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Abstract

The Message Layer Security (MLS) protocol has recently
been standardized by the IETF. MLS is a scalable secure
group messaging protocol expected to run more efficiently
compared to the Signal protocol at scale, while offering a
similar level of strong security. Even though MLS has under-
gone extensive examination by researchers, the majority of
the works have focused on confidentiality.

In this work, we focus on the authenticity of the application
messages exchanged in MLS. Currently, MLS authenticates
every application message with an EADSA signature and
while manageable, the overhead is greatly amplified in the
post-quantum setting as the NIST-recommended Dilithium
signature results in a 40X increase in size. We view this as an
invitation to explore new authentication modes that can be
used instead. We start by taking a systematic view on how
application messages are authenticated in MLS and catego-
rize authenticity into four different security notions. We then
propose several authentication modes, offering a range of dif-
ferent efficiency and security profiles. For instance, in one of
our modes, COSMOS™ ™, we replace signatures with one-time
tokens and a MAC tag, offering roughly a 75x savings in the
post-quantum communication overhead. While this comes at
the cost of weakening security compared to the authentica-
tion mode used by MLS, the lower communication overhead
seems to make it a worthwhile trade-off with security.

1 Introduction

1.1 Background

A secure group messaging (SGM) protocol allows a group
of users to asynchronously communicate in an end-to-end
encrypted fashion. The Messaging Layer Security (MLS)
protocol [7, 13], a recently standardized SGM protocol by
the IETF, is a proposal developed in a joint effort by aca-
demics and industry for a scalable SGM protocol supporting
groups with tens of thousands of users. Similarly to the Sig-
nal protocol [22,23, 31], considered the gold standard for

two-user SGMs, it offers a strong level of forward secrecy
and post-compromise security, limiting the scope of device
compromise. The draft versions of MLS are already running
in production in Cisco’s Webex [46] and RingCentral [54],
and other companies, including AWS, Cloudflare, and Google,
are planing deployment.' Furthermore, with the recent adop-
tion of the Digital Markets Act by the European Union, a
standard like MLS is hoped to be a potential solution for the
interoperability problem in secure messaging [42].

The security of MLS (and its variants) has undergone ex-
tensive examination by researchers during the standardization
process, e.g., [2-6, 14, 17, 35, 36, 40, 57], and the protocol
has been continuously updated leading up to 20 drafts in to-
tal” until the issuance of the RFC. The majority of works on
MLS have focused on the confidentiality of the exchanged
messages (or the shared group secret key). In contrast, rela-
tively less attention has been directed towards the authenticity
of messages, which is often viewed as a means to establish
confidentiality.

In MLS, there are two types of messages being authenti-
cated [7, Sec. 2]: application and handshake messages. While
the former carry the actual payloads such as chat texts, the
latter carry group operations affecting the group state (e.g.,
authenticating that user u added a new user v to the group).
In this work, we revisit how MLS authenticates application
messages motivated by the following two issues.

Issue 1: Heavy Reliance on Signatures. In MLS, every user
u has a signature key pair (vk,,sk,) and signs the application
message am for authentication. It further independently en-
crypts the message am and signature sig, using a symmetric
key encryption scheme whose key is derived from the group
secret key to conceal the application message and its identity
from the delivery server. The resulting (tuple of) ciphertext
ct, is then sent to the group. We call this mode of authen-
tication Enc-Sign mode.” The recent work by Hashimoto et

Ihttps://www.ietf.org/blog/mls-protocol-published/

Znttps://datatracker.ietf.org/doc/rfc9420/

31n contrast, handshake messages can be sent in Sign mode, where the
user simply sends the pair (m, sig,,).
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al. [36] proposed adding an additional signature sig; on top
of ct,, using a signing key derived from the group secret
key. This mode, called the Sign-Enc-Sign mode, is a simple
but powerful enhancement of the Enc-Sign mode, allowing
to anonymously block outsiders from injecting malicious
messages to the group, similarly to Signal’s two-user Sealed
Senders [43].

While adding signatures provides stronger authenticity
guarantees, it comes with an increase in the communica-
tion and computational costs. This is currently manageable
as MLS uses an EdDSA signature with an overhead of
64 B. However, this overhead is greatly amplified in the
post-quantum setting. For instance, the NIST-recommended
Dilithium signature is 2.4 KB, a 40x increase to EdADSA
signatures. Given that a typical application message contains
less than 100 B [32], the overhead has a noticeable effect.
We thus view this as an invitation to explore alternatives de-
signs. We note that while handshake messages incur the same
overhead when turning to post-quantum security, the effect
is marginal as the size of the handshake message is larger,
and the rate at which group operations are performed is less
frequent compared to sending application messages.

Issue 2: Lack of Formal Model for Authentication. Com-
pared to the comprehensive study of the confidentiality guar-
antees of MLS, authentication has drawn less attention. This
lack of focus on authenticity may lead to unforeseen attacks
on MLS that do not contradict confidentiality but still harm
the protocol. As an illustrative example, the MLS is prone to
abuse from malicious insiders (e.g., [6]). Notice that both Enc-
Sign and Sign-Enc-Sign modes conceal the sender from the
server. This allows a malicious insider to craft a malformed
message and send it to the group. If the signature sig, included
in the ciphertext is malformed, even the group users cannot
trace back the sender, meaning that a malicious sender can
stealthily repeat the attack. While the users can reject these
malformed messages, this can only happen affer downloading
them from the server and processing them. This opens the
door for a malicious insider to mount a DoS attack on the
group. A similar issue was pointed out by Tyagi et al. [55]
for Signal’s two-user Sealed Senders [43], who experimen-
tally verified that such an attack can easily drain a recipient’s
battery in a short period of time.

A formal security model that comprehensively captures
these properties allows us to better understand the strengths
and limitations of a given authentication mode.

1.2 Our Contributions

In this work, we explore new approaches to authenticate ap-
plication messages in MLS. Our contribution is explained
below in more detail and an overview is provided in Tab. 1.

Formal Model for Authentication. In Sec. 2, we study how
application messages are authenticated in MLS and system-
atically analyze the types of adversaries and threat models

Figure 1: Relation between a CGKA, FSPD, and GAM protocols.
hm denotes the handshake message used by the CGKA protocol. m;
denotes the output of the FSPD protocol; in MLS this is an encryp-
tion of the application message am. The blue and red circles indicate
that the handshake and application messages are authenticated.

needed to be considered. More technically, the core of MLS
can be regarded as a combination of two protocols: a con-
tinuous group key agreement (CGKA) and a forward-secure
payload delivery (FSPD) protocol [3].* The former (resp.
latter) handles handshake (resp. application) messages. In
this paper, we formalize the authentication guarantees of
the application messages handled by the FSPD protocol
and introduce four different security notions: unforgeability,
anonymity, anonymous blocklisting, and tracing soundness.
To the best of our knowledge, this is the first work to put
a focus on the authenticity of the application message; pre-
vious works on MLS studied the different types of CGKA
protocol and focused on the confidentiality of the application
message [2-6, 14,17,35,36,40,57].

Group Authenticated Messaging Protocol. In Sec. 3, we
propose the new notion of group authenticated messaging
(GAM) protocol, allowing us to focus solely on the authen-
ticity of the application messages while abstracting the confi-
dentiality guarantees. More specifically, the FSPD protocol
already entails the confidentiality of application messages
and our GAM protocol can be viewed as adding authenticity
guarantees to them. Fig. | gives an illustration on how a
GAM protocol interacts with the CGKA and FSPD protocols.
For instance, in MLS, m and ¥ are the encryptions of the ap-
plication message am and signature sig, on am, respectively
(i.e., Enc-Sign mode).

New Authentication Modes. In Secs. 4 and 5, we introduce
five new GAM protocols: COSMOS, COSMAC, QUASAR, STARS,
and GEMSTARS. All are based on generic building blocks such
as one-way functions (OWFs), message authentication codes
(MACs), and key encapsulation mechanisms (KEMs) that are
instantiable from both classical and post-quantum assump-

4Alwen et al. [3] uses the term forward-secure group AEAD instead of
FSPD.
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Table 1: Comparison between different authentication modes for secure messaging protocols. N and T denote the size of the group and the
number of messages each user sends. “Communication Cost Overhead per Msg per User” is defined as the sum of 1 (offline/online) upload
cost and (N — 1) (offline/online) download cost for each user normalized by NT. For readability, we use the simplification (N +1)/N = 1.
sig, osig, and gsig denote a standard signature, a one-time signature, and a group signature, respectively. ovk denotes the verification key of
a one-time signature. ct denotes a KEM ciphertext. k denotes the security parameter, set to 128 bits. v (*) denotes that it satisfies a weaker

[T3R1)

notion of unforgeability compared to v (see Sec. 2.3). “State Updates” comes with “-”, “local”, and “global”, where “-” means no state
update is necessary (see Remark 3.2). COSMOS and COSMAC come with an optimized variants indicated by () and (*), whose respective total
communication cost overheads and state updates are provided in parentheses.

