =L® =L and the
resulting tensor A, is left-orthonormal by construction.
To accelerate convergence, once an intermediate 4" has
been found, we improve the next guess for L by replacing
it with a refined fixed point L+! of the map,

(AS)

(A6)

(AT)

oo ¢

The general procedure described above is summarized
in Algorithm 1. For the eigensolver, we have used
the KrylovKit software package in JULIA and the LAPACK
library in C++, with a convergence tolerance set to 10713,
The procedure for obtaining the right-canonical form
mirrors that of the left one. However, instead of starting
with the original tensor A, we begin with the left-canonical
tensor A4y . In this case, we perform an RQ decomposition
(a decomposition of a matrix into a product of an upper tri-
angular matrix R and an orthonormal matrix Q) to extract
the right-canonical form. The central site C is obtained
from R, which we have after right orthonormalization by

ALGORITHM 1. Left orthonormal form.

Require: A, L,n

1 L=/
2: Loa =1L
3: (AL, L) = QRGauged(LA) > Gauged QR decomposition
Eq. (A5)
4 L =L/|IL|
5 0= HL — LoldH
6: while § > 7n do
7 L = eigensolver(X — TM(X), L,6/10) > Finding fized

point of transfer map in Eq. (A6)

8: L = QRGauged(L)

9| L=L/|L|

10: Lowa=1L

11: (AL, L) < QRGauged(LA) > Gauged QR decomposition
Lq. (Ab)

12: L=1L/|L|

13: | d= ||L — LoldH

14: return A, L

doing gauged singular-value decomposition (SVD) on it
and transforming A; and Ay through U and V' matrices as
in Eq. (A4). We also do gauge fixing in SVD, as the phases
of singular vectors have a phase freedom. For that, we scan
through left-singular vectors and make the first nonzero
component real and positive, adjusting the phase of the
right-singular vectors accordingly. The entire procedure
for obtaining the mixed-canonical form is summarized in
Algorithm 2.

We note that the iterative procedure described above
may encounter an issue when initialized with an MPS
that has a poorly conditioned entanglement spectrum. Intu-
itively, this corresponds to an initialization with a state of
a nominal bond dimension y, which is nearly identical to
the state with a smaller bond dimension x’ < x. For such
initializations, the procedure of computing 4z was stuck
in an infinite loop as R does not converge. Intuitively, the
presence of very small singular values in the entanglement
spectrum leads to the matrix R having small values on the
diagonal, which does not allow fixing the gauge correctly
in the QR decomposition. This could be partially fixed by
restarting the algorithm, using a different initial guess of
R. However, in cases when several such restarts do not
help, we terminate the entire procedure of searching for the
closed orbit and use a different initial guess, as the orbit in
question can most likely be identified using a smaller bond
dimension.

ALGORITHM 2. Find mixed gauge {4;, Ar, C}.

Require: A, n

: (AL, ~) = LeftOrthonormalize(A, Lo,n)
(Ar,C) = RightOrthonormalize(Ar, Co,n)
(U,C,V) = sVDGauged(C)

AL =U'ALU

Ar =VTARV

return Ap, Agr,C
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2. Tangent basis and TDVP realization

We start with the construction of the tangent basis for the
iMPS in the mixed-canonical gauge. The tangent space for
the iMPS is defined as the set of all possible infinitesimal
changes of the iMPS that correspond to physical changes
of the quantum state. The most general form of the tangent
vector has the following form:

BV, Az An) = 3. S (A8)

Sn—1 Sn Sn+1

where tensor V' parametrizes directions in the tangent
space. In this form, tangent vectors also have a gauge
freedom. Changing V' — V4 A;B — BAy for any matrix
B leaves the tangent vector the same. We could fix this
freedom by implementing left gauge fixing:

=0. (A9)

Following the above equation, we construct the tensor V
using the null space of the tensor 4; with merged left
bond and physical indices, denoted as v, which is a dy x
(d — 1)x matrix, where the number of columns corre-
sponds to the size of the null space of the tensor A :

Having matrix v we define unique tangent-space directions
using a set of (d — 1)x x x dimensional tensors {X )} as

follows:

To construct an orthogonal tangent basis, we choose {X )}
as the basis in the space of complex matrices of size
(d—1)x x x. Each matrix X @ in the set has exactly

re(im)

(All)

one nonzero element 1(i). This choice provides 2(d — 1) x>
independent basis vectors, where the factor of 2 arises from
treating real and imaginary parts as separate components.
Equation (A11) defines the tangent basis as two sets of
tensors {Vﬁg‘)} and {Vi(sl)}, which satisfy the relation

o =

im °

(A12)

where index « runs over « € [1, (d — 1) x?].

