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Abstract
We prove the convergence of a modified Jordan–Kinderlehrer–Otto scheme to a solution
to the Fokker–Planck equation in � � R

d with general—strictly positive and temporally
constant—Dirichlet boundary conditions. We work under mild assumptions on the domain,
the drift, and the initial datum. In the special case where � is an interval in R

1, we prove
that such a solution is a gradient flow—curve of maximal slope—within a suitable space of
measures, endowed with a modifiedWasserstein distance. Our discrete scheme and modified
distance draw inspiration from contributions by A. Figalli and N. Gigli [J. Math. Pures
Appl. 94, (2010), pp. 107–130], and J. Morales [J. Math. Pures Appl. 112, (2018), pp. 41–88]
on an optimal-transport approach to evolution equations with Dirichlet boundary conditions.
Similarly to these works, we allow the mass to flow from/to the boundary ∂� throughout
the evolution. However, our leading idea is to also keep track of the mass at the boundary
by working with measures defined on the whole closure �. The driving functional is a
modification of the classical relative entropy that also makes use of the information at the
boundary. As an intermediate result, when � is an interval in R

1, we find a formula for the
descending slope of this geodesically nonconvex functional.

Mathematics Subject Classification 49Q20 · 49Q22 · 35A15 · 35K20 · 35Q84

1 Introduction

The subject of this paper is the linear Fokker–Planck equation

d

dt
ρt = div (∇ρt + ρt∇V ) (1.1)

on a bounded Euclidean domain � ⊆ R
d combined with general—strictly positive and

constant in time—Dirichlet boundary conditions, and with nonnegative initial data. We want
to approach this problemby applying the theory of optimal transport, which, since the seminal
works of R. Jordan, D. Kinderlehrer, and F. Otto [1–3], has proven effective in the study of
a number of evolution equations.
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Existence, uniqueness, and appropriate estimates are often consequence of a peculiar
structure of the problem. Important instances are those PDEs which can be seen as gradient
flows. In fact, it has been proven that several equations, including Fokker–Planck on R

d , are
gradient flows in a space of probability measures endowed with the 2-Wasserstein distance

W2(μ, ν):= inf
γ

√ˆ
|x − y|2 dγ (x, y) ,

where the infimum is taken among all couplings γ between μ and ν, i.e., measures with
marginals π1

# γ = μ and π2
# γ = ν. For such PDEs, existence can be deduced from the

convergence of the discrete-time approximations given by the Jordan–Kinderlehrer–Otto
variational scheme (also known, in a more general metric setting, as De Giorgi’s minimizing
movement scheme [4])

ρτ
(n+1)τdx ∈ argminμ

(
F(μ)+ W 2

2 (μ, ρτ
nτdx)

2τ

)
, n ∈ N0 , (1.2)

where F is a functional that depends on the equation, and τ > 0 is the time step.
When applied on a boundedEuclidean domain, this approach produces solutionswithNeu-

mann boundary conditions. This fact is inherent in the choice of the metric space (probability
measures with the distance W2) in which the flow evolves. Intuitively, Neumann boundary
conditions are natural because a curve of probability measures, by definition, conserves the
total mass; see also the discussion in [5].

In order to deal with Dirichlet boundary conditions, A. Figalli and N. Gigli defined in [6]
a modified Wasserstein distance Wb2 that gives a special role to the boundary ∂�. Despite
measuring a distance between nonnegative measures on �, the metric Wb2 is defined as an
infimum over measures γ on the product of the topological closures � × �, and only the
restrictions of the marginals π1

# γ and π2
# γ to � are prescribed (see the original paper [6]

or Section 3.6). In this sense, the boundary ∂� can be interpreted as an infinite reservoir,
where mass can be taken and deposited freely. The main result in [6] is the convergence of
the scheme

ρτ
(n+1)τ ∈ argminρ

(ˆ
�

(
ρ log ρ − ρ + 1

)
dx + Wb22(ρdx, ρ

τ
nτdx)

2τ

)
, n ∈ N0 ,

as τ ↓ 0, to a solution to the heat equation with the constant Dirichlet boundary condi-
tion ρ|∂� = 1. More generally, it was observed in [6, Section 4] that the same scheme with
a suitably modified entropy functional converges to solutions to the linear Fokker–Planck
equation (1.1) with the boundary condition ρ|∂� = e−V . In particular, this theory covers the
heat equation with any constant and strictly positive Dirichlet boundary condition.

In a more recent contribution, J. Morales [7] proved convergence of a similar discrete
scheme for a family of reaction-diffusion equations with drift, subject to rather general
Dirichlet boundary conditions. In this scheme, the distance between measures is replaced
by τ -dependent transportation costs. Morales’ work, together with [6], is the starting point
of the present paper.

Related literature

The case of the heat flow with vanishing Dirichlet boundary conditions was studied by
A. Profeta andK.-T. Sturm in [8]. They defined ‘charged probabilities’ and a suitable distance
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on them. This metric is built upon the idea that mass can touch the boundary and be reflected,
as with the classical Wasserstein distance, but possibly changing the charge (positive to
negative or vice versa). One of their results is the Evolution Variational Inequality (see [9])
for such a heat flow.

D. Kim, D. Koo and G. Seo [10] adapted the setting of [6] to porous medium equa-
tions ∂tρt = 	ρα (α > 1) with constant boundary conditions.

M. Erbar and G. Meglioli [11] generalized the result of [10] to a larger class of diffusion
equations with constant boundary conditions. They also established a dynamical characteri-
zation of Wb2, in the spirit of the Benamou–Brenier formula for W2 [12].

J.-B. Casteras, L. Monsaingeon, and F. Santambrogio [13] found theWasserstein gradient
flow structure for the equation arising from the so-called Sticky Brownian Motion, i.e., the
Fokker–Planck equation together with boundary conditions of Dirichlet type that also evolve
in time subject to diffusion and drift on the boundary. Namely, denoting by ∂n the outer
normal derivative, ⎧⎪⎨

⎪⎩
∂tρ = 	ρ in � ,

ρ = γ on ∂� ,

∂tγ = 	∂�γ − ∂nρ in ∂� .

(1.3)

M. Bormann, L.Monsaingeon, D. R.M. Renger, andM. von Renesse [14] recently proved
a negative result. If we modify (1.3) by weakening the diffusion on the boundary (i.e., we
multiply 	∂�γ by a factor a ∈ (0, 1)) the resulting problem is not a gradient flow of the
entropy in the 2-Wasserstein space built from any reasonably regular metric on �.

Our contribution

In this work, we present two novel results:

1. We prove convergence of a modified Jordan–Kinderlehrer–Otto scheme to a solution
to the Fokker–Planck equation with general Dirichlet boundary conditions under mild
regularity assumptions. To do this, we adopt a different point of view compared to [6, 7,
10]: our scheme is defined on a subsetS of the signed measures on the closure �, rather
than on measures on �.

2. In dimension d = 1, we determine that this solution is also a curve of maximal slope for
a functional H in an appropriate metric space (S , W̃b2).

Let us now explain in detail the extent of these contributions and provide precise statements.

Convergence of a modified JKO scheme

We look at the boundary-value problem⎧⎪⎪⎨
⎪⎪⎩

d

dt
ρt = div (∇ρt + ρt∇V ) in � ,

ρt |∂� = e�−V on ∂� ,

ρt=0 = ρ0 .

(1.4)

Here, � ⊆ R
d is a bounded open set and ρ0, �, V are given functions, with ρ0 ≥ 0. The

function � can be tuned to obtain the desired boundary condition.
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We introduce the set S of all signed measures on � with

μ|� ≥ 0 and μ(�) = 0 . (1.5)

We also define

E(ρ):=
ˆ

�

(
ρ log ρ + (V − 1)ρ + 1

)
dx , ρ : �→ R+ , (1.6)

and, for μ ∈ S ,

H(μ):=
⎧⎨
⎩E(ρ)+

ˆ
�dμ|∂� if μ|� = ρdx ,

∞ otherwise.
(1.7)

In Section 3.7,wewill define a transportation-cost functionalT onS .With it, we can consider
the scheme

μτ
(n+1)τ ∈ argmin

μ∈S

(
H(μ)+ T 2(μ,μτ

nτ )

2τ

)
, n ∈ N0 , τ > 0 , (1.8)

starting from some μτ
0 = μ0 ∈ S , independent of τ , such that the restriction μ0|� is

absolutely continuous with density ρ0. These sequences are extended to maps t 	→ μτ
t ,

constant on the intervals
[
nτ, (n + 1)τ

)
for every n ∈ N0, namely:

μτ
t :=μτ
t/τ�τ , t ∈ [0,∞) . (1.9)

Theorem 1.1 Assume that
´
�

ρ0 log ρ0dx < ∞, that � : � → R is Lipschitz continuous,

and that1 V ∈ W 1,d+
loc (�) ∩ L∞(�). Then:

1. Well-posedness: The maps (t 	→ μτ
t )τ resulting from the scheme (1.8) are well-defined

and uniquely defined: for every n and τ , there exists a minimizer in (1.8) and it is unique.
2. Convergence: When τ → 0, up to subsequences, the maps

(
t 	→ μτ

t |�
)
τ
converge

pointwise w.r.t. the Figalli–Gigli distance Wb2 to a curve of absolutely continuous mea-
sures t 	→ ρt dx. For every q ∈ [1, d

d−1 ), convergence holds also in L
1
loc

(
(0,∞); Lq(�)).

3. Equation: This limit curve is a weak solution to the Fokker–Planck equation (1.1); see
Section 3.4.

4. Boundary condition: The function t 	→
(√

ρt eV − e�/2
)

belongs to the space

L2
loc

([0,∞);W 1,2
0 (�)

)
.

Remark 1.2 We assume that � is defined on the whole set � in order to make sense of the
inclusion

√
ρt eV − e�/2 ∈ W 1,2

0 (�) also when ∂� is not smooth enough to have a trace
operator. Note that, if we are given a Lipschitz continuous function �0 : ∂� → R, we can
extend it to a Lipschitz function on � via

�(x):= inf
y∈∂�

(�0(y)+ (Lip�0) |x − y|) .

Remark 1.3 If V is Lipschitz continuous only in a neighborhood of ∂�, then it is possible to
find �, Lipschitz as well, in order for e�−V to match any uniformly positive and Lipschitz
boundary condition.

1 By V ∈ W 1,d+
loc (�)wemean that for everyω � � open there exists p = p(ω) > d such that V ∈ W 1,p(ω);

see also Definition 3.1.
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Remark 1.4 Throughout the proof of Theorem 1.1, we also show:

• time contractivity of suitably truncated and weighted Lq norms of μτ
t |� (see Proposition

5.15),
• upper bounds on the Lq norms of μτ

t |�, for every t > 0 (see Lemma 5.23),
• upper bounds on time averages of the W 1,2 norm of

√
ρτ
t eV , where ρτ

t is the density
of μτ

t |� (see Lemma 5.22).

Furthermore, these estimates (assuming q ∈ [1, d
d−1 ) in the first two) pass to the limit

as τ → 0, i.e., analogous properties hold for the curve t 	→ ρt .

As mentioned, the conceptual difference between the present work and [6, 7, 10] is that
we make use of signed measures on the full closure �. In this regard, our approach is similar
to those of [13, 15]. The idea is that, due to the boundary condition we have to match, it is
convenient to keep track of the mass at the boundary and to consider a functional that makes
use of this information (namely,H).

On a more technical note, although Theorem 1.1 is similar to [7, Theorem 4.1], the
latter is not applicable to the Fokker–Planck equation (1.1) without reaction term due to
[7, Assumptions (C1)-(C9)] (see in particular (C7)). Furthermore, we achieve significant
improvements in the hypotheses:

• The boundary ∂� does not need to have any regularity, as opposed to Lipschitz and with
the interior ball condition.

• There is no uniform bound on ρ0 from above or below by positive constants. Only
nonnegativity and the integrability of ρ0 log ρ0 are assumed.

• The function V is not necessarily Lipschitz continuous. Rather, it is required to be
bounded and to have suitable local Sobolev regularity.

These weak assumptions make it more involved to prove Lebesgue and Sobolev bounds
forμτ

t , aswell as the strong convergence of the scheme,which in turn allows us to characterize
the limit. Indeed:

• When ρ0 is bounded, or lies in some Lq , it is possible to propagate these properties
along t 	→ μτ

t |�; see [7, Proposition 5.3] and Proposition 5.15. With our weak assump-
tions on ρ0, we are still able to propagate the L1 bound, but also need to establish suitable
Sobolev estimates (see Proposition 5.9 and Lemma 5.22) and make use of the Sobolev
embedding theorem in order to get stronger integrability (see Lemma 5.23) and conver-
gence in L1

loc

(
(0,∞); Lq(�)

)
(see Lemma 5.26).

• If ∂� is not regular enough, we cannot directly apply the Sobolev embedding theorem
for W 1,2 functions. Since the Sobolev continuous embedding holds for W 1,2

0 functions
regardless of the domain regularity, we are still able to apply it after establishing suitable
boundary conditions for μτ

t |�; see Proposition 5.9.
• When V is not Lipschitz, we need an extra approximation procedure to prove thatμτ

t |� is
Sobolev regular and satisfies a precursor of the Fokker–Planck equation; see Proposition
5.9 and Lemma 5.10.

• Another issue with ∂� not being regular is in applying (a variant of) the Aubin–Lions
lemma to prove convergence of the scheme. One of its assumptions is a compact embed-
ding of functional spaces, which would follow from the Rellich–Kondrachov theorem
if � were regular enough. To overcome it, we use the Rellich–Kondrachov theorem on
smooth subdomains and take advantage of the integrability estimates to promote local Lq

convergence to convergence in Lq(�); see Lemma 5.26.
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Curve of maximal slope

Our second main result is a strengthened version of Theorem 1.1 in the case where � is an
interval in R

1 and V ∈ W 1,2(�). In this setting, we are able to define a true metric W̃b2
on S , construct piecewise constant maps with the scheme

μτ
(n+1)τ ∈ argmin

μ∈S

(
H(μ)+ W̃b

2
2(μ,μτ

nτ )

2τ

)
, n ∈ N0 , τ > 0 ,

μτ
0 = μ0 ,

(1.10)

for a fixed μ0 with μ0|� = ρ0dx , show that they coincide with those of Theorem 1.1, and
prove that their limit is a curve of maximal slope in (S , W̃b2).

Theorem 1.5 Assume that � = (0, 1), that
´ 1
0 ρ0 log ρ0dx < ∞, and that V ∈ W 1,2(0, 1).

Then:

1. If τ is sufficiently small, the maps (t 	→ μτ
t )τ resulting from the scheme (1.10) are

well-defined, uniquely defined, and coincide with those of Theorem 1.1.
2. When τ → 0, up to subsequences, the maps (t 	→ μτ

t )τ converge pointwise w.r.t.

Wb
∼

2 to a curve t 	→ μt .
3. The convergence μτ |� →τ μ|� also holds in L1

loc

(
(0,∞); Lq(0, 1)

)
for every q ∈

[1,∞). The curve t 	→ μt |� is a weak solution to the Fokker–Planck equa-

tion. Denoting by ρt the density of μt |�, the map t 	→
(√

ρt eV − e�/2
)
belongs

to L2
loc

([0,∞);W 1,2
0 (0, 1)

)
.

4. The map t 	→ μt is a curve of maximal slope for the functional H in the metric

space (S ,Wb
∼

2), with respect to the descending slope
∣∣∣∂

Wb
∼

2
H
∣∣∣; see Section 3.5.

Within the general theory of gradient flows in metric spaces developed by L. Ambrosio,
N. Gigli, and G. Savaré in [9] (see [5] for an overview), the ‘curve of maximal slope’ is one of
themetric counterparts of the gradient flow in theEuclidean space. In the context of PDEswith
Dirichlet boundary conditions, other proofs of this metric characterization in a (Wasserstein-
like) space ofmeasures are given in [8, 10, 11]. To be precise, the result of [8, Proposition 1.20]
is an ‘Evolution Variational Inequality’ (EVI) characterization, which implies a formulation
as curve of maximal slope by [16, Proposition 4.6]. By Proposition A.5, our functionalH is
not semiconvex and, therefore, we do not expect an EVI characterization in our setting; see
[17, Theorem 3.2]. Let us also point out that the ‘curve of maximal slope’ characterizations
in [10, 11] use the relaxed descending slope (see [9, Equation (2.3.1)]), which yields a
weaker notion of gradient flow compared to ours. In fact, establishing that the descending
slope is lower semicontinuous is the main difficulty in proving Theorem 1.5. Indeed, the
lower semicontinuity of the slope is usually derived from the geodesic (semi)convexity of
the functional via [9, Corollary 2.4.10], butH is not geodesically semiconvex by Proposition
A.5.

Nonetheless, in dimension d = 1,we are able to find an explicit formula for the descending
slope ofH in (S , W̃b2)without resorting to geodesic convexity. As a corollary, we also give
an answer, again in dimension d = 1, to the problem left open in [6] of identifying the
descending slope

∣∣∂Wb2E
∣∣ of E with respect to the Figalli–Gigli distance Wb2.
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Theorem 1.6 (see Corollary 6.5) Assume that V ∈ W 1,2(0, 1). For every ρ ∈ L1+(0, 1), we
have the formula

∣∣∣∣∂Wb2E
∣∣∣∣
2

(ρ) =

⎧⎪⎨
⎪⎩
4
ˆ 1

0

(
∂x

√
ρeV

)2

e−V dx if
√

ρeV − 1 ∈ W 1,2
0 (0, 1) ,

∞ otherwise.
(1.11)

Additionally,
∣∣∂Wb2E

∣∣ is lower semicontinuous with respect to Wb2.

We believe that the same formula should hold true also in higher dimension. A similar
open problem is [13, Conjecture 2].

Plan of the work

In Section 2, we formally derive the objects (entropy and transportation functionals) that
appear in the schemes (1.8) and (1.10).

In Section 3, we introduce notation, terminology, and assumptions that are in place
throughout the paper, we recall some definitions from the theory of gradient flows in metric
spaces, as well as the Figalli–Gigli distance of [6], andwe define rigorously the transportation
functionals T and W̃b2.

In Section 4, we gather the main properties of these functionals and of the corresponding
admissible transport plans. In particular, we show that W̃b2 is a true metric when� is a finite
union of one-dimensional intervals.

In Section 5, we prove Theorem 1.1.
In Sections 6-7, we focus on the case where � = (0, 1) ⊆ R

1. In Section 6, we find a
formula for the slope ofH in the metric space (S , W̃b2) and prove, as a corollary, Theorem
1.6. In Section 7, making use of Theorem 1.1 and of the slope formula, we prove Theorem
1.5.

Appendix A contains some additional results on W̃b2. Particularly, we prove the lack of
geodesic λ-convexity forH when � = (0, 1).

2 Formal derivation

Let us work at a completely formal level and postulate that a solution to the Fokker–Planck
equation (1.4) is the “Wasserstein-like” gradient flow of some functionalF. By this we mean
the following:

1. the motion of ρt in � is governed by the continuity equation

d

dt
ρt = − div(ρtvt ) , (2.1)

for some velocity field vt ,
2. the time-derivative of ρt equals the inverse of the Wasserstein gradient of F at ρt for

every t , in the sense that for every sufficiently nice curve s 	→ fs of functions on �

starting at f0 = ρt we have

d

ds
F( fsdx)

∣∣∣
s=0 = −

ˆ
�

〈vt ,∇ψ〉ρtdx , where
d

ds
fs
∣∣∣
s=0 = − div(ρt∇ψ) . (2.2)
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As we want to retrieve the Fokker–Planck equation, a reasonable choice for F seems to be

F0(ρdx):=
ˆ

�

(
ρ log ρ + (V − 1)ρ + 1

)
dx . (2.3)

For a fixed t ≥ 0 and a curve s 	→ fs , we have

d

ds
F0( fsdx) =

ˆ
�

(V + log fs)
d

ds
fsdx ,

and, therefore,

d

ds
F0( fsdx)

∣∣∣
s=0 = −

ˆ
�

(V + log ρt ) div(ρt∇ψ)dx

=
ˆ

�

〈(∇V + ∇ log ρt ),∇ψ〉ρtdx −
ˆ

∂�

�ρt 〈∇ψ, n〉dH d−1 ,

where, in the last identity, we used the boundary conditions in (1.4). Let us choose

vt := − ∇V − ∇ log ρt ,

which makes the continuity equation (2.1) true, since ρt solves (1.4). Then,

d

ds
F0( fs)

∣∣∣
s=0 = −

ˆ
�

〈vt ,∇ψ〉ρtdx −
ˆ

∂�

�ρt 〈∇ψ, n〉dH d−1 ,

and we see that F0 is not the right functional because of the integral on the boundary. The
measure 〈∇ψ, n〉ρtH d−1 on ∂� can be seen as the flux of mass (coming from f0 = ρt ) that
is moving away from � along the flow s 	→ fs at s = 0. Thus, if we let this mass settle on
the boundary, 〈∇ψ, n〉ρtH d−1 is the time-derivative of the mass on ∂�. For this reason, it
makes sense to consider not just measures on �, but rather on the closure �, and to define

F(μ):=F0(μ|�)+
ˆ

�dμ|∂� .