. Anonymous Tracin, Comm. Cost Overhead State
Authentication Modes UL it Blockl};stable Soundnégss per Msg per User Updates

Enc-Sign [7] v v X X |sig| -
Sign-Enc-Sign [36] v v v X 2-Isig]| -
COSMOS(T,7 1) (Secs. 4) X v v v 3k 3k, 2+2)x) local (-, local)
COSMAC(T,*) (Secs. 4) v v v X 4-x (4%, (3+4)x) local (-, local)
QUASAR (Sec. 5.1) v v v v 6 2t global
STARS (Sec. 5.2) v v v v lovk| +2- |osig| + KL<t global
GEMSTARS (Sec. 5.2) v v v v |sig| + |gsig] -

tions. Each mode fills a specific part of the design space with
strengths and weaknesses, summarized in Tab. 1. In particular,
COSMOS and COSMAC do not rely on signatures and the over-
head (for their optimized variants) is merely 32 B and 48 B,
respectively. This offers a roughly 75x savings in the post-
quantum communication overhead compared to MLS, though
at the cost of slightly weakening the unforgeability guarantee;
we assume the malicious server does not collude with the
malicious insider. See Sec. 2.3 for more detail. We believe
this significantly lower communication overhead makes it a
worthwhile trade-off with security.

Efficiency Analysis. In Sec. 7, we instantiate our proposed
GAM protocols from both classical and post-quantum assump-
tions and compare their efficiency. For completeness, we also
detail in Sec. 6 how to use each of our proposed GAM proto-
cols inside MLS. While it is mostly a simple drop in, there are
minor issues that require some explanation, since the syntax
of GAM protocols intentionally leaves out some functionality
provided by MLS, such as what is typically captured by the
CGKA protocol (e.g., welcoming group members).

Lastly, we leave it as an important future work to analyze
MLS in its entirety when using our notion of GAM protocol
as a building block. While Alwen et al. [3] analyze MLS
by composing the CGKA and FSPD protocols with a PRF-
PRNG, the output of the FSPD protocol is explicitly signed
(and not encrypted); that is, they assume the vanilla (unen-
crypted) GAM protocol used by MLS. Replacing this with a
general GAM protocol and analyzing MLS is an interesting
future work. We discuss further open problems in Sec. 8.

Other related work and preliminaries are deferred to the
full version of this paper.

2 Setting: Authentication in SGM

This work focuses on secure group messaging (SGM) proto-
cols, where group users share a unique common group secret
key. In this section we use MLS as our primary example, but
all of our constructions apply equally to most MLS variants
(e.g., [1,2,4,5,35,36,40]) that rely on a group secret key to
exchange messages.

Below, we give a brief background on how MLS authen-
ticates application messages. We then take a close look at
different security notions under the umbrella of authenticity
and formally categorize them. Building on the systematiza-
tion provided in this section, we introduce the concept of a
group authenticated messaging (GAM) protocol in Sec. 3 and
formally define the relevant security notions.

2.1 Secure Group Messaging and Our Goal

Following Alwen et al. [3], we view MLS as a combination
of the CGKA and FSPD protocols (see Fig. | for illustration).
At a high level, one can draw a parallel to hybrid encryption,
where the heavy public key operations are handled by the
CGKA protocol and the exchange of application messages is
handled by the lightweight FSPD protocol.

In more detail, the CGKA protocol allows a group of users
to agree on a continuous sequence of shared (symmetric)
group secret keys. By regularly updating the group secret key
(and user specific keys), strong notions of forward secrecy
and post-compromise security [2—4,6,24] are guaranteed. The
protocol is also responsible for handling group operations
such as adding and removing users. Handshake messages is
an umbrella term for the exchanged messages by the CGKA
protocol, used to achieve the above objectives. A handshake
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message, or an encryption of it, is signed using the user’s
signing key to authenticate the sender. This plays an important
role in guaranteeing the consistency and integrity of the group
state. As can also be seen from Fig. 1, the authenticity of
handshake messages is analyzed implicitly as a means to
show confidentiality of the group secret keys; this is similar
to standard (two-user) authenticated key exchange protocols
where authenticity guarantees are implicit [10, 19].

The FSPD protocol then uses the established group secret
key by the CGKA protocol to securely exchange application
messages, containing various types of payload such as chat
texts, images, and stamps. Compared to the CGKA protocol,
the FSPD protocol is much simpler since there are no group
operations (i.e., static groups) and the objective is only confi-
dentiality with forward secrecy; authenticity is not a security
requirement. In MLS, the output of the FSPD protocol — an
encryption of the application message — is then signed us-
ing a signature scheme and encrypted (i.e., Enc-Sign mode),
adding the necessary authenticity guarantee. This rather ad
hoc way of adding authenticity seems to be justified by the
simple nature of the FSPD protocol, and indeed most works
on MLS mainly focus on the security of the CGKA proto-
col [2,4-6,14,17,35,36,40,57]. To the best of our knowledge,
Alwen et al. [3] is the only prior work to analyze MLS in its
entirety. They do so by modularly combining the CGKA and
FSPD protocols with a PRF-PRNG, assuming the output of
the FSPD protocol is authenticated by a digital signature.

The goal of our paper is thus to put a spotlight onto the
authentication of application messages or, to be more precise,
the output of the FSPD protocol (see Fig. 1). We introduce a
new primitive called group authenticated messaging (GAM)
protocol and aim to more clearly and systematically explore
alternative choices to the currently (implicitly) used GAM
protocol by MLS, which is the Enc-Sign mode.

2.2 Environment

We first explain the environment in which MLS operates in.
This involves introducing the relevant entities and outlining
the network model under consideration.

2.2.1 Entities

Group Users: The set of users in a group. Depending on the
considered security notion, the users are modeled to either be
all honest or some malicious. For instance, we consider the
latter case when modeling a security notion where a malicious
insider (e.g., [6]) tries to impersonate an honest user.

Server: Any asynchronous messaging protocol requires a
server to curate the messages between the group users. We
consider two types of servers: honest and malicious. While
servers are typically considered to be malicious by default in
prior work, this is because the focus is mainly on the confi-
dentiality of the CGKA protocol. For authentication, it makes

sense to consider honest servers as well. For example, the
recent work by Hashimoto et al. [36] considers an honest
server to anonymously block outsiders from injecting mali-
cious messages to the group.

Outsiders: Any adversary that is not a group user or the
server. For instance, a user of the secure messaging application
not in the group.

2.2.2 Network Model

Due to asynchronicity, when group users exchange messages,
they must upload and download these to and from the server.
Depending on the anonymity guarantee we aim to achieve,
there are two types of communication channels that can be
used between the group users and the server.

Non-Anonymous: If the server is allowed to know the users
in the group, then we assume a user-server authenticated
channel is used. For instance, TLS or Noise [49] with user-
side password-based authentication can be used.

Anonymous: If the group users are required to remain anony-
mous to the server, then we assume an authenticated anony-
mous channel such as TOR [27,51] or a VPN is used.

We note dealing with authentication in the non-anonymous
setting is trivial since the server can simply maintain the group
list and explicitly authenticate the group users. In contrast, in
the anonymous setting, such trivial solutions no longer exist
and the issue of authentication becomes non-trivial. Indeed,
prior works on anonymous secure messaging, e.g., [20, 36,
43,55], overcome this by relying on some type of anonymous
group authentication protocol.

2.3 Threat Model for Authentication

We now categorize authenticity into four different security
notions: unforgeability, anonymity, anonymous blocklisting,
and tracing soundness. This categorization of the application
message is motivated by the security definitions used in well-
studied anonymous authentication schemes, such as group
signatures [8, 16,21] and accountable ring signatures [12,58].

Below, for each security notion, we explain who the ad-
versary is, what the goal of the security notion is, and why
we consider it. For simplicity, we leave outsider adversaries
out of most security notions as they are strictly weaker than
malicious servers and group users. The following security
notions will be formalized in Sec. 3.2.

Goal 1: Unforgeability.
Adversary: Malicious group users and/or a malicious server.
Goal: No adversary can forge a signature” of an honest user.

SThroughout this section, we use the term “signature” loosely and note
that signatures are not the only way to authenticate. Using the terminology
of our GAM protocol, this is more formally an “authentication token”.
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This is the default notion that any secure messaging proto-
col must ensure. We can consider two levels of unforgeability:
we call it unforgeable if the set of malicious group users and
the malicious server can collude, and non-colluding unforge-
able otherwise. The former guarantees that even a colluding
malicious insider and server cannot forge a signature of an
honest group user. In contrast, the latter restricts the adversary
to be either the set of malicious group users or the malicious
server; that is, unforgeability holds only if there is no col-
lusion. While (standard) unforgeability is the more secure
notion, sacrificing security against collusion of a malicious in-
sider and server could be a reasonable compromise for better
efficiency.

Goal 2: Anonymity.

Adversary: A malicious server.

