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Abstract

We prove the convergence of a modified Jordan—Kinderlehrer—Otto scheme to a solution
to the Fokker—Planck equation in 2 € R with general—strictly positive and temporally
constant—Dirichlet boundary conditions. We work under mild assumptions on the domain,
the drift, and the initial datum. In the special case where Q2 is an interval in R!, we prove
that such a solution is a gradient flow—curve of maximal slope—within a suitable space of
measures, endowed with a modified Wasserstein distance. Our discrete scheme and modified
distance draw inspiration from contributions by A. Figalli and N. Gigli [J. Math. Pures
Appl. 94, (2010), pp. 107-130], and J. Morales [J. Math. Pures Appl. 112, (2018), pp. 41-88]
on an optimal-transport approach to evolution equations with Dirichlet boundary conditions.
Similarly to these works, we allow the mass to flow from/to the boundary 92 throughout
the evolution. However, our leading idea is to also keep track of the mass at the boundary
by working with measures defined on the whole closure Q. The driving functional is a
modification of the classical relative entropy that also makes use of the information at the
boundary. As an intermediate result, when €2 is an interval in R!, we find a formula for the
descending slope of this geodesically nonconvex functional.

Mathematics Subject Classification 49Q20 - 49Q22 - 35A15 - 35K20 - 35Q84

1 Introduction

The subject of this paper is the linear Fokker—Planck equation

%pz =div(Vp, + pVV) (L.1)
on a bounded Euclidean domain @ C R¢ combined with general—strictly positive and
constant in time—Dirichlet boundary conditions, and with nonnegative initial data. We want
to approach this problem by applying the theory of optimal transport, which, since the seminal
works of R. Jordan, D. Kinderlehrer, and F. Otto [1-3], has proven effective in the study of
a number of evolution equations.
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Existence, uniqueness, and appropriate estimates are often consequence of a peculiar
structure of the problem. Important instances are those PDEs which can be seen as gradient
flows. In fact, it has been proven that several equations, including Fokker—Planck on R¢, are
gradient flows in a space of probability measures endowed with the 2-Wasserstein distance

Wz(u,v):=il;f\// lx — yPPdy(x,y).

where the infimum is taken among all couplings y between u and v, i.e., measures with
marginals n#y = u and nﬁy = v. For such PDEs, existence can be deduced from the
convergence of the discrete-time approximations given by the Jordan—Kinderlehrer—Otto
variational scheme (also known, in a more general metric setting, as De Giorgi’s minimizing
movement scheme [4])

(1.2)

W3 (1, p.dx) LeN
2‘[’ b O’

Piny1yrdx € argmin, (f(u) +

where F is a functional that depends on the equation, and T > 0 is the time step.

‘When applied on a bounded Euclidean domain, this approach produces solutions with Neu-
mann boundary conditions. This fact is inherent in the choice of the metric space (probability
measures with the distance W>) in which the flow evolves. Intuitively, Neumann boundary
conditions are natural because a curve of probability measures, by definition, conserves the
total mass; see also the discussion in [5].

In order to deal with Dirichlet boundary conditions, A. Figalli and N. Gigli defined in [6]
a modified Wasserstein distance Wb, that gives a special role to the boundary 9€2. Despite
measuring a distance between nonnegative measures on €2, the metric Wb, is defined as an
infimum over measures y on the product of the topological closures  x £, and only the
restrictions of the marginals 7'[#)/ and nﬁy to Q2 are prescribed (see the original paper [6]
or Section 3.6). In this sense, the boundary d€2 can be interpreted as an infinite reservoir,
where mass can be taken and deposited freely. The main result in [6] is the convergence of
the scheme

Wb2(pdx, pf._dx
Plus1yr € AZMIn, (/(plogp—p—i—l)dx%—z('ozr'()“)), neNy,
Q

as T | 0, to a solution to the heat equation with the constant Dirichlet boundary condi-
tion plsq = 1. More generally, it was observed in [6, Section 4] that the same scheme with
a suitably modified entropy functional converges to solutions to the linear Fokker—Planck
equation (1.1) with the boundary condition p|3q = e~V In particular, this theory covers the
heat equation with any constant and strictly positive Dirichlet boundary condition.

In a more recent contribution, J. Morales [7] proved convergence of a similar discrete
scheme for a family of reaction-diffusion equations with drift, subject to rather general
Dirichlet boundary conditions. In this scheme, the distance between measures is replaced
by t-dependent transportation costs. Morales’ work, together with [6], is the starting point
of the present paper.

Related literature

The case of the heat flow with vanishing Dirichlet boundary conditions was studied by
A. Profeta and K.-T. Sturm in [8]. They defined ‘charged probabilities’ and a suitable distance
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on them. This metric is built upon the idea that mass can touch the boundary and be reflected,
as with the classical Wasserstein distance, but possibly changing the charge (positive to
negative or vice versa). One of their results is the Evolution Variational Inequality (see [9])
for such a heat flow.

D. Kim, D. Koo and G. Seo [10] adapted the setting of [6] to porous medium equa-
tions d;pr = Ap* (o > 1) with constant boundary conditions.

M. Erbar and G. Meglioli [11] generalized the result of [10] to a larger class of diffusion
equations with constant boundary conditions. They also established a dynamical characteri-
zation of Wh,, in the spirit of the Benamou—Brenier formula for W, [12].

J.-B. Casteras, L. Monsaingeon, and F. Santambrogio [13] found the Wasserstein gradient
flow structure for the equation arising from the so-called Sticky Brownian Motion, i.e., the
Fokker—Planck equation together with boundary conditions of Dirichlet type that also evolve
in time subject to diffusion and drift on the boundary. Namely, denoting by 9, the outer
normal derivative,

orp = Ap in 2,
p=y on d<2, (1.3)
0y = Agqy — Opp In0Q2.

M. Bormann, L. Monsaingeon, D. R. M. Renger, and M. von Renesse [14] recently proved
a negative result. If we modify (1.3) by weakening the diffusion on the boundary (i.e., we
multiply Ayqy by a factor a € (0, 1)) the resulting problem is not a gradient flow of the
entropy in the 2-Wasserstein space built from any reasonably regular metric on .

Our contribution

In this work, we present two novel results:

1. We prove convergence of a modified Jordan—Kinderlehrer—Otto scheme to a solution
to the Fokker—Planck equation with general Dirichlet boundary conditions under mild
regularity assumptions. To do this, we adopt a different point of view compared to [6, 7,
10]: our scheme is defined on a subset . of the signed measures on the closure Q, rather
than on measures on 2.

2. In dimension d = 1, we determine that this solution is also a curve of maximal slope for
a functional H in an appropriate metric space (., 1%2).

Let us now explain in detail the extent of these contributions and provide precise statements.

Convergence of a modified JKO scheme

We look at the boundary-value problem

d
al’= div(Vps +p/VV) inQ,
prlag =¥V on 9%, (1.4)
Pr=0 = PO -
Here, Q C RY is a bounded open set and pg, ¥, V are given functions, with pp > 0. The
function W can be tuned to obtain the desired boundary condition.
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We introduce the set . of all signed measures on £ with
il >0 and u(Q)=0. (1.5)
We also define
E(p)::/g(plogp—i—(V—1)p+1)dx, 0 Q— Ry, (1.6)
and, for u € .7,

£p) +/‘1/dulasz if ulg = pdr,

00 otherwise.

H(p):= (L.7)

In Section 3.7, we will define a transportation-cost functional 7on .. With it, we can consider
the scheme

T2 (w, miy)

), neNy, >0, (1.8)
2T

{41y € argmin (H(M) +
nes

starting from some uj = po € 7, independent of 7, such that the restriction ol is
absolutely continuous with density pg. These sequences are extended to maps ¢ — u;,
constant on the intervals [nr, (n+ l)t) for every n € Ny, namely:

W=l e t€10,00). (1.9)

Theorem 1.1 Assume that [, polog podx < 0o, that W: Q — R is Lipschitz continuous,
and that' V € W4 (Q) 0 L®(Q). Then:

1. Well-posedness: The maps (t «— i} ) resulting from the scheme (1.8) are well-defined
and uniquely defined: for every n and t, there exists a minimizer in (1.8) and it is unique.

2. Convergence: When t — 0, up to subsequences, the maps (t = uy |Q)T converge
pointwise w.r.t. the Figalli-Gigli distance Wb, to a curve of absolutely continuous mea-
surest +— p;dx. Foreveryq € [1, ﬁ), convergence holds also in LlloC ((0, 00); L1(2)).

3. Equation: This limit curve is a weak solution to the Fokker—Planck equation (1.1); see
Section 3.4.

4. Boundary condition: The function t (dp,ev — e‘p/2> belongs to the space

leoc ([0’ OO); WOLZ(Q))

Remark 1.2 We assume that W is defined on the whole set  in order to make sense of the
inclusion v/ peV — e¥/? ¢ Wé’z(Q) also when 92 is not smooth enough to have a trace
operator. Note that, if we are given a Lipschitz continuous function Wp: 92 — R, we can
extend it to a Lipschitz function on Q via

W(x):= inf (Wo(y) + (Lip o) [x — yI) .
yeo
Remark 1.3 If V is Lipschitz continuous only in a neighborhood of 9<2, then it is possible to

find W, Lipschitz as well, in order for ¢¥~" to match any uniformly positive and Lipschitz
boundary condition.

1 ByV e Wll()’cd+(52) we mean that for every w € 2 open there exists p = p(w) > d suchthat V € wlp (w);
see also Definition 3.1.
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Remark 1.4 Throughout the proof of Theorem 1.1, we also show:

e time contractivity of suitably truncated and weighted L9 norms of 1] | (see Proposition
5.15),

e upper bounds on the L9 norms of ] |q, for every t > 0 (see Lemma 5.23),

e upper bounds on time averages of the W2 norm of / pfeV, where pf is the density
of uf|o (see Lemma 5.22).

Furthermore, these estimates (assuming g € [1, ﬁ) in the first two) pass to the limit
as T — 0, i.e., analogous properties hold for the curve ¢ — p;.

As mentioned, the conceptual difference between the present work and [6, 7, 10] is that
we make use of signed measures on the full closure €. In this regard, our approach is similar
to those of [13, 15]. The idea is that, due to the boundary condition we have to match, it is
convenient to keep track of the mass at the boundary and to consider a functional that makes
use of this information (namely, H).

On a more technical note, although Theorem 1.1 is similar to [7, Theorem 4.1], the
latter is not applicable to the Fokker—Planck equation (1.1) without reaction term due to
[7, Assumptions (C1)-(C9)] (see in particular (C7)). Furthermore, we achieve significant
improvements in the hypotheses:

e The boundary 92 does not need to have any regularity, as opposed to Lipschitz and with
the interior ball condition.

e There is no uniform bound on pg from above or below by positive constants. Only
nonnegativity and the integrability of pg log po are assumed.

e The function V is not necessarily Lipschitz continuous. Rather, it is required to be
bounded and to have suitable local Sobolev regularity.

These weak assumptions make it more involved to prove Lebesgue and Sobolev bounds
for 7, as well as the strong convergence of the scheme, which in turn allows us to characterize
the limit. Indeed:

e When p is bounded, or lies in some LY, it is possible to propagate these properties
along ¢ — uj|q; see [7, Proposition 5.3] and Proposition 5.15. With our weak assump-
tions on pg, we are still able to propagate the L! bound, but also need to establish suitable
Sobolev estimates (see Proposition 5.9 and Lemma 5.22) and make use of the Sobolev
embedding theorem in order to get stronger integrability (see Lemma 5.23) and conver-
gence in L}OC((O, o0); LY (Q)) (see Lemma 5.26).

e If Q2 is not regular enough, we cannot directly apply the Sobolev embedding theorem
for W12 functions. Since the Sobolev continuous embedding holds for W(;’z functions
regardless of the domain regularity, we are still able to apply it after establishing suitable
boundary conditions for i |q; see Proposition 5.9.

e When V is not Lipschitz, we need an extra approximation procedure to prove that i} | is
Sobolev regular and satisfies a precursor of the Fokker—Planck equation; see Proposition
5.9 and Lemma 5.10.

e Another issue with Q2 not being regular is in applying (a variant of) the Aubin—Lions
lemma to prove convergence of the scheme. One of its assumptions is a compact embed-
ding of functional spaces, which would follow from the Rellich—Kondrachov theorem
if Q2 were regular enough. To overcome it, we use the Rellich—Kondrachov theorem on
smooth subdomains and take advantage of the integrability estimates to promote local L4
convergence to convergence in L7(£2); see Lemma 5.26.
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Curve of maximal slope

Our second main result is a strengthened version of Theorem 1.1 in the case where 2 is an
interval in R! and V € W12(). In this setting, we are able to define a true metric Wb,
on ., construct piecewise constant maps with the scheme

~2
Wb5 (e, j4}1)

2t (1.10)

s neNy, 7>0,
%

Ins1yr € AIE min (H(,u) +
ne.
o = 1o

for a fixed po with ol = podx, show that they coincide with those of Theorem 1.1, and
prove that their limit is a curve of maximal slope in (-, Wby).

Theorem 1.5 Assume that Q = (0, 1), that [} polog podx < o0, and that V- W2(0, 1).
Then:

1. If T is sufficiently small, the maps (t — []); resulting from the scheme (1.10) are
well-defined, uniquely defined, and coincide with those of Theorem /.1.
2. When v — 0, up to subsequences, the maps (t — [); converge pointwise W.r.t.

WNbQ to a curve t > .