The tangent space of the iMPS plays the main role in
TDVP realization. The TDVP equation of motion is a
projected Schrodinger equation:

Ol (AL, Ac, AR)) = —iPH|Y (A1, 4c,4R)).  (Al3)
The projector in the TDVP equation maps the action of the
Hamiltonian back onto the tangent space spanned by the
basis in Eq. (A12). The most optimal way to project the
dynamics on the manifold is to minimize the leakage or the
distance between the projected vector and the derivative
vector, and the exact form of such a projector can be found

in Ref. [57]. Due to its structure, Eq. (A13) splits into two
equations, one being for tensor A ¢, and the other for C:

Ac = —iGi(4c),

. (Al4)

C=iG,(0).
Here, G| and G, are linear Hermitian maps that take the
tensor A¢/C and return a tensor with the same dimensions.
They represent the action of the projected Hamiltonian
on the MPS. The solution of Eq. (A14) can be schemati-
cally represented as an exponential of these maps A¢(f) =
e '01'4-(0) and C(¢) = €'“1'C(0). The equations below
show the action of G; and G, on tensors A¢ and C:

where in Eq. (A16) dependence on C is coming from the
relation (AL)‘EJ Cit = (Ac)i,-

In Egs. (A15) and (A16), (L,| and |Ry) are the envi-
ronments on the left and on the right, which represent
the case when the Hamiltonian acts to the left side from
the updating site and to the right side from the updating
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site. Equation (A17) shows the left environment tensor
construction:

(A17)

(A18)

The series in Eq. (A17) and in the analogous equation for
Rj, could be rewritten in the following form:

(Lal = (] Y TM(AL, A1),
0 (A19)

IRi) = > TM(Ar, Ap)*|r2).
0

To find the left and right environments, one needs to sum
an infinite number of transfer matrices TM(4;,r, A7 /r) as
in Eq. (A17). Let us now concentrate on the (L;| vector for
simplicity. The transfer matrix TM (4, 4;) has a dominant
eigenvalue of unit magnitude, with corresponding left and
right eigenvectors denoted by (1| and |R), respectively.
The projection (I,|TM(A;, A;)*|R) = (I;|R) represents the
energy-density expectation value that does not depend on
the position of Hamiltonian k. The same logic applies
to |Ry). Then, to find the right and left environments in
Eq. (A19) we solve two equations:

Ly [T+ |R(L] — TM(AL, Ap)] = (] — IR (L,
[1+ [D)(L| — TM(Agr, AR)]|1Ry) = |rn) — |1)(L|rp).
(A20)

At this point, we have all the building blocks to per-
form time evolution by one time step. According to

Eq. (A14), Ac(8f) = e~ 1% 4(0) and C(61) = €/92%C(0).
After applying time evolution for time §¢ and obtaining
tensors A¢(8f) and C(8f), we have to extract A;(8f) and
Agr(81). For this, we join two indices of A¢ to the right
(upper index r) or the left (upper index /) and apply a polar
decomposition:

AL = Uj,c e A =Py U, (A21)
c=Utpl, c=rLU;. (A22)

Then, the tensors A; and Ay are obtained as follows:
A =Ul UL, a4r=UlU, (A23)

Above, we have discussed how to evolve the MPS ten-
sors Az c/r/C of the system by one time step. Let us now
move to the integration procedure for the entire MPS. To
better understand the integration of the TDVP equation for
infinite MPSs, let us first look at the general finite-system-
size MPSs. To propagate the finite system, the following
steps are needed. Consider all A;(n — 1) to the left of n
as already evolved by one step, and Ag(n + 1) and fur-
ther not. For systems without translation invariance, all
tensors are different, and so the tangent spaces, projectors,
and maps G, are likewise different. The procedure is the
following:

(a) Evolve the central tensor according to Eq. (A14):
Ac(n) = e MY (n).

(b) Do QR decomposition to extract 4; and C: Ac(n) =
AL m)Cn). )

(c) Evolve tensor C according to Eq. (A14): C(n) =
eiG2(”)‘St(~j(n),

(d) Absorb the new C to Acn+1) = é‘(n)AR(n +1)
and continue to the next site.

For an infinite system, integration works somewhat dif-
ferently. Compared to the above procedure, the iMPS
should remain translationally invariant for all times z. This
implies that we should apply the procedure above until
Ac(n) = Ac(n + 1). Another way to look at this relation
is to note that after the propagation for one time step,
we obtain the same matrix C with which we started,
C(t+ 81) = C(¢). We can use this to find C as a backward
evolution of C, because C=C= e’GZ‘”C Then we have
C = 7623 C. And finally, from A¢ and C we can obtain A;
and 4 g- Thus, the time-evolution procedure for the iMPS
can be summarized by the following steps:

(a) Time evolve the center-site tensor forward in time:
AC —e —iG18t AC

(b) Time evolve the center-site tensor backward in time:
C _ e—tGgBtC

(c) Find and update A L /IR from /Ic and C according to
Eq. (A23).
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ALGORITHM 3. [Iterator for gradient-descent optimization.

Require: parameters, ¢

1: Construct A from parameters
2: (Ar,~,~) = MixedCanonical(A)
3: (ALnew,¢) = GradientDescent(Ar,c)
4: while (F(ALnew) — F(AL)) > tol || (1 — F(ALnew)) > atol
o > F from FEq. (12)
AL - ALnew

(ALnew,c) = GradientDescent(Ar,c)
¢ = min(c, max.)
return Ar,ecw

3. Gradient-descent algorithm and convergence
properties

To run the algorithm, we initialize a random MPS by
generating a vector of 2dy? random numbers in the range
[—1,1] and reshaping it to a complex matrix 4 of size
X X d x x, which we use to start the optimization. First,
we construct the left-canonical form and then proceed with
the gradient-descent optimization of the cost function. The
conceptual description of the iterator of the algorithm and
initial preparation are combined in Algorithm 3.