Our entropy functional H is defined precisely like this, and, as we will see in Section 3, the
transportation functionals T and W̃b2 are extensions of Wb2 to the subset S of the signed
measures on �, constructed so as to encode the idea that mass can leave � to settle on ∂�

(and vice versa).
This argument is simple, but let us also emphasize the hidden difficulties:

• we assume low regularity on ∂� and on the functions ρ0 and V ;
• the transportation-cost functionals W̃b2 and T will not be, in general, distances;
• the functionalH is not bounded from below onS (if � is nonconstant), nor it is strictly

convex. Indeed, it is linear along lines of the form R � l 	→ μ+ lη with μ, η ∈ S and η

concentrated on ∂�;
• when (S , W̃b2) is a geodesic metric space, the functional H is not geodesically semi-

convex; see [6, Remark 3.4] and Section A.3.

3 Preliminaries

3.1 Setting

Throughout the paper, � is an open, bounded, and nonempty subset of R
d . Without loss of

generality, we assume that 0 ∈ �. No assumption is made on the regularity of its boundary.

123



Variational structures for the Fokker–Planck equation with… Page 9 of 58    23 

Three functions are given: the initial datum ρ0 : � → R+, the potential V : � → R,
and the function � : � → R that determines the boundary condition. We assume that � is
Lipschitz continuous and that the integral

´
�

ρ0 log ρ0dx is finite. In addition, we suppose

that V is bounded (i.e., in L∞(�)) and in the set of locally Sobolev functions W 1,d+
loc (�).2

Definition 3.1 We say that V ∈ W 1,d+
loc (�) if, for every ω � � open, there exists p =

p(ω) > d such that V ∈ W 1,p(ω).

The setS is the convex cone of all finite and signed Borel measuresμ on� such that (1.5)
holds.

Proposition 3.2 The setS is closed w.r.t. the weak convergence, i.e., in duality with contin-
uous and bounded functions on �.

Proof If S � μn →n μ, then μ(�) = limn→∞ μn(�) = 0 and, for every f : � → R+
continuous and compactly supported in �,ˆ

f dμ� =
ˆ

f dμ = lim
n→∞

ˆ
f dμn = lim

n→∞

ˆ
f dμn

� ≥ 0 .

The conclusion follows from the Riesz–Markov–Kakutani theorem. ��
The entropy functionals E : L1+(�) → R ∪ {∞} and H : S → R ∪ {∞} are defined

in (1.6) and (1.7), respectively.

3.2 Convention on constants

The symbol c is reserved for strictly positive real constants. The number it represents may
change from formula to formula and possibly depends on the dimension d , the set �, the
functions V and �, and the initial datum ρ0. We also allow c to depend on other quantities,
which are, in case, explicitly displayed as a subscript.

3.3 Measures

For every signed Borel measure μ and Borel set A, we write μA = μ|A for the restriction
of μ to A. Similarly, and following the notation of [6, 7], if γ is a measure on a product
space and A, B are Borel, we write γ B

A = γA×B for the restriction of γ to A × B. We use
the notation μ+, μ− for the positive and negative parts of a given measure μ, and ‖μ‖ for
the total-variation norm of μ, i.e., the total mass of μ+ + μ−.

For every Borel function f and signed Borel measure μ, we denote by μ( f ) the inte-
gral

´
f dμ.

On the set of the finite signed Borel measures on �, we also consider the (modified)
Kantorovich–Rubinstein norm (see [18, Section 8.10(viii)])

‖μ‖
KR
∼ := ∣∣μ(�)

∣∣+ sup
{
μ( f ) : f : �→ R , Lip( f ) ≤ 1 and f (0) = 0

}
. (3.1)

We write F#μ for the push-forward of a (signed) Borel measure μ via a Borel map F .
Often, we use as F the projection onto some coordinate: we write π i for the projection on
the i th coordinate (or π i j for the projection on the two coordinates i and j).

We denote by L d the d-dimensional Lebesgue measure on R
d . We also use the nota-

tion |A| :=L d(A) when A ⊆ R
d is a Borel set. We write δx for the Dirac delta measure

at x .

2 In particular, V ∈ C(�).
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3.4 Weak solution to the Fokker–Planck equation

We say that a family of nonnegative measures (μt )t≥0 on� is a weak solution to the Fokker–
Planck equation if:

1. it is continuous in duality with the space of continuous and compactly supported func-
tions Cc(�);

2. for every open set ω � �, both t 	→ μt (ω) and t 	→ ´ |∇V | dμt |ω belong
to L1

loc

([0,∞)
)
, i.e., their restrictions to (0, t̄ ) are integrable for every t̄ > 0;

3. for every ϕ ∈ C2
c (�) and 0 ≤ s ≤ t , the following identity holds:
ˆ

ϕdμt −
ˆ

ϕdμs =
ˆ t

s

ˆ (
	ϕ − 〈∇ϕ,∇V 〉)dμrdr . (3.2)

3.5 Metric gradient flows

The general theory of gradient flows in metric spaces was developed in [9]; we refer to this
book and to the survey [5] for a comprehensive exposition of the topic. We collect here only
the definitions we need from this theory.

Let (X ,d) be a metric space, let [0,∞) � t 	→ xt be an X -valued map, and let f : X →
R ∪ {∞} be a function.
Definition 3.3 (Metric derivative [9, Theorem 1.1.2]) We say that (xt )t∈[0,∞) is locally abso-
lutely continuous if there exists a function m ∈ L1

loc

([0,∞)
)
such that

d(xs, xt ) ≤
ˆ t

s
m(r)dr (3.3)

for every 0 ≤ s < t . If (xt )t∈[0,∞) is locally absolutely continuous, for L 1
[0,∞)-a.e. t there

exists the limit

|ẋt | := lim
s→t

d(xs, xt )

|s − t | , (3.4)

and this function, calledmetric derivative, is theL 1
[0,∞)-a.e. minimal functionm that satisfies

(3.3); see [9, Theorem 1.1.2].3

Definition 3.4 (Descending slope [9, Definition 1.2.4]) The descending slope of f at x ∈ X
is the number

∣∣∂ f
∣∣(x) = ∣∣∂d f

∣∣(x):= lim sup
y

d→x

(
f (x)− f (y)

)
+

d(x, y)
, (3.5)

where a+:=max {0, a} is the positive part of a ∈ R∪{±∞}. The slope is conventionally set
equal to∞ if f (x) = ∞, and to 0 if x is isolated and f (x) <∞.

Definition 3.5 (Curve ofmaximal slope [9, Definition 1.3.2]) We say that a locally absolutely
continuous X -valued map (xt )t∈[0,∞) is a curve of maximal slope (with respect to |∂d f |)
if t 	→ f (xt ) is a.e. equal to a nonincreasing map φ : [0,∞)→ R such that

φ̇(t) ≤ −1

2
|ẋt |2 − 1

2

∣∣∂d f
∣∣2(xt ) for L 1

[0,∞)-a.e. t . (3.6)

3 In [9, Theorem 1.1.2], the completeness of the space is assumed but not necessary, as can be easily checked.
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Definition 3.5 is motivated by the observation that, when (X ,d) is a Euclidean space
and f is smooth, the inequality (3.6) is equivalent to the gradient-flow equation

d

dt
xt = −∇ f (xt ) , t ≥ 0 ,

see for instance [5, Section 2.2]. As noted in [9, Remark 1.3.3],4 even in the general metric
setting, (3.6) actually implies the identities

−φ̇(t) = |ẋt |2 =
∣∣∂d f

∣∣2(xt ) for a.e. t ≥ 0 .

3.6 The Figalli–Gigli distance

We briefly recall the definition and some properties of the distance Wb2 introduced in [6].
We denote byM2(�) the set of nonnegative Borel measures μ on � such thatˆ

inf
y∈∂�

|x − y|2 dμ(x) < ∞ , (3.7)

and, for every nonnegative Borel measure γ on �×�, define the cost functional

C(γ ):=
ˆ
|x − y|2 dγ (x, y) . (3.8)

Definition 3.6 ([6, Problem 1.1]) Let μ, ν ∈ M2(�). We say that a nonnegative Borel
measure γ on � × � is a Wb2-admissible transport plan between μ and ν, and write γ ∈
AdmWb2(μ, ν), if (

π1
# γ

)
�
= μ and

(
π2
# γ

)
�
= ν . (3.9)

The distance Wb2(μ, ν) is then defined as

Wb2(μ, ν):= inf
{√

C(γ ) : γ ∈ AdmWb2(μ, ν)
}
. (3.10)

In [6, Section 2], it was observed that for every μ, ν ∈ M2(�) there exists at least one
Wb2-optimal transport plan, that is, a measure γ ∈ AdmWb2(μ, ν) that attains the infimum
in (3.10).

Later, we will make use of the following consequences of [6, Proposition 2.7]: the conver-
gence w.r.t. the metric Wb2 implies the convergence in duality with Cc(�), and it is implied
by the convergence in duality with Cb(�).

3.7 Transportation functionals

We now define the transportation functionals T and W̃b2 that appear in (1.8) and (1.10).

Definition 3.7 For every μ, ν ∈ S , let AdmW̃b2(μ, ν) be the set of all finite nonnegative

Borel measures γ on �×� such that

(1).
(
π1
# γ

)
�
= μ�,

(2).
(
π2
# γ

)
�
= ν�,

(3). π1
# γ − π2

# γ = μ− ν.

4 Once again, completeness is not necessary.
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Fig. 1 Examples of admissible plans. Red (resp. blue) regions are thosewith an abundance of initial (resp. final)
massμ (resp. ν). Admissible plans forWb2 do not have any restriction on themass departing from and arriving
to ∂�. Admissible plans for W̃b2 must agree—in the sense of Condition (3)—with the configurations μ, ν

also on ∂�. Admissible plans for T are W̃b2-admissible and, additionally, do not move mass from ∂� to ∂�.

We call such measures W̃b2-admissible transport plans Fig. 1 between μ and ν. We set

W̃b2(μ, ν):= inf
{√

C(γ ) : γ ∈ AdmW̃b2(μ, ν)
}
, (3.11)

and write

OptW̃b2(μ, ν):= argmin
γ∈AdmW̃b2

(μ,ν)

C(γ ) (3.12)

for the set of all W̃b2-optimal tranport plans between μ and ν.

Remark 3.8 There is some redundancy in the properties (1)-(3), indeed,

(1)+ (3)⇒ (2) and (2)+ (3)⇒ (1) .

Definition 3.9 For every μ, ν ∈ S , let AdmT(μ, ν) be the set of all measures γ ∈
AdmW̃b2(μ, ν) such that, additionally,

(4). γ ∂�
∂� = 0.

We define the functional T and the T-optimal transport plans as in (3.11) and (3.12), by
replacing W̃b2 with T.

Remark 3.10 If γ ∈ AdmT(μ, ν) for some μ, ν ∈ S , then

‖γ ‖ ≤
∥∥∥γ �

�

∥∥∥+ ∥∥∥γ �

�

∥∥∥ = ‖μ�‖ + ‖ν�‖ . (3.13)

Remark 3.11 Fix μ, ν ∈ S . For every η ∈ S concentrated on ∂�, it is easy to check that

AdmW̃b2(μ+ η, ν + η) = AdmW̃b2(μ, ν) and AdmT(μ+ η, ν + η) = AdmT(μ, ν) .

Hence,

W̃b2(μ+ η, ν + η) = W̃b2(μ, ν) and T(μ+ η, ν + η) = T(μ, ν) . (3.14)

Let us briefly comment on these definitions. Conditions (1) and (2) are precisely the
same as (3.9). They are needed to ensure that the mass that departs from (resp. arrives in)
� is precisely μ� (resp. ν�). Condition (3) is needed to also keep track of the mass that is
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exchanged with the boundary. Namely, it ensures that, on each subregion of A ⊆ � (possibly
including part of the boundary, which was neglected by Conditions (2)-(3)), the mass ν(A)

after the transportation equals the initial massμ(A), plus the importedmass γ (�×A), minus
the exported mass γ (A×�). Observe that, since μ and ν normally have a negative mass on
some subregions of ∂�, it does not make sense to naively impose π1

# γ = μ and π2
# γ = ν.

The difference between W̃b2 and T is Condition (4): T-admissible transport plans cannot
move mass from ∂� to ∂�. This results in the loss of the triangle inequality.

Example 3.12 Consider, for the domain �:=(0, 1), the measures

μ1:=δ0 − δ1 ∈ S , μ2:=δ1/2 − δ1 ∈ S , μ3:=0 ∈ S .

The transport plans γ12:=δ(0,1/2) and γ23:=δ(1/2,1) are T-admissible, between μ1 and μ2,
and between μ2 and μ3, respectively. Thus, both T(μ1, μ2) and T(μ2, μ3) are bounded
above by 1/2. However, there is no γ13 ∈ AdmT(μ1, μ3), whence T(μ1, μ3) = ∞. Indeed,
Conditions (1) and (2) in Definition 3.7 would imply (γ13)

�
� = (γ13)

�

�
= 0. Together

with (4) in Definition 3.9, this means that γ13 equals the zero measure, which contradicts (3)
in Definition 3.7.

Nonetheless, it is shown in Proposition A.1 that Condition (4) is needed in dimension d ≥
2, because the information about μ∂� and ν∂� may otherwise be lost. This does not happen
when � is just a finite union of intervals in R

1, because points in ∂� are distant from each
other. We will see that, in this case, Definition 3.7 defines a distance.

These remarks reveal part of the difficulties in building cost functionals for signedmeasures
that behave like W2. See [19] for further details. However, it seems at least convenient to
use signed measures, given that a modified JKO scheme that mimics [6] should allow for a
virtually unlimited amount of mass to be taken from points of ∂�, step after step.

4 Properties of the transportation functionals

We gather some useful properties of T and W̃b2.

4.1 Relation with the Figalli–Gigli distance

For every μ, ν ∈ S , we have the inclusions

AdmT(μ, ν) ⊆ AdmW̃b2(μ, ν) ⊆ AdmWb2(μ�, ν�) .

As a consequence,

Wb2(μ�, ν�) ≤ W̃b2(μ, ν) ≤ T(μ, ν) , μ, ν ∈ S . (4.1)

In fact, W̃b2 and T can be seen as extensions of Wb2 in the following sense.

Lemma 4.1 Letμ, ν be finite nonnegative Borel measures on�. For every μ̃ ∈ S with μ̃� =
μ, we have the identities

Wb2(μ, ν) = inf
ν̃∈S

{̃
Wb2(μ̃, ν̃) : ν̃� = ν

}
= inf

ν̃∈S
{T(μ̃, ν̃) : ν̃� = ν} . (4.2)

123



   23 Page 14 of 58 F. Quattrocchi

Proof In light of (4.1), it suffices to prove that

inf
ν̃∈S

{T(μ̃, ν̃) : ν̃� = ν} ≤ Wb2(μ, ν) .

Let γ ∈ AdmWb2(μ, ν). Define γ̃ :=γ − γ ∂�
∂� and

ν̃:=μ̃+ π2
# γ̃ − π1

# γ̃ .

It is easy to check that ν̃� = ν, that γ̃ ∈ AdmT(μ̃, ν̃), and that C(γ̃ ) ≤ C(γ ). As a conse-
quence,

inf
ν̃∈S

{T(μ̃, ν̃) : ν̃� = ν} ≤ √
C(γ ) ,

and we conclude by arbitrariness of γ . ��

4.2 Relation with the Kantorovich–Rubinstein norm

Interestingly, an inequality relates Wb
∼

2 and ‖·‖
˜KR.

Lemma 4.2 For every μ, ν ∈ S , we have

W̃b
2
2(μ, ν) ≤ diam(�) ‖μ− ν‖̃KR . (4.3)

Proof Define the nonnegative measures

μ̃:=μ� + (μ∂� − ν∂�)+ , ν̃:=ν� + (μ∂� − ν∂�)− ,

and note that μ̃− ν̃ = μ− ν. In particular, μ̃(�) = ν̃(�).
Let γ be a coupling between μ̃ and ν̃, i.e., γ is a nonnegative Borel measure on�×� such

that π1
# γ = μ̃ and π2

# γ = ν̃. Notice that γ is W̃b2-admissible between μ and ν. Therefore,

W̃b
2
2(μ, ν) ≤ C(γ ) =

ˆ
|x − y|2 dγ ≤ diam(�)

ˆ
|x − y| dγ .

After taking the infimum over γ , the Kantorovich–Rubinstein duality [18, Theorem 8.10.45]
implies

W̃b
2
2(μ, ν) ≤ diam(�) ‖μ̃− ν̃‖̃KR = diam(�) ‖μ− ν‖̃KR .

��

4.3 T is an extended semimetric

The functional T may take the value infinity and does not satisfy the triangle inequality; see
Example 3.12. Nonetheless, we have the following proposition, which we prove together
with two useful lemmas.

Proposition 4.3 The functional T is an extended semimetric, i.e., it is nonnegative, symmetric,
and we have

T(μ, ν) = 0 ⇐⇒ μ = ν . (4.4)

Lemma 4.4 Let (μn)n∈N0 and (νn)n∈N0 be two sequences inS , and let γ n ∈ AdmT(μn, νn)

for every n ∈ N0. Assume that
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(a) μn →n μ and νn →n ν weakly for some μ, ν,
(b) μn

� →n μ� and νn� →n ν� setwise, i.e., on all Borel sets,
(c) γ n →n γ weakly.

Then μ, ν ∈ S and γ ∈ AdmT(μ, ν).
In particular, for any μ, ν ∈ S , the set AdmT(μ, ν) is sequentially closed with respect

to the weak convergence.

The proof of this lemma is inspired by part of that of [7, Lemma 3.1].

Proof The total mass of γ n is bounded and, therefore, the same can be said for the total mass
of (γ n)��, (γ n)∂�

� , (γ n)�∂�. Hence, up to taking a subsequence, we may assume that

(γ n)�� →n σ1 in duality with C(�×�) ,

(γ n)∂�
� →n σ2 in duality with C(�× ∂�) ,

(γ n)�∂� →n σ3 in duality with C(∂�×�)

for some σ1, σ2, σ3. In particular, γ n →n γ :=σ1 + σ2 + σ3. We claim that σ1, σ2, σ3 are
concentrated on � × �,� × ∂�, ∂� × � respectively. If this is true, then Condition (4)
in Definition 3.9 for γ is obvious, and those in Definition 3.7 follow by testing them with a
function f ∈ Cb(�) for every n and passing to the limit. For instance, to prove Condition (1)
in Definition 3.7, we write the chain of equalities

μ�( f ) = lim
n→∞μn

�( f ) = lim
n→∞

ˆ
f (x)d (γ n)��(x, y)

=
ˆ

f (x)d (σ1 + σ2)(x, y) =
ˆ

f (x)dγ �
� (x, y) = (

π1
# γ �

�

)
( f ) .

Let us prove the claim. Let A ⊆ � be an open set, in the relative topology of �, that
contains ∂�. We have

σ1(∂�×�) ≤ σ1(A ×�) ≤ lim inf
n→∞ (γ n)��(A ×�)

≤ lim inf
n→∞ (γ n)��(A ×�) = lim inf

n→∞ μn
�(A) = μ�(A) ,

where the second inequality follows from the semicontinuity of the mass on open sets (in the
topology of �×�) and the last equality from the setwise convergence. Since μ� has finite
total mass and μ�(∂�) = 0, we have σ1(∂� × �) = 0. Analogously, using Condition (2)
in place of Condition (1), we obtain σ1(�× ∂�) = 0. For σ2 and σ3, the proof is similar. ��
Lemma 4.5 If T(μ, ν) <∞, then OptT(μ, ν) �= ∅.
Proof It suffices to prove that AdmT(μ, ν) is nonempty and weakly sequentially compact. It
is nonempty if T(μ, ν) < ∞. It is sequentially compact because

γ ∈ AdmT(μ, ν)
(3.13)�⇒ ‖γ ‖ ≤ ‖μ�‖ + ‖ν�‖ ,

and thanks to Lemma 4.4. ��
Proof of Proposition 4.3 Only the implication ⇒ in (4.4) is not immediate. Let us assume
that T(μ, ν) = 0 and let γ ∈ OptT(μ, ν). Since C(γ ) = 0, the measure γ is concentrated on
the diagonal of � × �. Thus, the equality μ = ν follows from Condition (3) in Definition
3.7. ��
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We conclude with a corollary of Lemma 4.4: a semicontinuity property of T.

Corollary 4.6 Let (μn)n∈N0 and (νn)n∈N0 be two sequences in S . Assume that

(a) μn →n μ and νn →n ν weakly for some μ, ν,
(b) μn

� →n μ� and νn� →n ν� setwise, i.e., on all Borel sets.

Then

T(μ, ν) ≤ lim inf
n→∞ T(μn, νn) . (4.5)

Proof We may assume that the right-hand side in (4.5) exists as a finite limit and that, for
every n ∈ N0, there exists γ n ∈ AdmT(μ, ν) such that

C(γ n) ≤ T 2(μn, νn)+ 1

n
.

