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Abstract

We theoretically investigate the stationary properties of a spin-1/2 impurity immersed
in a one-dimensional confined Bose gas. In particular, we consider coherently coupled
spin states with an external field, where only one spin component interacts with the bath,
enabling light dressing of the impurity and spin-dependent bath-impurity interactions.
Through detailed comparisons with ab-initio many-body simulations, we demonstrate
that the composite system is accurately described by a simplified effective Hamiltonian.
The latter builds upon previously developed effective potential approaches in the ab-
sence of light dressing. It can be used to extract the impurity energy, residue, effective
mass, and anharmonicity induced by the phononic dressing. Light-dressing is shown to
increase the polaron residue, undressing the impurity from phononic excitations because
of strong spin coupling. For strong repulsions, previously shown to trigger dynamical
Bose polaron decay (a phenomenon called temporal orthogonality catastrophe), it is
explained that strong light-dressing stabilizes a repulsive polaron-dressed state. Our
results establish the effective Hamiltonian framework as a powerful tool for exploring
strongly interacting polaronic systems and corroborating forthcoming experimental re-
alizations.
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1 Introduction

Polaronic excitations represent a pervasive class of quasiparticles with significant implications
in multiple physics areas [1]. In the field of material science, polarons are found in vari-
ous technologically significant materials [2–18]. The formation, properties and interactions
of polarons are pivotal in a multitude of phenomena, such as the electric conductivity of
polymers [19, 20], organic magnetoresistance [21], the Kondo effect [22], and even high-
temperature superconductivity [23–28]. Given their important role and the potential to elu-
cidate the intricate quantum properties of such structures, it is desirable to simulate them in
a controlled setting. As such, ultra-cold atoms representing the main platform for quantum
simulation [29], have been used to study polaron physics [30–32]. Here, we focus on Bose po-
larons [33–38], generated when impurities interacting with an extensive bosonic gas become
dressed by the elementary excitations of the latter. These can be regarded as direct atomic ana-
logues of the Fröhlich polarons arising in semiconductors [7, 8]. Bose polarons have recently
been the subject of a considerable amount of experimental [33–38] and theoretical [39–80]
investigations, aiming to explicate their stationary properties and non-equilibrium quantum
dynamics. Accordingly, several techniques have been deployed for tracking Bose polaron prop-
erties, including mean-field [39–52], renormalization group [53, 54], diagrammatic [55, 56],
variational [57–61], quantum Monte Carlo [62–65] and multiconfigurational variational ap-
proaches [66–82], see also the recent reviews [30–32] on these quasiparticles.
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In parallel to the development of quasiparticle theories, the introduction of the light-
dressed atom picture has enabled the controlled manipulation of interactions between atoms
and strong electromagnetic fields [83–85]. This approach postulates that the field interacts
with the atomic levels altering their properties, by admixing different energy levels, and gener-
ating light-dressed states. These are the combined eigenstates of the field and the atom, being
described by the ensuing interaction Hamiltonian, and display diverse applications in atomic,
molecular, and optical physics. A prominent example is coherent population trapping [86–89],
where the system is transferred in a superposition state that is completely decoupled from light
and hence called dark state. Dark states facilitate coherent population transfer protocols, such
as the stimulated Raman adiabatic passage [90], while constituting a special case of the more
general effect of electromagnetically induced transparency [91–94], accommodating distinct
applications on its own [95–110]. Furthermore, light-dressed states provide an avenue for in-
teraction control, e.g. through Rydberg dressing [111–114] or even by invoking the Rydberg
blockade effect [115–117], while their lifetime is considerably longer from the bare Rydberg
state that is admixed. An additional example is the field-linked states of microwave-shielded
molecules [118–122], which permit the modification of intermolecular interactions and pro-
mote the formation of ground state molecular Bose-Einstein Condensates (BECs) [123].

In the context of ground state ultracold atoms, light-induced modification of atomic states
via center-of-mass coupling, is a common technique for Hamiltonian engineering leading, for
instance, to artificial gauge fields [124–129] and synthetic spin-orbit coupling [130–134].
These mechanisms significantly alter the single particle transport properties, while their effect
on the respective interacting dynamics has been the subject of numerous studies [135–137].
Further, it is well-known that light-dressing of multi-component Bose and Fermi gases dictates
the miscibility character of the mixture [138–144]. In fact, it was recently shown that an
impurity can probe the mixing properties of a light-dressed (spin-1/2) bosonic environment
and form magnetic Bose polarons [73], whose properties depend crucially on the strength of
the light-bath dressing. This motivates the investigation of Bose polarons created by a light-
dressed impurity in a scalar BEC environment. Here, it is important to explicate whether the
electromagnetic field dressing is symbiotic to the polaronic dressing caused by the excitations
of the BEC, or whether it modifies the properties of the polaron in a non-trivial way.

In this work, we address this question by studying the phononic polaron-dressing of a
light-dressed spinor impurity immersed in a one-dimensional bosonic environment. The light-
dressing of the impurity emanates from the strong Rabi-coupling of its (pseudo) spin-states
by a microwave-field. In particular, we focus on the case where only one spin-state of the
impurity interacts strongly with its bosonic host, while the other one remains uncoupled.
Our investigation relies on the ab initio variational Multi-Layer Multi-Configuration Time-
Dependent Hartree method for mixtures (ML-MCTDHX) [145–147], which has a remarkable
track-record in addressing polaron settings [66–82]. First, the case of an attractively interact-
ing impurity is analyzed, which as argued in [70,71,81,82] provides a representative polaronic
setup as long as the impurity is miscible with its environment, i.e. away from the interac-
tion regime where temporal orthogonality catastrophe manifests in the dynamical evolution
of the system [69]. We reveal that the system is well-described by a suitably constructed
extended version of the effective potential model discussed in [69–82]. Most of these ap-
proaches [69–71,74,76–78,80–82] treat the density of the bosonic environment weighted by
the interaction strength as an external single-particle potential for the impurity. Generaliza-
tions for multicomponent baths [73], interacting impurities [72,79] are also considered, while
effective potentials incorporating phonon-induced density fluctuations are also discussed [75].
By comparing the full many-body dynamical results to the aforementioned effective potential
model we assess the emergent polaronic properties, namely the energy, residue, and effective
mass but can also estimate momentum fluctuations caused by effects beyond the effective po-
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tential phonon-impurity dressing. It is shown that the polaron residue increases for strong
coherent dressing of the impurity states. This behavior is associated with the superposition
state of the impurity with almost perfectly spatially overlapping spin-↑ and spin-↓ components,
leading to a reduction of the polaronic dressing. This can be interpreted as an effectively re-
duced bath-impurity interaction strength. The behavior of the residue is reminiscent to the
one of radio-frequency diabatically driven impurities [82].

Turning to strong impurity-medium repulsion it is showcased that the effective potential
is again adequate for describing the polaron state. Importantly, it is found that entering the
strong light-impurity dressing regime a stable polaron occurs even deep within the orthogo-
nality catastrophe regime. This gives access to the ensuing polaronic properties which were
previously available solely in terms of pump-probe spectroscopy [71]. Comparisons with the
effective potential approach enable the readout of the effective mass of the light-dressed po-
laron state. Our results can be probed through state-of-the-art experimental techniques either
via an adiabatic ramp of the microwave-dressing of the impurity state or the cooling of the
impurity being exposed to the spin-coupling field.

This work is structured as follows. Section 2 introduces the spinor impurity setup and im-
portant spin operators. In Sec. 3 we elaborate on different approximate effective approaches
with increasing complexity, leading to the above-mentioned extended effective potential model
in Sec. 3.3. Systematic comparisons of the effective potential model with the ML-MCTDHX re-
sults in the attractive polaron scanario are performed in Sec. 4. Extensions to the case of
critical repulsions for phase-separation and for strong repulsions within the temporal orthog-
onality catastrophe regime are discussed in Sec. 5. We summarize our findings and discuss
possible extensions in Sec. 6. Appendix A explains the details of our ML-MCTDHX approach.
Appendix B elucidates further technical aspects of the extended effective potential model. Fi-
nally, Appendix C provides an alternative formulation of the residue in terms of spin-dependent
overlaps that allows us to independently validate our results.

2 Spinor-impurity Hamiltonian and spin operators

We consider the stationary properties of a strongly particle imbalanced one-dimensional mul-
ticomponent atomic system with NB = 100 bosons in the majority (bath) species and NI = 1
spin-1/2 bosonic impurity. The impact of multiple impurities is also briefly touched upon at
specific cases stated explicitly in our description below. The impurity is exposed to an exter-
nal radiofrequency field that couples its spin states.1 A weakly repulsively interacting bath is
considered such that an almost perfect BEC is formed. In the following, we focus on the equal
mass setting mB = mI corresponding to different hyperfine states of the same isotope, e.g. of
87Rb, emulating the impurity spin states and the Bose gas. The mixture is confined within the
same parabolic potential ωB =ωI and its many-body Hamiltonian reads

Ĥ = ĤB0 +
∑

α∈{↑,↓}

Ĥα + ĤBB + ĤBI + ĤS , (1)

where ĤB0 =
∫

dx Ψ̂†
B(x)

�

− ħh
2

2mB

d2

dx2 +
1
2 mBω

2
B x2

�

Ψ̂B(x) contains the kinetic and potential en-

ergies of the bath. Accordingly, Ĥα =
∫

dx Ψ̂†
α(x)

�

− ħh
2

2mI

d2

dx2 +
1
2 mIω

2
I x2

�

Ψ̂α(x) encodes the
same energy contributions for the spin-α ∈ {↑,↓} component of the impurity. The short-range
two-body intraspecies interactions of the BEC atoms are accounted by the term
ĤBB =

gBB
2

∫

dx Ψ̂†
B(x)Ψ̂

†
B(x)Ψ̂B(x)Ψ̂B(x). Their effective strength is chosen, herewith, to be

1Technically, these can be pseudo-spin transitions among different F hyperfine levels. Herewith to simplify our
notation and be agnostic to implementation details we refer to them simply as spin-states.
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gBB = 0.5
Æ

ħh3ωB/mB ensuring that the bosonic host is in the Thomas-Fermi regime with

radius RTF = 4.22
Ç

ħh
mBωB

, while the depletion of the BEC2 is kept below 0.9%. Similarly,

ĤBI = gBI

∫

dx Ψ̂†
B(x)Ψ̂

†
↑(x)Ψ̂↑(x)Ψ̂B(x) is the bath-impurity interaction, characterized by

an effective coupling gBI . Importantly, only the spin-↑ impurity interacts with the bath i.e.
gB↓ = 0. Further, when discussing more than one impurities they are assumed to be non-
interacting, namely g↑↑ = g↓↓ = g↑↓ = 0. The effective couplings gBB and gBI are related
to the corresponding three-dimensional s-wave scattering lengths and the transverse confine-
ment length [149], being thus experimentally tunable via either Fano-Feshbach [150,151] or
confinement induced resonances [149].

