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Finite steady-state current defies non-Hermitian many-body localization
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Non-Hermitian many-body localization (NH MBL) has emerged as a possible scenario for stable localization
in open systems, as suggested by spectral indicators identifying a putative transition for finite system sizes. In this
work, we shift the focus to dynamical probes, specifically the steady-state spin current, to investigate transport
properties in a disordered, non-Hermitian XXZ spin chain. Through exact diagonalization for small systems
and tensor-network methods for larger chains, we demonstrate that the steady-state current remains finite and
decays exponentially with disorder strength, showing no evidence of a transition up to disorder values far beyond
the previously claimed critical point. Our results reveal a stark discrepancy between spectral indicators, which
suggest localization, and transport behavior, which indicates delocalization. This highlights the importance
of dynamical observables in characterizing NH MBL and suggests that traditional spectral measures may not
fully capture the physics of non-Hermitian systems. Additionally, we observe a noncommutativity of limits in
system size and time, further complicating the interpretation of finite-size studies. These findings challenge the
existence of NH MBL in the studied model and underscore the need for alternative approaches to understanding

localization in non-Hermitian settings.

DOLI: 10.1103/crwj-x7j8

Introduction. Non-Hermitian (NH) Hamiltonians are a
ubiquitous tool used to capture the dissipative nature of re-
alistic quantum systems [1]. While an NH Hamiltonian does
not fully characterize the dynamics of an open quantum sys-
tem, it does when postselecting on the no-jump trajectories
(no-click limit) [2]. Recently, the interplay of many-body
and NH physics has garnered significant interest due to the
intriguing phenomena emerging in this setting. These include
interaction-induced and many-body skin effect [3-5], skin
solitons [6], nonlinear exceptional points [7,8], and NH many-
body localization (MBL) [9].

In Hermitian MBL, the presence of disorder can suppress
transport, resulting in a nonthermal insulating phase [10-16].
The absence of transport and the breakdown of ergodicity
have been used interchangeably as hallmarks of many-body
localization, leading to the wide use of spectral indicators to
detect MBL [17-21]. In the context of open quantum systems,
a large body of literature has shown that Hermitian MBL is
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destabilized by any bath with a continuous spectrum [22-34].
However, as pointed out originally in Ref. [9], localization
seems to persist in the no-click limit. This paradox can be
resolved in some models, where it is possible to generalize to
the many-body setting the similarity transformation that maps
the non-Hermitian Hamiltonian to its Hermitian counterpart
[35]. While the transformation is legitimate only with open
boundary conditions, in the localized phase, it is expected
that the boundary conditions are irrelevant, thus enabling a
mapping of the Hermitian MBL phase onto the NH MBL
phase [36].

On the footsteps of the standard Hermitian case, many
works have focused on the behavior of the spectra and eigen-
states of NH Hamiltonians [37—44]—and sometimes on other
indicators such as the singular value decomposition [45]. In
non-Hermitian systems, however, dynamics lead to a unique
steady state and the properties of the middle of the spectrum
are less relevant than in the Hermitian case. This calls for more
physically motivated probes of localization, such as the expo-
nential suppression of transport with system size, a defining
feature of (Hermitian) localization [10,11,46,47], which has
rarely been investigated in the non-Hermitian setting [48].

In this work, we consider the disordered non-Hermitian
XXZ chain and study the behavior of the spin current in
the steady state by means of exact diagonalization (ED)
for small system sizes and tensor-network methods (time-
evolving block decimation, TEBD [49]) for systems of up to
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N = 560 spins. We find that the steady-state current is expo-
nentially suppressed with the disorder strength in the range
of parameters we investigate. Remarkably, the steady-state
current does not display a nonanalyticity as a function of the
disorder strength and remains finite up to values of disorder
well beyond the putative critical point identified through spec-
tral indicators at the center of the complex spectrum [9]. This
points to the absence of a true phase transition for observables
(i.e., expectation values of Hermitian operators), suggesting
that if localization takes place, it does so at higher disorder
strengths. Our work indicates that traditional spectral mea-
sures of Hermitian MBL do not necessarily translate to its
NH counterpart, where the role of states in the middle of the
spectrum is less central to long-time dynamical properties.

Model. We study a one-dimensional N-site spin chain gov-
erned by an NH Hamiltonian
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which describes the no-click limit of a Lindblad master equa-
tion p = —i[H, p] + > DIL;1p, where D[Llp = LpL’ —
(L'Lp + pLTL)/2 and p is the density matrix. The Hermitian
part corresponds to the disordered XXZ chain:
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where V is the interaction strength, /; are i.i.d. random vari-

ables uniformly distributed over the interval [—h, k], S‘;'y’z are

the spin-1/2 operators acting on site j, and §* = §* 8. In
the following, we fix the energy scale by setting J = 1. We
will study the system under both open (OBCs) and periodic
boundary conditions (PBCs).

