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Abstract 
Understanding physiological responses during running is criti-
cal for performance optimization, tailored training prescriptions, 
and athlete health management. We introduce a comprehensive 
framework—what we believe to be the first capable of predicting 
instantaneous oxygen consumption (VO2) trajectories exclusively 
from consumer-grade wearable data. Our approach employs two 
complementary physiological models: (1) accurate modeling of 
heart rate (HR) dynamics via a physiologically constrained ordi-
nary differential equation (ODE) and neural Kalman filter, trained 
on over 3 million HR observations, achieving 1-second interval 
predictions with mean absolute errors as low as 2.81 bpm (correla-
tion 0.87); and (2) leveraging the principles of precise HR model-

ing, a novel VO2 prediction architecture requiring only the initial 
second of VO2 data for calibration, enabling robust, sequence-to-
sequence metabolic demand estimation. Despite relying solely on 
smartwatch and chest-strap data, our method achieves mean abso-
lute percentage errors of approximately 13%, effectively capturing 
rapid physiological transitions and steady-state conditions across di-
verse running intensities. Our synchronized dataset, complemented 
by blood lactate measurements, further lays the foundation for 
future noninvasive metabolic zone identification. By embedding 
physiological constraints within modern machine learning, this 
framework democratizes advanced metabolic monitoring, bridging 
laboratory-grade accuracy and everyday accessibility, thus empow-

ering both elite athletes and recreational fitness enthusiasts. 
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1 Introduction 
Heart rate (HR) and oxygen consumption (VO2) jointly reveal car-
diovascular performance and metabolic demand, making them es-
sential for optimizing athletic performance, preventing overtrain-
ing, and safeguarding health for both elite athletes and recreational 
fitness enthusiasts [24, 29, 43]. While HR is readily accessible via 
consumer-grade wearables, VO2 measurement remains confined to 
specialized laboratory equipment (costing over $30 000) and expert 
supervision [41], limiting broad access to critical metabolic insights. 

To bridge this gap, we propose two complementary physiolog-
ical models that rely exclusively on data from consumer-grade 
wearables. First, we introduce an advanced HR dynamics model 
based on neural ordinary differential equations (ODEs) [6] and 
with neural Kalman filtering [20] to capture cardiac responses to 
exercise intensity. This approach precisely infers HR from external 
parameters, compensates for photoplethysmography (PPG) signal 
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loss, and reproduces cardiac behavior during varied exercise ef-
forts. Second, and more significantly, we present, to the best of our 
knowledge, the first approach for direct estimation of instantaneous 
VO2 trajectories from smartwatch data using a Kalman-inspired 
deep learning architecture [18]. By requiring only the initial second 
of VO2 data for calibration, our framework enables sophisticated 
metabolic monitoring without specialized laboratory equipment, a 
capability previously unavailable through consumer devices. 

Our framework advances physiological monitoring in several key 
ways. We address three main barriers limiting consumer wearables: 
(i) continuous HR availability despite PPG drop-outs during high-
intensity motion, (ii) power-efficient “generative sequencing” that 
synthesizes an entire HR stream from a single-second ECG seed, and 
(iii) the first laboratory-grade, second-by-second VO2 trajectory es-
timation without the $30 000 equipment barrier. We achieve a mean 
absolute error (MAE) of 2.81 bpm (correlation 0.87) in 1-second 
HR predictions across diverse running conditions, demonstrating 
robustness to wearable signal dropouts. Building on this founda-
tion, our VO2 model generates complete metabolic trajectories 
with a mean absolute percentage error (MAPE) of approximately 
13%, accurately capturing both rapid transitions and steady-state 
conditions. We validate these results through leave-one-runner-
out cross-validation against gold-standard portable Cosmed K5 
measurements, showing strong generalization across individuals. 
To achieve this, we collected a first-of-its-kind rich synchronized 
dataset that simultaneously acquires data from consumer smart-

watch (Garmin 965), chest-strap HR, portable Cosmed K5 metabolic 
system, video capture every 200m, and blood lactate measurements, 
which also lays the groundwork for future noninvasive metabolic 
zone classification. 

To support HR modeling, we leveraged a comprehensive dataset 
of 831 running sessions from 20 participants (Section A), represent-
ing over 52,825 minutes (approximately 880 hours) of activity and 
10,222.90km of cumulative distance; HR models were evaluated 
via leave-three-runner-out cross-validation against concurrently 
recorded smartwatch and chest-strap data. For VO2 prediction, we 
conducted an IRB-approved clinical trial with ten highly trained 
runners, each completing two structured track sessions; VO2 models 
were validated using leave-one-runner-out cross-validation against 
gold-standard Cosmed K5 measurements. All device streams in-
cluding Garmin 965, chest HR strap, portable metabolic system, 
video captures every 200m, and blood lactate samples—were time-

synchronized to ensure robust multimodal evaluation across indi-
viduals and exercise intensities. 

By embedding physiology-informed constraints within modern 
machine learning (ML), our approach extracts laboratory-quality 
insights from everyday wearables. The generalizable principles 
emerging from this work include the importance of synchronized 
multimodal data collection for robust cross-modality modeling and 
a transferable architecture that democratizes advanced metabolic 
monitoring on consumer devices. 

The rest of this paper is organized as follows: Section 2 reviews 
related work; Section 3 describes our data and protocol; Section 4 
details HR dynamics modeling; Section 5 presents VO2 prediction; 
and Section 6 concludes with limitations and future directions. 

2 Related Work 
Physiological parameter estimation during exercise spans exercise 
physiology and computer science. We review literature across three 
interconnected domains—physiological modeling, wearable tech-
nology, and ML, before highlighting our contributions. 
Physiological Modeling of Exercise Response VO2 kinetics 
modeling began with Hill and Lupton’s work linking exercise 
intensity to oxygen uptake [29], extended through compartmen-

tal gas-exchange models [23] and the two-component framework 
(fast/slow VO2 responses) [32], with refinements adding time de-
lays [8] and intensity-dependent parameters [4]. Recent studies 
emphasize inter-individual variability in VO2 kinetics across age, 
training status, and health conditions [12, 13, 26], but remain con-
strained by controlled lab protocols that fail to capture real-world 
variability in intensity, environment, and motivation [1, 34]. VO2 
responses also differ markedly between laboratory and free-living 
contexts [10], influenced by altitude, humidity, fatigue, nutrition, 
and emotional state [2, 15]. Although tools like VO2FITTING aim to 
streamline kinetics analysis [45], high-precision models still rely 
on expensive stationary gas analyzers. 
Wearable Technology and Exercise Monitoring Consumer 
wearables now provide continuous PPG based HR and inertial sens-
ing outside the laboratory [7, 40]. Although recent devices have 
improved HR measurement accuracy [35], motion artifacts and 
signal dropouts remain significant challenges during high-intensity 
activities [28, 42]. Many commercial platforms include proprietary 
VO2max estimators, yet these algorithms often lack rigorous vali-
dation across diverse populations and exercise conditions [21, 25]. 
To bridge the gap between consumer-grade sensor outputs and 
laboratory-grade cardiorespiratory metrics, cross-modal inference 
techniques have been proposed to translate wearable data into VO2 
and other physiological parameters [3, 5], but they frequently rely 
on steady-state assumptions or are evaluated on narrow cohorts. 
Emerging integrations of SpO2 and ECG tracking show promise 
for reducing estimation errors [9], yet advanced algorithmic ap-
proaches remain essential to overcome the inherent limitations of 
wearable hardware in real-world exercise scenarios. 
ML for Physiological Parameter Estimation Recent years have 
witnessed a surge in applying ML techniques to physiological data 
analysis. Traditional approaches used statistical models to relate 
HR to VO2 [36], but these models typically assume steady-state 
conditions and struggle with dynamic exercise. 

Deep learning approaches have shown promise in processing 
multivariate physiological signals [14], with recurrent and convolu-
tional architectures demonstrating particular efficacy for temporal 
data. Attention mechanisms further boost performance by focusing 
on relevant signal patterns across various time scales [17], enabling 
systems to better detect meaningful physiological events and limit 
false alarms. 

Several recent studies have applied hybrid modeling to HR dy-
namics during exercise [11, 27], demonstrating improved accuracy 
compared to purely mechanistic or purely data-driven approaches. 
However, the extension of these methods to VO2 modeling from 
wearable data remains largely unexplored, particularly in settings 
involving variable-intensity exercise and diverse subject popula-
tions [39]. Notably absent from the literature is any method 
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capable of predicting instantaneous VO2 trajectories using 
only consumer wearables—a gap our work directly addresses. 
Contributions and Distinctions from Prior Work. Our research 
addresses these gaps through two major contributions. First, we 
advance HR prediction during exercise with novel modeling ap-
proaches that differ from recent systems in several significant ways. 
Second, we introduce the first sequence-to-sequence approach for 
VO2 estimation that uses only consumer-wearable data, bridging 
laboratory precision and real-world accessibility. 

Our HR model delivers 1-second predictions versus Nazaret et 
al.’s 10-second averages [27], capturing rapid cardiovascular tran-
sitions during variable-intensity exercise for responsive feedback 
with greater personalization flexibility. Unlike Nazaret et al., which 
requires extensive historical data per user, our approach general-
izes effectively for new users with no historical data—critical for 
deployments where prior data is unavailable. This is achieved via 
our neural ODE framework or Kalman filter architecture, capturing 
physiological responses while adapting to individual cardiovascular 
characteristics without extensive calibration. 