The Rabi coupling between the impurities is introduced via ĤS =
ħh∆
2 Ŝz +

ħh
2(ΩR0Ŝ+ + h.c.),

with ∆ and ΩR0 corresponding to the detuning and the bare Rabi frequency for gBI = 0. The
spin operators Ŝµ, with µ= x , y, z, acquire the form

Ŝµ =
1
2

∑

α,β∈{↑,↓}

∫

dx Ψ̂†
α(x)σ

µ

αβ
Ψ̂β(x) , (2)

with σµ
αβ

denoting the Pauli matrices. Notice that ĤS incorporates the so-called rotating wave
approximation. This is justified since the typical energy difference between the distinct hy-
perfine states emulating the pseudospin impurities is typically of the order of several MHz,
i.e. corresponding to the microwave regime of the electromagnetic spectrum. Additionally,
ΩR0 ≈ ωB and ∆ ≈ ωB of at most a few kHz [138] are required in order to couple the spin
dynamics with the motional degrees of freedom of the atoms.

In order to address the ground state properties of the Rabi coupled multicomponent sys-
tem, we deploy the ab initio ML-MCTDHX approach [145]. It utilizes a variationally-optimized
single-particle basis for each component upon which the many-body wavefunction is ex-
panded, for details see Appendix A. This allows, in principle, to capture all orders of sys-
tem’s correlations in a computationally efficient manner. Within our setup the functionality of
ML-MCTDHX is further facilitated by the almost condensed state of the bosonic environment
enabling its accurate description by a small number of single-particle basis states. This corrob-
orates the feasibility of the computations with the emergent spinor impurity dynamics, which
itself requires a relatively larger basis set for its reliable representation. Throughout this work
we employ harmonic oscillator units, i.e. ħh= mB =ωB = 1, and measure the length, time and
energy in units of

p

ħh/(mBωB), ω−1
B and ħhωB respectively.

3 Effective descriptions of the Rabi-coupled system

Below, we analyze the energy spectrum of light-coupled interacting impurities by gradually
introducing more complicated effective approaches. We also briefly discuss the origin of the
observed polaron features within ML-MCTDHX, based on the approximations incorporated
in the effective model that captures their emergence. To be concrete, we use a fixed attrac-

tive impurity-medium coupling gBI = −gBB = −0.5
r

ħh3ωB
mB

, which according to our previous
works [70, 71, 81, 82] is a representative case of the stable attractive Bose polaron in one-
dimension.

2According to [148], a Bose gas is depleted if multiple eigenstates of its one-body density matrix
ρ
(1)
B (x , x ′) = 〈Ψ|Ψ̂†

B(x)Ψ̂B(x)|Ψ〉 are occupied. The degree of depletion refers to the sum of the occupations of
all eigenstates except the dominantly populated one.
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Figure 1: Ground state energies of Eq. (1) for (a) NI = 1 and (b) NI = 2 impurities
with gBI = −gBB = −0.5

Æ

ħh3ωB/mB and varying ΩR0 (see legend). The dashed lines
indicate the lowest in energy eigenstates for different Sz and ΩR = 0. The important
energy scales, E1↑, E2↑ and∆0 are also schematically illustrated. (c) Magnification of
panel (b) in the vicinity of ∆ = −E1↑, highlighting the difference in energy between
E2↑ and 2E1↑.

3.1 Induced energy crossings and role of polaron interactions

It is expected that the Rabi coupling term, ĤS , plays a crucial role in determining the many-
body ground state of the Bose gas hosting NI impurities. For ΩR0 = 0, it holds that [Ŝz , H] = 0
and therefore the lowest-in-energy eigenstate for each value of Sz = −

NI
2 ,−NI

2 +1, . . . , NI
2 turns

out to be
�

�

�Ψ0;Sz=−
NI
2 +n

E

=

�

â†
0↓

�NI−n

p

(NI − n)!

�

�ΨB+n↑
�

. (3)

Here, |ΨB+n↑〉 denotes the ground state of the (NB+n)-body system consisting of the bath (NB
atoms) coupled to n interacting spin-↑ impurities. Let us stress here that |ΨB+n↑〉 correspond to
well-defined n polaron states. This is because a one-dimensional BEC possesses a finite heal-
ing length, ξ= ħh/pmB gBBn0, where n0 is the peak density. Accordingly, an impurity disturbs
only Ndress ∼ n0ξ particles and not the entire system as in the case of Fermions [152–154].
Lee-Low-Pines theory supplemented by Gross-Pitaevskii equation then predicts a strictly pos-
itive quasiparticle residue, for all inter-species couplings [47, 52]. In a homogeneous system,
however, it was demonstrated in Ref. [65], that quantum-fluctuations yield the increase of
low-energy phonons contributing to the polaron state. This phonon number diverges with the
infrared momentum cutoff (roughly equivalent to the system size) leading to zero residue for
a system with infinite spatial extent. However, the confinement considered here introduces a
physical infrared cutoff renormalizing this divergence. Hence, the notion of the Bose polaron
is well-defined in our setting.

Since gB↓ = g↑↓ = 0, the spin-↓ impurities are un-correlated with the remainder of the
system. Also, the operator â†

0↓ creates a spin-↓ boson in the ground-state (index “0”) of the
parabolic trap. The respective eigenenergies of the entire (NB + NI)-body system read

E0;Sz=−NI/2+n(∆) = 〈ΨB+n↑|Ĥ|ΨB+n↑〉+
ħh∆
2

Sz + (NI − n)
ħhωB

2
. (4)

The interaction energy of n polarons refers to En↑ − nE1↑, where

En↑ ≡ 〈ΨB+n↑|Ĥ|ΨB+n↑〉 − 〈ΨB+0↑|Ĥ|ΨB+0↑〉 − nħhωB/2= E0;−NI/2+n(0)− E0;−NI/2(0) ,

and E1↑ is the energy of a single polaron. Accordingly, for a single impurity the two ener-
gies, i.e. E0;±1/2, cross for ∆0 = −E1, see Eq. (4). Since typically Bose polarons interact,
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Figure 2: Description of Rabi-coupled polarons in terms of a two level model and
its limitations. (a) Population of the spin-↑ and spin-↓ states and (b) expectation
values of the spin-magnitude |〈Ŝµ〉| for varying detuning∆ and for NI = 1 at different
Rabi-couplings ΩR0 (see legend). The polaronic (non-interacting) impurity states are
reproduced for ∆ → −∞ (∆ →∞). For ∆ ≈ −E1↑/ħh, a correlated superposition
state is created.

we expect multiple exact crossings (for ΩR0 = 0), among the distinct Sz states, which tend to
coincide into a single one when polaron interactions become negligible, i.e. En↑ → nE1↑.
A concrete example with the ML-MCTDHX approach is provided by the dashed lines in
Fig. 1(a) and 2(b) for NI = 1, NI = 2 respectively, forming an attractive Bose polaron at
gBI = −gBB = −0.5

Æ

ħh3ωB/mB. The presence of weak attractive induced interactions mani-
fests by the fact that E2↑ ≈ −17.82ħhωB is ∼ 1% smaller than 2E1↑ ≈ 2× (−8.82)ħhωB. Notice
that in the case of NI = 2 illustrated in Fig. 1(b), two distinct exact crossings appear. However,
since the interaction induced difference is relatively small in order to resolve them requires to
focus on a much smaller energy and detuning scale, see Fig. 1(c).

In contrast, a finite ΩR0 leads to the coupling among the |Ψ0;Sz
〉 states and the emergence

of an avoided crossing [85], compare the ground state energies, E0, for ΩR0 ̸= 0 with E0;Sz
for

ΩR0 = 0, represented in Fig. 1(a),(b) by solid and dashed lines respectively. Independently
of NI and for ΩR0 ̸= 0, ∆ < −E1↑ − 2ΩR0, it holds that E0 ≈ E0;Sz=−NI/2, with the latter being
the overall ground state for ΩR0 = 0 in this ∆ range, while for ∆ > −E1↑ + 2ΩR0 we obtain
E0 ≈ E0;Sz=+NI/2. Substantial deviations among E0 and E0;Sz

occur for |∆+ E1↑| < 2ΩR0 with
E0 < E0;Sz

due to the coupling of the Sz = ±NI/2 states caused byΩR0 ̸= 0. The main difference
among the energies of the NI = 2 (Fig. 1(b)) and the NI = 1 (Fig. 1(a)) settings is that in
the former case the magnitude of the contributing energies is twice larger than the former,
since also Sz is increased in the same way. However, since |E2↑−2E1↑| ≪ ΩR0, the energy scale
of light-dressing is orders of magnitude larger than the polaron-polaron interactions and thus
the polaron energy is largely insensitive to it, see Fig. 1(c). For this reason, in the remainder
of this work, we will predominantly focus on the NI = 1 case. Finally, notice that strong
impurity-impurity interactions (when compared to ħhωB) might be possible for gBI → −∞
[155]. However, since we cannot reliably address numerically this case within our approach
we will not further discuss implications in this limit.
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3.2 Effective two-level system

Considering a weak Rabi-coupling, i.e. ΩR0 ≪ ωB, it is natural to assume that the
ground state, |Ψ0〉, of the spinor system described by Eq. (1), is a linear superposition
of the spin-Sz eigenstates |Ψ0;Sz

〉 for ΩR0 = 0. Moreover, within the bath-impurity inter-
action regime where polaron states are supported, the ground state of the spin-↓ atoms,
|Ψ0,−1/2〉= â†

