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Abstract

Understanding physiological responses during running is criti-
cal for performance optimization, tailored training prescriptions,
and athlete health management. We introduce a comprehensive
framework—what we believe to be the first capable of predicting
instantaneous oxygen consumption (VOz) trajectories exclusively
from consumer-grade wearable data. Our approach employs two
complementary physiological models: (1) accurate modeling of
heart rate (HR) dynamics via a physiologically constrained ordi-
nary differential equation (ODE) and neural Kalman filter, trained
on over 3 million HR observations, achieving 1-second interval
predictions with mean absolute errors as low as 2.81 bpm (correla-
tion 0.87); and (2) leveraging the principles of precise HR model-
ing, a novel VO3 prediction architecture requiring only the initial
second of VO3 data for calibration, enabling robust, sequence-to-
sequence metabolic demand estimation. Despite relying solely on
smartwatch and chest-strap data, our method achieves mean abso-
lute percentage errors of approximately 13%, effectively capturing
rapid physiological transitions and steady-state conditions across di-
verse running intensities. Our synchronized dataset, complemented
by blood lactate measurements, further lays the foundation for
future noninvasive metabolic zone identification. By embedding
physiological constraints within modern machine learning, this
framework democratizes advanced metabolic monitoring, bridging
laboratory-grade accuracy and everyday accessibility, thus empow-
ering both elite athletes and recreational fitness enthusiasts.
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1 Introduction

Heart rate (HR) and oxygen consumption (VO3) jointly reveal car-
diovascular performance and metabolic demand, making them es-
sential for optimizing athletic performance, preventing overtrain-
ing, and safeguarding health for both elite athletes and recreational
fitness enthusiasts [24, 29, 43]. While HR is readily accessible via
consumer-grade wearables, VO, measurement remains confined to
specialized laboratory equipment (costing over $30 000) and expert
supervision [41], limiting broad access to critical metabolic insights.

To bridge this gap, we propose two complementary physiolog-
ical models that rely exclusively on data from consumer-grade
wearables. First, we introduce an advanced HR dynamics model
based on neural ordinary differential equations (ODEs) [6] and
with neural Kalman filtering [20] to capture cardiac responses to
exercise intensity. This approach precisely infers HR from external
parameters, compensates for photoplethysmography (PPG) signal
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loss, and reproduces cardiac behavior during varied exercise ef-
forts. Second, and more significantly, we present, to the best of our
knowledge, the first approach for direct estimation of instantaneous
VO, trajectories from smartwatch data using a Kalman-inspired
deep learning architecture [18]. By requiring only the initial second
of VO, data for calibration, our framework enables sophisticated
metabolic monitoring without specialized laboratory equipment, a
capability previously unavailable through consumer devices.

Our framework advances physiological monitoring in several key
ways. We address three main barriers limiting consumer wearables:
(i) continuous HR availability despite PPG drop-outs during high-
intensity motion, (ii) power-efficient “generative sequencing” that
synthesizes an entire HR stream from a single-second ECG seed, and
(iii) the first laboratory-grade, second-by-second VO3 trajectory es-
timation without the $30 000 equipment barrier. We achieve a mean
absolute error (MAE) of 2.81 bpm (correlation 0.87) in 1-second
HR predictions across diverse running conditions, demonstrating
robustness to wearable signal dropouts. Building on this founda-
tion, our VO2 model generates complete metabolic trajectories
with a mean absolute percentage error (MAPE) of approximately
13%, accurately capturing both rapid transitions and steady-state
conditions. We validate these results through leave-one-runner-
out cross-validation against gold-standard portable Cosmed K5
measurements, showing strong generalization across individuals.
To achieve this, we collected a first-of-its-kind rich synchronized
dataset that simultaneously acquires data from consumer smart-
watch (Garmin 965), chest-strap HR, portable Cosmed K5 metabolic
system, video capture every 200m, and blood lactate measurements,
which also lays the groundwork for future noninvasive metabolic
zone classification.

To support HR modeling, we leveraged a comprehensive dataset
of 831 running sessions from 20 participants (Section A), represent-
ing over 52,825 minutes (approximately 880 hours) of activity and
10,222.90km of cumulative distance; HR models were evaluated
via leave-three-runner-out cross-validation against concurrently
recorded smartwatch and chest-strap data. For VO prediction, we
conducted an IRB-approved clinical trial with ten highly trained
runners, each completing two structured track sessions; VO2 models
were validated using leave-one-runner-out cross-validation against
gold-standard Cosmed K5 measurements. All device streams in-
cluding Garmin 965, chest HR strap, portable metabolic system,
video captures every 200m, and blood lactate samples—were time-
synchronized to ensure robust multimodal evaluation across indi-
viduals and exercise intensities.

By embedding physiology-informed constraints within modern
machine learning (ML), our approach extracts laboratory-quality
insights from everyday wearables. The generalizable principles
emerging from this work include the importance of synchronized
multimodal data collection for robust cross-modality modeling and
a transferable architecture that democratizes advanced metabolic
monitoring on consumer devices.

The rest of this paper is organized as follows: Section 2 reviews
related work; Section 3 describes our data and protocol; Section 4
details HR dynamics modeling; Section 5 presents VO3 prediction;
and Section 6 concludes with limitations and future directions.
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2 Related Work

Physiological parameter estimation during exercise spans exercise
physiology and computer science. We review literature across three
interconnected domains—physiological modeling, wearable tech-
nology, and ML, before highlighting our contributions.
Physiological Modeling of Exercise Response VO kinetics
modeling began with Hill and Lupton’s work linking exercise
intensity to oxygen uptake [29], extended through compartmen-
tal gas-exchange models [23] and the two-component framework
(fast/slow VO, responses) [32], with refinements adding time de-
lays [8] and intensity-dependent parameters [4]. Recent studies
emphasize inter-individual variability in VO3 kinetics across age,
training status, and health conditions [12, 13, 26], but remain con-
strained by controlled lab protocols that fail to capture real-world
variability in intensity, environment, and motivation [1, 34]. VO,
responses also differ markedly between laboratory and free-living
contexts [10], influenced by altitude, humidity, fatigue, nutrition,
and emotional state [2, 15]. Although tools like VO,FITTING aim to
streamline kinetics analysis [45], high-precision models still rely
on expensive stationary gas analyzers.

Wearable Technology and Exercise Monitoring Consumer
wearables now provide continuous PPG based HR and inertial sens-
ing outside the laboratory [7, 40]. Although recent devices have
improved HR measurement accuracy [35], motion artifacts and
signal dropouts remain significant challenges during high-intensity
activities [28, 42]. Many commercial platforms include proprietary
VOymax estimators, yet these algorithms often lack rigorous vali-
dation across diverse populations and exercise conditions [21, 25].
To bridge the gap between consumer-grade sensor outputs and
laboratory-grade cardiorespiratory metrics, cross-modal inference
techniques have been proposed to translate wearable data into VO,
and other physiological parameters [3, 5], but they frequently rely
on steady-state assumptions or are evaluated on narrow cohorts.
Emerging integrations of SpO; and ECG tracking show promise
for reducing estimation errors [9], yet advanced algorithmic ap-
proaches remain essential to overcome the inherent limitations of
wearable hardware in real-world exercise scenarios.

ML for Physiological Parameter Estimation Recent years have
witnessed a surge in applying ML techniques to physiological data
analysis. Traditional approaches used statistical models to relate
HR to VO3 [36], but these models typically assume steady-state
conditions and struggle with dynamic exercise.

Deep learning approaches have shown promise in processing
multivariate physiological signals [14], with recurrent and convolu-
tional architectures demonstrating particular efficacy for temporal
data. Attention mechanisms further boost performance by focusing
on relevant signal patterns across various time scales [17], enabling
systems to better detect meaningful physiological events and limit
false alarms.

