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Task-based functional magnetic resonance imaging (fMRI) reveals individual differences in neural
correlates of cognition but faces scalability challenges due to cognitive demands, protocol variability,
and limited task coverage in large datasets. Here, we propose DeepTaskGen, a deep-learning
approach that synthesizes non-acquired task-based contrast maps from resting-state (rs-) fMRI. We
validate this approach using the HumanConnectome Project lifespan data, then generate 47 contrast
maps from 7 different cognitive tasks for over 20,000 individuals from UK Biobank. DeepTaskGen
outperforms several benchmarks in generating synthetic task-contrast maps, achieving superior
reconstruction performance while retaining inter-individual variation essential for biomarker
development. We further show comparable or superior predictive performance of synthetic maps
relative to actual maps and rs-connectomes across diverse demographic, cognitive, and clinical
variables. This approach facilitates the study of individual differences and the generation of task-
related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily
available rs-fMRI data.

Characterizing inter-individual variability in brain activity patterns has
become crucial to understanding individual differences in cognition,
behavior, and the risk for or resilience to mental disorders. Over the years,
many techniques have been developed to discover the neural basis of
individual differences. Among these, task-based functional magnetic reso-
nance imaging (tb-fMRI)has emerged as apowerful technique as it cannon-
invasively measure changes in brain activity associated with a specific
cognitive task. For example, the emotional face-matching task has been
shown to activate several brain regions, particularly the amygdala1, which
has associations with mental disorders such as depression and anxiety2.
Researchers can potentially identify individuals at risk of mental disorders
by examining individual differences in task-related brain activation.
Moreover, an increasing number of studies highlight that task-related brain
activity improves prediction performance for individual differences in
cognitive and behavioral traits, including fluid intelligence, cognitive flex-
ibility,workingmemory capacity, and general cognitive ability, compared to
task-free (resting-state) brain activity3–7. The flexibility of tb-fMRI in eli-
citing task-specific activations, coupled with its improved predictive power
and promising findings regarding reliability8,9, has established its role as a
robust tool for understanding individual differences in brain activity10.

Despite its advantages, task-based brain imaging has several limita-
tions. Firstly, it is less scalable than other brain imaging techniques like

anatomical imaging or resting-state fMRI (rs-fMRI) due to its cognitive
demands, the need for subject training and compliance, and because dif-
ferent studies often use different task variants, which complicates aggrega-
tion across studies. Therefore, large consortium studies such as the Human
ConnectomeProject (HCP)11, IMAGEN12, and Adolescent BrainCognitive
Development (ABCD)13 mostly have data from only a few (usually simple)
tasks, with some notable exceptions, such as the HCP, which provides a
comprehensive task battery11. This is evenmore pronounced in populations
that have difficulty in performing experimental tasks, such as children or
individuals with neurological or psychiatric conditions. The second lim-
itation arises from variations in experimental task designs. Reliable and
advanced biomarker discovery requires large-scale, multi-site datasets to
represent individual variations on a population scale. However, this intro-
duces the challenge of standardization, as researchers must control for
differences in scanning sites, parameters, and variations in task designs. In
many instances, it is simplynot possible to aggregate taskdata fromdifferent
cohorts because the differences between paradigms used in each cohort are
too large. This challenge is especially pressing inbig-data studies that require
large samples to provide sufficient power to detect subtle effects or to
characterize inter-individual variability.

In this paper, we address these limitations by generating synthetic task-
based brain images from task-free resting-state data. This approach builds
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upon the discovery that resting-state and task-based brain activity share the
same intrinsic network architecture14–16. Preliminary work has aimed to
predict inter-individual variations in task-induced brain activity from
resting-state data15,17Although interesting, these approacheshave important
limitations in that they either fail to fully capture the complexity necessary
for retaining individual-specific information, lack effective methods for
transferring learned parameters to new datasets, or do not cover the entire
brain. Most importantly, all such approaches have mostly been applied to
cases where the true task data were acquired. It ismuchmore challenging to
generate contrast images in cases where the tasks were not acquired at all.
We also argue that this feature is essential for synthetic task images to be
useful forbiomarker construction.Todemonstrateusefulness, it is of utmost
importance to show the predictive utility of synthetic task images for
clinically relevant outcomes, which is the aim of this study.

Building upon prior work17, we present a volumetric neural network
architecture, DeepTaskGen, that (i) addresses all the limitations mentioned
above, (ii) provides the ability to generate synthetic task-based images in
cohorts where these tasks were not acquired, and (iii) provides superior
reconstruction performance in several datasets compared to different
baselinemethods,while simultaneously retaining individual differences that
are essential for biomarker development. To do so, we first train Deep-
TaskGen on the Human Connectome Project Young-Adult (HCP-YA)11

and demonstrate competitive performance in retaining individual differ-
ences while predicting task-based contrast maps (i.e., task-based brain
activity). Next, we apply our trained network to the Human Connectome
Project Development (HCP-D) dataset18 to show its generalizability by
predicting task-based contrastmaps absent fromthis dataset.Next,we apply
our trained network to generate synthetic task images for a comprehensive
battery of cognitive functions for one of the largest population-based
datasets currently available (UK Biobank)19. Finally, we demonstrate the
utility of these synthetic data as biomarkers by predicting subjects’ age, sex,
fluid intelligence, grip strength, and overall health, as well as several clinical
measures, including hypertension and depression diagnosis, alcohol use
frequency, anxiety, and depressive symptom scores. Remarkedly, we show
that inmany cases, synthetic images achieve similar or greater performance
than actual images.

Results
DeepTaskGen demonstrates overall better reconstruction per-
formance and discriminability on the training dataset
First, we trained DeepTaskGen on the HCP-YA dataset using a train set
ðn ¼ 827Þ and a validation set ðn ¼ 92Þ. We used performance metrics
assessing two distinct characteristics of synthetic contrast maps. The
reconstruction performance, measured by similarity metrics such as Pear-
son’s correlation or Dice Coefficient, quantize overlapping or association
between predicted and actual maps. These metrics are widely adopted to
evaluate generative methods in the literature15,17,20–22. Discriminability (or
subject identification)metrics evaluate the subject-specific variation among
predicted images, which is essential for biomarker discovery. To evaluate it,
we used the diagonality index, a metric adopted in previous studies17,20,22. In
this study, we assessed DeepTaskGen’s reconstruction performance using
Pearson’s correlation, and diagonality index scores on a separate test set
ðn ¼ 39Þ. Additionally, while not specific to this context, fingerprinting
scores are widely accepted for assessing subject identifiability from brain
images23. Therefore, we present fingerprinting scores along with the Dice
AUC score in the Supplementary Material (Supplementary Fig. 1, and
Supplementary Tables 1, and 2). Next, we used permutation testing to
compare these performance measures with group-average task contrasts, a
linear model15, and retest scans (which can be seen as a theoretical upper
bound on prediction ability). Figure 1c displays the results for seven
representative main task contrasts of seven different paradigms, while
Supplementary Fig. 2 and Supplementary Tables 3 and 4 provide the per-
formance for all 47 task contrasts and their test statistics, respectively.