0↓|ΨB+0↑〉, predominantly couples via ΩR0 with the corresponding ground state of
the polaron, |Ψ0;+1/2〉= |ΨB+1↑〉, due to their large overlap which defines the polaron residue,
Z = |〈ΨB+0↑|â0↑|ΨB+1↑〉|. In this sense, the ground state of the entire Rabi-coupled setting for
0 ̸= ΩR0≪ E1↑, can be approximated by a two level system involving only the non-quasiparticle
|ΨB+0↑〉, and polaron |ΨB+1↑〉 states,

ĤTLS =
�

E1↑ +
ħh∆
2

�

|Ψ0;1/2〉〈Ψ0;1/2| −
ħh∆
2
|Ψ0;−1/2〉〈Ψ0;−1/2|

+
ħhZ
2

�

Ω∗R0|Ψ0;−1/2〉〈Ψ0;1/2|+ΩR0|Ψ0;1/2〉〈Ψ0;−1/2|
�

.
(5)

The physical motivation behind this approximation is that we neglect the light-induced mod-
ification of the non-interacting and polaronic impurity states. Diagonalizing the Hamiltonian
given by Eq. (5) yields the ground state of the two-level system

ETLS
0 =

1
2

�

E1↑ −
q

(E1↑ +ħh∆)2 +ħh2|ΩR0|2Z2
�

, (6)

while the populations of the ΩR0 = 0 eigenstates, |Ψ0;Sz
〉, in the ΩR0 ̸= 0 ground state, |Ψ0〉,

read

|〈Ψ0;∓1/2|Ψ0〉|2 =
1
2



1±
sign(E1↑)(E1↑ +ħh∆)

q

(E1↑ +ħh∆)2 +ħh2|ΩR0|2Z2



 . (7)

Finally, the relative phase of the resulting superposition is solely dictated by ΩR0 namely

〈Ψ0;−1/2|Ψ0〉
|〈Ψ0;−1/2|Ψ0〉|

= −earg(ΩR0)
〈Ψ0;+1/2|Ψ0〉
|〈Ψ0;+1/2|Ψ0〉|

. (8)

To establish the validity of this simplified approach, we present in Fig. 1(a) and 2(a) the en-
ergies and populations of the spin-states, n↑,↓ =

∫

dx 〈Ψ|Ψ̂†
σ(x)Ψ̂σ(x)|Ψ〉, respectively within

the fully correlated approach in the case of NI = 1. The ground state energies [Fig. 1(a)] are in
excellent agreement with the two-level approximation predictions, n↑,↓ = |〈Ψ0;+1/2,−1/2|Ψ0〉|2,
[Eq. (6), (7)] which are not depicted since they are almost indistinguishable from the ML-
MCTDHX ones in the presented scales. We remark that by employing the ML-MCTDHX cal-
culated polaron residue Z = |〈ΨB+0↑|â0|ΨB+1↑〉| = 0.984 in Eq. (6), the maximum observed
deviation between the two-level and the ML-MCTDHX approaches is ∼ 1% at ΩR0 = 40ωB.
Similarly, the behavior of the spin state populations, nα, with respect to ∆ is almost per-
fectly described within the two-level assumption. It can be clearly seen that the spin-↑ state
becomes fully occupied for larger ∆/ωB due to the increasing fictitious magnetic field po-
larizing the impurity. Notice also that for small values of the polaron interaction energy,
En↑ − nE1↓, the system is SU(2) invariant and thus the NI > 1 extension is trivial. Hence,
it can be proved that the ground state of the NI system takes the form R̂(∆,ΩR0)|Ψ0;−NI/2〉,
where R̂(∆,ΩR0) = exp(iŜy cos−1 sign(E1↑)(E1+ħh∆)

2
q

(E1↑+ħh∆)2+ħh2|ΩR0|2Z2
) is the spin rotation operator, which is

also in excellent agreement with the ML-MCTDHX results for NI = 2.
The deviations among the fully correlated system and the effective two-level description

can be elucidated by considering the spin-magnitude |〈Ŝ〉|=
Ç

∑

µ=x ,y,z〈Ψ0|Ŝµ|Ψ0〉2. Using the
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fact that within the two-level model the state of the system is a linear combination of |Ψ0;±1/2〉
and taking into account the spin populations [Eq. (7)] and the phase of the superposition
[Eq. (8)], we obtain

|〈Ŝ〉|=
1
2

√

√

√
(E1↑ +ħh∆)2 +ħh2|ΩR0|2Z4

(E1↑ +ħh∆)2 +ħh2|ΩR0|2Z2
. (9)

The latter has a minimum at resonance ∆= −E1↑/ħh with value |〈Ŝ〉|min = Z/2, implying that,
for the parameters employed in Fig. 2, |〈Ŝ〉|min = 0.492 for every ΩR0 within the two-level
approximation. However, the ML-MCTDHX data, see Fig. 1(b), follow the same functional
form as in Eq. (9) but with a larger value of Z = Zeff(ΩR0). The increase of Z in the ML-
MCTDHX data can be verified by observing that |〈Ŝ〉|min > 0.492 increases with ΩR0. This
modification can be interpreted in two ways, namely: i) either as a genuine reduction of the
impurity dressing owing to the light-matter dressing, or ii) a modification of the impurity state
close to resonance due to ΩR0 ̸= 0 resulting in a larger overlap between the spin-states. To
discern between these two modification mechanisms of the polaronic dressing, in the following
section, we develop an effective model by treating the BEC as a material barrier for the impurity
[69–82].

3.3 The extended effective potential approach

It was recently demonstrated [69–82] that effective one-dimensional potential approaches ne-
glecting impurity-bath correlations can be employed to qualitatively address the properties
and stability of the Bose polaron. To derive an effective single-particle Hamiltonian, describ-
ing a Rabi coupled impurity inside a BEC, we consider that only the spin-↑ impurity experi-
ences an effective potential owing to its interaction with the bosonic host. Within our frame-
work, the effects due to the phononic dressing of the impurity are phenomenologically taken
into account with the following assumptions: (i) the mass of the spin-↑ atom is renormal-
ized to the effective mass, m∗I . (ii) There is an energy correction of the single-particle model
δEp ≡ E1↑ − 〈ψ0↑|Ĥeff|ψ0↑〉 + 〈ψ0↓|Ĥeff|ψ0↓〉, where E1↑ is the exact polaron energy. (iii) A
correction due to the modification of the bath states owing to the impurity dressing, i.e. cor-
responding to phononic excitations, is introduced.

The energy correction (ii) is unambiguous and thus simple to implement. However, the
effective mass (i) and phononic (iii) corrections are more involved. In the homogeneous case,
ωB = 0, the effective mass corresponds to the second derivative of the polaron dispersion,

namely m∗I = (
d2E1↑
dp2 )−1. However, for a trapped system, the total momentum, |p〉, is not

an eigenstate and hence m∗I is not directly available from comparison with experiment or
calculations. It has been proposed that m∗I can be estimated through analyzing the impurity
collective modes e.g. its breathing or dipole dynamics in comparison to effective models [68,
70]. In this spirit, here, we consider m∗I as a fitting parameter of our model to be evaluated
via its comparison with the numerically obtained ML-MCTDHX data.

Since the effective potential model neglects bath-impurity correlations, it makes sense to
assume a tensor product ansatz |ψnσ〉 ≈ |ψB

nσ〉 ⊗ |ψ
I
nσ〉, where |ψB

nσ〉 and |ψI
nσ〉 represent

the bath and the impurity states respectively characterized by the spatial, n, and spin, σ,
indices. Notice here that the product ansatz does not imply that the state of the bath is inde-
pendent of the state of the impurity but rather that it parametrically depends on the impurity
state via the index n. Then, since the states of the impurity can be calculated within the
effective potential approach, the overlap of the bath states can be fixed such that the exact
polaron residue corresponding to the ground state of the impurity, n = 0, is reproduced i.e.
Zeff = 〈ψB

0↑|ψ
B
0↓〉= Z/〈ψI

0↑|ψ
I
0↓〉 for ΩR0 = 0.
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With these assumptions the effective Hamiltonian, Ĥeff, experienced by the impurity reads

Ĥeff =

�

−
ħh2

2m∗I
P̂↑ −
ħh2

2mI
P̂↓

�

d2

dx2
+

1
2

mIω
2
I x2 +

�

gBIρ
(1)
B (x) +δEp

�

P̂↑

+ħhΩR0Ŝx +ħh∆Ŝz ,

(10)

where P̂σ =
∫

dx Ψ̂†
σ(x)Ψ̂σ(x) are the projectors to the σ ∈ {↑,↓} impurity spin state. Notice

that the expectation values 〈ψnα|P̂σ|ψnβ〉= 〈ψI
nα|P̂σ|ψ

I
nβ〉 and 〈ψnα|Ŝz|ψnβ〉= 〈ψI

nα|Ŝz|ψI
nβ〉

are equal when acting to both the total state or the impurity state, since they correspond
to diagonal operators in the spin-basis. However, the same is not true for Ŝx . In this case,
〈ψn↑|Ŝx |ψn↓〉 = 〈ψB

n↑|ψ
B
n↓〉〈ψ

I
n↑|Ŝx |ψI

n↓〉 ̸= 〈ψ
I
n↑|Ŝx |ψI

n↓〉. Therefore, in order to render the
effective Hamiltonian of Eq. (10) bath-agnostic we renormalize the coefficients of the spin-
operators as follows Ŝx → Zeff/2 σ̂x , Ŝy → Zeff/2 σ̂y and Ŝz → 1/2 σ̂z , with Zeff = 〈ψB

0↑|ψ
B
0↓〉.

The change of notation from Ŝµ to σ̂µ serves as a reminder that this transformation should
be inverted for calculating spin-dependent quantities such as |〈Ŝ〉|, see further details in Ap-
pendix B. This transformation incorporates the additional assumption that the overlap of the
bath states is not dependent on the state of the impurity 〈ψB

n↑|ψ
B
n↓〉 ≈ 〈ψ

B
0↑|ψ

B
0↓〉. This can be

justified by the fact that we are mostly interested in the ground state of the effective potential
and thus Zeff can be assumed to be a function of ΩR0, i.e. Zeff(ΩR0) = 〈ψB

0↑(ΩR0)|ψB
0↓(ΩR0)〉

which needs to be self-consistently determined by comparisons with the ML-MCTDHX ap-
proach. As such, it is in principle a fitting parameter. However, for most of the discussion that
follows we will consider Zeff = 1, since the Zeff renormalization is found to affect only weakly
our results.

