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Dynamical probe of the pseudo Jahn-Teller effect in one-dimensional confined fermions
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We investigate the real-time dynamics of a quenched quantum impurity immersed in a one-dimensional
ultracold Fermi gas, focusing on the breakdown of the adiabatic Born-Oppenheimer approximation due to
nonadiabatic effects. Despite a sizable impurity-bath mass imbalance, increasing interactions induce strong
nonadiabatic couplings, disrupting adiabatic motion and enabling population transfer between the adiabatic po-
tential energy curves. These transitions are governed by conical intersections arising from the pseudo Jahn-Teller
effect, dynamically shaping the impurity’s motion through the bath. Using ab initio simulations via the multilayer
multiconfiguration time-dependent Hartree method and a multichannel Born-Oppenheimer framework, we track
the impurity’s evolution and directly prove the dynamical manifestation of the pseudo Jahn-Teller effect. We
analyze two key scenarios: (i) a small initial shift, where a single avoided crossing drives transitions, and (ii)
a large shift, where multiple avoided crossings lead to enhanced nonadiabaticity, self-trapping, and energy
redistribution. Our findings establish ultracold fermionic few-body systems as tunable platforms for studying
nonadiabatic quantum dynamics, opening new avenues for controlled impurity transport in strongly correlated
environments.
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I. INTRODUCTION

Nonadiabatic phenomena, emerging when the Born-
Oppenheimer approximation ceases to be valid, constitute a
crucial area of research in quantum physics. These effects
manifest across diverse domains, including molecular dynam-
ics, condensed matter physics, and quantum materials [1–6].
The breakdown of the Born-Oppenheimer approximation oc-
curs when the fast and slow degrees of freedom that typically
enable an adiabatic separation become strongly correlated.
This correlation results in intricate dynamical behaviors that
govern fundamental processes such as energy redistribution,
symmetry breaking, and quantum coherence, particularly in
photochemical reactions [7–17]. The (pseudo) Jahn-Teller ef-
fect provides a well-established paradigm for nonadiabatic
coupling in systems exhibiting (or lacking) energetic degener-
acy [17–21]. This phenomenon involves vibronic distortions
driven by interactions between (nearly) degenerate electronic
states and vibrational modes, leading to symmetry breaking
and significantly altering the system’s dynamical properties
[22,23].
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Historically, nonadiabaticity was first studied in molecu-
lar physics before extending into condensed matter systems
[25,26]. However, the experimental challenges associated
with controlling interactions and observing real-time dy-
namics have driven the search for alternative platforms.
Ultracold atomic systems have emerged as a promising
area for investigating nonadiabatic effects [27–29]. Atoms
cooled and confined in optical trapping potentials enable
precise experimental simulations of molecular dynamics,
providing new opportunities to study fundamental quantum
phenomena. In particular, fermionic few-body systems exhibit
pronounced nonadiabatic effects due to strong correlations
and low-dimensional confinement. These setups allow for an
in-depth exploration of interactions governing quantum corre-
lations, phase transitions, and emergent collective phenomena
[30–34].

In ultracold fermionic few-body systems, nonadiabatic
couplings manifest as avoided crossings in the potential en-
ergy surfaces [24]. The ability to tune the system parameters
using external fields, such as magnetic fields to leverage Fano-
Feshbach and confinement-induced resonances, as well as
species-selective trapping geometries, provides an unprece-
dented opportunity to study vibronic couplings and pseudo
Jahn-Teller effect (PJTE)-like distortions in a context dis-
tinct from molecular physics [35–38]. These tunable systems
offer a bridge between fundamental studies of nonadiabatic
physics and experimentally realizable dynamic behaviors in
engineered quantum systems.

In our comprehensive ground-state analysis [24], we thor-
oughly investigated the spatial structure of the potential
energy curves (PEC) of a one-dimensional harmonically
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(a) (b) (c)

FIG. 1. (a) Schematic illustration of the initial prequench configuration of our many-body system featuring a shifted impurity trap relative
to its fermionic bath. (b) To initiate the dynamics, we perform a quench of the trapping potential to align the bath and impurity confinement.
(c) PEC (9) from the MCBO approach for g = 5.0 h̄ωB�B with the trapping parameters mI = 4mB and ωI = 0.5ωB [24]. The magenta-colored
circles indicate the positions of the avoided crossings associated to the PJTE induced synthetic conical intersections at g → ∞, and the dashed
line indicates their positions.

confined fermionic system composed of an impurity and a
Fermi gas. By introducing the interaction strength as a syn-
thetic dimension, we discovered the emergence of multiple
conical intersections in the infinite interaction limit, which
were attributed to the PJTE. For finite repulsions, these coni-
cal intersections introduce avoided crossings among the PEC
that lead to pronounced nonadiabatic effects in the ground
state of the system.

In this work, we delve deeper into the significance of
these PJTE induced avoided crossings, particularly regard-
ing the system’s dynamics. To achieve that, we initialize the
system in its ground state with a shifted impurity confine-
ment and perform a quantum quench to revert this shift. To
track the subsequent dynamics, we evolve the system using
our numerically exact, ab initio tool for exploring dynamic
quantum systems, the multilayer multiconfiguration time-
dependent Hartree method for bosons and fermions (ML-X)
[39,40]. A comparative analysis with our multichannel Born-
Oppenheimer (MCBO) methodology reveals the influence of
the PJTE on the time evolution of the system. Through our
detailed investigation of the system’s dynamics, we provide
direct evidence that the PJTE governs the interplay between
nonadiabatic transitions and strong correlations. By identify-
ing the dominant avoided crossings responsible for population
transfer between different PECs, we conclusively demonstrate
how the PJTE dictates the dynamical evolution of the sys-
tem. In this study, we analyze the dynamics in two decisive
scenarios: first, a small shift of the center of the impurity
species, where we primarily focus on the contribution of a
single avoided crossing between the two lowest PECs at the
center of the trap [see Fig. 1(c)]. Second, in the regime of a
larger shift, where additional avoided crossings in the outer
region, together with the central avoided crossing, strongly
enhance nonadiabatic effects, leading to the self-trapping of
the impurity and the emergence of collective excitations of
the bath species.

Our work is structured as follows. Section II introduces the
underlying PJTE framework and presents a one-dimensional
Hamiltonian describing a few-body fermionic bath interacting
with an impurity via s-wave interactions. Section III details

the ab initio ML-X and MCBO approaches employed to solve
the time-dependent Schrödinger equation. In Sec. IV, we fo-
cus on the impact of different initial shifts of the impurity
species trapping potential on the system’s time evolution,
emphasizing how these shifts influence the manifestation of
nonadiabatic effects. Section V examines how stronger trap-
ping confinement modifies the observed dynamics, providing
further evidence for the PJTE in the studied system. We
conclude with a summary of our findings and an outlook
on future research directions in Sec. VI. Additional technical
details are provided in the appendices. Appendix A elaborates
on the ML-X formalism, which enables precise dynamical
studies [39–41]. Finally, Appendix B contains derivations of
PEC occupation observables using the second quantization
formalism.

Our findings provide crucial insights into the interplay
between strong correlations, nonadiabaticity, and vibronic in-
teractions in ultracold fermionic systems. By delineating the
regimes where synthetic conical intersections significantly in-
fluence the dynamics, our results offer a practical guide for
future few-body experiments, paving the way for controlled
studies of emergent quantum behaviors in engineered quan-
tum matter.

II. SETUP

We investigate a two-species setup of mass-imbalanced
and spin-polarized fermions, both confined in individual
one-dimensional harmonic trapping potentials. The system
consists of a lighter majority species, denoted as the bath
(B), which interacts with a single heavier impurity (I), i.e.,
mI � mB, via s-wave repulsion.

Building upon our previous ground-state analysis [24], we
consider the quench scenario schematically depicted in Fig. 1.
As shown in Fig. 1(a), the system is first prepared by shifting
the harmonic trapping potential of the impurity by an initial
displacement xs. The ground state of this displaced system is
computed before the trapping potential is abruptly quenched
to the center (xs = 0) at t = 0, as illustrated in Fig. 1(b). This
sudden quench initiates a dipole oscillation of the impurity,
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allowing us to study the interplay between its motion and the
bath response.

We analyze two distinct displacement scenarios: a small
shift (xs = 0.5�B) and a large shift (xs = 1.5�B). As demon-
strated in Fig. 1(c), these shifts determine how the impurity
traverses the avoided crossings (associated with conical in-
tersections emerging in the limit of infinite repulsion) during
its dynamics. The large shift case, in particular, results in
the impurity crossing multiple avoided crossings, amplify-
ing nonadiabatic effects, and self-trapping phenomena. The
avoided crossings are manifestations of the PJTE and will be
substantial for the dynamical proof of the PJTE.

The system is described by the Hamiltonian:

Ĥ = ĤB + ĤI + ĤBI ,

where the individual terms are given by

ĤB =
NB∑
j=1

⎡
⎣− h̄2

2mB

(
∂

∂xB
j

)2

+ 1

2
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(
xB

j

)2

⎤
⎦,

ĤI =
NI∑
j=1

⎡
⎣− h̄2

2mI

(
∂

∂xI
j

)2

+ 1

2
mIω

2
I

(
xI

j − xs
)2

⎤
⎦,

ĤBI =
NB∑

k=1

NI∑
j=1

gδ
(
xB

k − xI
j

)
. (1)

Here, mB and mI denote the masses of the bath and im-
purity species, respectively, while ωB and ωI represent their
corresponding trapping frequencies. Our primary focus is on
a heavy impurity with mass mI = 4mB and a weakly confined
impurity potential ωI = 0.5ωB. This setup is experimentally
feasible in state-of-the-art systems, such as 6Li - 23Na mix-
tures [42]. NB represents the number of bath atoms and NI

the number of impurity atoms. The characteristic length scale
of the bath species is given by the harmonic oscillator length

�B =
√

h̄

mBωB
, (2)

which describes the spatial extent of a noninteracting single-
particle ground state. Similarly, the impurity’s spatial extent is
characterized by

�I =
√

mBωB

mIωI
�B. (3)

Since the bath consists of multiple fermions, its density
distribution extends beyond �B due to the occupancy of
higher-energy states. Specifically, the size of the bath is ap-
proximately given by

σB ≈ �B

√
NB + 1

2
. (4)

For investigating nonadiabatic behavior, it is particularly in-
sightful to consider cases where the impurity delocalization
matches this scale, i.e.,

�I ≈ √
NB�B, (5)

which grows with the energy of the bath’s highest occupied
state. When the length scales σB and �I are almost equal, the

impurity can better probe the bath dynamics, enhancing the
system’s sensitivity to observe nonadiabatic effects. In this
work, we fix the bath particle number to NB = 5 and consider
a single impurity (NI = 1). Due to the impurity’s large mass,
a Born-Oppenheimer-like approach is justified. In Sec. V, we
provide an analysis for the tightly trapped case (ωI � ωB).