3. The convergence u*|lq —+¢ wlq also holds in LIIOC((O, o0); L9(0, 1)) for every q €
[1,00). The curve t +— uslq is a weak solution to the Fokker—Planck equa-
tion. Denoting by p; the density of |, the map t +— (\/p,ev — e\p/z) belongs
10 L2,.([0, 00); Wy2(0, 1)).

4. The map t +— ; is a curve of maximal slope for the functional H in the metric

; see Section 3.5.

space (%, Wby), with respect to the descending slope ’8%27'[

Within the general theory of gradient flows in metric spaces developed by L. Ambrosio,
N. Gigli, and G. Savaré in [9] (see [5] for an overview), the ‘curve of maximal slope’ is one of
the metric counterparts of the gradient flow in the Euclidean space. In the context of PDEs with
Dirichlet boundary conditions, other proofs of this metric characterization in a (Wasserstein-
like) space of measures are givenin [8, 10, 11]. To be precise, the result of [8, Proposition 1.20]
is an ‘Evolution Variational Inequality’ (EVI) characterization, which implies a formulation
as curve of maximal slope by [16, Proposition 4.6]. By Proposition A.5, our functional H is
not semiconvex and, therefore, we do not expect an EVI characterization in our setting; see
[17, Theorem 3.2]. Let us also point out that the ‘curve of maximal slope’ characterizations
in [10, 11] use the relaxed descending slope (see [9, Equation (2.3.1)]), which yields a
weaker notion of gradient flow compared to ours. In fact, establishing that the descending
slope is lower semicontinuous is the main difficulty in proving Theorem 1.5. Indeed, the
lower semicontinuity of the slope is usually derived from the geodesic (semi)convexity of
the functional via [9, Corollary 2.4.10], but H is not geodesically semiconvex by Proposition
AS.

Nonetheless, in dimensiond = 1, we are able to find an explicit formula for the descending
slope of H in (-7, Wb,) without resorting to geodesic convexity. As a corollary, we also give
an answer, again in dimension d = 1, to the problem left open in [6] of identifying the
descending slope }8 W€ | of £ with respect to the Figalli-Gigli distance Wb,.
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Theorem 1.6 (see Corollary 6.5) Assume that V.€ W12(0, 1). For every p € Lﬂr(O, 1), we
have the formula

1 2
2(p)= 4/0 (ax,/pev) e Vdx ifype” —1e w201, G

‘8 Wb E
00 otherwise.

Additionally,

dwn, & | is lower semicontinuous with respect to W b,.

We believe that the same formula should hold true also in higher dimension. A similar
open problem is [13, Conjecture 2].

Plan of the work

In Section 2, we formally derive the objects (entropy and transportation functionals) that
appear in the schemes (1.8) and (1.10).

In Section 3, we introduce notation, terminology, and assumptions that are in place
throughout the paper, we recall some definitions from the theory of gradient flows in metric
spaces, as well as the Figalli-Gigli distance of [6], and we define rigorously the transportation
functionals 7 and Wh,.

In Section 4, we gather the main properties of these functionals and of the corresponding
admissible transport plans. In particular, we show that V%g is a true metric when 2 is a finite
union of one-dimensional intervals.

In Section 5, we prove Theorem 1.1.

In Sections 6-7, we focus on the case where 2 = (0,1) C R!. In Section 6, we find a
formula for the slope of H in the metric space (.7, V%z) and prove, as a corollary, Theorem
1.6. In Section 7, making use of Theorem 1.1 and of the slope formula, we prove Theorem
L.5.

Appendix A contains some additional results on V%z. Particularly, we prove the lack of
geodesic A-convexity for H when 2 = (0, 1).

2 Formal derivation

Let us work at a completely formal level and postulate that a solution to the Fokker—Planck
equation (1.4) is the “Wasserstein-like” gradient flow of some functional F. By this we mean
the following:

1. the motion of p; in 2 is governed by the continuity equation

d .
apt = —div(pvy), 2.1

for some velocity field vy,

2. the time-derivative of p; equals the inverse of the Wasserstein gradient of F at p, for
every t, in the sense that for every sufficiently nice curve s — f; of functions on Q
starting at fo = p; we have

d d
d*f(fst)‘ = —/(vz, Vy)pdx,  where ——f| = —div(p V). (2.2)
s s=0 Q ds "7 ls=0
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As we want to retrieve the Fokker—Planck equation, a reasonable choice for F seems to be
fo(pdx)::/ (plogp+ (V—1p+1)dx. (2.3)
Q
For a fixed r > 0 and a curve s — f§, we have
d d
—Fo(fsdx) = [ (V +log fs)— fydx,
ds Q ds
and, therefore,

d
Fo(fdn)| = / (V + log py) div(p, Vi )dx
S s=0 Q

= / ((VV 4+ Viog pr), Vi) prdx — / W (Vyr, n)ydt ™",
Q Q2
where, in the last identity, we used the boundary conditions in (1.4). Let us choose
v;:=—VV —Vlogp;,

which makes the continuity equation (2.1) true, since p; solves (1.4). Then,

d
Efo(fv) = —/(vz,wnp,dx—/ Wp, (Vyr, n)d#? !,
s Q 30

s=0

and we see that Fy is not the right functional because of the integral on the boundary. The
measure (V/, 1) p;. 74! on 92 can be seen as the flux of mass (coming from fo = p;) that
is moving away from 2 along the flow s = f; at s = 0. Thus, if we let this mass settle on
the boundary, (Vy/, n) ,o,jfd_l is the time-derivative of the mass on 9<2. For this reason, it
makes sense to consider not just measures on 2, but rather on the closure Q, and to define

Fy=Folula) + / Wdulsg

Our entropy functional H is defined precisely like this, and, as we will see in Section 3, the
transportation functionals 7 and V%z are extensions of Wb to the subset . of the signed
measures on 2, constructed so as to encode the idea that mass can leave  to settle on Q2
(and vice versa).

This argument is simple, but let us also emphasize the hidden difficulties:

e we assume low regularity on 92 and on the functions pg and V;

e the transportation-cost functionals V%z and 7 will not be, in general, distances;

e the functional H is not bounded from below on . (if W is nonconstant), nor it is strictly
convex. Indeed, it is linear along lines of the form R 3 [/ + pu +In with u, n € . and n
concentrated on 0€2;

e when (%7, Why) is a geodesic metric space, the functional H is not geodesically semi-
convex; see [6, Remark 3.4] and Section A.3.

3 Preliminaries
3.1 Setting

Throughout the paper, €2 is an open, bounded, and nonempty subset of R¢. Without loss of
generality, we assume that 0 € 2. No assumption is made on the regularity of its boundary.
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Three functions are given: the initial datum po: € — Ry, the potential V: @ — R,
and the function ¥ : Q@ — R that determines the boundary condition. We assume that W is
Lipschitz continuous and that the integral fQ po log podx is finite. In addition, we suppose

that V is bounded (i.e., in L°°(£2)) and in the set of locally Sobolev functions WIL’C‘“'(Q).2

Definition 3.1 We say that V € WIL’C‘H'(Q) if, for every w € 2 open, there exists p =
p(w) > d such that V € WP (w).

The set.7 is the convex cone of all finite and signed Borel measures ;4 on €2 such that (1.5)
holds.

Proposition 3.2 The set . is closed w.r.t. the weak convergence, i.e., in duality with contin-
uous and bounded functions on Q.

Proof If . 5 u" —, 1, then () = lim,_ o () = 0 and, for every f: Q — Ry
continuous and compactly supported in €2,

n—oo n—o00

The conclusion follows from the Riesz—Markov—Kakutani theorem. ]

The entropy functionals £: LL(Q) — R U{oo} and H: .¥/ — R U {oco} are defined
in (1.6) and (1.7), respectively.

3.2 Convention on constants

The symbol c¢ is reserved for strictly positive real constants. The number it represents may
change from formula to formula and possibly depends on the dimension d, the set €2, the
functions V and W, and the initial datum pg. We also allow ¢ to depend on other quantities,
which are, in case, explicitly displayed as a subscript.

3.3 Measures

For every signed Borel measure ¢ and Borel set A, we write ug = |4 for the restriction
of u to A. Similarly, and following the notation of [6, 7], if y is a measure on a product
space and A, B are Borel, we write y f = yaxp for the restriction of y to A x B. We use
the notation 4, u— for the positive and negative parts of a given measure u, and ||| for
the total-variation norm of u, i.e., the total mass of p4 + p—_.

For every Borel function f and signed Borel measure i, we denote by w(f) the inte-
gral [ fdu.

On the set of the finite signed Borel measures on , we also consider the (modified)
Kantorovich—Rubinstein norm (see [18, Section 8.10(viii)])

lellgg o= | @] +sup {u(f) © f: Q- R, Lip(f) < land f(0) =0} . (3.1)

We write Fypu for the push-forward of a (signed) Borel measure p via a Borel map F.
Often, we use as F the projection onto some coordinate: we write 7r? for the projection on
the i coordinate (or 7%/ for the projection on the two coordinates i and ;).

We denote by .#¢ the d-dimensional Lebesgue measure on R?. We also use the nota-
tion |A|:=29(A) when A C R is a Borel set. We write 8, for the Dirac delta measure
at x.

2 In particular, V € C(S).
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3.4 Weak solution to the Fokker—Planck equation

We say that a family of nonnegative measures (u;);>0 on €2 is a weak solution to the Fokker—
Planck equation if:

1. it is continuous in duality with the space of continuous and compactly supported func-
tions C.(2);

2. for every open set @ € , both 1 — p;(w) and ¢ +— [|VV|dul, belong
to LIIOC([O, oo)), i.e., their restrictions to (0, 7 ) are integrable for every 7 > 0;

3. forevery ¢ € C2(Q2) and 0 < s < ¢, the following identity holds:

t
[t [oan = [ [ (a0~ 0.9V ))ansar. (32)

3.5 Metric gradient flows

The general theory of gradient flows in metric spaces was developed in [9]; we refer to this
book and to the survey [5] for a comprehensive exposition of the topic. We collect here only
the definitions we need from this theory.

Let (X, d) be a metric space, let [0, 00) > ¢ > x; be an X-valued map, and let f: X —
R U {oo} be a function.

Definition 3.3 (Metric derivative [9, Theorem 1.1.2]) We say that (x;);[0,00) is locally abso-
lutely continuous if there exists a function m € L{ ([0, 00)) such that

t
d(xs, x7) 5/ m(r)dr 3.3)

for every 0 < s < 1. If (x:)r€[0,00) 18 locally absolutely continuous, for .Z[}) oy e there
exists the limit '
d(xs, x
| = lim O X0 (3.4)
s—t |s — [|
and this function, called metric derivative, is the f[}) o0)"a-€. minimal function m that satisfies
(3.3); see [9, Theorem 1.1.2].3

Definition 3.4 (Descending slope [9, Definition 1.2.4]) The descending slope of f atx € X
is the number

(fG) = F),

s 3.5
d(x, y) G-

|0 f|(x) = |04 f|(x):=1lim sup
s
where a:=max {0, a} is the positive part of a € R U {z£00}. The slope is conventionally set
equal to oo if f(x) = 0o, and to 0 if x is isolated and f(x) < oo.

Definition 3.5 (Curve of maximal slope [9, Definition 1.3.2]) We say that a locally absolutely
continuous X-valued map (x;);e[0,00) 1S @ curve of maximal slope (with respect to |04 f])
if t — f(x;) is a.e. equal to a nonincreasing map ¢ : [0, c0) — R such that

. 1 . 1 2
b() = - 15> — E\adf| (x;) for.Zg . -ae.t. (3.6)

3 In[9, Theorem 1.1.2], the completeness of the space is assumed but not necessary, as can be easily checked.
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Definition 3.5 is motivated by the observation that, when (X, d) is a Euclidean space
and f is smooth, the inequality (3.6) is equivalent to the gradient-flow equation

d
—x; =-V , 1>0,
dIXt fx) =

see for instance [5, Section 2.2]. As noted in [9, Remark 1.3.3],% even in the general metric
setting, (3.6) actually implies the identities

@) = 4> = |8df|2(x,) forae.r>0.

3.6 The Figalli-Gigli distance

We briefly recall the definition and some properties of the distance Wb, introduced in [6].
We denote by M (£2) the set of nonnegative Borel measures p on €2 such that

/ inf |x — y|?du(x) < 0o, (3.7)
yeo2

and, for every nonnegative Borel measure y on Q x £, define the cost functional

C(y>:=/|x Py ). (3.8)

Definition 3.6 ﬂ6, Problem 1.1]) Let u,v € M7 (2). We say that a nonnegative Borel
measure y on Q x Q2 is a Why-admissible transport plan between p and v, and write y €
Admyp, (1, v), if

(m}y)Q =pn and (m%y)Q =V. (3.9)
The distance Wb, (u, v) is then defined as
Whs(u, u):=inf[,/0(y) Ly € Admwp, (1, u)} . (3.10)

In [6, Section 2], it was observed that for every u, v € M>(2) there exists at least one
W by-optimal transport plan, that is, a measure y € Admyyy, (i1, v) that attains the infimum
in (3.10).

Later, we will make use of the following consequences of [6, Proposition 2.7]: the conver-
gence w.r.t. the metric Wb, implies the convergence in duality with C.(£2), and it is implied
by the convergence in duality with Cp(£2).

3.7 Transportation functionals
We now define the transportation functionals 7 and WZZ that appear in (1.8) and (1.10).

Definition 3.7 For every u,v € ., let Admv%2 (u, v) be the set of all finite nonnegative
Borel measures y on Q x € such that

(M. (m47)g = 1e

Q). (73y)q = va.
3). n;y — nﬁ%y =pu—0.