This procedure relies on a tangent-space gradient-
descent subroutine, which is briefly described in Sec. 1I B.
Here, we provide a more detailed description of this pro-
cedure, summarized in Algorithm 4. First, we compute
gradients using a tangent-space basis. These gradients are
then used to construct the update tensor §4;, which deter-
mines the direction of the update. To ensure effective
optimization, the learning rate, denoted by c, is adjusted
as described in Sec. II B, and this adjusted rate is applied
to update the tensor A;.

The convergence of the algorithm for a random initial-
ization is illustrated in Fig. 5. As the algorithm converges,
the improvement in fidelity at each iteration decreases
until it reaches machine precision, at which point the

ALGORITHM 4. Gradient descent.

Require: Ay, ¢
F(AL+AV®) Y Fap—av(®) )

re/im re/im

: gfe/im = 2A
DAL =3, (g8 + igh) Vi)
: Normalize §Ar

ALnew = AL + cdAL

f = F(ALnew)

o if f > F(AL) then

| c=cx¢

: while f < F(Ar) do
c=c/T

ALnew = AL +cdAL

f = F(ALnew)

if ¢ < e then

| break

: Normalize Arnew

: return Appew, C

> Using D(A, A) from Eq. (11)

> F from Eq. (12)

PN DGR W

— e e
w09

> Using D(A, A) from Eq. (11)

—
ot

1 —1
0 10774
=
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FIG. 5. The performance of the gradient-descent algorithm

using the tangent space of the iMPS. The algorithm terminates
when 8F reaches 10™!°. The data are for the GS orbit from Fig. 1.

process terminates. For our search, we set the absolute tol-
erance (atol) and the tolerance (tol) to 103, with the
maximal learning rate max, = 1, and parameter £ = 1.2
(r = 1.4) controlling the dynamical updates decreasing
(increasing) the learning rate. The finite difference used to
calculate gradients is set to A = 107>, and the learning rate
at which the procedure halts is chosen as € = 1074, The
initial value of the learning rate ¢ is chosen as 0.1. These
parameters have been selected to ensure both accuracy and
computational efficiency.

Similar to the procedure for finding the canonical form
(see the comment at the end of Appendix A1), the
gradient-descent algorithm also faces a problem when con-
verging to the state that corresponds to a lower bond
dimension x’ < x compared to the fixed bond dimension
x. For such instances, we observe that the number of
nonzero directions in the tangent space decreases from 2 2
to 2’ at a certain point. We observe that this causes the
gradient vector to be ill behaved: the change of nonzero
components of the gradient is very rapid (the second
derivative is very large), causing the learning rate of the
gradient descent to shrink and leading to the eventual
halting of the optimization.

APPENDIX B: CLASSICAL PROPERTIES OF THE
PERIODIC ORBITS

In this appendix, we discuss the classical properties of
the periodic orbits. First, we analyze the inversion sym-
metry. Next, we explain the construction of the Jacobian
using a tangent-space basis that is required for the study of
classical stability of periodic orbits. Using the spectrum of
the Jacobian, we also provide details for the onset of sta-
bility of the periodic orbit studied in Sec. III C. After that,
we demonstrate the stable periodic orbit for y = 3, ana-
lyze the Fourier spectra of the correlation functions, and
reveal a nine-dimensional KAM torus. Finally, we com-
pare periodic orbits found for different values of the bond
dimension.
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1. Inversion symmetry of periodic orbits

The kicked Ising model has spatial inversion symmetry,
often referred to as parity. However, our algorithm for find-
ing periodic orbits does not impose this symmetry, and we
do not restrict our initial guess to having inversion sym-
metry. Hence, we expect that the orbit search may find
both inversion-symmetric and inversion-breaking orbits.
Indeed, from the 12 orbits that we discuss in Sec. III B,
three orbits are not inversion symmetric. Since the Hamil-
tonian is inversion symmetric, all inversion-breaking orbits
have a partner periodic orbit that can be obtained via the
action of spatial inversion.

An example of such a periodic orbit is illustrated in
Fig. 6, where we use the expectation values of Pauli
matrices on adjacent sites to demonstrate the absence of
inversion symmetry. The same figure also shows expec-
tation values for the spatially inverted orbit. This orbit is
obtained by transposing the bond indices of the MPS ten-
sor A;(0), which correspond to the reflection of spatial
coordinates. Such transposed MPSs correspond to different
periodic orbits, as shown in Fig. 6.

While the occurrence of classical periodic orbits with a
lower symmetry compared to the Hamiltonian is natural,
it prompts the discussion of the correspondence between
low-leakage periodic orbits and eigenstates of the unitary
operator generating dynamics over one period, Ur. The
eigenstates of Ur are expected to obey the same symme-
tries as the Hamiltonian. Hence, they cannot correspond
to inversion-breaking periodic orbits. However, using the
fact that each inversion-breaking periodic orbit has a part-
ner with the same period, we can try to form inversion-
symmetric and antisymmetric periodic orbits. Notably,
these combinations will correspond to a noninjective MPS
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FIG. 6. An example of a periodic orbit without inversion sym-

metry (Fig. 1 x =3 green line, sixth from the bottom). The
absence of inversion symmetry is manifest in the correlation
functions of the Pauli operators for adjacent sites, (0707, ) #
(0707,,) shown by dashed green and blue lines. Correlation
functions calculated for the spatially inverted periodic orbit (see
description in the text) are denoted as (..)p and are shown by

dotted lines.

representation with a larger bond dimension [as a sum
or difference of two will have a transfer matrix with two
eigenvalues with magnitude 1, similar to the Greenberger-
Horne-Zeilinger (GHZ) state], which are beyond the appli-
cability of our algorithm. It remains to be seen if the
intrinsic nonlinearity introduced by the projection for non-
injective MPS may still allow such linear combinations
of periodic orbits to remain periodic orbits. In any case,
we speculate that the presence of low-leakage inversion-
breaking orbits may indicate a tendency to spontaneous
inversion symmetry breaking.