The total variation of eachmeasure γ n is bounded by
∥∥μn

�

∥∥+∥∥νn�

∥∥, which is in turn bounded
thanks to the assumption. Therefore, we can extract a subsequence (γ nk )k∈N0 that converges
weakly to a measure γ . We know from Lemma 4.4 that γ ∈ AdmT(μ, ν); thus,

T 2(μ, ν) ≤ C(γ ) = lim
k→∞ C(γ nk ) = lim

k→∞ T 2(μnk , νnk ) = lim
n→∞ T 2(μn, νn) .

��

4.4 H is “semicontinuous w.r.tT”

Albeit not being a distance, the transportation functional T makes H lower semicontinuous,
in the following sense.

Proposition 4.7 Let (μn)n∈N0 be a sequence in S and suppose that

lim
n→∞ T(μn, μ) = 0 (4.6)

for some μ ∈ S . Then

H(μ) ≤ lim inf
n→∞ H(μn) . (4.7)

For the proofwe need a lemma, towhichwewill also often refer later. This lemma, inspired
by [7, Lemma 5.8] allows to control (μ− ν)∂� in terms of T(μ, ν) and of the restrictions μ�

and ν�. This fact is convenient for two reasons:

• the part of the functionalH that depends on μ� is superlinear,
• we will see (Remark 5.17) that the restrictions to � of the measures produced by the

scheme (1.8) have bounded (in time) mass.

Lemma 4.8 Let τ > 0, let μ, ν ∈ S , and let � : �→ R be Lipschitz continuous. Then,

|μ(�)− ν(�)| ≤ τ(Lip�)2
(‖μ�‖ + ‖ν�‖

)+ T 2(μ, ν)

4τ
. (4.8)

In particular,

μ∂�(�)− ν∂�(�) ≤ ν�(�)− μ�(�)+ τ(Lip�)2
(‖μ�‖ + ‖ν�‖

)+ T 2(μ, ν)

4τ
. (4.9)
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Proof Let γ ∈ OptT(μ, ν). By Definition 3.7 and Definition 3.9, we have

|μ(�)− ν(�)| = ∣∣(π1
# γ − π2

# γ )(�)
∣∣ = ∣∣∣∣

ˆ (
�(x)−�(y)

)
dγ (x, y)

∣∣∣∣
≤
ˆ √

2τ(Lip�) · |x − y|√
2τ

dγ (x, y)

≤ τ(Lip�)2 ‖γ ‖ + 1

4τ

ˆ
|x − y|2 dγ (x, y)

≤ τ(Lip�)2
(‖μ�‖ + ‖ν�‖

)+ T 2(μ, ν)

4τ
.

Proof of Proposition 4.7 Wemay assume that the right-hand side in (4.7) exists as a finite limit
and that H(μn) is finite for every n. In particular, μn

� is absolutely continuous w.r.t. L d
� .

Denote by ρn its density. Owing to Lemma 4.8, for every τ > 0 and n, we have

H(μn) = E(ρn)+ μn
∂�(�)

≥
ˆ

�

(log ρn + V − 1− cτ −�)ρndx + |�| + μ(�)− cτ ‖μ�‖ − T 2(μn, μ)

4τ
.

It follows that the sequence (ρn)n is uniformly integrable. By the Dunford–Pettis theorem, it
admits a (not relabeled) subsequence that converges, weakly in L1(�), to some function ρ.
From (4.1) and [6, Proposition 2.7], we infer that μn

� → μ� in duality with Cc(�) and,
therefore, ρ is precisely the density of μ�. The functional E is convex and lower semicontin-
uous on L1(�) (by Fatou’s lemma), hence weakly lower semicontinuous. Thus, we are only
left with proving that

μ∂�(�) ≤ lim inf
n→∞ μn

∂�(�) .

Once again, we make use of Lemma 4.8 and of the weak convergence in L1(�) to write, for
every τ > 0,

lim sup
n→∞

(μ− μn)∂�(�) ≤ lim sup
n→∞

cτ
(∥∥μn

�

∥∥+ ‖μ�‖
)+ lim sup

n→∞
T 2(μn, μ)

4τ
≤ cτ ‖μ�‖ .

We conclude by arbitrariness of τ . ��

4.5 ˜Wb2 is a pseudodistance

The functional W̃b2 is a pseudodistance on S , meaning that it fulfills the properties of a
distance, except, possibly,μ = ν when W̃b2(μ, ν) = 0. As before, nonnegativity, symmetry,
and the implication

μ = ν �⇒ W̃b2(μ, ν) = 0

are obvious. To prove finiteness, it suffices to produce a single γ ∈ AdmW̃b2(μ, ν) for
every μ, ν ∈ S . Let us arbitrarily fix a probability measure ζ on ∂� and set

η:=μ∂� − ν∂� +
(‖μ�‖ − ‖ν�‖

)
ζ .

The following is W̃b2-admissible:

γ :=
{

μ� ⊗ ζ + ζ ⊗ ν� + η+⊗η−
‖η+‖ if η �= 0 ,

μ� ⊗ ζ + ζ ⊗ ν� if η = 0 .
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Only the triangle inequality is still missing.

Proposition 4.9 The functional W̃b2 satisfies the triangle inequality. Hence, it is a pseu-
dodistance.

Proof Let μ1, μ2, μ3 ∈ S , and let us view them as measures on three different copies of �,
thatwedenote by�1,�2,�3, respectively.Wewriteπ2 for both the projections from�1×�2

and �2 ×�3 onto �2.
Choose two transport plans γ12 ∈ AdmW̃b2(μ1, μ2) and γ23 ∈ AdmW̃b2(μ2, μ3).

Let η:=(π2
# γ23 − π2

# γ12)∂� and consider

γ̃12:=γ12 + (Id, Id)#η+, γ̃23:=γ23 + (Id, Id)#η− .

It is easy to check that these are admissible too, i.e., γ̃12 ∈ AdmW̃b2(μ1, μ2) and γ̃23 ∈
AdmW̃b2(μ2, μ3), as well as that C(γ12) = C(γ̃12) and C(γ23) = C(γ̃23). Furthermore, π2

# γ̃12

equalsπ2
# γ̃23. The gluing lemma [9, Lemma 5.3.2] supplies a nonnegative Borelmeasure γ̃123

such that

π12
# γ̃123 = γ̃12 and π23

# γ̃123 = γ̃23 .

Themeasure γ :=π13
# γ̃123 is W̃b2-admissible betweenμ1 andμ2. By theMinkowski inequal-

ity,

W̃b2(μ1, μ2) ≤
√
C(γ ) ≤ √

C(γ̃12)+
√
C(γ̃23) =

√
C(γ12)+

√
C(γ23) ,

from which, by arbitrariness of γ12 and γ23, the triangle inequality follows. ��
In general, W̃b2 is not a true metric on S . This is proven in Proposition A.1. However,

an analogue of Lemma 4.4 holds (proof omitted).

Lemma 4.10 Let (μn)n∈N0 and (νn)n∈N0 be two sequences inS , and letγ n ∈ Adm̃Wb2
(μn, νn)

for every n ∈ N0. Assume that

(a) μn →n μ and νn →n ν weakly for some μ, ν,
(b) μn

� →n μ� and νn� →n ν� setwise, i.e., on all Borel sets,
(c) γ n →n γ weakly.

Then μ, ν ∈ S and γ ∈ Adm̃Wb2
(μ, ν).

In particular, for any μ, ν ∈ S , the setAdm̃Wb2
(μ, ν) is sequentially closed with respect

to the weak convergence.

4.6 WhenÄ is a finite union of intervals, ˜Wb2 is a distance

When � is a finite union of 1-dimensional intervals (equivalently, when ∂� is a finite set)
we also have

W̃b2(μ, ν) = 0 ⇐⇒ μ = ν .

Proposition 4.11 If d = 1 and � is a finite union of intervals, then (S , W̃b2) is a metric
space.

This proposition is an easy consequence of the following remark and lemma, analogous
to Remark 3.10 and Lemma 4.5, respectively.
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Remark 4.12 Fix μ, ν ∈ S and pick γ ∈ AdmW̃b2(μ, ν). If ∂� is finite and the diagonal
of ∂�× ∂� is γ -negligible, then

‖γ ‖ ≤
∥∥∥γ �

�

∥∥∥+ ∥∥∥γ �

�

∥∥∥+ ∥∥∥γ ∂�
∂�

∥∥∥ ≤ ‖μ�‖ + ‖ν�‖

+ 1

minx,y∈∂�

x �=y
|x − y|2

ˆ
|x − y|2 dγ (x, y)

≤ ‖μ�‖ + ‖ν�‖ + c C(γ ) . (4.10)

Lemma 4.13 Assume that d = 1 and that � is a finite union of intervals. Then the
set Opt̃Wb2

(μ, ν) is nonempty for every μ, ν ∈ S .

Proof Wealreadyknow thatAdmW̃b2(μ, ν) �= ∅. Let us take aminimizing sequence (γ n)n∈N0

⊆ AdmW̃b2(μ, ν) for the cost functional C. Let 	 be the diagonal of ∂� × ∂�. It is easy
to see that (γ n − γ n |	)n is still an admissible and minimizing sequence. Therefore, we can
assume that γ n |	 = 0. By Remark 4.12, the total variation of γ n is bounded. Therefore,
there exists a subsequence of (γ n)n that converges weakly to a limit γ and, by Lemma
4.10, γ ∈ AdmW̃b2(μ, ν). Since the sequence is minimizing, γ is also W̃b2-optimal. ��

Two further useful facts about W̃b2 are the counterparts of Lemma 4.8 and Proposition
4.7 in the case where � is a finite union of intervals.

Lemma 4.14 Assume that d = 1 and that � is a finite union of intervals. Let μ, ν ∈ S and
let � : �→ R be Lipschitz continuous. Then,

|μ(�)− ν(�)| ≤ c�W̃b2(μ, ν)

√
‖μ�‖ + ‖ν�‖ + W̃b

2
2(μ, ν) . (4.11)

Proof By Condition (3) in Definition 3.7, for every μ, ν ∈ S and every γ ∈ OptW̃b2(μ, ν),
we have

|μ(�)− ν(�)| =
∣∣∣∣
ˆ (

�(x)−�(y)
)
dγ (x, y)

∣∣∣∣ ≤ (Lip�)

ˆ
|x − y| dγ (x, y)

≤ (Lip�)
√
C(γ ) ‖γ ‖ = (Lip�)W̃b2(μ, ν)

√‖γ ‖ .
We can assume that the diagonal of ∂�×∂� is γ -negligible; hence, we conclude by Remark
4.12. ��
Proposition 4.15 Assume that d = 1 and that� is a finite union of intervals. ThenH is lower
semicontinuous w.r.t. W̃ b2.

Proof Similar to the proof of Proposition 4.7, making use of Lemma 4.14 in place of Lemma
4.8. ��

When W̃b2 defines a metric, a natural question is whether or not this metric is complete.
In general, the answer is no; this is proven in Proposition A.2. Nonetheless, we prove in
Lemma A.3 that the sublevels ofH are complete for W̃b2.

Another interesting problem is to find a convergence criterion for W̃b2. Exploiting Lemma
4.2, we find a simple sufficient condition for convergence in the 1-dimensional setting.

Lemma 4.16 Assume that d = 1 and that � is a finite union of intervals. If (μn)n∈N0 ⊆ S

converges weakly to μ ∈ S , then μn
˜Wb2→ n μ.

123



   23 Page 20 of 58 F. Quattrocchi

Proof The idea is to use Lemma 4.2 together with the measure-theoretic result [18, The-
orem 8.3.2]: the metric induced by ‖·‖

KR
∼ metrizes the weak convergence5 of nonnegative

Borel measures on �. For every x ∈ ∂�, let ax := − infn μn(x). Every number ax is finite
because, by the uniform boundedness principle, the total variation of μn is bounded. By the
considerations above, we have

μn →n μ weakly �⇒ μn +
∑
x∈∂�

axδx →n μ+
∑
x∈∂�

axδx weakly

�⇒ ∥∥μn − μ
∥∥̃
KR →n 0

(4.3)�⇒ W̃b2(μ
n, μ) →n 0 .

��
Remark 4.17 The converse of Lemma 4.16 is not true: in the case �:=(0, 1), consider the
sequence

μn :=n(δ1/n − δ0) , n ∈ N1 ,

which converges to μ:=0 w.r.t. W̃b2.

4.7 Estimate on the directional derivative

The following lemma will be used in Proposition 5.9 to characterize the solutions of the
variational problem (1.8). We omit its simple proof, almost identical to that of [6, Proposi-
tion 2.11].

Lemma 4.18 Let μ, ν ∈ S and γ ∈ OptT(μ, ν). Let w : � → R
d be a bounded and Borel

vector field with compact support. For t > 0 sufficiently small, define μt :=(Id+tw)#μ.
Then

lim sup
t→0+

T 2(μt , ν)− T 2(μ, ν)

t
≤ −2

ˆ
〈w(x), y − x〉dγ (x, y) . (4.12)

4.8 Existence of transport maps

Proposition 4.19 Let μ, ν ∈ S , let A, B ⊆ �×� be Borel sets, and let γ be a nonnegative
Borel measure on �×�. If

(a) γ ∈ Opt̃Wb2
(μ, ν),

(b) or: γ ∈ OptT(μ, ν) and (A × B) ∩ (∂�× ∂�) = ∅,
then γ B

A is optimal for the classical 2-Wasserstein distance between its marginals.

Consequently: under the assumptions of this proposition, if one of the twomarginals of γ B
A

is absolutely continuous, we can apply Brenier’s theorem [20] and deduce the existence of
an optimal transport map. For instance, whenever μ� is absolutely continuous, there exists
a Borel map T : �→ � such that γ �

� = (Id, T )#μ�.

5 In [18], two Kantorovich–Rubinstein norms are defined. Here, we implicitly use that they are equivalent on
measures on a bounded metric space; see [18, Section 8.10(viii)].
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Proof of Proposition 4.19 Let γ̃ be any nonnegative Borel coupling betweenπ1
# γ B

A andπ2
# γ B

A .
In particular, γ̃ is concentrated on A × B. Define the nonnegative measure

γ ′:=γ − γ B
A + γ̃ .

Note that

π1
# γ ′ = π1

# γ and π2
# γ ′ = π2

# γ ,

which yields

γ ∈ AdmW̃b2(μ, ν) �⇒ γ ′ ∈ AdmW̃b2(μ, ν) .

Furthermore, if γ ∂�
∂� = 0, then (γ ′)∂�

∂� = γ̃ ∂�
∂� . Thus,[

γ ∈ AdmT(μ, ν) and (A × B) ∩ (∂�× ∂�) = ∅] �⇒ γ ′ ∈ AdmT(μ, ν) .

Hence, if γ ∈ OptW̃b2(μ, ν), or γ ∈ OptT(μ, ν) and (A × B) ∩ (∂� × ∂�) = ∅, then, by
optimality, C(γ ) ≤ C(γ ′), and we infer that C(γ B

A ) ≤ C(γ̃ ). We conclude by arbitrariness
of γ̃ . ��

In [6, Proposition 2.3] and [7, Proposition 3.2], the authors give more precise characteri-
zations of the optimal plans for their respective transportation functionals in terms of suitable
c-cyclical monotonicity of the support, as in the classical optimal transport theory; see, e.g.,
[21, Lecture 3]. Existence of transport plans is then derived as a consequence. We believe
that a similar analysis can be carried out for the transport plans in OptT and OptW̃b2 , but it is
not necessary for the purpose of this work.

5 Proof of Theorem 1.1

Recall the scheme (1.8): we first fix a measure μ0 ∈ S such that its restriction to � is
absolutely continuous (w.r.t. the Lebesgue measure) with density equal to ρ0. Then, for
every τ > 0 and n ∈ N0, we iteratively choose

μτ
(n+1)τ ∈ argmin

μ∈S

(
H(μ)+ T 2(μ,μτ

nτ )

2τ

)
.

For all τ > 0, these sequences are extended to maps t 	→ μτ
t , constant on the inter-

vals
[
nτ, (n + 1)τ

)
for every n ∈ N0.

Remark 5.1 The choice of (μ0)∂� is inconsequential, in the sense that, for every t and τ the
restriction (μτ

t )� does not depend on it. In fact, from Remark 3.11 and the uniqueness of
the minimizer in (1.8) (i.e., Proposition 5.11), it is possible to infer the following proposition
(proof omitted).

Proposition 5.2 Fix τ > 0, and let μ0, μ̃0 ∈ S be such that (μ0)� = (μ̃0)�. Let t 	→ μτ
t

and t 	→ μ̃τ
t be the maps constructed with the scheme (1.8), starting from μ0 and μ̃0,

respectively. Then, for every t ≥ 0,

μτ
t − μ̃τ

t = μ0 − μ̃0 = (μ0)∂� − (μ̃0)∂� . (5.1)

We are going to prove Theorem1.1 in seven steps, corresponding to asmany (sub)sections:
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1. Existence: The scheme is well-posed, in the sense that there exists a minimizer for the
variational problem (1.8).

2. Boundary condition: The minimizers of (1.8) approximately satisfy the boundary condi-
tion ρ|∂� = e�−V .

3. Sobolev regularity: The restrictions to � of the minimizers enjoy some Sobolev
regularity—with quantitative estimates—and satisfy a “precursor” of the Fokker–Planck
equation.

4. Uniqueness: There is only one minimizer for (1.8) (given μτ
nτ ).

5. Contractivity: Suitably truncated Lq norms decrease in time along t 	→ μτ
t . This result is

useful in proving convergence of the scheme, bothw.r.t.Wb2 and in L1
loc

(
(0,∞); Lq(�)

)
.

6. Convergence w.r.t. Wb2.
7. Fokker–Planck with Dirichlet boundary conditions: The limit solves the Fokker–Planck

equationwith the desiredDirichlet boundary conditions.Moreover, the convergence holds
in L1

loc

(
(0,∞); Lq(�)

)
for q ∈ [1, d

d−1 ).
Each (sub)section starts with the precise statement of the corresponding main proposition
and ends with its proof. When needed, some preparatory lemmas precede the proof.

5.1 One step of the scheme

In this section, we gather together the subsections corresponding to the first five steps of our
plan for Theorem 1.1. The reason is that they all involve only one step of the discrete scheme.

Throughout this section, μ̄ is any measure in S whose restriction to � is absolutely
continuous and such that, denoting by ρ̄ the density of μ̄�, the quantity E(ρ̄) is finite. We
also fix τ > 0. We aim to find one/all minimizer(s) of

H(·)+ T 2(·, μ̄)

2τ
: S → R (5.2)

and determine some of its/their properties.

5.1.1 Existence

Proposition 5.3 There exists at least oneminimizer of the function in (5.2). Everyminimizerμ

satisfies the following:

1. BothH(μ) and T(μ, μ̄) are finite. In particular, μ� admits a density ρ.
2. The total variation of μ and the integral

´
�

ρ log ρdx can be bounded by a constant cτ,μ̄
that depends on V only through ‖V ‖L∞ .

3. The following inequality holds:

T 2(μ, μ̄)

4τ
≤ E(ρ̄)− E(ρ)+ μ�(�)− μ̄�(�)+ cτ

(‖μ�‖ + ‖μ̄�‖
)
. (5.3)

The proof of this proposition, partially inspired by [7, Propositions 4.3&5.9], is essentially
an application of the direct method in the calculus of variations, although some care is needed
due to the unboundedness ofH from below.

Proof of Proposition 5.3 Let (μn)n∈N1 ⊆ S be a minimizing sequence for (5.2). We may
assume that

H(μn)+ T 2(μn, μ̄)

2τ
≤ H(μ̄)+ T 2(μ̄, μ̄)

2τ
+ 1

n
= H(μ̄)+ 1

n
<∞ , n ∈ N1 , (5.4)
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where the finiteness ofH(μ̄) is consequence of E(ρ̄) < ∞. For every n, let ρn be the density
of μn

� and let γ n ∈ OptT(μ
n, μ̄).

Step 1 (preliminary bounds). Firstly, we shall do some work towards the proof of (5.3)
and establish uniform integrability for {ρn}n . By (5.4) and Lemma 4.8,

T 2(μn, μ̄)

2τ
≤ H(μ̄)−H(μn)+ 1

n
= E(ρ̄)− E(ρn)+ μ̄∂�(�)− μn

∂�(�)+ 1

n

≤ E(ρ̄)− E(ρn)+ μn
�(�)− μ̄�(�)+ τ(Lip�)2

(∥∥μn
�

∥∥+ ‖μ̄�‖
)+ T 2(μn, μ̄)

4τ
+ 1

n
,

(5.5)

from which,ˆ
�

ρn log ρn ≤
ˆ

�

(
ρ̄ log ρ̄ + (‖V ‖L∞ + ‖�‖L∞ + 1+ τ(Lip�)2)(ρ̄ + ρn)

)
dx + 1

n
.(5.6)

Since l 	→ l log l is superlinear, we have uniform integrability of {ρn}n . In particular,
∥∥μn

�

∥∥
is bounded.

Also the total variation ‖μn‖ is bounded. Indeed,∥∥μn
∥∥ ≤ 2

∥∥γ n
∥∥+ ‖μ̄‖ ≤ 2

∥∥μn
�

∥∥+ 3 ‖μ̄‖ , (5.7)

where the first inequality follows from Condition (3) in Definition 3.7, and the second one
from Remark 3.10.