To proceed, let us further assume the Thomas-Fermi approximation for the state of the
bath, as also confirmed by our many-body calculations in the considered parameter regime.
Accordingly, the bath density profile reads

ρ
(1)
B (x) =

(

mBω
2
B

2gBB

�

R2
TF − x2

�

, if |x | ≤ RTF ,

0 , if |x |> RTF ,
(11)

with the Thomas-Fermi radius RTF =
�

3gBBNB

2mBω
2
B

�1/3
. Within this approximation the effective

Hamiltonian is simplified to

Ĥeff =
E0

2
+ħhω̃I

�

â†â+
1
2

�

+
ħhΩeff

2
σ̂x +
ħh∆+ E0

2
σ̂z

−
ħh∆h

2

�

â†â+
1
2

�

σ̂z −
ħhΛ
2

�

�

â†
�2
+ â2

�

σ̂z .
(12)

Apparently, the effective Hamiltonian, Ĥeff, describes a spin-dependent harmonic confinement
of the impurity, see ω̄I , ∆h, with additional spin-orbit coupling provided by Λ and Rabi-
dressing dictated by Ωeff and ∆. This description holds, provided that the impurity is not able
to escape its bosonic host, i.e. it is confined in the |x | ≤ RTF spatial region. Let us postpone for
the moment the discussion regarding the parametric range of validity of this approximation,
in order to first explain the terms appearing in the above expression. An important quantity is
the localization length scale of the impurity

ℓ=

√

√ ħh
mIωI





1
2

�

1+ mI
m∗I

�

1− 1
2

gBI
gBB

mBω
2
B

mIω
2
I





1/4

, (13)
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via which the creation (annihilation) operators are defined as â† = 1p
2

�

x̂
ℓ −

ℓp̂
ħh

�

(â = 1p
2

�

x̂
ℓ +

ℓp̂
ħh

�

). From Eq. (13), it can be verified that ℓ ≤ 21/4
Ç

ħh
mIωI

, in the case that

temporal orthogonality catastrophe is not observed, i.e. gBI < gBB
mIω

2
I

mBω
2
B
, and hence Eq. (12) is

valid as long as
Ç

ħh
mIωI
≤ RTF. Having at hand these definitions, the parameters of the effective

Hamiltonian can be expressed as

Ωeff = ΩR0Zeff , (14a)

E0 =
1
2

gBI

gBB
mBω

2
BR2

TF +δEp , (14b)

ω̃I =ωI

√

√

√1
2

�

1+
mI

m∗I

��

1−
1
2

gBI

gBB

mBω
2
B

mIω
2
I

�

, (14c)

∆h =ωI

√

√

√

√

√

1
2

�

1+ mI
m∗I

�

1− 1
2

gBI
gBB

mBω
2
B

mIω
2
I

 mI
m∗I

1+ mI
m∗I

gBI

gBB

mBω
2
B

mIω
2
I

+
1− mI

m∗I

1+ mI
m∗I

!

, (14d)

Λ=
1
2
ωI

√

√

√

√

√

1
2

�

1+ mI
m∗I

�

1− 1
2

gBI
gBB

mBω
2
B

mIω
2
I

 

1

1+ mI
m∗I

gBI

gBB

mBω
2
B

mIω
2
I

−
1− mI

m∗I

1+ mI
m∗I

!

. (14e)

The intuitive interpretation of Eq. (12) is that the effective potential caused by the bosonic
environment modifies the frequency of the trap from its average value ω̄I in a spin-dependent
manner. The magnitude of this change is given by ∆h, which appears in Eq. (12) as a state-
dependent detuning. This effect in addition causes the state to be squeezed, i.e. the position
and momentum uncertainty become spin-state dependent which is captured by the parameter
Λ. Since Λ and ∆h are related to shifts of the trap length and frequency, respectively, their
interrelation is controlled by the effective mass of the polaron, m∗I . Notice that Λ = 1

2∆h for
m∗I = mI , see also Eq. (14e). In the case of strong light dressing |Ωeff| ≫ |E0/2−ħh∆h/4|, both
of the aforementioned state dependent effects become negligible and the impurity state is well
approximated by a tensor product of a spinless particle confined in a trap with strength ω̄I and
a spin-1/2 atom which interacts with the field.

For Λ= 0 the Hamiltonian of Eq. (12) can be diagonalized analytically, see Appendix B.2.
With the additional assumptions Zeff = Z and δEp = E1↑ + ħh∆h/4 − gBI mBω

2
BR2

TF/(2gBB)
(ensuring the resonance condition for ∆ = −E1↑) this effective potential model [Eq. (12)] is
equivalent to the two-level model of Eq. (5). Even in the case of a finite value of Λ the predic-
tions of the effective potential approach are not drastically different from the two-level model.
Moreover, it is possible to show that for ΩR0 = 0 and away from the temporal orthogonality

catastrophe regime [69], i.e. gBI < gBB
mIω

2
I

mBω
2
B
, the upper bound for the energy correction δEp

is ∆Emax =
ħhω̃I

8 (1+mI/m
∗
I )
−2 ≤ ħhω̃I

8 (see also Appendix B.1 for the detailed derivation). This
enables a perturbative treatment of the spin-orbit coupling term∝ Λ of Eq. (12) resulting to

∆E0 = ħhΛ2∆h
∆2

h − 4ħhω̃I (Ωeff +ħhω̃I)
�

∆2
h − 2ħhω̃I (Ωeff + 2ħhω̃I)

�2 +O
�

Λ3
�

. (15)

The parametric dependence of this energy correction for ΩR0 =ωI and Zeff = 1 is depicted in
Fig. 3(a). It becomes evident that∆E0 is relatively small except for the region of large effective
masses and large attractive bath-impurity interactions, see the blue region in Fig. 3(a). For
completeness, we note that from the functional form of Eq. (15) it is easy to predict that the
amplitude of ∆E0 reduces for increasing ΩR0.
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Figure 3: Deviations from the two-level system description of microwave polaron-
dressing captured by the effective-potential model. (a) The energy shift owing to the
spin-orbit coupling term∝ Λwithin second order perturbation theory to the effective
potential of Eq. (12). (b) The minimum value of |〈Ŝ〉|within the same approximation.
In both cases we consider ΩR0 = 1ωI and Zeff = 1. (c) The ΩR0 dependence of the

minimum of |〈Ŝ〉| for different values of Zeff, m∗I and
gBI mIω

2
I

gBBmBω
2
B

(see legend). Notice

that only the region ΩR0 > 0.5ωI is presented to avoid issues associated with the
breakdown of perturbation theory.

The minimum value of |〈Ŝ〉|, |〈Ŝ〉|min, within second order perturbation theory in Λ, occurs
at∆= − E0

2 +
∆h
2 +∆E0, and is demonstrated in Fig. 3(b) for different ΩR0 and Zeff. Apparently,

|〈Ŝ〉|min → 1 except for m∗I →∞ where the suppression of |〈Ŝ〉|min is significant. However,
for increasing ΩR0 it turns out that |〈Ŝ〉|min→ Zeff/2, see Fig. 3(c). This result is in qualitative
agreement with Fig. 2(b), supporting the fact that the light-induced shift of the effective po-
tential is at least partly responsible for the observed increase of |〈Ŝ〉|min. As we shall argue in
the following section this outcome can be independently verified by comparing the predictions
of the effective potential with the ML-MCTDHX calculations.

4 Comparison with many-body simulations: Competition of im-
purity dressing and impact of Rabi-coupling

To investigate the accuracy of the effective description we present in Fig. 4, the
variance of the impurity position ∆x I ≡

q

〈Ψ0| x̂2
I |Ψ0〉 − 〈Ψ0| x̂ I |Ψ0〉2 and momentum

∆pI ≡
q

〈Ψ0|p̂2
I |Ψ0〉 − 〈Ψ0|p̂I |Ψ0〉2 as a function of the detuning within the fully correlated

ML-MCTDHX approach and the effective potential of Eq. (10) which is equivalent to Eq. (12),

for gBI = −gBB = −0.5
r

ħh3ωB
mB

and NI = 1. Additionally, in order to estimate the deviation of
the impurity ground state from the Gaussian profile expected within the harmonic approxi-
mation we also provide UI =∆x I∆pI/ħh− 1/2. Recall that UI = 0 for any squeezed coherent
state, and thus UI > 0 consists a quantitative estimator regarding deviations from an effectively
harmonically trapped non-interacting impurity.

We find that using an effective mass of m∗I = 1.071mI , the effective potential accurately
captures the ML-MCTDHX behavior of both∆x I and and∆pI with respect to the detuning and

12

https://scipost.org
https://scipost.org/SciPostPhys.19.4.093


SciPost Phys. 19, 093 (2025)

-40 -20 0 20 40 60 -40 -20 0 20 40 60 -40 -20 0 20 40 60

0.6

0.7

0.8

0.9

0

4

8

12

Figure 4: (ai) The momentum, ∆pI and position, ∆x I uncertainties for the impurity
species with varying detuning,∆. The results are provided for differentΩR0 (see inset
labels for i = 1, 2,3) and within the effective potential and ML-MCTDHX approach
(see legend). Excellent agreement between the two methods is observed. (bi) The
deviation of the product ∆x I∆pI from the bound set by the Heisenberg uncertainty
principle. In all cases, gBI = −gBB = −0.5

Æ

ħh3ωB/mB, NB = 100 and mI = mB.
Small deviations between the ML-MCTDHX and effective potential models occur for
∆< −E1↑/ħh due to the correlated character of the polaronic state.

different ΩR0, see Fig. 4(ai), with i = 1, 2,3. In fact, this value of m∗I has been selected such
that the width of the impurity density for |ΨB+1↑〉 obtained within the correlated approach
is reproduced by the effective potential model. In addition, we fix Zeff = 1 throughout this
section since the ML-MCTDHX data predict Z = 0.984 which is close to the effective potential
result, i.e. 〈ψI

0↑|ψ
I
0↓〉 = 0.9893 for ΩR0 = 0. Figures 4(ai), i = 1,2, 3, showcase that the

effective potential is adequate for correctly describing the impurity state, as it captures accu-
rately both the position and momentum uncertainties. The most notable deviations among the
two approaches is that the asymptotic values of ∆x I , ∆pI for ∆→ −∞ within the effective
potential approximation slightly deviate from the correlated approach.