We enhance the practical applicability of our HR modeling through 
dual evaluation protocols that reflect realistic usage scenarios. Specif-
ically, we utilize non-overlapping windows to evaluate our model 
under two distinct conditions: (1) a continuous monitoring condi-
tion where the initial HR measurement is known for each window, 
and (2) a minimal-data condition where only the first second’s 
measurement (the first sample of the first window) is available for 
the entire exercise session (up to 120 minutes). This second pro-
tocol represents a significant challenge as it requires the model 
to maintain accurate predictions over extended durations with ex-
tremely limited initialization data. This approach transforms our 
sequence-to-sequence prediction into a generative forecasting 
model, demonstrating robust long-term predictive capability with 
minimal initialization data, albeit with an expected accuracy trade-
off that we quantify and analyze. 

Building on our HR modeling advances, we introduce the first 
sequence-to-sequence modeling approach for VO2 estimation us-
ing only data available from consumer wearables. Unlike previous 
approaches that either (1) rely on steady-state assumptions [36] 
which fail during variable intensity exercise, or (2) require special-
ized equipment for direct measurement [41], our method captures 
the dynamic nature of VO2 during real-world variable-intensity 
exercise using only consumer-grade devices. Our VO2 estimation 
method employs a Kalman filter architecture that learns shared 
physiological parameters among runners. Our approach demon-

strates significant improvements over baseline methods, achieving 
mean absolute percentage errors of approximately 13% for most 
participants across diverse running intensities. The model explic-
itly accounts for individual differences in physiological parameters 
through a learnable state-space representation, allowing personal-
ization while maintaining the interpretability necessary for sports 
science applications. 

Together, these advances in HR dynamics modeling and VO2 
estimation form an integrated system that bridges the gap be-
tween laboratory-grade physiological assessment and consumer-

accessible wearable technology, representing a significant step to-
ward democratizing advanced exercise science for both research 
and practical applications. 

Figure 1: Runners during experimental sessions 

3 Experimental Protocol and Data Collection 
Our research methodology required comprehensive physiological 
data capturing both laboratory-grade measurements and consumer 
wearable outputs. We used two complementary datasets: (1) a syn-
chronized, multimodal dataset collected specifically for VO2 predic-

tions, providing aligned measurements from both laboratory and 
consumer devices, and (2) a more extensive historical HR dataset 
for training robust HR dynamics models, offering the breadth and 
diversity needed for developing generalizable models. Below, we 
describe the collection protocols and key characteristics of each 
dataset. 

Synchronized Multimodal Dataset: We implemented a com-

prehensive protocol to gather synchronized physiological and biome-

chanical data from experienced runners during controlled exercise 
tests. Conducted at two athletic facilities, the study involved 10 
participants who each completed two structured sessions. We re-
cruited runners aged 20–50 with demonstrated high-level perfor-
mance (top 1% 10 km race times for their age groups). This focus 
on highly trained athletes was intended to reduce physiological 
variance, facilitating more precise modeling of exercise responses. 
Before participation, each runner obtained medical clearance from 
a certified sports physician to confirm eligibility for high-intensity 
testing. 

The protocol comprised two sessions targeting different aspects 
of physiological performance. In Session One (Maximal Capacity 
Assessment), participants performed a 1500-meter maximal-effort 
run to determine VO2max. We measured metabolic data with a 
portable Cosmed K5 system, capturing O2 and CO2 exchange rates, 
while simultaneously recording HR and biomechanical data via a 
Garmin 965 smartwatch. VO2max was calculated as the 30-second 
peak average VO2, and mean running speed was computed for the 
entire distance. In Session Two (Incremental Testing), participants 
followed an individualized protocol based on Session One results, 
running repeated 1200-meter sets at progressively higher speeds 
(approximately 5% speed increase per set) until exhaustion. To pre-
serve physiological response patterns vital to our modeling, blood 
lactate samples were obtained between sets with brief (10-second) 
interruptions, minimizing disruptions to the overall protocol. 

Data collection employed a multi-device synchronized measure-

ment system consisting of: (1) a wrist-mounted Garmin 965 smart-

watch for continuous activity monitoring; (2) a chest-mounted 
Garmin HR monitor capturing both HR and running dynamics (pace, 
cadence, vertical oscillation, altitude, stance time, vertical ratio, and 
step length); (3) a portable Cosmed K5 metabolic system (300g) with 
dedicated harness and face mask for breath-by-breath gas exchange 
measurement; and (4) a two-to-four-camera video system captur-
ing biomechanical data at 200-meter intervals from dual angles 
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throughout the athletic stadium. This multi-sensor approach en-
sured comprehensive data capture across both consumer-grade and 
laboratory-grade measurement systems, creating a synchronized 
dataset with precise alignment between laboratory and wearable 
measurements. Figure 1 illustrates participants during the protocol 
while wearing the integrated measurement equipment. 

HR Modeling Dataset: While the synchronized dataset sup-
ported VO2 modeling, we developed our HR dynamics models using 
a separate, substantially more extensive dataset. This comprehen-

sive resource comprises 831 running sessions from 20 distinct run-
ners collected over a seven-year period (2018-2025), totaling 52,824 
minutes (approximately 880 hours) and 10,222 km of running ac-
tivity, with more than 3.1 million HR data points. The scale and 
diversity of this dataset provided a robust foundation for capturing 
complex cardiovascular dynamics across various running condi-
tions, intensities, and individual physiological profiles. Table 3 in 
Appendix A presents detailed statistics for each participant, includ-
ing session counts, accumulated training time, and total distance 
covered. 

We deliberately chose chest strap HR monitors over wrist-worn 
devices for our HR data collection due to their superior measure-

ment accuracy during exercise. Unlike wrist-based smartwatches 
that use photoplethysmography (PPG)—an optical method measur-

ing blood flow through optical sensors—chest straps capture elec-
trical signals directly from the heart via electrocardiogram (ECG), 
providing precise beat-to-beat measurements even during intense 
physical activity. The limitations of wrist-worn PPG sensors are 
well-documented: movement artifacts, sweat interference, and re-
duced peripheral blood flow during high-intensity exercise can 
compromise optical sensors’ signal integrity [19, 31, 37]. In con-
trast, ECG-based chest straps maintain consistent accuracy across 
varying exercise intensities, making them the preferred choice for 
physiological research requiring high temporal resolution and reli-
ability. 

4 Modeling Heart Rate Dynamics 
Accurately modeling HR dynamics during physical activity is funda-
mental for understanding physiological exercise responses. Precise 
HR estimation addresses three critical challenges: (1) exploring 
how biomechanical features influence physiological responses, re-
vealing movement-cardiovascular relationships; (2) solving signal 
interruption/interpolation in wearables during high-intensity ac-
tivities; (3) leveraging HR-power-VO2 correlations for advanced 
training insights. 

Wearables receive HR via three pathways: (i) chest-strap ECG, 
(ii) wrist-based PPG, or (iii) our “generative sequencing” module. 
Since consumer smartwatches cannot simultaneously log ECG/PPG 
during exercise, we use chest-strap ECG as the gold standard for 
training, while architecting the pipeline to accept PPG segments 
or generated HR streams at inference without retraining. This de-
sign enables sensor burden/battery life vs. accuracy tradeoffs: ECG 
achieves 2.81 bpm MAE, PPG falls between ECG and synthetic 
streams, and generated sequences maintain 3-5 bpm accuracy even 
during vigorous motion, ensuring continuous HR availability when 
PPG fails. 

In this section, we introduce two complementary approaches for 
HR prediction during running, each offering unique advantages: a 
physiologically-constrained ordinary differential equation (ODE) 
approach that mathematically models cardiac adaptation rates, and 
a Kalman filtering framework that optimally balances prior physio-
logical estimates with new observations. 

Problem Formulation. Our goal is to predict HR during run-
ning, given a multivariate time series of biomechanical and envi-
ronmental features. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } be the sequence of 
external parameters (e.g., pace, cadence, vertical oscillation, alti-
tude, stance time, vertical ratio, step length), where each 𝑥𝑡 ∈ R𝑑 

describes running dynamics at second 𝑡 . We aim to produce the cor-
responding HR sequence 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑇 } at 1-second intervals. 
The main challenge is capturing both rapid cardiac responses to 
intensity changes and slower physiological adaptations, all within 
biologically plausible limits. 

Data Preprocessing. We used the HR modeling dataset (Sec-
tion 3), comprising over 800 running sessions from 20 runners 
(2018–2025). Raw FIT files were segmented into 60-second, non-
overlapping windows, with domain-specific transformations ap-
plied to maintain physiological relevance. Pace (m/s) was converted 
to sec/km, vertical oscillation was normalized by each runner’s 
height, and stance time (percent) was converted to a fraction. Step 
length was scaled from millimeters, altitude data was split into ab-
solute values and relative gains to capture cardiovascular demand 
influences, and cadence was doubled to reflect full running cycles. 
These transformations preserved physiological interpretability and 
ensured proper input scaling. 

