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Qualitative and quantitative orbital properties such as bonding/antibonding character,
localization, and orbital energies are critical to how chemists understand reactivity,
catalysis, and excited-state behavior. Despite this, representations of orbitals in deep
learning models have been very underdeveloped relative to representations of molecular
geometries and Hamiltonians. Here, we apply state-of-the-art equivariant deep learning
architectures to the task of assigning global labels to orbitals, namely energies
characterizations, given the molecular coefficients from Hartree–Fock or density
functional theory. The architecture we have developed, the Cartesian Equivariant
Orbital Network (CEONet), shows how molecular orbital coefficients are readily
featurized as equivariant node features common to all graph-based machine-learned
potentials. We find that CEONet performs well at predicting difficult quantitative
labels such as the orbital energy and orbital entropy. Furthermore, we find that the
CEONet representation provides an intuitive latent space for differentiating orbital
character for the qualitative assignment of e.g. bonding or antibonding character. In
addition to providing a useful representation for further integrating deep learning
with electronic structure theory, we expect CEONet to be useful for automatizing
and interpreting the results of advanced electronic structure methods such as complete
active space self-consistent field theory. In particular, the ability of CEONet to infer
multireference character via the orbital entropy paves the way toward the machine-
learned selection of active spaces.

machine learning | electronic structure | molecular orbitals | chemical reactions

Since the dawn of computational chemistry in the 1930s (1), molecular orbitals have
served as the key bridge between the chemist’s intuitive understanding of how molecules
behave (i.e., via bonding and antibonding interactions) and the computational basis for
computing molecular properties (i.e., via Slater determinants). To this day, molecular
orbitals remain vital to how chemists are taught and perceive fundamental chemical
phenomenon such as bonding, Lewis structures, oxidation states, and electronegativity
(2, 3). Additionally, properties of molecular orbitals often relate directly to experimental
observables such as ionization potentials, electron affinities, and excited states (4–12).

Moreover, even given the past century of electronic structure development, molecular
orbitals still remain practically vital to computations. To this day, molecular orbitals
continue to serve as the fundamental basis for computing excited states and electron
kinetic energy, even in density functional theory (13–15). Beyond this, molecular orbitals
provide the basis for computing strong correlation in wave function methods such as
complete active space self-consistent field theory (CASSCF) (16). These methods leverage
the fact that strong correlation in molecules is generally localized to a small region of
the molecule, and use qualitative orbital labels (e.g., �, �∗, bonding, antibonding) to
select an “active space” of orbitals in which to compute the correlation (17). Automating
the selection and interpretation of these orbitals has been a long-standing goal of the
field (17–24), and would enable the application of these methods at scale (25, 26). In
particular, the estimation of the multireference character of individual orbitals prior to
calculation remains a key problem that remains to be addressed.

However, despite the important role that molecular orbitals play in chemistry, relatively
little work has been done to design machine-learned representations of molecular
orbitals compared to geometries and Hamiltonians (28–32). Nevertheless, accuracy
has often improved in deep learning approaches through the development of “physics
informed” architectures (33) that integrate ideas from quantum chemistry. For example,
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Behler outlines four “generations” of machine-learned poten-
tials (32, 34) with later generations [e.g., ANI-1 (35) and
PhysNet (36)] incorporating the concept of partial charges from
standard force field development to capture long-range effects.
Similarly, state-of-the-art approaches such as SchnOrb (37),
OrbNet (38, 39), DeepH (40), and the recent model of Ceriotti
and coworkers (41) make explicit reference to the concepts of
orbitals and Hamiltonians, being reminiscent of semiempirical
models such as AM1 (42) and PM3 (43). As the development of
machine-learned potentials progresses further, we expect that rep-
resentations of molecular orbitals themselves may play a key role.

Here, we present the Cartesian equivariant orbital network
CEONET, a work focused on assigning labels to orbitals them-
selves given input from ab initio calculations. Specifically, given
a set of molecular orbital coefficients for a single orbital c on
atoms with positions x, element types z, and basis � we pursue a
labeling function

f (c, x, z,�)→ l�, [1]

where l� is a label corresponding to either a quantitative value
(e.g., orbital energy or orbital entropy) or a qualitative description
(e.g., bonding or antibonding). We develop new datasets for
both of these tasks: QM9@HF-STO-3G, consisting of STO-3G
Hartree–Fock orbitals for the entire QM9 dataset (44); the
TMQM@HF-STO3G dataset, consisting of STO-3G Hartree–
Fock orbitals for complexes in the TMQM dataset (45); and
the TMBonding dataset, consisting of metal, ligand, bonding,
and antibonding orbitals for octahedral transition metal com-
plexes (46). Furthermore, we employ our scheme on the recently
published Def2SVP orbitals in the QH9 dataset (QM9@B3LYP-
Def2SVP) (47). Additionally, we apply CEONET to the difficult
problem of predicting orbital entropies from high-throughput
multireference calculations (25). The orbital entropy measures
the occupational diffusivity of orbitals in the CI expansion of the
wave function, and as such can be used to choose an appropriate
active space in an a priori fashion (22, 48).