4 Once again, completeness is not necessary.
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23 Page 12 of 58 F. Quattrocchi

(a) Whe-admissible (b) Whba-admissible (¢) T-admissible
Fig.1 Examples of admissible plans. Red (resp. blue) regions are those with an abundance of initial (resp. final)
mass p (resp. v). Admissible plans for Wb, do not have any restriction on the mass departing from and arriving

to 3$2. Admissible plans for Wb, must agree—in the sense of Condition (3)—with the configurations u, v
also on 9Q2. Admissible plans for 7 are Wb;-admissible and, additionally, do not move mass from 9€2 to 9<2.

We call such measures Why-admissible transport plans Fig. 1 between p and v. We set
Wha(u, v):=inf[,/(3(y) Ly € Admy, (1, v)} , 3.11)
and write

Optizp, (u, v):= argmin  C(y) (3.12)
yeAdmmz (w,v)

for the set of all V%z-optimal tranport plans between u and v.
Remark 3.8 There is some redundancy in the properties (1)-(3), indeed,
MH+B) =2 and )+3)=(1).

Definition 3.9 For every u,v € ., let Adm7(u, v) be the set of all measures y €
Admm)2 (u, v) such that, additionally,

@). i =0.

We define the functional 7 and the 7-optimal transport plans as in (3.11) and (3.12), by
replacing Wb, with 7.

Remark 3.10 If y € Adm{(u, v) for some u, v € ., then

vl < |7§] + |7&] = tuel + val - (3.13)

Remark 3.11 Fix u, v € .. For every n € . concentrated on 9€2, it is easy to check that
Admy, (u+n,v+n) = Admg;, (u,v) and Admg(n +n,v+n) = Admr(u, v).
Hence,

Wha(p +n,v+n) = Wha(u,v) and T +n,v+n) =T, v).  (3.14)

Let us briefly comment on these definitions. Conditions (1) and (2) are precisely the
same as (3.9). They are needed to ensure that the mass that departs from (resp. arrives in)
Q2 is precisely pq (resp. vg). Condition (3) is needed to also keep track of the mass that is
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exchanged with the boundary. Namely, it ensures that, on each subregion of A C  (possibly
including part of the boundary, which was neglected by Conditions (2)-(3)), the mass v(A)
after the transportation equals the initial mass t(A), plus the imported mass y (Q x A), minus
the exported mass y (A x 2). Observe that, since 1 and v normally have a negative mass on
some subregions of 9€2, it does not make sense to naively impose n# y = p and nﬁy = .

The difference between Wb, and 7'is Condition (4): 7-admissible transport plans cannot
move mass from 92 to 2. This results in the loss of the triangle inequality.

Example 3.12 Consider, for the domain ©2:=(0, 1), the measures
n1:=6p—8 €, pr=dip—-6 €, wu=0ecs.

The transport plans y12:=8(0,1/2) and y23:=8(1/2,1) are 7-admissible, between 1| and w2,
and between uo and w3, respectively. Thus, both 7(u1, u2) and 7(u2, u3) are bounded
above by 1/2. However, there is no y;3 € Admg(ue, 13), whence 7(u1, u3) = oo. Indeed,
Conditions (1) and (2) in Definition 3.7 would imply ()/13)8 = ()/13)% = 0. Together
with (4) in Definition 3.9, this means that y;3 equals the zero measure, which contradicts (3)
in Definition 3.7.

Nonetheless, it is shown in Proposition A.1 that Condition (4) is needed in dimension d >
2, because the information about uyq and vyo may otherwise be lost. This does not happen
when 2 is just a finite union of intervals in R!, because points in 92 are distant from each
other. We will see that, in this case, Definition 3.7 defines a distance.

These remarks reveal part of the difficulties in building cost functionals for signed measures
that behave like W». See [19] for further details. However, it seems at least convenient to
use signed measures, given that a modified JKO scheme that mimics [6] should allow for a
virtually unlimited amount of mass to be taken from points of 9€2, step after step.

4 Properties of the transportation functionals

We gather some useful properties of 7 and V%g.

4.1 Relation with the Figalli-Gigli distance

For every u, v € ., we have the inclusions
Adm7(p, v) € Admgy, (1, v) € Admwp, (L, vQ) -
As a consequence,
Wha (e, ve) < Wha(u,v) < T, v),  mve s, .1

In fact, V%z and 7 can be seen as extensions of Wb, in the following sense.

Lemma 4.1 Let i, v be finite nonnegative Borel measures on Q2. For every i € ./ with jig =
L, we have the identities

Wha(u,v) = inf [W;?z(ﬁ,ﬁ) C g = v} — inf (T, ) : Do = v). (4.2)
ve.y ve.y
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Proof In light of (4.1), it suffices to prove that
inf {7(f1,V) : Vg =v} < Wha(u,v).
ve.s
Let y € Admyy, (1, v). Define y:=y — )/3‘98 and
D=l + iy — iy

It is easy to check that vg = v, that y € Adm{(fi, V), and that C(y) < C(y). As a conse-
quence,

inf {702, 5) : o = v} </C(y),

and we conclude by arbitrariness of y. O

4.2 Relation with the Kantorovich-Rubinstein norm

Interestingly, an inequality relates V%z and |||l

Lemma4.2 Forevery u,v € ., we have

2 .
Wby (. v) < diam(2) lln — vy (4.3)
Proof Define the nonnegative measures
mi=pe + (mog — vo)+, V:i=ve + (Log — vee)-.,

and note that i — D = u — v. In particular, (Q) = 7(SQ).
Let y bea couphng between pandv,ie., ¥ is anonnegative Borel measure on Qx Qsuch
that 71# y = @t and 71# y = v. Notice that y is Wb2 admissible between w and v. Therefore,

~2 .
Wh2 (. v) sC<y>=/|x—y|2dy sdlam(sz)/|x—y|dy.

After taking the infimum over y, the Kantorovich—Rubinstein duality [18, Theorem 8.10.45]
implies

=72 . ~ ~ .
Why (1, v) < diam(€) 1/t — Dl = diam(€2) |1 — vl

4.3 Tis an extended semimetric

The functional 7 may take the value infinity and does not satisfy the triangle inequality; see
Example 3.12. Nonetheless, we have the following proposition, which we prove together
with two useful lemmas.

Proposition 4.3 The functional Tis an extended semimetric, i.e., it is nonnegative, symmetric,
and we have

T, v) =0 < p=v. 4.4)

Lemma4.4 Let (") en, and (V') en, be two sequences in ., and let y" € Adm7(u”, v")
for every n € Ny. Assume that
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(a) W' —, pandv" —, v weakly for some ., v,
(b) g —n nq and vy —, vo setwise, i.e., on all Borel sets,
(c) y" —n y weakly.

Then w,v € . and y € Adm(u, v).
In particular, for any u,v € ., the set Adm(u, v) is sequentially closed with respect
to the weak convergence.

The proof of this lemma is inspired by part of that of [7, Lemma 3.1].

Proof The total mass of y” is bounded and, therefore, the same can be said for the total mass
of (y”)g, (y”)gzﬂ, (y”)gzg. Hence, up to taking a subsequence, we may assume that

(y"ME —, o1 in duality with C(Q x Q),

(¥ -, oy in duality with C(Q x 99),

()/")529 —, 03 in duality with C(3Q2 x Q)
for some o1, 02, 03. In particular, y"* —, y:=0| + 02 + 03. We claim that o1, 02, 03 are
concentrated on €2 x €2, Q x 92, 92 x Q respectively. If this is true, then Condition (4)
in Definition 3.9 for y is obvious, and those in Definition 3.7 follow by testing them with a

function f € C,(2) for every n and passing to the limit. For instance, to prove Condition (1)
in Definition 3.7, we write the chain of equalities

k() = Jim wh(r) = tim [ 70080

/ F@)d (o) +0)(x, y) = / FOdyE @, y) = (mir&) ().

Let us prove the claim. Let A C  be an open set, in the relative topology of €2, that
contains 9€2. We have

0109 x Q) < 01(A x Q) < liminf(y")Z(A x Q)
n—oo
<liminf(y")2(A x Q) = liminf 1y (A) = pg(A).,
n—0o0 n—oo

where the second inequality follows from the semicontinuity of the mass on open sets (in the
topology of Q x ) and the last equality from the setwise convergence. Since [t has finite
total mass and pug(92) = 0, we have 07(dQ2 x ) = 0. Analogously, using Condition (2)
in place of Condition (1), we obtain o1 (€ x 3€2) = 0. For 07 and o3, the proof is similar. 0

Lemma4.5 If 7(i, v) < oo, then Opty{(u, v) # .

Proof Tt suffices to prove that Adm7{u, v) is nonempty and weakly sequentially compact. It
is nonempty if 7(u, v) < oo. It is sequentially compact because

3.13)
y € Admr(u,v) =" |y = lual +lval ,

and thanks to Lemma 4.4. m]
Proof of Proposition 4.3 Only the implication = in (4.4) is not immediate. Let us assume
that 7(u, v) = 0 and let y € Opt(it, v). Since C(y) = 0, the measure y is concentrated on

the diagonal of Q x Q. Thus, the equality u = v follows from Condition (3) in Definition
3.7. O

@ Springer



23 Page 16 of 58 F. Quattrocchi

We conclude with a corollary of Lemma 4.4: a semicontinuity property of 7.

Corollary 4.6 Let (1" )pen, and (V*),eN, be two sequences in 7. Assume that

(a) W' —, wandv" —, v weakly for some ., v,
(b) g —n ng and vy —, vq setwise, i.e., on all Borel sets.

Then
T(w, v) < liminf Z(u", v"). 4.5)
n—o0

Proof We may assume that the right-hand side in (4.5) exists as a finite limit and that, for
every n € No, there exists y” € Adm¢(u, v) such that

1
Cy™ < T*(u",v") + -

The total variation of each measure y" is bounded by || J78 H + ” v ||» which is in turn bounded
thanks to the assumption. Therefore, we can extract a subsequence (y"*)icn, that converges
weakly to a measure y. We know from Lemma 4.4 that y € Adm7(u, v); thus,

T2 (w,v) < Cy) = lim C(y™) = lim T2(u",v"™) = lim T>(u",v").
k— o0 k— 00 n—o00

4.4 H is“semicontinuous w.r.t 77

Albeit not being a distance, the transportation functional 7 makes H lower semicontinuous,
in the following sense.

Proposition 4.7 Let (1"*),en, be a sequence in .7 and suppose that

lim 7(u", u) =0 (4.6)
n—o0
Sfor some € .. Then
H(p) = liminf H(p"). 4.7)

For the proof we need alemma, to which we will also often refer later. This lemma, inspired
by [7, Lemma 5.8] allows to control (i — v)jgq in terms of 7(u, v) and of the restrictions o
and vg. This fact is convenient for two reasons:

o the part of the functional H that depends on (g is superlinear,
e we will see (Remark 5.17) that the restrictions to Q of the measures produced by the
scheme (1.8) have bounded (in time) mass.

Lemma4.8 Lett > 0, let u, v € .7, and let : Q — R be Lipschitz continuous. Then,

72 ,
1(®) — v(@)] = tLip @ (luall + Ival) + . 48)
In particular,
o T2(u, v)
R90(®) — via(®) = va(®) — ko (@) +T(Lip®) (Inal + Iual) + - 49)
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Proof Let y € Opty(u, v). By Definition 3.7 and Definition 3.9, we have

(@) — v(®)| = |(Thy — 7fy)(®)] =

/ (®(x) — D(3)dy (x. )

/JE(Lip ®) - |XJ_27y|dy(x, ¥)

. 1
e(Lip @) ]l + 7 / x — yI2 dy(x. )

IA

IA

T2 (i, v)
4tv

Proof of Proposition 4.7 We may assume that the right-hand side in (4.7) exists as a finite limit
and that H(u") is finite for every n. In particular, u¢, is absolutely continuous w.r.t. .,iﬂsdz .
Denote by p” its density. Owing to Lemma 4.8, for every ¢ > 0 and n, we have

Hp") = E(p") + uho (W)

IA

t(Lip @) (el + Ival) +

T2(u", 1)
4t '

It follows that the sequence (p"), is uniformly integrable. By the Dunford—Pettis theorem, it
admits a (not relabeled) subsequence that converges, weakly in L' (£2), to some function p.
From (4.1) and [6, Proposition 2.7], we infer that 1, — g in duality with C.(£2) and,
therefore, p is precisely the density of ;q. The functional £ is convex and lower semicontin-
uous on L' () (by Fatou’s lemma), hence weakly lower semicontinuous. Thus, we are only
left with proving that

> / (logp" +V — 1 — cr — W)p"dx + Q] + u(W) — et gl —
Q

Hae(W) < Tim inf 1o (V).

Once again, we make use of Lemma 4.8 and of the weak convergence in L' () to write, for
every T > 0,

. . . T (1", )
lim sup(u — "o (W) < limsup et ([ n || + llngl) +lim sup —7—— < et [luqll -
n—oo

n—oo n—oo

We conclude by arbitrariness of 7. O

4.5 Wi)z is a pseudodistance

The functional Wb, is a pseudodistance on ., meaning that it fulfills the properties of a
distance, except, possibly, © = v when Wb, (i, v) = 0. As before, nonnegativity, symmetry,
and the implication

p=v = Whyu,v)=0

are obvious. To prove finiteness, it suffices to produce a single y € Admgy, (i, v) for
every i, v € .. Let us arbitrarily fix a probability measure ¢ on 92 and set

ni=paq — vae + (Ilnal — lval)s .

The following is V%z-admissible:

_Jre®@c+c@ve+ 5= ity £0,

T re®r+c@ve ifn=0.