Model Architecture. Our framework combines neural feature 
extraction with domain-specific models of cardiac dynamics as 
described in Figure 2. We denote learnable functions by 𝑓 and their 
parameters by 𝝑 , with subscripts indicating the specific part of the 
system. 

The model receives a workout window x𝑡 spanning the interval 
[𝑡 −𝑇 , 𝑡 ]. The window is encoded into a latent space by an encoder, 
e𝑡 = 𝑓enc (x𝑡 ; 𝝑enc), followed by an auto-regressive model s𝑡 = 
𝑓temp (e𝑡 , s𝑡 −𝑇 ; 𝝑temp) with s0 = 0. Two dynamic models predict 
the latent timeseries 𝑔𝑡 , from which the predicted HR is decoded 
using ˆℎ𝑡 = 𝑓

dec (𝑔𝑡 , s𝑡 ; 𝝑dec) . This backbone is implemented with a 
fully connected feature encoder with leaky ReLU activation for 𝑓enc, 
and a gated recurrent unit (GRU) for 𝑓temp. For decoding HR from 

𝑔𝑡 , we use an affine mapping ˆℎ𝑡 = 𝜎̂𝑡 𝑔𝑡 + 𝜇𝑡 , where 𝜇𝑡 and 𝜎𝑡 are the 
HR mean and standard deviation in the interval [𝑡 −𝑇 , 𝑡 ] estimated 
from the latent state by fully-connected models 𝜇𝑡 = 𝜇 (s𝑡 ; 𝝑nrm) 
and 𝜎̂𝑡 = 𝜎𝑡 (s𝑡 ; 𝝑nrm). For additional details, refer to Appendix B.1. 

We now describe our two alternative approaches for dynamic 
HR modeling: ODE-based dynamic model. Our first model for 
the latent dynamics is based on a non-linear first-order continuous-
time ODE, 𝜕𝑔𝑡 = 𝑓ODE (𝑔𝑡 , s𝑡 ; 𝝑ODE), 𝜕𝑡 which we integrate with a 
fourth-order Runge-Kutta (RK4) method. As the right-hand side 
of the ODE, we used 𝑓ODE = 𝑑𝑡 − 𝑔𝑡 , where 𝑑𝑡 = 𝑑 (s𝑡 ; 𝝑dec) is a 
fully-connected network estimating the demand from the latent 
state s𝑡 . 

Kalman Filter Approach. Our second model for the latent 
dynamics is a neural version of an enhanced Kalman filter [16]. We 
define a two-dimensional state vector z𝑡 = (𝑔𝑡 , 𝑔𝑡 ) comprising the 
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Figure 2: HR prediction: Wearable data encoded to latent states s𝑡 , processed via: (1) neural ODE solver ( 𝑑𝑔𝑡 
𝑑𝑡 = 𝑑𝑡 − 𝑔𝑡 ) or (2)

learnable Kalman filter. Both use moments 𝜇𝑡 , 𝜎̂𝑡 for denormalization to predict HR ˆℎ𝑡 . Gray: learnable parameters 𝝑∗. 
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latent HR and its velocity. A scalar Kalman gain is calculated using 
a neural network 𝑘𝑡 = 𝑓gain (P𝑡 +Q, R) and is used for the a posteriori 
state update z𝑡 +1 = z𝑡 +𝑓tr (s𝑡 , z𝑡 ; 𝝑tr)+𝑘𝑡 (𝑓obs (s𝑡 ; 𝝑obs) − 𝑔𝑡 ) (1, 𝛾𝑡 ), 
mimicking the standard Kalman filter. 

The scaling factor 𝛾𝑡 for velocity updates is set to 0.5, implement-

ing a differential relationship between HR and velocity corrections. 
This reduced influence on velocity updates allows the model to 
maintain smoother trajectory changes while still responding to 
new observations, effectively damping oscillations that might occur 
from measurement noise. 

The covariance update P𝑡+1 follows a modified Kalman formu-

lation: P𝑡+1 = (P𝑡 + Q) ⊙ 


1 − 𝑘𝑡 0

0 1 − 𝛾𝑡 𝑘𝑡 

 
, where the diagonal 

structure preserves computational efficiency while allowing in-
dependent uncertainty tracking for both HR value and velocity 
components. 

The decoder neural networks provide the complete set of Kalman 
filter parameters: initial state z0 = (𝑔0, 𝑔0), initial covariance matrix 
P0 = diag(𝜎 2𝑔0 

, 𝜎 2𝑔0 
), process noise covariance Q = diag(𝜎 2 

proc,𝑔, 𝜎 2 
proc, 𝑔), 

and measurement noise variance R = 𝜎 2 
meas

. These parameters are 
computed from the final hidden state of the GRU encoder, allowing 
the model to adapt its filtering behavior to different individuals and 
physiological conditions. 

We used fully-connected models for 𝑓enc, 𝑓tr, 𝑓obs, and 𝑓gain. The 
gain function captures prediction errors made by the observation 
function, assigning greater weight to new measurements when 
errors are large. Additional details are provided in Appendix B.2. 

Training Methodology. Both models are trained fully-supervised 
to minimize the Mean Absolute Error (MAE) between predicted and 
true HR. To ensure physiological realism, we added coarse-scale 
regularization terms supervising the HR first- and second-order 
statistics, L = E𝑡 | ˆℎ𝑡 − ℎ𝑡 | + 𝜆E𝑡 | ̂𝜇𝑡 − 𝜇𝑡 | + 𝜆E𝑡 |𝜎̂𝑡 − 𝜎𝑡 |, Here, E𝑡 
denotes temporal expectation (in practice, finite-sample average on 
the training set), ℎ𝑡 is the ground-truth HR, and 𝜇𝑡 = 

∫ 𝑡 
𝑡 −𝑇 𝑔𝜏 𝑑𝜏 and 

𝜎 2 
𝑡 = 

∫ 𝑡 
𝑡 −𝑇 (𝑔𝜏 − 𝜇𝜏 ) 2 𝑑𝜏 are the ground-truth first- and second-order 

moments used for the supervision. The parameter 𝜆 controls the 
influence of regularization by temporal statistics and was set to 

Table 1: Performance comparison of HR prediction mod-
els using Standard/Generative approaches. Values shown as 
“Standard/Generative” for four models. 

Metric Kalman Kalman ODE ODE 
(128,2) (64,3) (128,2) (64,3) 

Overall Performance 
MAE (bpm) 2.81/11.70 3.01/11.12 2.84/12.79 2.91/12.52 
RMSE (bpm) 4.60/13.98 4.96/13.45 4.70/15.22 4.87/14.75 
MAPE (%) 2.17/8.49 2.39/8.35 2.18/9.18 2.24/8.84 
Correlation 0.87/0.46 0.86/0.45 0.87/0.47 0.86/0.47 
R
2 0.73/-2.51 0.71/-1.59 0.72/-2.41 0.70/-1.95 

Mean Diff. (bpm) 0.02/-2.41 0.05/-1.69 0.01/-2.32 -0.02/-6.60 
StdDev Diff. (bpm) 4.55/10.13 4.92/10.42 4.67/10.78 4.83/9.81 
Performance by HR Zone (MAE in bpm) 
Low HR 10.78/15.12 13.24/18.82 10.91/14.65 12.22/13.92 
Medium HR 3.05/9.82 3.22/9.65 3.13/10.74 3.22/9.69 
High HR 1.99/12.22 2.09/11.87 2.02/13.24 2.09/15.20 
Performance by HR Stability (MAE in bpm) 
Transitions 10.50/15.05 11.93/16.52 11.44/16.36 11.64/14.75 
Steady-State 2.78/11.68 2.99/11.11 2.81/12.78 2.89/12.51 
Avg. sessions/split 125/125 113/113 122/122 122/122 

𝜆 = 0.1 following an ablation study. For the ODE model, we back-
propagate through the neural ODE solver using the adjoint method 
as proposed [6]. 

We tested generalizability via runner-based leave-three-out cross-
validation, ensuring no overlap between training and evaluation 
participants. Models were assessed in eight splits, each with more 
than 110 sessions (20–140 minutes per session). We compared two 
network architectures—128 neurons (2 layers) vs. 64 neurons (3 
layers)—under consistent settings (batch size = 64). An adaptive 
learning rate scheduler and early stopping reduced overfitting. Ap-
pendix B.3 discusses additional information. 

Results. Table 1 presents a comprehensive evaluation of our 
HR prediction models across different architectures and inference 
settings. The table compares Standard inference (where the first 
second of each window is known) versus Generative Sequencing 
(where only the first second of the entire session is provided) across 
Kalman and ODE models with varying architectures. Our approach 
offers advantages over prior work: Apple’s approach [27] used 
10-second intervals with proprietary data, whereas we provide fine-
grained 1-second predictions. Our open-source implementations 
enhance reproducibility and enable direct comparisons. Crucially, 
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Figure 3: Example HR prediction from ODE-based model (128, 
2) for high-intensity workout. Blue: true HR; red: predictions. 
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our approach requires no historical data from previous sessions, 
making it suitable for new runners without a calibration phase. 