Goal: The server cannot deanonymize and link the activity of
the group users. E.g., the server cannot distinguish whether
two uploaded messages came from the same user or from two
different users.

For this security notion we must rely on an anonymous
network model as, otherwise, communication will be linkable
at the network level. We further assume all the group users
to be honest, since a malicious user can always inform the
server of who is in the group or who authored a message.

Goal 3: Anonymous Blocklisting.
Adversary: An outsider.

Goal: An honest server can block any outsider trying to up-
load messages on behalf of the group.

Observe that non-anonymous blocklisting is trivial to sat-
isfy, since the server can perform access control by explicitly
authenticating the group users. We therefore use the term
“anonymous” to emphasize that the motivation of the server is
to blocklist non-group users while preserving the anonymity
of the users. The purpose of anonymous blocklisting is for the
server to be able to prevent outsiders from launching a DoS
attack on the group. Importantly, although group users can
verify the authenticity of the messages by downloading them
from the server, we require the server to directly reject invalid
messages on behalf of the group. This is satisfied for example
by Sealed Sender [43] used in the Signal protocol and the
metadata-hiding MLS protocol by Hashimoto et al. [36].

Goal 4: Tracing Soundness.

Adversary: Malicious group users.

Goal: The set of honest group users can trace any (possibly
maliciously crafted) signature back to a unique group user; if
an honest user traces a signature back to a user u in the group,
then all other honest users trace it back to the same user u.

Tracing soundness allows to keep the view of the hon-
est users consistent. For instance, consider a malicious in-
sider mounting a DoS attack against the group by spamming
garbage application messages. With tracing soundness, the
honest users can unanimously agree on who the malicious
insider was and remove him from the group. One can draw a

parallel to anonymous blocklisting, that prevents such attacks
from outsiders. Moreover, while similar, it is worth noting that
tracing soundness is an orthogonal notion to unforgeability.
Consider a malicious insider u that modifies the signature of
an honest user v in such a way that for half of the group mem-
bers it traces back to u, but for the other half traces back to v.
While this does not contradict unforgeability, as the malicious
user is effectively just “repurposing” somebody’s message, it
clearly breaks the consistency of the group’s view.

2.4 Modeling Choices and Simplifications

Before introducing our GAM protocol in the next section, we
clarify the modeling choices and simplifications we make.

Trusted Setup. The GAM protocol assumes the states of
both the group users and the server are generated honestly
by an initialization phase. This simplification is justified for
protocols like MLS, since users are assumed to start the GAM
protocol with the group secret key, derived from the CGKA
protocol, already in their states.

Static Groups. The GAM protocol assumes static groups,
following the way in which MLS’ FSPD protocol operates.
Recall that in MLS a new FSPD protocol for a static group
is initialized every time group membership changes, as this
will trigger a new CGKA protocol epoch (see Fig. 1). More
generally, though, we could consider a continuous GAM pro-
tocol where we do not need to reinitialize the protocol with
every group change, similarly to a CGKA protocol. However,
such a definition must be intertwined with that of the CGKA
protocol responsible for group state updates, rendering the def-
inition to be as complex as modeling MLS in its entirety. As a
study investigating new security goals of authentication, we
opt for making the security notions tractable and to improve
the overall readability. Nonetheless, we explain in Sec. 6.2
with concrete examples on how each of our proposed GAM
protocols can handle dynamic operations.

Out-of-Order Messages. In our work, we do not model au-
thentication when messages arrive out-of-order. While this
is arguably important for a comprehensive model, we high-
light that, unlike confidentiality, lack of authentication does
not harm the usability of the FSPD protocol. In the context
of the MLS protocol, immediate decryption of the messages
will still be maintained. The only difference between MLS is
that we may lose immediate authentication when messages
arrive out-of-order. Importantly, though security is lost while
some messages are missing, assuming that every message
eventually arrives, then out-of-order messages do not affect
security. Instead, if some messages are permanently dropped,
we can allow the recipients to fetch this missing authenti-
cation information, which they can do assuming the proper
indexing of the messages required by out-of-order decryption.
We note that in MLS [13, Section 5.2], whether messages
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eventually arrive or not is controlled by the application that
sets the policy.

3 Group Authenticated Messaging Protocol

We introduce group authenticated messaging (GAM) proto-
cols and the associated security requirements.

3.1 Definition

A GAM protocol is defined between a server and a group G
of users. As explained above, there exists an initialization al-
gorithm Init that prepares the initial state for the group users,
possibly further preparing a secret key for the server. To send
a message m (e.g., the output of a FSPD protocol), a user
u € G runs the Send algorithm, outputting a group authenti-
cation token Xg. A server verifies (m,X¢) using the Verify
algorithm and prepares user authentication tokens (c;) ic[N]>
where N = |G|. For example, in the context of the Sign mode
in MLS (see Footnote 3), ¢ is simply u’s signature and
G; := X¢. To capture anonymity, we assume the server only
knows the size of the group G® and assume a bijective map
idx : G — [N] is secretly known by the group users. Namely, a
user u such that i = idx(u) fetches o; from the server. It then
runs the Receive algorithm to verify (m,o;) and traces the
purported user v € G that generated o;. It is worth highlighting
that we make a distinction between a group authentication
token X and a user authentication token G; to capture an
optimization technique called selective downloading [5,35].
This technique allows the server to sanitize the group authen-
tication token X¢ in a straightforward manner by delivering
to each group user just the strictly necessary amount of data
G;, while maintaining the same level of (dis)trust.

Finally, we endow a GAM protocol with an offline-online
feature. In the offline phase, when the message is still un-
known, a user can perform a possibly heavy state update,
and share the update with the server and the group via the
UpdSend algorithm. This algorithm is accompanied by algo-
rithms UpdVerify and UpdReceive similarly to above. Once
the message is known in the online phase, the user can send it
using its updated state.” Formally, we have the following.

Definition 3.1. A GAM protocol for message space M be-
tween a server Sv and a set of users in a group G consists of
the following algorithms, where idx : G — [N] is a bijective
function with N := |G|. Below, if an algorithm outputs 1, we
assume it reverts to the state before running the algorithm.

SWhile we could consider further hiding the size of the group to the server,
we choose not to since it would resort in an inefficient padding strategy.
This is the same level of anonymity satisfied by previous anonymous SGM
protocols e.g., [20,36].

"Naturally, protocols need not have such a differentiation and can simply
only perform online state updates. This optimization allows us to improve
the real-world usability of those protocols that do, as they can more evenly
distribute their computation and communication over time.

Init(1%,G) — (pp,sksy, (Stu),cg ) : On input the security
parameter 1% and group information G C {0,1}*, it outputs
public parameters pp, a secret key sks, for the server Sv, and
an initial state st, for all users u € G. We assume G € st,,.

Send(st,,m) — (st},,Xg) or L : On input a state st, for user
u € G and a message m € M, user u outputs an updated state
st/ and a group authentication token g, or L.

Verify(pp,sksy,Xg,m) — (pp/, (Gi)ie[N]) or L : On input
public parameters pp, a server secret key sks,, a group au-
thentication token Xg, and a message m € M, the server Sv
outputs updated public parameters pp’ and N user authenti-
cation tokens (G;)c(y), or L.

Receive(st,,0,m) — (st/,,b e {T,L},ve GU{L}): On
input a state st for user u € G, a user authentication token
o, and a message m € M, user u outputs an updated state
st!, a bit b indicating whether the token was valid (b =T) or
invalid (b = 1), and a purported user v € GU{ L}, where
v = L1 if tracing fails.

UpdSend(st,) — (st,, X¢, cte) : On input a state st,, for user
u € G, user u outputs an updated state st,, a group update
authentication token X¢, and group update information ctg.

UpdVerify(pp,sks\,,i(;,a:G) - (pp/, (ai’ai)iG[N]) or L :
On input public parameters pp, a server secret key sksy, a
group update authentication token ¥, and group update infor-
mation Ctg, the server Sv outputs updated public parameters
pp’ and a list of user update authentication tokens and user
update information (G, &,-)l. ey O 1.

UpdReceive(st,,6,ct) — (st,, b€ {T,L},ve GU{L}):
On input a state st for user u € G, a user update authentica-
tion token G, and user update information Ct, user u outputs
an updated state state], a bit b indicating whether the token
was valid (b = T) or invalid (b = 1), and a purported user
vE GU{ L}, wherev= L if tracing fails.

Remark 3.2 (Local and Global State Updates). For some pro-
tocols the user state may only allow signing up to 7 messages,
and it may need to be updated before the user can sign again.
There are two ways to perform state updates: locally and glob-
ally. In the former, a user regains the ability to send messages
once it has updated its own state. In the latter, a user regains
the ability to send messages only after every user in the group
updates their states. Since global state updates are much more
costly than local state updates, they are only useful if one state
update allows to send a large number of messages 7. Further,
global updates can only guarantee security if users are online,
a clear disadvantage over local updates. For the schemes pre-
sented in this paper there are no risks of a deadlock — i.e.,
a situation where a global state update cannot be completed
and users are prevented to keep sending messages — as long
as the users perform updates once coming online. However,
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the general definition of global updates does not guarantee
that such a deadlock does not occur.