2. Algorithm for the calculation of the Jacobian

To construct the Jacobian, we use a tangent-space basis,
{V} = {Vie, Vim}, as it encodes all physical directions corre-
sponding to changes in the quantum state. We first take an
initial state corresponding to the periodic orbit at time ¢ =
0, A7(0), and perturb it with strength A along a particular
tangent-space direction, V¥, After evolving the perturbed
state for one period using the TDVP, we expand the result-
ing state, AEGH(T), over the tangent basis at the same point
Ar(0). Computing the expansion of 4> (T) over the basis
{V}, we face the problem of the gauge freedom of the MPS.
The tangent basis is very sensitive to the gauge. This is
why, if during the evolution the state changes gauge, the
difference between Aien(T) and A;(0) cannot be expanded
over the tangent-space basis of 4, (0).

In order to avoid dealing with gauge fixing, we rely on
the same notion of distance between states [Eq. (11)] as
used for the search for periodic orbits. Specifically, we
choose {B;} as a set of parameters for the optimization
and construct the tensor 47" = 4,(0) 4 8,7, and nor-
malize it. Then, we maximize the fidelity D45 (7), A}
over the parameters {f;} using the OPTIM software pack-
age in JULIA and taking into account that /]Een should be
always normalized. Effectively, this optimization finds the
expansion of the perturbation at time 7" over the tangent-
space basis using a gauge-invariant cost function. The
resulting coefficients {8;} should then be divided by A
to obtain the finite-difference approximation of the given
matrix element of the Jacobian (see the expression in
Algorithm 5).

The Jacobian constructed according to Algorithm 5 is
influenced by several sources of numerical errors. First,
we use a finite-difference approximation for the deriva-
tives. For our computations, we choose A = 1073 as we
have observed that taking smaller values has little effect
on the Jacobian matrix. The second source of numerical
errors comes from the fact that orbits may not be perfectly
periodic due to the imperfect convergence of the gradient-
descent algorithm. Finally, the third source of errors could
potentially come from the numerical maximization of the
fidelity D(4)" (1), A}°™). At this point, we encounter the
problem of when the optimization algorithm selects the
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ALGORITHM 5. Jacobian construction.

Require: A7(0), {V}
1: for i € [1,2x°] do
ARH(0) = AL(0) + AV
Normalize AP?*(0)
APT(T) = Ur(AE™(0)
Introduce parameters {f3;} and tensor
APt = Ap(0) 4 BV

B; = maxgay (9(A7 (1), AF™))
Jaci,j = ﬂj/A

correct direction in the space of parameters 8 but results in
a slightly larger magnitude of coefficients, as we normalize
AP every time we construct it. Normalization is required
to compare two MPSs according to Eq. (11). To avoid this
issue, we choose a zero vector as an initial guess for the
optimization. In this case, we expect to fall into the local
minima near Ay (0). Finally, we expect that the finite-time
discretizations of the TDVP equations of motion break the
symplectic structure, though it remains to be understood at
which order in the time step this occurs. As an independent
test of the magnitude of numerical errors, we use the prod-
uct of the magnitudes of Jacobian eigenvalues. Due to the
preservation of the phase space volume, this is expected
to be equal to 1. For periodic orbits, we have typically
obtained a product of eigenvalues that differs from 1 by
less than 0.1 for unstable orbits and less than 0.01 for stable
orbits.

3. Onset of instability for a x = 2 periodic orbit

In Sec. I11 C, we have observed that by changing the cou-
pling J, the nature of the periodic orbit changes from stable
to unstable. Here, we study this transition in more detail.
In particular, we look at the evolution of all Floquet mul-
tipliers (eigenvalues of the Jacobian) in the complex plane
(see Fig. 7). Before instability, for J = 1.25, we observe
that all 22 = 8 eigenvalues live on the unit circle in the
complex plane, with four of them located near —1, and
the remaining four distributed over the circle (not visible
due to overlap with other dots corresponding to higher J).
Upon increasing J, we note that a pair among the four
eigenvalues near —1 approach —1. This pair “collides” at
the point of the instability, and past the onset of instability
at J = 1.275 one of the eigenvalues becomes larger than
1 and moves outside of the unit circle, whereas the second
eigenvalue moves inside. Even further away, atJ = 1.3 we
note that there are already four eigenvalues not on the unit
circle.