DeepTaskGen produced consistently higher reconstruction perfor-
mance than the linear baseline (Fig. 1c, Supplementary Figs. 1 and 2). It

achieved the highest reconstruction performance on the RELATION REL
ðr ¼ 0:711; σ ¼ 0:067Þ, WM PLACE ðr ¼ 0:707; σ ¼ 0:051Þ, RELA-
TIONAL MATCH ðr ¼ 0:697; σ ¼ 0:071Þ, and SOCIAL TOM ðr ¼
0:697; σ ¼ 0:059Þ contrasts, while it yielded the lowest performance on the
GAMBLING PUNISH-REWARD ðr ¼ 0:106; σ ¼ 0:080Þ, and RELA-
TIONAL MATCH-REL ðr ¼ 0:238; σ ¼ 0:146Þ contrasts. We also
observed a notable difference between the contrast maps with the highest
(RELATION REL) and lowest (GAMBLING PUNISH-REWARD) per-
formance ðr ¼ 0:605Þ. We achieved the highest reconstruction accuracy in
the SOCIAL task, while the MOTOR task yielded the lowest performance.
Notably, this trend was also observed in the retest scans, indicating sig-
nificant variations in reliability across different task-based contrast maps.
Additionally, DeepTaskGen ðμ ¼ 0:516; σ ¼ 0:167Þ, where µ and σ are the
mean and standard deviation scores across 47 contrast maps, achieved
significantly greater reconstructionperformance than the linearmodel ðμ ¼
0:367; σ ¼ 0:127Þ in all 47 task contrasts, indicating an advantage of our
network in predicting task contrastmaps compared to the linearmodel after
False Discovery Rate (FDR) correction (Supplementary Figs. 1 and 2).
DeepTaskGen also performed well relative to retest scans. It significantly
outperformed retest scans ðμ ¼ 0:470; σ ¼ 0:206Þ in 29 task contrasts
while achieving worse performance in 4 task contrasts. However, we found
no significant difference between DeepTaskGen and retest scans in 14 task
contrasts in terms of reconstruction performance. The improved perfor-
mance of DeepTaskGen over retest scans can be attributed to scan-specific
noise present in retest scans or shared session-specific information across
both task-based and task-free brain activity retained by DeepTaskGen. The
group-average contrast maps ðμ ¼ 0:524; σ ¼ 0:165Þ achieved the highest
scores in reconstruction performance, significantly surpassing DeepTask-
Gen in 31 tasks while 16 tasks showed no significant difference. However,
these group average maps do not provide any inter-individual variance
whatsoever. This emphasizes that reconstruction performance, although
necessary, is not sufficient for downstream analyzes such as prediction and
biomarker development, which require individual-specific information.

DeepTaskGen achieved the highest discriminability, measured with
normalized diagonality index, in the LANGUAGE MATH-STORY task
ðμ ¼ 0:025; σ ¼ 0:008Þ, whereas the GAMBLING PUNISH-REWARD
task yielded the lowest ðμ ¼ 0:0008; σ ¼ 0:002Þ. Consistently, the LAN-
GUAGE task showed the highest discriminability ðμ ¼ 0:016; σ ¼ 0:010Þ,
while the MOTOR task had the lowest ðμ ¼ 0:006; σ ¼ 0:006Þ, which was
the task having lowest discriminability in retest scans. The same pattern of
results was observed using the fingerprinting score (Supplementary Fig. 1).
Additionally, DeepTaskGen ðμ ¼ 0:011; σ ¼ 0:009Þ consistently yielded
higher discriminability than the linear model ðμ ¼ 0:004; σ ¼ 0:006Þ in 40
of 47 task contrasts while providing similar discriminability in the
remaining 7 task contrasts. This indicates ourmodel’s significant advantage
in retaining individual differences compared to the linear model. However,
retest scans ðμ ¼ 0:097; σ ¼ 0:071Þ showed the highest discriminability,
suggesting they provide themost distinct task contrasts. However, this high
discriminability may be influenced by individual-specific noise.

In summary, compared to various baseline methods, DeepTaskGen
achieves a good balance between reconstruction performance and main-
taining individual-specific variation. The test results for all 47 task contrasts
are given in Supplementary Tables 1–4.

DeepTaskGen provides a performance gain over baselines,
despite the overall lower performance of volumetric methods
Next, we evaluated the reconstruction and discriminability performance of
surface- and volumetric-based methods, including baselines and deep-
learning-based methods (e.g., BrainSurfCNN17 vs. DeepTaskGen) on the
same training dataset (i.e., HCP-YA). The surface-based linear model15 and
BrainSurfCNN were trained as described in their respective original pro-
tocols. Because brain image representation can affect reconstruction and
discriminability, we also assessed performance changes of each deep
learning method relative to its corresponding baseline linear model within
the same representation (surface or volumetric). Results for seven
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representative task contrasts and all 47 contrasts are shown in Fig. 2 and
Supplementary Figs. 3–10, respectively. Statistical comparisons across
image representations were conducted using permutation testing (Supple-
mentary Tables 5–10).

The surface-based linear ðμ ¼ 0:503; σ ¼ 0:166Þ and deep-learning
ðμ ¼ 0:547; σ ¼ 0:179Þ methods exhibited significantly higher reconstruc-
tion performance than their volumetric-based counterparts (linear model:

μ ¼ 0:367; σ ¼ 0:127; DeepTaskGen: μ ¼ 0:516; σ ¼ 0:170) across almost
all task contrasts in HCP-YA. However, retest scans and group averagemaps
showed variable reconstruction performance across task contrasts, with
overall similar performance across image representations. Similarly, surface-
based generative methods (linear model: μ ¼ 0:032; σ ¼ 0:022; Brain-
SurfCNN: μ ¼ :056; σ ¼ 0:040) demonstrated greater discriminability than
their volumetric-based counterparts (linear model: μ ¼ 0:004; σ ¼ 0:002;
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Fig. 1 | Input, DeepTaskGen architecture, and model evaluation on training and
independent samples. a Computation of connectomes:We utilized voxel-to-ROI rs-
fMRI connectomes as input. A connectome was constructed for each subject by
calculating the full correlation between the averaged time series from 50 ICA-based
ROIs and the time series of individual voxels. b DeepTaskGen architecture: Task-
contrast maps for various tasks were predicted from rs-fMRI connectomes using our
proposed DeepTaskGen architecture. DeepTaskGen is a volumetric U-Net model
with attention mechanism that processes the input resting-state connectome
through a series of convolutional blocks, each comprising a 3D convolution layer,
batch normalization, and a non-linear activation function. By utilizing max pooling,
the model compresses images while preserving task-relevant patterns, and then, it
up-samples the images to align with the output task contrast maps. The numbers
below each block represent the output shape of each block and the number of feature
maps (above). The details of the architecture are presented in Supplementary
Table 26. c Training sample: We trained and evaluated DeepTaskGen on the HCP
Young Adult dataset (n = 958). The figure above shows the reconstruction perfor-
mance computed by taking Pearson’s correlation between predicted and actual

contrast maps for representative contrasts from seven distinct tasks. The figure
below displays the diagonality index (the difference between the on-diagonal and the
mean off-diagonal elements in a correlation matrix, normalized by the mean on-
diagonal values) on a symmetrical log scale (symlog, threshold = 0.10), evaluating
models’ discriminability performance. We compared DeepTaskGen with methods
like group-averaged contrast maps, retest scans, and a linear model (each depicted in
distinct colors). d Transfer sample: We further fine-tuned the trained DeepTaskGen
model on the HCP Development dataset (n = 637) using either task contrasts (e.g.,
GAMBLING REWARD), and predicted the other contrast (e.g., EMOTION
FACES-SHAPES). The fine-tuned model was compared to the non-fine-tuned
DeepTaskGen and linear models (shown in distinct colors). Reconstruction per-
formance and discriminability were again used to assess the models’ performance
for each task contrast. In boxplots, the box ranges from the first quartile to the
third quartile, with a line inside indicating the median. The “whiskers” extend
to the most extreme values within 1.5 times the interquartile range, which are
not considered outliers. Any points outside this range are plotted individually as
outliers.
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DeepTaskGen: μ ¼ 0:011; σ ¼ 0:009). We also observed that surface-based
retest scans achieved significantly higher discriminability than volumetric
retest scans in 25 out of 47 task contrasts, while the difference was insig-
nificant in the remaining 21 task contrasts.

As shown in Fig. 2b, DeepTaskGen provided a greater performance
gain over the volumetric linear model compared to its surface-based
counterpart, highlighting the necessity of complex deep-learningmodels for
generating volumetric synthetic task-based contrasts.