Correctness of GAM protocols is defined in the full version
of this paper.

3.2 Security

We formalize the threat models explained in Sec. 2.3: un-
forgeability, anonymity, anonymous blocklisting, and tracing
soundness, via a security game defined in Fig. 2. The proba-
bility of the game outputting 1 against an efficient adversary
must be negligible for every game except for anonymity. For
anonymity, as it is a distinguishing game, the game must out-
put 1 with probability negligibly close to %

For every game, the adversary is given access to ora-
cles { Osend, Oupdsend }» allowing it to invoke honest users
to create group (update) authentication tokens. The adver-
sary is further given access to either { Oreceive; OUpdReceive }
or { OgroupReceives OGroupUpdReceive }- The former allows the
adversary to directly invoke honest users to process (up-
date) authentication tokens. This capture malicious server
capabilities and is used by the unforgeability and anonymity
games. In contrast, the latter only allows the adversary to
query for group (update) authentication tokens. The oracle
then individually invokes each honest users on the correctly
processed (update) authentication tokens. Namely, this cap-
tures honest server behavior and models the fact that mali-
cious users cannot directly send messages to group users.
It is worth noting that, in this case, the authentication to-
kens created in { Osend, OUpdsend } are directly processed by
{ OGroupReceivea OGroupUdeeceive }a mOdeling the fact that the
communication channel between an honest user and server is
secure.

To aid readability, we highlight some features of the se-
curity game. We model two types of unforgeability by
Ga meﬁ with X € {ncUnf, Unf }. In standard unforgeability,
as the adversary models both a malicious user and server,
it has unrestricted access to all oracles. In contrast, for non-
colluding unforgeability, we have two case distinctions de-
pending on whether the set of corrupted users C = 0 or not.
In the former case the adversary is a malicious server, so
the adversary is given the server secret key sks, and has
access t0 { ORreceive; OupdReceive |- In the latter case the ad-
versary is a set of malicious users, so the adversary is in-
stead given the corrupted users’ states and only has access to
{ OroupReceives OGroupUpdReceive }- For both types of unforge-
ability, an adversary wins if it can output a valid user (update)
authentication token for an honest user that it has not seen
before. For anonymity, we model a malicious server by giv-
ing the adversary the server secret key sks,. The adversary
outputs two users and messages and the game creates the
group authentication tokens for both users. To non-trivialize
the game, we restrict the (group) authentication tokens to be
valid. To perform this check, the adversary needs to further

output a (possibly malformed) public parameter pp so the
game can run algorithm Verify. The adversary can further per-
form oracle queries under the restriction that it does not query
the receive oracles on the challenge authentication tokens.
More discussion can be found in the full version of this

paper.

4 COSMO0S: Authentication with One-Time To-
kens

In this section we propose a GAM protocol named COSMOS
(Compact authenticated Secure Messaging with randomized
One-time tokenS). When anonymity is not necessary, COSMOS
is the most efficient and simplest protocol among all our pro-
posed protocols. The additional total communication over-
head is only 3k compared to a protocol where messages are
sent without any authentication, where X is the security pa-
rameter. Additionally, we show a simple method to bootstrap
COSMOS to satisfy anonymity and anonymous blocklisting,
which we name COSMAC. The added overhead to COSMOS is
a single MAC tag. Lastly, we show how to optimize both
protocols by batching sends and updates together.

4.1 Construction of COSMOS

The high level idea is as follows: each group user mints tokens
(xi,¥i) €{0,1}¥x {0,1}* for i € [T] such that y; = OWF (x;);
stores the private tokens (x;);c(7) in its state; uploads the
public tokens (yi)ie[T] to the server in an offline phase; and
ideally sends (x;,m;) to the server once the message m; is
defined in an online phase, where x; acts as the authentication
token, and delete x; from its state. However, since x; is not
cryptographically tied to m;, this is insecure. Thus, the user
additionally MACs (x;,m;) using a MAC key only known
among the group users. We highlight that such a MAC key
can be generated from the common group secret key gsk
maintained by the CGKA protocol.

More formally, after the initialization phase, each user u €
G and server maintain a list of public tokens PubTOKEN €
({0,1}*)MT, where N = |G| and T is the number of messages a
user can send before needing to update its state. PubTOKEN
is a list such that, for each user u € G, PubTOKEN[u] €
({0,137 stores the T public tokens (¥i)ie[r) used by user u.
User u also maintains a list of private tokens PrivTOKEN, €
({0,1}%)7 storing the T private tokens (x;) ie[r)-

To send a message m, user u retrieves an unused pri-
vate token x from PrivTOKEN,, along with the counter
ctr € [T] such that PubTOKEN [u][ctr] = OWF(x), and sends
(x,ctr,Xmac) as the group authentication token Xg to the
server, where Lyac is a MAC tag using kmac. The server
then checks if the token x is valid (i.e., yy = OWF(x)) and
relays (x,ctr,Zmac) as the user authentication token o; to all
the users. Here, Xpac does not need to (nor can it) be verified
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Game’§ (1¥) 1 Xe{ ncUnf,unf }

Game/y

AnonBlock ( 1K)

Oracle Osend(u € H,m)

11 C+s$A4(1%)

2: H:=G\C

31 Lmsg,Lupd :=0 /Book keeping

4: (pp,sksy, (stu),eg) <s$lnit(1%,G)

5: if X = Unf then

6: (label,obj) e&sﬂo(pp,sksV, (Stu)yee)
7: else /No collusion between malicious user and server
8: if C=0 /Honest users

9: (1abel,ob]) +$.4°(pp,sksy)
10 else  /Honest server
1 (label,obd) <A (pp, (Stu)uer)
12: if label = msg then
13: parse (1,6,m) < obJj

14: reque H
15: (st},, by, vy) < Receive(st,,c,m)
16: req b, = T [ Valid authentication token
17: b [vi € HA(vy,%,m) & Lingg]

18: elseif label = upd then

19:  parse (1,6,Ct) < obj
20 reque€ H
210 (stl,by,vy) < UpdReceive(st,, 5, ct)
22 req b, = T [ Valid authentication token
231 b [vi € HA (v, *,ct) ¢ Lypd]
24: returnb
Gamey™"(1¥)

1: H:=G [Nocorruptusers

2: Challpsg :=0

3: coin <${0,1}

4: (pp,sksy, (stu),eg) <Slnit(1%,G)

5: (PP, uo,u1,mo,mi) <5.4°(pp,sksy)

6: foreachbc {0,1} do

70 (st],,Z%) +$Send(sty,, Mpecoin)

g: (PP (0D)iew)

9: + Verify(pp, sksv, £&, Mpacoin)
10: / Require the authentication token to be valid
1: req pp # L

12: foreach u € H do

13: (Sthysbus vi) Receive(st,,,c{’dx(u), Mpscoin)
14: req b, # L

151 Challmsg < Challmsg U{7 };c)

16: PP PP

17: coin <$4°(Challpsg)

18: return [coin = coin]

H:=G INo corrupt users

21 Lmsg,Lupd := 0 /Book keeping

3: (pp,sksy, (stu),eq ) <snit(1¥,G)

4: (label,obj) <4 (pp) [ Malicious outsides
5: if label =msg then

6: parse (Xg,m) < obj

70 (PP’ (Gi)iepyy) < Verify(pp,sks,, Zg,m)
8: req pp’ # L/ Require Verify to succeed

9: / Sv accepts new non-member token
10: b [(%,2G,*) ¢ Lmsg]
11: elseif label = upd then
12 parse (fg,&g) < obj

13 (pp’, (8{,&,-)1.6[1\,])

— UpdVerify(pp,sksv,fc,é\tG)

14: req pp’ # L/ Require UpdVerify to succeed
15 / Sv accepts new non-member token

16: b [(%,Z6,%) ¢ Lypdl

17: return b
GamegaceSound (IK)

1: C+s$A4(1%)

2: H:=G\C

3: Ly :=0 [/Book keeping

41 (pp,sksy, (stu),eq) <s$lnit(1%,G)

50 (label,ob’) +-$A% (pp, (Stu)yer)

6: if label =msg then

7: parse (Xg,m) < obj

81 (PP, (01)icpy)) + Verify(pp,sksy,Zg,m)
9: req pp’ # L/ Require UpdVerify to succeed
10: foreach u € A do

1 (ty, by, vu) ¢ Receive(stu, Gigy(u), M)
12: if b, = T then

13: Liy < Ly U{v, }  /1f tracing fails, v, = L
14: elseif label = upd then

15: parse ()fc,,cAtg) +— obj

16: (pp/7(a[7&i)ie[N]>

— UpdVerify(ppA,sksv,fg,cAtg)

17: req pp' # 1 I Require UpdVerify to succeed
18 foreach u € # do

19: (sth,, by, Vi)