Observing that a pair of multipliers that were previously
on the unit circle are now on the real line and on oppo-
site sides of —1, we assume that —1 has been crossed
with increasing J, which points at a (supercritical) period-
doubling (also known as “flip”’) bifurcation [93] at some J

e J=125 x J=13
v J=1.275 J=1275T=2
0.51 AN
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FIG. 7. The evolution of Floquet multipliers of the GS orbit in

the complex plane upon changing the coupling J in the kicked
Ising model. For a stable orbit, all Floquet multipliers lie on
the unit circle. Upon increasing J, we observe that two (J =
1.275) and then four (J = 1.3) Floquet multipliers collide and
then move away from the unit circle. This indicates the onset
of instability. The orange triangles correspond to the period-
doubled stable orbit that we find for the value of coupling past
the instability onset.

betweenJ = 1.25 and J = 1.275. However, we have been
unable to find the stable double-period orbit that would
correspond to this bifurcation. While for J = 1.275 we
have found a stable double-period orbit (its stability is
recorded in Fig. 7 with orange “+4” marks), it does not
branch from the stable period-1 orbit at J = 1.25.

4. Nine-dimensional KAM torus for x =3

In Sec. III B, for the J = 1.09, we have discussed the
properties of the stable orbit with y = 2. In particular,
using the dynamics of local observables when the system
is initialized slightly away from the periodic orbit, we have
visualized the four-dimensional KAM torus. The existence
of the torus is already apparent from the fact that local
observables remain very close to their values at the peri-
odic orbit for long times. Understanding the dimensional-
ity of the torus is more subtle, and we have confirmed it by
matching the peaks in the Fourier spectrum to the phases of
Jacobian eigenvalues. The four-dimensional nature of the
torus, identified by the four different frequencies, is consis-
tent with the expectations of having a x> dimensional torus
for a generic stable periodic orbit in an MPS manifold with
bond dimension y.

In order to further confirm these expectations, we have
studied the properties of the periodic orbit with y =3
found at the value of coupling J = 0.91. Perturbing the
orbit by A = 107, we compute the stroboscopic expecta-
tion values of observables for times nT with n € [1, 500].
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FIG. 8. The x = 3 stable periodic orbit for J = 0.91. The fre-
quencies from the Jacobian are the same as those from the Fourier
transform of the signal. The excess entanglement accumulated in
the exact dynamics compared to the entanglement on the orbit is
8Sent = 0.11. Comparing this value with Fig. 3, we conclude that
this is an intermediate-leakage orbit.

The corresponding Fourier spectra are also compared with
the phases obtained from the Floquet multipliers. We note
that the analysis of single-spin expectation values (o)
with @ = x,y,z has revealed only eight, instead of the
expected nine, peaks. However, analyzing more compli-
cated two-site observables such as (o;07,;) shown in
Fig. 8 yields the expected x> = 9 peaks that also match
the phases of the eigenvalues of the Jacobian. Therefore,
we further support our conclusion about the generic occur-
rence of y2-dimensional KAM tori around stable periodic
orbits. In addition, we note that with increasing bond
dimension, progressively more dynamical variables are
involved in describing the correlations of the system, hence
suggesting that stability analysis requires input beyond
single-spin expectation values.

5. Comparison of orbits with different bond
dimensions

In the main text, we have illustrated the existence of
multiple periodic orbits for different values of the bond
dimension y = 1,...,4. This leads to the natural ques-
tion of whether the orbits found at different values of x
are related among themselves and potentially also to the
eigenstates of the unitary in Eq. (16). To investigate this
potential relation, we study the pairwise distances between
orbits at t = 0 using fidelity in Eq. (11).

In Fig. 9, we show the fidelity between the initial points
of different orbits. The first periodic orbit x = 1 is a ceil-
ing state from the main text, and according to the figure, it
has relatively small overlaps (at most 0.7) with all remain-
ing orbits. On the other hand, the second orbit found for
x = 1 has a partner x = 2 orbit, as is witnessed by the
considerably larger overlap of 0.95. This partner orbit has
been analyzed in Sec. III C, where it has been shown to be
a ground state of the effective Hamiltonian. Note that we

0.0 2.5 5.0 7.5 10.0

FIG. 9. The fidelity between initial points of orbits for different
values of x.

have not found further relatives of this orbit at higher bond
dimensions (note the absence of bright colors in the x > 2
parts of the second row or column of the matrix in Fig. 9).
The relation between orbits can also be seen in Fig. 11 in
Appendix C 2 below, where we illustrate the overlap of the
initial points of the orbit with eigenstates of the effective
Hamiltonian.

In contrast to the first x = 2 orbit, the second and third
X = 2 orbits have partners in y = 3 and x = 4, as is evi-
denced by the overlap of 0.86 and 0.83 for the second orbit
and 0.9 and 0.8 for the third one. Despite the intuition that
orbits with higher bond dimensions should better repre-
sent the eigenstates of the effective Hamiltonian, in Fig. 4,
we do not see a qualitative difference in the IPR scaling
between orbits with different x. One reason for this may
be the higher leakage of the underlying orbits, as the cor-
respondence between eigenstates and orbits is expected to
hold only in the low-leakage regime. Another reason may
be related to the algorithm for finding the periodic orbits.
As we have discussed above in Appendices A1 and A 3,
the canonical form and gradient-descent algorithms may
experience numerical-stability issues when converging to
the state with an effective lower bond dimension.

APPENDIX C: QUANTUM PROPERTIES OF THE
PERIODIC ORBITS

In this appendix, we provide additional details on the
prethermal regime of the kicked Ising model and calculate
the overlaps of states corresponding to periodic orbits with
eigenstates of the effective Hamiltonian.