Step 2 (existence). We can extract a (not relabeled) subsequence such that:

1. μn
∂� →n η for some η weakly in duality with C(∂�),

2. ρn⇀nρ for some ρ weakly in L1(�),
3. μn →n μ:=ρdx + η weakly in duality with C(�), and μ ∈ S .

Since the functional E is sequentially lower semicontinuous w.r.t. the weak convergence
in L1(�), and sum of lower semicontinuous functions is lower semicontinuous, Corollary
4.6 yields

H(μ)+ T 2(μ, μ̄)

2τ
≤ lim inf

n→∞

(
H(μn)+ T 2(μn, μ̄)

2τ

)
= inf

(
H(·)+ T 2(·, μ̄)

2τ

)
.

Step 3 (inequalities). If μ is any minimizer for (5.2), the inequality (5.3), and the bounds
on ‖μ‖ and ´

�
ρ log ρdx directly follow from (5.5), (5.6), and (5.7) by taking the constant

sequence equal to μ in place of (μn)n . ��

5.1.2 Boundary condition

Pick any minimizer μ for (5.2) and denote by ρ the density of μ�. Let γ ∈ OptT(μ, μ̄) and

let S : �→ � be such that γ �
� = (Id, S)#μ�.

Proposition 5.4 There exists a L d -negligible set N ⊆ � such that:

1. For all x ∈ � \ N and y ∈ ∂�, the inequalities

− |x − y|2
2τ

≤ log ρ(x)−�(y)+ V (x) ≤ c
|x − y|

τ
+ cτ (5.8)

hold. The constant c can be chosen independent of V .
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2. For all x ∈ � \ N such that S(x) ∈ ∂�, we have the identity

log ρ(x) = �(S(x))− V (x)− |x − S(x)|2
2τ

. (5.9)

Remark 5.5 Proposition 5.4 implies in particular that ρ ∈ L∞(�) and that ρ is bounded from
below by a positive constant (depending on τ ). In particular, the measure μ� is equivalent
to the Lebesgue measure on �.

Remark 5.6 Define

g:=
√

ρeV − e�/2 , g(κ):=(g − κ)+ − (g + κ)− , κ > 0 .

It follows from (5.8) that, when κ ≥ c(ecτ − 1), for a suitable constant c independent
of V and τ , the function g(κ) is compactly supported in � (up to changing its value on a
Lebesgue-negligible set).

Remark 5.7 The term cτ at the right-hand side of (5.8) can be removed when � is constant.
This fact can be easily checked in the proof of Proposition 5.4 and is consistent with [9,
Proposition 3.7 (27)]. However, the following example proves that, in general, this extra term
is necessary, i.e., the boundary condition need not be satisfied exactly by the map t 	→ μτ

t
(even for t ≥ τ ).

Example 5.8 Let �:=(0, 1) and V ≡ 0, and choose μ̄ = 0. Since μ̄ = 0, we necessar-
ily have S(x) ∈ ∂� = {0, 1} for μ�-a.e. x , hence for L 1-a.e. x ∈ � by Remark 5.5.
Additionally, by Proposition 5.4, for L 1-a.e. x ∈ S−1(0) we have

�(1)− |1− x |2
2τ

(5.8)≤ log ρ(x)
(5.9)= �(0)− |x |

2

2τ

and, after rearranging,

x ≤ 1

2
+ τ

(
�(0)−�(1)

)
.

Therefore, when � and τ are such that τ
(
�(0)−�(1)

)
< − 1

2 , the set S
−1(0) is negligible,

i.e., S(x) = 1 for L 1-a.e. x ∈ �. Then, (5.9) gives

log ρ(x) = �(1)− |1− x |2
2τ

forL 1-a.e. x ∈ � ,

and, therefore, the trace of ρ at 0 is exp
(
�(1)− 1

2τ

)
> exp

(
�(0)

)
.

Proposition 5.4 is analogous to [6, Proposition 3.7 (27) & (28)] and [7, Proposi-
tion 5.2 (5.39) & (5.40)]. Like those, ours is proven by taking suitable variations of the
minimizer μ.

Proof of Proposition 5.4 We shall prove the inequalities in the statement for x out of negligible
sets Ny that depend on y. This is sufficient because the set ∂� is separable and all the functions
in the statement are continuous in the variable y. Fix y ∈ ∂�.

Step 1 (first inequality in (5.8)). Let ε > 0, take a Borel set A ⊆ �, and define

μ̃1:=μ+ εL d
A − ε |A| δy ∈ S , γ̃1:=γ + εL d

A ⊗ δy ∈ AdmT(μ̃1, μ̄) .
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By the minimality property of μ and the optimality of γ ,

0 ≤
ˆ
A

(
(ρ + ε) log(ρ + ε)− ρ log ρ

ε
+ V − 1−�(y)+ |x − y|2

2τ

)
dx .

Since the function l 	→ l log l is convex, we can use the monotone convergence theorem
(“downwards”) to find

0 ≤
ˆ
A

(
log ρ + V −�(y)+ |x − y|2

2τ

)
dx .

By arbitrariness of A, we have the first inequality in (5.8) for x out of a L d -negligible set
(possibly dependent on y). In particular, ρ > 0.

Step 2 (second indequality in (5.8) on S−1(�)). Let ε ∈ (0, 1), take a Borel set A ⊆
S−1(�), define

μ̃2:=μ+ εμ(A)δy − εμA ∈ S ,

γ̃2:=γ − ε(Id, S)#μA + εδy ⊗ S#μA ∈ AdmT(μ̃2, μ̄) .

Note that A ⊆ S−1(�) is needed to ensure that (γ̃2)
∂�
∂� = 0. This time, the minimality

property gives

0 ≤
ˆ (

(1− ε) log(1− ε)

ε
− log ρ − V + 1+�(y)+ 〈y − Id, y + Id−2S〉

2τ

)
dμA .

We conclude by arbitrariness of A, after letting ε → 0, that

log ρ(x)+ V (x)−�(y) ≤ 〈y − x, y + x − 2S(x)〉
2τ

≤ diam(�)
|x − y|

τ

for μ-a.e. x ∈ S−1(�). Since ρ > 0, the same is true L d
S−1(�)

-a.e.

Step 3 (identity (5.9)). Let ε ∈ (0, 1), take a Borel set A ⊆ S−1(∂�), define

μ̃3:=μ+ εS#μA − εμA ∈ S ,

γ̃3:=γ − ε(Id, S)#μA ∈ AdmT(μ̃3, μ̄) .

By the minimality property,

0 ≤
ˆ (

(1− ε) log(1− ε)

ε
− log ρ − V + 1+� ◦ S − |Id−S|2

2τ

)
dμA ,

from which, by arbitrariness of ε and A, we infer the inequality≤ in (5.9)L d
S−1(∂�)

-a.e. The
inequality ≥ follows from the first inequality in (5.8).

Step 4 (second inequality in (5.8) on S−1(∂�)). We make use of (5.9), the Lipschitz
continuity of �, the triangle inequality, and the inequality 2ab − b2 ≤ a2:

log ρ(x)−�(y)+ V (x)
(5.9)= �(S(x))−�(y)− |x − S(x)|2

2τ

≤ (Lip�) |S(x)− y| − |x − S(x)|2
2τ

≤ (Lip�) |x − S(x)| − |x − S(x)|2
2τ

+ (Lip�) |x − y|
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≤ τ(Lip�)2

2
+ (Lip�) |x − y| .

Eventually, we conclude with the estimate

|x − y| ≤ |x − y|
2τ

+ τ |x − y|
2

≤ |x − y|
2τ

+ τ diam(�)

2
.

��

5.1.3 Sobolev regularity

Proposition 5.9 Let μ be a minimizer of (5.2) and denote by ρ the density of μ�.

1. The function ρ belongs to W 1,(2∧d)
loc (�), and

√
ρeV belongs to W 1,2(�). We have the

estimates ∥∥∥∥∇
√

ρeV
∥∥∥∥
L2
≤ c

T(μ, μ̄)

τ
, (5.10)

and, for every q ∈ [1,∞) such that q(d − 2) ≤ d,

‖ρ‖Lq ≤ cq

(
ecτ +

∥∥∥∥∇
√

ρeV
∥∥∥∥
2

L2
+ ‖ρ‖L1

)
. (5.11)

If d = 1, the same is true with q = ∞ too.
2. For every γ ∈ OptT(μ, μ̄), writing γ �

� = (Id, S)#μ�, we have

S − Id

τ
ρ = ∇ρ + ρ∇V = e−V∇(ρeV ) L d -a.e. on � . (5.12)

The core idea to proveProposition 5.9 is to compute thefirst variation of the functional (5.2)
at a minimizer and exploit Lemma 4.18, like in [6, Proposition 3.6]. However, the proof is
complicated by the weak assumptions on V and the lack of regularity of the boundary ∂�. To
manage V , we rely on an approximation argument (in the next lemma). The issue with ∂� is
that the the Sobolev embedding theorem is not available for functions inW 1,2(�). Nonethe-
less, we can still apply it to functions in W 1,2

0 (�). To do this, we leverage the approximate
boundary conditions of Proposition 5.4.

Lemma 5.10 Let μ be a minimizer of (5.2) and denote by ρ the density of μ�. Let w : � →
R
d be a C∞-regular vector field with compact support. For ε > 0 sufficiently small,

define με :=(Id+εw)#μ. Then

lim
ε→0+

H(μ)−H(με)

ε
=
ˆ

�

(
divw − 〈∇V ,w〉)ρdx . (5.13)

Proof Let Rε(x):=x + εw(x). Fix ε sufficiently small and an open set ω � � so that Rsε

is a diffeomorphism from ω to itself and equals the identity on � \ ω for every s ∈ (0, 1),
and infs∈(0,1),x∈� |det∇Rsε(x)| > 0. It can be easily checked that the density ρε of με

�

satisfies

ρε ◦ Rε = ρ

det∇Rε

L d -a.e. on � ;
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therefore,

H(μ)−H(με)

ε
=
ˆ

�

log ρ − log(ρε ◦ Rε)+ V − V ◦ Rε

ε
dμ�

=
ˆ

�

log det∇Rε

ε
dμ� +

ˆ
�

V − V ◦ Rε

ε
dμ� .

(5.14)

By the dominated convergence theorem,

lim
ε→0+

ˆ
�

log det∇Rε

ε
dμ� =

ˆ
�

(divw)ρdx .

To deal with the last term in (5.14), we choose an open set ω̃ such that ω � ω̃ � �. By
Definition 3.1, we have V ∈ W 1,p(ω̃) for some p > d and, by Friedrichs’ theorem [23,
Theorem 9.2], the function V |ω is the limit in W 1,p(ω) and a.e. of (the restriction to ω of) a
sequence of equibounded functions (Vk)k∈N0 ⊆ C∞c (Rd). For every k, we have
ˆ

V − V ◦ Rε

ε
dμ� =

ˆ
ω

V − Vk
ε

ρdx +
ˆ

ω

Vk ◦ Rε − V ◦ Rε

ε
ρdx −

ˆ
ω

〈∇Vk,w〉ρdx

−
ˆ 1

0

ˆ
ω

〈(∇Vk) ◦ Rsε − ∇Vk,w〉ρdxds .

With a change of variables, we rewrite the last integral as
ˆ 1

0

ˆ
ω

〈(∇Vk) ◦ Rsε −∇Vk,w〉ρdxds =
ˆ

ω

〈
∇Vk,

ˆ 1

0

(wρ) ◦ R−1sε

det∇Rsε ◦ R−1sε
ds − wρ

〉
dx .

Recall that ρ ∈ L∞(�) by Remark 5.5. Passing to the limit in k, we find that
ˆ

V − V ◦ Rε

ε
dμ� +

ˆ
�

〈∇V ,w〉ρdx =
ˆ

ω

〈
∇V ,

ˆ 1

0

(wρ) ◦ R−1sε

det∇Rsε ◦ R−1sε
ds − wρ

〉
dx .

It only remains to prove that the right-hand side in the latter is negligible as ε → 0.Let (ρl)l∈N0

be a sequence of continuous and equibounded functions that converge to ρ almost everywhere
(hence in L p′ ). Using the triangle inequality andMinkowski’s integral inequality, for l ∈ N0,
we write∥∥∥∥
ˆ 1

0

(wρ) ◦ R−1sε

det∇Rsε ◦ R−1sε
ds − wρ

∥∥∥∥
L p′
≤
ˆ 1

0

∥∥∥∥ (wρ − wρl) ◦ R−1sε

det∇Rsε ◦ R−1sε

∥∥∥∥
L p′

ds + ‖wρl − wρ‖L p′

+
ˆ 1

0

∥∥∥∥ (wρl) ◦ R−1sε

det∇Rsε ◦ R−1sε
− wρl

∥∥∥∥
L p′

ds .

A change of variables yields∥∥∥∥ (wρ − wρl) ◦ R−1sε

det∇Rsε ◦ R−1sε

∥∥∥∥
L p′
=

∥∥∥∥ wρ − wρl

|det∇Rsε |1/p
∥∥∥∥
L p′

.

Hence, when we let ε → 0, using that ρl is continuous, we find

lim sup
ε→0

∥∥∥∥
ˆ 1

0

(wρ) ◦ R−1sε

det∇Rsε ◦ R−1sε
ds − wρ

∥∥∥∥
L p′
≤ 2 ‖wρ − wρl‖L p′ ,

and we conclude by arbitrariness of l. ��
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Proof of Proposition 5.9 Step 1 (inequality (5.10)). Let w : �→ R
d be a C∞-regular vector

field with compact support. For ε > 0 sufficiently small, define με :=(Id+εw)#μ ∈ S .
Since μ is optimal for (5.2),

H(μ)−H(με)

ε
≤ T 2(με, μ̄)− T 2(μ, μ̄)

2ετ
.

We can pass to the limit ε → 0 using Lemma 4.18 and Lemma 5.10 to find thatˆ
�

(
divw − 〈∇V ,w〉)ρdx ≤ − 1

τ

ˆ
〈w(x), y − x〉dγ (x, y) ≤ ‖w‖L2(ρ)

T(μ, μ̄)

τ
,

(5.15)

for any γ ∈ OptT(μ, μ̄). By the Riesz representation theorem, this means that there exists a
vector field u ∈ L2(ρ;Rd) such that

‖u‖L2(ρ) ≤
T(μ, μ̄)

τ
, (5.16)

and ˆ
�

(
divw − 〈∇V ,w〉)ρdx = ˆ

�

〈u,w〉ρdx ,

for all smooth and compactly supported vector fields w. In other words, −ρ(u+∇V ) is the
distributional gradient of ρ. Since ρ ∈ L∞(�) (see Remark 5.5) and V ∈ W 1,d+

loc (�), we

now know that ρ ∈ W 1,(2∧d)
loc (�). Hence, for every smooth w that is compactly supported,

ˆ
�

√
ρeV divwdx = lim

ε↓0

ˆ
�

√
ρeV + ε divwdx = lim

ε↓0

ˆ
�

ρeV

2
√

ρeV + ε
〈u,w〉dx

≤ ‖u‖L2(ρ)

2
lim inf

ε↓0

√ˆ
�

ρe2V |w|2
ρeV + ε

dx = ‖u‖L2(ρ) ‖w‖L2(eV )

2
,

where, for the second equality, we used a standard property of the composition of Sobolev
functions (cf. [23, Proposition 9.5]) and, in the last one, the monotone convergence theorem.
It follows that that

√
ρeV ∈ W 1,2(�) with

ˆ
�

∣∣∣∣∇
√

ρeV
∣∣∣∣
2

e−V dx ≤
(‖u‖L2(ρ)

2

)2
(5.16)≤ T 2(μ, μ̄)

4τ 2
, (5.17)

which, since V is bounded, yields (5.10).
Step 2 (inequality (5.11)). Pick q as in the statement, i.e., 1 ≤ q < ∞ with q(d − 2) ≤ d

or, if d = 1, q ∈ [1,∞]. Inequality (5.11) would follow from the Sobolev embedding
theorem [23, Corollary 9.14] if ∂� were regular enough. Nonetheless, by [23, Remark 20,
Chapter 9], evenwith no regularity on ∂�, we still have that the inclusionW 1,2

0 (�) ↪→ Lq(�)

is continuous. Consider the functions g and g(κ) of Remark 5.6 and fix κ = c(ecτ − 1) for
a suitable constant c independent of τ (and q), so that g(κ) is compactly supported, hence
in W 1,2

0 (�). From the Sobolev embedding theorem we obtain
∥∥g(κ)

∥∥
L2q ≤ cq

∥∥g(κ)
∥∥
W 1,2

and, therefore,∥∥∥∥
√

ρeV
∥∥∥∥
L2q
≤ cq + ‖g‖L2q ≤ cq(1+ κ)+

∥∥∥g(κ)
∥∥∥
L2q
≤ cq

(
1+ κ +

∥∥∥g(κ)
∥∥∥
W 1,2

)

≤ cq
(
1+ κ + ‖g‖W 1,2

) ≤ cq

(
1+ κ +

∥∥∥∥
√

ρeV
∥∥∥∥
W 1,2

)
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≤ cq

(
1+ κ +

∥∥∥∥∇
√

ρeV
∥∥∥∥
L2
+√‖ρ‖L1

)
,

which can be easily transformed into (5.11).
Step 3 (identity (5.12)). Let γ ∈ OptT(μ, μ̄) and let S be such that γ �

� = (Id, S)#μ�.
From (5.15) we infer that

−2
ˆ

�

√
ρe−V

〈
∇
√

ρeV ,w

〉
dx ≤ − 1

τ

ˆ
〈w(x), y − x〉dγ (x, y) = − 1

τ

ˆ
〈w, S − Id〉ρdx .

By arbitrariness of w, (5.12) follows. ��

5.1.4 Uniqueness

Let us assume that μ and μ′ are two minimizers for (5.2) such that their restrictions to �

are absolutely continuous; let ρ and ρ′ be their respective densities. Let γ ∈ OptT(μ, μ̄)

and γ ′ ∈ OptT(μ
′, μ̄). By Proposition 4.19, we can write

γ �
� = (Id, S)#μ� , (γ ′)�� = (Id, S′)#μ� ,

γ �

�
= (T , Id)#μ̄� , (γ ′)�

�
= (T ′, Id)#μ̄� ,

for some appropriate Borel maps.

Proposition 5.11 The two measures μ and μ′ are equal.

Note that uniqueness is not immediate, given that the functionalH is not strictly convex.
This setting is different from that of [7] and [6]: therein, measures are defined only on �.
Instead, we claim here that the measure μ, on the whole �, is uniquely determined.

Theproof of Proposition 5.11 is precededby three lemmas: thefirst one concerns the identi-
fication of S and S′; the second one, similar to [7, PropositionA.3 (A.5)], shows that T |T−1(∂�)

and T ′|(T ′)−1(∂�) enjoy one same property, inferred from theminimality ofμ andμ′; the third
one ensures that this property identifies uniquely T (i.e., T = T ′) on T−1(∂�)∩(T ′)−1(∂�).

Lemma 5.12 If μ� = μ′�, then S(x) = S′(x) for L d
�-a.e x.

Proof This statement immediately follows from (5.12) in Proposition 5.9. ��
Lemma 5.13 For μ̄-a.e. point x ∈ � such that T (x) ∈ ∂�, we have

T (x) ∈ argmin
y∈∂�

(
�(y)+ |x − y|2

2τ

)
. (5.18)

An analogous statement holds for T ′.

Proof Set

f (x, y):=�(y)+ |x − y|2
2τ

, x ∈ � , y ∈ ∂� . (5.19)

By [22, Theorem 18.19] there exists a Borel function R : �→ ∂� such that

R(x) ∈ argmin
y∈∂�

f (x, y)
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for all x ∈ �. Let A ⊆ T−1(∂�) be a Borel set and consider the measure

μ̃:=μ− T#μ̄A + R#μ̄A ,

which lies in S . Additionally define

γ̃ :=γ − (T , Id)#μ̄A + (R, Id)#μ̄A

and notice that γ̃ ∈ AdmT(μ̃, μ̄). By the minimality property of μ and the optimality of γ ,
we must have

H(μ)+ 1

2τ
C(γ ) ≤ H(μ̃)+ 1

2τ
C(γ̃ ) ,

which, after rearranging the terms, givesˆ
f (x, T (x))dμ̄A(x) ≤

ˆ
f (x, R(x))dμ̄A(x) =

ˆ
min
y∈∂�

f (x, y)dμ̄A(x) .

We conclude the proof by arbitrariness of A. ��
Lemma 5.14 For μ̄-a.e. point x ∈ � such that T (x) ∈ ∂� and T ′(x) ∈ ∂�, we have

T (x) = T ′(x) .

Proof We can resort to [24, Lemma 1] by G. Cox. Adopting the notation of this lemma, we
set

Q(t, z):=�(t)+ |z − t |2
2τ

, P:=c μ̄|T−1(∂�)∩(T ′)−1(∂�) ,

for some constant c that makes P a probability distribution. Four assumptions are made
therein and need to be checked:

• AbsoluteContinuity: It follows from E(μ̄) <∞ that μ̄� is absolutely continuous.Hence,
so is the probability P .