@ Springer



23 Page 18 of 58 F. Quattrocchi

Only the triangle inequality is still missing.

Proposition 4.9 The functional /V—V\b/z satisfies the triangle inequality. Hence, it is a pseu-
dodistance.

Proof Let jt1, (2, u3 € ., and let us view them as measures on three different copies of €,
that we denote by 21, 2, €23, respectively. We write 77 2 for both the projections from €2 x €2,
and Qz X Q3 onto Qz

Choose two transport plans yjp € Admﬁrbz (1, n2) and yr3 € Adm‘,'[,j72 (2, 13).
Let n:=(7‘r§)’23 — 713)/12)39 and consider

712:=y12 + Ad, Id)gn4, Po3i=y23 + (Id, Id)an_ .

It is easy to check that these are admissible too, i.e., Y12 € Admgﬁ,2 (1, o) and pr3 €
Admgy, (12, n3), as well as that C(y12) = C(y12) and C(y»23) = C(y»3). Furthermore, nj)?lz

equals nﬁ 723. The gluing lemma [9, Lemma 5.3.2] supplies a nonnegative Borel measure y23
such that

125 - 23~ -
T Y123 = Y12 and 7wy Y123 = 123

The measure y ::71#3 Y123 18 V%g-admissible between w1 and po. By the Minkowski inequal-
ity,

Wha (1, 12) < VC(y) < VC(12) + v/C(33) = VCy12) + VC(y3)

from which, by arbitrariness of yj2 and y»3, the triangle inequality follows. O

In general, V%z is not a true metric on .. This is proven in Proposition A.1. However,
an analogue of Lemma 4.4 holds (proof omitted).

Lemma 4.10 Let (u")peN, and (V') e, be two sequencesin.”, andlet y" € Adm—— (M )
for every n € Ng. Assume that

(a) u" —, wand v" —, v weakly for some ., v,
(b) g —n nq and vy —, vo setwise, i.e., on all Borel sets,
(c) y" =, y weakly.

Then p,v € % and y € Adm—— (u, V).
In particular, for any ., v € 5” the set Admfv (u, v) is sequentially closed with respect
to the weak convergence.

4.6 When Q is a finite union of intervals, Wl;z is a distance

When €2 is a finite union of 1-dimensional intervals (equivalently, when 9€2 is a finite set)
we also have

V%z(u,v)=0 = u=v.

Proposition 4.11 If d = 1 and <2 is a finite union of intervals, then (5’,%) is a metric
space.

This proposition is an easy consequence of the following remark and lemma, analogous
to Remark 3.10 and Lemma 4.5, respectively.
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Remark4.12 Fix p,v € % and pick y € Admgy, (1, v). If 9 is finite and the diagonal
of 92 x 092 is y-negligible, then

vl < 8]+ |r&] + [ i8] < el + ivel

1
— /|x —y[Pdy(x,y)
min, yese |X — Yl
x7#y
= llwall + lvell + < Cly) . (4.10)
Lemma 4.13 Assume that d = 1 and that Q2 is a finite union of intervals. Then the

set Opt/v-VT2 (w, v) is nonempty for every (1, v € ..

Proof We already know that Admm,z (1, v) # . Letus take aminimizing sequence (") eN,
- Admm72 (m, v) for the cost functional C. Let A be the diagonal of 92 x 9. It is easy
to see that (y" — y"|a), is still an admissible and minimizing sequence. Therefore, we can
assume that y”|o = 0. By Remark 4.12, the total variation of " is bounded. Therefore,
there exists a subsequence of ("), that converges weakly to a limit ¥ and, by Lemma
4.10, y € Admg, (1, v). Since the sequence is minimizing, y is also V%g-optimal. O

Two further useful facts about Wh, are the counterparts of Lemma 4.8 and Proposition
4.7 in the case where 2 is a finite union of intervals.

Lemma 4.14 Assume that d = 1 and that 2 is a finite union of intervals. Let u, v € . and
let ®: Q — R be Lipschitz continuous. Then,

— —2
l(®) = v(®)| < co Wha (i, v)\/||/m I+ llvell + Wby (i, v). (4.11)

Proof By Condition (3) in Definition 3.7, for every i, v € .% and every y € Optigy, (1, v),
we have

(@) — v(@)] = ‘/(ob(x) —o())dy (. y)‘ < (Lip®) / x — yldy (. y)
< (Lip ®)VCO) Ty = (WLip &) Wha(, v/ T .

We can assume that the diagonal of 92 x 92 is y-negligible; hence, we conclude by Remark
4.12. O

Proposition 4.15 Assume that d = 1 and that Q2 is a finite union of intervals. Then 'H is lower
semicontinuous w.r.t. Whby.

Proof Similar to the proof of Proposition 4.7, making use of Lemma 4.14 in place of Lemma
4.8. O

When V%z defines a metric, a natural question is whether or not this metric is complete.
In general, the answer is no; this is proven in Proposition A.2. Nonetheless, we prove in
Lemma A.3 that the sublevels of H are complete for Wh.

Another interesting problem is to find a convergence criterion for Who. Exploiting Lemma
4.2, we find a simple sufficient condition for convergence in the 1-dimensional setting.

Lemma4.16 Assume thatd = 1 and that Q is a finite union of intervals. If (1" )pen, S 7

Whs
converges weakly to . € ., then u" —>2,, .
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Proof The idea is to use Lemma 4.2 together with the measure-theoretic result [18, The-
orem 8.3.2]: the metric induced by |- ”fdi metrizes the weak convergence5 of nonnegative

Borel measures on 2. For every x € 9%, let a,:= — inf, u, (x). Every number a, is finite
because, by the uniform boundedness principle, the total variation of ©” is bounded. By the
considerations above, we have

w' =, pweakly — u'+ Z aydy =, 1+ Z a8, weakly
x€ea xedIQ2

= | —ulg—n 0 G Why(u" 1) = 0.

[m}

Remark 4.17 The converse of Lemma 4.16 is not true: in the case :=(0, 1), consider the
sequence

w'=n81/n — 80), neNp,

which converges to p:=0 w.r.t. V%z.

4.7 Estimate on the directional derivative

The following lemma will be used in Proposition 5.9 to characterize the solutions of the
variational problem (1.8). We omit its simple proof, almost identical to that of [6, Proposi-
tion 2.11].

Lemma4.18 Let yu,v € .% and y € Opty(u, v). Let w: Q@ — R? be a bounded and Borel
vector field with compact support. For t > 0 sufficiently small, define p;:=1d +tw)s/uL.
Then
T? (g, v) — T (1,
Jim sup (ir, v) (u,v) <

t—0t t

/<w(x>,y—x>dy(x,y). @.12)

4.8 Existence of transport maps

Proposition4.19 Letu,v € 7, let A, B C Q x Q be Borel sets, and let y be a nonnegative
Borel measure on Q2 x Q. If

(a) y € Opty (i, v),
(b) or:y € Optu, v) and (A x B)N (02 x 9Q2) =0,

then y f is optimal for the classical 2-Wasserstein distance between its marginals.

Consequently: under the assumptions of this proposition, if one of the two marginals of y f
is absolutely continuous, we can apply Brenier’s theorem [20] and deduce the existence of
an optimal transport map. For instance, whenever pg is absolutely continuous, there exists

aBorel map T: Q —  such that yg =(d, Tspg.

5 In [18], two Kantorovich-Rubinstein norms are defined. Here, we implicitly use that they are equivalent on
measures on a bounded metric space; see [18, Section 8.10(viii)].
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Proof of Proposition 4.19 Let y be any nonnegative Borel coupling between n# y f and 71# y /f .
In particular, y is concentrated on A x B. Define the nonnegative measure

vi=y —vi+7.
Note that
ly =nly and nly =nly,
which yields
y € Admyy, (1, v) =y’ € Admgy, (1, v).
Furthermore, if y5 = 0, then (y")}% = 7§ Thus,
[y € Adm7(p, v) and (A x B) N (02 x 02) = (2)] = Y e Adm7p(u,v).

Hence, if y € Optmz(u, v),or y € Opty(,v) and (A x B) N (92 x 92) = @, then, by
optimality, C(y) < C(y'), and we infer that C(yf) < C(y). We conclude by arbitrariness
of y. O

In [6, Proposition 2.3] and [7, Proposition 3.2], the authors give more precise characteri-
zations of the optimal plans for their respective transportation functionals in terms of suitable
c-cyclical monotonicity of the support, as in the classical optimal transport theory; see, e.g.,
[21, Lecture 3]. Existence of transport plans is then derived as a consequence. We believe
that a similar analysis can be carried out for the transport plans in Opt;and Opt,, , but it is
not necessary for the purpose of this work.

5 Proof of Theorem 1.1

Recall the scheme (1.8): we first fix a measure g € .7 such that its restriction to 2 is
absolutely continuous (w.r.t. the Lebesgue measure) with density equal to pg. Then, for
every T > 0 and n € Ny, we iteratively choose

T2(u, M,’,J)

! € argmin | H(w) +
M(Vl-‘rl)‘[ Mgey < (I'L) 2T

For all ¢ > 0, these sequences are extended to maps ¢ +— u;, constant on the inter-

vals [nt, (n+ 1)1:) for every n € Np.

Remark 5.1 The choice of (10)sg is inconsequential, in the sense that, for every ¢ and t the
restriction (i4; )o does not depend on it. In fact, from Remark 3.11 and the uniqueness of
the minimizer in (1.8) (i.e., Proposition 5.11), it is possible to infer the following proposition
(proof omitted).

Proposition 5.2 Fix t > 0, and let jno, flo € . be such that (o)e = (flo)q. Let t —
and t +— [i] be the maps constructed with the scheme (1.8), starting from o and fio,
respectively. Then, for everyt > 0,

wi — iy = po — o = (o)ag — (fLo)aq - (5.1

We are going to prove Theorem 1.1 in seven steps, corresponding to as many (sub)sections:
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1. Existence: The scheme is well-posed, in the sense that there exists a minimizer for the
variational problem (1.8).

2. Boundary condition: The minimizers of (1.8) approximately satisfy the boundary condi-
tion plyg = e¥ V.

3. Sobolev regularity: The restrictions to € of the minimizers enjoy some Sobolev
regularity—with quantitative estimates—and satisfy a “precursor” of the Fokker—Planck
equation.

4. Uniqueness: There is only one minimizer for (1.8) (given u ).

5. Contractivity: Suitably truncated L? norms decrease in time along # + ;. This result is
useful in proving convergence of the scheme, both w.r.t. Wb, and in LllOC ((O, 00); L1 (Q)).

6. Convergence w.r.t. Wh;.

7. Fokker—Planck with Dirichlet boundary conditions: The limit solves the Fokker—Planck
equation with the desired Dirichlet boundary conditions. Moreover, the convergence holds
in Ll ((0, 00); L9(Q)) for g € [1, 7%5).

Each (sub)section starts with the precise statement of the corresponding main proposition
and ends with its proof. When needed, some preparatory lemmas precede the proof.

5.1 One step of the scheme

In this section, we gather together the subsections corresponding to the first five steps of our
plan for Theorem 1.1. The reason is that they all involve only one step of the discrete scheme.

Throughout this section, i is any measure in . whose restriction to €2 is absolutely
continuous and such that, denoting by p the density of fiq, the quantity £(p) is finite. We
also fix T > 0. We aim to find one/all minimizer(s) of

T2, )
2t
and determine some of its/their properties.

H() + . 7 >R (5.2)

5.1.1 Existence

Proposition 5.3 There exists at least one minimizer of the functionin (5.2). Every minimizer (.
satisfies the following:

1. Both H(w) and T(, f1) are finite. In particular, jvq admits a density p.
2. The total variation of u and the integral f q P log pdx can be bounded by a constant ¢, j
that depends on V only through ||V || [ .
3. The following inequality holds:
T2 o) _ oo _ _
4 = E(p) — E(p) + na(¥) — (W) + cr(llnal + laal).  (5.3)
The proof of this proposition, partially inspired by [7, Propositions 4.3 & 5.9], is essentially

an application of the direct method in the calculus of variations, although some care is needed
due to the unboundedness of H from below.

Proof of Proposition 5.3 Let (1"),en, € - be a minimizing sequence for (5.2). We may
assume that

TZ TR 1 1
#+;:H(ﬂ)+;<w’ nENl,(5-4)

H") +

TZ n, by _
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where the finiteness of H(jx) is consequence of £(p) < oo. For every n, let p” be the density
of ug, and let y" € Opty(1”, i1).

Step 1 (preliminary bounds). Firstly, we shall do some work towards the proof of (5.3)
and establish uniform integrability for {p"},. By (5.4) and Lemma 4.8,

T L ) 1
% < H() — Hu") + W =E(p) — E(P") + o (V) — Mgg(\p) + -
T>(u" 1) | 1
— + =

il

< E(5) — E(0") + Wb (W) — fia(¥) + T(Lip W) (|| + liagl) + :
(5.5)

from which,

o . _ 1
/p”logp” 5/ (plogp+(||VI|Loo+||‘I/||Loo+1+r(L1p\I')2)(p+p”))dx+§5~6)
Q Q

Since [ — [log! is superlinear, we have uniform integrability of {p"},,. In particular, } TS ||
is bounded.
Also the total variation || || is bounded. Indeed,
I | <2 "]+ il <2 ] +3 1A, (5.7)

where the first inequality follows from Condition (3) in Definition 3.7, and the second one
from Remark 3.10.
Step 2 (existence). We can extract a (not relabeled) subsequence such that:

1. ulq —>» n for some n weakly in duality with C(9€2),
2. p"—,p for some p weakly in L' (), -
3. p'* =, pi=pdx + n weakly in duality with C(£2), and u € .77

Since the functional £ is sequentially lower semicontinuous w.r.t. the weak convergence
in L! (£2), and sum of lower semicontinuous functions is lower semicontinuous, Corollary
4.6 yields

2 T 20,0 5 2, -
G0 + 4 < i (mw + w) - (Ho + W) |
2T n—00 27 27

Step 3 (inequalities). If p is any minimizer for (5.2), the inequality (5.3), and the bounds
on ||u| and fQ p log pdx directly follow from (5.5), (5.6), and (5.7) by taking the constant
sequence equal to w in place of (u*),. O

5.1.2 Boundary condition

Pick any minimizer p for (5.22 and denote by p the density of uq. Let y € Opt{(u, ft) and
let S: Q — Q be such that y§ = (Id, S)spq.