Several recent studies have applied hybrid modeling to HR dy-
namics during exercise [11, 27], demonstrating improved accuracy
compared to purely mechanistic or purely data-driven approaches.
However, the extension of these methods to VO, modeling from
wearable data remains largely unexplored, particularly in settings
involving variable-intensity exercise and diverse subject popula-
tions [39]. Notably absent from the literature is any method
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capable of predicting instantaneous VO3 trajectories using
only consumer wearables—a gap our work directly addresses.
Contributions and Distinctions from Prior Work. Our research
addresses these gaps through two major contributions. First, we
advance HR prediction during exercise with novel modeling ap-
proaches that differ from recent systems in several significant ways.
Second, we introduce the first sequence-to-sequence approach for
VO, estimation that uses only consumer-wearable data, bridging
laboratory precision and real-world accessibility.

Our HR model delivers 1-second predictions versus Nazaret et
al’s 10-second averages [27], capturing rapid cardiovascular tran-
sitions during variable-intensity exercise for responsive feedback
with greater personalization flexibility. Unlike Nazaret et al., which
requires extensive historical data per user, our approach general-
izes effectively for new users with no historical data—critical for
deployments where prior data is unavailable. This is achieved via
our neural ODE framework or Kalman filter architecture, capturing
physiological responses while adapting to individual cardiovascular
characteristics without extensive calibration.

We enhance the practical applicability of our HR modeling through
dual evaluation protocols that reflect realistic usage scenarios. Specif-
ically, we utilize non-overlapping windows to evaluate our model
under two distinct conditions: (1) a continuous monitoring condi-
tion where the initial HR measurement is known for each window,
and (2) a minimal-data condition where only the first second’s
measurement (the first sample of the first window) is available for
the entire exercise session (up to 120 minutes). This second pro-
tocol represents a significant challenge as it requires the model
to maintain accurate predictions over extended durations with ex-
tremely limited initialization data. This approach transforms our
sequence-to-sequence prediction into a generative forecasting
model, demonstrating robust long-term predictive capability with
minimal initialization data, albeit with an expected accuracy trade-
off that we quantify and analyze.

Building on our HR modeling advances, we introduce the first
sequence-to-sequence modeling approach for VO, estimation us-
ing only data available from consumer wearables. Unlike previous
approaches that either (1) rely on steady-state assumptions [36]
which fail during variable intensity exercise, or (2) require special-
ized equipment for direct measurement [41], our method captures
the dynamic nature of VO3 during real-world variable-intensity
exercise using only consumer-grade devices. Our VO3 estimation
method employs a Kalman filter architecture that learns shared
physiological parameters among runners. Our approach demon-
strates significant improvements over baseline methods, achieving
mean absolute percentage errors of approximately 13% for most
participants across diverse running intensities. The model explic-
itly accounts for individual differences in physiological parameters
through a learnable state-space representation, allowing personal-
ization while maintaining the interpretability necessary for sports
science applications.

Together, these advances in HR dynamics modeling and VO3
estimation form an integrated system that bridges the gap be-
tween laboratory-grade physiological assessment and consumer-
accessible wearable technology, representing a significant step to-
ward democratizing advanced exercise science for both research
and practical applications.
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Figure 1: Runners during experimental sessions

3 Experimental Protocol and Data Collection

Our research methodology required comprehensive physiological
data capturing both laboratory-grade measurements and consumer
wearable outputs. We used two complementary datasets: (1) a syn-
chronized, multimodal dataset collected specifically for VO3 predic-
tions, providing aligned measurements from both laboratory and
consumer devices, and (2) a more extensive historical HR dataset
for training robust HR dynamics models, offering the breadth and
diversity needed for developing generalizable models. Below, we
describe the collection protocols and key characteristics of each
dataset.

Synchronized Multimodal Dataset: We implemented a com-
prehensive protocol to gather synchronized physiological and biome-
chanical data from experienced runners during controlled exercise
tests. Conducted at two athletic facilities, the study involved 10
participants who each completed two structured sessions. We re-
cruited runners aged 20-50 with demonstrated high-level perfor-
mance (top 1% 10 km race times for their age groups). This focus
on highly trained athletes was intended to reduce physiological
variance, facilitating more precise modeling of exercise responses.
Before participation, each runner obtained medical clearance from
a certified sports physician to confirm eligibility for high-intensity
testing.

The protocol comprised two sessions targeting different aspects
of physiological performance. In Session One (Maximal Capacity
Assessment), participants performed a 1500-meter maximal-effort
run to determine VO;max. We measured metabolic data with a
portable Cosmed K5 system, capturing Oz and CO3 exchange rates,
while simultaneously recording HR and biomechanical data via a
Garmin 965 smartwatch. VOomax was calculated as the 30-second
peak average VO3, and mean running speed was computed for the
entire distance. In Session Two (Incremental Testing), participants
followed an individualized protocol based on Session One results,
running repeated 1200-meter sets at progressively higher speeds
(approximately 5% speed increase per set) until exhaustion. To pre-
serve physiological response patterns vital to our modeling, blood
lactate samples were obtained between sets with brief (10-second)
interruptions, minimizing disruptions to the overall protocol.

Data collection employed a multi-device synchronized measure-
ment system consisting of: (1) a wrist-mounted Garmin 965 smart-
watch for continuous activity monitoring; (2) a chest-mounted
Garmin HR monitor capturing both HR and running dynamics (pace,
cadence, vertical oscillation, altitude, stance time, vertical ratio, and
step length); (3) a portable Cosmed K5 metabolic system (300g) with
dedicated harness and face mask for breath-by-breath gas exchange
measurement; and (4) a two-to-four-camera video system captur-
ing biomechanical data at 200-meter intervals from dual angles
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throughout the athletic stadium. This multi-sensor approach en-
sured comprehensive data capture across both consumer-grade and
laboratory-grade measurement systems, creating a synchronized
dataset with precise alignment between laboratory and wearable
measurements. Figure 1 illustrates participants during the protocol
while wearing the integrated measurement equipment.

HR Modeling Dataset: While the synchronized dataset sup-
ported VO, modeling, we developed our HR dynamics models using
a separate, substantially more extensive dataset. This comprehen-
sive resource comprises 831 running sessions from 20 distinct run-
ners collected over a seven-year period (2018-2025), totaling 52,824
minutes (approximately 880 hours) and 10,222 km of running ac-
tivity, with more than 3.1 million HR data points. The scale and
diversity of this dataset provided a robust foundation for capturing
complex cardiovascular dynamics across various running condi-
tions, intensities, and individual physiological profiles. Table 3 in
Appendix A presents detailed statistics for each participant, includ-
ing session counts, accumulated training time, and total distance
covered.

We deliberately chose chest strap HR monitors over wrist-worn
devices for our HR data collection due to their superior measure-
ment accuracy during exercise. Unlike wrist-based smartwatches
that use photoplethysmography (PPG)—an optical method measur-
ing blood flow through optical sensors—chest straps capture elec-
trical signals directly from the heart via electrocardiogram (ECG),
providing precise beat-to-beat measurements even during intense
physical activity. The limitations of wrist-worn PPG sensors are
well-documented: movement artifacts, sweat interference, and re-
duced peripheral blood flow during high-intensity exercise can
compromise optical sensors’ signal integrity [19, 31, 37]. In con-
trast, ECG-based chest straps maintain consistent accuracy across
varying exercise intensities, making them the preferred choice for
physiological research requiring high temporal resolution and reli-
ability.

4 Modeling Heart Rate Dynamics

Accurately modeling HR dynamics during physical activity is funda-
mental for understanding physiological exercise responses. Precise
HR estimation addresses three critical challenges: (1) exploring
how biomechanical features influence physiological responses, re-
vealing movement-cardiovascular relationships; (2) solving signal
interruption/interpolation in wearables during high-intensity ac-
tivities; (3) leveraging HR-power-VO; correlations for advanced
training insights.