1. Prethermal regime

In this section, we discuss the prethermal regime of the
kicked Ising model in Eq. (16). To test at which values of
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coupling J the system thermalizes, we check if its eigen-
states obey the Floquet eigenstate thermalization hypothe-
sis (ETH) [9,45—48]. For this, we compute the propagator
in Eq. (16) for L = 14 with momentum block £ = 0 and
parity block +1 for periodic boundary conditions using
the QuSpin software package [94,95] and perform exact
diagonalization to find eigenstates |@,),
Urlon) = Enlen), (Cl)
and corresponding eigenvalues E,. The Floquet Hamilto-
nian relates to the propagator as Hr = iIn Uy, and so the
spectrum of the Floquet Hamiltonian is related to that of
the propagator
e, =inkE,. (C2)
In the thermal regime, we expect that expectation values
of local observables vary only slightly between eigenstates
with nearby energies and fluctuate around zero—their
infinite-temperature expectation value. In contrast, in the
prethermal phase, the eigenstates can be obtained from
folding the spectrum of the approximate local effective
Hamiltonian. Hence, we expect to see the deviations from
the typical thermal values.

In Fig. 10, we show a local-observable expectation value
versus the quasienergy values for two different values
of J. The behavior at the dual-unitary point, J = 7/2,
where magnetization fluctuates around zero, should be
contrasted to the behavior at the smaller value of J = 1.09,
where traces of smooth, systematic dependence on the
quasienergy are visible, suggesting that the system is still
in the prethermal regime. The transition from the prether-
mal regime to the thermal regime leads to the eigenstates of
the effective Hamiltonian becoming more and more ther-
mal. This leads to the higher leakage of periodic orbits,
which we observe in Fig. 3(c) (top panel) when increasing
coupling J.

0.2
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FIG. 10. The magnetization along the x direction for different
J in a spin chain of size L = 14, momentum block 0, and parity
block +1. For the smaller value of J, the systematic dependence
on e highlights a prethermal regime, whereas at the dual-unitary
point, the magnetization fluctuates around zero.
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FIG. 11. (a) The overlap of some MPSs corresponding to
the periodic orbits and eigenstates of the fourth-order effective
Hamiltonian for J = 1.09 and L = 10. (b) The normalized den-
sity of states (DOS) of the HZ. The different colors of dots
correspond to the periodic orbits from Fig. 1. The states corre-
sponding to the least leaky periodic orbits have an overlap of
order 1 with the ground and ceiling states of the effective Hamil-
tonian. One x = 1 orbit also has a high overlap with the GS,
while the x = 3, 4 orbits have the highest overlap with the states
from the middle of the spectra.

2. Effective Hamiltonian

To understand the role of periodic orbits in the prether-
mal regime, we study the overlap of the MPS corre-
sponding to the periodic orbit with the eigenstates of
the effective Hamiltonian He(gf), which is obtained from
the fourth-order Magnus expansion of Eq. (16). In the
kicked model, the Magnus expansion simplifies to the
Baker-Campbell-Hausdorff formula,

1 1
Ur = exp (_ZEH2> exp (_ZSHI) ~ eXp(—iTHégB)a

1 i 1
H = 3 (Hy + Hy) = STHa )+ o ([ [Hy Ho)

+ [Hy, [Hy, Hi]]) — ﬁ([Hz, [H, [H, 111D,
(C3)

leading to a translationally invariant Hamiltonian with
terms including products of up to five Pauli matrices.

We construct the effective Hamiltonian He(:f) using the
QuSpin [94,95] software package for L = 10 in the full
Hilbert space and diagonalize it to obtain all energies (e,)
and eigenvectors. In Fig. 11, we show the overlap of the
eigenvectors of the effective Hamiltonian in Eq. (C3) with
the MPSs corresponding to some of the periodic orbits
from Fig. 1. The two low-leakage periodic orbits (GS
and CS in Fig. 1) correspond to the ground and ceiling
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FIG. 12. The connected correlation-function dynamics of the
GS trajectory obtained by TDVP (full line) and TEBD (dotted
line) simulations.

states of the effective Hamiltonian, as is witnessed by their
overlaps being close to 1 in Fig. 11. We also illustrate
another y =1 orbit, as it has a high overlap with the
ground state. In Fig. 12, we illustrate the comparison of the
correlation function during the TDVP and exact dynam-
ics represented by TEBD. The figure illustrates that the
dynamics of low-leakage trajectories are very close to the
exact dynamics.

In contrast, the other MPSs corresponding to more leaky
periodic orbits have the largest overlaps with eigenstates
of the effective Hamiltonian from the middle of the spec-
trum (For clarity, only two such orbits labeled as x = 3,4
are shown in Fig. 11). These overlaps have a maximum
at a certain energy and decay exponentially with energy
difference (not shown). This is in contrast to the DMRG
approximation of ground states of local Hamiltonians,
where overlap has been found to have flat tails [96], and
resembles the energy distribution of states obtained from
imaginary time evolution. Since these MPSs have a low
bond dimension, y < 4, the fact that they have overlaps
on the order of 0.5 with individual eigenstates is still highly
unusual. This suggests that even the effective Hamiltonian
in Eq. (C3) may not be fully thermal, at least for the con-
sidered system size. We defer the systematic investigation
of the ETH for the effective Hamiltonian and potential
relation of periodic orbits to quantum many-body scars
[73—82] to future work.