Proposition 5.4 There exists a £ -negligible set N C 2 such that:
1. Forallx € Q\ N and y € 0%, the inequalities

2
X — X —
- % <logp(x) —W(y) + V) < t| i

hold. The constant ¢ can be chosen independent of V.

+cT (5.8)
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2. Forall x € Q\ N such that S(x) € 02, we have the identity

Ix — S(x)]?

log p(x) = W(S(x)) - V(x) - 7

(5.9)
Remark 5.5 Proposition 5.4 implies in particular that p € L°(£2) and that p is bounded from
below by a positive constant (depending on 7). In particular, the measure pgq is equivalent
to the Lebesgue measure on 2.

Remark 5.6 Define

gi=y/pe’ =" ¢Wi=(g—Kk)p —(g+K)-. k>0.
It follows from (5.8) that, when k > c(e‘" — 1), for a suitable constant ¢ independent
of V and 7, the function g% is compactly supported in € (up to changing its value on a
Lebesgue-negligible set).

Remark 5.7 The term ct at the right-hand side of (5.8) can be removed when W is constant.
This fact can be easily checked in the proof of Proposition 5.4 and is consistent with [9,
Proposition 3.7 (27)]. However, the following example proves that, in general, this extra term
is necessary, i.e., the boundary condition need not be satisfied exactly by the map ¢ — u;
(even for t > 7).

Example 5.8 Let 2:=(0, 1) and V = 0, and choose & = 0. Since it = 0, we necessar-
ily have S(x) € 92 = {0, 1} for ug-a.e. x, hence for ZLlae. x € Q by Remark 5.5.
Additionally, by Proposition 5.4, for .& Lae. x € S71(0) we have

11— x> 5.8 5.9) |x|?

lIj(l)—T < logpx) = ‘1’(0)—?

and, after rearranging,
1
x=g+ (W (0) — w(D)).
Therefore, when W and t are such that r(\II(O) — \Il(l)) < —%, the set S~1(0) is negligible,
ie., S(x) = 1for.#'-ae. x € Q. Then, (5.9) gives

11— x?

log p(x) = W(1) — for?'-ae. x € Q,

and, therefore, the trace of p at 0 is exp (W(1) — 2%) > exp(¥(0)).

Proposition 5.4 is analogous to [6, Proposition 3.7 (27) & (28)] and [7, Proposi-
tion 5.2 (5.39) & (5.40)]. Like those, ours is proven by taking suitable variations of the
minimizer [.

Proof of Proposition 5.4 We shall prove the inequalities in the statement for x out of negligible
sets Ny that depend on y. This is sufficient because the set d€2 is separable and all the functions
in the statement are continuous in the variable y. Fix y € 0.

Step 1 (first inequality in (5.8)). Let € > 0, take a Borel set A C €2, and define

fii=p+eZ{ —€lAlsy € 7, D=y +eZ{®5, € Admy(ii1, ).
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By the minimality property of © and the optimality of y,

1 —pl —y|?
0§/<(p+6) 0g(p +¢€) png+V_l_\p(y)+|x2Tyl )dx.
A

€

Since the function [/ +— [log! is convex, we can use the monotone convergence theorem
(“downwards”) to find

o2
0§/<logp+V—\P(y)+|xy|>dx.
A 2T

By arbitrariness of A, we have the first inequality in (5.8) for x out of a .#?-negligible set
(possibly dependent on y). In particular, p > 0.
Step 2 (second indequality in (5.8) on SLH(Q)). Let € € (0, 1), take a Borel set A C
S~1(RQ), define
foi=p + eu(A)sy —enp € 7,
7=y —€e(d, S)gpa + €8y @ Spua € Admz(fiz, i1).

Note that A € S~1(S) is needed to ensure that ()72)38 = 0. This time, the minimality
property gives

1 —e)log(l — _q d—2
05/<w—logp—V+l+\P(y)+<y d.y+1d S>>dMA.

€ 2t
We conclude by arbitrariness of A, after letting ¢ — 0, that

logp(x) + V(x) —W(y) < -y —;Tx — 25 < diam(Q)'xr;y'

for p-a.e. x € STV(Q). Since p > 0, the same is true fgf,(m—a.e.

Step 3 (identity (5.9)). Let € € (0, 1), take a Borel set A € S~1(9€2), define
3= + €Spupa —€pup € S,
=y — e(d, S)ppa € Adma(iis, fi).
By the minimality property,

1 —e)log(l — Id —S|?
05/(<e>og<e>_10gp_v+1+\pos_' - ')dM,
€ T

from which, by arbitrariness of € and A, we infer the inequality < in (5.9) 4 -a.e. The

S—1(0Q)
inequality > follows from the first inequality in (5.8).
Step 4 (second inequality in (5.8) on S~1(9€2)). We make use of (5.9), the Lipschitz

continuity of W, the triangle inequality, and the inequality 2ab — b < a*:
5.9 lx — S(x)[?
I%puruww+vuﬂ=)wwu»—wwy———ﬂ——
‘ Ix — S(x)[?
= LipW) IS0 =yl = =~

T
‘ lx — S(x)[? ‘
= (Lip W) Ix = S| = ———— + Lip W) lx — |
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: 2
_ t(Lip W)

< + LipW) |x — y| .
Eventually, we conclude with the estimate

x—y tlx—yl |x—yl tdiam(Q)
< < .
- 2t + 2 - 27 + 2

lx — vl

5.1.3 Sobolev regularity

Proposition 5.9 Let yu be a minimizer of (5.2) and denote by p the density of pq.

1,(2/\d)(9)’ and \//7 belongs to Wl’z(Q). We have the

ocC

1. The function p belongs to W,

estimates
T, 1
Hv pev| < TuR) (5.10)
L2 T
and, for every q € [1, 00) such that g(d —2) < d,
2
lolle < ¢ (e” + HV peY T ||p||u> . (5.11)
L
Ifd =1, the same is true with q = 00 t0o.
2. Forevery y € Opty(u, L), writing yg = (Id, S)sunq, we have
S—1Id _y v d
——p=Vp+pVV =¢""V(pe") ZL%-ae onQ. (5.12)
T

The core idea to prove Proposition 5.9 is to compute the first variation of the functional (5.2)
at a minimizer and exploit Lemma 4.18, like in [6, Proposition 3.6]. However, the proof is
complicated by the weak assumptions on V and the lack of regularity of the boundary 9€2. To
manage V', we rely on an approximation argument (in the next lemma). The issue with 9€2 is
that the the Sobolev embedding theorem is not available for functions in W!-2(£2). Nonethe-
less, we can still apply it to functions in WS’Z(Q). To do this, we leverage the approximate
boundary conditions of Proposition 5.4.

Lemma 5.10 Let u be a minimizer of (5.2) and denote by p the density of uq. Let w: Q —
R? be a C®-regular vector field with compact support. For € > 0 sufficiently small,
define u€:=(d +ew)yp. Then

i TEW) — @)
m — =

e—0F €

/ (divw — (VV, w))pdx. (5.13)
Q

Proof Let R.(x):=x + ew(x). Fix € sufficiently small and an open set ® € 2 so that Ry,
is a diffeomorphism from w to itself and equals the identity on 2 \ w for every s € (0, 1),
and inf e, 1), xeq det VR (x)| > 0. It can be easily checked that the density o€ of ug
satisfies

P
€ R —
profte det VR,

#? ae.onQ ;
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therefore,

dug
€ €

logdet VR V-VoR
:/ Mdug-l-/ 75(1“9'
Q € Q €

By the dominated convergence theorem,

/ logdet VR,
Q €

Hw) — H(u®) / logp —log(p€ o Re) +V — Vo R
Q

(5.14)

lim
e—0t

dug :/(div w)pdx .
Q

To deal with the last term in (5.14), we choose an open set @ such that w € @ € Q. By
Definition 3.1, we have V. € WP (&) for some p > d and, by Friedrichs’ theorem [23,
Theorem 9.2], the function V|, is the limit in W7 (w) and a.e. of (the restriction to w of) a
sequence of equibounded functions (Vi)xen, € C° (]Rd). For every k, we have

V—-VoR V-V VioRc—VoR
/#d’ug:/ kpdx_,_/updx_/(VVk, w) pdx
€ ® € ) € 13

1
—/ /((VVk)oRse — V'V, w)pdxds .
0 Jw

With a change of variables, we rewrite the last integral as
: ' (wp)o Ry
(VVi) o Rye — VVi, w)pdxds = (vvk, 7_lds—wp>dx.
0 Jo 1) 0 det VR o Ry
Recall that p € L*°(£2) by Remark 5.5. Passing to the limit in k, we find that

V—-VoR ' (wp)o R
/édmﬁ/(vv, w),odx:/(VV,/ L‘“]ds—wpwx.
€ Q 0] 0 det VRyc o Rge

It only remains to prove that the right-hand side in the latter is negligible ase — 0.Let (0;)en,
be a sequence of continuous and equibounded functions that converge to p almost everywhere
(hence in L?'). Using the triangle inequality and Minkowski’s integral inequality, for / € Np,

we write
- /1 (wp —wpy) o Ry!
Ly —Jo

det VR, o Ry

1 -1
w R
‘/ _WPoRie 4wy
0 det VRye o Rye

ds + lwo; — wpll

L
1 -1
wp;) o R
_|_/ Lﬁ_l —wp|| ds.
0 | det VRye o Ry o
A change of variables yields
e o W e
det VRye o Ri' Il Il |det VR VP |y
Hence, when we let € — 0, using that p; is continuous, we find
. I (wp) o RY!
timsup | [ O Re g5 wp| <2 wp— wpl
e—>0 0 det VRXE o RSE Ly
and we conclude by arbitrariness of /. O
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Proof of Proposition 5.9 Step I (inequality (5.10)). Letw: Q — Rébea C®°-regular vector
field with compact support. For € > 0 sufficiently small, define u€:=(Id +ew)su € ..
Since u is optimal for (5.2),

H(w) — ) _ T i) = T2 (. )
€ - 2eT '

We can pass to the limit € — 0 using Lemma 4.18 and Lemma 5.10 to find that

1 T, f1
/Q(divw —(VV, w)),odx < - /(w(x), y—x)dy(x, ) < llwllp2p ((ZD)] ’

T
(5.15)

for any y € Opt4{(u, (). By the Riesz representation theorem, this means that there exists a
vector field u € L?(p; RY) such that

T, i)
el 20 < ——— (5.16)

and

/(divw —(VV, w))pdx = / (u, w)pdx ,
Q Q
for all smooth and compactly supported vector fields w. In other words, —p (u + VV) is the

distributional gradient of p. Since p € L*°(2) (see Remark 5.5) and V € WIL’CdJr(Q), we
1,21d)
ocC

. . . : peV
/ peV divwdx = hm/ JpeV +edivwdx =lim | ————(u, w)dx
Q €10 Jo

€l0 Jo 2 /peV + ¢

now know that p € W, (£2). Hence, for every smooth w that is compactly supported,

el . . eV |w? lull 20 lwllz2v
< Ahmlnf / udx = L7(p) L) )
2 €l0 o pe¥ +e 2

where, for the second equality, we used a standard property of the composition of Sobolev
functions (cf. [23, Proposition 9.5]) and, in the last one, the monotone convergence theorem.
It follows that that \/pe¥ € W12(Q) with

2 2 -
/ e Vax < (”"”;2@)) 516 T2 (. )
Q

- 472
which, since V is bounded, yields (5.10).

Step 2 (inequality (5.11)). Pick g as in the statement, i.e., 1 < g < oo withg(d —2) <d
or, if d = 1, ¢ € [1, o0]. Inequality (5.11) would follow from the Sobolev embedding
theorem [23, Corollary 9.14] if 02 were regular enough. Nonetheless, by [23, Remark 20,
Chapter 9], even with no regularity on €2, we still have that the inclusion WOl ’2(52) — L1(2)
is continuous. Consider the functions g and g of Remark 5.6 and fix k = c(e® — 1) for
a suitable constant ¢ independent of  (and ¢), so that g is compactly supported, hence
in Wg’z(Q). From the Sobolev embedding theorem we obtain Hg(") ||L2‘i < ||g(K) ”Wll
and, therefore,

Wl.Z)

[ee

V. peV , (5.17)

IA

<o 14+ g™

W1=2>

 + gl = (1 + 10 + ¢

L2

¢ (1+e+lglwz) <c (1 +K+ H\/pj

L2

IA
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<¢ (1+K+HV pe”

+ ||,0I|LI> .
L2

which can be easily transformed into (5.11).

Step 3 (identity (5.12)). Let y € Opty{(u, t) and let S be such that yg = (d, S)zpg.
From (5.15) we infer that

—2/9,/,06*‘/ <V peV, w>dx < —%/(w(x),y —x)dy(x,y) = —%/(w, S —Id)pdx .