Wearables receive HR via three pathways: (i) chest-strap ECG,
(ii) wrist-based PPG, or (iii) our “generative sequencing” module.
Since consumer smartwatches cannot simultaneously log ECG/PPG
during exercise, we use chest-strap ECG as the gold standard for
training, while architecting the pipeline to accept PPG segments
or generated HR streams at inference without retraining. This de-
sign enables sensor burden/battery life vs. accuracy tradeoffs: ECG
achieves 2.81 bpm MAE, PPG falls between ECG and synthetic
streams, and generated sequences maintain 3-5 bpm accuracy even
during vigorous motion, ensuring continuous HR availability when
PPG fails.
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In this section, we introduce two complementary approaches for
HR prediction during running, each offering unique advantages: a
physiologically-constrained ordinary differential equation (ODE)
approach that mathematically models cardiac adaptation rates, and
a Kalman filtering framework that optimally balances prior physio-
logical estimates with new observations.

Problem Formulation. Our goal is to predict HR during run-
ning, given a multivariate time series of biomechanical and envi-
ronmental features. Let X = {x1,x2,...,x7} be the sequence of
external parameters (e.g., pace, cadence, vertical oscillation, alti-
tude, stance time, vertical ratio, step length), where each x; € R4
describes running dynamics at second t. We aim to produce the cor-
responding HR sequence Y = {y1,ya,...,y7} at 1-second intervals.
The main challenge is capturing both rapid cardiac responses to
intensity changes and slower physiological adaptations, all within
biologically plausible limits.

Data Preprocessing. We used the HR modeling dataset (Sec-
tion 3), comprising over 800 running sessions from 20 runners
(2018-2025). Raw FIT files were segmented into 60-second, non-
overlapping windows, with domain-specific transformations ap-
plied to maintain physiological relevance. Pace (m/s) was converted
to sec/km, vertical oscillation was normalized by each runner’s
height, and stance time (percent) was converted to a fraction. Step
length was scaled from millimeters, altitude data was split into ab-
solute values and relative gains to capture cardiovascular demand
influences, and cadence was doubled to reflect full running cycles.
These transformations preserved physiological interpretability and
ensured proper input scaling.

Model Architecture. Our framework combines neural feature
extraction with domain-specific models of cardiac dynamics as
described in Figure 2. We denote learnable functions by f and their
parameters by &, with subscripts indicating the specific part of the
system.

The model receives a workout window x; spanning the interval
[t —T,t]. The window is encoded into a latent space by an encoder,
e; = fenc(Xs; Fenc), followed by an auto-regressive model s; =
ftemp (£, 8¢ -5 Ftemp) With s9 = 0. Two dynamic models predict
the latent timeseries g;, from which the predicted HR is decoded
using hy = faec(9t, 813 Fdec)- This backbone is implemented with a
fully connected feature encoder with leaky ReLU activation for fenc,
and a gated recurrent unit (GRU) for fiemp. For decoding HR from
gr, we use an affine mapping hy = 619t + [ir, where y; and oy are the
HR mean and standard deviation in the interval [t — T, t] estimated
from the latent state by fully-connected models iy = p(s¢; Fnrm)
and 6; = 04(s¢; Fnrm)- For additional details, refer to Appendix B.1.

We now describe our two alternative approaches for dynamic
HR modeling: ODE-based dynamic model. Our first model for
the latent dynamics is based on a non-linear first-order continuous-
time ODE, % = fope(9gs st; FopE), which we integrate with a
fourth-order Runge-Kutta (RK4) method. As the right-hand side
of the ODE, we used fopg = d; — g, where d; = d(s;;3gec) is a
fully-connected network estimating the demand from the latent
state s;z.

Kalman Filter Approach. Our second model for the latent
dynamics is a neural version of an enhanced Kalman filter [16]. We
define a two-dimensional state vector z; = (gs, §;) comprising the
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Figure 2: HR prediction: Wearable data encoded to latent states s;, processed via: (1) neural ODE solver (% =d; — gs) or (2)

learnable Kalman filter. Both use moments /i;, 6; for denormalization to predict HR hy. Gray: learnable parameters ..
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latent HR and its velocity. A scalar Kalman gain is calculated using
aneural network k¢ = fgain(P++Q, R) and is used for the a posteriori
state update z;1+1 = z¢+fir (st, 23 Ftr)Hhr (fobs (525 Fobs) — 1) (1, ¥e)s
mimicking the standard Kalman filter.

The scaling factor y; for velocity updates is set to 0.5, implement-
ing a differential relationship between HR and velocity corrections.
This reduced influence on velocity updates allows the model to
maintain smoother trajectory changes while still responding to
new observations, effectively damping oscillations that might occur
from measurement noise.

The covariance update P41 follows a modified Kalman formu-
1-ks 0

0 1- Ytkt
structure preserves computational efficiency while allowing in-
dependent uncertainty tracking for both HR value and velocity
components.

The decoder neural networks provide the complete set of Kalman
filter parameters: initial state zo = (go, go), initial covariance matrix
Py = diag(créo, 0'30), process noise covariance Q = diag(agroc,g, USroc,g

lation: P;41 = (P +Q) © ( ) , where the diagonal

and measurement noise variance R = o2,.,,. These parameters are
computed from the final hidden state of the GRU encoder, allowing
the model to adapt its filtering behavior to different individuals and
physiological conditions.

We used fully-connected models for fenc, fir, fobs» and fgain- The
gain function captures prediction errors made by the observation
function, assigning greater weight to new measurements when
errors are large. Additional details are provided in Appendix B.2.

Training Methodology. Both models are trained fully-supervised
to minimize the Mean Absolute Error (MAE) between predicted and
true HR. To ensure physiological realism, we added coarse-scale
regularization terms supervising the HR first- and second-order
statistics, L = Et”:l[ - ht| +/1Et|ﬁt - /lt| + ).Et|5't - O't|, Here, E;
denotes temporal expectation (in practice, finite-sample average on
the training set), h; is the ground-truth HR, and p; = /tt_T grdt and

¢
af = -/[—T(gT — jiz)?dr are the ground-truth first- and second-order
moments used for the supervision. The parameter A controls the
influence of regularization by temporal statistics and was set to

)
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Table 1: Performance comparison of HR prediction mod-
els using Standard/Generative approaches. Values shown as
“Standard/Generative” for four models.

Metric Kalman Kalman ODE ODE
(128,2) (64,3) (128,2) (64,3)
Overall Performance
MAE (bpm) 2.81/11.70 3.01/11.12 2.84/12.79 2.91/12.52
RMSE (bpm) 4.60/13.98 4.96/13.45 4.70/15.22 4.87/14.75
MAPE (%) 2.17/8.49 2.39/8.35 2.18/9.18 2.24/8.84
Correlation 0.87/0.46 0.86/0.45 0.87/0.47 0.86/0.47
R? 0.73/-2.51 0.71/-1.59 0.72/-2.41 0.70/-1.95
Mean Diff. (bpm) 0.02/-2.41 0.05/-1.69 0.01/-2.32 -0.02/-6.60
StdDev Diff. (bpm) 4.55/10.13 4.92/10.42 4.67/10.78 4.83/9.81
Performance by HR Zone (MAE in bpm)
Low HR 10.78/15.12  13.24/18.82  10.91/14.65  12.22/13.92
Medium HR 3.05/9.82 3.22/9.65 3.13/10.74 3.22/9.69
High HR 1.99/12.22 2.09/11.87 2.02/13.24 2.09/15.20
Performance by HR Stability (MAE in bpm)
Transitions 10.50/15.05  11.93/16.52  11.44/16.36  11.64/14.75
Steady-State 2.78/11.68 2.99/11.11 2.81/12.78 2.89/12.51
Avg. sessions/split 125/125 113/113 122/122 122/122

A = 0.1 following an ablation study. For the ODE model, we back-
propagate through the neural ODE solver using the adjoint method
as proposed [6].