The impurity interacts with the bath via a contact interac-
tion of strength g, modeled by a Dirac delta potential. Impor-
tantly, intraspecies interactions are excluded due to the Pauli
exclusion principle, preventing identical fermions from occu-
pying the same quantum state. In ultracold gas experiments,
the interaction strength g is tunable via confinement-induced
resonances and Fano-Feshbach (in our case, interspecies) res-
onances, allowing precise control over nonadiabatic effects
[43].

III. METHODOLOGY AND COMPUTATIONAL
APPROACH

In the following, we introduce the numerical methods
for our analysis: we begin with our fully correlated ML-X
method. Next, we address our MCBO approach, which is
motivated by the significant mass imbalance between bath and
impurity species mI/mB > 1. Both methods are numerically
exact ab initio approaches suitable for the solution of multi-
component fermionic systems.

A. The ML-X method

The multilayer multiconfiguration time-dependent Hartree
method for mixtures (ML-X) is a variational, ab initio, and
numerically exact approach to simulate the nonequilibrium
quantum dynamics of bosonic and fermionic particles, as well
as their mixtures [39–41]. It employs a multilayered ansatz
that variationally optimizes the quantum basis across multiple
structural levels of the total many-body wave function. This
expansion adapts dynamically to interparticle correlations at
the single-particle, single-species, and multi-species levels,
enabling efficient and accurate simulations.

The total wave function,

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�̃B
k (t )

〉∣∣�̃I
k (t )

〉
, (6)

is represented using a Schmidt decomposition of rank D.
This decomposition expands the many-body wave function
in terms of single-species functions |�̃σ

k (t )〉, where σ de-
notes the species. The Schmidt weights, λk (t ), quantify the
entanglement between different species, providing a com-
pact representation of the system dynamics. Each single
species function |�̃σ

k (t )〉 is expanded in terms of Fock states
constituted from dσ time-dependent single-particle functions
(SPFs), |φσ

i (t )〉, which dynamically adapt to the evolving sys-
tem. These SPFs are further expressed in a discrete variable
representation (DVR) basis, enabling an efficient and precise
representation of the spatial degrees of freedom. A detailed
derivation of this multilayer representation, including the role
of the hierarchical structure of the ansatz, can be found in
Appendix A.

Ground states are determined via imaginary-time propa-
gation. The Hilbert space truncation is characterized by the
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configuration C = (D; dB; dI ), chosen to properly account for
interspecies entanglement and bath state occupation.

B. The multichannel Born-Oppenheimer approach

Motivated by the assumption of a heavy, less mobile
impurity, the comparison of our results with a Born-
Oppenheimer-like approach is justified. A general variational
formulation of this approach can be established in terms of the
MCBO ansatz,

�
(
xB

1 , . . . , xB
NB

, xI ; t
) =

M∑
j=1

� j,I (xI ; t ) � j,B
(
xB

1 , . . . , xB
NB

; xI
)︸ ︷︷ ︸

≡〈xB
1 ,...,xB

NB
|� j,B (xI )〉

.

(7)
Here, we have introduced an orthonormal basis for
the bath species, |� j,B(xI )〉, with j = 1, 2, . . . , exhibit-
ing a parametric dependence on xI . The impurity-species
wave functions � j,I (xI ; t ) with the normalization condition∑M

j=1

∫
dxI |� j,I (xI ; t )|2 = 1 correspond to the expansion co-

efficients in the many-body basis of the coupled system.
Considering a time-dependent variational principle, such

as the Dirac-Frenkel one, 〈δ�|Ĥ − ih̄ ∂
∂t |�〉 = 0, and using

the ansatz of Eq. (7), we can derive the time-dependent equa-
tion of motion

ih̄
d

dt
�k,I (xI , t ) = − h̄2

2mI

M∑
j,l=1

(
δk j

d

dxI
− iAk j (xI )

)

×
(

δ jl
d

dxI
− iA jl (xI )

)
�l,I (xI )

+
M∑

l=1

(
δklεk (xI ) + δkl

1

2
mBω2

I x2
I

+ V ren
kl (xI )

)
�l,I (xI , t ), (8)

where the states |�k,B(xI )〉 can, in principle, be any complete
wave-function basis. A natural and practical choice is the
eigenstates of ĤB + ĤBI for fixed xI , yielding the diagonal
matrix elements

〈�k,B(xI )|ĤB + ĤBI |�l,B(xI )〉 = δklεk (xI ), (9)

with the PECs given by εk (xI ), which represent the en-
ergy of the bath for a fixed position of the impurity xI .
These curves define the adiabatic potential energy landscape
through which the impurity moves. Furthermore, Ak j (xI ) =
i〈�k,B(xI )| ∂� j,B

∂xI
(xI )〉 is the nonadiabatic derivative coupling,

it measures how the bath’s eigenstates change with the im-
purity position arising from the impurity-bath coupling. The
potential renormalization is

V ren
kl (xI ) = h̄2

2mI

〈
d�k,B

dxI
(xI )

∣∣∣∣1 − P̂M

∣∣∣∣d�l,B

dxI
(xI )

〉
, (10)

with the projector P̂M onto the subspace spanned by |�k,B(xI )〉
given by

P̂M =
M∑

j=1

|� j,B(xI )〉〈� j,B(xI )|. (11)

Physically, the potential renormalization represents how the
motion of the impurity causes changes in the bath’s kinetic
energy, as well as subtle adjustments in the bath-impurity in-
teraction that are not captured by the adiabatic approximation
alone. For details on the derivation of the above equations in
the static case see Ref. [24].

Before proceeding let us comment on the reduction of
the above to the adiabatic Born-Oppenheimer approximation
widely employed in molecular physics [25]. If we restrict the
ansatz of Eq. (7) to M = 1 term, the variational equations of
motion reduce to the adiabatic Born-Oppenheimer approxi-
mation incorporating the Born-Huang correction arising from
V ren

11 (xI ), which is therefore characterized as variational adi-
abatic Born-Oppenheimer (VABO) approximation. The usual
adiabatic Born-Oppenheimer approach consists of dropping
this additional term by considering V ren

11 (xI ) = 0 and will
be denoted as nonvariational adiabatic Born-Oppenheimer
(NVABO) approximation.

The full MCBO ansatz captures the complete interplay
between the impurity and bath species. In contrast, the VABO
and NVABO approximations describe the impurity’s dy-
namics within a single-channel potential. By including all
nonadiabatic couplings between bath states and a renormal-
ized potential that accounts for transitions driven by impurity
motion, MCBO provides a framework for studying nonadia-
batic effects in the system. The approximations, VABO and
NVABO, are valid in regimes where a single bath state domi-
nates, and nonadiabatic effects are minimal. A key distinction
between the two approximations lies in their treatment of
the Born-Huang correction. This term, which appears in the
VABO approximation, captures the variation in the kinetic
energy of the bath as a function of the impurity position,
reflecting how the bath’s response changes with the impurity’s
motion. This term can influence the dynamics, particularly
in cases where the interaction between the impurity and the
environment is non-negligible and varies with the impurity’s
position. By incorporating or neglecting this correction, we
are able to examine different levels of approximation for
describing these complex interactions, and thus, VABO and
NVABO offer valuable insights into the accuracy and behavior
of models that describe such systems.

IV. DYNAMICS IN THE CASE OF WEAK
CONFINEMENT �I ≈ √

NB�B

As discussed in Sec. II, the relation between the length
scales of the bath and impurity species has a profound impact
on the physics of the system. In this section, we focus on
the dynamics in the case of a weak trapping potential for the
impurity, where the nonadiabatic effects are expected to be
pronounced.

In particular, as shown in Fig. 1(c) and supported by our
comprehensive ground-state analysis [24], weak trapping po-
tentials give rise to multiple synthetic conical intersections
in the g → ∞ limit. The corresponding avoided crossings
at finite g are significantly more pronounced compared to
systems with higher trapping frequencies, where the impact
of conical intersections is noticeable only as the g → ∞ limit
is approached for g � h̄ωB�B. The influence of the conical
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(a1) (a2)

(b1)
(b2)

FIG. 2. Spatiotemporal evolution of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for a noninteracting system.

The impurity mass mI = 4mB and trapping frequency ωI = 0.5ωB are taken into account. The different columns refer to different shifts (see
labels). For the impurity species, we include cyan dashed lines at x = ±(xs + √

2�I ) as a visual reference to the oscillation amplitude of the
impurity.

intersections serves as a hallmark of the PJTE, whose pro-
found impact on the system’s dynamics will be analyzed in
detail in the following.

The time-dependent one-body density is a pivotal quan-
tity that connects theoretical predictions with experimental
observations. It offers a simplified, yet comprehensive repre-
sentation of the dynamical behavior of our system for both
the bath (ρ (1)

B (x; t )) and impurity (ρ (1)
I (x; t )) species, where

ρ (1)
σ (x; t ) = 〈�(t )|�̂†

σ (x)�̂σ (x)|�(t )〉 with |�(t )〉 being the
many-body wave function at time t and �̂†

σ (x) and �̂(x)
are the field operators creating and annihilating a σ -species,
σ ∈ {B, I}, particle at position x, respectively.

In the following, we would compare two scenarios: a
smaller shift given by xs = 0.5�B and a larger shift xs =
1.5�B. To get an initial overview for the noninteracting case
g = 0, we present the spatio-temporal density evolution in
Fig. 2. Notice that in this case, all of the employed methods
ML-X, VABO, NVABO and MCBO provide identical results
since the impurity and bath degrees of freedom are separa-
ble. In both cases of xs = 0.5�B, Fig. 2(b1), and xs = 1.5�B,
Fig. 2(b2), we observe that the density of the impurity exhibits
a dipole mode with frequency ωI . However, for xs = 1.5�B the
amplitude of the oscillatory pattern is increased since more
energy is imparted to the system. The bath species remains
unperturbed, see Fig. 2(b1) and 2(b2), since there is no bath
impurity interaction, g = 0. Its density ρ

(1)
B (x; t ) exhibits five

peaks owing to the Pauli principle resulting in the occupation
of the five lowest harmonic oscillator states due to the consid-
ered particle number of the bath species (NB = 5).

Considering the interacting case, we expect a substantial
difference between the above mentioned cases of xs values.
For the smaller shift (xs = 0.5�B), the dynamics involves the
impurity crossing through a single avoided crossing of the
lowest PEC, at x = 0, see Fig. 1(c) resulting in limited nonadi-
abatic contributions. In contrast, the larger shift (xs = 1.5�B)
involves multiple avoided crossings, significantly enhancing
the role of nonadiabatic effects driven by the PJTE [see
Fig. 1(c)]. These differences necessitate a two-part investiga-
tion to capture the unique physics of each scenario.