— Udeeceive(stu,Eidx(u),cAtidX(u))

20: if b, = T then

21: Liy < Ly U{v, }  /1f tracing fails, v, = L
22: [ Does not uniquely trace user

23 b [PveG:Ly={v}]

return b

1! SRec:=0

20 (st],Xg) «s$Send(st,,m)

31 Lmsg ¢ LmsgU{ (1,Xg,m)}

4: [ Server honestly processes group authentication
5: if 4 has access to O* then

6: SRec < OGroupReceive (ZGv m)

7: retarn (£g,SRec)

Oracle OReceive(u € cha m)

1: reqo ¢ Challmsg / Only used by anonymity
’ .
20 (sty,bu,vy) < Recelve(stu,cidx(u),m)

3: return (by,vy)

Oracle O(;roupReceive (ZG ) m)

12 (PP, (G1)iep) < Verify(pp,sksy, Zg, m)
2: if pp’ = L then return L

3: foreachu € H do

4: (ty bus vie) 4 Receive(sty, Gigy(u), M)

5: return (by,vi),cor

Oracle Oypdsend (1 € H)

11 SUpdRec := 0

20 (st),Zg,ctg) <sUpdSend(st,)

31 Lypd ¢ Lypa U{ (1, Zg,ctg) }

41 [ Server honestly processes group authentication
5: if 4 has access to O* then

6: SUpdRec < OGroupUdeeceive(EGadG)

7: return ((i(;,alg),sudeec)

Oracle OUdeeceive(u € }[787&)

Ui (sth,buyvu)
2: < UpdReceive(sty, Gidx(u)» Ctidx(u))

3: return (by,,vy,)

Oracle OGroupUdeeceive(EG7 CtG)

SR CACEEN)

2: — UpdVerify(pp,sks\,,fG,a:G)

3: if pp’ = L then return L

4: foreach u € #H do

5: (stly, bu, vu)

6: — Udeeceive(stu,aidX(u),&idx(u))

7: return (by,vy),cor

Figure 2: Security games for (non-colluding) unforgeability, anonymity, anonymous blocklisting, and tracing soundness. We
define a set of oracles O := { OSend7 OReceivea OUpdSend7 OUdeeceive} and O* := { OSend7 OGroupReceive7 OUpdSenda OGroupUdeeceive }
We assume the game maintains the public parameter pp and (secret) user states st,. Moreover, we assume the updated state st], is
implicitly set as st, and omit the substitution st], « st,, for readability. When the condition in req does not hold, we assume the
game outputs a random bit in the anonymity game and O in all other games. Lastly, for readability, we sometimes ignore creating
the lists Ltr, Lmsg, Lupd When they are not required by the game.
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by the server. Now, since PubTOKEN and kyac is shared
among the group, the users can verify the MAC tag and trace
the user u that sent G;.

When only one private token x is left, user u performs a
state update and mints new tokens. It generates a new batch
of T tokens (x;,yi);c[r] and uploads (y;)c[r] using the final
token x along with a MAC tag. The server and users check
that the newly minted tokens are from user u by validating x
and update PubTOKEN(u] <~ (yi);c[r]- Once user u’s state is
updated, # can send 7" messages again. Importantly, COSMOS is
locally state-updatable since a user can start sending messages
once they update their state. Due to page limitations, the
protocol is formally given in the full version of this paper.

Lastly, COSMOS satisfies all the security notions except for
anonymity: non-colluding unforgeability, (anonymous) block-
listing, and tracing soundness. At a high level, we argue non-
colluding unforgeability by considering two cases: against a
malicious server the authentication token is unforgeable as
kmac is unknown. Importantly, the same authentication token
(x,ctr,Zmac) cannot be reused by the malicious server since
the users have already deleted the associated public token y
when it receives x the second time. Otherwise, against a mali-
cious user, it is unforgeable as the private token x is unknown.
In the latter, we use the fact that an honest server correctly
processes the private token sent from an honest user (i.e.,
delete it from the server), preventing a malicious user from
replaying it. One can check that it is not standard unforgeable
since if a malicious server and insider collude, both kmac
and private tokens x will be known to the adversary, allowing
for a trivial forgery. Moreover, we note that even though the
MAC tag attached to the group authentication token cannot
be verified by the server, and hence can be stealthily modified
to a garbage MAC tag, this will not harm tracing soundness as
we only use the private tokens for tracing. The formal security
proof is deferred to the full version of this paper.

4.2 COSMAC: An Anonymous COSMOS with
Anonymous Blocklisting

While COSMOS is efficient, it lacks anonymity. A server can
link two tokens by looking at their corresponding locations
in PubTOKEN. We present a simple method to transform
COSMOS to have anonymity and anonymous blocklisting at an
overhead of only one MAC tag. We name this GAM proto-
col COSMAC (C0OSMOS with MAC). Note that in exchange for
anonymity, COSMAC loses tracing soundness.

The high level idea is for each user in the group to addi-
tionally derive a unique MAC key kmac and a symmetric-key
encryption (SKE) key kske from gsk where, unlike in COSMOS,
kmac is uploaded to the server. When a group user uploads
some content to the server, it runs the Send (resp. UpdSend)
algorithm of COSMOS, encrypts the group (resp. update) au-
thentication token using kskg, and MACs the ciphertext with
kmac. The server only accepts contents that have a valid tag

under kyac. A group user can verify the user authentication
token by first decrypting the ciphertext using kskg, followed
by the same check as COSMOS. The protocol is formally given
in the full version of this paper.

Observe that the authentication tokens are now encrypted
and the server no longer learns the identity of the user. This
is how anonymity is achieved. Non-colluding unforgeabil-
ity almost immediately follows from the non-colluding un-
forgeability of COSMOS. This is because from the users point
of view, COSMAC and COSMOS are almost identical. The only
difference is that COSMAC requires to first perform a decryp-
tion using kske; this does not make forging anymore easier
for the adversary. Indeed, prove non-colluding unforgeabil-
ity of COSMAC assuming the non-colluding unforgeability of
COSMOS. Moreover, COSMAC satisfies anonymous blocklisting
since an outsider without knowledge of kymac cannot upload
contents which the server will accept. Lastly, on the other
hand, unlike COSM0OS, a malicious user can now stealthily per-
form a DoS attack on the group since the server can only
check the validity of the MAC tag and not the content. In
particular, COSMAC loses tracing soundness, as the content,
which can now be a malformed ciphertext, may not include
the sender’s identity. We show in the full version of this paper
that COSMAC is non-colluding unforgeable, anonymous, and
anonymous blocklistable.

4.3 Optimizations of COSMOS and COSMAC

We take advantage of the fact that COSMOS (and COSMAC)
have an efficient local state update and apply two optimiza-
tions leading to COSMOS™ and COSMOS™™ (and COSMAC™ and
COSMAC™ ™, respectively). We focus on COSMOS as the case
for COSMAC is almost identical.

Removing Local Updates: COSMOS™. Notice that local state-
updates allow a user to execute the UpdSend algorithm as part
of the Send algorithm. That is, users can send a message and
perform an update at the same time. Concretely, this requires
to maintain just one public token y per user u € G. To send
a message m, u first mints a new token (x’,y’) and uploads
both the message and public token (m,y’) using the private
token x, along with a MAC tag binding (m,x,)’) together.
The server and other group members replace y with y'. User
u can repeat the process using the new private token x’. Ef-
fectively, the protocol now consists of only running an online
phase, since the update is implicitly performed during a send.
Compared to COSMOS, COSMOS™ balances the throughput of
the user without harming the total communication cost 3 - K,
while also reducing the storage cost of public tokens.

Minimizing Communication Cost: COSMOS™ . This opti-
mization reduces the communication cost of COSMOS™ by 1/3
while keeping the local update of COSM0S.® The main idea

8This optimization was suggested to us by an anonymous reviewer; after-
wards, another reviewer informed us that a similar idea is used in the S/KEY
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is to make the private authentication token become the pub-
lic token for the next message. As in COSMOS™, the server
maintains a single public token y; . per user, where ¢ € N
will be the number of times user u ran UpdSend. As a re-
sult of running UpdSend the user will upload a public to-
ken yo. = OWF” (xr.), i.e., T invocation of OWF. This
updated public token can be used to send T messages. To
authenticate the i-th message m;, user u simply sends token
Xie = OWFT*"(xTﬂ) along with a MAC tag on (m;,x; ). The
server and other group members update the public token to
Yie := Xi .. Since the public token generated in the offline
phase is useful for sending 7" messages, the amortized cost of
sending one message is (2+ =) - k. For a sufficiently large 7,
this reduces the communication cost of COSMOS™ by 1/3.