• Continuous Differentiability: Conditions (a) and (b) are easy to check. Condition (c) is
vacuously true by setting A(t):=∅ for every t .

• Generic: Condition (d) is true and easy to check.
• Manifold: This condition is not true if ∂� does not enjoy any kind of regularity. However,

one can check that that ∂� does not need to be a union of manifolds if the condition
Generic holdswith A(t):=∅ for every t . The other topological properties, namely second-
countability and Hausdorff, are trivially true, since ∂� ⊆ R

d .

��
Proof of Proposition 5.11 Step 1 (uniqueness of ρ and S). The identity ρ = ρ′ follows
from the strict convexity of the function l 	→ l log l. To see why, notice that γ+γ ′

2 ∈
AdmT(

μ+μ′
2 , μ̄); therefore, by minimality,

H(μ)+ 1
2τ C(γ )+H(μ′)+ 1

2τ C(γ ′)
2

≤ H
(

μ+ μ′

2

)
+ 1

2τ
C
(

γ + γ ′

2

)
.

Most of the terms simplify by linearity. What remains is
ˆ

�

ρ log ρ + ρ′ log ρ′

2
dx ≤

ˆ
�

(
ρ + ρ′

2

)
log

(
ρ + ρ′

2

)
dx ,
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which implies ρ(x) = ρ′(x) forL d -a.e. x ∈ �. The identity S = S′ out of aL d
�-negligible

set follows from Lemma 5.12.
Step 2 (uniqueness of γ �

∂�). We can write

γ = γ �
� + γ �

∂� and γ ′ = (γ ′)�� + (γ ′)�∂� .

Because of the uniqueness of μ� and S, we have the equality γ �
� = (γ ′)��. If we combine

this fact with Condition (2) in Definition 3.7, we find

0 = (
π2
# (γ − γ ′)

)
�
= π2

#

(
γ �
∂� − (γ ′)�∂�

)
= π2

#

(
(T , Id)#μ̄T−1(∂�) − (T ′, Id)#μ̄(T ′)−1(∂�)

) = μ̄T−1(∂�) − μ̄(T ′)−1(∂�) .

This proves that T−1(∂�) and (T ′)−1(∂�) are μ̄-essentially equal. Together with Lemma
5.14, this gives

γ �
∂� = (T , Id)#μ̄T−1(∂�) = (T ′, Id)#μ̄(T ′)−1(∂�) = (γ ′)�∂� .

Step 3 (conclusion). We have determined that γ = γ ′. Condition (3) in Definition 3.9
gives

μ = π1
# γ − π2

# γ + μ̄ = π1
# γ ′ − π2

# γ ′ + μ̄ = μ′ ,

which is what we wanted to prove.

5.1.5 Contractivity

In this section, we establish time monotonicity for some truncated and weighted Lq norm
(q ≥ 1) of the densities ρτ

t .
Here, too, only one step of the scheme is involved. We let μ be the unique minimimum

point of (5.2) and ρ be the density of its restriction to �.

Proposition 5.15 Let q ≥ 1. For every ϑ ≥ ϑ0:=max∂� e� , the following inequality holds
(possibly, with one or both sides being infinite):ˆ

�

max
{
ρ, ϑe−V

}q
e(q−1)V dx ≤

ˆ
�

max
{
ρ̄, ϑe−V

}q
e(q−1)V dx . (5.20)

Remark 5.16 For a solution to the Fokker–Planck equation (1.4), a monotonicity property
like (5.20) is expected. Indeed, formally:

d

dt

ˆ
�

max
{
ρt , ϑe

−V }q e(q−1)V dx = q
ˆ
{ρt>ϑe−V }

(ρt e
V )q−1 div(∇ρt + ρt∇V )dx

= q
ˆ

∂{ρt>ϑe−V }
(ρt e

V )q−1e−V 〈∇(ρt e
V ), n〉dH d−1

−q(q − 1)
ˆ
{ρt>ϑe−V }

(ρt e
V )q−2eV |∇ρt + ρt∇V |2 dx︸ ︷︷ ︸
≤0

.

If ϑ � ϑ0, the boundary condition forces the set ∂
{
ρt > ϑe−V

}∩∂� to be negligible.More-
over, on ∂

{
ρt > ϑe−V

}∩�, the scalar product 〈∇(ρt eV ), n〉 is nonpositive. The caseϑ = ϑ0

can be deduced by approximation.
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Remark 5.17 (Mass bound) Note that Proposition 5.15 implies that the mass of (μτ
t )� is

bounded by a constant c indepentent of t and τ . Indeed,ˆ
�

ρτ
t dx ≤

ˆ
�

max
{
ρτ
t , ϑ0e

−V } dx ≤ · · · ≤ ˆ
�

max
{
ρ0, ϑ0e

−V } dx
≤
ˆ

�

ρ0dx + ϑ0

ˆ
�

e−V dx .

The proof of the first Step in Proposition 5.15, i.e., the case q = 1, and of the preliminary
lemma Lemma 5.18 follow the lines of [6, Proposition 3.7 (24)] and [7, Proposition 5.3]. In
all these proofs, the key is to leverage the optimality ofμ by constructing small variations. In
the proof of Step 2, i.e., the case q > 1, instead, our idea is to take the inequality for q = 1,
multiply it by a suitable power of ϑ , and integrate it w.r.t. the variable ϑ itself. This is the
reason why, while Proposition 5.15 will later be used only with ϑ = ϑ0—or in the form
of Remark 5.17—it is convenient to have it stated and proven (at least for q = 1) for a
continuum of values of ϑ .

Lemma 5.18 For μ-a.e. x ∈ � such that S(x) ∈ �, we have

log ρ(x)+ V (x) ≤ log ρ(S(x))+ V (S(x))− |x − S(x)|2
2τ

. (5.21)

Proof Let ε ∈ (0, 1) and let A ⊆ S−1(�) be a Borel set. We define

μ̃:=μ+ εS#μA − εμA ∈ S ,

γ̃ :=γ − ε(Id, S)#μA + ε(S, S)#μA ∈ AdmT(μ̃, μ̄) .

Let ρ̂ be the density of S#μA and note that ρ̂ ≤ ρ̄. By the minimality of μ, we have

0 ≤
ˆ

�

(
ρ + ε(ρ̂ − 1Aρ)

)
log

(
ρ + ε(ρ̂ − 1Aρ)

)− ρ log ρ

ε
dx︸ ︷︷ ︸

:=I1

+
ˆ (

V ◦ S − V − |Id−S|2
2τ

)
dμA .

We use the convexity of l 	→ l log l to write

I1 ≤
ˆ

�

(ρ̂ − 1Aρ)
(
1+ log

(
ρ + ε(ρ̂ − 1Aρ)

))
dx

=
ˆ

�

(ρ̂ − 1Aρ) log
(
ρ + ε(ρ̂ − 1Aρ)

)
dx

=
ˆ

�

ρ̂ log
(
ρ + ε(ρ̂ − 1Aρ)

)
dx −

ˆ
A

ρ log
(
(1− ε)ρ + ερ̂

)
dx

≤
ˆ

�

ρ̂ log(ρ + ερ̂
)
dx −

ˆ
A

ρ
(
log ρ + log(1− ε)

)
dx .

On the first integral on the last line, we use the monotone convergence theorem (“down-
wards”): its hypotheses are satisfied because ρ̂ ≤ ρ̄. By passing to the limit ε → 0, we
obtain

0 ≤
ˆ

�

ρ̂ log ρdx +
ˆ (

− log ρ + V ◦ S − V − |Id−S|2
2τ

)
dμA
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=
ˆ (

log ρ ◦ S − log ρ + V ◦ S − V − |Id−S|2
2τ

)
dμA ,

and we conclude by arbitrariness of A. ��

Proof of Proposition 5.15 Step 1 (q = 1). Consider the case q = 1. Let

A:=
{
x ∈ � : ρeV > ϑ

}
. (5.22)

Thanks to (5.9), we know that A∩S−1(∂�) isL d -negligible. Therefore,we can extract aL d
A -

full-measure Borel subset Ã of A ∩ S−1(�) where (5.21) holds (recall thatL d
� $ μ�). It is

easy to check that S( Ã) ⊆ A. Therefore, we have
ˆ
A
max

{
ρ, ϑe−V

}
dx

(5.22)=
ˆ
A

ρdx =
ˆ
Ã

ρdx ≤
ˆ
S−1(A)

ρdx = S#μ�(A)

= π2
# γ �

� (A)
(A⊆�)= π2

# γ �
� (A) ≤ π2

# γ �

�
(A) = μ̄�(A) ≤

ˆ
A
max

{
ρ̄, ϑe−V

}
dx .

(5.23)

On the other hand,
ˆ

�\A
max

{
ρ, ϑe−V

}
dx

(5.22)=
ˆ

�\A
ϑe−V dx ≤

ˆ
�\A

max
{
ρ̄, ϑe−V

}
dx , (5.24)

and we conclude by taking the sum of (5.23) and (5.24).
Step 2 (q > 1) Assume now that q > 1. Define

f :=max
{
ρ, ϑe−V

}
, g:=max

{
ρ̄, ϑe−V

}
.

Note that the case q = 1 implies
ˆ

�

max
{
f , ϑ̃e−V

}
dx ≤

ˆ
�

max
{
g, ϑ̃e−V

}
dx (5.25)

for every ϑ̃ > 0. After multiplying (5.25) by ϑ̃q−2, integrating w.r.t. ϑ̃ from 0 to some� > 0,
and changing the order of integration with Tonelli’s theorem, we find

ˆ
�

(ˆ min
{
f eV ,�

}
0

ϑ̃q−2dϑ̃
)

f dx +
ˆ

�

(ˆ �

min{ f eV ,�}
ϑ̃q−1dϑ̃

)
e−V dx

≤
ˆ

�

(ˆ min
{
geV ,�

}
0

ϑ̃q−2dϑ̃
)
gdx +

ˆ
�

(ˆ �

min{geV ,�}
ϑ̃q−1dϑ̃

)
e−V dx ,

whence

1

q − 1

ˆ
�

min
{
f eV ,�

}q−1
f dx − 1

q

ˆ
�

min
{
f eV ,�

}q
e−V dx

≤ 1

q − 1

ˆ
�

min
{
geV ,�

}q−1
gdx − 1

q

ˆ
�

min
{
geV ,�

}q
e−V dx .

It follows that
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(
1

q − 1
− 1

q

)ˆ
�

min
{
f eV ,�

}q
e−V dx + 1

q

ˆ
�

min
{
geV ,�

}q
e−V dx

≤ 1

q − 1

ˆ
�

min
{
geV ,�

}q−1
gdx .

We now let �→∞ and deduce from the monotone convergence theorem that(
1

q − 1
− 1

q

)ˆ
�

f qe(q−1)V dx + 1

q

ˆ
�

gqe(q−1)V dx ≤ 1

q − 1

ˆ
�

gqe(q−1)V dx .

Eventually, we can rearrange, and, noted that
(

1
q−1 − 1

q

)
> 0, simplify to finally

obtain (5.20). ��

5.2 Convergence w.r.tWb2

In this section, we prove convergence w.r.t.Wb2 of the measures built with the scheme (1.8).
The argument is standard. In fact, we shall give a short proof that relies on the ‘refined version
of Ascoli-Arzelà theorem’ [9, Proposition 3.3.1].

Proposition 5.19 As τ → 0, up to subsequences, themaps
(
t 	→ (μτ

t )�
)
τ
converge pointwise

w.r.t. Wb2 to a curve t 	→ ρt dx of absolutely continuous measures, continuous w.r.t. Wb2.

Once again, we first need a lemma.

Lemma 5.20 Let t ≥ 0 and τ > 0. Then

τ

ˆ
�

ρτ
t log ρτ

t dx +

t/τ�−1∑
i=0

T 2(μτ
iτ , μ

τ
(i+1)τ

) ≤ c τ(1+ t + τ) . (5.26)

As a consequence,

Wb2
(
(μτ

s )�, (μτ
t )�

) ≤ W̃b2
(
μτ
s , μ

τ
t

) ≤ c
√

(t − s + τ)(1+ t + τ) , s ∈ [0, t] .
(5.27)

Proof We use (5.3) to write


t/τ�−1∑
i=0

T 2(μτ
iτ , μ

τ
(i+1)τ

)
4τ

≤ E(ρ0)− E(ρτ
t )+ (μτ

t )�(�)− (μ0)�(�)+ cτ


t/τ�∑
i=0

∥∥(μτ
iτ )�

∥∥ ,

and conclude (5.26) by using Remark 5.17.
The first inequality in (5.27) follows from (4.1). As for the second one, since W̃b2 is

a pseudometric, and by the Cauchy–Schwarz inequality and (4.1), we have the chain of
inequalities

W̃b2(μ
τ
s , μ

τ
t ) ≤


t/τ�−1∑
i=
s/τ�

W̃b2(μ
τ
iτ , μ

τ
(i+1)τ ) ≤


t/τ�−1∑
i=
s/τ�

T
(
μτ
iτ , μ

τ
(i+1)τ

)

≤
√
t − s + τ

τ

√√√√√
t/τ�−1∑
i=
s/τ�

T 2(μτ
iτ , μ

τ
(i+1)τ

)
.

We combine the latter with (5.26) to infer (5.27). ��
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Proof of Proposition 5.19 Fix t > 0. We know from Lemma 5.20 that, for every s ∈ [0, t]
and τ ∈ (0, 1), we have

(μτ
s )� ∈ Kt :=

{
ρdx :

ˆ
�

ρ log ρdx ≤ c (2+ t)

}
,

where c is the constant in (5.26). We claim that Kt is compact in (M2(�),Wb2). By identi-
fying an absolutely continuous measure with its density, Kt can be seen as a subset of L1(�).
This set is closed and convex, as well as weakly sequentially compact by the Dunford–
Pettis theorem. From [6, Proposition 2.7] we know that weak convergence in L1(�) implies
convergence w.r.t. Wb2; hence the claim is true.

Furthermore, for every r , s ∈ [0, t], we have

lim sup
τ→0

Wb2
(
(μτ

r )�, (μτ
s )�

) (5.27)≤ c
√|s − r | (1+ t) .

All the hypotheses of [9, Proposition 3.3.1] are satisfied; thus, we conclude the existence of
a subsequence of

(
s 	→ (μτ

s )�
)
τ
that converges, pointwise in [0, t]w.r.t.Wb2, to a continuous

curve of measures. Each limit measure lies in Kt ; hence it is absolutely continuous. With
a diagonal argument, we find a single subsequence that converges pointwise on the whole
half-line [0,∞). ��

5.3 Solution to the Fokker–Planck equation with Dirichlet boundary conditions

We are now going to conclude the proof of Theorem 1.1 by showing that the limit curve is, in
fact, a solution to the linear Fokker–Planck equation with the desired boundary conditions.

Proposition 5.21 If the sequence
(
t 	→ (μτ

t )�
)
τ
converges, pointwise w.r.t. Wb2 as τ → 0,

to t 	→ ρt dx, then ρτ →τ ρ also in L1
loc

(
(0,∞); Lq(�)

)
for every q ∈ [1, d

d−1 ). The
curve t 	→ ρt dx solves the linear Fokker–Planck equation in the sense of Section 3.4, and

the map t 	→
(√

ρt eV − e�/2
)
belongs to L2

loc

([0,∞);W 1,2
0 (�)

)
.

Like in the proofs of [6, Theorem 3.5] and [7, Theorem 4.1], the key to Proposition
5.21 is to first determine (see Lemma 5.24) that the measures constructed with (1.8) already
solve approximately the Fokker–Planck equation. In order to prove that the limit curve has
the desired properties and that convergence holds in L1

loc

(
(0,∞); Lq(�)

)
(Lemma 5.26),

two further preliminary lemmas turn out to be particularly useful. Both provide quantitative
bounds at the discrete level: one (Lemma 5.22) for

√
ρτ eV in L2

loc

(
(0,∞);W 1,2(�)

)
; the

other (Lemma 5.23) for ρτ in L∞loc
(
(0,∞); Lq(�)

)
, for suitable values of q . In turn, these

bounds are deduced from Proposition 5.9 and Proposition 5.15.

Lemma 5.22 (Sobolev bound) If τ ≤ t , then,

ˆ t

τ

∥∥∥∥
√

ρτ
r e

V

∥∥∥∥
2

W 1,2
dr ≤ c(1+ t) . (5.28)

Proof Let r ≥ τ . By (5.10), we have

∥∥∥∥∇
√

ρτ
r e

V

∥∥∥∥
2

L2
≤ c

T 2
(
μτ
r/τ�τ , μτ
r/τ�τ−τ

)
τ 2

.
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Thus,

ˆ t

τ

∥∥∥∥∇
√

ρτ
r e

V

∥∥∥∥
2

L2
dr ≤ c


t/τ�−1∑
i=0

T 2
(
μτ

(i+1)τ , μ
τ
iτ

)
τ

,

which, using Lemma 5.20, can be easily reduced to the desired inequality. ��
Lemma 5.23 (Lebesgue bound) Let q ∈ [1,∞) be such that q(d − 2) ≤ d. If τ < t , then∥∥ρτ

t

∥∥
Lq ≤ cqe

cτ 1+ t

t − τ
. (5.29)

Proof For every r ∈ [0, t], Proposition 5.15 gives
∥∥ρτ

t

∥∥
Lq ≤ cq

(ˆ
�

max
{
ρτ
t e

V , ϑ0

}q
e−V dx

)1/q

≤ cq

(ˆ
�

max
{
ρτ
r e

V , ϑ0

}q
e−V dx

)1/q

≤ cq
(
1+ ∥∥ρτ

r

∥∥
Lq

)
,

and if, additionally, r ≥ τ , then (5.11) yields

∥∥ρτ
t

∥∥
Lq ≤ cq

(
ecτ +

∥∥∥∥∇
√

ρτ
r e

V

∥∥∥∥
2

L2
+ ∥∥ρτ

r

∥∥
L1

)
.

After integrating w.r.t. r from τ to t , Lemma 5.22 and Remark 5.17 imply (5.29). ��
Lemma 5.24 (Approximate Fokker–Planck) Let ω � � be open, let ϕ ∈ C2

0 (ω), and let s, t
be such that 0 ≤ s ≤ t . Then, ρτ , ρτ∇V ∈ L1

loc

(
(τ,∞); L1(ω)

)
, and∣∣∣∣∣

ˆ
�

(ρτ
t − ρτ

s )ϕdx −
ˆ 
 t

τ
�τ+τ


 s
τ
�τ+τ

ˆ
�

(	ϕ − 〈∇ϕ,∇V 〉)ρτ
r dxdr

∣∣∣∣∣
≤ cω τ(1+ t + τ) ‖ϕ‖C2

0 (ω) . (5.30)

Moreover, for ε > 0, the inequality∥∥ρτ
t − ρτ

s

∥∥
(C2

0 (ω))∗ ≤ cω,ε(t − s + τ) (5.31)

holds whenever 0 < 2τ ≤ ε ≤ s ≤ t ≤ 1/ε.

Remark 5.25 In (5.31), we identify ρτ
t − ρτ

s with the continuous linear functional

C2
0 (ω) � ϕ −→

ˆ
ω

(ρτ
t − ρτ

s )ϕdx .

Proof of Lemma 5.24 Step 1 (integrability). From Remark 5.17, it follows trivially that ρτ ∈
L1
loc

([0,∞); L1(�)
)
.We shall prove that the functionρτ∇V belongs to L1

loc

(
(τ,∞); L1(ω)

)
for every ω � � open. Fix a, b > 0 with τ < a ≤ b. Let p be as in Definition 3.1. Its
conjugate exponent p′ satisfies p′ ∈ [1,∞) and p′(d − 2) ≤ d . By Hölder’s inequality
and Lemma 5.23, we haveˆ b

a

∥∥ρτ
r ∇V

∥∥
L1(ω)

dr ≤ ‖∇V ‖L p(ω)

ˆ b

a

∥∥ρτ
r

∥∥
L p′ dr

(5.29)≤ cp ‖∇V ‖L p(ω) e
cτ
ˆ b

a

1+ r

r − τ
dr

≤ cp ‖∇V ‖L p(ω) e
cτ 1+ b

a − τ
(b − a) ≤ cωe

cτ 1+ b

a − τ
(b − a) .

(5.32)
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The last passage is due to the fact that both p and ‖∇V ‖L p(ω) can be seen as functions of V
and ω.

Step 2 (inequality (5.30)). Let i ∈ N0, and choose γ i ∈ OptT
(
μτ

(i+1)τ , μ
τ
iτ

)
and Si : � →

� as in (5.12). By the triangle inequality and the fact that ρτ
r = ρτ

(i+1)τ when r ∈ [
(i +

1)τ, (i + 2)τ
)
, we have∣∣∣∣∣

ˆ
�

(ρτ
(i+1)τ − ρτ

iτ )ϕdx −
ˆ (i+2)τ

(i+1)τ

ˆ
�

(	ϕ − 〈∇ϕ,∇V 〉)ρτ
r dxdr

∣∣∣∣∣
≤

∣∣∣∣
ˆ

�

(ϕ − ϕ ◦ Si − τ	ϕ + τ 〈∇ϕ,∇V 〉) ρτ
(i+1)τdx

∣∣∣∣︸ ︷︷ ︸
=:I i1

+
∣∣∣∣
ˆ

�

(
(ϕ ◦ Si )ρτ

(i+1)τ − ϕρτ
iτ

)
dx

∣∣∣∣︸ ︷︷ ︸
=:I i2

.