Overall, while surface-based brain images generally allow for greater
reconstruction and discriminability performance, DeepTaskGen still pro-
vides a significantly greater performance gain over the linear model within
the volumetric space compared to its surface-based counterpart.

DeepTaskGenallows for generatingcontrastmapsonanunseen
dataset
Next, we evaluated DeepTaskGen’s performance in generating task con-
trasts on a dataset not included in its original training. To do this, we used
the HCP-D dataset, which is ideal because it shares multiple tasks with the
HCP-YA dataset used for training the model. This, in turn, allows us to
assess the quality of the map generation against ground truth. To adapt the
pre-trained model to the new dataset, we fine-tuned it using a single task
contrast common to both datasets (see “Methods”). We then used the fine-
tuned model to predict the task contrast that we did not use during fine-
tuning. For example, the model for the GAMBLING REWARD contrast
was fine-tuned using EMOTION FACES-SHAPES, and vice versa for
EMOTIONFACES-SHAPES. Furthermore, we assessed to what extent the
trained model performed on an unseen dataset without fine-tuning, which
we referred to as “No Finetune.”

Figure 1d depicts the reconstruction and discriminability performance
of the models for the task contrasts mentioned above. Overall, fine-tuning
improved discriminability according to the diagonality index and had

mixed results for reconstruction. In more detail, DeepTaskGen-based
models showed significantly better reconstruction performance (i.e., cor-
relation) than the linear model in the “GAMBLING REWARD” contrast
ðt ¼ 10:225; p1000 ¼ 0:004; δ ¼ 0:340Þ (Supplementary Table 11), while
providing similar performance for EMOTIONFACES-SHAPES.While the
fine-tuned model with EMOTION FACES-SHAPES outperformed the
non-fine-tuned model in the GAMBLING REWARD contrast
ðt ¼ 3:675; p1000 ¼ 0:005; δ ¼ 0:142Þ, the fine-tuned model with GAM-
BLING REWARD performed significantly worse in the EMOTION
FACES-SHAPES contrast ðt ¼ �11:059; p1000 ¼ 0:004; δ ¼ �0:624Þ
compared to the non-fine-tuned model. A similar pattern of results was
observed for Dice AUC (Supplementary Fig. 11).

Regarding discriminability, the fine-tuned model significantly out-
performed both the non-fine-tuned ðt ¼ 4:392; p1000 ¼ 0:003; δ ¼ 0:333Þ
and linearmodels ðt ¼ 3:998; p1000 ¼ 0:003; δ ¼ 0:347Þ in theEMOTION
FACES-SHAPES task according to the diagonality score. For the the
GAMBLING REWARD contrast, the fine-tuned model significantly sur-
passed the non-fine-tuned model ðt ¼ 5:743; p1000 ¼ 0:003; δ ¼ 0:357Þ,
yet performed comparably relative to the linear model ðt ¼ 1:362; p1000 ¼
0:200Þ (Supplementary Table 12). The reduced discriminability advantage
of the fine-tuned model over the linear model in the GAMBLING
REWARD task is likely due to dataset-specific differences in the GAM-
BLING task (see “Discussion”). The test results for the additional perfor-
mance metrics are given in Supplementary Fig. 11 and Supplementary
Tables 13 and 14. Interestingly, fine-tuned models show a lower dis-
criminability under the fingerprinting score. This is not unexpected, given
that they are sensitive todifferent aspects of thedata. Inmost cases,weprefer
thediagonality index, since it is sensitive tomagnitudedifferences,whilst the
fingerprinting score is a “winner takes all” approach.

In summary, DeepTaskGen-based models enable the prediction of
trained task contrast maps on datasets lacking such maps. However, the
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Fig. 2 | Reconstruction and discriminability performances of volumetric- and
surface-basedmethods and the relative performance gain of deep-learning-based
methods over the linear method. Reconstruction performance and diagonality
index (discriminability) of volumetric- and surface-basedmethods and baselines for
the 7 distinct task contrasts from HCP-YA. The same set of subjects was used for
both volumetric- and surface-based methods. BrainSurfCNN: Final model pre-
sented in Ngo et al. 17. a Raw performance scores of several volumetric- and surface-
based baselines and generative methods. b Relative reconstruction performance and
diagonality index scores of DeepTaskGen and BrainSurfCNN compared to the
linear method. Relative scores are computed against the corresponding baseline

linear regression model’s performance, indicating the models’ performance gain or
loss compared to the baseline linear model (i.e., Relative Performance = (Model
Performance–Baseline Performance)/(Baseline Performance) * 100). Positive values
indicate a performance gain over the linear regression model, while negative values
indicate a loss. The raw and relative performance figures for all 47 task contrasts were
given in Supplementary Figs. 3–10. In boxplots, the box ranges from the first quartile
to the third quartile, with a line inside indicating the median. The “whiskers”
extend to themost extreme values within 1.5 times the interquartile range, which are
not considered outliers. Any points outside this range are plotted individually as
outliers.
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benefit and optimal approach for fine-tuning varies depending on the
specific task contrast and therefore should be done with care.

Predicted task contrast maps achieve stronger or comparable
performance in predicting demographic, cognitive, and clinical
variables
Next, we sought to demonstrate the utility of synthetic task images for
downstream prediction tasks within the UK Biobank dataset. To achieve
this, we fine-tuned ourmodel on theUKBiobank dataset using EMOTION
FACES-SHAPES task contrast (µreconstruction = 0.428, σreconstruction = 0.140,
discriminability = 0.189) and predicted seven representative contrasts from
each task available in HCP-YA (Fig. 3).

To ensure that the predicted task contrast maps retain overall network
structure and capture individual- and task-related variance for downstream
analyzes, we visualized them in three ways, along with the actual task
contrast maps from the HCP-YA dataset as a reference. First, we plotted
contrast maps of example atypical and typical subjects for each of the 7
representative task contrast maps (Fig. 3a and Supplementary Figs. 12–18).
Second, we generated group-average maps and observed excellent corre-
spondence with the canonical networks for each task24 and the actual task
contrasts (Fig. 3b). We also noted variability across datasets (e.g., reduced
WM-related activation in UKB, which comprises mid and late adults,
compared to other datasets). Third, we fit Uniform Manifold Approxima-
tion andProjection (UMAP)25 to each dataset to visualize high-dimensional
differences between individuals and experimental tasks in a more intuitive
two-dimensional space (Fig. 3c). We found that the predicted task contrast
maps generated by DeepTaskGen contain lower within-task variance yet
improved between-task variance compared to actual task contrast maps.
This improvement can be attributed to the extensive denoising performed
by our neural network during reconstruction, enhancing the signal-to-noise
ratio (see “Discussion”).

We then compared the prediction performance of each of the seven
predicted task contrast maps to that of actual task contrast maps and
resting-state connectome data using permutation testing ðP ¼ 1000Þ.
Specifically, we aimed to predict individuals’ demographic, cognitive, and
clinical measures, including age, sex, fluid intelligence, dominant hand
grip strength, overall health, alcohol use frequency, weekly beer intake,
hypertension diagnosis, depression diagnosis, depressive symptoms
(Patient Health Questionnaire [PHQ]-926 and Recent Depressive
Symptoms [RDS]-427), anxiety symptoms (Generalized Anxiety Disorder
Assessment [GAD]-728) and neuroticism from predicted and actual task
contrast maps, as well as resting-state connectome data. These were
chosen because other studies have reported high prediction accuracy
using these tasks29,30 and they are measures representing individuals’
mental health. The exact IDs for the variables are given in Supplementary
Table 15.