Across these learning tasks, we find that CEONET performs
well at predicting difficult quantitative labels such as the orbital
energy and orbital entropy, effectively modeling the action of the
Fock operator in real-space. Learning curves on all these tasks
demonstrate excellent scaling laws with respect to the number
of training data. Additionally, we find that the CEONet model
provides an intuitive latent space for capturing orbital character
and generalizes well to unseen orbital types (e.g. localized
orbitals or orbitals from smaller basis sets). In particular, the
ability of CEONET to infer orbital entropies from SA-CASSCF
calculations given only molecular orbital coefficients provides
a promising route for developing automated routes for active
space selection.

Furthermore, the CEONET architecture provides several tech-
nical contributions to the representation of orbitals in molecular
systems. Mainly, CEONET a) demonstrates the direct mapping of
molecular orbital coefficients and basis information to symmetric
hidden features in graph neural networks, b) includes expressive
message passing layers that overcome the orbital sign problem,
and c) demonstrates the utility of Cartesian symmetry functions
in representing the orbital character. We hope that this work
provides a solid foundation for considering the properties of
orbitals in deep learning architectures.

1. Model Architecture

The CEONET model provides a synthesis of many concepts from
quantum chemistry packages and state-of-the-art equivariant

machine-learned potentials. In the following section, we de-
scribe the background used to interpret the molecular orbital
coefficients given their input from quantum chemistry packages
(Section 1.1). We then describe the background of the Cartesian
tensor product networks used in the model (Section 1.2) followed
by a complete description of the model architecture (Section 1.3).

1.1. Atomic and Molecular Orbitals in Quantum Chemistry.
In standard quantum chemistry codes, molecular orbitals are
represented as linear combinations of a set of k atomic orbitals
centered on each atom i:

�(r) =
∑
lik

clik�
l
ik(r), [2]

where each atomic orbital � l
ik(r) is a linear combination of so-

called “primitive” Gaussian-type orbitals with decay coefficients
�, multiplied by angular functions of order l = ||l||1 (l =
(lx , ly, lz)) centered on ri:

� l
ik(r) =

∑
p

Λ(Zi)
pk N (�(Zi)

pk , l)e−�
(Zi)
pk r2

Ll(r− ri) [3]

Ll(r) = (rx − rix)lx (ry − riy)ly(rz − riz)lz [4]

We use Λ(Zi)
pk and �(Zi) in the equation above to emphasize

that these weights are fixed by the atomic orbital basis for each
element and not choices of the user;N (�(Zi)

pk , l) is a normalization
coefficient determined for each primitive as a function of � and l.
For example, in the minimal STO-3G basis, each “Slater-type”
atomic orbital is approximated by three Gaussian-type orbitals
(i.e., e−�r

2
) functions.

However, symmetry constraints demand that Λ(Zi)
pa and �(Zi)

pk

be shared between all atomic orbitals � l
ik(r) of order l . For

example, the 2p primitive coefficients in the STO-3G basis
are shared between the three l = 1 (px , py, pz) basis functions.
Similarly, the 3d coefficients are shared between the six (x2, y2,
z2, xy, xz, yz) l = 2 basis functions. Constructing the basis in
this manner makes quantum chemical calculations invariant to
rotations or translations of the molecule.

Furthermore, this construction results in sets of molecular
orbital coefficients on each atom that transform equivariantly as
tensors of rank l :

c0
ik = c(0,0,0)

ik (s-type) [5]

c1
ik = (c(1,0,0)

ik , c(0,1,0)
ik , c(0,0,1)

ik ) (p-type) [6]

c2
ik =

c(2,0,0)
ik c(1,1,0)

ik c(1,0,1)
ik

c(1,1,0)
ik c(0,2,0)

ik c(0,1,1)
ik

c(1,0,1)
ik c(0,1,1)

ik c(0,0,2)
ik

 (d-type) [7]

For example, rotation or inversion of the molecule by a
matrix R results in an equivalent rotation or inversion of all
c1
ik coefficients. Equivalently, one may work with the spherical

harmonic angular functions in which case the coefficients
are naturally treated as spherical tensors of rank l (i.e., five
d-type orbitals instead of six due to the constraint of constant
x2 + y2 + z2). Both formulations are equivalent and many
quantum chemistry libraries can easily switch between the two
types of functions. Although Gaussian-type orbitals are the most
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popular choice, we note that the proposed scheme (Eqs. 5–7) can
easily be extended to other atom-centered basis functions such as
Slater-type or numeric orbitals by modification of Eq. 3.

1.2. Background: Cartesian Tensor Product Networks.
Machine-learned force fields such as ACE (49), MACE (50),
and NequIP (51) have proven to be highly effective tools
for modeling the energies and forces of quantum mechanical
computations. The key feature of all of these methods is a
nonlinear equivariant layer that preserves the rank of different
tensor components. In particular, given two tensors of rank li
and lr , there exists a contraction rule

li ,lrX
lo = (Xli) · ·(Xlr ) [8]

in which ·· sums and multiplies over the elements of both tensors
to achieve a tensor of rank lo. These layers were first achieved
employing spherical tensors (i.e., obeying the symmetries of the
spherical harmonics) and combining tensors together through
use of the Clebsch–Gordan coefficients C lomo

lrmr limi
. More recently,

several models such as CACE (52), HotPP (53), and Tensor-
Net (54) have shown that equivalent formulations of these layers
can be made employing Cartesian tensors. For example, instead
of expanding normalized pair vectors r̂ij via spherical harmonic
filters, Cartesian tensors of rank l are derived via repeated tensor
products:

r̂⊗n = r̂⊗ r̂ . . .⊗ r̂ [9]

with n factors of r̂, and r̂⊗0 = 1. Equivariance is then achieved
via the tensor contraction rule:

li ,lrX
lo
a1...al = Xli

a1...ali−cb1...bcX
lr
b1...bca1...alr−c

c ≤ min(li, lr) li + lr − 2c = lo
[10]

in which a number of c Cartesian dimensions are contracted over
to produce a tensor of rank l0 = li+lr−2c. So, for example, given
two tensors of rank l = 1, one may produce tensors of rank l = 0
(scalar, c = 1) or rank l = 2 (matrix, c = 0). The contraction
rule in Eq. 10 can easily be shown to be equivariant (53). We
also note that parity symmetry is properly handled with no extra
effort by this contraction rule, with all tensors of odd rank l
possessing odd parity symmetry and all tensors of even rank l
possessing even parity symmetry.

Finally, there is the additional question of how to combine
contractions of the same output rank lo resulting from different
input ranks li and lr . One option is to simply sum over all outputs
of rank lo to produce the final result:

Xlo
kjc = Xli

kc ⊗sum Xlr
jc =

∑
li ,lr→lo

(Xli
ic) · ·(X

lr
jc) [11]

However, a more expressive option is to stack all output channels
together:

li ,lrX
lo
kjc = Xl

kc ⊗stack Xl
jc =

⊕
li ,lr→lo

(Xli
ic) · ·(X

lr
jc) [12]

resulting in effectively a larger representation of c × (li, lr → lo)
in each lo channel. Unless otherwise stated, we have opted to use
Eq. 12 in each tensor product step, which we have found to be
more cost-efficient when paired with a smaller channel dimension
and fewer network layers.

As seen, repeated applications of Eqs. 11 or 12 inevitably result
in rapidly expanding tensors of rank l with dimension 3l . Thus,
all equivariant models define some maximum rank lmax which
constrains the output of Eq. 11 from nonlinear layers. Here, we
use lmax = 2.

1.3. Model Architecture.
1.3.1. Orbital featurization. As shown in Section 1.1, molecular
orbitals are readily featurized as equivariant node features,
Eqs. 5–7, common to all graph-based machine-learned poten-
tials. However, there is the central problem of how to make
such a featurization transferrable between basis sets, in which
each basis has varying numbers of “channels” k for each angular
momentum l, each with different sets of primitive (p) coefficients
Λ(Zi)
pk and �(Zi)

pk . Here, we address this issue by sampling the
primitive orbitals directly with a learnable basis rc and summing
over all channels k:

�l
ic =

∑
pk

clikΛ
(Zi)
pk N (�(Zi)

pk , l)e−�
(Zi)
pk r2

c [13]

Featurization in this manner is transferable between basis sets of
any size and captures the radial shape of the molecular orbital
around any atom i and any direction l; the model only learns
how to sample the molecular orbitals around atoms i via rc using
the underlying primitive basis. We then pass these coefficients
through a linear layer to expand to the channel dimension nc .
The features of each rank l are then stacked together in tensors
of rank l to form the initial hidden features hlic . This layer and
all following layers are outlined in Fig. 1.
1.3.2. Message passing layer. Although the featurization of
Eq. 13 is efficient in capturing the variation of the molecular
orbital on each node, one must additionally account for symmetry
with respect to the global sign of the orbitals. In particular, the
molecular orbital energy is invariant with respect to the change
clik → −c

l
ik (i.e., is even with respect to orbital parity), while

the featurization �l
ic is odd with respect to this transformation.

This orbital parity can be removed by taking tensor products
between two sets of orbital features and the vector between them.
In particular, we take the tensor product

hlic ⊗
l r̂⊗lij ⊗

l hljc [14]

to compute messages along each edge, where ⊗l represents the
⊗stack operation in Eq. 12, only keeping outputs up to l = lmax.
We additionally take the tensor product

hlic ⊗
0 hljc [15]

in which we take the tensor product directly between the hidden
features on node j and the hidden features on node i. Here,
again ⊗0 represents the ⊗stack operation in Eq. 12 in which we
only collect tensor products resulting in scalar features (l = 0).
These scalar features are then appended with the scalar outputs
of Eq. 14 and fed into a SiLU-activated multilayer perceptron
(MLP) (55) to compute attention weights aijc for each message
channel:

ml
1,ic =

∑
j

aijcml
j→i,c [16]