The dissipative part is given by jump operators of the
formL; = \/y (S; + e’OS'j’H ), which give rise to nonrecipro-
cal hopping in the no-click limit [SO0-53]. The corresponding
effective Hamiltonian is
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Choosing 6 = +m /2, the left and right hopping amplitudes
become real and imbalanced. The effective Hamiltonian in
Eq. (3) further acquires finite imaginary shifts proportional
to the number of sites (—zyN/2) and to the global mag-
netization (—1y ) j S’j), which ensure the physicality of its
solutions; i.e., its eigenvalues lie in the lower part of the
complex plane, and thus, the wave function norm is not ex-
ponentially amplified. Finally, mapping spins-1/2 to fermions
via a Jordan-Wigner transformation, one realizes that Eq. (3)
is the interacting version of the Hatano-Nelson model [35].
In the following, aligning with the existing literature on
the model, we will focus on the zero magnetization sector—
which effectively removes the —iy Zj S’j term from the

Hamiltonian—and further drop the constant term —iy N/2:

N
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This way, the complex spectrum becomes symmetric with
respect to the real axis. We fix y = 0.1 and V = 1.1 for all
numerical simulations.

While the spectral properties of the Hamiltonian (4) have
been investigated [9,37-40,42-45], the presence or absence of
transport in the NH case remains an open question. Clarifying
this issue in the NH case is essential, especially due to recent
developments in Hermitian MBL, showing that the transition
possibly takes place at much stronger disorder values than
originally thought [54-60]. Crucially, in the NH setting, there
exists a steady state coinciding with the eigenstate with the
largest imaginary part of the corresponding eigenvalue [61].
Therefore, a single eigenstate determines transport properties
at long times, in contrast with the Hermitian case, where it
takes contributions from all eigenstates.

Spin transport. As both the Hermitian and non-Hermitian
Hamiltonians conserve the global magnetization S5, =
» ; S’j, we characterize the system’s putative localization
transition through the spin current. In the Hermitian case,
the Heisenberg equation of motion for a local spin obeys a
continuity equation and defines the current operator: 8,5'; =

f —J; i—-1=(V- h; j» where V is the discrete derivative, and
we introduce the current operator J =3 LS +S]_+1 S St [ ).
Including the NH terms, however the Helsenberg equatlon is
modified to 18,SZ = & Heff effS As a consequence, the
continuity equat10n above changes, p0531bly making the defi-
nition of the current invalid in the NH case.

Splitting the effective Hamiltonian (4) into Hermitian and
anti-Hermitian components as in Eq. (1), one can observe that
the anti-Hermitian part is proportional to the global current:

I'?eff - H lyjtot’ Jtot - ZJ (5)
j=1

It then follows that one can define a modified continuity equa-
tion for the NH case:

8,85 = (V-1 + v {ors 55} ©6)

This equation marks the difference between the NH and Her-
mitian cases: a nonlocal contribution to spin dynamics appears
in what was a local continuity equation, as entailed by the
anticommutator term. This additional term can be thought of
as the source and sink induced by the local dissipation, and it
is made nonlocal by the postselection procedure [62].

Before moving on, it is important to notice that the
introduction of non-Hermiticity hinders the study of trans-
port using states that are not eigenstates of the total
magnetization S5, [63]. Indeed, if the initial state is an eigen-
state of the magnetization, S‘f‘mhpo) = So|1//0) then at time

t, OISV (@) = Sy (D1 (0)), as [Herr, S5 = 0. Tt is
only the change in the norm of [y/(r)) that causes the expec-

tation value of Sgot to change. Upon postselecting, the norm
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of | (¢)) is restored to be 1, and the magnetization is truly
conserved:

(W (OIS (1)

= 5. 7
WO @) 0 2

However, when the initial state |) is not an eigenstate of the
magnetization, the NH dynamics does not conserve the weight
of the wave function in each separate magnetization sector. In
fact, each sector is characterized by a different minimal decay
rate, and in the infinite-time limit, only one sector survives.
The above reasoning also shows that experimentally relevant
observables are calculated using the right eigenstates of NH
Hamiltonians, i.e., the right steady state of H.i in our case
[64,65].