By arbitrariness of w, (5.12) follows. O

5.1.4 Uniqueness

Let us assume that o and p’ are two minimizers for (5.2) such that their restrictions to
are absolutely continuous; let p and p be their respective densities. Let y € Opt(u, i)
and y’ € OptA(u’, i1). By Proposition 4.19, we can write
Q NQ ’
vo = dd, Sxnae, g =Ad, SHsue,
ye = (T Wdsjie. 2= (1" 1dsiq,

for some appropriate Borel maps.
Proposition 5.11 The two measures 1 and ' are equal.

Note that uniqueness is not immediate, given that the functional H is not strictly convex.
This setting is different from that of [7] and [6]: therein, measures are defined only on Q.
Instead, we claim here that the measure 1, on the whole €, is uniquely determined.

The proof of Proposition 5.11 is preceded by three lemmas: the first one concerns the identi-
fication of S and §’; the second one, similar to [7, Proposition A.3 (A.5)], shows that 7| -1 OQ)
and 7| (T)-1 (9% €Njoy one same property, inferred from the minimality of « and w’; the third
one ensures that this property identifies uniquely T (i.e., T = T') on T-1a) (T~ 1HBR).

Lemma 5.12 If o = g, then S(x) = §'(x) for fé-a.e X.
Proof This statement immediately follows from (5.12) in Proposition 5.9. O

Lemma 5.13 For i-a.e. point x € Q2 such that T (x) € 02, we have

. e =y
T(x) € argmin [ W(y) + . (5.18)
yedQ 2t
An analogous statement holds for T'.
Proof Set
_ e —yl?
fx, y)=v(y) + > , x€eEQ, yead. (5.19)
T

By [22, Theorem 18.19] there exists a Borel function R: 2 — 9€2 such that

R(x) € argmin f(x, y)
yeoi
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forallx € Q. Let A € T—1(32) be a Borel set and consider the measure
= — Tyfia + Ryjia,
which lies in .. Additionally define
yi=y — (T, 1d)gpa + (R, 1d)#fta

and notice that y € Adm7(ft, t). By the minimality property of x and the optimality of y,
we must have

1 1
Hw) + TC(Y) <H@ + —C),
T 2T

which, after rearranging the terms, gives

[ rerenaiam = [ e R = [ min 7 ydaco.
We conclude the proof by arbitrariness of A. O
Lemma 5.14 For ji-a.e. point x € Q such that T (x) € Q2 and T'(x) € 0K, we have
Tx) =T (x).

Proof We can resort to [24, Lemma 1] by G. Cox. Adopting the notation of this lemma, we
set

Iz —t]? _
o, 2):=v@) + TP P:=c iilp-100)n@)-109) »

for some constant ¢ that makes P a probability distribution. Four assumptions are made
therein and need to be checked:

e Absolute Continuity: It follows from £(j1) < oo that jig is absolutely continuous. Hence,
so is the probability P.

e Continuous Differentiability: Conditions (a) and (b) are easy to check. Condition (c) is
vacuously true by setting A(7):=0 for every t.

e Generic: Condition (d) is true and easy to check.

e Manifold: This condition is not true if 9$2 does not enjoy any kind of regularity. However,
one can check that that 92 does not need to be a union of manifolds if the condition
Generic holds with A(¢):=¢ for every . The other topological properties, namely second-
countability and Hausdorff, are trivially true, since 02 C RY,

[m}

Proof of Proposition 5.11 Step 1 (uniqueness of p and S). The identity p = p’ follows
from the strict convexity of the function / +— [log/. To see why, notice that % S

Aqu(%“/, i1); therefore, by minimality,

HW + 2000+ HW) + 5:CON o (nti' L (v +Y
2 - 2 2t 2 '

Most of the terms simplify by linearity. What remains is

1 /1 4 / 4
/png+p ngdxs/ p+p log ptp dx.
o 2 o 2 2
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which implies p(x) = p'(x) for #-a.e. x € Q. The identity S = S’ out of a ZZ-negligible
set follows from Lemma 5.12.
Step 2 (uniqueness of )/3%). We can write

Yy =va +vie and ¥ =G+ 5.

Because of the uniqueness of g and S, we have the equality yg =y )g. If we combine
this fact with Condition (2) in Definition 3.7, we find

0=(m5(r —¥))q = 7 (v — ¥)ie)
2 - - - -
=75 (T Id)gfir-150) — (T Id)s L ry-159)) = Rr-159) — RI)-1(9) -

This proves that T-1) and (T)~1(3Q) are [-essentially equal. Together with Lemma
5.14, this gives

Vin = (T Id)siir-150) = (T 1t rn-100) = )5a -

Step 3 (conclusion). We have determined that y = y’. Condition (3) in Definition 3.9
gives

1 2 = 1 2 =
w=myy —miy + i =myy' —mpy' + =,

which is what we wanted to prove.

5.1.5 Contractivity

In this section, we establish time monotonicity for some truncated and weighted L9 norm
(g = 1) of the densities p/.

Here, too, only one step of the scheme is involved. We let i be the unique minimimum
point of (5.2) and p be the density of its restriction to 2.

Proposition 5.15 Let g > 1. For every 9 > o:=maxyq e”, the following inequality holds
(possibly, with one or both sides being infinite):

/max {p,ﬁe’v}q e(’ifl)vdxf/max{,ﬁ, z?efv}q OV gy (5.20)
Q Q

Remark 5.16 For a solution to the Fokker—Planck equation (1.4), a monotonicity property
like (5.20) is expected. Indeed, formally:

d q
— / max {p,, ﬁe_v} e DVay = q/ (pre )V div(Vp, + pVV)dx
dr Q {p,>ﬂe*v

=q / (preV )7 e™V (V(pe"), nydr !
p>veV}

—q(q — 1) (pre¥)172eY |V, 4+ o V| dx .
{or>veV}

<0

If 9 > ¥y, the boundary condition forces the set 9 { o > ve " } Nas2 to be negligible. More-
over,ond {p; > ¥e~" }NQ, the scalar product (V(pre"), n) is nonpositive. The case ¥ = 9
can be deduced by approximation.
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Remark 5.17 (Mass bound) Note that Proposition 5.15 implies that the mass of (u])q is
bounded by a constant ¢ indepentent of ¢ and 7. Indeed,

/pfdxf/max{,of,l?oe_v}dx§~~§/max[po,l9()e_v]dx
Q Q Q
§/podx+z90/efvdx.
Q Q

The proof of the first Step in Proposition 5.15, i.e., the case ¢ = 1, and of the preliminary
lemma Lemma 5.18 follow the lines of [6, Proposition 3.7 (24)] and [7, Proposition 5.3]. In
all these proofs, the key is to leverage the optimality of u by constructing small variations. In
the proof of Step 2, i.e., the case g > 1, instead, our idea is to take the inequality for g = 1,
multiply it by a suitable power of ¥, and integrate it w.r.t. the variable ¢ itself. This is the
reason why, while Proposition 5.15 will later be used only with ¥ = ¥p—or in the form
of Remark 5.17—it is convenient to have it stated and proven (at least for ¢ = 1) for a
continuum of values of ¢

Lemma 5.18 For p-a.e. x € Q such that S(x) € Q, we have

lx — S(x)[?
27 ’

Proof Lete € (0,1) andlet A € S~1(Q) be a Borel set. We define

log p(x) + V(x) < log p(S(x)) + V(S(x)) — (5:21)

=i+ €Sgup —€pp € 7,
7=y —e(ld, S)spa + €(S, S)ppa € Admz{(it, it) .
Let o be the density of Sz and note that o < p. By the minimality of x, we have
0 < / (p+e(p—1ap))log(p+e€(p—1ap)) — plogp
=/, c

dx

:=11

11d —S|?
+[(VoS—V-— dig .
2t

We use the convexity of [ +— [log!/ to write

h= [[G= 140 (1+log(o + €5 = 149)) s
= /Q(ﬁ —1ap)log(p +€(p— Lap))dx
— [ htog(o+eo—1am)dr — [ plog((1 = rp +ep)ix

5/ﬁlog(p+eﬁ)dx—/p(logp+log(1 —e))dx.
Q A

On the first integral on the last line, we use the monotone convergence theorem (“down-
wards”): its hypotheses are satisfied because o < p. By passing to the limit € — 0, we

obtain
R |1d —5|?
0< [ plogpdx + —logp+ VoS-V — 7 dua
Q T
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I1d — S|
= log,ooS—log,o—l—VoS—V—72 dua,
T

and we conclude by arbitrariness of A. O
Proof of Proposition 5.15 Step 1 (¢ = 1). Consider the case ¢ = 1. Let
Am {x cQ: pe¥ > 19] . (5.22)

Thanks to (5.9), we know that ANS 1 (9Q2) is .2 -negligible. Therefore, we can extract a fg—
full-measure Borel subset A of AN S~! (2) where (5.21) holds (recall that Zg L ng). Itis
easy to check that S (A) C A. Therefore, we have

/ max {p, 1967‘/} dx (5£2) / pdx = / pdx < / pdx = Ssuq(A)
A A A S-1(A)

g (ACQ) _ _ _
=mys(A) = nﬁyéf(A)sn§y§<A>=m(A)s/max{p,ﬂe V}dx.
A

(5.23)

On the other hand,

/ max [,o, 17e_V] dx (5%2) / ve~Vdx < / max {,5, ﬁe_V] dx, (5.24)
Q\A Q\A Q\A

and we conclude by taking the sum of (5.23) and (5.24).
Step 2 (¢ > 1) Assume now that ¢ > 1. Define

f:=max {,0, l?e_v} ,  g:=max [,5, l?e_v} .

Note that the case ¢ = 1 implies
/ max{f, 7§e_V]dx < / max [g,g‘e_V]dx (5.25)
Q Q

forevery ¥ > 0. After multiplying (5.25) by 942, integrating w.r.t. ¥ from 0 to some © > 0,
and changing the order of integration with Tonelli’s theorem, we find

min{ feV 0} . ® ~ ~
/ / P42dD fdx—i—/ / 997140 ) e Vdx
Q 0 Q min{ feV,0}
min{geV,G)} B B ® 5 -
5/ / D929 gdx+/ / 997149 ) e Vdx,
Q 0 Q min{geV,®}

whence
1 q—1 1 q
 — min{fev,(@} fdx—f/min{fev,(@} e Vdx
qg—1Jq qJa

1 . v q—1 1 . v a _y
< — mlnlge ,@} gdx — — mm{ge ,@] e 'dx.
qg—1Ja qJa

It follows that
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1 1 q 1 q
<7——>/min[fev,(~)] e_de—l-f/min{gé’V,@] eV dx
g9-1 q)Ja qJa
1 . \% q—1
< — mm[ge ,G)} gdx .
qg—1Jq

We now let ® — oo and deduce from the monotone convergence theorem that

LI /fqewfl)vdﬁ_l/gqea;fl)vdxE ! /gqe(qfnvdx.
9-=1 4q/Ja q /e q-1Ja

Eventually, we can rearrange, and, noted that (q%l - %) > 0, simplify to finally

obtain (5.20). m]

5.2 Convergence w.r.t Wb,

In this section, we prove convergence w.r.t. Wb, of the measures built with the scheme (1.8).
The argument is standard. In fact, we shall give a short proof that relies on the ‘refined version
of Ascoli-Arzela theorem’ [9, Proposition 3.3.1].

Proposition 5.19 Ast — 0, up to subsequences, the maps (t — (/L,’)Q)r converge pointwise
w.r.t. Wby to a curve t — p;dx of absolutely continuous measures, continuous w.r.t. Wb.

Once again, we first need a lemma.

Lemma5.20 Lett > 0 and t > 0. Then

[t/t]—1
T/Q,oflogp;dH Z Tz(ufr,ufi+1)r)gcr(l—l—t—l-t). (5.26)
i=0

As a consequence,

Wha((uDas (u))e) < Wha(ul, i) < o/t —s + (1 +1+71), s €l0,1].
(5.27)

Proof We use (5.3) to write

lt/e)=1 7 Z(Mff’ ufi+1)f) [t/7]
— = E(po) — E(p)) + (n) (W) — (Lo)o(W) + cT Z (e
i=0 i=0
and conclude (5.26) by using Remark 5.17.
The first inequality in (5.27) follows from (4.1). As for the second one, since VW)Z is
a pseudometric, and by the Cauchy—Schwarz inequality and (4.1), we have the chain of
inequalities

}

lt/t]—1 lt/7]—1
Wha(ui, ui) < D~ Whaulp tlpnd) < Y T mrnye)
i=|s/7] i=|s/t]

f—s+7 |YH!
= - Z T2(“fﬂ“fi+1)r)-

i=|s/7]

We combine the latter with (5.26) to infer (5.27). ]
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Proof of Proposition 5.19 Fix t > 0. We know from Lemma 5.20 that, for every s € [0, 7]
and t € (0, 1), we have

(1g)e 6K11={pdx : /pIngdXSC(Zth)’ ,
Q

where c is the constant in (5.26). We claim that K, is compact in (M2(S2), Wb,). By identi-
fying an absolutely continuous measure with its density, K; can be seen as a subset of L' ().
This set is closed and convex, as well as weakly sequentially compact by the Dunford—
Pettis theorem. From [6, Proposition 2.7] we know that weak convergence in LY(Q) implies
convergence w.r.t. Wby; hence the claim is true.