We tested generalizability via runner-based leave-three-out cross-
validation, ensuring no overlap between training and evaluation
participants. Models were assessed in eight splits, each with more
than 110 sessions (20-140 minutes per session). We compared two
network architectures—128 neurons (2 layers) vs. 64 neurons (3
layers)—under consistent settings (batch size = 64). An adaptive
learning rate scheduler and early stopping reduced overfitting. Ap-
pendix B.3 discusses additional information.

Results. Table 1 presents a comprehensive evaluation of our
HR prediction models across different architectures and inference
settings. The table compares Standard inference (where the first
second of each window is known) versus Generative Sequencing
(where only the first second of the entire session is provided) across
Kalman and ODE models with varying architectures. Our approach
offers advantages over prior work: Apple’s approach [27] used
10-second intervals with proprietary data, whereas we provide fine-
grained 1-second predictions. Our open-source implementations
enhance reproducibility and enable direct comparisons. Crucially,
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Figure 3: Example HR prediction from ODE-based model (128,
2) for high-intensity workout. Blue: true HR; red: predictions.
MAE: 3.11 | RMSE: 5.26 | MAPE: 2.14% | Cor: 0.911
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our approach requires no historical data from previous sessions,
making it suitable for new runners without a calibration phase.

Under standard inference, the Kalman (128,2) model achieved
the best overall performance (MAE: 2.81 bpm, RMSE: 4.60 bpm,
MAPE: 2.17%, correlation: 0.87, R2:0.73). The ODE (128,2) model
followed closely at 2.84 bpm MAE. This accuracy is particularly
notable given the diversity of running intensities in our dataset.
Under Generative Sequencing, using only the first second of the
first window to drive predictions across an entire session—all mod-
els demonstrated consistent performance over extended durations,
though with an expected decrease without periodic recalibration.
Analysis by HR zone and stability state revealed strong results
in steady-state and high-intensity scenarios, with MAE as low as
1.99 bpm in high HR zones. This outcome has significant practical
importance for wearable devices prone to signal disruptions during
exercise. Figure 3 illustrates ODE-based model (128,2) performance
for a high-intensity interval session (HR: 120-170 bpm). The model
achieves exceptional accuracy (MAE: 1.68 bpm, correlation: 0.933)
despite challenging physiological transitions, effectively capturing
both general trends and fine-grained HR dynamics. Additional vi-
sualizations of different workout intensities and prediction modes
appear in Appendix C.1.

These visualizations confirm our models effectively capture both
general trends and fine-grained HR dynamics across diverse run-
ning conditions. Intermittent recalibration (e.g., at window bound-
aries) could harness Standard inference accuracy while addressing
real-world challenges like PPG signal loss in consumer wearables.

5 Predicting Instantaneous Oxygen
Consumption from Consumer Wearables

Accurately estimating VO3 during exercise is essential for under-
standing energy expenditure, quantifying training adaptation, and
assessing overall fitness [30]. However, conventional VO2 measure-
ment methods rely on specialized metabolic carts and face masks
for respiratory gas collection—equipment that typically costs over
30,000$ and requires expert operation. These technical and finan-
cial constraints fundamentally restrict practical use in real-world,
continuous-monitoring scenarios where most exercise actually oc-
curs.

To overcome this critical methodological limitation, we introduce
what we believe to be the first method for predicting instantaneous
VO, trajectories solely from consumer-grade wearable sensor data.
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Our approach eliminates the need for costly respiratory gas anal-
ysis while maintaining clinically acceptable accuracy, effectively
democratizing access to sophisticated metabolic insights previously
confined to laboratory settings.

Problem Formulation. We aim to predict VO3 during running
using a multivariate time series of biomechanical and environ-
mental features. Let X = {x1,x2,...,x7} represent a sequence of
external parameters including pace, cadence, vertical oscillation,
altitude, stance time, vertical ratio, and step length, where each
x: € RY captures running dynamics at second ¢. Our objective is
to generate a corresponding VO, sequence Y = {y1,y2,...,y7}
at 1-second resolution. The primary challenge lies in accurately
modeling both rapid metabolic responses to intensity changes and
slower physiological adaptations while maintaining biologically
plausible constraints.

Data Preprocessing. Our methodology leverages a precisely
synchronized multimodal dataset (Section 3) establishing direct
relationships between laboratory-grade metabolic measurements
and wearable device outputs. We paired breath-by-breath data from
a Cosmed K5 metabolic analyzer—the gold standard for VO3 mea-
surement [33]—with physiological and biomechanical metrics from
a Garmin 965 smartwatch and chest-mounted HR monitor. Tempo-
ral alignment was achieved through a zero-order hold on Cosmed
signals and session synchronization via GPS coordinates and event
markers.

Sessions were segmented into 60-second windows coupling
Cosmed and smartwatch data, creating a comprehensive dataset
where metabolic parameters (VO2, VCOg, ventilation, RER) sam-
pled at 0.3-0.5Hz precisely align with smartwatch features (HR,
cadence, vertical oscillation, altitude) at 1 Hz. To mitigate breath-
by-breath variability, we applied a Savitzky-Golay filter (15-sample
window, polynomial order 3) [38] that preserves rapid physiological
transitions while removing measurement artifacts.

From the refined dataset, we derived a comprehensive feature
set capturing the multifaceted nature of exercise physiology. The
features include cardiac measurements like HR, biomechanical in-
dicators such as cadence, vertical oscillation ratio, step length, and
stance time, contextual variables including pace, grade, and cumu-
lative distance, positional encodings of session window index and
total elapsed time, and anthropometric data like age, gender, height,
and weight. This diverse feature set enables our model to account
for immediate cardiorespiratory responses to exercise intensity
transitions and individual physiological characteristics, establish-
ing a robust foundation for accurate VO3 estimation using only
consumer-grade wearable data.

Model Architecture. Predicting VO, during exercise presents
unique challenges due to the complex interplay between physiolog-
ical systems and rapid metabolic adaptations. We model VO, dy-
namics as a state—estimation problem subject to physiologically in-
formed constraints, denoting the latent oxygen-consumption state
at time ¢ by v; (and 3¢, 04~ for its predicted and trend-extrapolated
versions, respectively). Figure 4 summarizes the framework. In
what follows, learnable functions are written f( - ;3), where the
subscript on & indicates the module.

The model processes a workout window x; spanning [t — T, t]
containing ten biomechanical, HR, and temporal features. A feature
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Figure 4: The VO, prediction framework normalizes and encodes wearable sensor inputs, then uses a dual-stream architecture
(neural Kalman filter + direct estimation) adaptively blended for final VO, predictions.
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Neural-Kalman update. Using h;, the neural Kalman filter gen-
erates a Kalman filter-based VO3 estimate 6;@ through an adaptive
mechanism that balances new observations with prior estimates:

N « hy; 9,
= 611+ fiain (5 960) [ fobs (B3 Do) = 51— | o {0,

where fgin modulates observation trust and fp ., fA,,, enforce
physiologically constrained rate-of-change limits.

Trend/direct dual pathway. To enhance robustness, we employ
a dual-pathway approach blending trend-extrapolated and direct
neural estimates:

~KF

Ot

Op- =01 + ﬁrend(hﬁ ‘9trend) (5t—1 - ﬁt—Z)’
61" = fairece (he: Sair), 00 = frdf + (1= o)
where f; = filend (¢; Fplend) determines the blending proportions.
All modules fenc, fgain: fobs: fAmin: fAmas> firend: fblend: and fairect are
implemented as multilayer perceptrons (MLPs) with corresponding
parameters Jenc, IKF> Fobss FA> FHrend> Iblend> and Fgiy, respectively.
The temporal model fiemp is a bidirectional GRU (biGRU) with
parameters temp that captures temporal dynamics. The final output
is normalized using parameters 9,m. Detailed layer configurations
are provided in Appendix B.4.
Training Methodology. Our model is trained fully-supervised
to minimize a composite loss function that balances immediate
prediction accuracy with physiological plausibility,

~KF
oy,

dﬁt dUt dzﬁt dzﬂt

+
dt  dt ﬁ‘ dt? dt?
+/1aux(Et|ﬁt = pie| +Bel6r — or| + BylAr - At|),
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where 0; represents the blended estimate ﬁtzi‘tﬁr +(1 - B)oKE. Here
E; denotes temporal expectation, v; is the ground-truth VO3 value,
do 0 q o

dt?