This message is then combined with a self-interaction message
computed from

ml
2,ic = hlic ⊗

l hlic [17]
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A B C

D

E

F

Fig. 1. A schematic view of the CEONET architecture. In each block, lighter shades and rectangular edges represent modules with learnable parameters
while darker shades and round edges present nonlearnable steps. Colors other than the background color depict modules outlined in other blocks. (A) Model
Architecture. Geometry and orbital features (x,�) are fed through an orbital featurization layer and then passed through a message passing layer to remove
orbital parity. These features are then appended with the A basis from the Cartesian atomic cluster expansion (CACE) representation and fed through a
feed-forward layer to form the hlic for the first B output B(0)

ic . The hlic are then fed through four message passing steps to produce B(t)
ic and appended then fed

through a multilayer perceptron (MLP) and summed over to produce a molecular representation Bc , which is used to predict the orbital energy ��. (B) Orbital
Featurization. Primitive basis functions are computed and sampled with learnable rc which are then multiplied by their molecular coefficients, summed over,
and passed through linear mixing to produce the orbital-parity-dependent output hlic . (C) Message Passing. The edge features hlic , hljc , and r̂⊗lij are passed
through an attention message passing layer to produce messages which are multipled by radial basis functions and summed over to produce accumulated
messages ml

ic . These are appended with self-messages produced from the tensor product between hidden features on the same node, as well as with the
original hidden features (except in the first orbital layer). (D) Feed Forward. First, the hidden features are projected down to the channel dimension by a linear
layer. Then, the norms of equivariant layers hl>0

ic are computed and combined with h0
ic and fed into a sigmoid-activated MLP to compute multipliers on the

input hl>0
ic features. A new set of h′0ic features are also computed with a SiLU-activated MLP and then fed into a linear layer with the hl>0

ic features to produce the
output. (E) Cross-Attention Message Passing. Three types of messages are computed via tensor products between the node features hlic , hljc , and r̂⊗lij , which are
then combined. The tensor product hlic ⊗hljc is then combined with the l = 0 features of the incoming messages and fed through an MLP to calculate attention
for each message channel. (F ) CACE-A. Edge features are formed between each node by element embedding and multiplying by radial basis functions and the
vector between the nodes r̂⊗lij . These edge features are then multiplied by the radial basis functions and summed over to compute the A basis, which is then
linearly mixed over the radial channel and flattened to provide the output Alic .

to form the new hidden node representation h′lic . This large-
channel representation is then generally projected back down to
the channel dimension nc by a linear layer in the next module.

This message passing module is used in later layers once the
orbital representations are combined with features from CACE
(explained in the next section). Since orbital parity is not a factor
in these later layers, we additionally compute the edge features

hlic ⊗
l r̂⊗lij [18]

r̂⊗lij ⊗
l hljc [19]

to append with the tensors computed in Eq. 14. Additionally,
linear layers are used prior to all tensor products to improve model
expressiveness. In summary, this layer allows for information to
be shared between atoms about the character of the molecular
orbital in a symmetry-aware fashion.
1.3.3. CACE features. To compute features of the molecular
geometry (x,z), we take the A basis generated from the first
steps Cartesian atomic cluster expansion (CACE) method (52).
Sender and receiver nodes are embedded with one-hot encoding
and their tensor product is taken to encode the edge. These edge
features are then multiplied by radial basis functions and the

4 of 10 https://doi.org/10.1073/pnas.2510235122 pnas.org
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angular momentum components of r̂⊗lij :

� l
ijkc = (�Z(i) ⊗ �Z(j))cRk(dij)r̂

⊗l
ij [20]

and then projected onto the nodes, linearly mixed, and flattened
to form the A basis used in CEONet:

Alic =
⊕
k′

∑
kj

Wk′k� l
ijkc [21]

We note that the � in Eqs. 20 and 21 represent the edge
features used in CACE and not the basis information of Eq. 3.
We refer readers to the original CACE paper (52) for a more
detailed explanation. However, we note that several such GNN
representations of molecular geometries exist, and reviews are
available beyond the scope of this work (32). Here, CACE is
used as it is a recently developed Cartesian model, but in practice
CEONet can be combined with any equivariant GNN. In total,
this layer computes features of the molecular geometry to be
combined with features of the molecular orbital in the feed-
forward layer.
1.3.4. Tensor normalization. Inspired by TensorNet (54), we
normalize all node features over the tensor dimension with the
rule

h′lic =
hlic∑

l(h
l
ic)2 + 1

[22]

which helps to control the scale of the features after message
passing and improve stability.
1.3.5. Feed-forward layer. Inspired by the norm gate of QH-
Net (56) and the feed-forward layer of Equiformer (57), we
aim to compute new scalar features and scaling multipliers of the
equivariant channels. Starting with an input hlic projected down
to the channel dimension nc , we take as input the scalar features
h0
ic and the norms of the nonscalar features |hlic| =

∑
l(h

l
ic)

2.
These are fed into a SiLU-activated layer to compute new scalar
features h0

ic and a sigmoid-activated layer to compute scalings of
the h(l>0)

ic features. The scalar and nonscalar features are then fed
to a final linear layer to produce the new representation h′lic . This
layer is critical for combining information about the molecular
geometry and the molecular orbital coefficients.
1.3.6. Formation of scalar B basis. As the orbital energy is
invariant to SE(3) group actions (i.e., rotations and translations),
we ultimately want to predict the orbital energy from invariant
inputs. Here, we adapt the n-body B scalar basis used in
CACE (52) to featurize the orbitals for orbital energy prediction.
This approach amounts to taking all unique tensor products over
up to �max vector representations of the same node that result in
scalar features:

B�=1,ic = h0
ic [23]

B�=2,ic =
⊕

li 6=0,lr 6=0→lo=0

(hliic) · ·(h
lr
ic) [24]

B�=3,ic =
⊕

la 6=0,lb 6=0,lc 6=0→lo=0

(hlaic) · ·(h
lb
ic) · ·(h

lc
ic) [25]

For example, for lmax = 2 and �max = 2, the B2 features consist
of the tensor products (1, 1) and (2, 2), while the B3 features
consist of the tensor product (1, 2, 1). Symmetrization in this
fashion ensures that the predicted energy remains invariant with
respect to SE(3) operators.