APPENDIX D: ORBIT SEARCH IN
HAMILTONIAN MODELS

In this appendix, we demonstrate the extension of our
method to Hamiltonian models. First, we briefly discuss a
gradient-based search for the orbit period. We then present
the results of the orbit search in the deformed XXZ and
XYZ models.

1. Modification of the algorithm

For Hamiltonian models, searching for periodic orbits
requires an additional optimization step over the period
T. We implement the same algorithm as described in the
main text, extended to include the gradient with respect to
the period. The loss function now depends on both 4; and
the period 7. The derivative with respect to the period is
computed as

_ F(43,T— Ab) — F(Ay, T+ A
o 2At '

ot

(D1)

We run many randomly initialized states, with the initial
guess for the period initialized randomly in the inter-
val [1, 3].

We emphasize that, in contrast to the Floquet setting,
the dynamics generated by a fixed Hamiltonian conserve
energy. This energy conservation also holds for the TDVP
projection. However, implementing energy conservation
within the gradient-descent updates to the MPS in the tra-
jectory search is nontrivial. The present implementation
of the orbits search does not conserve the energy, allow-
ing the gradient-based update to move between different
energy shells. This leads to the algorithm finding a sub-
set of all possible periodic orbits that nevertheless show
interesting physics. We reserve the implementation of orbit
search restricted to a fixed energy shelf for future work.

2. XXZ model

We consider the XXZ spin-1/2 model with magnetic
fields applied along the x and z directions. The field in the
x direction acts as an integrability-breaking deformation
that also removes the conservation of total z magnetization.
The resulting Hamiltonian reads

1
H =3 [(ofof, +0/ol,) + Aofof,,

i

+2heo} + 2h.07 ], (D2)

where ;" are the Pauli operators acting on site i. Run-
ning our algorithm for the parameters J = 1, A = —0.5,
h, = 0.9, and &, = 2, and bond dimensions y = 2, 3,4, we
find periodic orbits with precisions 107, 10~7, and 1073,
respectively. In Fig. 13, we illustrate the dynamics of the
local observables, correlation functions, and entanglement
along these orbits.

We note that many orbit searches converge to stationary
states (zero-period orbits) or local minima. The increased
tendency of convergence to the zero-period orbits com-
pared to the Floquet case can be attributed to the absence of
energy conservation. Moving across energy shells enables
the algorithm to find approximate eigenstates of the Hamil-
tonian at the edges of the spectrum, that correspond to
stationary points of the flow. Indeed, the eigenstates at
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FIG. 13. Periodic orbits for different bond dimensions for the
deformed XXZ Hamiltonian in Eq. (D2). The periods for the tra-
jectories are T = 2.86, 1.55, 1.57 for x = 2, 3,4 correspondingly.
(a) The dynamics of local observables over the period. (b) The
entanglement-entropy dynamics of the TDVP trajectory and the
exact quantum dynamics (TEBD, N = 50). All three trajectories
show big differences in the entanglement entropy, suggesting that
all trajectories have significant leakage. (c) The dynamics of the
two-point-connected correlation functions.

the edges of the energy spectrum can feature low entan-
glement, and thus may be effectively approximated by a
low-bond-dimension MPS. In this sense, our algorithm for
Hamiltonian systems is capable of reproducing DMRG
results [61,62]. Nevertheless, in addition to stationary
approximations to eigenstates, our method also converges
to periodic orbits with nonzero period. These solutions
possess a full Schmidt rank, indicating that they are entan-
gled, and they lie far from simple product states in the
Hilbert space.

In Fig. 13(b), we suggest that the discovered orbits fea-
ture significant leakage; thus we expect to see agreement
between the exact unitary and TDVP dynamics only at
short times. At the same time, the study of the many-body
eigenstates of the Hamiltonian in Eq. (D2) reveals charac-

teristic towers in the overlap \(1//Mps | YE,) 2, where (Y, }
are the exact eigenstates, and yps is the initial point on
the MPS orbit with x = 4 (see Fig. 14).

Similar towers have been observed for quantum many-
body scars in the PXP model [73] for the overlaps with
the Néel initial product state. In contrast, for our system,
the overlaps show towerlike structure for the short-range
entangled MPS state with x = 4 obtained from the orbit-
search algorithm. The energy distance between towers
approximately corresponds to 27t /T, where 7' = 1.57 is the
oscillation period of the MPS orbit, and towers are peak-
ing close to the middle of the spectrum, illustrating that
we uncover high-energy-density scars. At the same time,
the plot in Fig. 14(b) reveals that almost all eigenstates of
the deformed XXZ model feature small fluctuations in the

(a)
g 1073 4
&
S (U
(b)
4 4
-
w9
01,2 . . .
—20 —10 0 10 20
E
FIG. 14. (a) The overlap of the MPS state for the x = 4 orbit

with the spectra of the Hamiltonian in the zero-momentum and
even-parity sector, for system size L = 16. Towers around spe-
cific states indicate that the MPS state mostly expands over sets
of eigenstates, which are close to equidistant in their eigenvalues.
(b) This plot shows that eigenstates with anomalously large over-
lap with the MPS state (shown in orange) feature large bipartite
entanglement.

bipartite-entanglement entropy, with only a few outliers.
Therefore, finding these eigenstates without the MPS orbit
search would not be possible.