The results, presented in Figs. 4 and 5 and Supplementary
Tables 16–24, show that the predicted task contrasts achieved greater or
comparable prediction performance relative to actual EMOTION
FACES-SHAPES task contrasts and resting-state connectome data for all
variables. Specifically, we observed a large improvement in sex and age
prediction using synthetic task contrasts, indicating that DeepTaskGen
retains task activity patterns related to unique biological traits and
amplifies their detection due to enhanced signal-to-noise ratios. Notably,
for several clinically relevant measures, including RDS-4 (Supplementary
Fig. 19), PHQ-9, hypertension diagnosis, alcohol use frequency, synthetic
task contrasts achieved significant prediction, while actual brain mea-
sures could not survive permutation testing. This enhanced performance
indicates that synthetic task contrast maps can retain amplified complex
activation patterns related to subjects’ clinical characteristics. Addition-
ally, despite low prediction performance, only the actual EMOTION
FACES-SHAPES withstand permutation testing for overall health pre-
diction. None of the brain measures could survive permutation testing
for the prediction of neuroticism and depression diagnosis (Supple-
mentary Fig. 19).

Discussion
In this work, we present DeepTaskGen, a robust neural network archi-
tecture designed to predict task-based contrast maps using volumetric
resting-state connectivity. This architecture enables the prediction of task
contrasts on unseen datasets, even when task contrasts are unavailable or
have not been acquired.We employed this method to generate task data for
a comprehensive battery of cognitive tasks for the UK Biobank dataset and
show that these synthetic task images retain individual-specific information
essential for biomarker discovery.

We showed that our approach accurately predicts task-based contrast
maps from resting-state connectivity in both the training dataset (HCP-YA)
and unseen datasets (HCP-D and UKB). DeepTaskGen showed excellent
reconstruction performance, outperforming retest scans in terms of more
than half of the task contrasts and performing consistently better than a
linear baseline model, which aligns with previous work17. Importantly,
DeepTaskGen’s generated task contrasts preserve individual differences
relative to linear models and group-average maps. This indicates that these
synthetic contrast imagesmay be better suited as biomarkers for individual-
specific differences. Although group average maps show better recon-
struction performance, they do not retain such individual-specific
differences.

Notably, we observed variable performance when fine-tuning our
model on HCP-D, which can be attributed to slight differences in the
GAMBLING task between HCP-YA and HCP-D. Surprisingly, we found
that non-fine-tuned models often perform as well or better than models
fine-tuned for specific contrasts.More specifically, theGUESSING task is an
adaptation of the GAMBLING task31, with modifications to make it more
child-friendly and incorporate a magnitude manipulation18. This slight
difference in the target task could result in performance loss for the fine-
tuned model compared to the non-fine-tuned model in EMOTION. This
may be because the slight difference in the adapted task could introduce
shifts in feature representations, which the backbone may capture during
fine-tuning, potentially leading to suboptimal transfer and reduced per-
formance. Conversely, we observed a significant performance advantage of
fine-tuning inGAMBLING, because EMOTION,which is the same in both
datasets, was used for fine-tuning. Moreover, the slight task paradigm
variation explains the lack of discriminability performance gain of the fine-
tuned model over the baseline linear model in GAMBLING and the
increased reconstruction performance discrepancy between datasets com-
pared to EMOTION.Collectively, these findings underscore the critical role
of domain similarity in fine-tuning outcomes and indicate that fine-tuning
should be performed and evaluated carefully.

Volumetric task contrasts demonstrated lower reconstruction accu-
racy and discriminability than surface-based task contrast maps (Fig. 2a,
Supplementary Figs. 3–8 and Supplementary Tables 5–10). This pattern
held for both generative methods (e.g., linear model and DeepTaskGen)
and, to a lesser extent, for the baseline (i.e., lower discriminability for
volume-based retest scans compared to their surface-based counterparts).
Several factors may contribute to the observed differences between surface
and volume representations. These include the use of datasets optimized for
surface-based analysis (e.g.,HCPdatasets), the inclusion of subcortical areas
in these datasets (Supplementary Figs. 20–23), and variations in motion
correction between volumetric and surface-based images. The reduced
performance of volumetric generative methods is likely exacerbated by the
inherent complexity of 3D volumetric data, characterized by a significantly
higher number of voxels compared to vertices in 2D surface-based repre-
sentations. This increased dimensionality may present a greater challenge
for generative methods in identifying relevant patterns for predicting task-
based contrasts. This could particularly affect the volumetric linear model,
potentially indicating its oversimplification for the given 3D volumetric
data. To tackle this, one could increase the complexity of the network
architecture; however, this would require significantly more input data to
train the network (several tens or hundreds of thousands brain images).
Therefore, the future studies should explore networks that aremore efficient
and/ormethods to augmentdataduring training32.Notably, despite reduced
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Fig. 3 | Visualization of single-subject and group-level contrast maps, as well as
similarity (or dissimilarity) among subjects. a Unthresholded and thresholded
task activations for GAMBLING REWARD contrasts are presented for sample
atypical and typical subjects. In each task contrastmap, the left column represents an
atypical subject, while the right column represents a typical subject, defined by their
similarity to the corresponding group average task activations. For each method,
unthresholded task activations are displayed at the top, and thresholded activations
(top 25% most activated voxels) are shown at the bottom. Dice AUC scores for
unthresholded maps and Dice scores for thresholded maps are provided below the
corresponding images. The circled areas show activation patterns replicated better in
DeepTaskGen compared to linear regression and group-average task contrasts.
Sample atypical and typical subject images for six additional task contrasts are given
in Supplementary Figs. 12–18. bGroup-level contrast maps for seven representative
tasks were generated for predicted maps on three datasets (HCP Young Adult, HCP

Development, and UK Biobank) and compared to actual task contrast maps from
HCP-YA. Activations and deactivations are displayed using scaled z-scores, with
colors indicating the magnitude of the effect (shown in the color gradient bar). c To
visualize within- and between-task variance among subjects, we employed Uniform
Manifold Approximation and Projection (UMAP), a non-linear dimensionality
reduction technique. UMAP projects high-dimensional task contrast maps into two
dimensions for clear visualization, allowing us to assess if the projected datasets
contain individual- and task-specific information necessary for downstream ana-
lyses. Each dot represents a subject’s task contrast map for the seven tasks, colored
accordingly. Similar subjects are positioned closer together, indicating similarity,
while distant dots represent dissimilarity. Accordingly, wider spread within tasks
and greater distance between tasks represent higher within- and between-task
variability. Note that we fitted a separate UMAPmodel to each dataset, as indicated
in each column and row.
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general performance for volumetric images, DeepTaskGen exhibited a
greater performance gain over the baseline linear model compared to
surface-based generative methods (Fig. 2b and Supplementary
Figs. 9 and 10). While this enhanced performance gain for DeepTaskGen
may also stem from the lower baseline performance of the volumetric linear
model relative to its surface-based counterpart, it is important to consider
that the complexity of the generative process is inherently higher for
volumetric-based methods irrespective of the specific algorithm. This sug-
gests thatDeepTaskGen is a highly potentmethod for predicting volumetric
task-based contrast maps.

One of the key contributions of this work is a set of synthetic images in
UKB for tasks that were not acquired. We made use of these to perform
extensive validation analyzes to showcase the advantage of using predicted
task contrastmaps for predicting individual differences in an extensive set of
demographics, cognitive, and clinical variables. Our results indicate that
these predicted maps offer equivalent or better performance in all the sce-
narios we evaluated relative to actual EMOTION FACES-SHAPE task
contrast images and resting-state connectome data. This is likely because
our approach increases the signal-to-noise ratio in the synthetic data by (i)
reducing inherent noise in functionalMRI data and (ii) allowing an increase
in the temporal degrees of freedom from resting-state scans that are fre-
quently longer than task-based scans. Inherent noise removal (i.e., denois-
ing) occurs on several levels within theU-Net architecture, most notably on
the downsampling (i.e., encoding) branch. Like other dimensionality
reduction methods, the network compresses the information in the input
image that is most relevant to the target image, suppressing unrelated
information attributed to noise. During training, the weights of these blocks

are constantly updated to force the network to extract the most relevant
information to the target contrast maps, minimizing overall loss. Due to
these inherent mechanisms, U-Net has been widely used to remove noise
from biomedical images33,34. Moreover, we observed variability in the pre-
dictive performance of various synthetic task contrasts, which indicates
DeepTaskGen’s capability to retain task-specific variability, also evidenced
in the UMAP visualizations (Fig. 3c). This reinforces DeepTaskGen as a
robust tool to facilitate predictive neuroscience.