Using (5.12), we rewrite I i1 as

I i1 =
∣∣∣∣
ˆ

�

(ϕ − ϕ ◦ Si + 〈∇ϕ, Si − Id〉) ρτ
(i+1)τdx

∣∣∣∣ ,
and then, by means of Taylor’s theorem with remainder in Lagrange form, we establish the
upper bound

I i1 ≤ c ‖ϕ‖C2
0 (ω)

ˆ
�

|Si − Id|2 ρτ
(i+1)τdx ≤ c ‖ϕ‖C2

0 (ω) T 2
(
μτ

(i+1)τ , μ
τ
iτ

)
.

By Condition (2) in Definition 3.7 and the fact that ϕ is supported in the closure of ω, we
have

I i2 =
∣∣∣∣
ˆ

�

ϕ(y)dπ2
# (γ �

� − γ �

�
)

∣∣∣∣ =
∣∣∣∣
ˆ

�

ϕ(y)dπ2
# (γ ω

� − γ ω

�
)

∣∣∣∣ ≤ ‖ϕ‖L∞(ω)

∥∥γ ω
∂�

∥∥
≤ cω ‖ϕ‖L∞(ω)

ˆ
∂�×ω

|x − y|2 dγ (x, y) ≤ cω ‖ϕ‖L∞(ω) T 2
(
μτ

(i+1)τ , μ
τ
iτ

)
,

where cω actually only depends on the (strictly positive) distance of ω from ∂�. Taking the
sum over i , we obtain∣∣∣∣∣

ˆ
�

(ρτ
t − ρτ

s )ϕdx −
ˆ 
 t

τ
�τ+τ


 s
τ
�τ+τ

ˆ
�

ρτ
r (	ϕ − 〈∇ϕ,∇V 〉)dxdr

∣∣∣∣∣ ≤

t/τ�−1∑
i=
s/τ�

(I i1 + I i2)

≤ cω ‖ϕ‖C2
0 (ω)


t/τ�−1∑
i=0

T 2
(
μτ

(i+1)τ , μ
τ
iτ

)
.

At this point, (5.30) follows from the last estimate and Lemma 5.20.
Step 3 (inequality (5.31)). Assume that 2τ ≤ ε ≤ s ≤ t ≤ 1/ε. From (5.30), we obtain∣∣∣∣
ˆ

�

(ρτ
t − ρτ

s )ϕdx

∣∣∣∣ ≤ cω,ε τ ‖ϕ‖C2
0 (ω) +

ˆ 
 t
τ
�τ+τ


 s
τ
�τ+τ

∥∥ρτ
r (	ϕ − 〈∇ϕ,∇V 〉)∥∥L1 dr︸ ︷︷ ︸

=:I3

.
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Taking into account Remark 5.17 and the estimate (5.32) of Step 1,

I3 ≤ ‖ϕ‖C2
0 (ω)

ˆ 
 t
τ
�τ+τ


 s
τ
�τ+τ

(∥∥ρτ
r

∥∥
L1 +

∥∥ρτ
r ∇V

∥∥
L1

)
dr

≤ cωe
cτ ‖ϕ‖C2

0 (ω) (t − s + τ)

(
1+ 1+ t + τ


s/τ�τ
)

≤ cω,ε ‖ϕ‖C2
0 (ω) (t − s + τ) .

The inequality (5.31) easily follows. ��
Lemma 5.26 (Improved convergence) Assume that the sequence

(
t 	→ (μτ

t )�
)
τ
converges

pointwise w.r.t. Wb2 as τ → 0 to a limit t 	→ ρt dx. Then, for every q ∈ [1, d
d−1 ), the

sequence (ρτ )τ converges to ρ in L1
loc

(
(0,∞); Lq(�)

)
.

Proof Step 1. Fix ε ∈ (0, 1) and an open set ω � � with C1-regular boundary. As a first
step, we shall prove strong convergence of (ρτ )τ in L1

(
ε, ε−1; Lq(ω)

)
. The idea is to use a

variant of the Aubin–Lions lemma by M. Dreher and A. Jüngel [25]. Consider the Banach
spaces

X :=W 1,1(ω) , B:=Lq(ω) , Y :=(
C2
0 (ω)

)∗ ,
and note that the embeddings X ↪→ B and B ↪→ Y are respectively compact (by the Rellich–
Kondrachov theorem [23, Theorem 9.16]) and continuous. Inequality (5.31) in Lemma 5.24
provides one of the two bounds needed to apply [25, Theorem 1]. The other one, namely

lim sup
τ→0

∥∥ρτ
∥∥
L1
(
(ε,ε−1);W 1,1(ω)

) < ∞ ,

can be derived from our previous lemmas. Indeed, Remark 5.17 provides the bound on
the L1

(
ε, ε−1; L1(ω)) norm, and we have

∥∥∇ρτ
t

∥∥
L1(ω)

≤ c

∥∥∥∥√ρτ
t ∇

√
ρτ
t eV

∥∥∥∥
L1(ω)

+ ∥∥ρτ
t ∇V

∥∥
L1(ω)

≤ c
√∥∥ρτ

t

∥∥
L1

∥∥∥∥∇
√

ρτ
t eV

∥∥∥∥
L2
+ ∥∥ρτ

t

∥∥
L p′ (ω)

‖∇V ‖L p(ω) ,

where p = p(ω) is given by Definition 3.1. When τ ≤ ε, Remark 5.17 and Lemma 5.22
yield

ˆ 1
ε

ε

√∥∥ρτ
t

∥∥
L1

∥∥∥∥∇
√

ρτ
t eV

∥∥∥∥
L2

dt ≤
√ˆ 1

ε

ε

∥∥ρτ
t

∥∥
L1 dt

√ˆ 1
ε

ε

∥∥∥∥∇
√

ρτ
t eV

∥∥∥∥
2

L2
dt ≤ cε .

Moreover, since p′ ∈ [1,∞) and p′(d − 2) ≤ d , we can apply Lemma 5.23 to
bound

∥∥ρτ
t

∥∥
L p′ (ω)

. To be precise, there is still a small obstruction to applying Dreher and Jün-
gel’s theorem: it requires ρτ to be constant on equally sized subintervals of the time domain,
i.e., (ε, ε−1); instead, here, τ and (ε−1 − ε) may even be incommensurable. Nonetheless, it
is not difficult to check that the proof in [25] can be adapted.6 In the end, we obtain the con-

6 The adaptation is the following. In place of [25, Inequality (7)], we write, in our notation:

∑
i : ε<iτ<ε−1

∥∥∥ρτ
iτ − ρτ

(i−1)τ
∥∥∥
Y

(5.31)≤ cω,ετ (&1/(ετ)− 1' − 
ε/τ�) ≤ cω,ε(ε
−1 − ε + τ) .

123



Variational structures for the Fokker–Planck equation with… Page 39 of 58    23 

vergence of
(
ρτ

)
τ
, along a subsequence (τk)k∈N0 , to some function f : (ε, ε−1)×ω → R+

in L1
(
ε, ε−1; Lq(ω)

)
. Up to extracting a further subsequence, we can also require that con-

vergence holds in Lq(ω) for L 1
(ε,ε−1)-a.e. t . For any such t , and for any ϕ ∈ Cc(ω), we thus

have ˆ
ω

ϕ ftdx = lim
k→∞

ˆ
ω

ϕρ
τk
t dx =

ˆ
ω

ϕρtdx ,

where the last identity follows from the convergence w.r.t. Wb2 and [6, Proposition 2.7].
Therefore, ft (x) = ρt (x) for L

d+1
(ε,ε−1)×ω

-a.e. (t, x), and, a posteriori, there was no need to
extract subsequences.

Step 2. Secondly, we prove that, for every ε ∈ (0, 1), the sequence (ρτ )τ is Cauchy in
the complete space L1

(
ε, ε−1; Lq(�)

)
. Pick an open subset ω � � and cover it with a finite

number of open balls {Ai }i , all compactly contained in �. Additionally choose β ∈ (q,∞)

with β(d − 2) ≤ d . We have

‖·‖
L1
(
ε,ε−1;Lq (�)

) ≤∑
i

‖·‖
L1
(
ε,ε−1;Lq (Ai )

) + ‖·‖
L1
(
ε,ε−1;Lq (�\ω)

) ,

and, by Hölder’s inequality,

‖·‖
L1
(
ε,ε−1;Lq (�\ω)

) ≤ |� \ ω| 1q− 1
β ‖·‖

L1
(
ε,ε−1;Lβ (�)

) .

Hence, by Step 1,

lim sup
τ1,τ2→0

∥∥ρτ1 − ρτ2
∥∥
L1
(
ε,ε−1;Lq (�)

) ≤ 2 |� \ ω| 1q− 1
β lim sup

τ→0

∥∥ρτ
∥∥
L1
(
ε,ε−1;Lβ (�)

) .

Recall Lemma 5.23: we have

lim sup
τ→0

∥∥ρτ
∥∥
L1
(
ε,ε−1;Lβ (�)

) ≤ cβ

ˆ ε−1

ε

(
1+ 1

t

)
dt ≤ cβ,ε .

We conclude, by arbitrariness of ω, the desired Cauchy property.
By Step 1, the limit of (ρτ )τ in L1

(
ε, ε−1; Lq(�)

)
must coincide L d+1

(ε,ε−1)×ω
-a.e. with ρ

for every ω � � open; hence, this limit is precisely ρ on �. ��
Proof of Proposition 5.21 Convergence in L1

loc

(
(0,∞); Lq(�)) was proven in the previous

lemma. Thus, we shall only prove the properties of the limit curve.
Step 1 (continuity). Continuity in duality with Cc(�) follows from Proposition 5.19 and

[6, Proposition 2.7].
Step 2 (identity (3.2) for s > 0). Let 0 < s ≤ t and let ϕ ∈ C2

c (�). Thanks to the
convergences

ρτ
s dx

Wb2→τ ρsdx and ρτ
t dx

Wb2→τ ρtdx ,

we have (see [6, Proposition 2.7])ˆ
�

(ρτ
t − ρτ

s )ϕdx →τ

ˆ
�

(ρt − ρs)ϕdx .

Moreover, since every p as in Definition 3.1 has a conjugate exponent p′ that satisfies p′(d−
1) < d , Lemma 5.26 yields

ˆ 
 t
τ
�τ+τ


 s
τ
�τ+τ

ˆ
�

ρτ
r (	ϕ − 〈∇ϕ,∇V 〉)dxdr →τ

ˆ t

s

ˆ
�

ρr (	ϕ − 〈∇ϕ,∇V 〉)dxdr .
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Thus, (3.2) is true by Lemma 5.24.
Step 3 (Sobolev regularity and boundary condition). In analogy with Remark 5.6, we

define

gτ
r :=

√
ρτ
r e

V − e�/2 , gτ,(κ)
r :=(gτ

r − κ)+ − (gτ
r + κ)− , τ, κ > 0 , r ≥ 0 ,

and

gr :=
√

ρr eV − e�/2 , g(κ)
r :=(gr − κ)+ − (gr + κ)− , κ > 0 , r ≥ 0 .

Recall that, if κ ≥ c(ecτ − 1) for an appropriate constant c, and if r ≥ τ , then the
function gτ,(κ)

r is compactly supported in �. Let us fix one such κ and 0 < s <

t . Lemma 5.22 implies that the sequence
(
gτ,(κ)

)
τ
is eventually norm-bounded in the

space L2
(
s, t;W 1,2

0 (�)
)
. As a consequence, it admits a subsequence

(
gτk ,(κ)

)
k (possibly

dependent on s, t, κ) that converges weakly in L2
(
s, t;W 1,2

0 (�)
)
. Using Lemma 5.26 and

Mazur’s lemma [23, Corollary 3.8 & Exercise 3.4(.1)], one can easily show that this limit
indeed coincides with g(κ).

By means of the weak semicontinuity of the norm, the definition of gτ,(κ), and Lemma
5.22, we find
ˆ t

s

∥∥∥g(κ)
r

∥∥∥2
W 1,2

dr ≤ lim inf
k→∞

ˆ t

s

∥∥∥gτk ,(κ)
r

∥∥∥2
W 1,2

dr ≤ lim inf
k→∞

ˆ t

s

∥∥gτk
r

∥∥2
W 1,2 dr ≤ c(1+ t) ,

and, by arbitrariness of s,
ˆ t

0

∥∥∥g(κ)
r

∥∥∥2
W 1,2

dr ≤ c(1+ t)

for every κ, t > 0. We can thus extract a subsequence
(
g(κl )

)
l (possibly dependent on t)

that converges weakly in L2
(
0, t;W 1,2

0 (�)
)
. As before, one can check that this limit is g;

hence g ∈ L2
(
0, t;W 1,2

0 (�)
)
with

ˆ t

0
‖gr‖2W 1,2 dr ≤ c(1+ t). (5.33)

Step 4 (integrability, and (3.2) for s = 0). Fix an open set ω � �. Let p = p(ω) > d be as
in Definition 3.1 and let p′ be its conjugate exponent. Since g ∈ L2

loc

([0,∞);W 1,2
0 (�)

)
, the

Sobolev embedding theorem implies g ∈ L2
loc

([0,∞); L2p′(�)
)
. Given that V ∈ L∞(�),

we obtain ρ ∈ L1
loc

([0,∞); L p′(�)
)
. In particular, t 	→ ´

ω
ρtdx and t 	→ ´

ω
|∇V | ρtdx are

both locally integrable on [0,∞). Given ϕ ∈ C2
c (ω), the identity (3.2) for s = 0 thus follows

from the one with s > 0 by taking the limit s ↓ 0: on the one side,

lim
s↓0

ˆ
�

ρsϕdx =
ˆ

�

ρ0ϕdx

by continuity in duality with Cc(�); on the other,

lim
s↓0

ˆ t

s

ˆ
�

ρr (	ϕ − 〈∇ϕ,∇V 〉)dxdr =
ˆ t

0

ˆ
�

ρr (	ϕ − 〈∇ϕ,∇V 〉)dxdr

by the dominated convergence theorem. ��
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6 Slope formula in dimension d = 1

In this section, we only work in dimension d = 1 andwe take� = (0, 1). Recall (Proposition
4.11) that, in this setting, W̃b2 is a metric on S . Our purpose is to find an explicit formula
for the descending slope

∣∣∂ W̃b2H
∣∣ and to derive Theorem 1.6 as a corollary. Specifically, the

main result of this section is the following.

Proposition 6.1 Assume that V ∈ W 1,2(�). Take μ ∈ S such thatH(μ) < ∞ and let ρ be
the density of μ�. Then,

∣∣∣∂̃Wb2
H
∣∣∣2 (μ) =

⎧⎪⎨
⎪⎩
4
ˆ

�

(
∂x

√
ρeV

)2

e−V dx if
√

ρeV − e�/2 ∈ W 1,2
0 (�) ,

∞ otherwise.
(6.1)

Remark 6.2 In the current setting, i.e., � = (0, 1) and V ∈ W 1,2(�), the function V is
Hölder continuous; thus it extends to the boundary ∂� = {0, 1}. When

√
ρeV ∈ W 1,2(�),

the function ρ belongs to W 1,2(�), is continuous, and extends to the boundary as well.

Remark 6.3 The functional

W 1,2(�) � f 	−→
⎧⎨
⎩4

ˆ
�

(∂x f )
2 e−V dx if f − e�/2 ∈ W 1,2

0 (�) ,

∞ if f − e�/2 ∈ W 1,2(�) \W 1,2
0 (�)

(6.2)

is particularly well-behaved: it is convex, strongly continuous, weakly lower semicontinu-
ous, and has weakly compact sublevels. As a consequence,

∣∣∂ W̃b2H
∣∣ turns out to be lower

semicontinuous w.r.t. W̃b2. Indeed, assume that μn W̃b2→ μ and supn
∣∣∂ W̃b2H

∣∣ (μn) < ∞.

Let ρn be the density of μn
�. Then the functions fn :=

√
ρneV converge, up to subsequences,

weakly inW 1,2(�) and—by the Rellich–Kondrachov theorem [23, Theorem 8.8]—strongly
in C(�) to a function f such that f − e�/2 ∈ W 1,2

0 (�) and

4
ˆ

�

(∂x f )
2e−V dx ≤ lim inf

n→∞
∣∣∂ W̃b2H

∣∣2 (μn) .

Additionally, ρn = f 2n e
−V → f 2e−V in C(�), hence μ� = f 2e−V dx (we use (4.1) and

[6, Proposition 2.7]).

While (6.1) reminds the classical slope of the relative entropy (i.e., the relative Fisher
information), the crucial difference is in the role of the boundary condition: if ρ does not
satisfy the correct one, the slope is infinite.

We are going to prove the two opposite inequalities in (6.1) separately. Proving≥ is easier:
for the case where

√
ρeV − e�/2 ∈ W 1,2

0 , it amounts to taking small variations of μ in an
arbitrary direction; for the other case, it suffices to find appropriate sequences that make the
difference quotient diverge. To handle the opposite inequality, we have to bound

(
H(μ) −

H(μ̃)
)
+ from above for every sufficiently close measure μ̃ ∈ S . Classical proofs (e.g.,

[21, Theorem 15.25] or [9, Theorem 10.4.6]) take advantage of geodesic convexity of the
functional, which we do not to have; see Section A.3. One of the perks of geodesic convexity
is that it automatically ensures lower semicontinuity of the descending slope, which in turn
allows to assume stronger regularity on μ and then argue by approximation. To overcome
this problem, we combine different ideas on different parts of μ and μ̃. Away from the
boundary ∂� = {0, 1}, the transport plansmove absolutely continuousmeasures to absolutely
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continuous measures. The Jacobian equation (change of variables formula) relates the two
densities and makes the computations rather easy. Estimating the contribution of the parts
of μ, μ̃ closest to the boundary is more technical: we need to exploit the boundary condition
and the Sobolev regularity of the functions ρ, log ρ, and V . Note, indeed, that since the
boundary condition is positive, also log ρ has a square-integrable derivative in a neighborhood
of ∂�.

To be in dimension d = 1 is necessary for W̃b2 to be a distance, but is also extremely
convenient because optimal transport maps are monotone and W 1,2-regular functions are
Hölder continuous. For these reasons, it seems difficult (but maybe still possible) to adapt
our proof of Proposition 6.1 for an analogue of Theorem 1.6 in higher dimension.

We first prove a variant of the Lebesgue differentiation theorem that is needed for the
subsequent proof of Proposition 6.1. We prove Theorem 1.6 at the end of the section.

Lemma 6.4 Let (γ n)n∈N0 be a sequence of nonnegative Borel measures on � × � such
that limn→∞ C(γ n) = 0. Additionally assume that π1

# γ n is absolutely continuous for
every n ∈ N0, with a density that is uniformly bounded in L∞(�). Then, for every f ∈ L2(�),

lim
n→∞

ˆ ( y

x

(
f (z)− f (x)

)
dz

)2

d γ n(x, y) = 0 . (6.3)

Proof Denote by ρn the density of π1
# γ n . Let g : � → R be Lipschitz continuous. For

every n ∈ N0, we have

In :=
ˆ ( y

x

(
f (z)− f (x)

)
dz

)2

dγ n

≤ 3
ˆ ( y

x
( f − g)dz

)2

dγ n + 3
ˆ ( y

x
gdz − g(x)

)2

dγ n

+ 3
ˆ

�

(g − f )2ρndx .

Consider the Hardy–Littlewood maximal function of (the extension to R of) f − g, that is,

( f − g)∗(x):= sup
r>0

1

2r

ˆ min{x+r ,1}

max{x−r ,0}
| f − g| dz , x ∈ R .

By the (strong) Hardy–Littlewood maximal inequality,

ˆ ( y

x
( f − g)dz

)2

d γ n ≤ 4
ˆ (

( f − g)∗(x)
)2d γ n = 4

ˆ
�

(
( f − g)∗

)2
ρndx

≤ 4 sup
n

∥∥ρn
∥∥
L∞

∥∥( f − g)∗
∥∥2
L2(R)

≤ c sup
n

∥∥ρn
∥∥
L∞ ‖ f − g‖2L2 .

The Lipschitz-continuity of g gives

ˆ ( y

x
gdz − g(x)

)2

d γ n ≤ (Lip g)2
ˆ

(x − y)2d γ n ≤ (Lip g)2C(γ n) ,

and, moreover, we have
ˆ

�

(g − f )2ρndx ≤ ∥∥ρn
∥∥
L∞ ‖ f − g‖2L2 .
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In conclusion,

In ≤ c sup
n

∥∥ρn
∥∥
L∞ ‖ f − g‖2L2 + 3(Lip g)2C(γ n) .

After passing to the limit superior in n, we conclude by arbitrariness of g. ��
Proof of Proposition 6.1 We omit the subscript W̃b2 in

∣∣∂ W̃b2H
∣∣ throughout the proof.