7 and represent the first and second derivatives of the VO,
signal capturing velocity and acceleration dynamics. The coeffi-
cients o and  weight the relative importance of the derivatives. For
the statistical terms, y; is the temporal mean, o; is the standard de-
viation, and A; = Qg 95(|v; — v7—1]) represents the 95th percentile
of absolute differences in consecutive VO, values. The parame-
ters Adynamic and Aaux follow a curriculum-based schedule, with

Adynamic increasing from 0 to 0.7 and Aaux increasing from 0.1 to 0.3
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Table 2: Seq-to-Seq VO3 Prediction for two models using
Leave-One-Runner-Out Cross-Validation, with real HR.

Model 256-2 Model 128-4

Runner MAE RMSE MAPE MAE RMSE MAPE

(%) (%)
Runner-1 520.20 582.88 17.17 325.40 399.68 11.59
Runner-2 1326.20 1361.69 35.40 453.74 493.50 12.81
Runner-3 218.41 473.09 11.47 212.02 477.44 11.59
Runner-4 127.55 198.96 7.85 129.08 207.55 7.95
Runner-5 606.88 636.92 22.08 451.26 488.13 16.42
Runner-6 261.49 328.66 13.26 190.94 270.33 10.02
Runner-7 159.01 201.17 6.19 131.81 192.59 5.35
Runner-8 321.80 382.35 13.54 235.29 298.0 10.45
Runner-9 321.01 398.18 25.05 267.14 344.00 21.26
Runner-10 108.75 155.70 6.24 112.37 160.21 6.54
Aggregate 397.13 471.96 15.83 251.00 333.20 11.40

over the course of training to gradually emphasize physiological
realism.

We complement this curriculum learning with adaptive gradient
clipping that permits larger parameter updates during early train-
ing stages while enforcing stability as the model converges. This
progressive optimization strategy enables the model to establish
foundational prediction capabilities before refining its represen-
tation of the nuanced transition dynamics that characterize VO,
response during variable-intensity exercise. Appendix B.5 contains
additional information.

Results. We evaluated the model’s generalizability using a leave-
one-runner-out approach, training on data from all but one par-
ticipant and testing on the remaining runner. Due to the dataset’s
limited size, we used overlapping windows during training but
non-overlapping windows for left-out runner evaluation, maintain-
ing session integrity. A unique aspect of our method is generating
complete sequence predictions using only the first second of
VO, data for initialization—mimicking real-world scenarios where
continuous metabolic measurement is impractical. This minimal
conditioning approach, potentially derived from domain knowledge
or brief calibration, removes the need for ongoing respiratory gas
analysis. Our sequence-to-sequence VO, predictions were assessed
using multiple metrics, detailed in Table 2.
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Figure 5: VO, predictions from first-second data during an
incremental testing session with periodic lactate measure-
ments. Blue: ground truth; orange: model predictions.
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Contextualizing Prediction Errors. Our model’s performance
aligns with established benchmarks for instantaneous VO3 esti-
mation. At high intensities (VO2 ~3000 ml/min), gold-standard
metabolic equipment typically accepts errors of 300-600 ml/min
(10-20%). Our consumer-grade smartwatch method achieves an
aggregate Mean Absolute Percentage Error (MAPE) of 11.40%, com-
pared to the 256-2 model’s 15.83%, demonstrating remarkable accu-
racy given the limited input data. This error range corresponds to
approximately 4.3-8.6 ml-kg™!-min~! for a 70 kg athlete and aligns
with discrepancies observed between research-grade devices.

Several physiological factors inherently complicate VO3 pre-
diction: breath-by-breath variability [22] introduces inherent
(£5-10%) fluctuations, nonlinear VO, kinetics [46] challenge
modeling during transitional phases, delayed cardiorespiratory
equilibrium [44] causes temporal misalignments, and individual
differences in body composition, training status, and metabolic
efficiency add significant variability.

Despite these challenges, our optimized neural kalman based
model (128-4) achieved an aggregate MAPE of 11.4%, with most
runners exhibiting errors below 20%. This performance is particu-
larly notable given that our method relies solely on consumer-grade
wearable data and constructs the entire VO3 trajectory from only
the first second of metabolic data, without requiring exhaustive
laboratory calibration. For these results, we used ground truth HR
measurements rather than predicted values to isolate the perfor-
mance of the VO3 estimation component. Appendix C.2 contains
complementary results using predicted HR values from our trained
models defined in previous sections (Section 4).

Figure 5 demonstrates the generative capability of the model by
plotting ground truth VO, measurements (blue) alongside predic-
tions (orange) during an incremental testing protocol. The model
reconstructs the entire VO3 trajectory using only the first second
of metabolic data, maintaining high fidelity over extended periods
despite varying exercise intensities. Appendix E contains additional
visualizations, including a maximal capacity assessment.
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The incremental testing protocol presents a complex scenario,
with 35 minutes of progressively faster 1200-meter sets until ex-
haustion. Despite periodic dips in the ground truth data caused by
brief interruptions for blood lactate sampling, the model maintains
a MAPE of 13.26%, successfully tracking the overall increasing trend
in VO, while effectively filtering out these transient artifacts.

Performance Analysis and Limitations. The 128-4 model re-
veals significant inter-subject variation, with MAPE ranging from
5.35% to 21.26%. This variation underscores the complexity of in-
dividual metabolic responses. The deeper 128-4 architecture con-
sistently outperforms the shallower 256-2 model, suggesting that
additional neural layers more effectively capture the intricate dy-
namics of VO, time-series.

With an MAE of 251 ml/min, we achieve approximately 9% error
at 3000 ml/min—a remarkable accomplishment using only one sec-
ond of initial metabolic data. Our Kalman-inspired neural model
successfully balances pointwise accuracy with realistic temporal dy-
namics, though challenges persist in modeling rapid high-intensity
transitions and individual metabolic variability.

This sequence-to-sequence generation approach represents, to
the best of our knowledge, the first method to predict complete
instantaneous VO3 trajectories using minimal initial data and smart-
watch signals. Unlike existing approaches that either provide single-
point VOamax estimates or require expensive continuous respi-
ratory measurements, our method offers a practical solution for
real-world metabolic monitoring. The performance of approxi-
mately 13% MAPE for most participants—establishes a new
benchmark in wearable-based VO; prediction. Future research
will explore incorporating additional physiological signals, refin-
ing temporal representations, and developing adaptive calibration
methods to account for individual fitness changes over time.

6 Discussion and Conclusion

Our work bridges the gap between laboratory-grade physiologi-
cal assessment and consumer wearables by introducing what we
believe is the first framework capable of predicting instantaneous
VO; trajectories directly from consumer devices. By combining
physiologically constrained modeling with modern ML techniques,
we demonstrate how sophisticated metabolic metrics—previously
confined to specialized laboratories—can be reliably estimated using
everyday technology, democratizing advanced exercise physiology.
VO, Prediction and HR Dynamics. Our sequence-to-sequence
VO framework generates complete metabolic trajectories from just
one second of calibration data, achieving ~13% MAPE without spe-
cialized lab equipment, delivering sophisticated metabolic insights
previously requiring 30,000$+ gas analysis systems. Our HR dynam-
ics models achieve exceptional accuracy (MAE: 2.81 bpm, correla-
tion: 0.87) across diverse running conditions and maintain physio-
logical plausibility during high-intensity exercise (MAE: 1.99 bpm
controlled). These models support VO, prediction while solving
PPG signal interruptions-a persistent consumer device challenge.
Toward Metabolic Zone Classification. Our results establish
a foundation for predicting metabolic thresholds from non-invasive
data. Our synchronized dataset with blood lactate measurements
enables future classification of aerobic, threshold, and anaerobic
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zones, potentially transforming training prescription by making
advanced zone-based guidance accessible beyond elite athletes.