Under standard inference, the Kalman (128,2) model achieved 
the best overall performance (MAE: 2.81 bpm, RMSE: 4.60 bpm, 
MAPE: 2.17%, correlation: 0.87, R2=0.73). The ODE (128,2) model 
followed closely at 2.84 bpm MAE. This accuracy is particularly 
notable given the diversity of running intensities in our dataset. 
Under Generative Sequencing, using only the first second of the 
first window to drive predictions across an entire session—all mod-

els demonstrated consistent performance over extended durations, 
though with an expected decrease without periodic recalibration. 
Analysis by HR zone and stability state revealed strong results 
in steady-state and high-intensity scenarios, with MAE as low as 
1.99 bpm in high HR zones. This outcome has significant practical 
importance for wearable devices prone to signal disruptions during 
exercise. Figure 3 illustrates ODE-based model (128,2) performance 
for a high-intensity interval session (HR: 120-170 bpm). The model 
achieves exceptional accuracy (MAE: 1.68 bpm, correlation: 0.933) 
despite challenging physiological transitions, effectively capturing 
both general trends and fine-grained HR dynamics. Additional vi-
sualizations of different workout intensities and prediction modes 
appear in Appendix C.1. 

These visualizations confirm our models effectively capture both 
general trends and fine-grained HR dynamics across diverse run-
ning conditions. Intermittent recalibration (e.g., at window bound-
aries) could harness Standard inference accuracy while addressing 
real-world challenges like PPG signal loss in consumer wearables. 

5 Predicting Instantaneous Oxygen 
Consumption from Consumer Wearables 

Accurately estimating VO2 during exercise is essential for under-
standing energy expenditure, quantifying training adaptation, and 
assessing overall fitness [30]. However, conventional VO2 measure-

ment methods rely on specialized metabolic carts and face masks 
for respiratory gas collection—equipment that typically costs over 
30,000$ and requires expert operation. These technical and finan-
cial constraints fundamentally restrict practical use in real-world, 
continuous-monitoring scenarios where most exercise actually oc-
curs. 

To overcome this critical methodological limitation, we introduce 
what we believe to be the first method for predicting instantaneous 
VO2 trajectories solely from consumer-grade wearable sensor data. 

Our approach eliminates the need for costly respiratory gas anal-
ysis while maintaining clinically acceptable accuracy, effectively 
democratizing access to sophisticated metabolic insights previously 
confined to laboratory settings. 

Problem Formulation. We aim to predict VO2 during running 
using a multivariate time series of biomechanical and environ-
mental features. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } represent a sequence of 
external parameters including pace, cadence, vertical oscillation, 
altitude, stance time, vertical ratio, and step length, where each 
𝑥𝑡 ∈ R𝑑 

captures running dynamics at second 𝑡 . Our objective is 
to generate a corresponding VO2 sequence 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑇 } 
at 1-second resolution. The primary challenge lies in accurately 
modeling both rapid metabolic responses to intensity changes and 
slower physiological adaptations while maintaining biologically 
plausible constraints. 

Data Preprocessing. Our methodology leverages a precisely 
synchronized multimodal dataset (Section 3) establishing direct 
relationships between laboratory-grade metabolic measurements 
and wearable device outputs. We paired breath-by-breath data from 
a Cosmed K5 metabolic analyzer—the gold standard for VO2 mea-

surement [33]—with physiological and biomechanical metrics from 
a Garmin 965 smartwatch and chest-mounted HR monitor. Tempo-

ral alignment was achieved through a zero-order hold on Cosmed 
signals and session synchronization via GPS coordinates and event 
markers. 

Sessions were segmented into 60-second windows coupling 
Cosmed and smartwatch data, creating a comprehensive dataset 
where metabolic parameters (VO2, VCO2, ventilation, RER) sam-

pled at 0.3–0.5 Hz precisely align with smartwatch features (HR, 
cadence, vertical oscillation, altitude) at 1 Hz. To mitigate breath-
by-breath variability, we applied a Savitzky-Golay filter (15-sample 
window, polynomial order 3) [38] that preserves rapid physiological 
transitions while removing measurement artifacts. 

From the refined dataset, we derived a comprehensive feature 
set capturing the multifaceted nature of exercise physiology. The 
features include cardiac measurements like HR, biomechanical in-
dicators such as cadence, vertical oscillation ratio, step length, and 
stance time, contextual variables including pace, grade, and cumu-

lative distance, positional encodings of session window index and 
total elapsed time, and anthropometric data like age, gender, height, 
and weight. This diverse feature set enables our model to account 
for immediate cardiorespiratory responses to exercise intensity 
transitions and individual physiological characteristics, establish-
ing a robust foundation for accurate VO2 estimation using only 
consumer-grade wearable data. 

Model Architecture. Predicting VO2 during exercise presents 
unique challenges due to the complex interplay between physiolog-
ical systems and rapid metabolic adaptations. We model VO2 dy-

namics as a state–estimation problem subject to physiologically in-
formed constraints, denoting the latent oxygen-consumption state 
at time 𝑡 by 𝑣𝑡 (and 𝑣𝑡 , 𝑣𝑡 − for its predicted and trend-extrapolated 
versions, respectively). Figure 4 summarizes the framework. In 
what follows, learnable functions are written 𝑓 ( · ; 𝝑), where the 
subscript on 𝝑 indicates the module. 

The model processes a workout window x𝑡 spanning [𝑡 − 𝑇 , 𝑡 ] 
containing ten biomechanical, HR, and temporal features. A feature 
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Figure 4: The VO2 prediction framework normalizes and encodes wearable sensor inputs, then uses a dual-stream architecture 
(neural Kalman filter + direct estimation) adaptively blended for final VO2 predictions. 
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encoder and bidirectional GRU generate a hidden representation 
h𝑡 = 𝑓temp 

 
𝑓enc (x𝑡 ; 𝝑enc); 𝝑temp 

 
. 

Neural–Kalman update. Using h𝑡 , the neural Kalman filter gen-
erates a Kalman filter-based VO2 estimate 𝑣KF 

𝑡 through an adaptive 
mechanism that balances new observations with prior estimates: 

𝑣KF 
𝑡 = 𝑣𝑡 −1 + 𝑓gain (h𝑡 ; 𝝑KF) 

 
𝑓
obs (h𝑡 ; 𝝑obs) − 𝑣𝑡 −1 

 𝑓Δmax (h𝑡 ;𝝑Δ ) 
𝑓Δ

min (h𝑡 ;𝝑Δ ) , 

where 𝑓gain modulates observation trust and 𝑓Δmin , 𝑓Δmax enforce 
physiologically constrained rate-of-change limits. 

Trend/direct dual pathway. To enhance robustness, we employ 
a dual-pathway approach blending trend-extrapolated and direct 
neural estimates: 

𝑣𝑡 − = 𝑣𝑡 −1 + 𝑓trend (h𝑡 ; 𝝑trend) 
 
𝑣𝑡 −1 − 𝑣𝑡 −2 

 
, 

𝑣dir 𝑡 = 𝑓
direct (h𝑡 ; 𝝑dir), 𝑣𝑡 = 𝛽𝑡 𝑣

dir 
𝑡 + (1 − 𝛽𝑡 )𝑣KF 

𝑡 , 

where 𝛽𝑡 = 𝑓
blend (h𝑡 ; 𝝑blend) determines the blending proportions. 

All modules 𝑓enc, 𝑓gain, 𝑓obs, 𝑓Δmin , 𝑓Δmax , 𝑓trend, 𝑓blend, and 𝑓
direct are 

implemented as multilayer perceptrons (MLPs) with corresponding 
parameters 𝝑enc, 𝝑KF, 𝝑obs, 𝝑Δ, 𝝑trend, 𝝑blend, and 𝝑

dir
, respectively. 

The temporal model 𝑓temp is a bidirectional GRU (biGRU) with 
parameters 𝝑temp that captures temporal dynamics. The final output 
is normalized using parameters 𝝑nrm. Detailed layer configurations 
are provided in Appendix B.4. 

Training Methodology. Our model is trained fully-supervised 
to minimize a composite loss function that balances immediate 
prediction accuracy with physiological plausibility, 

L = E𝑡 |𝑣𝑡 − 𝑣𝑡 | + 𝜆dynamic
E𝑡 


𝛼 
   𝑑 ̂𝑣𝑡 
𝑑𝑡 
− 
𝑑𝑣𝑡 

𝑑𝑡 

   + 𝛽 
   𝑑 2 ̂𝑣𝑡 

𝑑𝑡 2 − 
𝑑 2 𝑣𝑡 

𝑑𝑡 2 

   
+ 𝜆aux 

 
E𝑡 | ̂𝜇𝑡 − 𝜇𝑡 | + E𝑡 | ̂𝜎𝑡 − 𝜎𝑡 | + E𝑡 | ̂Δ𝑡 − Δ𝑡 | 

 
, 

where 𝑣𝑡 represents the blended estimate 𝛽𝑡 𝑣dir 𝑡 + (1 − 𝛽𝑡 )𝑣KF 
𝑡 . Here 

E𝑡 denotes temporal expectation, 𝑣𝑡 is the ground-truth VO2 value, 
2𝑑 𝑣𝑡 

and 𝑑 𝑣𝑡 
2 represent the first and second derivatives of  

𝑑𝑡 the VO
𝑑𝑡 2 

signal capturing velocity and acceleration dynamics. The coeffi-

cients 𝛼 and 𝛽 weight the relative importance of the derivatives. For 
the statistical terms, 𝜇𝑡 is the temporal mean, 𝜎𝑡 is the standard de-
viation, and Δ𝑡 = 𝑄0.95 ( |𝑣𝜏 − 𝑣𝜏 −1 |) represents the 95th percentile 
of absolute differences in consecutive VO2 values. The parame-

ters 𝜆
dynamic and 𝜆aux follow a curriculum-based schedule, with 

𝜆
dynamic increasing from 0 to 0.7 and 𝜆aux increasing from 0.1 to 0.3 

Table 2: Seq-to-Seq VO2 Prediction for two models using 
Leave-One-Runner-Out Cross-Validation, with real HR. 