Our method builds directly upon the foundational work of Tavor
et al.15 andNgo et al.17, whodemonstrated the potential to predict task-based
brain activity from resting-state brain connectivity.However, these previous
methods have additional limitations. Tavor et al. employed a linear model,
which fails to capture the complexity of the shared network architecture
between task-based and task-free brain activity and does not effectively
transfer learned parameters to unseen datasets. Ngo et al.17 introduced a
neural network-based architecture, but it is limited to the cortical surface,
thereby excluding subcortical areas and cerebellum that are crucial for
cognitive functions35–37 and mental disorders38–40. In contrast, our proposed
network, DeepTaskGen, overcomes these drawbacks, generating task con-
trast maps of the entire brain in new cohorts where such maps were not
acquired. Additionally, Ngo et al.17 proposed a reconstructive-contrastive
loss to enhance inter-subject variance in predicted contrast maps while
minimizing within-subject differences. While the authors observed
increased inter-subject variance, they noted its ineffectiveness for fine-
tuning, therefore suggested using themean squared error loss (MSE), which
may still bias predictions toward the group average on target datasets. We
also observed a similar pattern, where reconstructive performance
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Fig. 4 | Prediction of subjects’ age, sex,fluid intelligence, and dominant hand grip
strength using task contrastmaps and resting-state connectome onUKBiobank.
We predicted subjects’ demographic and cognitive measures in the UK Biobank
dataset using three modalities: resting-state connectome, actual contrast map from
the EMOTION task, and seven synthetic task contrast maps. All predictions were
made using L2 regularized regression (i.e., ridge regression) within a 5-fold cross-
validation framework with permutation testing ðP ¼ 1000Þ. Blue represents resting-
state connectome and actual task contrast maps, while red represents predicted task
contrast maps. Note that only the EMOTION task has both actual and predicted
contrast maps on UKB, indicated in blue and red, while the remaining six tasks are

indicated in red as UKB does not provide them. Significant predictions based on
permutation testing are highlighted. Colored horizontal lines indicate mean pre-
diction performance across CV folds. Balanced accuracy was used for sex classifi-
cation, while Pearson’s correlation assessed the other variables. Sample sizes for all
analyses are indicated in each figure. An asterisk (*) indicates a significant difference
in prediction performance between annotated maps and resting-state connectome
data, while two asterisks (**) represent a significant difference between the anno-
tated maps and actual task-contrast maps. Detailed test statistics are provided in
Supplementary Tables 16, and 18–21.
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decreased with increasing inter-subject contrast. To address this, we
introducedContrast-RegularizedReconstructive Loss (CR-R),which canbe
applied to both training and target samples without compromising recon-
struction performance. It should be noted that even with these modifica-
tions, all methods are regularized toward predicting the group average,
consistent with earlier findings15,17,41. Whilst this approach yields good
reconstruction performance, sufficient inter-individual variation remains
for meaningful behavioral prediction, as shown in Figs. 4 and 5, and in the
diagonalization index. Moreover, the improved generalizability to new
cohorts and predict tasks that were not acquired is an important con-
tribution of this work.

DeepTaskGen holds a wide range of implications in neuroscience
studies.One significant application is the predictionof contrastmaps for age
groups for whom task data are difficult to acquire, such as children or
individuals with neurological and psychiatric disorders. We showed that
synthetic contrast maps facilitate predictions and biomarker studies within
populations where acquiring task-based fMRI data may be challenging,
which creates a significant potential to expand the scope of precision psy-
chiatry. However, the correspondence between resting-state and task-
evoked brain activation may vary across different groups, including those
with disorders. Therefore, a model trained solely on healthy controls might
require careful fine-tuning to ensure accurate predictions in disorder
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Fig. 5 | Prediction of subjects’ clinical measures using task contrast maps and
resting-state connectomeonUKBiobank.Wepredicted subjects’ clinicalmeasures
in the UK Biobank dataset using three modalities: synthetic task contrast maps,
actual task contrast maps, and resting-state connectome data. resting-state con-
nectome, actual contrast map from the EMOTION task, and seven synthetic task
contrast maps. All predictions were made using L2 regularized regression (i.e., ridge
regression) within a 5-fold cross-validation framework. Permutation testing ðP ¼
1000Þwas used to assess the significance of out-of-sample performance against a null
distribution.Actual and synthetic brainmeasures are depicted in blue and red colors,
respectively. Note that only the EMOTION task has both actual and predicted

contrast maps on UKB, indicated in blue and red, while the remaining six tasks are
indicated in red as UKB does not provide them. Significant predictions based on
permutation testing are highlighted. Colored horizontal lines indicate mean pre-
diction performance. Balanced accuracy was used to measure hypertension classi-
fication performance, while Pearson’s correlation was employed to assess other
variables. Sample sizes for all analyses are indicated in each figure. Test statistics were
only performed between predictions surviving permutation testing. The detailed test
statistics are given in Supplementary Tables 16, 17, and 22–24. The results for the
additional clinical measures are depicted in Supplementary Fig. 19.
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groups, which should be a focus of future studies. Another important
application of DeepTaskGen lies in methods that utilize population data,
such as normativemodeling42. A recent studymodeling the heterogeneity in
the Emotional Face Matching Task using population-wide life-long nor-
mative modeling indicates a notable gap in mid-adulthood age groups43. In
this case,webelieveDeepTaskGencanplay an important role in this context
by augmenting contrast maps for the underrepresented age group in their
database. Additionally, while the UKB dataset contributes a large portion of
its data due to its sample size, it only includes the Emotion Face Matching
Task, limiting the replication of such models for other fMRI tasks. Deep-
TaskGen can also address this challenge by generating corresponding
synthetic task contrasts by requiring only resting-state fMRIdata,which can
then facilitate the development of more comprehensive normative models.
Furthermore, our method can benefit large-scale imaging genetics studies,
such as genome-wide association studies (GWAS), where potential asso-
ciations between genotypes and brain-based phenotypes are studied. For
instance, our approach allows pooling data to test for associations between
putative genetic variants and specific task-evoked activity patterns. A recent
study44 revealed significant genotype-phenotype associations using multi-
modal neuroimaging data from UKB, but it still faces the limitations
mentioned above. Thus, DeepTaskGen can also enhance GWAS by
enabling more specific and task-related associations using synthetic task
contrasts. It is important to note the difference in variance distribution
between predicted and actual task-based contrast maps. Actual images
contain task-related variation (i.e., signal) and epistemic variation (or
noise)42. During the prediction process, such noise can be effectively
removed, amplifying the variance across experimental tasks by retaining
only task-related variance. This can be seen in the UMAP visualizations in
Fig. 3c, where predicted maps showed lower within-task contrast variance
but higher between-task contrast variance than actual maps. Such removal
of epistemic noise results in an increased signal-to-noise ratio, leading to
improved prediction performance in our validation analyzes. While this
may not be critical for traditional statistical methods like group compar-
isons, it becomes more important when these images are used in complex
models where noise is explicitly modeled. Therefore, we strongly recom-
mend careful model designs that consider this difference when incorpor-
ating both data types within a single model. Additionally, one could utilize
latent information in the resting-state connectome extracted by auto-
encoders to maximize phenotype prediction performance as this latent
informationhypothetically contains necessary details to generate task-based
contrast maps. However, similar to prior methods, we provide synthetic
contrast maps that can surpass the prediction performance of actual maps,
as indicated in this study, while also providing synthetic maps spatially
equivalent to actual maps. This ensures that synthetic images remain
informative and straightforward to interpret, which is critical for several
downstream analyzes.