Furthermore, for every r, s € [0, ¢], we have

5.27)
lim s(L)lp Why((uDa, (nf)e) =< cfls—rl(1+1).
T—

All the hypotheses of [9, Proposition 3.3.1] are satisfied; thus, we conclude the existence of
asubsequence of (s — (/L;)Q)r that converges, pointwise in [0, #] w.r.t. Wb, to a continuous
curve of measures. Each limit measure lies in K;; hence it is absolutely continuous. With
a diagonal argument, we find a single subsequence that converges pointwise on the whole
half-line [0, c0). O

5.3 Solution to the Fokker-Planck equation with Dirichlet boundary conditions

We are now going to conclude the proof of Theorem 1.1 by showing that the limit curve is, in
fact, a solution to the linear Fokker—Planck equation with the desired boundary conditions.

Proposition 5.21 If the sequence (t — (,ul’)g)r converges, pointwise w.r.t. Wby as t — 0,
tot +— pidx, then p* —; p also in L]IOC((O, 00); Lq(Q)) for every g € [1, ﬁ). The
curve t — pydx solves the linear Fokker—Planck equation in the sense of Section 3.4, and

the map t > (\/p,ev — e\p/z) belongs to LIQOC([O, 00); W(}’Z(Q)).

Like in the proofs of [6, Theorem 3.5] and [7, Theorem 4.1], the key to Proposition
5.21 is to first determine (see Lemma 5.24) that the measures constructed with (1.8) already
solve approximately the Fokker—Planck equation. In order to prove that the limit curve has
the desired properties and that convergence holds in Llloc((O, o0); LY (Q)) (Lemma 5.26),
two further preliminary lemmas turn out to be particularly useful. Both provide quantitative
bounds at the discrete level: one (Lemma 5.22) for v/pTe" in L{ ((0, 00); W!2(Q)); the
other (Lemma 5.23) for p in L{2 ((0, 00); L4(S2)), for suitable values of g. In turn, these

bounds are deduced from Proposition 5.9 and Proposition 5.15.

Lemma 5.22 (Sobolev bound) If T < t, then,
2

t
/ vereY
T wl

Proof Letr > t. By (5.10), we have

dr <c(1+1). (5.28)

2
2 T (MILr/tjr’l’Lfr/rjr—r>
<c > :

L2 T
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Thus,
t 2 Le/zl= 17(“ 1 ,,lL >
/ v prfev = Z #,
T
which, using Lemma 5.20, can be easily reduced to the desired inequality. O
Lemma 5.23 (Lebesgue bound) Let g € [1, 00) be such that g(d —2) < d. If t < t, then
1+t
lof | < cqe” : (5.29)
t—T
Proof For every r € [0, t], Proposition 5.15 gives
q 1/q
1051 = ([ max {ore o0 e Vax)
Q
v a 1/q
<¢ (/Qmax{pfe ,190} e~ dx) §cq(1+||:0rr”m)’
and if, additionally, r > 7, then (5.11) yields
2
il e (s o]+ 11, ).
L
After integrating w.r.t. r from t to f, Lemma 5.22 and Remark 5.17 imply (5.29). O

Lemma 5.24 (Approximate Fokker—Planck) Let w € 2 be open, let ¢ € Cg (w), and let s, t
be such that 0 < s < t. Then, p, p*VV € L] ((r,00); L' (w)), and

L Jt+t
/Q (oF — p)pdx — / / (A — (Vg, VV))pldrdr

Jr+r
St +1+ D¢l - (5.30)

Moreover, for € > 0, the inequality
167 = 05 | 2y = Corclt =5+ 1) (5.31)
holds whenever 0 <2t <e <s <t < 1/e.

Remark 5.25 1n (5.31), we identify p/ — p; with the continuous linear functional

Ci) 39 —> /(pf — pd)gdx .
w

Proof of Lemma 5.24 Step 1 (integrability). From Remark 5.17, it follows trivially that p* €
LllOC ([0, 00); L! (Q)). We shall prove that the function p* VV belongs to Llloc((r, 00); L! (a)))
for every w € Q2 open. Fix a,b > 0 with T < a < b. Let p be as in Definition 3.1. Its
conjugate exponent p’ satisfies p’ € [1,00) and p'(d — 2) < d. By Holder’s inequality
and Lemma 5.23, we have

b b
/ 16V 1, dr < ||vvnmw>/ o7 o dr
a a

5.29) by
< IVViLrw e’ / rdr (5.32)
a

r—t

1+b 1+5H
< 1TV ey €2 b — a) < o2 (b —a).
a—7T a—T
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The last passage is due to the fact that both p and [[VV ||, can be seen as functions of V
and w.

B Step 2 (inequality (5.30)). Leti € Ny, and choose y* € Opty{,ufiﬂ)r, ,uifr) and S;: Q —
 as in (5.12). By the triangle inequality and the fact that p} = p(fl. when r € [(i +

Dz, (@ + 2)‘5), we have

+1)rt

(i+2)t
/(p(’m)r — pip)edx —/ /(Aw — (Vo, VV))p/dxdr
Q i+t Q

=

/Q (0 —9oSi—1Ap+1(Ve, VV)) pli i) dx

=]

+ ‘/Q((‘P o Si)p5+1)f - W’irr)dx‘ :

=

Using (5.12), we rewrite Ili as

s

]{ = ‘/Q (p—@poSi+ (Vg,S; — Id))p(fi+1)rdx

and then, by means of Taylor’s theorem with remainder in Lagrange form, we establish the
upper bound

1 < ol [ 150~ 1P ol e < €0z T (e ) -

By Condition (2) in Definition 3.7 and the fact that ¢ is supported in the closure of w, we
have

1 ‘ /5 eNdmg (v§ — v = ‘ /5 (N (rg — ¥ < ol w) [vial

IA

o ¢l w) /m e = ¥Ry 3) = ol T2 (e 15 )
Xw

where ¢, actually only depends on the (strictly positive) distance of @ from 9€2. Taking the
sum over i, we obtain

LLJrte lfe=t
[ =ear= [ [ e e vviaar| = 30 ai+ i
Q Lflr+r JQ i=ls/t]
lt/)—1
2
) ||§0||C§(w) Z T (M2i+1)1:!uirr) .
i=0

At this point, (5.30) follows from the last estimate and Lemma 5.20.
Step 3 (inequality (5.31)). Assume that 27 < € < s <t < 1/e. From (5.30), we obtain

[£]t4r
|of (Ap — (Vo, YV, dr .
T

< o Tloll g + |

L$)e+

‘/(pf — pg)pdx
Q

=13
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Taking into account Remark 5.17 and the estimate (5.32) of Step 1,

I3

IA

L£]t+t
Wz [, ol + oyl o
[2]t4t

IA

1+t+t>

e’ ”90”C§(w) (t—s+71) (1 + /e

A

= Co.e ||</)||cg(w) t—s5s+71).
The inequality (5.31) easily follows. O
Lemma 5.26 (Improved convergence) Assume that the sequence (t — (/L;:)Q)r converges

pointwise w.rt. Wby as T — 0 to a limit t +— p;dx. Then, for every q € [1, %), the

sequence (pT); converges to p in Llloc((O, o0); L1 (Q)).

Proof Step 1. Fix € € (0, 1) and an open set @ €  with C'-regular boundary. As a first
step, we shall prove strong convergence of (p*); in L! (e, el g (a))). The idea is to use a
variant of the Aubin—Lions lemma by M. Dreher and A. Jiingel [25]. Consider the Banach
spaces

X=w'"lw), B:=Li(w), Y:=(C}w)",

and note that the embeddings X < B and B — Y are respectively compact (by the Rellich—
Kondrachov theorem [23, Theorem 9.16]) and continuous. Inequality (5.31) in Lemma 5.24
provides one of the two bounds needed to apply [25, Theorem 1]. The other one, namely

hrrn—f(l)lp |o” ”L‘((e,e*‘);Wl’l(w)) =

can be derived from our previous lemmas. Indeed, Remark 5.17 provides the bound on
the L! (e, e Lt (w)) norm, and we have

of Vi ofeY
L1(
< c\/||pf |1 V\/pfev

where p = p(w) is given by Definition 3.1. When t < €, Remark 5.17 and Lemma 5.22

yield
1 1
vorer| a< \// lof .. dt\//e Hv preV
12 € €

IV or ||L1(w) =¢

+or Vi,
)

L @ 19V e -

1
/e\/llpflly dr <.
€
Moreover, since p’ € [l1,00) and p'(d — 2) < d, we can apply Lemma 5.23 to
bound || of ” LV ()" To be precise, there is still a small obstruction to applying Dreher and Jiin-
gel’s theorem: it requires p* to be constant on equally sized subintervals of the time domain,
ie., (€, e‘l); instead, here, T and (e‘1 — €) may even be incommensurable. Nonetheless, it
is not difficult to check that the proof in [25] can be adapted.® In the end, we obtain the con-

2
L2

6 The adaptation is the following. In place of [25, Inequality (7)], we write, in our notation:

2

ire<iT<e™

(5.31) _1
v < et ([1/(e1) =17 = le/T]) S cw,e(€” —e+7T).

T T
Piz — Pli-1)r
1
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vergence of (o7) _, along a subsequence (ti)ren,» to some function f: (€,¢ ') x » — Ry
in L' (e, el Le (w)). Up to extracting a further subsequence, we can also require that con-
vergence holds in L9 (w) for ,,2”(16 nyae.t. For any such ¢, and for any ¢ € C.(w), we thus
have ’

_1)

/wf:dx: lim /wpfkdX=/¢pzdx,
P k—o00 J, P

where the last identity follows from the convergence w.r.t. Wb, and [6, Proposition 2.7].
Therefore, f;(x) = p;(x) for %‘it{l)xw—a.e. (t, x), and, a posteriori, there was no need to
extract subsequences. ’

Step 2. Secondly, we prove that, for every € € (0, 1), the sequence (p*); is Cauchy in
the complete space L' (e, el LY (Q)). Pick an open subset w € 2 and cover it with a finite
number of open balls {A;};, all compactly contained in 2. Additionally choose 8 € (g, c0)
with 8(d — 2) < d. We have

I etizna) = 2210 (cetiznian) ¥ Mo (eetizo@o) -
1
and, by Holder’s inequality,

1_1
<1\ @le T I,

11 (e liL1(@\w)) e iLA@) |

Hence, by Step 1,

lim sup ||,0T1 —p7 ||

< 2|2\ |77 lim sup Y
71,720 7—0

L1 (e.et:L9()) ceLLA(Q)

Recall Lemma 5.23: we have
-1

. € 1
hlrn_fgp |o* HLl(fqéfl;Lﬂ(Q)) = cﬂ/e (1 + ;) dr < cpe-

We conclude, by arbitrariness of w, the desired Cauchy property.

By Step 1, the limit of (p7); in L' (e, e~'; L9(£2)) must coincide .,?ﬁtl,l)xw-a.e. with p
for every w € 2 open; hence, this limit is precisely p on . , O
Proof of Proposition 5.21 Convergence in Llloc((O, 00); L1(€2)) was proven in the previous
lemma. Thus, we shall only prove the properties of the limit curve.

Step 1 (continuity). Continuity in duality with C.(2) follows from Proposition 5.19 and
[6, Proposition 2.7].

Step 2 (identity (3.2) for s > 0). Let 0 < s < t and let ¢ € Cf(Q). Thanks to the
convergences

Wb Wb
ps dx =7 pedx and pfdx 57 pdx,

we have (see [6, Proposition 2.7])

/ (o[ — p{)pdx —+ / (pr = ps)gpdx .
Q Q
Moreover, since every p as in Definition 3.1 has a conjugate exponent p’ that satisfies p’(d —
1) < d, Lemma 5.26 yields
|_%J1:+1:

t
[ or@ae = vo.vviasar = [ [ ora0 - (9. 9Vasar.
2]ttt JQ s JQ
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Thus, (3.2) is true by Lemma 5.24.
Step 3 (Sobolev regularity and boundary condition). In analogy with Remark 5.6, we
define

T.

g i=\/preV — V2,

7, (K) .

g g —K)y— (g +6)-, Tk>0,r>0,
and

w/2 ().

gri=y/pre¥ —e g & — K+ — (gr +1)_, k>0,r>0.

Recall that, if « > c(e" — 1) for an appropriate constant ¢, and if » > t, then the

function gf’(K) is compactly supported in 2. Let us fix one such k and 0 < s <
t. Lemma 5.22 implies that the sequence (gf’("))r is eventually norm-bounded in the
space L2 (s, t; Wol’z(Q)). As a consequence, it admits a subsequence (g™ *)) (possibly
dependent on s, ¢, k) that converges weakly in Lz(s, t; W(;‘Z(Q)). Using Lemma 5.26 and
Mazur’s lemma [23, Corollary 3.8 & Exercise 3.4(.1)], one can easily show that this limit
indeed coincides with g,

By means of the weak semicontinuity of the norm, the definition of g”("), and Lemma
5.22, we find

/S’ g® ;1,2 dr glikriicgf/st g ivm dr slikn_l)gf/st |l g Hivl,z dr <c(1+41),
and, by arbitrariness of s,
4 2
/0 ‘gﬁ“) o dr = e+

for every «,t > 0. We can thus extract a subsequence (g("l)) ; (possibly dependent on 1)
that converges weakly in L? (0, t; WOl ’Z(Q)). As before, one can check that this limit is g;
hence g € L*(0, 1; Wy () with

t
/ el dr < (1 +1). (5.33)
0

Step 4 (integrability, and (3.2) for s = 0). Fix an open set w € Q. Let p = p(w) > d be as
in Definition 3.1 and let p’ be its conjugate exponent. Since g € L? ([O, 0); WO1 ’2(52)), the

loc

Sobolev embedding theorem implies g € L} ([0, 00); L2 (£2)). Given that V € L>®($2),

loc

we obtain p € L] ([0, 00); Lp/(Q)). In particular, 7 — [ p;dx and ¢+ [ |VV|pdx are

loc

both locally integrable on [0, 00). Given ¢ € Cf (w), the identity (3.2) for s = 0 thus follows
from the one with s > 0 by taking the limit s | O: on the one side,

lim / pegpdx = / pogdx
s10 J@ Q

by continuity in duality with C.(£2); on the other,

t t
lim / / pr(Ap — (Vo, VV))dxdr = / / pr(Ag — (V. VV))dxdr
s10 /s Jo 0o Jo

by the dominated convergence theorem. O
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6 Slope formula in dimensiond = 1

In this section, we only work in dimension d = 1 and we take 2 = (0, 1). Recall (Proposition
4.11) that, in this setting, V%z is a metric on .. Our purpose is to find an explicit formula
for the descending slope |8 ﬁ,vsz| and to derive Theorem 1.6 as a corollary. Specifically, the
main result of this section is the following.