To gain further insights into the discrepancies between the two approaches we next rely
on the uncertainty product, UI , see Fig. 4(bi), with i = 1,2, 3. It can be observed that for all
employed values of ΩR0 the deviations of the impurity state within ML-MCTDHX from the min-
imal uncertainty limit are relatively small exhibiting a maximum of UI = 0.007. This behavior
indicates that the impurity distribution is close to a squeezed coherent state. Furthermore, the
uncertainty UI features a saturation tendency for∆→−∞ which is attributed to the fact that
in this limit the polaron state corresponding to spin-↑ becomes the ground state of the system.
In addition, for ΩR0 = 1ωB, see Fig. 4(b1), an uncertainty peak appears close to resonance at
∆ ≈ −E1↑/ħh. This peak is also captured by the effective potential which for larger ΩR0 yields
UI < 10−6, irrespectively of ∆ [Fig. 4(b2), (b3)] implying an almost perfect harmonic oscilla-
tor state. The saturation of ∆x I∆pI to a value larger than ħh/2 demonstrates that the phonon
coupling of the polaron introduces a momentum uncertainty that cannot be solely accounted
through a renormalization of the effective mass and trap of the polaron.

This behavior can be explained by considering that a polaron state exhibits a modulated
momentum density profile associated also with a finite Tan’s contact [36,156–158] which nat-
urally cannot be modeled by an effective potential model. Nevertheless, as it can be deduced
from Fig. 4(b1), this effect leads to a small modification from an ideal harmonic confinement.
In contrast, the peak at ∆̃ = 0 is traced back to the admixture of | ↓〉 and | ↑〉 states with dif-
ferent spatial distributions manifesting the non-negligible spin-orbit coupling (Λ ̸= 0) in this
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Table 1: Comparison between ML-MCTDHX obtained values of the minimum value
of |〈Ŝ〉|, see Fig. 2(b), with the effective potential approach. For the effective poten-
tial approach we use the second order perturbative results for Λ, see Appendix B.2,
and we fix the parameters to m∗I = 1.1078mI and Zeff = 1. The minimum within this
approach is assumed to be at ∆ = − E0

2 +
∆h
2 +∆E0. To demonstrate the accuracy of

the effective potential results we underline the digits of the ML-MCTDHX results that
are captured correctly by this approximation. Zeff;fit is the value of Zeff such that the
effective potential |〈Ŝ〉|min matches the ML-MCTDHX one. The ∆Z% columns indi-
cate the percent contribution of the effective potential and bath impurity correlations
(as captured by Zeff;fit) to the ML-MCTDHX residue.

ΩR0 2|〈Ŝ〉|min ML-MCTDHX 2|〈Ŝ〉|min eff. pot. ∆Z% eff. pot. Zeff;fit ∆Z% corr.
1 0.987258 0.996058 31 0.991165 69
10 0.998492 0.999658 23 0.998835 77
40 0.999862 0.999970 22 0.999891 78

parametric region, see also the related discussion in Sec. 3.3. Recall that by construction the
effective potential takes this effect fully into account. The decrease of the UI peak amplitude
in the correlated case can be attributed to the reduction of the overlap between the | ↓〉 and
| ↑〉 spin configurations due to the ΩR0-dependent phononic dressing of the impurity which
is not captured by the effective potential approach. For larger values of ΩR0 since the energy
gap among the light-coupled spin-eigenstates |+〉 and |−〉 of ĤS is given by ZeffΩR0≫ωB such
effects become negligible, see also Eq. (15) and Appendix B.2.

Turning back to the open issue of the reduction of |〈Ŝ〉| for higherΩR0 observed in Fig. 2(b),
we show in Table 1 that the the increase of |〈Ŝ〉| cannot be explained by the change of the mod-
ification from the effective potential for larger ΩR0. Indeed, the effective potential predicts a
depletion of residue of the order of 20 – 30 % of the ML-MCTDHX obtained value. However, as
we also inferred by the results of Fig. 4(bi), i = 1, 2,3 the polaron dressing also competes with
the light-dressing as ΩR0 increases. Indeed, stronger dressing leads to lower UI , as the transi-
tion from the polaronic value for∆→−∞ to the non-interacting value of UI = 0 for∆→∞
becomes less sharp, compare Fig. 4(a1) to Fig. 4(a2) and (a3). This according to our discus-
sion above implies an effectively smaller impurity-bath interaction. This is also supported by
Zeff;fit displayed in Table 1, being the value of Zeff such that the effective potential prediction
for |〈Ŝ〉|min reproduces the ML-MCTDHX one, which provides the dominant contribution of the
order of 70–80 % of the depletion of Zeff from unity. Nevertheless, it can be clearly observed
that the value of Zeff increases with ΩR0 showing that the polaron tends to un-dress from its
phononic cloud as the light-spin coupling increases. An alternative framework to verify the
above in terms of many-body overlaps is discussed in Appendix C.

Therefore, we conclude that the effective potential is able to adequately characterize the
system for gBI < gBB, at least for the parametric interaction regime |gBI | ≤ gBB considered
herein. Also, the effective mass of the impurity is unambiguously identifiable by studying
the dependence of the uncertainties ∆x I and ∆pI on ∆. In addition, the renormalization of
Z(ΩR0) provides genuine information on the residue and hence the light-modulated phonon
dressing of the polaron. This motivates the investigation on whether the effective potential
enables the characterization of the system for gBI ≥ gBB.
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Figure 5: The effective potential, Veff(x) =
1
2 mIω

2
I x2 + gBIρ

(1)
B (x), for ΩR0 = 0,

alongside its single-particle eigenstates. Here, we assume a Thomas-Fermi pro-
file, Eq. (11). Veff(x) at (a) the critical interaction strength for phase-separation

gBI = gBB = 0.5
r

ħh3ωB
mB

and (b) within the temporal orthogonality catastrophe regime

gBI = 3gBB = 1.5
r

ħh3ωB
mB

. In panel (b) we schematically assign the stable phase-
separated eigenstates and the metastable polaronic ones [160]. For more details on
the ΩR0 = 0 effective potential, see Ref. [69].

5 Repulsive Bose polaron

The repulsive Bose polaron, unlike its attractive counterpart, is stable only in the case that
gBI is sufficiently small such that phase-separation among the bath and the impurity species
is prevented [69, 159]. This yields three different interaction regimes (dictated by the mis-
cibility condition of the impurity with its environment) for studying the compliance of the
Rabi-coupled impurity with the effective potential description. Here, we will focus on the
most interesting of these regimes. Namely, the case of immiscible bath-impurity interactions
gBI > gBB and close to the transition point gBI = gBB. Indeed, our previous studies, see
Ref. [69–72], demonstrate that deep in the miscible regime gBI < gBB a similar behavior to
the attractive case occurs, which we also have independently verified for the current setup
(not shown for brevity).

5.1 Impurity light-dressing at the phase-separation threshold

Before analyzing the repulsive Bose polaron in the interaction regime gBI > gBB, let us briefly
discuss its properties for gBI = gBB. In the absence of light dressing of the impurities, i.e.
ΩR0 = 0, it is well established that the effective potential of the impurity is approximately
a box potential, see Fig. 5(a). Focusing on ΩR0 ̸= 0, however, two different behaviors are
encountered: i) ħh∆ ≪ −E1↑ reproduces the same effective potential properties, but ii) for
ħh∆≈ −E1↑ the system’s characteristics alter prominently as we elaborate below.

To elucidate the back-action of the light-dressed polaron, we present in Fig. 6(a) the
modification of the spatially resolved bath density, δρ(1)B (x) = ρ

(1)
B (x) − ρ

(1)
B0 (x), where

ρ
(1)
B (x) = 〈Ψ0|Ψ

†
B(x)ΨB(x)|Ψ0〉 is the density of the bath species. Recall that |Ψ0〉 is the ML-

MCTDHX calculated interacting ground state wavefunction, while the density of the bath in
the absence of the impurity, i.e. gBI = 0, is ρ(1)B0 (x). In addition, we show the spatially resolved
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Figure 6: Behavior of the bath and impurity densities in the repulsive polaron case
for critical interaction, gBI = gBB = 0.5

Æ

ħh3ωB/mB, in terms of the miscibility-
immiscibility transition and ΩR0 = ωB. (a) Density fluctuations of the BEC back-
ground, δρ(1)B (x) with respect to ∆/ωB. (b) The total (spin-unresolved) impurity

density ρ(1)I (x) in terms of ∆. Spatially resolved expectation values of the spin op-
erators (c) Ŝz(x) and (d) Ŝx(x) for varying ∆. Superposition states of the impurity
manifest by the 〈Ŝx(x)〉< 0 regions in (d). The dashed lines mark the Thomas-Fermi
radius of the BEC.

impurity spin densities along the x [Fig. 6(d)] and z [Fig. 6(d)] axes which are computed as

〈Ŝµ(x)〉=
1
2

∑

α,β∈{↑,↓}

σ
µ

αβ
〈Ψ|Ψ̂†

α(x)Ψ̂β(x)|Ψ〉 . (16)

These quantities allow us to study the modification of the polarization of the impurity spin-
state in a spatially-resolved manner. Positive (negative) values of 〈Ŝµ(x)〉 indicate preferential
occupation of the spin-↑ (spin-↓) state along the µ ∈ {x , z} spin-axis.