Model 256-2 Model 128-4 

Runner MAE RMSE MAPE MAE RMSE MAPE 
(%) (%) 

Runner-1 520.20 582.88 17.17 325.40 399.68 11.59 
Runner-2 1326.20 1361.69 35.40 453.74 493.50 12.81 
Runner-3 218.41 473.09 11.47 212.02 477.44 11.59 
Runner-4 127.55 198.96 7.85 129.08 207.55 7.95 
Runner-5 606.88 636.92 22.08 451.26 488.13 16.42 
Runner-6 261.49 328.66 13.26 190.94 270.33 10.02 
Runner-7 159.01 201.17 6.19 131.81 192.59 5.35 
Runner-8 321.80 382.35 13.54 235.29 298.0 10.45 
Runner-9 321.01 398.18 25.05 267.14 344.00 21.26 
Runner-10 108.75 155.70 6.24 112.37 160.21 6.54 

Aggregate 397.13 471.96 15.83 251.00 333.20 11.40 

over the course of training to gradually emphasize physiological 
realism. 

We complement this curriculum learning with adaptive gradient 
clipping that permits larger parameter updates during early train-
ing stages while enforcing stability as the model converges. This 
progressive optimization strategy enables the model to establish 
foundational prediction capabilities before refining its represen-
tation of the nuanced transition dynamics that characterize VO2 
response during variable-intensity exercise. Appendix B.5 contains 
additional information. 

Results. We evaluated the model’s generalizability using a leave-
one-runner-out approach, training on data from all but one par-
ticipant and testing on the remaining runner. Due to the dataset’s 
limited size, we used overlapping windows during training but 
non-overlapping windows for left-out runner evaluation, maintain-

ing session integrity. A unique aspect of our method is generating 
complete sequence predictions using only the first second of 
VO2 data for initialization—mimicking real-world scenarios where 
continuous metabolic measurement is impractical. This minimal 
conditioning approach, potentially derived from domain knowledge 
or brief calibration, removes the need for ongoing respiratory gas 
analysis. Our sequence-to-sequence VO2 predictions were assessed 
using multiple metrics, detailed in Table 2. 
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Figure 5: VO2 predictions from first-second data during an 
incremental testing session with periodic lactate measure-
ments. Blue: ground truth; orange: model predictions. 
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Contextualizing Prediction Errors. Our model’s performance 
aligns with established benchmarks for instantaneous VO2 esti-

mation. At high intensities (VO2 ∼3000 ml/min), gold-standard 
metabolic equipment typically accepts errors of 300–600 ml/min 
(10–20%). Our consumer-grade smartwatch method achieves an 
aggregate Mean Absolute Percentage Error (MAPE) of 11.40%, com-

pared to the 256-2 model’s 15.83%, demonstrating remarkable accu-
racy given the limited input data. This error range corresponds to 
approximately 4.3–8.6 ml·kg

−1
·min

−1 
for a 70 kg athlete and aligns 

with discrepancies observed between research-grade devices. 
Several physiological factors inherently complicate VO2 pre-

diction: breath-by-breath variability [22] introduces inherent 
(±5-10%) fluctuations, nonlinear VO2 kinetics [46] challenge 
modeling during transitional phases, delayed cardiorespiratory 
equilibrium [44] causes temporal misalignments, and individual 
differences in body composition, training status, and metabolic 
efficiency add significant variability. 

Despite these challenges, our optimized neural kalman based 
model (128-4) achieved an aggregate MAPE of 11.4%, with most 
runners exhibiting errors below 20%. This performance is particu-
larly notable given that our method relies solely on consumer-grade 
wearable data and constructs the entire VO2 trajectory from only 
the first second of metabolic data, without requiring exhaustive 
laboratory calibration. For these results, we used ground truth HR 
measurements rather than predicted values to isolate the perfor-
mance of the VO2 estimation component. Appendix C.2 contains 
complementary results using predicted HR values from our trained 
models defined in previous sections (Section 4). 

Figure 5 demonstrates the generative capability of the model by 
plotting ground truth VO2 measurements (blue) alongside predic-
tions (orange) during an incremental testing protocol. The model 
reconstructs the entire VO2 trajectory using only the first second 
of metabolic data, maintaining high fidelity over extended periods 
despite varying exercise intensities. Appendix E contains additional 
visualizations, including a maximal capacity assessment. 

The incremental testing protocol presents a complex scenario, 
with 35 minutes of progressively faster 1200-meter sets until ex-
haustion. Despite periodic dips in the ground truth data caused by 
brief interruptions for blood lactate sampling, the model maintains 
a MAPE of 13.26%, successfully tracking the overall increasing trend 
in VO2 while effectively filtering out these transient artifacts. 

Performance Analysis and Limitations. The 128-4 model re-
veals significant inter-subject variation, with MAPE ranging from 
5.35% to 21.26%. This variation underscores the complexity of in-
dividual metabolic responses. The deeper 128-4 architecture con-
sistently outperforms the shallower 256-2 model, suggesting that 
additional neural layers more effectively capture the intricate dy-
namics of VO2 time-series. 

With an MAE of 251 ml/min, we achieve approximately 9% error 
at 3000 ml/min—a remarkable accomplishment using only one sec-
ond of initial metabolic data. Our Kalman-inspired neural model 
successfully balances pointwise accuracy with realistic temporal dy-
namics, though challenges persist in modeling rapid high-intensity 
transitions and individual metabolic variability. 

This sequence-to-sequence generation approach represents, to 
the best of our knowledge, the first method to predict complete 
instantaneous VO2 trajectories using minimal initial data and smart-

watch signals. Unlike existing approaches that either provide single-
point VO2max estimates or require expensive continuous respi-
ratory measurements, our method offers a practical solution for 
real-world metabolic monitoring. The performance of approxi-
mately 13% MAPE for most participants—establishes a new 
benchmark in wearable-based VO2 prediction. Future research 
will explore incorporating additional physiological signals, refin-
ing temporal representations, and developing adaptive calibration 
methods to account for individual fitness changes over time. 

6 Discussion and Conclusion 
Our work bridges the gap between laboratory-grade physiologi-
cal assessment and consumer wearables by introducing what we 
believe is the first framework capable of predicting instantaneous 
VO2 trajectories directly from consumer devices. By combining 
physiologically constrained modeling with modern ML techniques, 
we demonstrate how sophisticated metabolic metrics—previously 
confined to specialized laboratories—can be reliably estimated using 
everyday technology, democratizing advanced exercise physiology. 

VO2 Prediction and HR Dynamics. Our sequence-to-sequence 
VO2 framework generates complete metabolic trajectories from just 
one second of calibration data, achieving ∼13% MAPE without spe-
cialized lab equipment, delivering sophisticated metabolic insights 
previously requiring 30,000$+ gas analysis systems. Our HR dynam-

ics models achieve exceptional accuracy (MAE: 2.81 bpm, correla-
tion: 0.87) across diverse running conditions and maintain physio-
logical plausibility during high-intensity exercise (MAE: 1.99 bpm 
controlled). These models support VO2 prediction while solving 
PPG signal interruptions-a persistent consumer device challenge. 

Toward Metabolic Zone Classification. Our results establish 
a foundation for predicting metabolic thresholds from non-invasive 
data. Our synchronized dataset with blood lactate measurements 
enables future classification of aerobic, threshold, and anaerobic 
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zones, potentially transforming training prescription by making 
advanced zone-based guidance accessible beyond elite athletes. 

Limitations and Future Directions. Despite promising re-
sults, limitations include: (1) participant cohort primarily comprises 
highly trained runners, potentially limiting generalizability; (2) 
models exclude environmental factors (temperature, humidity). Fu-
ture work will fuse on-device thermistors and weather-API data 
to compensate; (3) approach ignores longitudinal training adapta-
tions. Future work: broaden demographics, integrate environmental 
sensors, and develop longitudinal models for evolving fitness. 

Safe and Responsible Innovation Statement. Our predic-
tion framework prioritizes privacy through local data processing 
without external transmission, while acknowledging potential bias 
in our high performing athletes-focused models despite evaluated 
cross-runner generalizability. While democratizing metabolic mon-

itoring offers significant health benefits, we recognize misinter-

pretation risks without professional guidance. Future work will 
incorporate broader demographics, transparent confidence met-

rics, and clear guidelines for responsible fitness and healthcare 
applications. 
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Table 3: Comprehensive running dataset statistics showing 
number of sessions, total time, and total distance for each 
participant. 