A. Role of interactions for the smaller shift

We first analyze the effects of the interactions for the
smaller shift. We begin by examining the one-body densities
of the bath and impurity species and then proceed with a
detailed analysis of the involved PEC and their occupations.

1. Density analysis

By introducing a weak interaction (g = 2.5h̄ωB�B) be-
tween the bath and the single impurity, we present in Fig. 3 the
corresponding time evolutions of the densities ρ

(1)
B (x; t ) and

ρ
(1)
I (x; t ). Starting with the numerically exact results from the

ML-X method, we observe a similar dipole oscillation of the
impurity, see Fig. 3(b1), when compared to the noninteracting
case, see Fig. 2(b1). However, the interaction introduces key
differences from the noninteracting evolution. In particular,
by comparing the interacting case of Figs. 3(a1) and 3(b1) to
the noninteracting results of Figs. 2(a1) and 2(b1), we observe
that due to the bath-impurity repulsion the bath species devel-
ops a density valley at the position of the impurity species.
Additionally, in the time instances that the impurity crosses
xI ≈ 0, which are marked by the dotted blue circles, e.g., for
t ≈ 4ω−1

B , 12ω−1
B , its density maximum decreases. In addition

in the elapsed time between these transits an impurity density
accumulation is observed for x ≈ −0.5 for 4 < ωBt < 10 and
x ≈ 0.5 for 12 < ωBt < 18, rendering the form of the impu-
rity oscillation non sinusoidal in contrast to the noninteracting
case, see Fig. 2. This effect is even more pronounced in the
bath one-body density, leading to the pronounced formation
of distinct minima in the spatial regions where the impurity
accumulation occurs for xB ≈ 0.5�B and xB ≈ −0.5�B, such
that the bath depletion has a noticeably rectangular oscillation
pattern. Another notable phenomenon for ρ

(1)
I (x; t ) is the re-

duction of its oscillation period, by comparing the oscillation
pattern in Fig. 2(b1) with that in Fig. 3, we clearly see that the
oscillation period is increased in the interacting case. Notice
that both the ML-X and MCBO methods yield identical re-
sults, as both are numerically exact ab initio approaches (not
shown here for brevity) .
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 3. Spatiotemporal dependence of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for an interacting system

with g = 2.5h̄�BωB. The impurity mass mI = 4mB and trapping frequency ωI = 0.5ωB as well as the smaller shift xs = 0.5�B are considered.
The different columns correspond to the distinct methods (see labels). For the impurity species, we include cyan dashed lines at x = ±(xs +√

2�I ) as a visual reference to the oscillation amplitude in the noninteracting case. The dotted blue circles indicate the spatiotemporal region
for which the impurity crosses xI = 0, corresponding to the location of an avoided crossing.

To examine the degree of nonadiabatic effects that oc-
cur in the system, we consider the simplest approximation
provided by the NVABO, where all nonadibatic effects are
completely neglected. As shown in Fig. 3(a2), we observe
that the structure of the bath one-body density is qualitatively
similar to Fig. 3(a1). However, the bath-density minimum
caused by the interaction between bath and impurity species
is less pronounced within NVABO, see Fig. 3(a2). In the case
of the impurity species, the density accumulation at x > 0 and
x < 0 is still present but much less prominent, see Fig. 3(b2).
The oscillation period is shorter compared to the exact ML-X
result, compare Fig. 3(b2) to Fig. 3(b1). Hence, we conclude
that beyond the adiabatic approximation, the Born-Huang
contribution and nonadiabatic effects might be necessary to
fully describe the prolongation of the oscillation period, which
we investigate below by invoking the VABO approximation.

Indeed, the inclusion of the Born-Huang term [Figs. 3(a3)
and 3(b3)] results in a larger oscillation period of the impurity
species compared to the NVABO approximation and compa-
rable to the ML-X result. However, the spatial development
of individual minima (at xI ≈ 0) and maxima (at xI = ±0.5)
of ρ

(1)
I (xI ; t ) are significantly enhanced [see Fig. 3(b3)] in

comparison to the ML-X result depicted in Fig. 3(b1). Thus
we can infer that the Born-Huang term, which accounts for
changes in the kinetic energy of the bath, not only elongates
the oscillation period of the impurity species, but also is the
reason for the large fluctuations of the impurity density during
its oscillation within the fermionic enviroment, leading to a
density evolution reminiscent of transport within a multi-well
setup [44,45]. However, since the importance of this effect is
greatly overestimated within VABO, we can infer that nonadi-
abatic transport to higher-lying PEC is important for correctly
capturing the system dynamics even moderately away from
the synthetic conical intersections, that as shown in Ref. [24],
occur in the limit g → ∞.

Nevertheless, the analysis for g = 2.5h̄�BωB demonstrated
that the approximate methods, namely the VABO and its
nonvariational form (NVABO), were useful to some extent in
capturing some of the key aspects of the impurity and bath
dynamics. These approaches provided a reasonably accurate

description of the system’s density evolution, highlighting
their applicability in the weakly interacting regime. How-
ever, as we now turn to the strongly interacting regime at
g = 5h̄�BωB, the reliability of these methods is expected to
diminish, owing to the approach to the synthetic conical inter-
sections at g → ∞.

To explore this possibility, we perform a one-body density
analysis of the g = 5 h̄ωB�B case in Fig. 4. Starting again with
the one-body density of the bath, Fig. 4(a1), and impurity
species, Fig. 4(b1), within ML-X. Similar to Figs. 3(a1) and
3(b1), we observe density minima in the bath one-body den-
sity (a1) and again a minimum for xI ≈ 0 (see the blue dotted
circles) in the impurity one-body density. As expected, since
these effects are a consequence of the interaction strength,
it becomes more dominant for the strongly interacting case.
In addition, the detected prolonging of the dipole oscillation
period of the impurity species increases. An additional effect,
hardly noticeable in the case of smaller interactions, com-
pare Figs. 3(b1) to 4(b1), is that when the impurity species
crosses the center of the harmonic trapping potential, for g =
5.0h̄ωB�B, we detect a small part of the impurity species that
is reflected at xI ≈ 0 and performs a mirror-symmetric oscilla-
tion as indicated by the green dotted circles. Furthermore, we
observe that the impurity species dipole oscillation amplitude
is significantly reduced when compared to the noninteracting
case, compare Figs. 3(b1) to Fig. 2(b1). The oscillation curves
deviate from the initial sinusoidal profile observed in the
dipole oscillation for the noninteracting case Fig. 2(b1) and
possess an approximately rectangular shape.

Within the simplest approximation in the NVABO case, see
Fig. 4(b2), the impurity evolution is remarkably similar to the
result of the NVABO approximation in the weakly interacting
case (g = 2.5h̄ωB�B) of Fig. 4(b2). The main differences are
relatively larger fluctuations of the ρ

(1)
I (xI ; t ) maximum, due

to the stronger interaction between both species. Noticeably,
the ML-X findings that set apart the weakly from the strongly
interacting case explained above cannot be reproduced within
NVABO. For instance, the oscillation period is only minimally
extended by the stronger interaction, compare Fig. 4(b2) to
Fig. 3(b2), significantly less than in the ML-X result. Also
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 4. Spatiotemporal dependence of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for an interacting system

with g = 5.0h̄�BωB. The impurity mass mI = 4mB and trapping frequency ωI = 0.5ωB as well as the smaller shift xs = 0.5�B are considered.
The different columns correspond to the distinct methods (see labels). For the impurity species, we include cyan dashed lines at x = ±(xs +√

2�I ) as a visual reference to the oscillation amplitude in the noninteracting case. The dotted blue circles indicate the spatiotemporal regions
where the impurity crosses xI = 0, corresponding to the location of an avoided crossing. The green dotted circles in (b1) highlight the reflected
fraction of the impurity density by the avoided crossing at xI = 0.

here the impurity oscillation pattern is very close to sinusoidal
and the density depletion of the bath is not very different than
for g = 2.5h̄ωB�B case, compare Fig. 4(b1) to Fig. 3(b1).

The density evolution when taking into account the Born-
Huang term within the VABO approximation is depicted
in Figs. 4(a3) and 4(b3). In particular, here, in addition to
the impurity density maxima at xI ≈ ±0.5�B another set of
maxima appears around xI ≈ ±1.0�B, see Fig. 4(a3). This
again demonstrates the tendency of the impurity within VABO
to behave similarly to a multi-well setup, a behavior that is
again much more overestimated within this approach than in
the numerically exact one, compare Figs. 4(a2) and 4(c2).
Additional differences to the exact case are that the amplitude
of the oscillation of the impurity species remains equally wide
to the noninteracting case within VABO and the oscillation
pattern remains characteristically sinusoidal. However, with
regard to the oscillation period duration, the VABO approxi-
mation differs significantly from the NVABO approximation
and is very close to the ML-X result.

2. Analysis in terms of PEC

The above confirms our initial expectation that the
interaction strength emerges as a decisive factor in the nona-
diabaticity of our system. In the interacting case, the adiabatic
approximations capture the qualitative behavior of the system
to some extent. However, a more detailed examination reveals
important qualitative differences to the case where the nonadi-
abatic couplings are taken into account. While the qualitative
behavior of the system is not very sensitive to the interaction
strength, on the quantitative level, the intensity of the observed
nonadiabatic phenomena is greatly amplified as the synthetic
conical intersections at g → ∞ are approached. Therefore, in-
corporating nonadiabatic corrections within the framework of
MCBO or another numerically exact approach, such as ML-X,
is necessary to achieve a quantitatively accurate description of
these amplified effects. In addition, even when restricting our
focus to the adiabatic approximation, the Born-Huang correc-
tion V ren

11 (xI ) proves to be a clearly relevant factor, especially

in the regime of strong interactions. This underscores that the
response of the bath in terms of its kinetic energy is essential
to get the full picture of the system dynamics.

Building on the insights from the previous section, where
we have highlighted the crucial role of nonadiabaticity in the
dynamics of an interacting bath-impurity system. We now
shift our focus to a more detailed exploration of the system’s
behavior through the lens of the PEC occupations. This step
allows us to connect the nonadiabatic effects to the observed
dynamics, offering a clearer picture of how each PEC influ-
ences the overall system. By investigating the contributions of
the individual PEC, we are able to directly connect them to
the PEC avoided crossing associated to the PJTE [24].