5 Anonymous and Tracing Sound GAMs

In this section we introduce three GAM protocols that simul-
taneously achieve anonymity and tracing soundness. These
are the first authentication modes in the literature to do so.
The first two protocols: QUASAR (Quick Authenticated Secure
Anonymous messaging with Randomized one-time tokens)
and STARS (Strongly-Authenticated anonymous messaging
with Randomized one-time Signatures) satisfy these stronger
authenticity guarantees at the cost of being only global as
opposed to local state-updatable like COSMOS and COSMAC.
Once a user u € G exhausts its private tokens, it must wait
till all other users perform an update before being able to
send a message again. We discuss some ideas to mitigate
the shortcoming of global state updates in the full version of
this paper. Our third protocol GEMSTARS (Group Signature
Modified STARS), eliminates updates altogether by relying
on group signatures. Below we give intuitive overviews of
the protocols, deferring the formal descriptions and security
proofs to the full version of this paper.

5.1 QUASAR: Anonymous Authentication with
Tokens

We first consider a non-anonymous variant of QUASAR and
add anonymity later. Its core idea is to perform a relatively
expensive offline phase (i.e., UpdSend) to make the online
phase (i.e., Send) very cheap.

Basic Idea. Assume a group G = (u;),c(y- Each user u; mints

tokens (xylmyyl)i) € {0,1}* x {0,1}* for (j,7) € [N] x [T]
such that yyl)i = OWF(xyl”-). Here, j — i indicates that user
u; approves u; to send a message to him. User u; sends the pri-

vate tokens (xﬁii),em to uj by encrypting it with a public-key

encryption (PKE) scheme using u;’s public key. Moreover,

u; uploads the public tokens (yylm jnelN)x[1) to the server.

one-time password authentication protocol [33, 34].

Uy Uz us Ug

2
Uy x§31
@)
Uz x&)z Y22 xgi)z
Uz x;zj3
2
Uy x|
U Uz us Uy
)
Uy )’1@1 Y21 yii)1
2,
Uz yl(i)z ole e yz(_.)z oo xe yﬁ,)z
1 (2) 3
us |y, Y253 v
) 4
uy [y Y254 y}_,);I

Figure 3: A toy example of a non-anonymous variant of QUASAR.
G= (ui)i€[4] and T = 3. The upper box stores the private tokens

(xl(i jJiep3) for i, j € [4]. The blue columns are tokens that user u)
uses to send messages and the red rows are tokens that user u, minted.
The bottom box stores the public tokens ( () )iep3) for i, j € [4] held

t
Yiesj
by the server.

A toy example is provided in Fig. 3. Throughout the pro-

tocol, each user u; maintains two types of tokens: sender
(®)

tokens (x; ;)(j)e[v]x(r] (blue box in Fig. 3) and receiver to-

kens (xﬁ‘ii)(j.t)E[N]X[T] (red box in Fig. 3). To send the t*-th

(t* < T) message m, u; retrieves the sender tokens (xl(i)j) jev)
and uploads this as the group authentication token X¢ along
with m. Similarly to COSMOS and COSMAC, X will include
N MAC tags for each message tuple (xl(i)], m), binding the
tokens to m. The server checks that ¥¢ maps to a specific
column of public tokens in its database. If so, it parses Xg,
sets the user authentication token 6; for user u; as xl(iz and
the j-th MAC tag. User u; can verify and trace ¢; back to
u; by searching through its receiver tokens. Once the users
exhaust their tokens, they perform an update by minting new
one-time tokens and distributing them to the group as done
above. Note that this is where we require global state updates:
once the boxes in Fig. 3 become empty, every user has to
update in order to fill them back again.

Informally, user traceability holds since the group authen-
tication token X corresponds to a unique column in the
database held by the server. All honest users can use this

unique column index to trace the same sender.

Amortized Efficiency. To reduce the communication cost
of the offline phase and make the dependence on the cipher-
text size minimal (particularly important in the post-quantum

regime), we replace the private tokens (xyl i)ic[r) by one PRF
seed seed;_,;, allowing each user to locally derive the corre-
sponding tokens. This reduces the number of ciphertexts by a

factor of T, making the overhead in the offline communica-
tion cost to be 2 - ('c—Tt‘ + K) per message, where ct denotes a
PKE ciphertext and x is the bit-length of the public tokens.

Adding Anonymity. Fig. 3 illustrates how if, e.g., u, sends
two messages using private tokens from the blue box, the
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server will be able to link these two messages together. Our fi-
nal description of QUASAR fixes this by permuting the column
indices using a permutation key derived from the group secret
key. The server stills checks the group authentication tokens
Y with respect to a single column, and the users can map
this randomly permuted column index to a unique sender.

Similarly to all the GAM protocols so far, QUASAR is non-
colluding unforgeable since each users maintain a database
of the public token and user pair. The added complexity only
comes from adding tracing soundness while maintaining anon-
mity. Moreover, QUASAR is not standard unforgeable as a mali-
cious server and malicious insider can collude to impersonate
any honest user.

5.2 STARS and GEMSTARS

STARS: This is almost equivalent to QUASAR, except that it
additionally achieves standard unforgeability by replacing
the usage of one-time tokens (i.e., private and public tokens
(x,y) such that OWF (x) = y) with one-time signatures (OTS).
Importantly, the usage must remain one-time as otherwise two
messages sent with the same signing key becomes linkable.
GEMSTARS: This is essentially STARS without state updates.
In order to remove updates without weakening security, we
use a group signature (GS) [8, 16, 21], enabling a user to
anonymously sign, while allowing a special entity called the
group tracer to trace the signature back to the user. In our
context, we will view the set of group users as one instantia-
tion of the group tracer. Unfortunately, due to a mismatch in
the scope of “groups” considered by the GAM protocol and
GS, a naive solution does not work. We will resolve this issue
by proving group membership of the GAM protocol using a
standard signature, similar to the idea in the metadata-hiding
protocol of [36]. Although GEMSTARS removes state updates
while satisfying all the desired security, it is quite inefficient
in the post-quantum setting due to the lack of efficient GS.

6 Running GAM Protocols on MLS

In this section, we explain how to integrate a GAM protocol
into MLS. While this is fairly straightforward, some discus-
sion is required since our GAM protocol assumes a trusted
initialization algorithm Init that prepares the group user states.
For the particular GAM protocol (i.e., Enc-Sign mode) cur-
rently used by MLS this is not an issue, since the initial user
state (i.e., the group secret key and verification keys of the
group users) is implicitly provided by the CGKA protocol.
However, in general, this may not be the case.

Below, we explain this integration in two steps. We first
consider the base case where a GAM protocol operates on
an already established set of user states. We then consider
how our specific GAM protocols can handle the Init algorithm
without a trusted setup. Recall in MLS, a single user u ini-
tializes a group G = {u} and then dynamically adds users

(5) (stp, T,A) < Receive(stp, Gigx(s), guSE)

(4) (gmsg GIdX(B)) (qj
Bob

Q (2) (gnsg, Zc) —] 3) (pp',
eVenfy(pp SkSv L, gmsg)

Alice

(M (sty,Zc)

=
< Send(st4, gmsg) (4) (gnsg; Gigx(c))
Charlie

(5) (ste, T,A) < Receive(stc, Gigy(c), £mSE)

Figure 4: Using a GAM protocol on top of MLS’ FSPD pro-
tocol. When retrieving a message, a user u specifies its index
idx(u) to the server; the server then returns the user authenti-
cation token Gjq,(,) along with gmsg.

by sending welcome messages. We follow this approach and
explain how the Init algorithm of a GAM protocol can be
implemented through these dynamic group operations. As
explained in Sec. 2.4, a formal model for allowing dynamic
groups in GAM protocols is left as an important future work.

6.1 Authentication in a Static Group

Assume the base case where the user states of the GAM proto-
col are already set up. Recall an application message of MLS’
FSPD protocol have the following format [7, Sec. 6]:

(gid7 epochCGKA, CtsenderlD; CtContents; Auth Data) (H

gid is the group identity; epochcckpa is a counter”; senderlD
is the sender’s identity; Contents stores the payload; cty is
an SKE encryption of X under an SKE key derived from the
group secret key; and AuthData is an authentication data field,
including an encryption of the signature (i.e., Enc-Sign mode).
Below, we denote gmsg as Eq. (1), excluding AuthData.

With this structure in mind, using a GAM protocol on top
of MLS’ FSPD is straightforward. This is depicted in Fig. 4
(see also Fig. 1). To send a message gmsg, user u € G runs the
Send algorithm to create a group authentication token X and
uploads (gmsg, AuthData := X¢) to the server. The server
verifies X and prepares user authentication tokens (6; )¢y,
where N = |G|. When a user v € G with index i = idx(v)
contacts the server, the server returns (gmsg, AuthData; :=
6;). User v can then verify and trace user u by running the
Receive algorithm of the GAM protocol on (gmsg, G;).

Lastly, in case the GAM protocol requires state updates
(e.g., QUASAR and STARS), this can be simply run on top of
FSPD by directly embedding the group update information
Y into Contents or Ctcontents depending on the anonymity
guarantee we require.