Runner # Sessions Time Dis. (km)s min 
runner-1 74 91,232 1,521 305.01 
runner-2 19 26,569 443 90.23 
runner-3 29 32,739 546 117.42 
runner-4 25 25,734 429 102.80 
runner-5 3 4,389 73 18.26 
runner-6 53 50,908 848 190.51 
runner-7 124 610,995 10,183 2,040.84 
runner-8 41 142,175 2,370 471.17 
runner-9 25 94,731 1,579 314.23 
runner-10 15 14,971 250 56.24 
runner-11 33 186,187 3,103 662.15 
runner-12 48 232,667 3,878 812.43 
runner-13 22 22,711 379 66.07 
runner-14 68 351,054 5,851 1,240.50 
runner-15 34 86,637 1,444 321.47 
runner-16 10 60,356 1,006 211.03 
runner-17 32 154,292 2,572 485.47 
runner-19 76 418,703 6,978 1,161.24 
runner-20 100 562,421 9,374 1,555.86 
Total 831 3,169,471 52,824 10,222.90 

7 Appendices 
This appendix provides additional implementation details, model 
architectures, and performance visualizations that complement the 
main text. 

A Comprehensive Running Dataset Statistics 
Table 3 presents statistics for the HR modeling dataset, detailing 
the number of sessions, accumulated training time (in both seconds 
and minutes), and total distance covered by each participant. The 
dataset contaisn 831 running sessions from 20 participants, repre-
senting over 52,825 minutes (approximately 880 hours) of running 
activity and covering a cumulative distance of 10,222.90 kilometers. 
This extensive collection provides a robust foundation for develop-
ing and validating our HR prediction models across diverse runners 
and training conditions. Notable variance exists in individual con-
tributions, with participant data ranging from 3 sessions (runner-5) 
to 124 sessions (runner-7), highlighting the dataset’s capacity to 
capture both intra- and inter-subject variability in cardiovascular 
responses to running. 

B Detailed Mathematical Formulation of HR 
Models, Oxygen Consumption Model and 
Training Methodology 

We provide detailed mathematical formulations for our two HR 
prediction approaches: the ODE-based model and the Kalman filter 
model. Both models share a common feature processing pipeline 
but diverge in how they model cardiac dynamics. 

B.1 ODE-based Heart Rate Model 
We model HR as a nonlinear dynamical system whose evolution 
depends on workout-specific inputs and remains within physio-
logically plausible bounds. Learnable maps are denoted 𝑓• with 
parameters 𝝑•. 

Inputs and latent backbone. Given a multivariate input window 
x𝑡 ∈ R𝐵×𝑇 ×𝐷in 

(batch size 𝐵, length 𝑇 , feature dimension 𝐷in), a 
feature encoder produces latent embeddings 

e𝑡 = 𝑓enc 
 
x𝑡 ; 𝝑enc 

 
, 

followed by a recurrent backbone 

s𝑡 = 𝑓temp 
 
e𝑡 , s𝑡 −𝑇 ; 𝝑temp 

 
, s0 = 0, 

that captures long-range temporal context. 

Latent ODE dynamics. We introduce a latent HR state 𝑔𝑡 ∈R𝐵×𝑇 ×𝐷 latent 

governed by a first-order ODE 

𝜕𝑔𝑡 

𝜕𝑡 
= 𝑓ODE 

 
𝑔𝑡 , s𝑡 ; 𝝑ODE 

 
, 

whose right-hand side embodies cardiac demand 

𝑓ODE 
 
𝑔𝑡 , s𝑡 ; 𝝑ODE 

 
= 𝑑 (s𝑡 ; 𝝑dec) − 𝑔𝑡 , 

with 𝑑 (·) a small MLP that estimates the HR level required by the 
current exercise intensity. 

Numerical integration and learning. The ODE is integrated with 
a fourth-order Runge–Kutta solver (RK4), and gradients are ob-
tained by the adjoint method of Neural ODEs, enabling end-to-end 
training. 

Physiological normalisation and decoding. From the backbone 
state we predict per-batch normalisation parameters 

𝜇𝑡 = 𝑓𝜇 (s𝑡 ; 𝝑nrm) ∈ R 𝐵 , 

𝜎̂𝑡 = 𝑓𝜎 (s𝑡 ; 𝝑nrm) ∈ R 𝐵 , 

ˆℎ𝑡 = 𝑓
dec 

 
𝑔𝑡 , s𝑡 ; 𝝑dec 

 
= 𝜎̂𝑡 𝑔𝑡 + 𝜇𝑡 . 

Interpretability and advantages. Our ODE model offers several 
advantages for HR prediction: (1) Bounded parameters enforce phys-
iological plausibility; (2) The ODE captures gradual HR adaptation 
to changing intensity; (3) The model remains interpretable, with 
parameters corresponding to meaningful physiological quantities. 

then decode observable HR by an affine map 

B.2 Kalman Filter Heart Rate Model 
We cast HR prediction as a state-estimation problem solved by an 
enhanced Kalman filter whose parameters are supplied by neural 
networks. As before, learnable maps are denoted 𝑓• with parameters 
𝝑•. 

Inputs and latent backbone. A multivariate input window x𝑡 ∈ 
R𝐵 ×𝑇 ×𝐷in 

is encoded 

e𝑡 = 𝑓enc (x𝑡 ; 𝝑enc), s𝑡 = 𝑓temp (e𝑡 , s𝑡 −𝑇 ; 𝝑temp), s0 = 0, 

yielding a workout embedding s𝑡 ∈ R𝐵 ×𝐷hid 
that conditions all filter 

parameters. 
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State definition. We track latent HR and its velocity via the two-
dimensional state 

z𝑡 = 


𝑔𝑡 
𝑔𝑡 

 
∈ R 𝐵 ×2 , P𝑡 ∈ R 𝐵 ×2×2 

with process noise covariance Q𝑡 = 𝑓noise (s𝑡 ; 𝝑noise) and measure-

ment noise variance R𝑡 = 𝑓meas (s𝑡 ; 𝝑meas). 

Kalman recursion. Prediction step 

z+ 𝑡 = z𝑡 + 𝑓tr (s𝑡 , z𝑡 ; 𝝑tr), 
P+ 𝑡 = P𝑡 + Q𝑡 . 

Update step 

ˆℎ𝑡 = 𝑓
obs (s𝑡 ; 𝝑obs), 

𝜈𝑡 = ˆℎ𝑡 − 𝑔+ 𝑡 , 
𝑘𝑡 = 𝑓gain 

 
P+ 𝑡 , R𝑡 ; 𝝑gain 

 
, where P+ 𝑡 = P𝑡 + Q𝑡 . 

State and covariance are corrected by the scalar gain 𝑘𝑡 : 

𝑔𝑡 +1 = 𝑔+ 𝑡 + 𝑘𝑡 𝜈𝑡 ,
𝑔𝑡 +1 = 𝑔+ 𝑡 + 𝛾𝑡 𝑘𝑡 𝜈𝑡 , with 𝛾𝑡 = 0.5, 

P𝑡 +1 = P+ 𝑡 ⊙ 

 
1 − 𝑘𝑡 0 
0 1 − 𝛾𝑡 𝑘𝑡 

 
. 

The fixed 0.5 factor damps velocity corrections, yielding smoother 
trajectories. 

Physiological bounds. After each update we clip to a biologically 
plausible range: 

𝑔𝑡 ← min 
 
HRmax, max(HRmin, 𝑔𝑡 ) 

 
. 

Network architecture. All auxiliary maps 𝑓enc, 𝑓tr, 𝑓obs, 𝑓noise, 
𝑓meas and 𝑓gain are small MLPs, while 𝑓temp is a GRU. 

Advantages. Our Kalman filter approach offers several advan-
tages: (1) The two-dimensional state vector captures both HR and 
its rate of change, enabling better tracking of cardiac dynamics; (2) 
The adaptive Kalman gain responds to prediction errors, increasing 
when errors are high to give more weight to new measurements; (3) 
Neural network prediction of filter parameters allows adaptation to 
different exercise contexts; (4) The reduced gain for velocity updates 
creates smoother trajectories while maintaining responsiveness to 
intensity changes. 

B.3 Heart Rate Models Training and 
Implementation 

Both models were implemented in PyTorch and trained using simi-

lar procedures. We trained two GRU backbones that differ only in 
width and depth: 

Variant Hidden dim. GRU layers 

Large 128 2 
Small 64 3 

All feed-forward heads (encoders, decoders, gain/demand networks, 
etc.) are two-layer MLPs with LeakyReLU activations and dropout 
0.1. We optimized the model parameters using the Adam optimizer 
(weight-decay 10−5 

, gradient clipping ∥𝑔∥2 ≤ 1.0) with an initial 
learning rate of 0.001, reducing the learning rate by a factor of 0.5 

when validation loss plateaued for 10 epochs. To prevent overfitting, 
we employed early stopping with a patience of 20 epochs. For 
the Kalman model we used ReduceLROnPlateau with factor=0.5 
and patience=10, and an extended early-stopping window of 100 
epochs. The ODE model employed the same scheduler but with 
factor=0.2, a cooldown of 3 epochs, a minimum learning rate of 
10
−6 
, and the 20-epoch patience already noted above. We trained 

with a batch size of 32 and the default Adam momentum parameters 
𝛽1 = 0.9, 𝛽2 = 0.999. 