To solidify this connection, we first analyze the occupation
of each PEC j,

n j (t ) ≡ 〈�(t )|P̂ j |�(t )〉 =
∫

dxI |� j,I (xI ; t )|2. (12)

For details on the derivation of this quantity, see Appendix B.
We show n j (t ) as a function of time in Fig. 5 for the
dominating lowest three PECs. Here Fig. 5(a) refers to the
simple noninteracting case, where no excited PEC are occu-
pied and the adiabatic approximation is sufficient to describe
the physics. As worked out in our extensive ground-state
analysis [24], turning on the interaction leads to beyond Born-
Oppenheimer physics even in the static case, because of the
PJTE. Indeed, in the weakly interacting case, g = 2.5h̄ωB�B,
of Fig. 5(b) both the first and second PEC are populated
already for the initial state, t = 0. During the time evolution,
we observe additional population transfer, predominantly be-
tween the ground j = 1 and the first excited, j = 2, PEC. This
verifies our claims of nonadiabatic effects being important
during the dynamics of the system. For g = 5.0h̄ωB�B de-
picted in Fig. 5(c), the above results are more pronounced. In
particular, we observe that the occupation of the j = 1 is more
suppressed even for t = 0, as expected due to the approach
to the synthetic conical intersections for g → ∞. In addition,
during the oscillation dynamics of the impurity, the transfer
of the PEC occupation is amplified compared to that of the
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(a) (b) (c)

FIG. 5. The total occupation of the first three PEC calculated via Eq. (12). An initial shift xs = 0.5�B, mI = 4mB, and ωI = 0.5ωB are
considered. (a) corresponds to the noninteracting case, (b) is the weakly interacting case g = 2.5h̄�BωB, and lastly (c) the strong interaction
case g = 5.0h̄�BωB. In all cases, NB = 5.

weakly interacting case. The resulting n j (t ) oscillations show
dephasing as the second oscillation period has a significantly
longer duration than the first.

However, a deeper look at the population transfer oscil-
lations reveals an open point in our analysis. In particular,
inspecting Figs. 5(b) and 5(c), we observe that quite pecu-
liarly the frequency of the population transfer does not match
the frequency of the dipole oscillations of the impurity, see
Figs. 3(b1) and 4(b1), respectively. More specifically, by in-
specting Fig. 5(b), in the case of g = 2.5 h̄ωB�B, we observe
that the first minimum of n1(t ) occurs at t ≈ 6.2ω−1

B , where
ρ

(1)
I (x; t ), see Fig. 3(b), is close to its minimum negative

displacement, while the second maximum is at t ≈ 12.1ω−1
B ,

when ρ
(1)
I (x; t ) crosses x = 0. Finally, the second minimum

visible in Fig. 3(b) corresponds to t = 16.6 ω−1
B , where the

impurity travels from its maximum positive displacement
toward x = 0. Similar patterns are also identified for the
strongly interacting g = 5 h̄ωB�B state. It can then be claimed
that there is little correlation of PEC transfer processes and
the synthetic conical intersections and PJTE given the not
straightforward relation between the PEC population transfer
and the location where it occurs. However, by further analysis
of the occupied impurity configurations within each PEC,

we can reveal the hidden relationship between these transfer
processes and the PJTE.

As a first step to address this issue, we examine the im-
purity dynamics within the two energetically lowest PEC.
To achieve this, we analyze the impurity density evolution,
ρ

(1)
I, j (x; t ) for the PEC, j = 1, 2, by exploiting the fact that

within MCBO the total impurity density reads

ρ
(1)
I (xI ; t ) =

M∑
j=1

ρ
(1)
I, j (xI ; t ) =

M∑
j=1

|� j,I (xI ; t )|2. (13)

Here we note again that the results of MCBO are almost
identical to ML-X, since both methods are numerically exact
and therefore employing the fact that ρ

(1)
I, j (xI ; t ) is much easier

to calculate within the former approach is legitimate. The
results of our analysis are shown in Fig. 6. The first feature
that this analysis clearly demonstrates is that the density of
the impurity within the j = 1 PEC is almost identical to
the VABO approximation, compare Fig. 6(a2) to Fig. 3(b3)
and Fig. 6(a3) to Fig. 4(b3). This justifies our argument in
the previous section that the differences between VABO and
ML-X are attributed to the occupation of higher lying PEC.
Turning our attention to the dynamics within the second PEC,
we observe that the occupation of this PEC in the initial state

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 6. Time dependence of the PEC-resolved one-body density of the impurity, ρ
(1)
I,n (x; t ), corresponding to the n-th PEC and for varying

interaction strengths (see label). The impurity mass is set to mI = 4mB and the trapping frequency to ωI = 0.5ωB, with a smaller shift of
xs = 0.5�B taken into account. The green dashed lines indicate the avoided crossings between the ground-state and first-excited PEC, as
described in Eq. (9).
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FIG. 7. Impurity dynamics on the PECs are shown in the two regimes of impurity displacement. In both subfigures the Born-Huang term
V ren

11 (xI ), which scales with the interaction strength g, is shown with a constant vertical offset for better comparison with the PECs. The
avoided crossings, marked by vertical lines at positions xi for i = −2, . . . , 2, coincide with the maximum peaks of the Born-Huang term
V ren

11 (xI ), underscoring the importance of nonadiabatic coupling and interaction strength in shaping the impurity dynamics. (a) Small shift
regime xs = 0.5�B: The impurity exhibits quasi-adiabatic transport, except near the avoided crossing x0 = 0, where density is exchanged
between the lowest and first excited PEC. The PECs are derived for an interaction strength of g = 5.0 h̄�BωB, impurity mass mI = 4mB, and
impurity trapping frequency ωI = 0.5ωB. To highlight the avoided crossings, the PECs are scaled and shifted linearly. This adjustment enhances
visual contrast without altering the underlying physical trends. The width of the faintly colored regions on the PECs indicates the relative
contributions to each PEC. (b) Large shift regime xs = 1.5�B: The impurity becomes self-trapped in an effective harmonic potential in the outer
region of the lowest PEC, exhibiting quasi-diabatic behavior. As a result, only a small fraction of the impurity density can tunnel out of this
potential.

is associated to states close to the avoided crossing of the
PEC at x ≈ −1 �B, see Fig. 1(c), note that the positions of
the avoided crossings have been marked by horizontal dashed
lines in Fig. 6(b2) for convenience. Later in the dynamics,
as the impurity crosses x = 0 for t ≈ 4 ω−1

B , we observe that
ρ

(1)
I,2 (x; t ) is transferred from the vicinity of the x ≈ 1 �B to

the x = 0 avoided crossing. This pattern continues with the
occupation of the second PEC being transferred to the avoided
crossing closest to where ρ

(1)
I,1 (x; t ) lies during its dipole oscil-

lations, compare Figs. 6(a2) and 6(b2). Nevertheless, we can
see that a portion of ρ

(1)
I,2 (x; t ) persists in the vicinity of x = 0

avoided crossing throughout the time evolution. This density
fraction shows oscillations between the x > 0 and x < 0 parts
of the avoided crossing with a frequency that is significantly
faster that the dipole oscillation frequency of the impurity. A
similar pattern is also observed for Figs. 6(a3) and 6(b3), but
the population of the second PEC is much more pronounced.

The above analysis provides important information on the
dynamics of the system with respect to the PEC occupation.
First, it is obvious that the avoided crossings of the PEC are
prominently involved as substantial ρ

(1)
I,2 (x; t ) is observed only

close to these regions. It can be argued that the frequency
mismatch between the population transfer to the impurity
dipole oscillation dynamics, observed in Fig. 5 can be at-
tributed to the additional fast dynamics related to the tunneling
of the one-body density of the second PEC in the region x = 0
observed in Fig. 6(b2) for weak interactions (g = 2.5h̄ωB�B)
and also for strong interactions (g = 5.0h̄ωB�B) in Fig. 6(b3).
To illustrate the discussed impurity dynamics, we provide a
schematic representation in Fig. 7(a), focusing on the relevant
PECs and the contribution of the Born-Huang term V 11

ren(xI ).
By applying a linear shift to the Born-Huang term, we can
qualitatively compare its spatial behavior with the PECs and
highlight that its maxima coincide with the avoided crossings.

Additionally, the PECs are rescaled to emphasize the appear-
ance of these avoided crossings. As previously derived, this
illustrates how the impurity undergoes quasi-diabatic trans-
port governed by the structure of the PECs, except near the
avoided crossing at x0 ≈ 0, where an exchange of contribution
occurs between the ground and first excited states. However,
what remains to be clarified is what processes lead to the gen-
eration of this frequency and the observed phenomenology.
To achieve this, we delve deeper into the intra-PEC dynamics
by analyzing the occupation of different spatial configurations
within each PEC.

For this purpose, we consider an effective one-body
Hamiltonian to describe the different impurity-species spatial
configurations

Ĥ j
PEC = − h̄2

2mI

(
∂

∂xI

)2

+ 1

2
mBω2

I x2
I + ε j (xI ). (14)

This effective potential consists of the kinetic term, the har-
monic trapping confinement of the impurity, and the energy
of the jth PEC, ε j (x) given by (9) for a fixed bath-impurity
interaction strength g. In the spirit of the adiabatic Born-
Oppenheimer approximation, this can be considered as the
equation of motion of the slow and heavy degree of freedom.
This system effectively describes the impurity’s behavior,
with the PEC ε j (x) acting as an effective potential that ac-
counts for the contact interaction with the bath species. We
diagonalize Eq. (14) in the context of the static Schrödinger
equation

Ĥ j
PECφ j,m(x) = Ej,mφ j,m(x), (15)

with its corresponding eigenfunctions, φ j,m(x), and eigenen-
ergies, Ej,m, shown in Fig. 8. For the noninteracting case and
both the ground-state PEC [Fig. 8(a1)] and the first excited
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 8. The effective potential of Eq. (14) combining the harmonic trapping potential with the PEC ε j (x). The dashed and dotted lines
show its eigenfunctions, scaled by a factor of two and offset by their corresponding eigenenergy, i.e. 2ψ

(m)
j (x) + E (m)

j . The upper panels (ai)
refer to the lowest PEC j = 1, the lower panel (bi) shows the behavior of the first excited PEC j = 2. The index i = 1, 2, 3 refers to the
interaction strengths g = 0.0, g = 2.5h̄ωB�B and g = 5.0h̄ωB�B.

PEC [Fig. 8(b1)], we identify an effective harmonic poten-
tial (∼x2), which is the same for both the lowest and the
higher-lying PECs, which remain identical for both levels
apart from a constant shift, reflecting the spatially uniform
nature of the PECs in the noninteracting regime. Introducing
interactions [g = 2.5 in Figs. 8(a2) and 8(b2)] between the
bath and impurity species results in a double-well potential
for the lowest PEC, whereas the first excited state exhibits a
triple-well structure. These features become more pronounced
in the strongly interacting regime [g = 5.0h̄ωB�B Figs. 8(a3)
and 8(b3)], with the triple-well potential of the j = 2 PEC
emerging particularly clearly. When examining our effective
potential, we observe in Figs. 8(b2), 8(a3), and 8(b3) that, in
addition to the triple-well structure, additional potential wells
are present. However, these appear at such high energies that
they do not significantly contribute to our analysis.

This structure is of particular interest. The triple-well po-
tential can capture impurity density when the impurity crosses
one of its wells. This generates two pathways for the dynam-
ics, first the diabatic excitation of the impurity to an excited
PEC or vice versa, and second the intra-PEC tunneling dy-
namics among the wells, which can be used to explain the
findings of Fig. 6.