For the chosen parameters, the XXZ model with trans-
verse and longitudinal fields is nonintegrable, and the
level-spacing statistics of its spectrum follow a Wigner-
Dyson distribution, characteristic of quantum chaotic sys-
tems. This suggests that the periodic trajectories that we
find are embedded within a chaotic spectral background,
yet remain structured enough to have strong overlap with
a specific subset of eigenstates. While a detailed under-
standing of the emergence of scars in the deformed
XXZ model is beyond the scope of our work, we track
the fate of the MPS orbit with changing single-particle
fields.

We follow the fate of the orbit found /., = 2 by chang-
ing the value of %, by small increments between 0.1 and
0.2, and initializing the algorithm at the MPS tensors cor-
responding to the orbit at the previous value of 4,. We
plot the difference in entanglement entropy for TEBD and
TDVP evolutions at time 7 = 10 across the investigated
values of /4, in Fig. 15. Upon decreasing #4,, the leakage
grows, peaking around /2, = 1.6, and the algorithm fails to
find the orbit for somewhat smaller values of the field. In
this sense, our orbit seems not to be related to stable peri-
odic orbits constructed in Ref. [97]. In contrast, increasing
the value of 4, leads to a decrease in the leakage, sug-
gesting that potentially the fate of the orbit and emergence
of scars in the deformed XXZ model may be understood
starting from the large-/, limit.
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FIG. 15. The difference of entanglement entropy for the TEBD

and TDVP dynamics at 7= 10 for the x = 4 periodic trajecto-
ries for different field %,. Increasing the field 4., the MPS orbit
is getting less entangled, and the difference in the entanglement
between projected and exact time evolution that characterizes
leakage decreases.

3. XYZ model

The XYZ spin chain, characterized by anisotropic cou-
plings along the three spin directions, represents one
of the most general integrable nearest-neighbor spin—%
models [98]:

1
H = 1 Z [Jeolol + o) ol + J.070f, ],

i

(D3)

where J;, J,, and J. denote the interaction strengths in
the x, y, and z directions, respectively. By tuning these
parameters, one can interpolate between different limit-
ing cases such as the XXZ and XY models, while in the
fully anisotropic regime (J, #J, # J.), the system fea-
tures no additional symmetries beyond spatial inversion
and translation.

In our study, we focus on the parameter set J, = 0.6,
J, =1, and J. = 0.5. In this case, we identify two non-
trivial periodic trajectories with bond dimension y =4
converged to numerical precision of order 10~7. The
dynamics of their entanglement spectra (Schmidt coeffi-
cients) are shown in Fig. 16. In Fig. 16(b), we illustrate that
these trajectories feature nontrivial dynamics of correlation
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FIG. 16. (a) The Schmidt coefficient dynamics for two trajec-
tories with x = 4 for the XYZ Hamiltonian. The period of the
light-blue trajectory is 7 = 2.28, while for the deep blue, the
period is 7' = 2.82. (b) The TDVP dynamics of the two-point
correlation function. The exact unitary dynamics obtained with
TEBD also show oscillations but do not agree well with the
TDVP, especially for the light-blue trajectory, due to the large
leakage.

functions, yet are characterized by relatively large leakage.
In contrast, all other optimization runs converged to local
minima or produced trajectories that appeared stationary
under the TDVP dynamics. The increased convergence
of the orbit-search algorithm to stationary points hints
that periodic orbits feature qualitatively different structures
between flows generated by chaotic and integrable mod-
els. Also, individual scarred eigenstates have recently been
reported in XYZ models [99], although they typically fea-
ture translational invariance with a larger unit cell. The
detailed investigation of this phenomenon is beyond the
scope of the present work.

The trajectories found by our algorithm exhibit a large
overlap with weakly entangled states that lie closer to
the boundary of the finite-size Hamiltonian spectrum [see

6 8 10 12 14 16 18
L

(a) The bipartite entanglement of all eigenstates of the XYZ model for L = 12 in the zero-momentum sector. (b),(c) Over-

laps of all eigenstates for two found trajectories with the MPS state on the orbits for the same system size show outliers, but this time
located at lower energy densities. (d) The finite-size scaling of the overlaps with the ground state and first excited state for found
trajectories. One trajectory (light blue) always has the highest overlap with the GS, while the second one (dark blue) has the highest
overlap with GS for L = 4k + 2 and with the first excited state for L = 4k. In the figure, we show the scaling of the highest overlap.
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Figs. 17(a)-17(c)]. Although the overlap is nominally
largest between the MPS and ground state or the first
excited state, the single (approximate) eigenstate is inca-
pable of producing nontrivial dynamics of local observ-
ables and correlation functions reported in Fig. 16. Hence,
the excitations above the ground state are expected to play
a nontrivial role, and indeed, we see in Fig. 17(d) that the
largest overlap between MPS and a particular eigenstate
(ground state or first excited state) is decreasing exponen-
tially with the system size. This suggests that our MPS
trajectory will correspond to a nontrivial combination of
eigenstates at the finite energy density in the thermody-
namic limit, potentially leading to the identification of
trajectory-related finite-energy-density scars in the XYZ
model.
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