Several methodological considerations should be noted when inter-
preting our results. First, the spatial Independent Component Analysis
(ICA) and task contrast maps provided in the HCP-YA dataset are surface-
based (i.e., fs_LR surface). We projected these surface-based images to the
volumetric MNI space using a well-established method, Registration
Fusion45, which, despite its promise, might not be as optimal as direct
registration to the coordinate system during preprocessing. Therefore, the
projected contrast maps may have potential differences from those origin-
ally preprocessed in volumetric space, which might impact prediction
performance. Second, despite being more reliable than traditional ICA
approaches, group-level ICAmapsmay still not be optimally reliable due to
their data-driven nature. This may be particularly important when group-
level ICA maps are estimated separately on different datasets. However, in
this study, as mentioned above, the same ICA map provided by HCP was
used as the primary map to parcellate rs-fMRI images across datasets.
Additionally, parcellation was done in a common MNI space to ensure
reliability across datasets. Third, the different dimensionalities of ICAmaps
used to parcellate rs-fMRI might result in varying prediction performance.
Although ICA maps with higher dimensionality could provide voxel-to-

region of interest (ROI) connectomes with greater granularity, they would
significantly increase the size of the connectome, rendering it computa-
tionally infeasible due to excessive GPU memory usage. Conversely, ICA
maps with lower dimensionality could serve as a natural feature-reduction
method; however, the resulting voxel-to-ROI connectome might be too
simplistic to retain the spatial information important for predicting task
contrast maps. Although this is beyond the scope of the current study, we
strongly believe that the effect of input dimensionality on model perfor-
mance should be investigated in future studies. Third, while HCP-YA is the
largest open dataset with multimodal fMRI, the sample size may still be
suboptimal to fully capture the true individualized patterns between rest-
and task-based fMRI46. UKB offers a significantly larger sample size,
including subjects recorded multiple times, which can serve as a reference
for test-retest reliability. Although this is beyond the scope of the present
study, which aims to present a model that can generate multi-domain
synthetic task-based contrasts, evaluating generativemodels on such a large
sample will be necessary in future studies. Fourth, as described in the
Methods section, the presented fine-tuning routine is most effective when
the latent brain network architecture underlying task activations and
resting-state connectome remains relatively stable between the source and
target datasets. When applied across substantially different age groups,
model transferabilitymight be reduceddue to the evolutionof cognitionand
brain architecture over developmental stages, leading to varying brain
activation patterns under cognitive tasks47. In such cases, fine-tuning the
entire network without freezing the final layer could provide a better
adaptation strategy, allowing the model to learn age-specific modifications
between the task-related final layer and the brain network-related backbone
layers, while leveraging shared functional patterns. However, as this is not a
direct task activation transfer, researchers should interpret the results more
cautiously than those obtained with the presented fine-tuning routine.
Another option would be to incorporate multi-task learning by adding
auxiliary tasks, such as age prediction, during training and fine-tuning. This
approach might force the model to retain age-related information, as has
been evidenced by a previous study48. Furthermore, researchers should
recognize theperformance disparitybetween surface- and volumetric-based
images discussed above and select generative methods appropriate for their
specific research scope (e.g., including subcortical regions), preprocessing
pipeline, and data availability.

In summary, we have demonstrated DeepTaskGen, a general-purpose
tool for generating arbitrary synthetic task images from resting-state data.
We consider that this will facilitate the study of individual differences and
the generation of task-related biomarkers.

Methods
Datasets
Supplementary Table 25 provides the sample details and functional scan
acquisition parameters for the datasets used in this study. Further pre-
processing details are provided in the supplementary material. All datasets
are open data with ethics provided separately and described in the original
publications. All ethical regulations relevant to human research participants
were followed.

Human Connectome Project Young-Adult (HCP-YA). The Human
Connectome Project Young-Adult (HCP-YA) 1200 Release was used as a
main dataset to train and evaluate models11. 958 participants, comprising
all the task and resting-state sessions, were included. Of those 958 sub-
jects, 39 have retested 3T fMRI data from the second visit, which we used
as an evaluation set. Rs-fMRI data were acquired in four 15-min runs,
with 1200 timepoints per run, totaling 4800 timepoints per subject.
However, since fewer timepoints (e.g., 300–500) are common in neu-
roimaging datasets and stable functional connectivity can be computed
with shorter resting-state acquisitions22,23, we divided resting-state data
into eight contiguous parts (600 timepoints) as previously shown17. Like
previous studies15,17, we used ROIs from the 50-component parcellation
derived from spatial ICA released withinHCP-YA to compute individual
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functional connectivity. As tb-fMRI data, we used 47 unique contrasts
from 7 main task domains24: WORKING MEMORY, EMOTION,
SOCIAL, RELATIONAL, LANGUAGE, MOTOR, and GAMBLING.
We used minimally preprocessed and FIX-cleaned fMRI data provided
by HCP49. While HCP also provides volumetric rs-fMRI data, the spatial
ICA maps, and z-transformed task-activation maps are only surface-
based. Therefore, we projected surface-based data to volumetric space
using the registration fusion (RF-ANTs)method45. Registration Fusion is
a popular method that allows nonlinear mapping between MNI152 and
fsaverage coordinate systems using coordinate mapping computed on
745 subjects from the Brain Genomics Superstruct Project50. The details
of themapping process are given elsewhere45. Briefly, we separated CIFTI
files into a cortical surface in fs_LR space (wb_command –cifti-separate)
and a subcortex inMNI space, mapped the cortical surface into fsaverage
space (wb_command –metric-resample) using HCP Workbench
Command51. We then projected it into volumetric space using registra-
tion fusion and combined it with the subcortex to create a whole-brain
volumetric image. Projected contrastmapswere then visually checked for
alignment to MNI space and corresponding task activation patterns.
Note that the projected images only contain graymatter.We also binarize
a reference projected image (melodic_IC.dscalar.nii, containing ICA
components) to use as a graymattermask. Subsequently, the scan images
were downsampled to 2 × 2 × 2mm voxel resolution and cropped to the
cortex (resulting image dimension is 76 × 93 × 78) to reduce the
computational costs.

Human Connectome Project Development (HCP-D). The evaluation
of DeepTaskGen’s generalizability across different populations with
various age groups and transferability of learned parameters to unseen
datasets was conducted on the HCP-Development (HCP-D) dataset
from the HCP-Lifespan project18. 637 subjects that had completed four
resting-state runs (488 timepoints per run) and EMOTION1 and
GUESSING31 tasks were included in the study. The choice of EMOTION
and GUESSING tasks was due to the EMOTION task performed in both
the main HCP-YA and HCP-D projects, while the GUESSING task
served as an adaptation of the GAMBLING task in HCP-YA, with some
modifications.

UK Biobank (UKB). To assess the practical applicability of generated
contrast maps and further generalizability of the trained model on a
large-scale sample, we used the UK Biobank dataset19. A total of
20,792 subjects with resting-state (490 timepoints) and EMOTION task1

MRI images were included in this study.

Voxel-to-ROI functional connectivity
DeepTaskGen employs resting-state voxel-to-ROI connectivity to predict
task contrasts (Fig. 1a).Voxel-to-ROI connectivity is computed as Pearson’s
correlation between each voxel’s time series and the average signal of the
target ROI52. The target ROIs are derived from components obtained
through group-level ICA applied to resting-state fMRI time series53. Voxel-
to-ROI connectivity provides an increased spatial resolution compared to
the conventional ROI-to-ROI approach, which requires deeper models at
the generation step. Although voxel-to-voxel connectivity could produce a
higher spatial resolution than voxel-to-ROI connectivity, it is computa-
tionally infeasible due to excessive GPU memory use. Additionally, as
mentioned earlier, the voxel-to-ROI approach allows for modeling the
connectivity of the entire brain, providing amore inclusive solution than the
vertex-to-ROI approach.