To examine this issue further, we now focus on the occu-
pation of the individual states of the first two PECs. Hence,
we calculate the occupation of the individual states m of the
corresponding PEC j

n(m)
j =

∣∣∣∣
∫

dxI�
∗
j,I (xI )φm, j (xI )

∣∣∣∣2

, (16)

details on the derivation of this expression is found in Ap-
pendix B. Considering the noninteracting case, Fig. 9(a)
reveals that the impurity resides in a coherent state with popu-
lations consistent with xs = 0.5�B. As previously mentioned,

the second PEC is completely depopulated in this case due to
the absence of interactions, see Fig. 9(d). Introducing inter-
actions with strength g = 2.5h̄ωB�B fundamentally alters the
system’s behavior. By contrasting Fig. 9(b) to the noninteract-
ing scenario shown in Fig. 9(a) and 9(d), we observe a shift
of the initial population of the states of the first PEC, espe-
cially apparent is the reduction of the corresponding ground
states for m = 0. In addition, in contrast to the constant in
time populations of Fig. 9(a), the occupations of the different
m contributions in the interacting case of Fig. 9(b), are not
constant in time but they rather fluctuate with double the
frequency of the impurity’s dipole oscillation. This behavior
can be attributed to the impact of the Born-Huang term as it
can be captured well by VABO (not shown here for brevity).

Turning our attention to the second j = 2 PEC we observe
the population of the higher-lying m = 9 state of the first
excited PEC and to a lesser extent m = 7, see Fig. 9(e). The
above demonstrates that the initial state is affected by nona-
diabatic couplings in agreement to [24]. The involvement of
such highly excited states of the j = 2 state is a remarkable
consequence of the Born-Huang term and a manifestation of
the influence of the synthetic conical intersection at g → ∞
to the finite g dynamics. Indeed, given the eigenstates of the
effective potential Fig. 8(b2), one would expect that the first
three states would be involved in the dynamics which repre-
sent the triple-well, however, this is not the case since close
to the minima of the effective potential the energy correction
stemming from the Born-Huang term becomes very large as
does the non adiabatic coupling, A1,2(xI ) of Eq. (8). This
shows that the adiabatic-basis that MCBO employs is not a
good basis for describing the system, a well-known fact in
molecular physics where approaches based on quasidiabatic
potentials [46–49] are preferred to treat the dynamics of a
system close to a conical intersection. During time evolution,
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(a)
(b) (c)

(d) (e) (f)

FIG. 9. Time evolution of the population n(m)
j of the eigenstates of (a), (b), (c) the ground-state PEC j = 1 and (d), (e), (f) the first excited

j = 2 for m = 0, . . . , 10, see Eq. (16). In all cases, a shift xs = 0.5 is considered. The interaction strength is (a) and (d) g = 0.0, (b) and (e)
g = 2.5, and (c) and (f) g = 5.0.

we observe that the occupations of these highly excited states
fluctuate with double the frequency of the dipole oscillation,
therefore, we can conclude that this initial excited population
essentially performs coherent oscillations within the excited
PEC. An additional effect appears at the time instances that
the impurity crosses the x = 0 point, more precisely at t ≈
4ωB and t ≈ 12ωB, we detect a population transfer to the
m = 0 state of the first excited PEC. This is the fingerprint
of A1,2(xI ) in the dynamics, reinforcing the pivotal role of
avoided crossings in governing the system’s dynamical evo-
lution. This excitation also results in dynamical transport1

from m = 0 to m = 1, 2 states is observed corresponding to
redistribution of the impurity density among the wells, see
Fig. 8(b2). Based on this, we can explain the fast oscillations
observed close to x = 0 in Fig. 6(b2) as the results of the
simultaneous tunneling dynamics of the initially excited j = 2
PEC density and the nonadiabatic transfer of impurity density
leading to its trapping to the low-lying effective potential
states.

As the interaction strength increases to g = 5.0h̄ωB�B, the
trends identified in the weakly interacting regime become
even more pronounced, as depicted in Figs. 9(c) and 9(f).
Specifically, transitions and occupations of the higher-lying
states of the first PEC, most notably for m = 7 and 9, are
further enhanced. This is accompanied by a concurrent sup-
pression of the m = 0 ground-state occupation within the first
PEC, highlighting the growing influence of PJTE induced
phenomena as the synthetic conical intersections at g → ∞
are approached.

In our previous work [24], we clearly established in our
beyond Born-Oppenheimer investigation the association be-
tween avoided crossings and the PJTE. The present analysis,
focusing in the beginning on the case of a small displacement,
already demonstrates that the impurity dynamics is promi-
nently affected by the PJTE.

1Formally, this is overbarrier dynamics since the potential cannot
localize states within the wells, see Fig. 8(b2).

B. Role of interaction for the larger shift

Given that nonadiabatic effects are already manifest for
xs = 0.5 �B it is interesting to examine how our findings
modify when additional avoided crossings, induced by the
PJTE, come into play, as the initial shift, xs, increases. As we
will elaborate below an adjustment to xs = 1.5 �B leads to a
pronounced impact of nonadiabatic phenomena on the system
dynamics, providing a deeper insight into how nonadiabatic
effects govern the evolution of the system.

1. Density analysis

Analogously to Sec. IV A 1, we begin by examining the
weaker interaction, laying the groundwork for analyzing the
bath and impurity one-body density before progressing to
stronger coupling regimes. Hence, we consider in Fig. 10
the interaction strength g = 2.5h̄ωB�B. Here, Fig. 10(a1) il-
lustrates the one-body density of the bath, while Fig. 10(b1)
presents the corresponding impurity one-body density, both
derived from the numerically exact ML-X results. First, notice
that as a result of the bath impurity interaction, the initial state
of the impurity for g > 0 is displaced with respect to the g = 0
case, compare the initial position of the density relative to
the horizontal dashed lines in Figs. 10(b1) and 2(b2). The
coherent dipole oscillation of the impurity species, evident
in the noninteracting case for the complete time evolution,
is only faintly visible up to t ≈ 7.5/ωB for g = 2.5 h̄ωB�B.
In the latter case, it becomes apparent that a significant por-
tion of the impurity density is unable to transmit through the
bath and it is instead getting trapped within its spatial extent.
This can be attributed to the scattering of the impurity with
its bath leading to momentum transfer among the species.
Beyond t ≈ 7.5ω−1

B , ρ
(1)
I (x; t ) gets redistributed within its

fermionic environment possessing substantial spatial modu-
lations. In particular, it exhibits prominent interference-like
peaks and troughs along the trajectory that a coherent state
would have followed. While the bath density for t < 7.5ω−1

B
shows a density depletion along the path of the coherent
state, at later times it shows a highly fluctuating character,
as shown in Fig. 10(a1), and is represented by the oscil-
lating average mean position of the bath species 〈xB(t )〉 =∫

dx xρ (1)
B (x, t )/

∫
dx ρ

(1)
B (x, t ), depicted by the dotted blue
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 10. Spatiotemporal dependence of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for an interacting system

with g = 2.5h̄�BωB. The impurity mass mI = 4mB and trapping frequency ωI = 0.5ωB as well as the larger shift xs = 1.5�B are considered. The
different columns correspond to the distinct methods (see labels). For the impurity species, we include cyan dashed lines at x = ±(xs + √

2�I )
as a visual reference to the oscillation amplitude in the noninteracting case. The blue dotted line in the upper panels (ai) indicates the average
position of the bath density 〈xB(t )〉. The green dotted line in the impurity density (bi) gives as a guide to the eye the dipole oscillation in the
NVABO case.

line. This behavior can also be attributed to the momentum
exchange among the bath and impurity particles mentioned
above.

Next, we evaluate to what extent this behavior is cap-
tured by the adiabatic approximation. Focusing on the simpler
NVABO approximation presented in Figs. 10(a2) and 10(b2),
the dipole oscillation of the impurity species remains appar-
ent in the impurity one-body density throughout the time
evolution. The bath density exhibits a corresponding density
depletion due to the bath-impurity repulsion, see Fig. 10(a2).
In the impurity one-body density, a time-dependent mod-
ulation of the peak impurity density during its oscillation
becomes noticeable after the first half-period, particularly vis-
ible in Fig. 10(b2) around xI ≈ 0 and xI ≈ ±1�B. Moreover,
after the first period of oscillation, a small fraction of the
impurity density fails to penetrate back into the bath density,
see Fig. 10(b2) for t ≈ 15ω−1

B , leading to a small density
fraction lying outside the fermionic environment.

When comparing the dipole oscillation of the impurity
species in Fig. 10(b2) to the noninteracting case [Fig. 2(b2)],
we observe a reduction in the oscillation period, underscoring
the influence of interactions within the NVABO approxima-
tion, however, this reduction is greatly underestimated when
compared to ML-X. This is similar to the case of the smaller
shift [Fig. 3(b2)] at xs = 0.5�B, where the dipole oscillation
period remains nearly unchanged compared to the underlying
case. This suggests that within the NVABO approximation,
the dipole oscillation frequency is largely insensitive to the
interaction. Further supporting our argument which attributes
this frequency modulation to the Born-Huang term associated
to the bath momentum.

Turning our attention to the Born-Huang correction within
the VABO approximation, Fig. 10(a3) shows a similar
behavior for the bath one-body density to the NVABO ap-
proximation. However, in Fig. 10(b3), it is evident that the
Born-Huang term prevents the impurity species from penetrat-
ing the bath species after the first half period, t > 7.5ω−1

B , as
evidenced by the loss of agreement with the dipole oscillation
predicted by the NVABO approximation. The pronounced

dipole oscillation seen in the NVABO case gets distorted for
larger times, as the impurity density fragments into smaller
components that exhibit a fluctuating density pattern. Even
in the VABO case, however, the fraction of the impurity
density that deviates from the dipole oscillation pattern is
much smaller when compared to the numerically exact result
in Fig. 10(b1). In agreement to our previous arguments, the
period of the dipole oscillation is consistent with the ML-X
result of Fig. 2(b1) and significantly longer than NVABO, see
Fig. 2(b2).

Already by examining this case, we observe a dramatic
shift in the phenomena emerging in the dynamics as the
nonadiabatic effect associated to the excitation of the bath
by the motion of the impurity becomes more apparent and
thus both adiabatic approximations fail to capture some of the
essential features of the dynamics. By considering even larger
interaction values, we can show the complete breakdown of
the adiabatic dynamics.