Note that this epochccka is maintained by the CGKA protocol and
differs from those used by QUASAR and STARS.
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6.2 Authentication in a Dynamic Group

We now discuss how to add users to a preexisting GAM pro-
tocol using the welcome message functionality provided by
MLS (or the CGKA protocol to be precise). Similarly to how
the CGKA protocol is implemented, this procedure can be
used to execute the Init algorithm. Since the process is inher-
ently protocol specific, we explain them individually below.

COSMOS. This is simple since each user state is independent
of the others. When an outsider joins the group via a welcome
message, it mints a new token (xo,yo) and uploads the public
token yg to the server and group. The outsider can additionally
authenticate yo by including it in its key package maintained
by the Delivery Service [13, Sec. 5] or by directly signing
it to the group with its long-term key maintained by the Au-
thentication Service [13, Sec. 4]. Once yg is shared among
the group, it can use xg to start sending messages. Moreover,
the outsider can fetch the current public tokens of the other
users from the server. In case they want to be sure that these
public tokens were indeed minted by the respective users, they
can obtain the tokens directly from the senders. Note that the
process is very similar to the Enc-Sign mode currently used
by MLS’ FSPD protocol. The case for the optimized COSMOS
is similar.

COSMAC. This is almost identical to COSMOS. The only differ-
ence is that the outsider, after processing the welcome mes-
sage, recovers the current group secret key gsk. It then uses
the gsk to derive the MAC key kvac and an SKE key kske.
Note that we can update kyac and kske anytime the CGKA
protocol performs a commit, which would allow some form
of post-compromise security of the anonymity and anony-
mous blocklisting properties (see Sec.8). Moreover, if we
need sender anonymity of the welcome message, we can rely
on existing anonymous two-party messaging protocols, such
as Sealed Sender [43] or Orca [55], where the latter protocol
also provides user traceability.

QUASAR and STARS. These are the most involved due to
global state updates. Since the protocol flows of QUASAR
and STARS are identical, we only focus on QUASAR. Look-
ing at the toy example from Fig. 3, we cannot simply ap-
pend columns corresponding to the new users since the server
can always link public tokens associated to these appended
columns. Thus, to ensure anonymity, the group users must all
update their state and refresh the public tokens held by the
server. In more detail and similarly to COSMOS, the outsider
o, after having processed the welcome message, mints their

one-time tokens, uploads the public tokens (yyl()) () EINIX[T]
to the server, and sends the PRF seeds seed;_,, to each group
user so that they can recover the corresponding private tokens.
After every other user updates their states by further minting
T extra public tokens for the new user o, the user can start
sending messages.

An optimization of the above approach will have each

group member j send a new PRF seed seed,_.; to o, but,
for each other group member i, derive the corresponding
seed for the new epoch from the seed seed;_,; (respectively
seed; ;) for the previous epoch, and upload the correspond-
ing public tokens yffl . to the server. This could be done by
setting the new seed to be OWF(seed ;_,;|lepoch||o) (respec-
tively OWF (seed;_, j||epoch||0)). The advantage of such an
approach is that each group member is only required to send
a single ciphertext, and download nothing, as opposed to up-
loading and downloading N ciphertexts.

GEMSTARS. This is the only protocol that requires the MLS
server to additionally run a group signature scheme. When a
user joins the secure group messaging application, the server
provides the user with a certificate (see the full version of this
paper for details). Assuming this step has been finished, then
joining a group is straightforward. This is because the only
thing the outsider requires to run GEMSTARS is the groups
tracer key and signature key, which are both derived from the
group secret key gsk. Hence, following the same discussion
in COSMAC, we can easily add new users to GEMSTARS.

Lastly, we note that removing users is straightforward
for all of our GAM protocols. Since COSMOS is not anony-
mous, the server can simply maintain a list of group mem-
bers. COSMAC and GEMSTARS natively supports removal at
the CGKA layer since, once a commit occurs, the MAC key
kmac is updated along with the group secret key gsk. Finally,
for QUASAR, the users can simply remove the unused public
tokens corresponding to the removed users from the server.

7 Bandwidth Efficiency Analysis

In this section we analyze the efficiency of our proposed
GAM protocols and compare them with existing authentica-
tion modes. We are specifically interested in the bandwidth
overhead incurred by each authentication mode compared to
a messaging protocol where the application message (e.g.,
chat texts) is sent in the clear, i.e., without authentication.

7.1 Instantiation

We target the NIST Level I security'” stating that breaking
the protocol is no easier than key-recovery on a block cipher
with a 128-bit key (e.g., AES-128). This provides a meaning-
ful baseline to discuss post-quantum security and ignoring
quantum attacks corresponds to a classical security level of
128 bits. The main cryptographic primitives used in our GAM
protocols is summarized below. The sizes of the cryptographic
artifacts used in our instantiations are shown in Tab. 2.

OWF: We use SHA-256 and truncate its output to 16 B.

Opttps://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization/

evaluation-criteria/security- (evaluation-criteria)
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Table 2: Instantiation of the building blocks for our GAM protocols. SIG and GS stand for signature schemes and group signatures.
sig, osig, and gsig denote the signature a standard signature, an OTS, and a group signature, respectively. ovk denotes the
verification key of an OTS. ek and ct denote a KEM encapsulation key and ciphertext, respectively. All sizes are given in bytes.
indicates the output of SHA-256 is truncated to 16 B. We use k to denote the security parameter, set to 128 bits.

Primitives H Classic ‘ Post-quantum ‘ Related Auth. Modes
OWF SHA-256: =16 SHA-256: k=16 COSMOS, COSMAC, QUASAR
MAC HMAC-SHA-256: k= 16" HMAC-SHA-256: k= 16" COSMAC
oTS EdDSA: |ovk| = 32, |osig| = 64 WOTS™:  |ovk| = 1320, |osig| = 1072 STARS

. — e — Sign, Enc-Sign,
SIG EdDSA: |[sig| =64 Dilithium:  |sig| = 2420 Sign-Enc-Sign, GEMSTARS
GS BBS: |gsig| =336 LNP: |gsig| = 9.2 x 10* GEMSTARS
KEM Hashed ElGamal:  |ek| = |ct| = 32 Kyber: |ek| =800, |ct| = 768 QUASAR, STARS

MAC and PRF: We use HMAC [41] with SHA-256 and trun-
cate its output to 16 B. Note that a deterministic MAC
can be viewed as a PRF.

Pseudo-random permutation: We require a PRP to per-
mute the set of NT tokens. We have the option of using
either FastPRP [53] or the Thorp shuffle [47].

One-time signature schemes: For classical security, we use
EdDSA [11]. For post-quantum security, we use
WOTS™ [37,38] used as a building block of the NIST
PQC standard signature SPHINCS+ [39]. We set the
Winternitz parameter w = 16, and use SHA-256 as the
underlying hash function.

Signature schemes: For classical security, we use Ed-
DSA [11]. For post-quantum security, we use the NIST
PQC standard Dilithium [44]. We did not consider Fal-
con [50], another PQC standard, since Dilithium is se-
lected as the primary algorithm and NIST recommends
it for most use cases.

Group signatures: For classical security, we use the pairing-
based BBS scheme [15] with the BLS12-381 pairing-
friendly curve. For post-quantum security, we use
the lattice-based scheme proposed by Lyubashevsky,
Nguyen, and Plangon (LNP) [45].

KEM schemes: For classical and post-quantum security, we
use the Hashed ElGamal KEM [25] and the NIST PQC
standard Kyber [52], respectively.

7.2 Efficiency

Cost Metric. Following [5,36], analyzing the bandwidth effi-
ciency of MLS (and its variants), we analyze our GAM proto-
col through three metrics: the upload and download cost, and
the total cost. Each of these costs are further broken down
into offline and online costs; online (resp. offline) cost is asso-
ciated to the cost of uploading and downloading contents gen-
erated by Send and Verify (resp. UpdSend and UpdVerify).

We assume a user can send at most 7 messages once their
states are updated. For protocols that require no updates, we
can simply set T = 1 as there are no offline costs. In more
detail, we have the following, where the costs are defined per
user in a group of size N.

Total upload cost: The cost of uploading T outputs of Send
(online) and one output of UpdSend (offline).

Total download cost: The cost of downloading NT outputs
of Send (online) and N outputs of UpdSend (offline).

Total cost: The sum of the upload and download costs.

The download cost is a factor N times larger than the upload
cost since each user has N = |G| users to download from. Here,
for COSMOS™**!!, COSMAC™ ™, and GEMSTARS, we can slightly
optimize the download cost by allowing the users to not down-
load the messages they upload. In contrast, for QUASAR and
STARS, the users must download what they uploaded to pre-
serve anonymity. At a high level, looking at Fig. 3, if a user
does not download what it uploaded, then the server can link
the (permuted) columns together. Lastly, observe that even if
the offline cost is larger compared to the online cost, it gets
amortized by 7': as T grows larger, the total online cost starts
to dominate the total offline cost.