1.3.7. Model architecture and readout. We finally review the
model architecture in full, as outlined in Fig. 1. First, the orbital
input is featurized and passed through a message passing layer
to remove orbital parity dependence. These features are then
normalized and appended to the CACE features to form a unified
hidden representation of both the orbital and element features.
This large hidden representation is then projected down to the
channel dimension c by a feed-forward layer, which is then used
to form the initial B representation B(0)

ic .
The unified hidden representation is then fed through nlayer

information-passing steps consisting of message passing and feed-
forward layers; the hidden representation after each step is used to
form a new B featurization B(t)

ic . The B(t)
ic features from all steps

are then appended, normalized, fed into an MLP, and summed
over all nodes to produce a molecular representation Bc . This
molecular representation is then passed to a final MLP to predict
the orbital energy ��.

In the modules described above, we use lmax = 2, �max = 3,
nlayer = 2, a channel dimension of nc = 16, a radial basis of
nrbf = 16 centered Gaussian basis functions, and 16 rc samples
of the molecular orbitals in Eq. 2. These settings were chosen
as they generally demonstrated a good balance between cost and
performance across validation sets for different tasks. However, it
is possible that better parameters can be found depending on the
application. Following previous work, the CACE featurization
employs an embedding size of 4, a radial basis of 8 centered
Gaussian basis functions, and a radial channel dimension of 12.
All edges are determined with a cutoff of 7.6 Bohr and radial basis
functions are multiplied by polynomial cutoffs to ensure smooth
transitions inside and outside of the cutoff radius. Models are
trained with the Adam optimizer (58) using an initial learning
rate of 10−3 over batches of 128 orbitals. Models employed on
transition metals use nlayer = 1 and batch sizes of 32 due to
memory constraints.

In summary, input into the model consists of a) atomic
elements and xyz coordinates, b) basis data (i.e., contraction co-
efficients and exponents on each atom), and c) molecular orbital
coefficients. Details concerning reading in and preprocessing the
data from common formats such as molden files are discussed in
SI Appendix.

2. Data

2.1. Orbital Energy Datasets. The QM9 dataset consists of about
134k equilibrium geometries of organic compounds (consisting
of C, H, O, N, F). To form the QM9@HF-STO-3G dataset, we
have carried out restricted Hartree–Fock (RHF) calculations in
the minimal STO-3G basis in PySCF (59). Although STO-3G
is not used in practical computations, it provides a good initial
benchmark for learning orbital labels and is absent of high-
energy virtual orbitals. In all, this dataset consists of roughly
five million valence orbitals. We have chosen to ignore the
core orbitals (defined as having orbital energy less than −1.75
Ha) as they cause orbital learning to be unnecessarily difficult
due to their unique characteristics. However, valence orbitals
are fundamentally more important for understanding chemical
properties and core orbitals can generally be easily identified
absent any machine learning techniques.

A similar dataset to QM9@HF-STO-3G is the recently
released QH9 dataset, which contains the Fock matrices for all
molecules in QM9, computed using the Def2SVP basis and the
B3LYP functional (47). We have been able to diagonalize all
Fock matrices in QM9 to obtain B3LYP Def2SVP orbitals for
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all QM9 molecules. Due to the larger basis, this results in a
larger dataset of over 13 million orbitals (the majority of which
are nonvalence virtual orbitals absent in STO-3G). We refer to
the two datasets as “QM9@HF-STO-3G” and “QM9@B3LYP-
Def2SVP” throughout the paper. However, the sizes of these
datasets are many times more than large enough to understand
the behavior of the CEONET model. As such, while we have
made the full content of these datasets publicly available, here we
only train on datasets composed of orbitals from a small fraction
(10,000) of the molecules from each dataset. We then estimate
the performance of CEONET trained on the entire dataset by
extrapolating model performance out to the estimated number
of orbitals in each dataset (i.e., by multiplying the data from
10,000 orbitals by the appropriate scaling factor).

Energies are shifted and scaled by the mean and SD of the
orbital energies prior to fitting. Additionally, since mean-field
methods generally present a sharp modal change in orbital energy
between occupied and virtual orbitals, we have chosen to train
models separately on the energies of occupied and virtual orbitals.
This is also somewhat necessary, as orbital energy is not a rigorous
function of orbital shape in mean-field due to symmetry breaking
(a good example is in molecular O2, where restricted Hartree–
Fock will only occupy one of the �∗ antibonding orbitals, causing
that orbital to have arbitrarily lower energy).

2.2. Orbital Entropy Dataset. A key problem in the use of
multireference approaches remains the selection of an appropriate
active space: choosing the space of electrons and orbitals in
which to perform the CI calculation (17–24, 60). Multireference
diagnostics for single orbitals such as orbital occupation numbers
are the starting point for all quantitative active space selection
schemes (18, 20). Here, we focus on predicting the single-orbital
entropy, which measures the occupational distribution of a single
orbital in the CI expansion of the wave function (48).