Indeed, by turning our attention to the strongly interacting
scenario (g = 5.0h̄ωB�B) we observe a dramatic influence of
nonadiabatic effects on the dynamics. Starting with the nu-
merically exact result within ML-X, we observe significant
deviations for both the bath, see Fig. 11(a1), and the impurity,
see Fig. 11(b1), species compared to the previously ana-
lyzed cases. Unlike the lower interaction strength in Fig. 10
(g = 2.5h̄ωB�B) or a smaller shift (xs = 0.5�B) in Fig. 4, in
the case of Fig. 11(b1) the impurity’s one-body density is
largely unable to penetrate the bath species and it is entirely
reflected, performing a small amplitude oscillation near the
upper boundary of the bath density (xI ≈ 2.5�B). This oscilla-
tion occurs locally and with a higher frequency than the one
set by ωI as evidenced by the green dotted line. During the
oscillation dynamics, a small fraction of the impurity density
can enter the bath density.

Consequently, the bath species exhibit a notably different
behavior: it maintains its initial shape, characterized by a max-
imum density at the center, and does not develop pronounced
density valleys in the one-body density due to the interac-
tion. However, the bath species perform collective dipole
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 11. Spatiotemporal dependence of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for an interacting system

with g = 5.0h̄�BωB. The impurity mass mI = 4mB and trapping frequency ωI = 0.5ωB as well as the larger shift xs = 1.5�B are considered. The
different columns correspond to the distinct methods (see labels). For the impurity species, we include cyan dashed lines at x = ±(xs + √

2�I )
as a visual reference to the oscillation amplitude in the noninteracting case. The blue dotted line in the upper panels (ai) indicates the average
position of the bath density 〈xB(t )〉. The green dotted line in the impurity density panel (bi) gives as a guide to the eye the dipole oscillation in
the NVABO case.

oscillations in response to the impurity, as indicated by the
time evolution of the average mean position shown in the
plot. Once a sizable fraction of the impurity density is able to
penetrate into the bath density at t ≈ 10ω−1

B , the latter starts
exhibiting pronounced minima due to interaction.

The NVABO approximation does not capture this behav-
ior, but rather it exhibits similar dynamics to the previously
analyzed cases, see Figs. 11(a2) and 11(b2). Qualitatively,
the behavior is almost identical to the g = 2.5 h̄ωB�B case of
Figs. 10(a2) and 10(b2). The main differences are a longer os-
cillation period and the emergence of more pronounced peak
density fluctuations on the impurity species, see Fig. 11(b2).
On the other hand, the VABO approximation is able to capture
some of the main features of the exact impurity dynamics,
compare Figs. 11(a3) and 11(b3) to Figs. 11(a1) and 11(b1).
This leads to the conclusion that the trapping of the impurity
density outside its bath, which can be seen in Fig. 11(b3),
is substantially influenced by the inclusion of the Born-
Huang correction, which accounts for changes in the bath’s
kinetic energy. Only a small fraction of the impurity density
passes and transmits through the bath species, where it shows
tunneling-like dynamics. Nevertheless, the majority of the im-
purity density remains outside the bath and does not undergo
well-pronounced oscillations. As a result, in the bath one-
body density [shown in Fig. 11(a3), we observe only a slight
density valley during the first half of the initial faint-dipole
oscillation. This valley subsequently vanishes, leaving behind
only minor perturbations (small wiggles) in the bath density.
A collective dipole oscillation, as observed in the numerically
exact results, see Fig. 11(a1) is absent for ρ

(1)
B (x; t ).

The above already indicates that in this regime the dy-
namics of the system tends towards being completely diabatic
since the impurity is able to excite a collective mode of the
bath, which of course it is difficult to accurately describe
with a small number of PEC, let alone a single one as in the
adiabatic approximation. Nevertheless, comparing to VABO
we can verify that the origin of the localization of the im-
purity outside its fermionic environment originates from the
bath’s kinetic energy contribution, as accounted for by the

Born-Huang term. Fig. 7(b) offers a graphical illustration of
this interplay, showing the qualitative behavior of both the
Born-Huang term, which is shifted by a constant factor, and
the PECs. It provides an intuitive summary of the spatial dy-
namics of the impurity, as revealed by the various approaches
discussed earlier. The alignment between the positions of the
avoided crossings and the peaks of the Born-Huang term
V 11

ren(xI ) indicates the emergence of an effective harmonic
oscillator potential, which leads to the self-trapping of the
impurity in the outer region, exhibiting quasi-diabatic behav-
ior dictated by the structure of the PECs. As a result, only a
small fraction of the impurity density, as previously observed,
is able to escape this trapping.

2. Analysis in terms of PEC

Building on our earlier analysis of smaller shifts, we once
again examine the populations of the PECs to deepen our un-
derstanding of the one-body density trends shown in Figs. 2,
10, and 11. This allows us to further unravel the role of beyond
Born-Oppenheimer effects, with particular emphasis on the
PJTE. To achieve this, we analyze the contributions of individ-
ual PECs via Eq. (12), using Fig. 12 to illustrate their behavior
and its implications. In the simple noninteracting case, as
shown in Fig. 12(a), we observe, as expected, that only the
lowest PEC is involved. This corroborates our findings on the
one-body density [Fig. 2(b2)], confirming that this behavior is
entirely described within the adiabatic approximation.

The analysis becomes more intriguing when interactions
are introduced, as depicted in Fig. 12(b). The contributions
from PECs beyond the Born-Oppenheimer approximation in-
crease significantly: the population of the ground-state PEC
diminishes, while the populations of the first and second ex-
cited PECs rise. In stark contrast to the small shift case, see
Fig. 5(b), we observe that the population transfer to the excited
PEC is very pronounced. Indeed, similarly to the case of xs =
0.5 �B the first excited PEC has a small population at t = 0
due to the influence of the synthetic conical intersections,
however, during the time evolution, the population of the
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(a) (b) (c)

FIG. 12. The total occupation of the first three PEC calculated via Eq. (12). An initial shift xs = 1.5�B, mI = 4mB, and ωI = 0.5ωB

are considered. Panel (a) corresponds to the noninteracting case, (b) is the weakly interacting case g = 2.5h̄�BωB, and lastly (c) the strong
interaction case g = 5.0h̄�BωB. In all cases, NB = 5.

ground PEC gets irreversibly (for the time scales considered
here) depleted in favor of the excited states. In particular, the
occupation of the j = 1 PEC reaches a minimum of n1 ≈ 0.6
at t ≈ 5.5ω−1

B and then it performs small-amplitude oscilla-
tions obeying n1 < 0.7. The interpretation of this behavior is
that the momentum transfer caused by the first crossing of
the impurity through its fermionic environment results to the
generation of a collective excitation of the fermionic environ-
ment, see Fig. 10(a1), which distributes the impurity energy to
multiple degrees of freedom of the fermionic bath and thus the
initial state of the impurity is no longer able to revive within
such a small time frame.

In the case of strong interactions [Fig. 12(c)], we observe
a quite different behavior of the ground-state PEC popula-
tion than the g = 2.5 h̄ωB�B case, as the population of all
j = 1, 2, 3 states exhibit a pronounced oscillatory behavior
that can be associated to the dipole mode of the bath observed
in Fig. 11(a1) as the minima of n1 correspond to the maximum
negative displacement of the bath species and the maxima of
n1 to the corresponding positive displacements. Of course, the
amplitude of the PEC population transfer is non-constant in
time, which is justified by the fact that the dipole motion of
the bath is accompanied by other types of excitations of this
species.

To proceed further, we examine the impurity density con-
tributions of the different PECs in Fig. 13. Of course, for g =
0, our results are straightforward, since only the j = 1 PEC is
involved and thus ρ

(1)
I,1 (x; t ) = ρ

(1)
I (x; t ), see Figs. 13(a1) and

13(b1). In the weakly interacting case, we observe a qualita-
tively similar behavior to the case of smaller displacements.
Indeed, ρ

(1)
I,1 (x; t ) exhibits a structure similar to the impurity

density within VABO, as seen in Fig. 13(a2) to Fig. 10(b3),
however, the amplitude of ρ

(1)
I,1 (x; t ) is significantly reduced

due to the property n1(t ) = ∫
dx ρ

(1)
I,1 (x; t ) of the PEC densi-

ties and the drastic reduction of n1(t ) during the dynamics, see
Fig. 12(b). Turning to the case of the excited PEC, we observe
that the case of xs = 1.5�B shows a similar qualitative behav-
ior as the case of xs = 0.5�B, compare Fig. 13(b2) to Fig.
6(b2). In particular, a density component of the second PEC
emerges near each avoided crossing as the impurity density of
the ground PEC goes through this crossing, which indicates

diabatic transport. Similarly, also to the case of xs = 0.5�B this
impurity density fraction exhibits tunneling dynamics from
one crossing to another, an effect that is more prominently
visible for t ≈ 6.5ω−1

B and �B � x � 2lB. The above results
suggest that despite the fact that in this case the dynamics of
the system deviates substantially from the adiabatic case, via
the generation of collective excitations observable in the bath
density, the underlying cause is the diabatic transport of the
impurity density. This shows that the nonadiabatic behavior
of the system observed for both xs = 0.5�B and xs = 1.5�B in
the g = 2.5h̄ωB�B case essentially defines a crossover region
from fully adiabatic behavior for very low interactions and the
collective excitation behavior for strong interaction, which we
examine below.

For strong interactions g = 5.0h̄ωB�B, the behavior of the
system changes as Figs. 13(a3) and 13(b3) show a very dif-
ferent behavior of the system. Notice that shortly after the
dynamics are initiated at t = 2ω−1

B , the impurity impinges on
the x ≈ 2�B avoided crossing and very pronounced diabatic
transport to the j = 2 PEC occurs, transferring the majority
of the impurity density to the excited PEC. Then, the density
is largely transferred diabatically back to the first excited
state at t ≈ 5ω−1

B . This dynamics persists in the examined
timescale. Notice that the remaining adiabatic transport, when
combined to the tunneling dynamics in the excited PEC are
the reason for the density that penetrates the bath, visible in
Fig. 11(b1).

The findings of g = 5h̄ωB�B and xs = 1.5�B demonstrate
a significant qualitative divergence in behavior from the pre-
vious cases. Indeed, the dynamics of the system can be
understood more easily by considering the infinitely interact-
ing case of an impenetrable bath. Elementary physics leads
to the conclusion that in this case the motion of the impurity
after the quench will result to an elastic collision with the bath,
where the impurity transfers its momentum to its fermionic
environment pushing it along the direction it traveled while
the impurity recoils backward, leading to a periodic bath im-
purity collision every period of the collective oscillation, see
also Figs. 11(a1) and 11(b1). Notice that similar phenomenol-
ogy has already been observed in Bose-Fermi mixtures [40].
Although the dynamics can be understood within the language
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(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 13. Time dependence of the PEC-resolved one-body density of the impurity, ρ
(1)
I,n (x; t ), corresponding to the nth PEC and for varying

interaction strengths (see label). The impurity mass is set to mI = 4mB and the trapping frequency to ωI = 0.5ωB, with a larger shift of
xs = 1.5�B taken into account. The green dashed lines indicate the avoided crossings between the ground-state and first-excited PEC, as
described in Eq. (9).

of PEC, the analysis becomes tedious due to the large super-
position of PEC that gets involved in the dynamics, owing
to the momentum deposition in the bath component. Also
the transport through the conical intersections is simple due
to the almost perfect diabatic transport in the g → ∞ limit.
Therefore, in summary, our analysis indicates that the large
interaction energy suppresses the interesting nonadiabatic ef-
fects observed in the other cases since diabatic transport
dominates.