Step 1 (inequality ≥, finite case). Assume that
√

ρeV − e�/2 ∈ W 1,2
0 ; hence, in particu-

lar, ρ ∈ L∞(�). Let w : � → R be C∞-regular with compact support (and not identically
equal to 0), and, for ε > 0, define Rε(x):=x+εw(x). Setμε :=(Rε)#μ and γ ε :=(Id, Rε)#μ.
When ε is sufficiently small, με ∈ S and γ ε ∈ AdmW̃b2(μ,με). Therefore, arguing as in
the proof of Lemma 5.10,

lim
ε→0+

H(μ)−H(με)

ε
=
ˆ

�

(∂xw − w ∂x V )ρdx .

Thus,
ˆ

�

(∂xw − w ∂x V )ρdx ≤ ∣∣∂H∣∣(μ) lim inf
ε↓0

√
C(γ ε)

ε
≤ ∣∣∂H∣∣(μ) ‖w‖L2(ρ) ,

and we conclude that
ˆ

�

∣∣∣∣∂x
√

ρeV
∣∣∣∣
2

e−V dx ≤ 1

4

∣∣∂H∣∣2(μ) .

Step 2 (inequality ≥, infinite case). The case
√

ρeV /∈ W 1,2(�) is trivial. Thus, let us
assume now that

√
ρeV ∈ W 1,2(�) with Tr ρ �= Tr e�−V . Without loss of generality, we

may consider the case where ρ(0) �= e�(0)−V (0). If ρ(0) > e�(0)−V (0), for ε > 0 define

με :=μ− εμ(0,ε2) +
(

ε

ˆ ε2

0
ρdx

)
δ0 ∈ S ,

γ ε :=εμ(0,ε2) ⊗ δ0 + (Id, Id)#(μ� − εμ(0,ε2)) ∈ AdmW̃b2(μ,με) .

Since all the functions involved are continuous up to the boundary, we get

H(μ)−H(με) =
ˆ ε2

0

(
ρ log ρ − (1− ε)ρ log

(
(1− ε)ρ

)+ ε
(
V − 1−�(0)

)
ρ
)
dx

∼ε↓0 ε3
(
log ρ(0)+ V (0)−�(0)

)
ρ(0) .

On the other hand,

W̃b2(μ,με) ≤ √
C(γ ε) =

√
ε

ˆ ε2

0
x2ρdx ≤

√
ε5
ˆ ε2

0
ρdx ∼ε↓0 ε

7
2
√

ρ(0) ,

from which we find∣∣∂H∣∣(μ) ≥ lim sup
ε↓0

H(μ)−H(με)

W̃b2(μ,με)

≥ √
ρ(0)

(
log ρ(0)+ V (0)−�(0)

)
︸ ︷︷ ︸

>0

lim sup
ε↓0

ε−
1
2 = ∞ .
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If, instead, ρ(0) < e�(0)−V (0), we consider, for ε > 0,

με :=μ+ εL 1
(0,ε2) − ε3δ0 ∈ S , γ ε :=εδ0 ⊗L 1

(0,ε2) + (Id, Id)#μ� ∈ AdmW̃b2(μ,με) .

and conclude with similar computations as before.
Step 3 (preliminaries for≤).We suppose again that

√
ρeV−e�/2 ∈ W 1,2

0 (�). In particular,
there exist λ̄, ε̄ > 0 such that

ρ|[0,ε̄]∪[1−ε̄,1] > λ̄ .

Let us take a sequence (μn)n∈N0 that converges to μ w.r.t. W̃b2, with H(μn) < H(μ) for
every n. We aim to prove that

lim sup
n→∞

H(μ)−H(μn)

W̃b2(μ,μn)
≤ 2

√ˆ
�

(
∂x

√
ρeV

)2

e−V dx .

For every n ∈ N0, we write:

• ρn for the density of μn
�;• γ n for some (arbitrarily chosen) W̃b2-optimal transport plan between μ and μn such

that the diagonal 	 of ∂� × ∂� (i.e., the set with the two points (0, 0) and (1, 1))
is γ n-negligible;

• Tn, Sn for maps such that (γ n)�� = (Id, Tn)#μ� and (γ n)�
�
= (Sn, Id)#μn

�. We can and

will assume that these two maps are nondecreasing, hence L 1
�-a.e. differentiable;• an, bn ∈ � = [0, 1] for the infimum and supremum of the set T−1n (�), respectively.

Note that, since Tn is monotone, T−1n (�) is an interval. Conventionally, we set an = 1
and bn = 0 if T−1n (�) = ∅.

Observe that, since (0, an) ⊆ T−1n ({0, 1}), we have

W̃b
2
2(μ,μn) ≥

ˆ an

0
min {x, 1− x}2 ρdx ≥ λ̄

ˆ min{an ,ε̄}

0
x2dx = λ̄

3
min {an, ε̄}3 .

In particular,

lim sup
n→∞

a3n

W̃b
2
2(μ,μn)

<∞ and, similarly, lim sup
n→∞

(1− bn)3

W̃b
2
2(μ,μn)

<∞ ; (6.4)

thus, up to taking subsequences, we may and will assume that an < ε̄ < 1 − ε̄ < bn
for every n. In particular, (γ n)�� �= 0 and L 1

(0,an)∪(bn ,1)
$ μ(0,an)∪(bn ,1). Furthermore,

since γ n is W2-optimal between its marginals (cf. Proposition 4.19), it is concentrated on a
monotone set�n . This implies that γ (0, 1) and γ (1, 0) equal 0 as soon as γ �

� �= 0. Combining
this observation with the fact that 	 is γ -negligible, we infer that γ ∂�

∂� = 0. By the same
argument, T |(bn ,1) ≡ 1 and T |(0,an) ≡ 0.

Another assumption that we can and will make is

ρn |S−1n (∂�)
≤ �:=

(
sup
∂�

e�

)
·
(
sup
�

e−V
)

. (6.5)

Indeed, if this is not the case, we can consider the new measures

γ̃ n :=γ n − (Sn, Id)#
(
ρn |S−1n (∂�)

−�
)
+L 1

� ,

μ̃n :=μ− π1
# (γ̃ n)+ π2

# (γ̃ n) ∈ S ,
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and notice that γ̃ n ∈ AdmW̃b2(μ, μ̃n). We have

H(μ̃n)−H(μn) =
ˆ
S−1n (∂�)∩{ρn>�}

�(log�+ V − 1−� ◦ Sn)dx

−
ˆ
S−1n (∂�)∩{ρn>�}

ρn(log ρn + V − 1−� ◦ Sn)dx ,

and, because of the definition of �, we obtain H(μ̃n) ≤ H(μn). At the same
time, W̃b2(μ, μ̃n) ≤ W̃b2(μ,μn) because γ̃ n ≤ γ n . This concludes the proof of the claim
that we can assume (6.5).

Step 4 (inequality≤). By Proposition 4.19, (γ n)�� is aW2-optimal transport plan between
its marginals ρL 1

T−1n (�)
and ρnL 1

S−1n (�)
, and it is induced by the map Tn . Hence, by [21,

Theorem 7.3], the Jacobian equation(
ρn |S−1n (�)

◦ Tn
)
· ∂x Tn = ρ (6.6)

holds ρL 1
T−1n (�)

-a.e. Consequently, we have the chain of identities

ˆ
S−1n (�)

(log ρn + V − 1)ρndx =
ˆ

(log ρn + V − 1)dπ2
# (γ n)��

=
ˆ
T−1n (�)

(
(log ρn + V − 1) ◦ Tn

)
ρdx

(6.6)=
ˆ
T−1n (�)

(log ρ − log(∂x Tn)+ V ◦ Tn − 1) ρdx .

(6.7)

Thus, we can decompose the differenceH(μ)−H(μn) as

H(μ)−H(μn)
(6.7)=

ˆ
T−1n (�)

(
log(∂x Tn)+ V − V ◦ Tn

)
ρdx + (μ− μn)∂�(�)

+
ˆ
T−1n (∂�)

(log ρ + V − 1)ρdx −
ˆ
S−1n (∂�)

(log ρn + V − 1)ρndx .

(6.8)

Let us focus on the integral on T−1n (�). By making the estimate log(∂x Tn) ≤ ∂x Tn − 1 and
using the properties of the Riemann–Stieltjes integral, we obtain

ˆ
T−1n (�)

log(∂x Tn)ρdx ≤
ˆ
T−1n (�)

(∂x Tn − 1)ρdx =
ˆ bn

an
(∂x Tn)ρdx −

ˆ bn

an
ρdx

≤ lim
ε↓0

ˆ bn−ε

an+ε

ρdTn − bnρ(bn)+ anρ(an)+
ˆ bn

an
x∂xρdx

= (T (b−n )− bn)ρ(bn)− (T (a+n )− an)ρ(an)−
ˆ bn

an
(Tn − Id)∂xρdx ,

(6.9)

where we employ the notation T (a+n ):= limε↓0 T (an + ε), and similarly with T (b−n ).
Let f :=∂x V . By the fundamental theorem of calculus,

ˆ
T−1n (�)

(V − V ◦ Tn)ρdx =
ˆ bn

an

(ˆ x

Tn(x)
f (z)dz

)
ρdx .
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By adding and subtracting f (x), we get
ˆ
T−1n (�)

(V − V ◦ Tn)ρdx

=
ˆ bn

an
f (x)

(ˆ x

Tn(x)
dz

)
ρdx +

ˆ bn

an

(ˆ x

Tn(x)

(
f (z)− f (x)

)
dz

)
ρdx

= −
ˆ bn

an
(Tn − Id)ρ f dx +

ˆ bn

an

(ˆ x

Tn(x)

(
f (z)− f (x)

)
dz

)
ρdx .

(6.10)

At this point, we observe that, by Hölder’s inequality and Lemma 6.4 (applied to the restric-
tion (γ n)��), the last double integral is negligible, i.e., it is of the order on

(
W̃b2(μ,μn)

)
.

To handle the rest of (6.8), we exploit the convexity of l 	→ l log l and write

−
ˆ
S−1n (∂�)

(log ρn + V − 1)ρndx ≤ −
ˆ
S−1n (∂�)

(log ρ + V )ρndx +
ˆ
S−1n (∂�)∩{ρn>0}

ρdx .

(6.11)

By Condition (3) in Definition 3.7 and the boundary condition of ρ,

(μ− μn)∂�(�) =
ˆ

(log ρ + V )d
(
π1
# (γ n)�∂� − π2

# (γ n)∂�

�

)
. (6.12)

In summary, recalling that (γ n)∂�
∂� = 0, from (6.8), (6.9), (6.10), (6.11), and (6.12) follows

the inequality

H(μ)−H(μn) ≤ on
(
W̃b2(μ,μn)

)−ˆ bn

an
(Tn − Id)(∂xρ + ρ∂x V )dx︸ ︷︷ ︸

=:Ln
1

+
ˆ

(log ρ + V )d
(
π1
#

(
γ n − (γ n)��

)− π2
#

(
γ n − (γ n)��

))
︸ ︷︷ ︸

=:Ln
2

+(
T (b−n )− bn

)
ρ(bn)+

ˆ
S−1n (1)∩{ρn>0}

ρdx −
ˆ
T−1n (1)

ρdx︸ ︷︷ ︸
=:Ln

3

−(
T (a+n )− an

)
ρ(an)+

ˆ
S−1n (0)∩{ρn>0}

ρdx −
ˆ
T−1n (0)

ρdx︸ ︷︷ ︸
=:Ln

4

.

(6.13)

We claim that the last three lines in (6.13), i.e., Ln
2, L

n
3 and Ln

4, are bounded from above
by negligible quantities, of the order on

(
W̃b2(μ,μn)

)
. Let us start with Ln

3. Since every
left-neighborhood of 1 is not μ�-negligible,

sup {x ∈ � : (x, Tn(x)) ∈ �n} = 1 ,

which, together with the monotonicity of �n , implies

Tn(1
−) ≤ μn

� -ess inf S−1(1) . (6.14)
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We now distinguish two cases: either bn < 1 or bn = 1. If bn < 1, given that Tn |(bn ,1) ≡ 1,
the set S−1(1) is μn

�-negligible by (6.14). Thus

Ln
3 ≤

ˆ 1

bn

(
ρ(bn)− ρ(x)

)
dx = −

ˆ 1

bn

(ˆ x

bn
∂xρdz

)
dx

≤
√ˆ 1

bn
|x − bn |2 dx

√ˆ 1

bn

( x

bn
∂xρdz

)2

dx

(6.4)= On
(
W̃b2(μ,μn)

)√ˆ 1

bn

( x

bn
∂xρdz

)2

dx .

Knowing that ρ ∈ W 1,2(�) and that bn →n 1, it can be easily provenwith Hardy’s inequality
that the last square root tends to 0 as n →∞.

Assume now that bn = 1. This time, Inequality (6.14) yields

Ln
3 ≤ (Tn(1

−)− 1)ρ(1)+
ˆ 1

Tn(1−)

ρdx =
ˆ 1

Tn(1−)

(
ρ(x)− ρ(1)

)
dx .

We conclude as in the case bn < 1, because the computations that led to (6.4) can be easily

adapted to show that (1 − Tn(1−))3 = On
(
W̃b

2
2(μ,μn)

)
. Indeed, the monotonicity of Tn

gives

W̃b
2
2(μ,μn) ≥

ˆ 1

Tn(1−)

(
x − Tn(x)

)2
ρ(x)dx ≥ λ̄

ˆ 1

max{1−ε̄,Tn(1−)}
(
x − Tn(1

−)
)2dx .

The proof for Ln
4 is similar to that for Ln

3.
Let us now deal with the term Ln

2:

Ln
2 =

ˆ (
log ρ(x)+ V (x)− log ρ(y)− V (y)

)
d
(
(γ n)∂�

� + (γ n)�∂�

)
.

Define the square-integrable function

g:=
{

∂xρ
ρ
+ ∂x V on (0, ε̄) ∪ (1− ε̄, 1) ,

0 otherwise.

Since γ
{1}
� is concentrated on (bn, 1)×{1}, and γ �{1} is concentraded on {1}× (Tn(1−), 1), as

soon as n is large enough for bn and Tn(1−) to be greater than 1− ε̄, we have the equality

(
log ρ(x)+ V (x)− log ρ(y)− V (y)

) = ˆ x

y
gdz for

(
(γ n)

{1}
� + (γ n)�{1}

)
-a.e. (x, y) .

Moreover,

ˆ (ˆ x

y
gdz

)
d (γ n)

{1}
� ≤ W̃b2(μ,μn)

√√√√√
ˆ 1

bn

( 1

x
gdz

)2

ρ︸︷︷︸
≤‖ρ‖L∞

dx ,

and

ˆ (ˆ x

y
gdz

)
d (γ n)�{1} ≤ W̃b2(μ,μn)

√√√√√
ˆ 1

Tn(1−)

( 1

x
gdz

)2

ρn |S−1n (1)︸ ︷︷ ︸
≤�

dx .
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In both cases, since bn and Tn(1−) tend to 1 as n →∞, and g ∈ L2(�), the square roots are
infinitesimal. The same argument can be easily applied at 0 (i.e. for the integrals w.r.t. (γ n)

{0}
�

and (γ n)�{0}), and this brings us to the conclusion that Ln
2 is negligible.

In the end, (6.13) reduces to

H(μ)−H(μn) ≤ −
ˆ bn

an
(Tn − Id)(∂xρ + ρ ∂x V )dx + on

(
W̃b2(μ,μn)

)

≤ W̃b2(μ,μn)

√ˆ
�

(
∂xρ√

ρ
+√ρ ∂x V

)2

dx + on(1) ,

which is precisely the statement that we wanted to prove. ��

Corollary 6.5 (Theorem 1.6) Assume that V ∈ W 1,2(�). Let μ ∈M2(�). Then,

∣∣∣∂Wb2 Ê
∣∣∣2 (μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4
ˆ 1

0

(
∂x

√
ρeV

)2

e−V dx if μ = ρdx

and
√

ρeV − 1 ∈ W 1,2
0 (�) ,

∞ otherwise,

(6.15)

where Ê is defined as

M2(�) � μ
Ê	−→

{
E(ρ) if μ = ρdx ,

∞ otherwise.
(6.16)

Additionally,
∣∣∣∂Wb2 Ê

∣∣∣ is lower semicontinuous w.r.t. Wb2.

Proof We may assume that μ = ρdx for some ρ ∈ L1+(�), and that E(ρ) < ∞. In particu-
lar, μ is finite and we can fix some μ̃ ∈ S such that μ̃� = μ

Step 1 (inequality≤). Let (μn)n∈N0 ⊆M2(�) be such thatWb2(μn, μ) →n 0 (andμn �=
μ). We want to prove that the limit superior

lim sup
n→∞

(
Ê(μ)− Ê(μn)

)
+

Wb2(μ,μn)

is bounded from above by the right-hand side of (6.15). To this aim, we may assume that
the limit superior is actually a limit and that Ê(μn) ≤ Ê(μ) = E(ρ) for every n ∈ N0. In
particular, each measure μn is finite and has a density ρn . By Lemma 4.1, for every n ∈ N0,

inf
ν̃∈S

{
W̃b2(μ̃, ν̃) : ν̃� = μn} = Wb2(μ,μn) ,

which ensures the existence of μ̃n ∈ S such that μ̃n
� = μn and

lim
n→∞

W̃b2(μ̃, μ̃n)

Wb2(μ,μn)
= 1 , as well as, consequently, lim

n→∞ W̃b2(μ̃, μ̃n) = 0 . (6.17)

By (6.17) and Proposition 6.1 (with � ≡ 0), we conclude that

lim
n→∞

(
Ê(μ)− Ê(μn)

)
+

Wb2(μ,μn)
≤ lim sup

n→∞

(
E(ρ)− E(ρn)

)
+

W̃b2(μ̃, μ̃n)
≤ RHS of (6.15).
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Step 2 (inequality ≥). By Proposition 6.1 (with � ≡ 0), we know that there exists a
sequence (μ̃n)n∈N0 ⊆ S such that W̃b2(μ̃n, μ̃) →n 0 (with μ̃n �= μ̃) and

lim
n→∞

(
Ê(μ)− Ê(μ̃n

�)
)
+

W̃b2(μ̃, μ̃n)
= RHS of (6.15).

If this number is 0, then there is nothing to prove. Otherwise, we may assume that μ �= μ̃n
�

for every n, and we conclude by using (4.1).

Step 3 (semicontinuity). The lower semicontinuity is proven as in Remark 6.3: if μn Wb2→
μ and supn

∣∣∣∂Wb2 Ê
∣∣∣ (μn) < ∞, then, up to subsequences,

(√
ρneV

)
n
converges weakly

inW 1,2(�) and (strongly) inC(�), the limit is
√

ρeV by [6, Proposition 2.7], and
√

ρeV−1 ∈
W 1,2

0 (�). We conclude by the weak semicontinuity of the functional in (6.2). ��

7 Proof of Theorem 1.5

As in Section 6, throughout this section we restrict to the case where � = (0, 1) ⊆ R
1.

Fix μ0 ∈ S such that its restriction to (0, 1) is absolutely continuous with density equal
to ρ0. Recall the scheme (1.10): for every τ > 0 and n ∈ N0, we iteratively choose

μτ
(n+1)τ ∈ argmin

μ∈S

(
H(μ)+ W̃b

2
2(μ,μnτ )

2τ

)
. (7.1)

These sequences of measures are extended to maps t 	→ μτ
t , constant on the inter-

vals
[
nτ, (n + 1)τ

)
for every n ∈ N0.

The purpose of this section is to prove Theorem 1.5. Observe the following fact: State-
ment 3 follows directly from Statements 1-2. Indeed, given the sequence of maps (t 	→ μτ

t )τ
that converges to t 	→ μt pointwise w.r.t. W̃b2, we infer from (4.1) that

(
t 	→ (μτ

t )�
)
τ

converges to t 	→ (μt )� pointwise w.r.t. Wb2. Since the approximating maps are precisely
the same as those built with (1.8), we can apply Proposition 5.21 to conclude Statement 3.
The proof of Theorem 1.6 is thus split into only three parts.

7.1 Equivalence of the schemes

Let us fix a measure μ̄ ∈ S such that its restriction to � = (0, 1) is absolutely continuous.
Denote by ρ̄ the density of this restriction and assume that E(ρ̄) <∞.

Proposition 7.1 If 2τ |�(1)−�(0)| < 1, then μ ∈ S is a minimizer of

H(·)+ W̃b
2
2(·, μ̄)

2τ
: S → R ∪ {∞} (7.2)

if and only if it is a minimizer of

H(·)+ T 2(·, μ̄)

2τ
: S → R ∪ {∞} . (7.3)

In particular, there exists one single such μ; see Proposition 5.3 and Proposition 5.11.
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Proof Let F be the function in (7.2) and G be that in (7.3). Recall that W̃b2 ≤ T, which
implies that F ≤ G . Let μ ∈ S , let γ ∈ OptW̃b2(μ, μ̄) be such that the diagonal 	

of ∂�× ∂� is γ -negligible, and define

μ̃:=μ− π1
# γ ∂�

∂� + π2
# γ ∂�

∂� ∈ S , γ̃ :=γ − γ ∂�
∂� ∈ AdmT(μ̃, μ̄) .