In particular, we aim to predict ground state orbital entropies
from a set of high-throughput CASSCF calculations performed
on the QUESTDB database (61) of 542 small-molecule vertical
excitation energies (25) in the aug-cc-pVTZ (62) basis set.
This dataset consists of SA-CASSCF calculations using the
automated APC active space method (23). To eliminate poor
active spaces, we remove any systems from the dataset for which
the lowest-energy excitation has larger than 0.55 eV error using
hybrid multiconfigurational pair-density functional theory [MC-
PDFT (63), using the tPBE0 functional (64)]. We then take the
active space orbitals of each of the ground states of these SA-
CASSCF calculations to form a dataset of 1,871 aug-cc-pVTZ
orbitals with orbital entropy labels.

2.3. Transition Metal Complex Datasets. To test the generaliz-
ability of our model to orbitals of systems containing transition
metals, we have developed the TMOrb dataset, which consists
of minimal-basis STO-3G RHF Hartree–Fock calculations for
a subset of 42k complexes in the extensive TMQM dataset of
transition metal complexes (45). To avoid the problem of global
charge, we further select a subset of these complexes that are
neutral in character, resulting in a dataset of about five million
valence orbitals from about 35k complexes. These data allow us to
test the difficulty of learning orbital energies from transition metal
complexes. We refer to it throughout the paper as “TMQM@HF-
STO-3G.”

Another goal of this work is to learn qualitative labels from
orbital data such as bonding or antibonding character. Learning
these labels requires either labeling orbitals by hand to generate

a dataset, or requires mathematically constructing orbitals that
represent a defined label. Here, we generate a process for
constructing orbitals that represent four types of orbitals found
in transition metal calculations: ligand orbitals, metal orbitals,
ligand-metal bonding orbitals, and ligand-metal antibonding
orbitals. Given an initial mean-field calculation with orbitals �,
we carry out the following steps:

1) Project the restricted open-shell Hartree–Fock (ROHF) (65)
Fock matrix F separately into the space of metal valence
orbitals and ligand (i.e., nonmetal) valence orbitals, then
diagonalize the Fock matrix in these subspaces to form the
canonical metal valence orbitals {�M } and ligand valence
orbitals {�L}. These orbitals are given the labels “metal
valence” and “ligand valence,” respectively.

2) Looping over the space of {�M } and {�L}, project the Fock
operator into the space of one ligand orbital �L and one
metal orbital �M , then diagonalize within this space. If
there is a stabilization of the bonding orbital energy greater
than 0.05 Hartree with respect to the initial orbitals, the
canonical orbitals within this space are added to the dataset
and given the labels “metal-ligand bonding” and “metal-
ligand antibonding,” respectively.

We have carried out this process on the large dataset of 4,865
first-row transition metal octahedral complexes from Kulik and
coworkers (46). Calculations were undertaken with ROHF in a
modified version of the “minao” basis in PySCF, generated by
taking the first contracted functions from cc-pVTZ (62, 66, 67),
and excluding the addition of the 4s orbital from calculations.
Converged calculations resulted in a final dataset of 3,702 first-
row transition metal complexes. However, there are naturally
many more ligand orbitals than metal-involved orbitals. To
achieve a balanced dataset, we take the complete set of all bonding
and antibonding orbitals from each complex with up to an equal
number of ligand and metal orbitals, resulting in a final balanced
“TMConstructed” training dataset of 32,378 orbitals.

3. Results

3.1. Predicting Orbital Energies. The performance of CEONET
in predicting occupied and virtual orbital energies from across
different basis sets (STO-3G vs. Def2SVP), electronic structure
methods (HF vs. B3LYP), and molecular geometries (QM9 vs.
TMQM) is shown in Fig. 2. All models are trained on a dataset of
105 orbitals and inferred on a test set of 5,000 orbitals. As is seen,
CEONET is able to learn orbital energies well, with predictions
on most datasets approaching chemical accuracy (≈0.043 eV or
1.6 mHa). This learning occurs despite the subtle difference in
the interpretation of orbital energies between HF and DFT (68).

The learning curves of CEONET applied to different datasets
and inferred on validation sets of 5,000 orbitals is shown in
Fig. 3 with the data summarized in Table 1. In line with studies
on Hamiltonian learning (47), we find that model performance
improves steeply as a function of the number of data points. To
estimate the performance of CEONET when trained on the entire
dataset, we extrapolate the mean absolute error to the estimated
total dataset size using the fits in Fig. 3. These extrapolated
validation accuracies are shown in Table 1, all of which reach
chemical accuracy. In addition, all models achieve an R2 close to
1 (Fig. 2), and the larger MAEs of the virtual orbitals is in part
due to their very high energies.

Nevertheless, a key observation is that all sets of virtual
orbitals, particularly those from large basis sets (one of which
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A B C

Fig. 2. Performance of CEONET on predicting test set orbital energies across
different sets of functionals (HF vs. B3LYP), systems (transition metals vs.
organic), and basis sets (STO-3G vs. Def2SVP). (A) Performance on QM9
HF@STO-3G orbitals. (B) Performance on QM9 B3LYP@Def2SVP orbitals. (C)
Performance on TMQM HF@STO-3G orbitals. Examples of orbitals from each
category are shown above each plot. The color pairs of orbitals are arbitrary.

is shown in Fig. 2B) pose a greater challenge for CEONET,
with less steep learning curves in all cases. We suspect that
the fundamental difficulty of this task comes from the large
variation of these orbitals in real-space. Because the CEONET
model interprets the orbital coefficients fundamentally through
real-space featurization (Eq. 13, which is agnostic to the label
being learned), orbitals that vary dramatically in space naturally
strain the model.