Comparison of Communication Costs. We analyze the com-
munication cost of our proposed GAM protocols and compare
them with existing authentication modes. The number of ex-
changed cryptographic elements in the GAM protocols is
summarized in Tab. 3. We classify the GAM protocols into
the following three categories and compare them.

(1) Non-anonymous protocols: Sign mode and COSMOS™™.

(2) Anonymous protocols without tracing soundness: Enc-
Sign mode, Sign-Enc-Sign mode, and COSMAC™ ™.

(3) Anonymous protocols with tracing soundness: QUASAR,
STARS, and GEMSTARS.
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Table 3: The number of total cryptographic elements exchanged in GAM protocols. N is the group size and T is the number
of online messages per one offline update. ¥ denotes the security parameter. sig, osig, and gsig denote a standard signature, a
one-time signature, and a group signature, respectively. ovk denotes the verification key of a one-time signature. ct denotes a

KEM ciphertext.

Offline Online
Upload Download Upload Download
Auth. Mode K Jovk| et K lovk| |ct] K |osig| |sig] |gsig]| K |osig| |sig| |gsig|
Enc-Sign (MLS) T (N—=DT
Sign-Enc-Sign [36] T (N-1)T
COSMOS™ 3 3(N-1) 2T 2(N-1)T
COSMACT 4 4(N-1) 3T 3(N-1)T
QUASAR 2NT N 2N N 2NT 2NT
STARS NT N N N NT NT
GEMSTARS T T (N-1)T (N-1T

Table 4: Communication cost of each GAM protocols. The sizes are in bytes. N is the group size and T is the number of online
messages per one offline update. In Tabs. 4a and 4b, we ignore the O(N) cost of the offline phase for readability. The column
“Total” is normalized by NT, denoting the total overhead cost per message. The column “PQ?” is X (resp. V) for classical (resp.
post-quantum) security. The mode “Sign” in Tab. 4a corresponds to the naive approach of simply signing messages.

b: Anonymous GAM protocols without tracing soundness

a: Non-anonymous GAM protocols

Online
Online H Auth. Mode Upload \ Download Total PQ?
Auth. Mode || Upload | Download Total PQ? Enc-Sien (MLS) 64-T 64-(N—1)T 64 x
Sien 64-T | 64-(N—1)T 64 x £ 2420-T | 2420-(N— )T 2420 v
g 2420-T | 2420-(N—1)T 2420 v Sign-Enc-Sign (36] | 1257 | 128-(N=T)T 128 X
cosMos™ || 32.T | 32-(N—-D)T [16-2+3) || ¥ £ gl 4840-T | 4840-(N—1)T 4840 v
COSMACT™ 48T | 48 N—-1T [16-3+7) || ¥
c: Anonymous GAM protocols with tracing soundness
Offline Online
Auth. Mode Upload ‘ Download Upload Download Total PQ?
32-NT +32-N 64-N 64-NT 32-NT (96+ %) - A x
QUASAR 1568\  N+1
32-NT+768-N | 800-N 32-NT 32-NT (96+5%8). 541 || &
32-NT+32-N 48-N 64-NT 64-NT (160452 . A1 x
STARS 1552\ N+l
1320-NT +768-N | 784-N | 1072-NT 1072-NT (3464 + 1332) . ML || &
400-T 400-(N—-1)T 400 X
GENSTARS 9.4x10*-T | 9.4x10*- (N—1)T 9.4 % 10* v

Category (1). Tab. 4a compares the Sign mode (cf. Foot-
note 3) used in MLS and COSMOS™ . Technically, the Sign
mode is used exclusively by the CGKA protocol in MLS,
and not used to authenticate the output of the FSPD proto-
col. Nonetheless, this mode was used to analyze MLS by
Alwen et al. [3] and we view it as the vanilla non-anonymous
GAM protocol. Considering that any cryptographic element
added to satisfy authentication should be at least 128-bits,
COSMOS™™ is near optimal. Compared to the Sign mode, the
total post-quantum communication cost is a factor 75x smaller.
On the other hand, Sign mode achieves standard unforgeabil-
ity while COSMOS™™ does not. We believe COSMOS™ ™ offers
a worthwhile tradeoff between efficiency and security.

1We only consider the most efficient version of COSMOS and COSMAC here.

Category (2). Tab. 4b compares the Enc-Sign mode used in
MLS, Sign-Enc-Sign mode [36], and COSMAC™ ™. Recall Enc-
Sign mode does not achieve anonymous blocklisting while
Sign-Enc-Sign and COSMACT™ do (see Tab. 1). Out of the
three protocols, COSMAC™™ has the lowest communication
cost. Compared to the Enc-Sign mode used in MLS, the total
post-quantum communication cost is a factor 50x smaller.
As with COSMOS™™, COSMAC™™ only achieves non-colluding
unforgeability while Enc-Sign and Sign-Enc-Sign modes do.

Category (3). Tab. 4c compares QUASAR, STARS, and
GEMSTARS. These are the only anonymous GAM protocols
with tracing soundness. QUASAR and STARS have a variable
total communication cost that becomes smaller as T (and N)
increases. This is because the KEM ciphertext encrypting the
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PRF seed, exchanged during the offline phase, can be used
to mint 7 tokens. Specifically, the cost of sending a large
ciphertext is amortized by the number of messages T sent in
the online phase. By setting 7" = 1000, the cost of sending a
KEM ciphertext relative to the total cost is only 2 B or less
per message, even in the post-quantum setting.

Out of the three protocols, QUASAR provides the most total-
cost-efficient protocol. In fact, QUASAR is even comparable
to COSMAC™™ that has no tracing soundness, e.g., it is 106 B
when (N, T) = (10, 1000). While larger than QUASAR, STARS
also offers a relatively small total overhead, albeit more com-
putationally expensive due to running an OTS. The bene-
fit of using STARS over QUASAR is that it achieves standard
unforgeability. Lastly, while both QUASAR and STARS have
an O(N) online upload cost (i.e., maximum bandwidth con-
sumption) per message, the concrete cost is only 16 KB for
QUASAR even for a relatively large group of N = 1024. STARS
uploads 64 KB and 1 MB of data in the classical and post-
quantum settings, respectively. Lastly, recall one of the weak-
ness of QUASAR and STARS are that they are only globally
state-updatable. GEMSTARS removes updates altogether, with
the cost of a larger total communication overhead; in the
post-quantum setting, it is 94 KB.

8 Open Problems and Future Work

Other than those discussed in Sec. 2.4, we consider the fol-
lowing as interesting future work.

FS and PCS. Both forward secrecy (FS) and post-
compromise security (PCS) are standard security notions in
secure messaging. A natural question is then, given the com-
promise of (one or more) users states to the adversary, what
is the effect of this on the unforgeability, anonymity, anony-
mous blocklisting, and user traceability of past and future
messages? This opens interesting directions, both towards
formalizing these notions and towards constructing authenti-
cation modes satisfying them.

Regarding FS, we first note that unforgeability, anonymous
blocklisting, and user traceability are not relevant, as in our
setting these notions are only concerned with the moment
messages are processed by users.'” Anonymity, on the other
hand, is more interesting: can a state compromise allow an
adversary to de-anonymize past messages from a user? The
answer for both MLS and our proposals is “Yes”, at least in
some cases. Indeed, messages in each MLS’ FSPD instanti-
ation share an epoch and are thus all signed with the same
signing key, and their sender identity and signature are en-
crypted with the shared secret in the epoch. In the latter, either
key material is static (like in GEMSTARS), or anonymity relies
on the key material that only gets rotated between CGKA

12The concept of forward-secret signatures [9], motivated by the will that
the compromise of the current secret key does not enable an adversary to
forge signatures pertaining to the past, is thus not relevant.

epochs, like the MAC key used in COSMAC, or the permuta-
tion key used in QUASAR or STARS. Thus, natural questions
are: how do we formalize “forward anonymity”? and can we
design authentication modes that satisfy it?

The matter regarding PCS for authentication is more in-
volved, since all the security notions make sense in this setting,
as indicated by the original work on PCS by Cohn-Gordon,
Cremers, and Garratt [24]. For unforgeability, the work of
Cremers, Hale, and Kohbrok [26] introduces the notion of
PCS signatures, where key-pairs can be evolved to “heal”
from a compromise. For anonymity, ideas from unlinkable
sanitizable signatures [18,30] could be useful. We leave con-
crete construction of a PCS GAM protocol as an interesting
problem.

Optimal Security with PQ Efficiency. We provide several
GAM protocols with different efficiency and security profiles,
some of which offering much better post-quantum efficiency
compared to the GAM protocol used in MLS, albeit weak-
ening unforgeability. So far, the only GAM protocol satisfy-
ing optimal security (i.e., standard unforgeability, anonymity,
anonymous blocklisting, tracing soundness) with no global
state updates is GEMSTARS. However, this comes at a great
cost as post-quantum group signatures are much more costly
than signatures. We view it as an interesting open problem to
find a GAM protocol achieving all the desireable properties
while retaining efficiency.
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