Notice, that the Hamiltonian of Eq. (1) does not contain any term proportional to Ŝy(x),
implying that 〈Ŝy(x)〉 = 0. Consequently, the spin polarization of the impurity lies entirely
along the x-z plane, and hence the spatially resolved spin components 〈Ŝx(x)〉 and 〈Ŝz(x)〉
suffice to fully describe its local spin orientation. Notably, the local spin-density matrix can be
expressed as

ρ
(1)
αβ
(x) =

1
2
ρ
(1)
I (x) + 〈Ŝx(x)〉σx

αβ + 〈Ŝz(x)〉σz
αβ , (17)

with α,β ∈ {↑,↓} and ρ(1)I (x) =
∑

α∈{↑,↓}〈Ψ0|Ψ†
α(x)Ψα(x)|Ψ0〉 is the spin-unresolved impurity

density. As such, the three observables ρ(1)I (x), 〈Ŝx(x)〉 and 〈Ŝz(x)〉 will enable us to fully
appreciate the rise of local spin-correlations in the system.

For ħh∆ ≫ E1↑ ≈ −8.43ħhωB the impurity predominantly lies in its non-interacting spin-

↓ state since 〈Ŝz(x)〉 ≈ −
1
2ρ
(1)
I (x) < 0, see Fig. 6(c) and 6(d) for ∆ ≈ 40ωB. However,

the small population of the |↑〉 polaronic state especially as ħh∆ ≈ E1↑ is approached indi-
cates a weak light-dressing of the impurity state associated with 〈Ŝx(x)〉 < 0 in Fig. 6(d) for
0≤∆/ωB < 20. In contrast, for ħh∆≪ E1↑ the polaron |↑〉 state is almost perfectly reproduced,

〈Ŝz(x)〉 ≈
1
2ρ
(1)
I (x) > 0, see Fig. 6(c) and 6(b) for ∆ ≈ −60ωB. Due to the box-like effective

16

https://scipost.org
https://scipost.org/SciPostPhys.19.4.093


SciPost Phys. 19, 093 (2025)

0

5

-5

0.2

0

-0.2

0

-5

5 0.4

0

-0.4

0

-5

5 0.25

0

-0.25

800-40 40-80

0

-5

5 0.5

0

0.25

800-40 40-80

Figure 7: Patterns associated with the bath and impurity densities in the repulsive
polaron case for immiscible bath-impurity interactions, gBI = 3gBB = 1.5

Æ

ħh3ωB/mB

and ΩR0 = ωB. (a) Density fluctuations of the host, δρ(1)B (x) and (b) the impurity

density ρ(1)I (x) as a function of ∆/ωB. Distributions of the spin operators (c) Ŝz(x)
and (d) Ŝx(x) with respect to the detuning, indicating the presence of superposition
impurity states when 〈Ŝx(x)〉< 0, see corresponding areas in panel (d). Dashed lines
visualize the Thomas-Fermi radius of the BEC.

potential [Fig. 5(a)] the density of the impurity is only constrained by the Thomas-Fermi ra-
dius of the BEC, see Fig. 6(c). Indeed, as Fig. 5(a) shows the bath-impurity interaction almost
perfectly counteracts the harmonic trapping potential of the impurity, in the spatial regime
where it has a finite density, |x | ≤ RTF. The bath reacts to the presence of the impurity by cre-
ating a density dip at the location of the impurity and by expelling a small part of its density
from the center of the trap, see Fig. 6(a) for ∆< −10ωB. This is an explicit imprint of the re-
pulsive interaction to the spin-↑ impurity component. Notice that 〈Ŝx(x)〉 tends to zero much
more rapidly as ∆ decreases for ∆ < −E1↑/ħh when compared to the case that ∆ increases
for ∆ > −E1↑/ħh, see Fig. 6(d). This is because the ground state involving the interacting
spin-↑ impurity (i.e. the polaron state, ∆→−∞) has small overlap with the non-interacting
ground state with spin-↓ (reproduced for ∆→∞) and thus the light-dressing of the impurity
is hindered by the small spatial overlap of the Rabi-coupled states, see also Fig. 6(c).

In the case of ∆ ≈ −E1↑ ≈ −8.43ħhωB the impurity is predominantly found in a light-

dressed superposition state of spin-↑ and spin-↓where 〈Ŝx(x)〉 ≈ −
1
2ρ
(1)
I (x)< 0, see Fig. 6(d).

The size of the impurity ground state density is consistent with the one obtained using a renor-
malized trap frequency ω̄I ≈

1
2ωI , see also Eq. (14c). Notice, however, here that the value of

ω̄I can be further refined by considering the mass renormalization due to polaronic dressing
m∗I > mI . Nevertheless, it can also be seen that the spin density of the impurity is modified
throughout its spatial extent as evident by the curved node 〈Ŝz(x)〉 = 0 in the ∆–x plane ob-
served in this ∆ regime, see Fig. 6(c) for −12 <∆/ωB < −5. This implies a slightly different
density between the spin-↓ and spin-↑ impurity states which are related with a squeezing oper-
ation, generalizing the spin-orbit coupling term ∼ Λ

�

�

â†
�2
+ â2

�

σ̂z of the effective potential
Hamiltonian of Eq. (12). Indeed, it can be verified that the effective potential Hamiltonian of
Eq. (10) describes the behavior of the system in this regime producing almost indistinguish-
able 〈Ŝx(x)〉 and 〈Ŝz(x)〉 to Fig. 6(d). Similarly to the gBI < gBB scenario the impact of the
state squeezing for distinct spin-components becomes negligible for increasing ΩR0 ≥ 10ωB.
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The above observations explicate that even in the case of gBI = gBB, the qualitative de-
scription of the system is similar in the weakly attractive and repulsive interaction regimes. Of
course, on a quantitative level the modeling of the system is slightly more complicated since
the spatial extent |x | ≥ RTF should also be taken into account. Thus, the simplified version
of the effective potential given by Eq. (12) assuming the Thomas-Fermi approximation is not
valid, necessitating a numerical treatment of the general effective model described by Eq. (10).

5.2 Impurity light-dressing in the phase-separation regime

When phase-separation occurs, gBI > gBB, the behavior of the system becomes drastically
different as compared to the miscible region, gBI ≤ gBB. Here, the ensuing low-lying energy
states of an interacting impurity within the effective potential predominantly reside outside
the RTF of the BEC, see Fig. 5(b) and especially the states marked as phase separated. In fact,
these states have almost zero overlap with the ground state of the non-interacting system, a
phenomenon that has been understood as the origin of the temporal orthogonality catastrophe
[69]. Within this framework the states of polaronic character correspond to highly-excited
states of the effective potential near the top of the effective barrier at x ≈ 0, see Fig. 5(b),
which are shown to be dynamically unstable due to their beyond effective-potential coupling
to the bath. We remark that a similar phase-separation phenomenology was also reported in
the three-dimensional low temperature case [159].

In the case of light-impurity dressing the above property of the phase separated system,

characterized here by gBI = 3gBB = 1.5
r

ħh3ωB
mB

> gBB, leads to extremely sharp transi-
tions (less than δ∆ = 0.01ωB wide) between the non-interacting spin-↓ ground state for
∆ > −E1p = −11.2ωB and the interacting spin-↑ phase separated state for ∆ < −E1p for
small ΩR0. This is exemplarily illustrated in Fig. 8(a) for ΩR0 =ωB. As ΩR0 increases, the ex-
cited states of the interacting spin-↑ impurity get involved in the light-matter dressing resulting
in a positive shift of the resonance which tends to ∆ = 0 for large ΩR0. This is accompanied
by a noticeable dressing of the different spin-states close to the transition. Nevertheless, these
transitions remain somewhat sharp with widths of the order of δ∆ ∼ 0.1ωB and δ∆ ∼ 1ωB
for ΩR0 = 10ωB and ΩR0 = 40ωB respectively, with the latter being better visible in Fig. 8(b).

To reveal how the impurity behaves in this interaction regime, we provide the impurity
and bath density modifications in Fig. 7(a), (b), (c) and (d), for large ΩR0 = 40ωB. As in all
studied cases, the response of the bath and the impurity density for ∆≫−E1p and ∆≪−E1p
are approximately the same as the non-interacting and the interacting ground state of the
impurity respectively. This is best appreciated by comparing Fig. 7(c) and 7(b) for∆≈ ±80ωB.
However, the effects of the light-dressing of the impurity are already obvious for quite sizable
detunings e.g. for ∆ > −3ωB in Fig. 7(a), where a dramatic change of the impurity state
occurs. Notice, that the state of the impurity is quite different for more negative detunings than
∆≈ −3ωB when compared to detunings towards positive values. Indeed, in the latter case, we
observe that the impurity predominantly resides around the trap center (i.e. within the BEC),
as both spin-components 〈Ŝx(x)〉 and 〈Ŝz(x)〉 indicate, see Fig. 7(c) and (d) respectively. Here,
energetically higher-lying interacting states corresponding to the ones on top of the barrier of
the double-well effective potential, see the eigenstates marked by the top bracket in Fig. 5(b),
are involved. In the opposite scenario of ∆ < −3ωB, these eigenstates do not participate.
Rather, the impurity is found at the minima of its double well effective potential, located at
the edges of the spatial extent of the Thomas-Fermi radius, see Fig. 7(c) and (d). Therefore,
the highly asymmetric form of the populations of the spin-↑ and spin-↓ states with respect to
their crossing point, observed in Fig. 8(a) for ΩR0 = 10ωB and ΩR0 = 40ωB, can be attributed
to the different nature of the involved interacting states. Finally, let us note that the bosonic
host responds to the population of the spin-↑ states by a small expulsion of bosonic density
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Figure 8: (a) Population of the spin-↑ and spin-↓ impurity states with respect to the
detuning ∆ at different ΩR0 (see legend) and within the strongly interacting case
gBI = 3gBB = 1.5

Æ

ħh3ωB/mB. The sharp transition for small ΩR0 becomes gradually
smoother and shifts as ΩR0 increases. (b) Comparison of the ML-MCTDHX data for
ΩR0 = 40ωB with the effective potential for Zeff = 1 and varying m∗I (i.e. without
fitting parameters). The excellent agreement of the corresponding data leads to the
conclusion that the effective mass of the polaron within ML-MCTDHX is m∗I ≈ 2mI .
Notice that the range of∆ values is restricted such that the deviations of nα between
different values of m∗I are better visible.

from the location of the impurity, see the blue density regions of Fig. 7(a) in comparison to
Fig. 7(c).