Limitations and Future Directions. Despite promising re-
sults, limitations include: (1) participant cohort primarily comprises
highly trained runners, potentially limiting generalizability; (2)
models exclude environmental factors (temperature, humidity). Fu-
ture work will fuse on-device thermistors and weather-API data
to compensate; (3) approach ignores longitudinal training adapta-
tions. Future work: broaden demographics, integrate environmental
sensors, and develop longitudinal models for evolving fitness.

Safe and Responsible Innovation Statement. Our predic-
tion framework prioritizes privacy through local data processing
without external transmission, while acknowledging potential bias
in our high performing athletes-focused models despite evaluated
cross-runner generalizability. While democratizing metabolic mon-
itoring offers significant health benefits, we recognize misinter-
pretation risks without professional guidance. Future work will
incorporate broader demographics, transparent confidence met-
rics, and clear guidelines for responsible fitness and healthcare
applications.
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Table 3: Comprehensive running dataset statistics showing
number of sessions, total time, and total distance for each
participant.

Time

Runner # Sessions _ Dis. (km)
min

runner-1 74 91,232 1,521 305.01
runner-2 19 26,569 443 90.23
runner-3 29 32,739 546 117.42
runner-4 25 25,734 429 102.80
runner-5 3 4,389 73 18.26
runner-6 53 50,908 848 190.51
runner-7 124 610,995 10,183 2,040.84
runner-8 41 142,175 2,370 471.17
runner-9 25 94,731 1,579 314.23
runner-10 15 14,971 250 56.24
runner-11 33 186,187 3,103 662.15
runner-12 48 232,667 3,878 812.43
runner-13 22 22,711 379 66.07
runner-14 68 351,054 5,851 1,240.50
runner-15 34 86,637 1,444 321.47
runner-16 10 60,356 1,006 211.03
runner-17 32 154,292 2,572 485.47
runner-19 76 418,703 6,978 1,161.24
runner-20 100 562,421 9,374 1,555.86
Total 831 3,169,471 52,824 10,222.90

7 Appendices

This appendix provides additional implementation details, model
architectures, and performance visualizations that complement the
main text.

A Comprehensive Running Dataset Statistics

Table 3 presents statistics for the HR modeling dataset, detailing
the number of sessions, accumulated training time (in both seconds
and minutes), and total distance covered by each participant. The
dataset contaisn 831 running sessions from 20 participants, repre-
senting over 52,825 minutes (approximately 880 hours) of running
activity and covering a cumulative distance of 10,222.90 kilometers.
This extensive collection provides a robust foundation for develop-
ing and validating our HR prediction models across diverse runners
and training conditions. Notable variance exists in individual con-
tributions, with participant data ranging from 3 sessions (runner-5)
to 124 sessions (runner-7), highlighting the dataset’s capacity to
capture both intra- and inter-subject variability in cardiovascular
responses to running.

B Detailed Mathematical Formulation of HR
Models, Oxygen Consumption Model and
Training Methodology

We provide detailed mathematical formulations for our two HR

prediction approaches: the ODE-based model and the Kalman filter

model. Both models share a common feature processing pipeline
but diverge in how they model cardiac dynamics.

70

ICMI 25, October 13-17, 2025, Canberra, ACT, Australia

B.1 ODE-based Heart Rate Model

We model HR as a nonlinear dynamical system whose evolution
depends on workout-specific inputs and remains within physio-
logically plausible bounds. Learnable maps are denoted fo with
parameters J,.

Inputs and latent backbone. Given a multivariate input window
x; € RBXTXDin (batch size B, length T, feature dimension Djy), a
feature encoder produces latent embeddings

€r = ﬁenc(xt; 19enc)a
followed by a recurrent backbone

St = ftemp(eh St—T;stemp), so =0,

that captures long-range temporal context.
Latent ODE dynamics. We introduce a latent HR state g, € RBXT*Diatent
governed by a first-order ODE
o

ot

whose right-hand side embodies cardiac demand

= fopk (9+. s:90DE)

JopE(gt, st: %opE) = d(st; %dec) — 9t

with d(-) a small MLP that estimates the HR level required by the
current exercise intensity.

Numerical integration and learning. The ODE is integrated with
a fourth-order Runge-Kutta solver (RK4), and gradients are ob-
tained by the adjoint method of Neural ODEs, enabling end-to-end
training.

Physiological normalisation and decoding. From the backbone
state we predict per-batch normalisation parameters

i = fu(se; nrm) € RB,
é-t = fo‘(st§‘9nrm) € RB,

then decode observable HR by an affine map

}Alt = fdec(gt: St '9'dec) =61 gr + it

Interpretability and advantages. Our ODE model offers several
advantages for HR prediction: (1) Bounded parameters enforce phys-
iological plausibility; (2) The ODE captures gradual HR adaptation
to changing intensity; (3) The model remains interpretable, with
parameters corresponding to meaningful physiological quantities.

B.2 Kalman Filter Heart Rate Model

We cast HR prediction as a state-estimation problem solved by an
enhanced Kalman filter whose parameters are supplied by neural
networks. As before, learnable maps are denoted f, with parameters
Se.

Inputs and latent backbone. A multivariate input window x; €

RBXTXDin js encoded
e = fenc(Xt; Fenc), St = ﬁemp(et, St—T§3temp), so =0,

yielding a workout embedding s; € RB*Phid that conditions all filter
parameters.
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State definition. We track latent HR and its velocity via the two-
dimensional state

t
2 = 9 c RBXZ’ P; € RBx2x2
gt
with process noise covariance Q; = fyoise (St; Fnoise) and measure-
ment noise variance Ry = fieas(S¢; Fmeas)-
Kalman recursion. Prediction step

Z;’ =2 + fir (84,265 9),

Py =P +Q:.
Update step
I:lf = fobs(st;sobs)s
Vi = flt - g?,

ki = fyain(P} . Rei Ogain).  where P} =P, + Q.
State and covariance are corrected by the scalar gain k;:

+
gr+1 = g7 +kive,

gt+1 = g? +yr kt Vi, with Yt = 0.5,
o =k 0
Pt+1 - Pt © O 1 _ }/tk't .

The fixed 0.5 factor damps velocity corrections, yielding smoother
trajectories.

Physiological bounds. After each update we clip to a biologically
plausible range:

gr min(HRmax, maX(HRmin’ gt))

Network architecture. All auxiliary maps fenc, firs fobs> foises
fmeas and fgain are small MLPs, while fiemp is a GRU.

Advantages. Our Kalman filter approach offers several advan-
tages: (1) The two-dimensional state vector captures both HR and
its rate of change, enabling better tracking of cardiac dynamics; (2)
The adaptive Kalman gain responds to prediction errors, increasing
when errors are high to give more weight to new measurements; (3)
Neural network prediction of filter parameters allows adaptation to
different exercise contexts; (4) The reduced gain for velocity updates
creates smoother trajectories while maintaining responsiveness to
intensity changes.