We have

G (μ̃) ≤ H(μ̃)+ C(γ̃ )

2τ
= F (μ)+ (

π2
# γ ∂�

∂� − π1
# γ ∂�

∂�

)
(�)− C(γ ∂�

∂� )

2τ

= F (μ)+ (
�(1)−�(0)

)(
γ (0, 1)− γ (1, 0)

)− γ (0, 1)+ γ (1, 0)

2τ
≤ F (μ) , (7.4)

where, in the last inequality, we used the assumption on τ .
Step 1. It follows from (7.4) that inf G ≤ F ≤ G . This is enough to conclude that every

minimizer of G is a minimizer of F too.
Step 2. Assume now that μ is a minimizer of F . Again by (7.4),

F (μ) ≤ F (μ̃) ≤ G (μ̃) ≤ F (μ) .

Therefore, it must be true thatF (μ) = G (μ̃) and that all inequalities in (7.4) are equalities.
This can only happen if γ(∂�×∂�)\	 = γ ∂�

∂� has zero mass, which implies μ = μ̃. It is now
easy to conclude from F ≤ G and F (μ) = G (μ) that μ is a minimizer of G . ��

7.2 Convergence

Proposition 7.2 As τ → 0, up to subsequences, the maps (t 	→ μτ
t )τ converge pointwise

w.r.t. W̃ b2 to a curve t 	→ μt , continuous w.r.t W̃b2. The restrictions (μt )� are absolutely
continuous.

Lemma 7.3 For every t ≥ 0 and τ > 0 such that 2τ |�(1)−�(0)| < 1, we have the upper
bound ∥∥μτ

t

∥∥ ≤ c(1+ t + τ) . (7.5)

Proof Let t ≥ 0 be fixed.We already know fromRemark 5.17 that
∥∥(μτ

t )�
∥∥ ≤ c. By applying

Lemma 4.8 with �(x):=1− x , we find

μτ
(i+1)τ (0)− μτ

iτ (0) ≤
ˆ

(1− x)d
(
μτ
iτ − μτ

(i+1)τ
)
�
+ c τ + T 2(μτ

(i+1)τ , μ
τ
iτ

)
4τ

,

for every i ∈ N0. By summing over i ∈ {0, 1, . . . , 
t/τ� − 1} and using Lemma 5.20,

μτ
t (0)− μ0(0) ≤

ˆ
(1− x)d (μ0 − μτ

t )� + c(1+ t + τ) ≤ c(1+ t + τ) .

Thus, the sequence
(
μτ
t (0)

)
τ
is bounded from above as τ → 0. By suitably choosing �, we

can find a similar bound from below and bounds for μτ
t (1). ��

Proof of Proposition 7.2 We can assume that τ < 1 and that 2τ |�(1)−�(0)| < 1. The
proof goes as in Proposition 5.19: for a fixed t ≥ 0, we need to prove that

lim sup
τ→0

W̃b2(μ
τ
s , μ

τ
t ) ≤ c

√|r − s| (1+ t) , r , s ∈ [0, t] , (7.6)
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and that

K̃t :=
{
μ ∈ S : ‖μ‖ ≤ c1(2+ t) , and μ� = ρdx with

ˆ
�

ρ log ρdx ≤ c2(2+ t)

}

is compact in (S , W̃b2), where the constants c1 and c2 are given by Lemma 7.3 and Lemma
5.20, respectively.

The inequality (7.6) follows from (5.27). If (μn)n∈N0 is a sequence in K̃t , thanks to the
bound on the total mass, we can extract a (not relabeled) subsequence that converges weakly
to some μ ∈ S . Let ρn be the density of μn

� for every n ∈ N0. We exploit the bound on the
integral

´
�

ρn log ρn to extract a further subsequence such that (ρn)n∈N0 converges weakly
in L1(�) to some ρ. We have μ� = ρdx , as well as ‖μ‖ ≤ c1(2 + t) and

´
�

ρ log ρdx ≤
c2(2+ t); hence μ ∈ K̃t . The convergence μn →n μ holds also w.r.t. W̃b2 thanks to Lemma
4.16. ��

7.3 Curve of maximal slope

Proposition 7.4 Assume that V ∈ W 1,2(�). If the sequence (t 	→ μτ
t )τ converges pointwise

w.r.t. W̃ b2 to a curve t 	→ μt , then the latter is a curve of maximal slope for the functionalH
in the metric space (S , W̃b2).

To prove this proposition,we employ the classical [9, Theorem2.3.1], butwe also crucially
need the results of Section 6. In particular, we rely on the explicit formula for the slope
of Proposition 6.1 and on the consequent semicontinuity observed in Remark 6.3.

Proof Consider the subspace S̃ := {μ ∈ S : H(μ) ≤ H(μ0)}. Note that, since H is W̃b2-
lower semicontinuous (Proposition 4.15), t 	→ μt entirely lies in S̃ . Moreover,

∣∣∂ W̃b2H
∣∣

coincides with
∣∣∂ W̃b2(H|S̃ )

∣∣ on S̃ . Therefore, it suffices to prove that t 	→ μt is a curve of
maximal slope in S̃ .

We invoke [9, Theorem 2.3.1]. Let us check the assumptions. Firstly, the space (S̃ , W̃b2)
is complete by Lemma A.3. Secondly, [9, (2.3.2)] is satisfied because the slope

∣∣∂ W̃b2H
∣∣

is W̃b2-lower semicontinuous; see Remark 6.3 and [9, Remark 2.3.2]. Thirdly, [9, Assump-
tions 2.1a,b] follow from Proposition 4.15 and Proposition 7.1. Finally, to prove [9, (2.3.3)],
let us pick a sequence (μn)n∈N0 ⊆ S̃ that converges to some μ w.r.t. W̃b2 and such
that supn

∣∣∂ W̃b2H
∣∣ (μn) <∞. We will show thatH(μn) → H(μ). Note that it is enough to

prove this convergence up to subsequences. Letρn, ρ be the densities ofμn
�,μ�, respectively.

Since supn
∣∣∂ W̃b2H

∣∣ (μn) < ∞, up to subsequences, the functions
(√

ρneV
)
n
converge

in C(�) to
√

ρeV . Since V is bounded, we also have the convergence ρn → ρ in C(�). We
write ∣∣H(μn)−H(μ)

∣∣ = ∣∣E(μn)− E(μ)+ (μn − μ)∂�(�)
∣∣

≤ ∣∣E(μn)− E(μ)− (μn − μ)�(�)
∣∣+ ∣∣μn(�)− μ(�)

∣∣
Thanks to the uniform convergence ρn → ρ, we have |E(μn)− E(μ)− (μn − μ)�(�)| →
0. Additionally, by Lemma 4.14,

∣∣μn(�)− μ(�)
∣∣ ≤ cW̃b2(μ

n, μ)

√∥∥μn
�

∥∥+ ‖μ�‖ + W̃b
2
2(μ

n, μ) ,

from which we conclude, because supn
∥∥μn

�

∥∥ ≤ supn ‖ρn‖L∞ < ∞. ��
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Remark 7.5 To be precise, [9, Theorem 2.3.1] applies to the limit of the maps t 	→
μ̃τ
t :=μ&t/τ'τ (as opposed to μτ

t = μ
t/τ�τ ). It can be easily checked that the dis-
tance W̃b2(μτ

t , μ̃
τ
t ) converges to 0 locally uniformly in time; see (5.27).

Appendix A Additional properties of ˜Wb2

A.1 ˜Wb2 is not a distance when d ≥ 2

We are going to prove that, when d ≥ 2, the property

W̃b2(μ, ν) = 0 �⇒ μ = ν

in general breaks down. In fact, when applying W̃b2 to two measures μ, ν ∈ S the informa-
tion aboutμ∂� and ν∂� is completely lost, as soon as ∂� is connected and “not too irregular”.
A similar result is [19, Theorem 2.2] by E. Mainini.

Proposition A.1 If α : [0, 1] → ∂� is
( 1
2 + ε

)
-Hölder continuous for some ε > 0, then

W̃b2
(
δα(0) − δα(1), 0

) = 0 . (A1)

Consequently: Assume that ∂� is C0, 12+-path-connected, meaning that for every pair of
points x, y ∈ ∂� there exist ε > 0 and a

( 1
2 + ε

)
-Hölder curve α : [0, 1] → ∂�with α(0) =

x and α(1) = y; then, for every μ, ν ∈ S , we have

W̃b2(μ, ν) = Wb2(μ�, ν�) . (A2)

Proof Step 1.Letα : [0, 1] → ∂� be
( 1
2 + ε

)
-Hölder continuous for some ε > 0. For n ∈ N1,

consider the points

xi :=α(i/n), i ∈ {0, 1, . . . , n} ,
and the measure

γ n :=
n−1∑
i=0

δ(xi ,xi+1) .

It is easy to check that γ n ∈ AdmW̃b2

(
δα(0) − δα(1), 0

)
; moreover,

C(γ n) =
n−1∑
i=0
|xi − xi+1|2 ≤ cα

n−1∑
i=0

n−1−2ε = cαn
−2ε ,

where the inequality follows from the Hölder continuity of α. We conclude (A1) by let-
ting n →∞.

Step 2.Assume now that ∂� isC0, 12+-path-connected. Fix a finite signed Borel measure η

on ∂� with η(∂�) = 0, that is, ‖η+‖ = ‖η−‖=:λ. We shall prove that W̃b2(η, 0) = 0.
Fix ε1, ε2 > 0 and let X = {x1, x2, . . . , xN } ⊆ ∂� be a ε1-covering for ∂�, meaning that
there exists a function P : ∂� → X such that |x − P(x)| ≤ ε1 for every x ∈ ∂�. We pick
one such P that is also Borel measurable (we can by [22, Theorem 18.19]). From the previous
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Step, for every i, j ∈ {1, 2, . . . , N }, we get γi, j (nonnegative and concentrated on ∂�×∂�)
such that

π1
# γi, j − π2

# γi, j = δxi − δx j and C(γi, j ) ≤ ε2 .

We define

γ :=(Id, P)#η+ + (P, Id)#η− + 1

λ

N∑
i, j=1

η+
(
P−1(xi )

)
η−

(
P−1(x j )

)
γi, j .

The W̃b2-admissibility of γ , i.e., γ ∈ AdmW̃b2(η, 0), is straightforward. Furthermore,

C(γ ) =
ˆ
|Id−P|2 d (η+ + η−)+ 1

λ

N∑
i, j=1

η+(P−1(xi ))η−(P−1(x j ))C(γi, j )

≤ 2λε21 + λε2 ,

which brings us to the conclusion that W̃b2(η, 0) = 0 by arbitrariness of ε1, ε2.

Step 3. Let us assume again that ∂� is C0, 12+-path-connected, and fix μ, ν ∈ S and ε3 >

0. Let γ be aWb2-optimal transport plan betweenμ� and ν�, and set μ̃:=π1
# γ+(ν−π2

# γ )∂�.
It is easy to check that μ̃ ∈ S and that μ� = μ̃�. Therefore, the previous Step is applicable
to η:=μ∂� − μ̃∂�, and produces γη on ∂�× ∂� such that

π1
# γη − π2

# γη = η and C(γη) ≤ ε3 .

The measure γ ′:=γ + γη is W̃b2-admissible between μ and ν. Therefore,

W̃b
2
2(μ, ν) ≤ C(γ ′) ≤ C(γ )+ ε3 = Wb22(μ�, ν�)+ ε3 ,

which yields one of the two inequalities in (A2) by arbitrariness of ε3. The other inequality
is (4.1). ��

A.2 (Lack of) completeness

Weprove here two claims fromSection 4.6: in the settingwhere� is a finite union of intervals,
the metric space (S , W̃b2) is not complete, but the sublevels ofH are.

Proposition A.2 Assume that d = 1 and that � is a finite union of intervals. Then the metric
space (S , W̃b2) is not complete.

Proof Without loss of generality, we may assume that (0, 1) is a connected component
of �, i.e., (0, 1) ⊆ � and {0, 1} ⊆ ∂�.

Consider the sequence

μn := 1

x
L 1

(2−n ,1) − δ0

ˆ 1

2−n
1

x
dx ∈ S , n ∈ N1 .

For every n, there exists the admissible transport plan

γ n :=δ0 ⊗
(
1

x
L 1

(2−n−1,2−n)

)
+ (Id, Id)#

(
1

x
L 1

(2−n ,1)

)
∈ AdmW̃b2(μ

n, μn+1) ,
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which yields

∞∑
n=1

W̃b2(μ
n, μn+1) ≤

∞∑
n=1

√ˆ 2−n

2−n−1
x2

x
dx =

∞∑
n=1

√
3

8
2−n =

√
3

8
;

hence (μn)n is Cauchy.

Assume now that μn W̃b2→ n μ for some μ ∈ S and, for every n ∈ N1, fix γ̃ n ∈
OptW̃b2(μ

n, μ). Also fix ε > 0. We have

W̃b
2
2(μ

n, μ) =
ˆ
|x − y|2 dγ̃ n(x, y) ≥ ε2γ̃ n([ε, 1− ε] × ∂�

)
,

and, using the conditions in Definition 3.7,

‖μ�‖ ≥ γ̃ n([ε, 1− ε] ×�
) = μn([ε, 1− ε])− γ̃ n([ε, 1− ε] × ∂�

)
≥ μn([ε, 1− ε])− W̃b

2
2(μ

n, μ)

ε2
.

Passing to the limit n →∞, we find

‖μ�‖ ≥
ˆ 1−ε

ε

1

x
dx

fromwhich, by arbitrariness of ε, it follows that the total mass ofμ� is infinite, contradicting
the finiteness required in Definition 3.7. ��
Proposition A.3 Assume that d = 1 and that� is a finite union of intervals. Then the sublevels
ofH in S are complete w.r.t. W̃ b2.

Proof Take a Cauchy sequence (μn)n∈N0 ⊆ S for W̃b2 in a sublevel ofH, that is,H(μn) ≤
M for some M ∈ R, for every n ∈ N0. Thanks to Lemma 4.14, for every n ∈ N0 we have

M ≥ H(μn) ≥
ˆ

�

ρn log ρndx − (‖V ‖L∞ + 1
) ∥∥μn

�

∥∥+ μn
∂�(�)

≥
ˆ

�

ρn log ρndx − (‖V ‖L∞ + 1
) ∥∥μn

�

∥∥+ μ0(�)− μn
�(�)

− cW̃b2(μ
n, μ0)

√∥∥μn
�

∥∥+ ∥∥μ0
�

∥∥+ W̃b
2
2(μ

n, μ0) ,

and, since W̃b2(μn, μ0) is bounded, the family (ρn)n∈N0 is uniformly integrable.Let (ρnk )k∈N0

be a subsequence that converges to some ρ weakly in L1(�). For each of the finitely
many x̄ ∈ ∂�, let �x̄ be a Lipschitz continuous function such that

�x̄ (x̄) = 1 and �x̄ (x) = 0 if x ∈ ∂� \ {x̄} .
Again by Lemma 4.14, for every x̄ ∈ ∂� and n,m ∈ N0, we have∣∣μn(x̄)− μm(x̄)

∣∣ ≤ ∣∣μn
�(�x̄ )− μm

�(�x̄ )
∣∣

+ c�x̄ W̃ b2(μ
n, μm)

√∥∥μn
�

∥∥+ ∥∥μm
�

∥∥+ W̃b
2
2(μ

n, μm)

=
∣∣∣∣
ˆ

�

�x̄ · (ρn − ρm)dx

∣∣∣∣
+ c�x̄ W̃ b2(μ

n, μm)

√
‖ρn‖L1 + ‖ρm‖L1 + W̃b

2
2(μ

n, μm) ,
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which implies that (μnk (x̄))k∈N0 is a Cauchy sequence in R, thus convergent to some num-
ber lx̄ . Define

μ:=ρdx +
∑
x̄∈∂�

lx̄δx̄ .

It is easy to check that μnk →k μ weakly; therefore, by Lemma 4.16, also w.r.t. W̃b2. The
limit μ also lies in the sublevel, i.e.,H(μ) ≤ M , by Proposition 4.15. ��

A.3 IfÄ is an interval, ˜Wb2 is geodesic, butH is not geodesically convex

We prove that (S , W̃b2) is geodesic when � = (0, 1), by using the analogous well-known
property of the classical 2-Wasserstein distance. However, as we expect in light of [6,
Remark 3.4],H is not geodesically λ-convex for any λ. We provide a short proof by adapting
the aforementioned remark.

Proposition A.4 If � = (0, 1), then (S , W̃b2) it is a geodesic metric space.

Proof We already know from Proposition 4.11 that (S , W̃b2) is a metric space.
For any two measures μ0, μ1 ∈ S , we need to find a curve t 	→ μt such that

W̃b2(μs, μt ) ≤ (t − s)W̃b2(μ0, μ1) , 0 ≤ s ≤ t ≤ 1 . (A3)

The opposite inequality follows from the triangle inequality and (A3) itself. Indeed,

W̃b2(μ0, μ1) ≤ W̃b2(μ0, μs)+ W̃b2(μs, μt )+ W̃b2(μt , μ1)

(A3)≤ (s + t − s + 1− t)W̃b2(μ0, μ1) = W̃b2(μ0, μ1) ,

and, in order for the inequalities to be equalities, the identity W̃b2(μs, μt ) = (t −
s)W̃b2(μ0, μ1) must be true.

Take γ ∈ OptW̃b2(μ0, μ1). By Proposition 4.19, γ is optimal, between its marginals, for

the classical 2-Wasserstein distance. Since the set � = [0, 1], endowed with the Euclidean
metric, is geodesic, the classical theory of optimal transport (see, e.g., [21, Theorem 10.6])
ensures the existence of a curve (geodesic) t 	→ νt of nonnegative measures on � with
constant total mass, such that

W2(νs, νt ) ≤ (t − s)W2(π
1
# γ, π2

# γ ) = (t − s)
√
C(γ ) = (t − s)W̃b2(μ0, μ1) (A4)

for 0 ≤ s ≤ t ≤ 1. After noticing that ν1− ν0 = μ1−μ0 by Condition (3) in Definition 3.7,
we define

μt :=μ0 + νt − ν0 , t ∈ (0, 1) .

We claim that this is the sought curve. Firstly, since

(μt )� = (μ0)� + (νt )� − (ν0)� = (νt )� ≥ 0

by Condition (1) in Definition 3.7, and since ν0(�) = νt (�), we can be sure that μt ∈ S for
every t . Secondly, everyW2-optimal transport plan γst between νs and νt is W̃b2-admissible
between μs and μt . Hence,

W̃b2(μs, μt ) ≤
√
C(γst ) = W2(νs, νt )

(A4)≤ (t − s)W̃b2(μ0, μ1) .

��
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Proposition A.5 Let� = (0, 1). The functionalH is not geodesically λ-convex on the metric
space (S , W̃b2) for any λ ∈ R.

Proof Consider the curve

t 	−→ μt :=
{

1
t L

1
(0,t) − δ0 if t ∈ (0, 1] ,

0 if t = 0 .

Clearly, μt ∈ S for every t ∈ [0, 1]. We claim that this curve is a geodesic, that H(μ0) <

∞, and that limt→0 H(μt ) = ∞, which would conclude the proof. The second claim,
namely H(μ0) <∞, is obvious. The third claim is true because

H(μt ) = − log t +
 t

0
V dx −�(0) , t ∈ (0, 1] ,

and, since V ∈ L∞(0, 1), the right-hand side tends to∞ as t → 0. To prove the first claim,
fix 0 ≤ s < t ≤ 1 and define

γst :=
(
Id,

s

t
Id
)
#
μt ∈ AdmW̃b2(μt , μs) ,

which gives

W̃b
2
2(μs, μt ) ≤ C(γst ) =

ˆ ∣∣∣x − s

t
x
∣∣∣2 dμt = (t − s)2

3
. (A5)

Conversely, for every γ ∈ OptW̃b2(μ1, μ0), Condition (3) in Definition 3.7 implies

γ (1, 1)+ γ (1, 0)+ γ ({1} ×�) = γ (1, 1)+ γ (0, 1)+ γ (�× {1}) ,
and, since γ ({1}×�) = 0 by Condition (2) in Definition 3.7, we have γ (1, 0) ≥ γ (�×{1}).
Therefore,

W̃b
2
2(μ1, μ0) = C(γ ) ≥ C

(
γ
{0}
�

)+ ˆ
|x − 1|2 dπ1

# γ
{1}
� + γ (1, 0)

≥ C
(
γ
{0}
�

)+ ˆ (|x − 1|2 + 1
)
dπ1

# γ
{1}
� ≥

ˆ
x2dπ1

# γ ∂�
� .

By Conditions (1) and (2) in Definition 3.7,
ˆ

x2dπ1
# γ ∂�

� =
ˆ

x2dπ1
# γ �

� =
ˆ 1

0
x2dx = 1

3
;

hence

W̃b
2
2(μs, μt )

(A5)≤ (t − s)2

3
≤ (t − s)2W̃b

2
2(μ1, μ0) ,

and this concludes the proof. ��
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