To finish this section, we briefly discuss the occupation
of different vibrational states of the two lowest PEC. In the
noninteracting case, the shift in potential energy leads to the
occupation of higher-lying states of the ground-state PEC at
the center of the trapping potential [Fig. 14(a)]. With the
increased displacement, xs = 1.5 we observe that the first
excited state of the ground-state PEC initially becomes the
most populated as the Poisson distribution of the eigenstate
population within the initial coherent state becomes more
apparent. Due to the absence of interactions, the bath and
impurity remain separable, resulting in no temporal evolution
of the state populations. Upon introducing weak interactions
(g = 2.5h̄ωB�B), as depicted in Figs. 14(b) and 14(d), we
initially observe a behavior in the ground-state PEC similar to
the noninteracting case but shifted to higher lying eigenstates,

owing to the extra shift of the initial impurity configuration
due to the interaction. However, once the system encounters
an avoided crossing—evidenced by the still-discernible dipole
oscillation in the impurity’s one-body density [Fig. 10(b1)]—
the second to fifth eigenstates of the first excited PEC become
significantly populated. Notably, in contrast to the smaller
displacement case, these states (including the third state) re-
main occupied over time. The effective potential of the first
excited PEC, when combined with the structure of the corre-
sponding eigenfunctions, reveals that the triple-well structure
facilitates trapping, whereas the weakly pronounced double-
well structure in the ground-state PEC does not. Moving to
the strongly interacting regime (g = 5.0h̄ωB�B), we observe
a similar pattern. In particular, during time-instances where
the impurity density penetrates the trap center despite the
repulsive interaction, the first excited state in the excited PEC
dominates, as shown in Fig. 14(c). In contrast, the lowest state
in the ground-state PEC remains effectively unoccupied. This
behavior correlates with the oscillation of the impurity’s one-
body density, which extends beyond x > 2.0�B, with only a
small fraction reaching the trap center. Examining the ground-
state PEC’s zeroth eigenfunction [Fig. 8(b3)], we note its
localization at the trap center, yet the strong repulsion prevents
significant impurity presence in this region. Finally, a key

(a) (b) (c)

(d) (e) (f)

FIG. 14. Time-evolution of the population of the eigenstates of [(a)–(c)] the ground-state PEC j = 1 and [(d)–(f)] the first excited j = 2
for m = 0, . . . , 10, see Eq. (16). In all cases a shift xs = 1.5 is considered. The interaction strength is [(a) and (d)] g = 0.0, [(b) and (e)] 2.5,
and [(c) and (f)] 5.0. The right vertical axes show the eigenenergy of the corresponding state for the effective single-body Hamiltonian given
in Eq. (15).
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(a) (b)

FIG. 15. The lowest lying PECs (9) from the MCBO approach for an interaction strength g = 5.0 h̄ωB�B for a heavy impurity mass
mI = 4mB and the trapping parameters ωI = 0.5ωB in (a) and ωI = 4ωB (b) (see label) [24].

point of Figs. 8(a2), 8(b2), 8(a3), and 8(b3) is that in the
interacting case, the occupation of states in the excited PEC
lies in the same energy range as the lowest lying PEC.

V. STRONGER TRAPPING CONFINEMENT
OF THE IMPURITY

As part of our ground-state analysis, we explored the dy-
namics of a tightly confined impurity species in depth [24].
Building on this foundation, we now examine the dynamic
behavior for this scenario ωI = 4ωB, focusing on the case
where the avoided crossing at x = 0 occurring between the
lowest and first excited PECs becomes not visible because
of the large contribution of the impurity confining potential,
compare Figs. 15(b) to 15(a).

To this end, we consider the case of a small displacement
(xs = 0.5�B) to specifically investigate the behavior near the
trap center in Fig. 16. In the noninteracting case (g = 0), as
expected, no changes are observed in the one-body density of
the bath, as depicted in Fig. 16(a1). For the impurity species
in Fig. 16(b1), aside from a reduced confinement length of the
impurity one-body density when compared to the ωI = 0.5ωB

case examined previously, we observe dipole oscillations oc-
curring on a significantly faster timescale as anticipated given
the higher trap frequency (compare to Fig. 2).

When interactions are introduced, the behavior of the
bath’s one-body density changes substantially in Fig. 16(a2).
For g = 2.5h̄ωB�B, a pronounced density dip emerges due
to the repulsive interaction, displacing the bath’s density
maximum, which was previously centered in the trap in
the noninteracting case. This displacement, driven by the
impurity, can be interpreted as excitations within the bath.
For the impurity species (b2), only minor adjustments are
observed. The dipole oscillation remains clearly visible, al-
though interactions and the bath’s initial density structure
cause a broadening of the density at the turning points and
a sharpening near the trap center. Compared to our previous
investigations, it is evident that the expected splitting of the
impurity density—strongly associated with the PJTE does not
occur in this case.

This trend continues in the strongly interacting regime (g =
5.0h̄ωB�B). Here, the bath’s one-body density Fig. 16(a3) ex-
hibits a more pronounced central minimum, with significantly
stronger displacement of the bath species by the impurity. The
bath excitations due to interaction intensify, leading to sharper
maxima adjacent to the density minima. At the outer edges
of the bath, subtle oscillations emerge, induced by the strong
repulsion from the impurity. For the impurity’s one-body den-
sity in Fig. 16(b3), the previously observed effects—density

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 16. Spatiotemporal dependence of the one-body density of the bath ρ
(1)
B (x; t ) and impurity ρ

(1)
I (x; t ) species for varying interaction

strengths (see label). The impurity mass mI = 4mB and stronger trapping frequency ωI = 4.0ωB as well as the shift xs = 0.5�B are considered.
For the impurity species, we include cyan dashed lines at x = ±(xs + √

2�I ) as a visual reference to the oscillation amplitude in the
noninteracting case.
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concentration at the center and broadening at turning points—
become more pronounced.

The above indicates that the case of stronger confinement
strongly affects the behavior of the impurity. Since the dy-
namics becomes much faster and the impurity carries more
density, we observe a largely diabatic behavior of the impu-
rity and the excitation of collective modes as in Fig. 11(a1)
and Fig. 11(b1). Therefore, the strongly confined impurity
case is not particularly attractive for studying beyond Born-
Oppenheimer phenomena.

VI. SUMMARY AND OUTLOOK

We have investigated the real-time dynamics of a mass-
imbalanced, fermionic few-body system, highlighting the
fundamental role of nonadiabatic effects induced by the PJTE.
By employing numerically exact methods, specifically, the
multilayer multiconfiguration time-dependent Hartree method
and the multichannel Born-Oppenehimer approach, we have
provided a detailed analysis of how conical intersections and
avoided crossings influence the system’s evolution.

Our findings reveal that nonadiabatic coupling becomes
increasingly significant with stronger impurity-bath interac-
tions in mass-imbalanced systems. Notably, we demonstrated
that the conventional Born-Oppenheimer picture breaks down
not only in extreme regimes but already at moderate inter-
action strengths. This breakdown manifests in pronounced
population transfer between different potential energy sur-
faces, driven by pseudo Jahn-Teller effect-induced conical
intersections.

A key result is the dependence of nonadiabatic behavior on
the initial displacement and quench of the impurity trapping
potential. For small displacements, the system is predomi-
nantly influenced by a single avoided crossing. However, for
larger displacements, multiple avoided crossings come into
play, leading to enhanced energy redistribution, self-trapping
effects, and a modified impurity transport mechanism. Our
analysis shows that impurity dipole oscillations increasingly
dephase and become governed by a complex interplay of
potential energy surfaces and conical intersections. Neverthe-
less, when the energy imparted to the bath becomes too large
either because of an increased displacement of the impurity
trapping frequency, the dynamics of the impurity becomes
strongly diabatic involving the collective excitation of the
bath. Therefore suppressing the influence of beyond Born-
Oppenheimer effects associated to the crossover between
adiabatic and diabatic behavior, as the dynamics becomes
amenable to simplified diabatic transport models.

These results provide significant insights into nonadia-
batic processes in ultracold quantum gases and establish
a theoretical foundation for experimental investigations in
controlled atomic settings. The ability to tune interactions
via Fano-Feshbach resonances or confinement-induced res-
onances opens new possibilities for experimentally realizing
quantum-controlled impurity dynamics. In particular, in situ
imaging provides access to both the impurity and bath posi-
tion, allowing for a direct comparison to the spatial resolved
densities in this work.

Based on our results, several pathways for future re-
search emerge. An intriguing direction involves incorporating

spin-orbit coupling in the impurity-bath system. Since the
Jahn-Teller effect frequently occurs in heavy-element com-
pounds, the presence of spin-orbit interactions in ultracold
gases could provide a direct link between our system and
molecular physics [17,50]. Moreover, ultracold atom exper-
iments enable spin-resolved measurements, offering a unique
opportunity to observe symmetry-breaking processes induced
by nonadiabatic dynamics. Encoding the PJTE in the spin-
state evolution of the system could provide a powerful
experimental tool for probing the interplay between impurity
motion and internal degrees of freedom.

Beyond one-dimensional confinement, extending our study
to isotropically trapped two- and three-dimensional systems
could reveal novel nonadiabatic effects. In such setups, impu-
rity displacement breaks the rotational symmetry of the trap,
potentially leading to conical intersections that drive complex
quantum dynamics [51]. The competition between rotational
barriers and interaction energy may lead to novel impurity-
induced phase transitions or correlated many-body effects.

Finally, our findings naturally connect to broader concepts
in many-body physics. In particular, a fascinating question
is the potential link between the nonadiabaticity observed
here and the well-known Anderson orthogonality catastrophe
[52,53]. Traditionally, the Anderson orthogonality catastro-
phe arises when a localized and strongly interacting impurity
modifies the many-body wave function of its surrounding
bath, leading to a vanishing overlap between the interact-
ing and noninteracting ground states in the thermodynamic
limit, that is Z = √|〈ψg=0|ψg
=0〉|2 ∝ N−α with α > 0. In
our framework, this orthogonality is inherently present from
the outset: the multichannel Born-Oppenheimer ansatz ex-
plicitly accounts for the dependence of each bath fermion’s
state on the instantaneous position of the impurity. These
couplings induce collective excitations and lead to sponta-
neous symmetry breaking and impurity self-trapping. This
constitutes a qualitatively distinct regime of impurity physics,
where the breakdown of adiabaticity gives rise to emergent,
non-perturbative dynamics beyond the conventional polaron
picture, in which the impurity remains delocalized and is
dressed by virtual particle-hole excitations [54]. In contrast,
the pseudo Jahn-Teller regime features strong, nonadiabatic
coupling that results in localized impurity behavior and
symmetry-broken configurations. Our results thus provide a
foundation for future studies on quasiparticle breakdown and
many-body entanglement arising from nonadiabatic impurity
motion, offering new insights into quantum impurity problems
in ultra-cold atomic systems and their collective behavior.