B.3 Heart Rate Models Training and
Implementation

Both models were implemented in PyTorch and trained using simi-
lar procedures. We trained two GRU backbones that differ only in
width and depth:

Variant Hidden dim. GRU layers
LARGE 128 2
SMALL 64 3

All feed-forward heads (encoders, decoders, gain/demand networks,
etc.) are two-layer MLPs with LeakyReLU activations and dropout
0.1. We optimized the model parameters using the Adam optimizer
(weight-decay 107>, gradient clipping ||g||2 < 1.0) with an initial
learning rate of 0.001, reducing the learning rate by a factor of 0.5
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when validation loss plateaued for 10 epochs. To prevent overfitting,
we employed early stopping with a patience of 20 epochs. For
the Kalman model we used ReduceLROnPlateau with factor=0.5
and patience=10, and an extended early-stopping window of 100
epochs. The ODE model employed the same scheduler but with
factor=0.2, a cooldown of 3 epochs, a minimum learning rate of
107%, and the 20-epoch patience already noted above. We trained
with a batch size of 32 and the default Adam momentum parameters
B1=0.9, B =0.999.

For both models, we used a masked mean absolute error (MAE)
loss function to handle variable-length sequences:

B T pred _ ptrue
Zh:l Zt:l |hb,t hb,t

B T
b=1 2;:1 maSkb,t

- maskp, ;

LMAE = (1)
Additionally, we incorporated an auxiliary loss to encourage
accurate parameter prediction:

Laux = || = pobsll1 + 116 — ogbsll1 )
where piops and ogpg are the observed mean and standard deviation
of HR in each sequence, and /i and & are the predicted parameters.

The total loss was a weighted combination:

Liotal = LMAE + Aaux * Laux ®3)
with Aaux = 0.1.

Both models achieved comparable performance, with the ODE
model excelling in capturing long-term physiological trends and
the Kalman filter model showing advantages in responding to rapid
intensity changes. The models’ complementary strengths suggest

potential benefits in ensemble approaches for future work.

B.4 Kalman-based Oxygen Consumption Model
We frame oxygen-consumption dynamics as a state—estimation
problem with physiologically informed constraints. Let v; € R de-
note the latent VO3 state at time ¢, with 9; its filtered estimate and
0;- the trend-extrapolated prediction. As throughout the paper,
learnable functions are written f( -; &), where the subscript on &
indicates the module.

Temporal feature extraction. The network processes a window
x; € RBXTXDin (containing biomechanical features, HR, and tem-
poral context):

h; = ﬁemp(ﬁ:nc (Xt; Fenc) Zatemp),
where fiemp is a bidirectional GRU and h; € RBXDr ig the hidden

representation at time ¢.

Process and measurement-noise prediction. Neural heads produce
time-varying covariance surrogates from the hidden state:
Pprocess,t = ﬁprocess(ht; 3process)s
Rmeas,t = fmeasurement(ht§ 3measurement)~

Neural-Kalman update. Given h;, the VO, estimate is updated
via

e 7 A max h ;‘9

O =071+ fyain (h; ) [ fobs (hr3 Fobs) — Ut—l]ﬁ _ ((hf;s:)) ;
where the adaptive gain fg,in and clamping limits fa_., fA,., are

themselves MLPs, allowing data-driven confidence weighting and
physiologically plausible rate-of-change bounds.
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Trend/direct dual pathway. To improve robustness,

Op- =0p—1 +ftrend(ht§'9'trend) (ﬁtfl - 6t72)a
. di
Utlr = fdirect(hﬁ&dir)’

6r = Brof™ + (1= po)og,

Implementation details. All heads fenc, fzains fobss fAmins fAmac:
fprocess> Jfmeasurement, firends Jblend: and fdirect are two-layer MLPs
with LeakyReLU activations and dropout 0.1, parameterized by Jenc,
IEs Fobss IAs Hrends Iblends and Iygir, respectively. The temporal
module fiemp is a biGRU (two layers, hidden size Dy, = 128). All out-
puts are trained end-to-end with an MSE loss on breath-by-breath
VO, targets; clamping reduces gradient explosion when rapid tran-
sients exceed physiological bounds.

B.5 Training and Implementation Details

We employ the composite loss (main text) with base, dynamic, and
auxiliary components:

. 25 2
L =Eyf6r — 0t +Adynamic Be (o] G — L] + g2 - Lox))
—————
MAE derivative loss

+ Aaux e (1fie — pel + 160 — o] + 1Ar = Al),

moment loss

The dynamic loss captures temporal patterns using both first
and second derivatives:
dﬁt dUt

By (o S - 52

"\ " ar

d%o;

o d%v, )

ar?

The auxiliary loss enforces statistical consistency between pre-
dicted and observed distributions:

Eelfis — pel = 12— pl
Et|6t — 01| = |6 - o
EtlAr - Ar = |A - Al
where y; is the temporal mean, o; is the standard deviation, and

At = Qo.95(|vr — v7—1]) represents the 95th percentile of absolute
differences in consecutive VO, values.

Curriculum weights. At epoch e: Apase = max(0.30, 1 — e/20),
Adynamic = 1 = Aase: Aaux = min(0.30, 0.10 +0.01e).

Model variants.

Variant GRU hidden GRU layers Head MLP layers
Small 128 2 2
Large 256 4 4

Optimisation. AdamW (Ir = 4 X 1073, weight-decay 10~°) with
cosine-annealing warm restarts (To = 10, Typu1t=2, Jmin = 107°).
Batch 32, sequence length 60s (1Hz); gradient clipping ||g|l2 <
1+4e~¢/10; early stopping after 50 epochs without validation-MAE
improvement.
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C Additional Results

C.1 Additional HR Figures

Figure 6 presents additional HR prediction using the standard pre-
diction mode, while Figure 7 presents using the the generative
mode.
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Table 4: Comparison of Sequence-to-Sequence Instantaneous
VO, Prediction for Models 256-2 and 128-4 using Leave-One-
Out Cross-Validation. HR used is the predicted HR values
using generation mode. Bold values indicate the better (lower)
performance.

KalmanVO, 256-2 KalmanVO, 128-4

Runner MAE RMSE MAPE MAE RMSE MAPE
(%) (%)
With ODE-based HR predictions (128-2)
Runner-1 645.78 682.96 19.24 519.27 565.93 15.74
Runner-2 1326.20 1361.69 3540 463.79 518.90 12.94
Runner-3 250.61 481.78 1236 234.11 475.18 12.04
Runner-4 287.74 33578 11.01 128.56 182.10 6.03
Runner-5 697.68 717.53 25.03 549.20 571.91 19.88
Runner-6 347.87 450.75 15.61 402.03 495.38 17.04
Runner-7 193.00 219.82 7.16 122.36 160.31 4.70
Runner-8 321.80 382.35 13.54 266.80 347.77 11.98
Runner-9 333.82 407.08 25.83 268.31 344.64 21.32
Runner-10 407.44 514.14 14.41 39853 491.12 14.23
Aggregate 481.19 55539 17.96 335.30 415.32 13.59
With Kalman-based HR predictions (128-2)
Runner-1 747.67 78170 2197 529.75 574.35 16.03
Runner-2 1326.20 1361.69 35.40 1757.21 1804.52 46.63
Runner-3 262.15 479.42 1259 290.56 495.09 13.59
Runner-4 439.11 50090 15.78 137.36 189.68 6.30
Runner-5 697.75 717.59 25.03 549.20 571.91 19.88
Runner-6 383.54 473.57 16.73  463.29 550.49 18.92
Runner-7 192.96 219.79 7.15 120.33 158.70 4.63
Runner-8 321.80 38235 13.54 288.13 345.58 12.21
Runner-9 396.71 449.44 29.59 27475 35499 21.83
Runner-10 468.62 559.96 16.36 43230 52991 15.29
Aggregate 523.65 592.64 19.41 48429 557.52 17.53

C.2 Additional Oxygen Consumption results
using Two Trained HR Models and figures

To quantify how HR-prediction quality propagates into down-
stream metabolic estimation, we trained two sequence-to-sequence
VO3 models that share the same architecture except for backbone
size (256-2 versus 128-4; see Table 4. Both networks were evalu-
ated in leave-one-runner-out cross-validation using HR signals that
were predicted in generation mode by either our best ODE-based
or Kalman-based HR model (both 128-2). The table below reports
per-runner and aggregate MAE, RMSE, and MAPE. Boldface high-
lights the better of the two VO3 variants under each HR source. The
table shows that the results are worse when using the predicted HR
compared to when using the true HR (see in the section), although
the results are still well below the 20% MAPE threshold which is
the considered standard.
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D Ablation Study

We retrained three distinct architectures, TrendDirectVO;Model,
KalmanOnlyVO;Model, and KalmanVO;Model, under three loss
configurations (base_only, base_statistical, and the full curriculum).
This yielded nine experimental conditions, evaluated with consis-
tent leave-one-runner-out splits.