For both models, we used a masked mean absolute error (MAE) 
loss function to handle variable-length sequences: 

LMAE = 

 𝐵 
𝑏=1 

 𝑇 
𝑡 =1 |ℎ pred 

𝑏,𝑡 − ℎ true 
𝑏,𝑡 | · mask 𝑏,𝑡  𝐵 

𝑏=1 
 𝑇 
𝑡 =1 mask 𝑏,𝑡 

(1) 

Additionally, we incorporated an auxiliary loss to encourage 
accurate parameter prediction: 

Laux = | | ̂𝜇 − 𝜇
obs
| |1 + | |𝜎̂ − 𝜎

obs
| |1 (2) 

where 𝜇
obs and 𝜎

obs are the observed mean and standard deviation 
of HR in each sequence, and ˆ 𝜇 and ˆ 𝜎 are the predicted parameters. 

The total loss was a weighted combination: 

L
total = LMAE + 𝜆aux · Laux (3) 

with 𝜆aux = 0.1. 
Both models achieved comparable performance, with the ODE 

model excelling in capturing long-term physiological trends and 
the Kalman filter model showing advantages in responding to rapid 
intensity changes. The models’ complementary strengths suggest 
potential benefits in ensemble approaches for future work. 

B.4 Kalman-based Oxygen Consumption Model 
We frame oxygen-consumption dynamics as a state–estimation 
problem with physiologically informed constraints. Let 𝑣𝑡 ∈R de-
note the latent VO2 state at time 𝑡 , with 𝑣𝑡 its filtered estimate and 
𝑣𝑡 − the trend-extrapolated prediction. As throughout the paper, 
learnable functions are written 𝑓 ( · ; 𝝑), where the subscript on 𝝑 
indicates the module. 

Temporal feature extraction. The network processes a window 
x𝑡 ∈ R𝐵×𝑇 ×𝐷in 

(containing biomechanical features, HR, and tem-

poral context): 

h𝑡 = 𝑓temp 
 
𝑓enc (x𝑡 ; 𝝑enc) ; 𝝑temp 

 
, 

where 𝑓temp is a bidirectional GRU and h𝑡 ∈R𝐵 ×𝐷ℎ 
is the hidden 

representation at time 𝑡 . 

Process and measurement-noise prediction. Neural heads produce 
time-varying covariance surrogates from the hidden state: 

Pprocess,𝑡 = 𝑓process (h𝑡 ; 𝝑process), 
Rmeas,𝑡 = 𝑓measurement (h𝑡 ; 𝝑measurement). 

Neural–Kalman update. Given h𝑡 , the VO2 estimate is updated 
via 

𝑣KF 
𝑡 = 𝑣𝑡 −1 + 𝑓gain (h𝑡 ; 𝝑KF) 

 
𝑓
obs (h𝑡 ; 𝝑obs) − 𝑣𝑡 −1 

 𝑓Δmax (h𝑡 ;𝝑Δ ) 
𝑓Δ

min (h𝑡 ;𝝑Δ ) , 

where the adaptive gain 𝑓gain and clamping limits 𝑓Δmin , 𝑓Δmax are 
themselves MLPs, allowing data-driven confidence weighting and 
physiologically plausible rate-of-change bounds. 
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Trend/direct dual pathway. To improve robustness, 

𝑣𝑡 − = 𝑣𝑡 −1 + 𝑓trend (h𝑡 ; 𝝑trend) 
 
𝑣𝑡 −1 − 𝑣𝑡 −2 

 
, 

𝑣dir 𝑡 = 𝑓
direct
(h𝑡 ; 𝝑dir), 

𝑣𝑡 = 𝛽𝑡 𝑣
dir 
𝑡 + (1 − 𝛽𝑡 ) ̂𝑣KF 

𝑡 , 

Implementation details. All heads 𝑓enc, 𝑓gain, 𝑓obs, 𝑓Δmin , 𝑓Δmax , 
𝑓process, 𝑓measurement, 𝑓trend, 𝑓blend, and 𝑓

direct are two-layer MLPs 
with LeakyReLU activations and dropout 0.1, parameterized by 𝝑enc, 
𝝑KF, 𝝑obs, 𝝑Δ, 𝝑trend, 𝝑blend, and 𝝑

dir
, respectively. The temporal 

module 𝑓temp is a biGRU (two layers, hidden size 𝐷ℎ = 128). All out-
puts are trained end-to-end with an MSE loss on breath-by-breath 
VO2 targets; clamping reduces gradient explosion when rapid tran-
sients exceed physiological bounds. 

B.5 Training and Implementation Details 
We employ the composite loss (main text) with base, dynamic, and 
auxiliary components: 

L = E𝑡 
 𝑣𝑡 − 𝑣𝑡 

   
MAE 

+𝜆
dynamic E𝑡 


𝛼 
  𝑑 ̂𝑣𝑡 
𝑑𝑡 − 𝑑 𝑣𝑡 

𝑑𝑡 

  + 𝛽 
  𝑑 2𝑣𝑡 
𝑑𝑡 2 − 𝑑 2 𝑣𝑡 

𝑑𝑡 2 

   
derivative loss 

+ 𝜆aux E𝑡 
 
|𝜇𝑡 − 𝜇𝑡 | + | ̂𝜎𝑡 − 𝜎𝑡 | + | ̂Δ𝑡 − Δ𝑡 | 

  
moment loss 

, 

The dynamic loss captures temporal patterns using both first 
and second derivatives: 

E𝑡 


𝛼 
   𝑑 ̂𝑣𝑡 
𝑑𝑡 
− 
𝑑𝑣𝑡 

𝑑𝑡 

   + 𝛽 
   𝑑 2 ̂𝑣𝑡 

𝑑𝑡 2 − 
𝑑 2 𝑣𝑡 

𝑑𝑡 2 

   . 
The auxiliary loss enforces statistical consistency between pre-

dicted and observed distributions: 

E𝑡 | ̂𝜇𝑡 − 𝜇𝑡 | = | ̂𝜇 − 𝜇 | 
E𝑡 | ̂𝜎𝑡 − 𝜎𝑡 | = | ̂𝜎 − 𝜎 | 
E𝑡 | ̂Δ𝑡 − Δ𝑡 | = | ̂Δ − Δ|, 

where 𝜇𝑡 is the temporal mean, 𝜎𝑡 is the standard deviation, and 
Δ𝑡 = 𝑄 0.95 ( |𝑣𝜏 − 𝑣𝜏 −1 |) represents the 95th percentile of absolute 
differences in consecutive VO2 values. 

Curriculum weights. At epoch 𝑒: 𝜆
base = max(0.30, 1 − 𝑒/20), 

𝜆
dynamic = 1 − 𝜆

base
, 𝜆aux = min(0.30, 0.10 + 0.01𝑒 ). 

Model variants. 

Variant GRU hidden GRU layers Head MLP layers 

Small 128 2 2 
Large 256 4 4 

Optimisation. AdamW (lr = 4 × 10−3 
, weight-decay 10−5) with 

cosine-annealing warm restarts (T0 = 10, T
mult

=2, 𝜂min = 10−6). 
Batch 32, sequence length 60s (1Hz); gradient clipping ∥𝑔 ∥2 ≤ 
1 + 4𝑒 −𝑒/10; early stopping after 50 epochs without validation-MAE 
improvement. 

C Additional Results 
C.1 Additional HR Figures 
Figure 6 presents additional HR prediction using the standard pre-
diction mode, while Figure 7 presents using the the generative 
mode. 
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Table 4: Comparison of Sequence-to-Sequence Instantaneous 
VO2 Prediction for Models 256-2 and 128-4 using Leave-One-
Out Cross-Validation. HR used is the predicted HR values 
using generation mode. Bold values indicate the better (lower) 
performance. 