By exploring these directions, future studies can deepen
our understanding of nonadiabatic quantum dynamics and
establish ultracold atomic systems as a versatile platform for
probing impurity physics beyond the Born-Oppenheimer ap-
proximation.
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APPENDIX A: THE ML-X METHOD

At the beginning in Sec. III, we provide a concise overview
of the employed numerical approaches. The purpose of this
section is to delve into the ML-X method. The ML-X ansatz
expresses the total many-body wave function, |�(t )〉, as a
linear combination of j = 1, 2, . . . , D distinct orthonormal
functions for each involved species

|�(t )〉 =
D∑

jB, jI =1

AjB, jI (t )
∣∣�B

jB (t )
〉∣∣�I

jI (t )
〉
, (A1)

where |�σ
j (t )〉 (σ = B, I) are species wave functions, and

AjB, jI (t ) are time-dependent expansion coefficients. This
decomposition is formally equivalent to a Schmidt decompo-
sition of rank D

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�̃B
k (t )

〉∣∣�̃I
k (t )

〉
, (A2)

considering the λk (t ) (Schmidt weights) as eigenvalues of the
reduced density matrix ρ (Nσ )

σ (t ), and the eigenstates |�̃σ
k (t )〉

as Schmidt modes. Hereby, the reduced density matrix for
species σ is given by

ρ (Nσ )
σ

(
x1, . . . , xNσ

, x′
1, . . . , x′

Nσ
, t

)
=

∫ Nσ̄∏
j=1

dxσ̄
j �

∗(xσ
1 = x′

1, . . . , xσ
Nσ

= x′
Nσ

, xσ̄
1 , . . . , xσ̄

Nσ̄
, t

)
×�

(
xσ

1 = x1, . . . , xσ
Nσ

= xNσ
, xσ̄

1 , . . . , xσ̄
Nσ̄

, t
)
, (A3)

with σ̄ 
= σ . Here Nσ and Nσ̄ denotes the number
of atoms belonging to the respective species σ , σ̄ .
Within the ML-X framework, the density matrix opera-
tor can be expanded as ρ (Nσ )

σ (x1, . . . , xNσ
, x′

1, . . . , x′
Nσ

, t ) =
〈x1, . . . , xNσ

|ρ̂ (Nσ )
σ (t )|x′

1, . . . , x′
Nσ

〉 with the density matrix op-
erator

ρ̂ (Nσ )
σ (t ) =

D∑
jσ , j′σ =1

jσ̄ =1

[
ρ̂ (Nσ )

σ (t )
]

jσ , j′σ

∣∣�σ
jσ (t )

〉〈
�σ

j′σ
(t )

∣∣ (A4)

introducing A∗
jσ , jσ̄ (t )Ajσ̄ , j′σ (t ) ≡ [ρ̂ (Nσ )

σ (t )] jσ , j′σ . Hence, diag-
onalizing [ρ̂ (Nσ )

σ (t )] jσ , j′σ for jσ , j′σ = 1, · · · , D yields λk (t )
and |�̃σ

k (t )〉.
The key feature of the ML-X method is the multilayered

structure. It arises from the expansion of each species wave
function, |�σ

j (t )〉 in terms of time-dependent number states
|�n(t )〉σ leading to∣∣�σ

j (t )
〉 =

∑
�n

Bσ
j,�n(t )|�n(t )〉σ , (A5)

where Bσ
j,�n(t ) corresponds to time-dependent expansion coef-

ficients in the single-species number state basis, |�n(t )〉σ . These
number states are built in terms of dσ time-dependent varia-
tionally optimized Single-Particle Functions (SPFs) given by
φσ

l (t ), l = 1, 2, . . . , dσ with �n = (n1, . . . , ndσ ) corresponding
to the number of atoms in each SPF. On the lowest layer, the
SPFs are expanded in a time-independent DVR basis {|k〉} and
are defined as

∣∣φσ
j (t )

〉 =
M∑
k=1

Cσ
jk (t )|k〉. (A6)

In this study, we used the points on the DVR grid M = 150
of a harmonic oscillator.

To compute the ground state at the beginning of our analy-
sis, imaginary-time propagation is performed using τ = −it .
This causes the energy of the state to decay proportionally to
e−(E (t )−E0 )t , converging to the ground state (E0) as τ → ∞.

The ansatz’s Hilbert space truncation is characterized by
the choice of the orbital configuration space, which is repre-
sented by C = (D; dB; dI ), where we choose the following set
for our investigation [24]:

(1) dB = 18: Bath orbitals to capture the intraspecies bath
correlations,

(2) dI = 12: Are found to be enough for the convergence
of the impurity species,

(3) D = dI = 12: Incorporating all possible Schmidt
modes of inter-species entanglement, for given dI .

This choice is based on an extensive convergence analysis
for our ground state, which has also demonstrated its validity
in the dynamics, as shown by examining the occupation num-
bers of the respective orbitals. The equations of motion are
derived using the Dirac-Frenkel variational principle [55,56]

〈δ�(t )|ih̄ ∂

∂t
− H |�(t )〉 = 0. (A7)

This leads to D2 linear differential equations for AjB, jI (t ),
coupled to nonlinear integrodifferential equations for Bσ

j,�n(t )
and Cσ

j,k (t ).

APPENDIX B: DERIVATION OF POTENTIAL ENERGY
SURFACE DIAGNOSTICS

The multi-channel Born-Oppenheimer ansatz of Eq. (7)
when casted in the second quantization formalism reads

|�(t )〉 =
∫

dxI � j,I (xI ; t )�̂†
I (xI )|0I〉 ⊗ |� j,B(xI )〉, (B1)

where � j,I (xI ; t ) is the multichannel impurity wave function
and is the only dynamical variable of the above many-body
state. Further, |� j,B(xI )〉 describes the state of the bath when
the impurity is at a fixed position, which as discussed in
Sec. III B is the eigenstate of the bath Hamiltonian ĤB +
ĤBI when xI is treated as an external parameter. Finally,
�̂

†
I (xI ) creates an impurity particle at xI , obeying the stan-

dard fermionic anti-commutation relation {�̂I (x1), �̂†
I (x2)} =

δ(x1 − x2) with the corresponding annihilation operator,
�̂I (xI ).
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In this formalism, the one-body density matrix of the im-
purity is defined as

ρ
(1)
I (x1, x2; t ) = 〈�(t )|�̂†

I (x1)�̂I (x2)|�(t )〉, (B2)

which after some straightforward fermionic anticommutation
algebra reads

ρ
(1)
I (x1, x2; t ) =

M∑
j,k=1

�∗
j,I (x1; t )�k,I (x2; t )〈� j,B(x1)|�k,B(x2)〉.

(B3)

This shows that the one-body density matrix con-
tains contributions from overlaps between bath states
〈� j,B(x1)|�k,B(x2)〉, weighted by the corresponding
impurity amplitudes. Notice that the one-body density
ρ

(1)
I (xI ; t ) = ρ (1)(xI , xI ; t ) further simplifies to

ρ
(1)
I (xI ; t ) =

M∑
j=1

|� j,I (xI ; t )|2︸ ︷︷ ︸
≡ρ

(1)
I, j (xI ;t )

, (B4)

where we have defined ρ
(1)
j,I (xI ; t ) as the PEC specific density

contribution. The overlap between bath states is simplified
because 〈� j,B(xI )|�k,B(xI )〉 = δ j,k .

To derive the probability of occupying a certain PEC curve
j, we introduce the projector

P̂ j =
∫

dxI |� j (xI )〉〈� j (xI )|, (B5)

where |� j (xI )〉 are defined as

|� j (xI )〉 = �̂
†
I (xI )|0I〉 ⊗ |� j,B(xI )〉. (B6)

The physical significance of this projector is that it sums
over all localized states of the impurity, |� j (xI )〉, upon which
the PEC is unambiguously defined. It can be easily verified
that it possesses all the properties of a projector, i.e. P̂ jP̂k =
δ j,kP̂ j and

∑M
j=1 P̂ j = ÎM , with ÎM the identity operator within

the truncated basis of the M lowest in energy PEC. These
properties can be straightforwardly proven by noting that
〈� j (x1)|�k (x2)〉 = δ j,kδ(x1 − x2), stemming from fermionic
anti-commutation relations and 〈� j,B(xI )|�k,B(xI )〉 = δ j,k

[see discussion below Eq. (B4)]. In the next step, we calculate
the expectation value of the projector

〈�(t )|P̂ j |�(t )〉 =
∫

dxI |� j,I (xI ; t )|2

=
∫

dxI ρ
(1)
I, j (xI ; t ),

(B7)

where we have again used 〈� j,B(xI )|�k,B(xI )〉 = δ j,k . The
expression above shows that the probability of occupying a
particular state on the PEC depends solely on the norm of the
impurity wave function in the jth channel integrated over all
space. In addition, Eq. (B7) justifies a posteriori the definition
of ρ

(1)
j,I (xI ) as the contribution of the jth PEC to the one-body

density in Eq. (B4), since the integral of this density function
gives the occupation of the corresponding PEC.

Moreover, by focusing on the different occupied states of
the jth PEC, we can define the projector to a specific impurity
state |φm, j〉 of it

P̂m, j = |�m, j〉〈�m, j |. (B8)

The corresponding state in this case is defined as

|�m, j〉 =
∫

dxI φm, j (xI )�̂†
I (xI )|0I〉 ⊗ |� j,B(xI )〉, (B9)

where φm, j (xI ) is the wave function of the state we want to
obtain the occupation of. The operators P̂m, j obey all the
proper projector properties, provided that the |φm, j〉 states for
varying m form an orthonormal basis, the particular prop-
erty P̂2

m, j = P̂m, j only requires that the state is normalized∫
dxI |φm, j (xI )|2 = 1. By incorporating the above assump-

tions the expectation value of the projector P̂m, j reads

〈�(t )|P̂m, j |�(t )〉 =
∣∣∣∣
∫

dxI �∗
I, j (xI ; t )φm, j (xI )

∣∣∣∣2

, (B10)

notice that 〈� j,B(xI )|�k,B(xI )〉 = δ j,k was used for this
derivation [see discussion below Eq. (B4)]. Therefore the
occupation of a given state φm, j (xI ) of the jth PEC in the
many-body state is just the squared overlap of jth PEC com-
ponent of the MCBO wave function �∗

j,I (xI ; t ) with the wave
function of the target state φm, j (xI ).
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