DeepTaskGen
The architecture of DeepTaskGen is depicted in Fig. 1b. DeepTaskGen is a
volumetric adaptation of BrainSurfCNN17, a surface-based convolutional
neural network based on U-Net architecture54 widely used in biomedical
image segmentation with additional attention mechanism55. Like auto-
encoders, U-Net consists of encoding (i.e., downsampling), decoding (i.e.,

upsampling) blocks, a bottleneck layer and skip connections. Specifically,
DeepTaskGen’s network architecture is as follows: each block in the
encoding and decoding arms consists of a 3D convolutional layer, batch
normalization, and non-linear ReLU activation function. Additionally, max
pooling (MaxPool3d) is applied before each encoding block to reduce the
dimensions of the input image by half by retaining task-related information.
In contrast, compressed images are upsampled before each decoding block
to match the output dimensionality with actual maps. In addition to
BrainSurfCNN17, we incorporated an attention gate into each skip con-
nection. This enhancement helps the network focus on relevant features
from the encoding blocks while suppressing irrelevant activations, thereby
improving overall model sensitivity55. The details of the architecture are
provided in Supplementary Table 26.

Contrast-regularized reconstructive loss
Unlike the previous study17, we did not utilize the reconstructive-contrastive
(RC) loss inmodel training and fine-tuning. AlthoughRC loss enhances the
variance among subjects’ generated contrast maps, it can reduce recon-
struction performance by over-emphasizing the contrastive component,
particularly in transfer samples with smaller datasets, as reported by the
authors17, who proposed the loss. Instead, we minimize the Contrast-
Regularized Reconstructive Loss (CR-R) loss, in which we regularize the
contrastive part of the reconstruction loss (RC) and further combine it with
the reconstructive loss (i.e.,MSE) to prevent themodel from losing focus on
increasing reconstruction performance. Given a mini-batch of n subjects,
B ¼ xi:::xN

� �
, inwhichxi is the actual contrastmaps of subject i, the CR-R

loss LCR�R is defined as:

LR ¼ 1
N

XN

i¼1

dðxi; x̂iÞ ð1Þ

LC ¼ 1
ðN2 � NÞ=2

XN

x̂j2B;j≠i
dðxj; x̂iÞ LCR�R ¼ LR þ αminðLR � LC þ λ; 0Þ

ð2Þ
where dð:Þ is L2 norm, LR is the reconstructive loss calculated as mean-
squared error (MSE) between actual and generated contrastmaps, and LC is
the contrastive loss calculated as MSE between subjects generated contrast
maps and actual contrastmaps of the remaining subjects.LCR�R encourages
LC to be larger than LR by a margin λ and further combines it with LR to
prevent the model from reducing reconstruction performance while
increasing inter-subject contrast. The hyperparameter α controls the weight
of LT in this combined objective. Thanks to its integrated nature, CR-Rdoes
not require separate training sessions with MSE and RC loss, further
simplifying the training process.

Model training
DeepTaskGen was trained on HCP-YA ðntrain ¼ 827; nvalidation ¼
92; ntest ¼ 39Þ for 100 epochs using a batch size of 10, CR-R as the loss
function (λ ¼ 1 and α ¼ 0:25), and the Adam optimizer.

As the task contrasts maps projected from fs_LR space (see Supple-
mentary Material for detailed descriptions) and includes only gray matter,
we used only these voxels tominimize the loss function. Themodel training
was conducted on a single Nvidia A100-40GB GPU and took ~6 h.

Model transfer to HCP-D and UKB
Ourmain objective for the HCP-D dataset was to validate the performance
of DeepTaskGen to predict unavailable arbitrary task contrast maps on an
unseen dataset. For instance, we fine-tuned themodel using the EMOTION
FACES-SHAPES contrast to predict the GAMBLING REWARD contrast.
This approach relies on the assumption that the weights in the trained
model’s output layer are specific to a given task contrast (e.g., GAMBLING
REWARD), while the backbone layers (i.e., all the layers before the output
layer) contain information shared across multiple task contrasts yet differ
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across datasets due to dataset-related features.We also assume that the task-
specific output layer is similar across datasets, as it primarily processes task-
specific high-level features using dataset-specific low- and mid-level fea-
tures, such as variations in MRI acquisitions or preprocessing, from the
backbone layers, whereas the backbone layers differ due to dataset-specific
differences. By adapting only the backbone of the model, we can effectively
predict the trained contrasts from HCP-YA. To achieve this, we froze the
parameters of our trainedmodel’s output layer andfine-tuned the backbone
of ourmodel on theHCP-Ddatasetusing eitherGAMBLING-REWARDor
EMOTION FACES-SHAPES contrast. Specifically, we fine-tuned the pre-
trained model using only a single task contrast (e.g., GAMBLING-
REWARD) for 50 epochs. We used 515 and 58 subjects for training and
validation during fine-tuning, respectively. Subsequently, we replaced the
output layer of the fine-tuned model with one that matched the target task
contrast (e.g., EMOTION FACES-SHAPES) and predicted the target task
contrast maps for 64 test subjects (i.e., holdout set). The model transfer
performance of DeepTaskGen was also compared with that of a non-fine-
tuned model and linear regression.

The initially trained model was further fine-tuned on
UKBðntrain ¼ 16840; nvalidation ¼ 1872; ntest ¼ 2080Þ to test the practical
applicability of predicted task contrast maps. We fine-tuned the back-
bone of the trained model using the EMOTION FACES-SHAPES task
contrast available in UKB for 50 epochs. Then, we replaced the coeffi-
cients in the output layer of the fine-tuned model with corresponding
model coefficients of the 47 task contrasts available in the training dataset
to predict these task contrast maps for 2080 test subjects. Notably, despite
being significantly larger than HCP-YA in terms of sample size, the UK
Biobank (UKB) was not utilized for pre-training the main model, as it
only provides one fMRI task, EMOTION, which is insufficient for
training a multi-modal model.

Baselines
Group-average contrasts. The group-average contrasts were utilized as
a reference to represent the features in the task contrast that are shared
among individuals. A simple predictive model can effectively capture
these common features. By comparing the performance of the predicted
task contrasts with the group-average contrasts, we can assess the degree
to which the predicted task contrasts capture individual-specific infor-
mation beyond what is captured by the common features represented in
the group-average contrasts. It could also show the degree to which
variation would be in each task contrast, e.g., a high correlation between
true and group-average task contrasts indicates a reduced level of inter-
individual variation.

Retest scans. The additional tb-fMRI data acquired in a second run
ðn ¼ 39Þ was used to evaluate the reliability of the task contrasts.

Linear model. We implemented this baseline model based on the
approach presented by Tavor and colleagues15, as it is the pioneering
study in predicting task-based contrast maps from resting-state con-
nectivity. While the original method was developed and tested using
surface brain images (i.e., CIFTIfiles), we adapted it into volumetric space
for an unbiased comparison. Within each of 50 ROIs (defined using
‘melodic_IC_ftb.dlabel.nii’, provided by HCP, projected to MNI using
registration fusion), we vectorized the input resting-state connectomes
and target contrast maps. A linear regression model was fit to map
between input and target vectors, restricted to these regions containing
only gray matter ð157; 461voxelsÞ to prevent nuisance effects of white
matter and CSF signals. Fitting separate linear models to each ROIs
resulted in a large weight matrix with dimensions R × S, where R repre-
sents the number of ROIs and S represents the number of subjects in the
training set and validation set combined ðn ¼ 919Þ. We averaged this
weight matrix across subjects to create a vector containing average
weights for ROIs. We then predicted the corresponding task contrast
maps for subjects in the test set using this weight vector. This procedure

was repeated for each of the 47 task contrasts, resulting in 2.159.650 linear
models fit during training.

Visualization of subject- and group-level contrast maps, as well
as inter-subject and inter-task similarity
To evaluate the structure of the predicted task contrast maps, we visualized
maps for representative atypical and typical subjects (Fig. 3a, and Supple-
mentary Figs. 12–18), common structural elements across subjects (Fig. 3b),
and similarities or differences between subjects across various task contrasts
(Fig. 3c). Figure 3b presents the voxel-wise average of task contrast maps
across all subjects, illustrating common brain structures.