Numerical results. We first analyze the current in eigen-
states using ED for small system sizes up to N = 18. Since
the eigenvalues of Hg are complex, the long-time behavior of
any initial state is determined by the steady state. Therefore,
instead of focusing on eigenstates in the middle of the spec-
trum, we will report results for the steady state. In particular,
the relevant quantities of interest will be the imaginary part
of its eigenvalue, which is equal to the steady-state current
[ImE| = J»; see Eq. (5)], and the gap A = ImE| — ImE,
to the first excited state, whose inverse sets the timescale
for the approach to the steady state. Notice that we are or-
dering the eigenvalues from highest to lowest imaginary part.

In general, the determination of extremal eigenvalues of
a matrix is a simpler computational task with respect to the
full ED of the matrix, or the extraction of eigenvalues in
the middle of the spectrum [66,67]. This would suggest that
the steady-state properties of the model under consideration
could be studied for larger system sizes than the ones usu-
ally accessible in the Hermitian counterpart. However, this
expectation turns out not to be true for the model under
consideration, and one needs to resort to the full ED of the
Hamiltonian (see the Supplemental Material [68]).

In Fig. 1, we report the results for the total steady-state
current J, [panel (a)] and the gap A to the second largest
imaginary eigenvalue [panel (b)]. Our results indicate the
absence of a transition at the critical value expected from in-
dicators at the center of the spectrum h, =~ 4.5 [9,42], marked
with a vertical green line in the figure. While the current is
indeed suppressed as the disorder strength increases, it always
remains finite in the range of parameters studied, going well
beyond #,.

The global current decays as Jo, o e~*", with a rate o
that depends only weakly on the system size—the precise
behavior is hard to determine due to the small range of ac-
cessible system sizes. However, one can still confidently see
that there is no sign of nonanalyticity in J, as a function of
h. This suggests that no transition occurs in the wide range
of disorder strengths explored. These results are consistent
with similar observations made in Hermitian models, which
also showed exponentially suppressed transport but no signs
of nonanalyticity [69,70]. No nonanalyticity is seen even in
the dependence of the gap A o e=#", with a different rate S.
Also in this case, the dependence of B on N is too weak to
draw any definite conclusion from the small system sizes one
has access to.
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FIG. 1. (a) Steady-state current J,, obtained via exact diagonal-
ization (N < 16) and via time evolution for long times (N = 18).
Around & >~ 4.5 (green vertical stripe), a non-Hermitian many-body
localization transition was previously claimed (see also Fig. 2). How-
ever, a weak current persists up to 4 = 12, signaling that the system
is actually delocalized. (b) Gap to the first excited state A, setting
the (inverse) timescale at which the steady state is reached. The data
are averaged over 15 000 disorder realizations for N < 16, and over
3000 realizations for N = 18.

To better understand why spectral indicators show the pres-
ence of an NH MBL transition while no sign is seen in the
steady-state current Jo, or the gap A, we plot the fraction
of disorder realizations that yield a completely real spectrum,
Jhoss, in Fig. 2(a). One can see that the crossover is shifting
toward larger values of 4. Thus, larger system sizes allow for
more delocalized steady states, as also shown by the system
size scaling in the inset. The situation is somewhat reminis-
cent of the drifting of the finite-size critical point in Hermitian
systems toward larger disorder values [57,58,71,72].

For comparison, in Fig. 2(b), we show a typical indicator
used to detect the NH MBL transition: the average fraction
of nonreal eigenvalues in each realization of disorder, fi,
[9,42]. Even if fi, displays a crossover around /. ~ 4.5, and
thus in the bulk of the spectrum many eigenvalues become

a I
(), e ——C
h =04 +h=6. 2
B “h=24-h=84 - 10~
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FIG. 2. (a) The fraction f,,ss of disorder realizations with a
completely real spectrum drifts toward larger values of the disorder
strength £, as the system size is increased. Correspondingly, the
spectrum becomes more and more delocalized. In the inset, we
show the scaling of fi,ss With system size at various values of h.
(b) Considering instead the average fraction of eigenvalues with a
nonzero imaginary part fi,, one might conclude that there is an NH
MBL transition at the value h. >~ 4.5 (vertical green stripes). More
details are provided in the main text.
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FIG. 3. (a) To avoid boundary effects, we study the current in the
central 2¢ sites of an N = 560 chain (¢ = 25, 35, 45 for increasing
disorder). The resulting (f;a) shows convergence in time to a plateau
Jo(h), before boundary effects eventually kick in. (b) The value Jy
is obtained by averaging the current within a large time window,
and we further evaluate the current per site j, = Jy/€o to be able to
compare with exact diagonalization results. The value of j, obtained
from dynamics also decays exponentially with /4, but with a different

slope than the one resulting from exact diagonalization.

purely real, the presence of nonzero imaginary eigenvalues
well above h,, testified by f,ss, means that at long times
the dynamics will be delocalized and with a nonzero current
flowing. Other indicators at the center of the spectrum, such
as the entanglement entropy or the eigenstate susceptibility,
predict a transition at values of 4 slightly different from 4.5
[42], but all of them consistently show the presence of a bulk
transition, which is not reflected in the properties of the steady
state.