KalmanVO2 256-2 KalmanVO2 128-4 

Runner MAE RMSE MAPE MAE RMSE MAPE 
(%) (%) 

With ODE-based HR predictions (128-2) 

Runner-1 645.78 682.96 19.24 519.27 565.93 15.74 
Runner-2 1326.20 1361.69 35.40 463.79 518.90 12.94 
Runner-3 250.61 481.78 12.36 234.11 475.18 12.04 
Runner-4 287.74 335.78 11.01 128.56 182.10 6.03 
Runner-5 697.68 717.53 25.03 549.20 571.91 19.88 
Runner-6 347.87 450.75 15.61 402.03 495.38 17.04 
Runner-7 193.00 219.82 7.16 122.36 160.31 4.70 
Runner-8 321.80 382.35 13.54 266.80 347.77 11.98 
Runner-9 333.82 407.08 25.83 268.31 344.64 21.32 
Runner-10 407.44 514.14 14.41 398.53 491.12 14.23 

Aggregate 481.19 555.39 17.96 335.30 415.32 13.59 

With Kalman-based HR predictions (128-2) 

Runner-1 747.67 781.70 21.97 529.75 574.35 16.03 
Runner-2 1326.20 1361.69 35.40 1757.21 1804.52 46.63 
Runner-3 262.15 479.42 12.59 290.56 495.09 13.59 
Runner-4 439.11 500.90 15.78 137.36 189.68 6.30 
Runner-5 697.75 717.59 25.03 549.20 571.91 19.88 
Runner-6 383.54 473.57 16.73 463.29 550.49 18.92 
Runner-7 192.96 219.79 7.15 120.33 158.70 4.63 
Runner-8 321.80 382.35 13.54 288.13 345.58 12.21 
Runner-9 396.71 449.44 29.59 274.75 354.99 21.83 
Runner-10 468.62 559.96 16.36 432.30 529.91 15.29 

Aggregate 523.65 592.64 19.41 484.29 557.52 17.53 

C.2 Additional Oxygen Consumption results 
using Two Trained HR Models and figures 

To quantify how HR–prediction quality propagates into down-
stream metabolic estimation, we trained two sequence-to-sequence 
VO2 models that share the same architecture except for backbone 
size (256-2 versus 128-4; see Table 4. Both networks were evalu-
ated in leave-one-runner-out cross-validation using HR signals that 
were predicted in generation mode by either our best ODE-based 
or Kalman-based HR model (both 128-2). The table below reports 
per-runner and aggregate MAE, RMSE, and MAPE. Boldface high-
lights the better of the two VO2 variants under each HR source. The 
table shows that the results are worse when using the predicted HR 
compared to when using the true HR (see in the section), although 
the results are still well below the 20% MAPE threshold which is 
the considered standard. 

D Ablation Study 
We retrained three distinct architectures, TrendDirectVO2Model, 
KalmanOnlyVO2Model, and KalmanVO2Model, under three loss 
configurations (base_only, base_statistical, and the full curriculum). 
This yielded nine experimental conditions, evaluated with consis-
tent leave-one-runner-out splits. 

D.1 Architectural Comparison 
Table 5 summarizes the components that differentiate the predictors. 
TrendDirectVO2Model employs a bidirectional GRU with learned 
momentum extrapolation and a blending mechanism while omit-

ting explicit filtering. KalmanOnlyVO2Model introduces a learned 
Kalman filter that models process and measurement variances, in-
corporates an observation network, and clamps innovations, but it 
does not include a direct VO2 prediction head. KalmanVO2Model 
unifies these approaches by combining the Kalman filter with a 
direct VO2 head and a dynamics blending stage. 

Table 5: Architectural features of VO2 predictors. 

Component TrendDirect KalmanOnly Kalman (full) 

Direct VO2 head ✓ × ✓ 
Learned Kalman filter × ✓ ✓ 
Observation network × ✓ ✓ 
Dynamics blend ✓ ✓ ✓ 
Uncertainty propagation × ✓ ✓ 

D.2 Per runner Results 
Table 6 reports MAPE for each runner across all architecture and 
loss combinations. Columns are grouped by architecture (Full hy-
brid, KalmanOnly, TrendDirect) and subcolumns correspond to the 
three loss functions. Bold values mark the best configuration for 
each runner, and the final row presents the average MAPE. 

D.3 Evaluation Protocol 
All experiments are evaluated in a strict sequence to sequence man-

ner. The model receives the true HR samples rather than predicted 
ones. Only the first second of the first window is supplied as ground 
truth VO2; for every subsequent window, the final VO2 estimate of 
window 𝑖 becomes the first input of window 𝑖 +1, preventing error 
from resetting between windows. 

D.4 Discussion 
The full architecture with the complete curriculum achieves the 
lowest MAPE for nine of the ten runners and yields the best overall 
mean error. Its joint design captures both abrupt metabolic tran-
sitions and gradual trends. When pace increases sharply, oxygen 
uptake rises almost instantaneously; the direct VO2 head accurately 
tracks these transients. KalmanOnlyVO2Model, lacking this head, 
tends to over smooth and display latency. TrendDirectVO2Model, 
although responsive, does not explicitly filter noise and therefore 
struggles to characterize sudden yet genuine spikes. 

Our data were collected under two controlled protocols: each 
session was either an “all out” effort test or an incremental to 
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Figure 6: Ten random heart rate prediction using the Standard predictions mode on random sampled sessions with true HR 
(blue) and predicted HR (red). Each subfigure shows a single session’s timeline, along with mean absolute error (MAE), root 
mean square error (RMSE), mean absolute percentage error (MAPE), and correlation. 
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Figure 7: Ten random heart rate prediction using the Generating predictions mode on random sampled sessions with true 
HR (blue) and predicted HR (red). Each subfigure highlights a unique session with corresponding performance metrics (MAE, 
RMSE, MAPE, and correlation). 
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Table 6: Per runner MAPE (%) across architectures and loss configurations. 

Full (hybrid) KalmanOnly TrendDirect 

Runner base_only base_statistical full base_only base_statistical full base_only base_statistical full 

runner-1 4.81 5.57 11.57 4.79 4.73 4.72 4.40 15.05 5.44 
runner-2 15.45 16.01 11.87 90.53 83.39 74.54 13.73 33.09 13.27 
runner-3 9.39 11.02 9.31 80.66 66.37 65.41 14.42 10.79 9.37 
runner-4 12.06 11.08 10.31 63.38 63.77 68.42 10.34 10.33 10.34 
runner-5 21.50 17.98 15.10 70.79 70.94 94.55 21.40 20.62 20.17 
runner-6 5.53 5.03 4.98 80.25 80.27 85.99 5.47 5.72 5.37 
runner-7 6.60 30.12 23.33 22.44 22.01 20.57 7.96 27.99 10.47 
runner-8 20.75 24.26 20.25 97.15 95.94 96.23 21.53 22.78 23.59 
runner-9 5.76 27.01 7.14 84.13 87.47 83.49 5.88 26.36 26.79 
runner-10 8.00 4.03 7.19 67.79 67.81 67.81 10.22 9.63 10.35 

Mean 10.99 15.21 12.11 66.19 64.27 66.17 11.54 18.24 13.51 

exhaustion ramp. Both protocols generate VO2 traces that rise 
monotonically until failure, with few downward inflections. In such 
settings the bidirectional GRU in TrendDirectVO2Model can look 
several steps forward and backward, learn a momentum based 
extrapolation, and implicitly smooth short horizons. The dynamics 
blend layer further dampens measurement noise by fusing the 
extrapolated value with the raw observation, effectively learning 
coefficients that behave like a simplified Kalman gain. Because most 
trajectories are dominated by steady ramps and plateaus rather 
than rapid oscillations, these two mechanisms capture the principal 
physiological variation, which explains why the trend only model 
approaches the full model in accuracy. 

During steady state running, breath by breath variability intro-
duces high frequency noise. The learned Kalman filter in the full 
model attenuates these fluctuations, yielding smoother estimates. 
Without a direct predictive branch, exclusive filtering suppresses 
peaks and allows error drift over erratic segments. The progressive 
curriculum further refines performance: early mean absolute error 
minimization aligns trajectories, intermediate dynamic consistency 
objectives enforce realistic multi step behavior, and final statistical 
penalties anchor distributional fidelity. 

For runners exhibiting highly irregular VO2 profiles, the full 
architecture with the complete curriculum reduces extreme over-
shoots by roughly one third relative to base_only training. For 
instance, runner–5 shows a drop in MAPE from 21.50 % (base_only) 
to 15.10 % (full), a 29.8 % relative improvement, while runner–2 falls 
from 15.45 % to 11.87 % (a 23.2 % gain). In contrast, athletes whose 
traces rise smoothly under the two test protocols see only marginal 
gains: runner–3 improves from 9.39 % to 9.31 % (below 1 % change) 
and runner–6 from 5.53 % to 4.98 % (about 10 %). Thus, the direct 
VO2 head and uncertainty propagation act primarily as a safety 
net for edge cases rather than the main accuracy driver in routine 
conditions. 

D.5 Conclusion 
Accurate VO2 estimation from wearable data benefits from uniting 
a direct prediction head that responds immediately to metabolic 
transitions with a learned Kalman filter that attenuates breath–by– 
breath noise. The staged curriculum balances pointwise accuracy, 

temporal coherence, and physiological plausibility. Empirically, the 
full architecture trained with the complete curriculum delivers the 
lowest mean error and mitigates extreme overshoots for runners 
with irregular traces, while the trend–only variant remains a com-

petitive baseline under monotonic ramp protocols and in settings 
where model size or compute budget is limited. We therefore recom-

mend deploying the full configuration when resources permit and 
reserving the trend Sonly model for lightweight or edge scenarios. 

Looking ahead, we will extend evaluation beyond the present 
all-out and incremental-to-exhaustion sessions to include variable-
intensity workouts such as intervals, fartlek, and tempo runs with 
recovery segments. These protocols generate VO2 trajectories that 
rise and fall repeatedly, stressing both rapid responsiveness and 
robust smoothing. Under such non monotonic patterns we expect 
the combined architecture to deliver even larger gains over the trend 
only baseline, because the direct prediction head can follow sharp 
inflections while the learned Kalman filter suppresses transient 
noise between efforts. 

E Additional Figures for Predicting Oxygen 
Consumption 

Figure 8 presents additional VO2 prediction visualizations. 
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Figure 8: Sequence-to-Sequence VO2 Prediction Across Different Sessions using true HR values. 
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