D.1 Architectural Comparison

Table 5 summarizes the components that differentiate the predictors.
TrendDirectVO;Model employs a bidirectional GRU with learned
momentum extrapolation and a blending mechanism while omit-
ting explicit filtering. KalmanOnlyVO;Model introduces a learned
Kalman filter that models process and measurement variances, in-
corporates an observation network, and clamps innovations, but it
does not include a direct VO3 prediction head. KalmanVO;Model
unifies these approaches by combining the Kalman filter with a
direct VO3 head and a dynamics blending stage.

Table 5: Architectural features of VO, predictors.

Component TrendDirect KalmanOnly Kalman (full)
Direct VO, head N X v
Learned Kalman filter X v v
Observation network X v v
Dynamics blend v v v
Uncertainty propagation X v v

D.2 Per runner Results

Table 6 reports MAPE for each runner across all architecture and
loss combinations. Columns are grouped by architecture (Full hy-
brid, KalmanOnly, TrendDirect) and subcolumns correspond to the
three loss functions. Bold values mark the best configuration for
each runner, and the final row presents the average MAPE.

D.3 Evaluation Protocol

All experiments are evaluated in a strict sequence to sequence man-
ner. The model receives the true HR samples rather than predicted
ones. Only the first second of the first window is supplied as ground
truth VOy; for every subsequent window, the final VO, estimate of
window i becomes the first input of window i+1, preventing error
from resetting between windows.

D.4 Discussion

The full architecture with the complete curriculum achieves the
lowest MAPE for nine of the ten runners and yields the best overall
mean error. Its joint design captures both abrupt metabolic tran-
sitions and gradual trends. When pace increases sharply, oxygen
uptake rises almost instantaneously; the direct VO3 head accurately
tracks these transients. KalmanOnlyVO;Model, lacking this head,
tends to over smooth and display latency. TrendDirectVO2Model,
although responsive, does not explicitly filter noise and therefore
struggles to characterize sudden yet genuine spikes.

Our data were collected under two controlled protocols: each
session was either an “all out” effort test or an incremental to
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Figure 6: Ten random heart rate prediction using the Standard predictions mode on random sampled sessions with true HR
(blue) and predicted HR (red). Each subfigure shows a single session’s timeline, along with mean absolute error (MAE), root
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mean square error (RMSE), mean absolute percentage error (MAPE), and correlation.

MAE: 5.72 | RMSE: 8.31 | MAPE: 3.86% | Corr: 0.673

MAE: 1.64 | RMSE: 2.14 | MAPE: 1.17% | Corr: 0.978
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Figure 7: Ten random heart rate prediction using the Generating predictions mode on random sampled sessions with true
HR (blue) and predicted HR (red). Each subfigure highlights a unique session with corresponding performance metrics (MAE,
RMSE, MAPE, and correlation).
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Table 6: Per runner MAPE (%) across architectures and loss configurations.
Full (hybrid) KalmanOnly TrendDirect
Runner base_only base_statistical full ‘ base_only base_statistical full ‘ base_only base_statistical full
runner-1 4.81 5.57 11.57 4.79 4.73 4.72 4.40 15.05 5.44
runner-2 15.45 16.01 11.87 90.53 83.39 74.54 13.73 33.09 13.27
runner-3 9.39 11.02 9.31 80.66 66.37 65.41 14.42 10.79 9.37
runner-4 12.06 11.08 10.31 63.38 63.77 68.42 10.34 10.33  10.34
runner-5 21.50 17.98 15.10 70.79 70.94  94.55 21.40 20.62  20.17
runner-6 5.53 5.03 4.98 80.25 80.27  85.99 5.47 5.72 5.37
runner-7 6.60 30.12 23.33 22.44 22.01 20.57 7.96 27.99 10.47
runner-8 20.75 2426 20.25 97.15 9594 96.23 21.53 22.78  23.59
runner-9 5.76 27.01 7.14 84.13 87.47 83.49 5.88 2636  26.79
runner-10 8.00 4.03 7.19 67.79 67.81 67.81 10.22 9.63 10.35
Mean 10.99 15.21 12.11 ‘ 66.19 64.27 66.17 ‘ 11.54 18.24 13,51

exhaustion ramp. Both protocols generate VO3 traces that rise
monotonically until failure, with few downward inflections. In such
settings the bidirectional GRU in TrendDirectVO;Model can look
several steps forward and backward, learn a momentum based
extrapolation, and implicitly smooth short horizons. The dynamics
blend layer further dampens measurement noise by fusing the
extrapolated value with the raw observation, effectively learning
coefficients that behave like a simplified Kalman gain. Because most
trajectories are dominated by steady ramps and plateaus rather
than rapid oscillations, these two mechanisms capture the principal
physiological variation, which explains why the trend only model
approaches the full model in accuracy.

During steady state running, breath by breath variability intro-
duces high frequency noise. The learned Kalman filter in the full
model attenuates these fluctuations, yielding smoother estimates.
Without a direct predictive branch, exclusive filtering suppresses
peaks and allows error drift over erratic segments. The progressive
curriculum further refines performance: early mean absolute error
minimization aligns trajectories, intermediate dynamic consistency
objectives enforce realistic multi step behavior, and final statistical
penalties anchor distributional fidelity.

For runners exhibiting highly irregular VO3 profiles, the full
architecture with the complete curriculum reduces extreme over-
shoots by roughly one third relative to base_only training. For
instance, runner-5 shows a drop in MAPE from 21.50 % (base_only)
to 15.10 % (full), a 29.8 % relative improvement, while runner-2 falls
from 15.45 % to 11.87 % (a 23.2 % gain). In contrast, athletes whose
traces rise smoothly under the two test protocols see only marginal
gains: runner—3 improves from 9.39 % to 9.31 % (below 1 % change)
and runner-6 from 5.53 % to 4.98 % (about 10 %). Thus, the direct
VO, head and uncertainty propagation act primarily as a safety
net for edge cases rather than the main accuracy driver in routine
conditions.

D.5 Conclusion

Accurate VO3 estimation from wearable data benefits from uniting
a direct prediction head that responds immediately to metabolic
transitions with a learned Kalman filter that attenuates breath-by-
breath noise. The staged curriculum balances pointwise accuracy,
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temporal coherence, and physiological plausibility. Empirically, the
full architecture trained with the complete curriculum delivers the
lowest mean error and mitigates extreme overshoots for runners
with irregular traces, while the trend-only variant remains a com-
petitive baseline under monotonic ramp protocols and in settings
where model size or compute budget is limited. We therefore recom-
mend deploying the full configuration when resources permit and
reserving the trend Sonly model for lightweight or edge scenarios.

Looking ahead, we will extend evaluation beyond the present
all-out and incremental-to-exhaustion sessions to include variable-
intensity workouts such as intervals, fartlek, and tempo runs with
recovery segments. These protocols generate VO trajectories that
rise and fall repeatedly, stressing both rapid responsiveness and
robust smoothing. Under such non monotonic patterns we expect
the combined architecture to deliver even larger gains over the trend
only baseline, because the direct prediction head can follow sharp
inflections while the learned Kalman filter suppresses transient
noise between efforts.

E Additional Figures for Predicting Oxygen
Consumption

Figure 8 presents additional VO3 prediction visualizations.
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Figure 8: Sequence-to-Sequence VO, Prediction Across Different Sessions using true HR values.
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