We employed a non-linear dimensionality reductionmethod, UMAP25,
to visualize the similarity or variance between subjects and across various
tasks. UMAP preserves global and local topological structure while embed-
ding high-dimensional data into a lower-dimensional space. Specifically,
UMAP was utilized to project the high-dimensional task-based contrast
maps into a two-dimensional space (i.e., two components), where each dot
represents a subject’s task contrast map. This allows for a straightforward
interpretation of similarity or dissimilarity between subjects and fMRI tasks
by considering the distance between dots on the two-dimensional plot. We
implemented UMAP in Python using the UMAP-learn package with default
hyperparameters ðnneighbors ¼ 15;metric ¼ euclideanÞ. To retain and visua-
lize the global and topological details and achieve optimal embedding within
each dataset, we fit a UMAP model to each dataset separately.

Prediction of cognitive and demographic data for validation
To validate the clinical relevance of our model, we predicted multiple non-
imaging variables using the synthetic images derived from the UK Biobank
dataset. Specifically, we aimed to predict threemain domains: physical (age,
sex, grip strength of the dominant hand, overall health), cognitive (fluid
intelligence), and mental health (alcohol use frequency, weekly beer intake,
hypertension diagnosis, depression diagnosis and symptoms (PHQ-926 and
RDS-427), anxiety symptoms (GAD-728), and neuroticism). These pheno-
types cover key aspects of individuals’ demographics and well-being and
have been shown to associate brain biomarkers56. Additionally, they have
been extensively analyzed in the UK Biobank dataset, further supporting
their relevance27,29,30,57. We used a similar L2 regularized linear model (i.e.,
ridge regression) and training and evaluation procedure for all these pre-
diction analyzes (see below). The exact sample size for each prediction is
provided in Figs. 4 and 5.

All regression models were built using predicted contrast maps for
seven main task contrasts (EMOTION FACES-SHAPES, GAMBLING
REWARD, WM 2BK-0BK, LANGUAGE MATH-STORY, RELATION
REL, SOCIAL TOM-RANDOM,MOTORAVG) as well as subjects’ actual
EMOTION FACES-SHAPES contrast maps and resting-state connectome
as comparison. The resting-state connectome for each subject was com-
puted as Pearson’s correlation between each time series extracted using the
50-component ICAparcellation described earlier (50x50 correlationmatrix
for each individual). Feature matrices in prediction analyzes were con-
structed by taking all gray matter voxel values within the brain
ð158; 680featuresÞ or extracting the upper triangle of the correlation matrix
ð1; 225featuresÞ for each subject. We predicted variables using L2 regular-
ized linear regression. Tomitigate the possible effect of the difference in the
number of features derived from task-based contrastmaps and resting-state
connectome, the alpha value,which controls regularization strength, was set
to a value computed by dividing the number of features by the training
sample size. This resulted in significantlymore regularization for task-based
features than connectome-based features. The fivefold cross-validation was
used to evaluate models’ out-of-sample performance (i.e., generalizability),
while permutation testing ðP ¼ 1000Þ was used to estimate the significance
of models’ performance by testing against a null distribution. Additionally,
using permutation testing, we compared the predictive performance of
synthetic contrast maps with actual contrast maps and resting-state con-
nectome. Specifically, we predicted variables using true labels and compared
fivefold CV performance using a paired t-test. To create a null sampling
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distribution for the t-values, we shuffled labels and repeated the compar-
isons 1000 times. Then, we computed the p-value as the proportion of
permutations resulting in t-values as extreme as or more extreme than the
observed t-values. Note that predictions were performed on the 2080 sub-
jects we spared as a test set during the fine-tuning process explained earlier.

Measures of model performance
Reconstruction performance. Reconstruction performance is one of
the primary measures for evaluating a model’s performance. It is deter-
mined by calculating Pearson’s correlation between the predicted and
actual task contrast maps for unseen subjects (i.e., those not used in
training) in the test set.

Diagonality index. While reconstruction performance is essential for
evaluating a model’s capability to generate task contrast maps, it is
insufficient for assessing its ability to preserve inter-individual differ-
ences in these syntheticmaps, which is crucial for downstreambiomarker
development and individual-specific predictions. To address this, we
computed the diagonality index17,20,22, that measures the difference
between the correlations of subjects’ actual and predicted contrast maps
(on-diagonal) and the mean correlation between subjects’ predicted
maps and the actual maps of other subjects (off-diagonal). However, the
raw diagonality index is not directly comparable across methods, as it
only reflects the ratio of cases where the correlation between synthetic
and actualmaps is highest, without accounting for overall map similarity.
To ensure comparability, we normalized the diagonality index by
dividing it by the on-diagonal correlation scores (i.e., reconstruction
performance).

Prediction performance. The predictive power of both actual and
predicted task contrast maps was evaluated using Pearson’s correlation
coefficient for the dominant hand’s grip strength, brain age, fluid intel-
ligence, and overall health. For sex classification, balanced accuracy,
defined as the arithmetic mean of the true positive rate and true negative
rate, was used as the evaluation metric.

Statistics and reproducibility
The Human Connectome Project Young Adult (HCP-YA) and Devel-
opmental (HCP-D) datasets comprise 958 and 637 subjects, respectively,
while the UK Biobank dataset includes 20,792 subjects. Statistical ana-
lyzes and reproducibility details for model training and evaluation are
provided in the respective sections of the “Results” and “Methods”.
Performance comparisons of methods on HCP-YA and HCP-D were
conducted using permutation-tested t-tests (1000 permutations) on the
corresponding test samples (HCP-YA: n = 39; HCP-D: n = 64). Sig-
nificance was set at p < 0.05, with FDR correction applied across all
comparison pairs and task contrasts. Effect sizes for significant tests were
quantified using Cliff’s Delta (δ). Behavioral, cognitive, demographic, and
clinical predictions were performed on the UK Biobank test set, with
sample sizes indicated above each figure (Figs. 4 and 5, and Supple-
mentary Fig. 19). Prediction performance and significance were eval-
uated using fivefold cross-validation and permutation testing (1000
permutations), and average performance is reported in the manuscript.
Comparisons of prediction performance between synthetic and actual
task-based images were conducted using permutation-tested t-tests (1000
permutations), with FDR correction applied across all comparison pairs
and task contrasts. Effect sizes for significant tests were again measured
using Cliff’s Delta (δ). To promote transparency and reproducibility, the
complete implementation, including model architecture, training, eva-
luation, and downstream validation steps, as well as pre-trained models
are provided in an open-source repository.

Technology use disclosure
Large language models were used for proofreading (e.g., grammar, typos,
integrity, and clarity checks) and as assistance duringPythonprogramming.

All authors have read, corrected, and verified all information presented in
this manuscript and Supplementary Information.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The minimally preprocessed HCP-YA S1200 data can be accessed and
downloaded from the following link: https://www.humanconnectome.org/
study/hcp-young-adult/document/1200-subjects-data-release. The ICA-
based group-averaged parcellations used to construct resting-state con-
nectomes are available at: https://www.humanconnectome.org/study/hcp-
young-adult/document/extensively-processed-fmri-data-documentation.
Similarly, preprocessed data for the HCP-D study can be downloaded from
https://www.humanconnectome.org/study/hcp-lifespan-development/
data-releases. TheUKBiobank (UKB) dataset is publicly available at https://
www.ukbiobank.ac.uk/. The numerical source data for the graphs are
available in the Supplementary Data.

Code availability
DeepTaskGen model code can be found on GitHub: https://github.com/
eminSerin/DeepTaskGen. Python scripts to reproduce all the results pre-
sented in this paper are given at https://github.com/eminSerin/
deeptaskgen-paper. Additionally, trained models to generate task contrast
maps on various open datasets are publicly available at https://github.com/
eminSerin/deeptaskgen-models.
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