We complement the ED study with simulations of the sys-
tem’s dynamics using matrix product states (MPSs) and an
NH version of the time-evolving block decimation algorithm
[49]. As MPS algorithms are inefficient in PBCs, we employ
OBCs. In OBCs, however, the current is expected to vanish
at long times, irrespective of the value of the disorder, as
particles accumulate on one of the boundaries (the so-called
NH skin effect). To circumvent this issue, we simulate large
chains N = 560 and study the dynamics of the current at the
center of the chain Jq = pr:_{o fN/2+ j» where the bound-
aries affect the system only after a sufficiently long timescale.
Based on our ED results under PBCs, we expect a finite cur-
rent in the bulk before boundary effects kick in. As we show
in the Supplemental Material [68], before this timescale, the
current dynamics reaches a stable stationary plateau at Jy(h),
whose extent increases with system size. We then identify
Jjo = Jo/(2£y) as a proxy for the current in the N — oo steady
state, and we compare it with the ED results, where the other
order of limits is taken ( — oo first).

In Fig. 3, we report the bulk current dynamics obtained
numerically from a Néel initial state |yo) = | P} 1] ---) us-
ing a large bond dimension x = 768. The current dynamics
[Fig. 3(a)] show a transient effect whose extent depends on

the disorder strength h. At stronger disorder, dynamics are
in general slower, leading to a longer transient phenomenon
and reaching the plateau later. For the same reason, at weaker
disorder boundary effects reach the central part of the chain
at earlier times. Nevertheless, at the system size chosen, these
timescales allow us to observe the formation of the current
plateau, as clearly shown in the figure. As the current dynam-
ics reaches a stationary condition, we use the average over
a large time window to extract the value of the plateau J
(dashed lines). It is finally important to notice that the current
reaches the plateau from above, thus meaning that spin flows
(and the system is delocalized) not only asymptotically, but
also at intermediate times.

The real-time simulation effectively gives access to values
of the current in much larger systems than are reachable by
ED. One can then compare these results with the ones pre-
sented in Fig. 1(a). In Fig. 3(b), we show the behavior of the
intensive bulk current j, = Jy/(2€() and compare it to the ED
results, where we take jj, = Jo/N. Remarkably, the TEBD
results confirm the exponential behavior of jj as a function
of the disorder strength 4, at least for small 4. This indicates
that the exponential scaling observed is robust, and possibly
remains valid in the thermodynamic limit also at larger A.
Interestingly, the slope of the exponential decay is different
between ED and TEBD data. A possible explanation is that the
slow drift in the exponent « seen at small system sizes leads to
the larger o observed with TEBD. Another explanation could
come from the two methods differing dramatically in the order
of infinite-time and infinite-system-size limits: While in ED
one effectively takes t — oo first by analyzing the behavior
of eigenstates, in TEBD the opposite is true, as one first takes
N — o00. The possibility of the two limits not commuting
highlights yet again how the results on small systems obtained
through ED must be interpreted with care [16].

Conclusion. Our study challenges the existence of NH
MBL in disordered spin chains by shifting the focus from
spectral properties to dynamical transport. Using exact di-
agonalization and large-scale tensor-network simulations, we
demonstrate that the steady-state spin current remains fi-
nite at all disorder strengths, decaying exponentially without
any nonanalyticity—contrary to expectations from spec-
tral diagnostics. This suggests that the previously identified
“crossover” based on midspectrum eigenstates does not mani-
fest in physical observables, raising doubts about the stability
of NH MBL in this setting.

Crucially, we find that the limits of infinite time and
system size possibly do not commute, with spectral and
transport probes yielding quantitatively different conclu-
sions for finite systems. This underscores the necessity of
dynamical approaches in studying non-Hermitian systems,
where traditional Hermitian paradigms may fail. Our work
calls for a reevaluation of NH MBL criteria, emphasizing
that localization—if it exists—should be probed through
observable quantities like transport, and not just spectral fea-
tures. These results open new questions about the nature of
dissipation-induced phenomena and the robustness of local-
ization in open quantum systems.
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