By modeling the energies of molecular orbitals in real space,
CEONET more-or-less learns to approximate the real-space
action of the Fock matrix F (69):

�i =
∫
r

∫
r′
�i(r)F (r, r′)�i(r′) [26]

Fig. 3. Learning curves of CEONET on different orbital energy learning tasks.
Learning tasks are differentiated by the molecular dataset (QM9 vs. TMQM),
method (HF vs. B3LYP), and orbital occupation (0 or 2). The base-10 log of
the validation MAE in Ha is plotted against the base-10 log of the number
of training points in the training data. Fits of these learning curves (shown
by the dotted lines, the slope of which is �10) are then extrapolated to the
estimated full size of the different datasets, as shown by the stars on each
plot.

Table 1. Validation set mean absolute errors (mHa)
of CEONET on different orbital energy learning tasks,
trained with different numbers of training data
Data Occ 103 104 105 Extrap. �10

QM9 HF 2 17.0 3.9 1.0 0.1 −0.62
@ STO-3G 0 16.5 5.3 1.8 0.4 −0.49
QM9 B3LYP 2 11.2 3.2 0.7 0.1 −0.60
@Def2SVP 0 101.0 32.7 11.8 1.1 −0.47
TMQM HF 2 50.6 18.5 3.4 0.5 −0.58
@STO-3G 0 42.2 17.3 6.3 1.6 −0.41

The final two columns show the MAE extrapolated to the estimated total dataset size and
the slope of the base-10 learning curve �10 given the fits shown in Fig. 3.

Because the complexity of this mapping scales with the variation
of orbitals in space, these orbitals are naturally more difficult to
learn.

A benefit of this behavior is that CEONET easily generalizes to
unseen orbitals types. Fig. 4 shows the performance of CEONET
on different localized subspaces of the occupied Hartree–Fock
valence orbitals in benzene [with a symmetric structure taken
from QUESTDB (70)]. Specifically, we test performance on
projected orbitals from Def2SVP calculations (Fig. 4B), Boys-
localized orbitals (71) (Fig. 4C ), and intrinsic bonding orbitals
(IBOs) (3) (Fig. 4D) as implemented in PySCF. The model
generalizes easily to the projected orbitals from Def2SVP, and
although energy estimates of the localized orbitals are not quan-
titative, the model clearly has an understanding of which orbitals
are higher in energy, with R2 > 0.97 in both cases. We also find
that CEONET develops a nearly quantitative understanding of
the energies of orbitals from smaller basis sets (e.g., estimating
Def2SVP energies of 6-31g(d) orbitals; see SI Appendix).

Fig. 4 also shows the principal component analyses (PCA)
of the molecular latent space provided by CEONET. The latent
space of STO-3G Hartree–Fock orbitals (Fig. 4A) clearly distin-
guishes between the delocalized non-� orbitals of benzene and
the three occupied �-system orbitals. This intuitive latent space
representation is transferrable to the Def2SVP orbitals (Fig. 4B);
the localized orbitals in Fig. 4 C and D also present highly
intuitive mappings. In particular, the latent-space representation
of the IBO orbitals shows the symmetry obtained under the IBO
unitary transformation, in which the 15 unique Hartree–Fock
orbitals are transformed into a set of six identical C-H bonding
orbitals, six identical C–C bonding orbitals, and a set of three �
orbitals (72). In the Boys localization scheme, it is seen that three
similar clusters are formed that approximate the symmetric IBO
solutions.

3.2. Predicting Orbital Entropies. The performance of CEONET
in predicting ground state orbital entropies from automated aug-
cc-pVTZ CASSCF calculations is shown in Fig. 5A. Orbital
entropies present a difficult quantitative label, as no closed-
form expression exists from one-electron operators (i.e., they
are a complicated function of the correlated two-body density
matrices). As is seen, the model forms an excellent qualitative
understanding of multireference character (R2 = 0.79, MAE =
0.03). This quite good performance presents the ability of
CEONet to efficiently learn difficult labels even on somewhat
small datasets using large basis sets such as aug-cc-pVTZ.

The key use case of such models that aim to predict multiref-
erence character is to identify orbitals with high entropy prior to
calculation [≈ S ≥ 0.15 (22)]. Fig. 5B presents the receiving
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A B

C D

Fig. 4. Principal component analyses (PCA) of different sets of delocalized and localized occupied valence orbitals in benzene, accompanied by parity plots
of model performance in predicting their average orbital energy. The percentage of explained variance of each PCA component is put in parentheses on each
axis. (A) Minimal basis Hartree–Fock orbitals. (B) Def2SVP Hartree–Fock orbitals projected onto STO-3G. (C) Boys-localized orbitals. (D) Intrinsic bonding orbitals.
Visualizations of example orbitals are shown in each plot for reference; the color pairs of each orbital are arbitrary.

operating characteristic (ROC) curve of CEONET and confusion
matrix in identifying such orbitals. The CEONET model scores
a quite good AUC of 0.94, with 88% accuracy in identifying
the highly correlated orbitals. We note that previous studies by
Golub et al. (73, 74) have used descriptor-based approaches to
predict orbital entropies from Hartree–Fock descriptors. Here,
the performance of CEONET is particularly impressive as the
entropies are only derived from only the molecular geometry and
orbital coefficients.