This analysis implies that the parametric region of detunings, ∆ ≤ −3ωB for
gBI = 1.5

Æ

ħh3ωB/mB, is especially suited for studying the strongly repulsive Bose polaron
in one-dimension as it allows to explore strongly interacting polarons by counteracting their
decay mechanism enforced by the temporal orthogonality catastrophe effect [69]. Therefore,
an important open question is which properties of the strongly repulsive Bose polaron can be
examined in this manner. As Fig. 8(b) reveals, the effective-potential model of Eq. (10) cap-
tures the behavior of nα in this region and thus it can be used for identifying this stabilization
regime for varying gBI . In addition, it evinces that the population of the spin-↑ and spin-↓
states in the region where the dressing changes depends sensitively on the effective mass of
the polaron, see Fig. 8(b). Here, we have set Zeff = 1, i.e. we assume that the light-dressing
of the impurity is so strong as to form a light-dressed spin-state, which then couples as a sin-
gle entity to the phononic bath, thus not affecting the overlap of the spin-↑ and spin-↓ state.
When comparing to the ab-initio ML-MCTDHX data we observe that they fit almost perfectly
to the effective-potential curves for m∗I = 2mI . Thus, detailed comparisons of experimentally
obtained polaron data with the predictions of the effective potential of Eq. (10) (or its higher-
dimensional generalizations including also relevant bound state channels) might be relevant in
order to experimentally identify the polaron effective mass in the strongly interacting regime.

6 Conclusions and perspectives

By carefully analyzing ab-initio simulations with suitably constructed effective models we have
demonstrated the validity of an effective potential approach for capturing the state of simul-
taneous light and phonon dressed spinor impurities. Specifically, only one spin-state interacts
with the structureless bosonic host with the other being uncoupled. The considered impurity-
bath interactions are either attractive or repulsive and hence both attractive and repulsive Bose
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polaron properties, such as the energy, residue and effective mass are assessed. Our results are
in line with our previous studies on the dynamical properties of Bose polarons [70,71,81,82]
utilizing a variational many-body method. However, they go beyond them by means of facil-
itating the experimental identification, within a relatively simple and efficient framework, of
polaronic properties that are tricky to unambiguously determine in trapped Bose gases [68,70].

Starting from a two-level model we systematically build up an effective potential which
contains i) a renormalized spin-dependent trap frequency due to the bosonic host manifest-
ing as a state-dependent detuning, ii) a modified trap length and iii) a spin-orbit coupling
term. The trap length and frequency shifts are regulated by the effective polaron mass. It is
showcased that this effective potential can, at least qualitatively, describe the Bose polarons
experiencing light dressing. In particular, it corroborates our numerical studies indicating the
competing character of the phononic and light dressing. This showcases the tendency of the
impurity to decouple from the fluctuations of its host as the light-impurity coupling increases.
An additional highlight is the stabilization of the strongly repulsive Bose polaron against tem-
poral orthogonality catastrophe, which allows the investigation of strongly interacting polaron
physics without the need of complex experimental spectroscopic schemes [71].

There are several promising avenues for future research that build upon the findings of
this study. It would be advantageous to extend the current findings to higher spatial dimen-
sions. One important consideration in these settings is whether the formation of Efimov states
substantially modifies the properties and formation dynamics of the Bose polarons [161–166].
Furthermore, it is essential to examine the robustness of the ground state properties of the sys-
tem in the current and higher-dimensional settings, particularly at finite temperatures [159].
The case of strong attraction is also an intriguing direction for elucidating the influence of
strong polaron-polaron induced interactions and emergent bound state formation on the light
dressing of impurities. In this context, it is also anticipated that beyond effective potential
effects will become more prominent due to the pronounced role of correlations.
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A Many-body numerical approach

To address the ground state properties of the Rabi coupled spin-1/2 impurities embedded in
an one-dimensional bosonic environment we rely on the multilayer multiconfiguration time-
dependent Hartree method for atomic mixtures (ML-MCTDHX) [145–147]. ML-MCTDHX is
an ab-initio variational method which employs a time-dependent and variationally optimized
basis for representing the many-body wavefunction. In particular, ML-MCTDHX features a
multi-layered ansatz allowing for the variational optimization of both the single-particle and
species time-dependent bases. This facilitates capturing the many-body Hilbert space and as
a consequence the involved correlation properties of the system.
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Specifically, to account for interspecies correlations the many-body wavefunction is initially
expanded in terms of D distinct species functions, |Ψσk (t)〉, i = 1, . . . , D, for the bath σ = B
and the impurity σ = I . Hence, we arrive in a so-called truncated Schmidt decomposition of
order D

|Ψ(t)〉=
D
∑

k=1

Æ

λk|ΨB
k (t)〉 ⊗ |Ψ

I
k(t)〉 , (A.1)

with expansion (Schmidt) coefficients λk. This expansion has explicit physical implications
by means that entanglement among the species is present if two or more λk ’s possess non
zero values adhering to the interspecies correlations emanating in the system. Otherwise, Eq.
(A.1) has a tensor product form and entanglement is absent since λ1 = 1 and λk = 0, for
k = 2, . . . , D.

To properly account for the intraspecies correlations of the multicomponent system each
|Ψσk (t)〉, i = 1, . . . , D, is further expressed with respect to a time-dependent number-state basis

|Ψσk (t)〉=
∑

n⃗

Aσk;n⃗(t)|n⃗(t)〉
σ , (A.2)

where Aσk;n⃗(t) refer to the expansion coefficients. Also, n⃗ = (n1, . . . , nMσ) is the vector of par-
ticle occupations of each of the Mσ distinct time-dependent single-particle functions, |φσj (t)〉,
j = 1, . . . , Mσ, that satisfy

∑Mσ
j=1 n j = Nσ. Finally, the above-mentioned single-particle func-

tions are expanded in a time-independent single-particle basis, χl(x). This expansion for the
bath species reads

|φB
j (t)〉=

MB
∑

l=1

φB
j;l(t)

∫

dx χl(x)Ψ̂
†
B(x)|0〉 . (A.3)

On the other hand, for the impurity it explicitly takes into account the spin-1/2 degree of
freedom

|φ I
j (t)〉=

� MI
∑

l=1

∫

dx φ I
j;l↑(t)χl(x)Ψ̂

†
↑(x) +φ

I
j;l↓(t)χl(x)Ψ̂

†
↓(x)

�

|0〉 . (A.4)

Accordingly, the time-evolution of the many-body wavefunction is determined by the expan-
sion coefficients λk(t), Aσk,n⃗(t) and φσj;l(t), which can be obtained by solving the ML-MCTDHX
equations of motion. These are numerically computed through a variational principle such as
the Dirac-Frenkel one [167,168] and utilizing the wavefunction expansion explicated in Eqs.
(A.1), (A.2), (A.3) and (A.4). This procedure results in D2 coupled linear equations for the
Schmidt coefficients, λk(t), in addition to D

�NB+MB−1
MB−1

�

+D
�NB+MB−1

MB−1

�

and MB+MI non-linear in-
tegrodifferential equations for the species functions and single-particle functions respectively.
To testify the reliability of the ML-MCTDHX results we increase the number of Schmidt co-
efficients and impurity single-particle functions up to D = MI = 12 and the number of bath
single-particle functions up to MB = 4 observing the convergence of the observables of interest.

In this study, we evaluate the ground state properties of the many-body Hamiltonian of
Eq. (1) via the so-called improved relaxation scheme implemented within the ML-MCTDHX
framework. Improved relaxation is an iterative scheme that is used to optimize the many-body
basis referring to the Aσk,n⃗(t) andφσj;l(t) coefficients for the variationally optimal representation
of the ground state. This scheme is initialized with an arbitrary initial many-body basis and
subsequently for each step of the iteration the total energy of the system is minimized by
evaluating the lowest in energy eigenvector within the basis spanned by the species functions,
|Ψσk 〉, followed by the imaginary time propagation of the Aσk,n⃗(t) and φσj;l(t) coefficients in a
fixed time-interval. Each iterative step results in the reduction of the energy expectation value,
and hence the overall ground state of Eq. (1) is identified by the saturation of the energy of
the many-body wavefunction to a prescribed accuracy, here, ≤ 10−12.
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Finally, let us argue on the suitability of the ML-MCTDHX ansatz of Eqs. (A.1), (A.2), (A.3)
and (A.4) for exploring the properties of few impurities embedded in a BEC. Recall that a Bose
gas corresponds to a perfect BEC if only one single-particle state is occupied by all constituting
particles, which implies that the many-body BEC state is described exactly for MB = 1. In
practice, away from the thermodynamic limit, N → ∞, the BEC is slightly depleted. For
weak intraspecies interactions gBB <

Æ

ħh3ωB/mB and moderate particle numbers NB = 100
this depletion is suppressed. Therefore, only a small number of MB ensures the numerical
convergence of such states. Strikingly, it has been shown that even the dynamics of a Bose
gas proximal to a BEC state can be accurately explored by involving only a small number
of single-particle states [69–72]. In addition, to the above it is well-known that the quasi-
particle states such as polarons are characterized by a large overlap with the ground state of
the system involving non-interacting impurities with its environment. Therefore, the expected
entanglement among the impurities and the bath is rather small, implying that a Schmidt
decomposition of low order [Eq. (A.1)] suffice for the accurate representation of such quasi-
particle states. Therefore, the study of the expected physical properties of the Bose polaron
problem motivate a truncation scheme in terms of the single-particle and single-species basis
states which as previously mentioned lies at the heart of the ML-MCTDHX framework.

B Details on the effective potential Hamiltonian

B.1 Justification of perturbation theory in Λ

The reason for the negligible corrections stemming from the effective potential of Eq. (12) is
the small value of Λ. Notice that according to Eq. (12) the leading order correction to the
two-level model is the coupling between the spin-ground state of the spatial vaccum state

â|0〉 = 0 and the second excited states |2〉 = (â
†)2p
2
|0〉 of either spin. Therefore, this correction

is of second order in perturbation theory∝ Λ2/4 and the energy difference of the coupled
states is at least 2ħhω̃I . More specifically, the order of magnitude of this excitation relative to
the characteristic energy scale of the system is

1
ħhω̃I

ħh2Λ2

4× (2ħhω̃I)
=

1
8

�

mI
m∗I
+ gBI

gBB

mIω
2
I

mBω
2
B
− 1

�2

�

1+ mI
m∗I

�2 � gBI
gBB

mIω
2
I

mBω
2
B
− 2

�2 ≤
1
8

�

1+
mI

m∗I

�−2

. (B.1)

Here, we have used that i) gBI
gBB

mIω
2
I

mBω
2
B
≤ 1 so that the temporal orthogonality catastrophe is

prevented [69] and the impurity is inside the BEC and ii) 0 ≤ mI
m∗I
≤ 1 since the effective mass

of the polaron is expected to be higher than the bare mass of the impurity. Therefore, the
spin-orbit coupling term∝ Λ in Eq. (12) can be treated as a perturbation since its coupling is
at least one order of magnitude smaller than the characteristic energy scale.