3.3. Predicting Orbital Character. Another key application of
CEONET is explicitly classifying different types of orbital
character. Fig. 6 shows the performance of CEONET on the
task of differentiating between the four types of constructed
transition metal complex orbitals outlined in Section 2.3. As

A

B

Fig. 5. Accuracy of CEONET in predicting orbital entropies of high-
throughput aug-cc-pVTZ CASSCF calculations (25). (A) Parity plot of orbital
entropy predictions. (B) Receiving operating characteristic (ROC) curve and
confusion matrix of CEONET in labeling high entropy orbitals (S >=≥ 0.15).
Both plots show the performance of CEONET on a holdout test set of 10% of
the dataset orbitals.

is seen, CEONET is able to distinguish perfectly between the
different types of orbital character. The CEONET model thus
confirms that labels such as “bonding” and “antibonding” are
separable in a latent space. Indeed, we find that this task can
even be achieved by much simpler models, including voxel- and
projection-based approaches (SI Appendix).

4. Discussion and Conclusion

Over the past century, molecular orbital theory has
fundamentally shaped our understanding of chemical bonding,
reactivity, electronegativity, and catalysis. To this day, molecular
orbitals remain critical to computing kinetic energy and
excited states, and even serve as the basis for computing strong
correlation. Given their importance, we take it as a thesis that

A B

Fig. 6. Accuracy of CEONET in assigning orbital labels to different types of
constructed transition metal orbitals: ligand valence, metal valence, ligand-
metal bonding, and ligand-metal antibonding. (A) The four different types
of orbital labels available in the training data. (B) Confusion matrix on the
holdout test set of data.
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building machine-learned representations of molecular orbitals
is key for connecting the intuitive understanding of chemists to
practical computations.

In this direction, we have developed CEONET, a model
that employs state-of-the-art equivariant learning to the task of
assigning labels to molecular orbitals. We have found CEONET
to perform well at predicting difficult quantitative labels such as
the orbital energy (approaching chemical accuracy, ≈0.043 eV
or 1.6 mHa), and to model effectively the action of the Fock
operator in real-space. Thus, it generalizes well even to orbital
types unseen in the training dataset (e.g., localized orbitals or
orbitals from smaller basis sets). Furthermore, we have found
CEONET to efficiently generalize even to difficult quantitative
labels such as the orbital entropy from SA-CASSCF calculations.

The CEONET architecture also provides technical contribu-
tions to the representation of orbitals in molecular systems.
In particular, CEONET a) demonstrates the direct mapping of
molecular orbital coefficients and basis information to symmetric
hidden features in graph neural networks, b) includes expressive
message passing layers that overcome the orbital sign problem,
and c) demonstrates the utility of Cartesian symmetry functions
in representing the orbital character. These features expand
on previous work such as COEFFNET (75), which employs an
equivariant model to predict properties of frontier transition
state orbitals as a function of reactant and product orbitals.
In contrast, CEONET aims to provide a representation for
difficult quantitative labels such as the orbital energy rather than
calculating orbital properties in an interpolative manner between
two states. CEONET is also intimately connected to Hamiltonian
learning models (40, 47, 56, 69, 76–79), as well as models such as
ORBNET (38, 80–82) which use molecular orbital properties (i.e.,
Hartree–Fock matrix components) to predict higher accuracy
energies. The CEONET representation can easily be transferred
to these other tasks.

Importantly, we also find that CEONET provides an intuitive
latent space for separating between different types of molecular
orbitals, and generalizes well to unseen orbital types. Without
supervised labels CEONET naturally separates localized orbitals
(e.g.,�-orbitals or non-� IBO or Boys orbitals) from nonlocalized
orbitals (Fig. 4). Furthermore, we find CEONET to be effective
at identifying human orbital labels, easily separating bonding
and antibonding orbitals for a wide array of transition metal
complexes. While these capabilities do not improve directly on
projection-based approaches for constructing intuitive molecular
orbitals (21, 72), they provide a foothold for future workflows
exploring these tasks. Further capabilities can be explored through
the addition of further datasets (e.g., singly occupied orbitals or
open-shell systems).

Given these capabilities, we anticipate that CEONET will serve
as a valuable tool for integrating deep learning in computational
chemistry workflows. In particular, we envision CEONET playing
a key role in the automation and interpretation of multireference
methods such as CASSCF, which will help to further refine
our understanding of strong correlation in molecular systems.
In particular, the ability of CEONET to estimate the orbital
entropy near-quantitatively provides a promising foundation for
developing a robust automated approach to active space selection,
greatly accelerating such calculations. However, more work needs
to be done in extending this approach to transition metal systems
and excited states.

Nevertheless, despite the remaining challenges, we believe
CEONET presents a significant step forward in the integration of
deep learning with sophisticated electronic structure approaches.
We hope this work offers a solid foundation on orbital represen-
tations to anyone looking to contribute to this exciting field.

Data, Materials, and Software Availability. Code has been deposited to
https://github.com/GagliardiGroup/CEONet (83). Data has been deposited to
https://doi.org/10.5281/zenodo.16934624 (84).
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