B.2 Second order perturbation theory in Λ

For Λ = 0, all the terms in the Hamiltonian of Eq. (12) are diagonal to â†â and thus we can

work in the number state basis, |n〉= (â†)np
n!
|0〉. In this case, the Hamiltonian reads

Ĥeff = Ẽ0(n) +
ħh∆̃(n)

2
σ̂z +
ħhΩeff

2
σ̂x , (B.2)
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with Ẽ0(n) =
E0
2 +ħhω̄I(n+1/2) and ∆̃(n) =∆+E0/ħh−∆h(n+1/2). This simplification yields

the eigenenergies

Ẽ±(n) = Ẽ0(n)±
ħh
2

Ç

∆̃2(n) +Ω2
eff , (B.3)

and eigenstates

|Φn,+〉= |n〉 ⊗

�

∆̃(n) +
q

∆̃2(n) +Ω2
eff

�

| ↑〉+Ωeff| ↓〉
r

Ω2
eff + (∆̃(n) +

q

∆̃2(n) +Ω2
eff)

2
, (B.4a)

|Φn,−〉= |n〉 ⊗
−Ωeff| ↑〉+

�

∆̃(n) +
q

∆̃2(n) +Ω2
eff

�

| ↓〉
r

Ω2
eff + (∆̃(n) +

q

∆̃2(n) +Ω2
eff)

2
. (B.4b)

Second order perturbation theory reveals that a finite Λ leads to the shift of the resonance
for varying Ωeff, namely

δE0 = E(2)− (0) = −
ħh2Λ2

2





|〈Φ2,−|σ̂z|Φ0,−〉|2

2ħhω̄I
+

1− |〈Φ2,−|σ̂z|Φ0,−〉|2

2ħhω̄I +
1
2

q

∆̃(0)2 +Ω2
eff +

1
2

q

∆̃(2)2 +Ω2
eff



 ,

(B.5)
which with some additional algebraic manipulations reduces to Eq. (15). In addition to this
shift, we can show that the minimal value of |〈Ŝ〉| at resonance increases towards Zeff/2 for
larger ΩR0. Unfortunately, we cannot find a simple analytical expression for the value of |〈Ŝ〉|,
however, it can be straightforwardly calculated by the following expressions

|〈Ŝ〉|=
Ç

Z2
eff(〈Ŝx〉2 + 〈Ŝy〉2) + 〈Ŝz〉2 , (B.6)

with the individual components calculated via

〈Ŝx〉2 =
�

1−
ħh2Λ2

4
M0,−

�

〈Φ0,−|σ̂x |Φ0,−〉+
ħh2Λ2

2
M0,+〈Φ0,+|σ̂x |Φ0,−〉

+
ħh2Λ2

4

�

M2
2,+〈Φ0,+|σ̂x |Φ0,+〉+M2

2,−〈Φ0,−|σ̂x |Φ0,−〉
�

(B.7a)

+
ħh2Λ2

2
M2,+M2,−〈Φ0,+|σ̂x |Φ0,−〉 ,

〈Ŝy〉2 =
�

1−
ħh2Λ2

4
M0,−

�

〈Φ0,−|σ̂y |Φ0,−〉 (B.7b)

+
ħh2Λ2

4

�

M2
2,+〈Φ0,+|σ̂y |Φ0,+〉+M2

2,−〈Φ0,−|σ̂y |Φ0,−〉
�

,

〈Ŝz〉2 =
�

1−
ħh2Λ2

4
M0,−

�

〈Φ0,−|σ̂z|Φ0,−〉+
ħh2Λ2

2
M0,+〈Φ0,+|σ̂x |Φ0,−〉

+
ħh2Λ2

4

�

M2
2,+〈Φ0,+|σ̂z|Φ0,+〉+M2

2,−〈Φ0,−|σ̂z|Φ0,−〉
�

(B.7c)

+
ħh2Λ2

2
M2,+M2,−〈Φ0,+|σ̂z|Φ0,−〉 .
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Here, the factors Mn,± stem from second order perturbation theory and read

M0,− =
2|〈Φ2,+|σ̂z|Φ0,−〉|2
�

E(0)− (0)− E(0)+ (2)
�2 +

2|〈Φ2,−|σ̂z|Φ0,−〉|2
�

E(0)− (0)− E(0)− (2)
�2 , (B.8a)

M0,+ =
2〈Φ0,−|σ̂z|Φ2,−〉〈Φ2,−|σ̂z|Φ0,−〉

�

E(0)− (0)− E(0)+ (2)
��

E(0)− (0)− E(0)+ (0)
�

+
2〈Φ0,+|σ̂z|Φ2,+〉〈Φ2,+|σ̂z|Φ0,−〉

�

E(0)− (0)− E(0)− (2)
��

E(0)− (0)− E(0)+ (0)
� , (B.8b)

M2,+ =

p
2〈Φ2,+|σ̂z|Φ0,−〉

E(0)− (0)− E(0)+ (2)
, (B.8c)

M2,− =

p
2〈Φ2,−|σ̂z|Φ0,−〉

E(0)− (0)− E(0)− (2)
. (B.8d)

The behavior of |〈Ŝ〉| within this approximation is depicted in Fig. 3(b) and (c).

C Spin-projected Residues

Below, we verify our findings regarding the polaron residue stemming from the analysis of
observables related to |〈Ŝ〉|, in terms of quantities connected to the overlap between many
body states. Our approach relies on the residua of the spin-projected many-body wavefunction.
These quantities for σ = {↑,↓} read

Zσ =
1
p

nσ
|〈ΨB+0↑|â0σ P̂σ|Ψ0〉| , (C.1)

where P̂σ is the projector to the spin-σ state. The normalization in terms of the population of
the spin-σ state, nσ, ensures that the limiting cases of Zσ = 0 and Zσ = 1 correspond to a state
orthogonal and identical to the non-interacting state respectively. Therefore, either of these
two limiting cases imply that the polaron is not well-defined. The advantage of inspecting
Zσ is that they explicitly measure the amount of polaron dressing by phononic excitations
and also delineate whether only the spin-↑ or a superposition of spin states becomes dressed.
Notice that Zσ can be experimentally assessed through ejection spectroscopy from the spin-σ
to another non-interacting impurity state.

First, let us focus on the case of detunings around ∆ ≈ −E1↑/ħh = 8.82ωB within ML-
MCTDHX. Here, the residue of the spin-↑ component, Z2

↑ , is markedly larger as compared to
the far-detuned limit∆→−∞, signaling that stronger light-impurity coupling diminishes the
phononic dressing of the impurity, see Fig. 9(a). Simultaneously, the spin-↓ channel acquires
a finite residue (Z2

↓ > 0 for ∆ ≲ −E1↑), meaning that the optical coupling admixes the spin-
↓ state into the polaron and let it interact with the bath, see Fig. 9(b). This redistribution
between spin channels evinces the collective dressing of both spin states, as it was inferred
previously [see Sec. 4], and explains the rise of the effective residue Zeff with increasing Rabi
frequencyΩR0. Indeed, asΩR0 grows, the bath-impurity interaction becomes less spin-selective
since the impurity is dressed as a coherent superposition, as seen in Fig. 2(a) and Table 1. We
remark, however, that both Fig. 9(a) and 9(b) show that Z2

σ(∆ ≈ −E1↑) is largely insensitive
to ΩR0.
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Figure 9: Spin-state projected residues quantifying the amount of impurity dressing
by its BEC host close to the resonance∆≈ −E1↑. Square of the residue of the (a) spin-

↑, Z2
↑ , and the (b) spin-↓, Z2

↓ states calculated for gBI = −0.5
Æ

ħh3ωB/mB, NB = 100
and mI = mB within the ML-MCTDHX and effective potential approaches for different
values of ΩR0 (see legend). The effective potential clearly overestimates the residue
since it neglects modifications of the bath state due to backaction. In both cases, we
consider Zeff = 1.

Examining Z2
σ on a larger detuning scale for ΩR0 = ωB, we can see that in the regime

where the non-interacting impurity state is dominant, namely ∆ > E1↑, the spin-↓ state is
almost completely not-dressed as Z2

↓ ≈ 1. On the other hand, the spin-↑ state is dressed
displaying significant Z2

↑ < 1 but with a much larger residue value than the one corresponding
to the ΩR0 = 0 polaron, Z2 ≈ 0.9842 ≈ 0.968. On the contrary, in the interacting state
dominated case for ∆ < −E1↑ we observe that Z2

↑ quickly saturates to the residue value for a
non-light dressed polaron, while also Z2

↓ approaches this value but much more gradually with
respect to∆. These results indicate that away from the resonance regime |∆− E1↑| ≈ ΩR0, the
less pronounced spin-state closely follows the majority spin component as the light-dressing
is significantly suppressed by the energy gap among the polaron and non-interacting states.
Notice that the increase of ΩR0 enhances the width (in terms of ∆) of the resonance regime
and thus the slope of Z2

σ becomes much smoother. Moreover, it is worth mentioning that
the behavior of Z2

↑ strongly resembles UI , compare Fig. 9(a) to Fig. 4(bi), thus justifying our
interpretation of the latter quantity.

Finally, we remark that comparing Z2
σ with the effective-potential results, see Fig. 9,

demonstrates that deviations of Zσ from unity cannot be attributed solely to a modification
of the bare impurity state. Instead, they necessarily reflect a genuine modication in the bath-
induced dressing cloud. The fact that 0< Z2

σ < 1 throughout the parametric regime∆≲ −E1↑,
confirms that the polaron remains well defined, yet persistently dressed, for all ΩR0.
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