Proposition 6.1 Assume that V € W'2(Q). Take . € . such that H() < oo and let p be
the density of nq. Then,

/ ? v 1.2
2 \% - : Vv /2 ,
‘8N thH’ (n) = 4/Q (ax pe > e dx ify/pe e € Wy (), ©.1)

00 otherwise.

Remark 6.2 In the current setting, i.e., @ = (0,1) and V € W'2(Q), the function V is
Holder continuous; thus it extends to the boundary 32 = {0, 1}. When /peV € W2(Q),
the function p belongs to W12(Q), is continuous, and extends to the boundary as well.

Remark 6.3 The functional
4/ @cf)Pe Vdx if f—e¥? e Wyt (),
Q

W) s f—
00 if f—e¥2 e Wh2(Q)\ Wy ()

(6.2)

is particularly well-behaved: it is convex, strongly continuous, weakly lower semicontinu-
ous, and has weakly compact sublevels. As a consequence, |3 7, ZH‘ turns out to be lower

. . — Wb
semicontinuous w.r.t. Wb;. Indeed, assume that p" - w and sup,, ‘8%27{’ u" < oo.

Let p" be the density of 11{,. Then the functions f,:=/p"e" converge, up to subsequences,
weakly in W!-2(€) and—by the Rellich—-Kondrachov theorem [23, Theorem 8.8]—strongly
in C(£2) to a function f such that f — eV/? ¢ Wol’z(Q) and

4/(3xf)ze_vdx < 1iminfyam2H\2(u").
Q n—o0

Additionally, p" = f2e™V — f2e=" in C(Q), hence ng = f2e~Vdx (we use (4.1) and
[6, Proposition 2.7]).

While (6.1) reminds the classical slope of the relative entropy (i.e., the relative Fisher
information), the crucial difference is in the role of the boundary condition: if p does not
satisfy the correct one, the slope is infinite.

We are going to prove the two opposite inequalities in (6.1) separately. Proving > is easier:
for the case where /peV — V2 ¢ Wol’z, it amounts to taking small variations of p in an
arbitrary direction; for the other case, it suffices to find appropriate sequences that make the
difference quotient diverge. To handle the opposite inequality, we have to bound (H(,u) —
H(/l)) . from above for every sufficiently close measure i € .. Classical proofs (e.g.,
[21, Theorem 15.25] or [9, Theorem 10.4.6]) take advantage of geodesic convexity of the
functional, which we do not to have; see Section A.3. One of the perks of geodesic convexity
is that it automatically ensures lower semicontinuity of the descending slope, which in turn
allows to assume stronger regularity on p and then argue by approximation. To overcome
this problem, we combine different ideas on different parts of u and ft. Away from the
boundary 92 = {0, 1}, the transport plans move absolutely continuous measures to absolutely
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continuous measures. The Jacobian equation (change of variables formula) relates the two
densities and makes the computations rather easy. Estimating the contribution of the parts
of u, fi closest to the boundary is more technical: we need to exploit the boundary condition
and the Sobolev regularity of the functions p, log p, and V. Note, indeed, that since the
boundary condition is positive, also log p has a square-integrable derivative in a neighborhood
of 9%2.

To be in dimension d = 1 is necessary for V%z to be a distance, but is also extremely
convenient because optimal transport maps are monotone and W' 2-regular functions are
Holder continuous. For these reasons, it seems difficult (but maybe still possible) to adapt
our proof of Proposition 6.1 for an analogue of Theorem 1.6 in higher dimension.

We first prove a variant of the Lebesgue differentiation theorem that is needed for the
subsequent proof of Proposition 6.1. We prove Theorem 1.6 at the end of the section.

Lemma 6.4 Let (y")neN, be a sequence of nonnegative Borel measures on € x Q such

that 1im,_, oo C(y") = 0. Additionally assume that n,iy" is absolutely continuous for
everyn € Ny, with a density that is uniformly bounded in L* (). Then, for every f € L*(S),

)7 2
iy (][ (f<z)—f<x>)dz) dy"(x,y) =0. 6.3)

Proof Denote by p”" the density of n#y”. Let g: Q2 — R be Lipschitz continuous. For
every n € Ng, we have

In:=/(][xy(f(z)—f(x))d2>2dy"
< 3/ <]£y(f —g)dz)zdy" +3/<]£y gdz —g(x)>2dy"

+3/<g— £
Q

Consider the Hardy-Littlewood maximal function of (the extension to R of) f — g, that is,

min{x+r,1}

1
(f—g)*(x):SUPz* |f —gldz, xeR.
r>0 <" Jmax{x—r,0}

By the (strong) Hardy—Littlewood maximal inequality,

y 2
/ (][ f - g)dz) dy" <4 / ((f — () dy" = 4 /Q ((f — 9*) o"dx

2
= 4SUP ||:0” HLoc ” (f - g)*HLZ(R) = csup ||10n HLoc ”f - g”iz .
n n
The Lipschitz-continuity of g gives
y 2
/ (][ gdz — g(x)) dy" < Lipg)® [ (x — y)’dy" < (Lipg)*Cy™,
X
and, moreover, we have

/Q<g — %p"dx < | p" | o I = gl -
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In conclusion,
I < csup "] 1 I1f — glI72 + 3(Lip ©)*C(y™) .
n
After passing to the limit superior in n, we conclude by arbitrariness of g. O

Proof of Proposition 6.1 We omit the subscript 7, in |8 b 2H| throughout the proof.

Step 1 (inequality >, finite case). Assume that \/pe¥ — e¥/? € WO ; hence, in particu-
lar, p € L®°(2). Let w: @ — R be C*-regular with compact support (and not identically
equal to 0), and, for € > 0, define Rc (x):=x +ew(x). Set u*:=(R¢)4u and y€:=(d, Re)# .
When ¢ is sufficiently small, u¢ € . and y€ € Admy, (@, u¢). Therefore, arguing as in
the proof of Lemma 5.10,

€
lim M = / (Oxw — w o, V)pdx .
Q

e—>0t €

Thus,

v(y

/(a w—wd,V)pdx < |8H|(u)11mmf < |0H[G) lwll 2y -

[ afoer

Step 2 (inequality >, infinite case). The case /peV ¢ W'2(Q) is trivial. Thus, let us
assume now that /peV € W12(Q) with Tr p # Tre¥~V. Without loss of generality, we
may consider the case where p(0) # eVO=VO If p(0) > eYO-VO fore > 0 define

€
o= et + <6/0

Y i=eng.e ® o+ (14, 1) (g — €. 2) € Admigy, (1, k).

and we conclude that

ze—de < lyaHf(u)
<3 :

2

pdx) éo € S,

Since all the functions involved are continuous up to the boundary, we get

2

H(w) — H(u) = /0 (plogp — (1 —e)plog((1 —€)p) +€(V — 1 = W(0))p)dx

~c10 € (log p(0) + V(0) — W(0))p(0) .
On the other hand,

€2 €2
Wha (i, u€) < /C(y€) = \/6/ x2pdx < /65/ pdx ~c 10 €2/p(0),
0 0

from which we find

H(u) — H(u)

oH > 1i —_—

o]y lmisoup Wha(, 1)
1

> \/p(O)(log 0(0) 4+ V() — lIJ(O)) limsupe™ 2 = 00.
€l0

>0
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If, instead, p(0) < eV O=V©O we consider, for € > 0,
ne=u + e.i’o 2~ 8y € 7, y€i=ed) ® ZO N (d, Id)spq € Admgy, (1, ue).

and conclude with similar computations as before.
Step 3 (preliminaries for <). We suppose again that / peV —e¥/? € WOl ’Z(Q). In particular,
there exist A, € > 0 such that
plio.aun—e1 > A.

Let us take a sequence (u"),en, that converges to u w.r.t. VVZ;Z, with H(u") < H(w) for
every n. We aim to prove that

lim sup Hf(ﬁ) ) \// peV —de
n— 00 sz(,u 12 )

For every n € Ny, we write:

o p" for the density of 1f;

y" for some (arbitrarily chosen) Wh,- optimal transport plan between p and p” such
that the diagonal A of 92 x I (i.e., the set with the two points (0, 0) and (1, 1))
is y"-negligible;

e T,, S, for maps such that ()/”)Q = (Id, T;))#mq and ()/”)Q (Sn, Id)guly. We can and

will assume that these two maps are nondecreasing, hence .7, 1_a.e. differentiable;

e a,,b, € Q = [0, 1] for the infimum and supremum of the set Tn’l(Q), respectively.
Note that, since 7}, is monotone, 7,~ 1(Q) is an interval. Conventionally, we set a, = 1
and b, = 0if 7,71 (Q) = 0.

Observe that, since (0, a,) C Tn’1 ({0, 1}), we have

—> a, _ min{a, €} )_L
Wby (i, u') > / min {x, 1 — x}* pdx > k/ x2dx = gmin {an, eF .
0 0

In particular,

3 —b 3
lim sup A_,zain < 00 and, similarly, lim sup — ¥ < 00; (6.4)
n—o00 Whi (i, u") n—>00 sz(u u)

thus, up to taking subsequences, we may and will assume that a, < € < 1 —€ < b,
for every n. In particular, (y")§ # 0 and "ZOa Wb, 1) K H(0.a,)U(b,.1)- Furthermore,
since y" is Wp-optimal between its marginals (cf. Proposition 4.19), it is concentrated ona
monotone set I',,. This implies that y (0, 1) and y (1, 0) equal O as soon as yQ # 0. Combining
this observation with the fact that A is y-negligible, we infer that Vasz = (. By the same
argument, 7|, 1) = 1 and T'| ¢, 4,) = 0.

Another assumption that we can and will make is

P51 gy < A= (supe\[’> . (supe’v> . (6.5)

Q2 Q

Indeed, if this is not the case, we can consider the new measures
?n::yn — (Sp, 1d)# (pn |S,T](BQ) - A)+ gglz 5

A= =y (P + g (7 €7,
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and notice that y" € Admﬁ,vb2 (u, 1. We have

H(") — H(u") =/ A(ogA+V —1—WoS,)dx
S @QN{pr>A}

_/1 { }p”(]ogp”+v—l—\PoSn)dx,
ST Q)N = A

and, because of the definition of A, we obtain H(a") < H(u"). At the same
time, V%z (u, ") < V%z (m, 1) because y™* < y". This concludes the proof of the claim
that we can assume (6.5).

Step 4 (inequality <). By Proposition 4.19, (y”)% is a Wp-optimal transport plan between

its marginals prl,(Q) and p”fslfl(g), and it is induced by the map 7. Hence, by [21,

Theorem 7.3], the fTacobian equation
(Pn|5n—1(9) o Tn) “0xTh=p (6.6)

holds prlfl (Q)—a.e. Consequently, we have the chain of identities
/ | (ogp" +V —1Dpdx = /(logp" +V = Ddrz(y™E
Sp ()
= / (dogp™ +V —1) o Ty) pdx
7@

6.6
(=)/ (log p — log(0xTy) +V o T, — 1) pdx.
7, (Q)
(6.7)
Thus, we can decompose the difference H () — H(u™) as

o =t < | g, B2 £V = VO T) o 1~ i)

+/ (logp+V — l)pdx—/ (logp™ +V — 1)p"dx.
T, (09) Sit9)
(6.8)

Let us focus on the integral on Tn_1 (€2). By making the estimate log(d,7,,) < 9,7, — 1 and
using the properties of the Riemann—Stieltjes integral, we obtain

hrl bn
/ | log(dxTy) pdx 5/ (0T, — Dpdx =/ (0x T,) pdx —/ pdx
(o)) (P(e)) an ay

b, —e€ by,
< lim pdT, — by p(by) + ayplay) + / X0y pdx (6.9)
€l0 Jg,+e ap
bn
= (T(by) — bp)p(bn) — (T(a;)) — an)p(an) — (T — 1d)0y pdx,

An

where we employ the notation T(a;r ):=lim¢ o T (a, + €), and similarly with T (b,)).
Let f:=0, V. By the fundamental theorem of calculus,

by, X
/ (V—-—VoT,pdx = / ( f(z)dz) pdx .
yiy(e) an Ty (x)
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By adding and subtracting f(x), we get

/71 (V—=VoT,)pdx
no ()

by X by, X
= / fx) (/ dz) pdx +/ </ (f@— f(x))dz> pdx  (6.10)
a, Tn(x) an Tn(x)

bn by X
= [" @ -wprax+ (/T( (o~ f(x))dz) pdr .

An n

At this pomt we observe that, by Holder’s inequality and Lemma 6.4 (applied to the restric-
tion (y”)Q) the last double integral is negligible, i.e., it is of the order 0, (sz(u 1% ))
To handle the rest of (6.8), we exploit the convexity of / — /log!/ and write

— / (log p" +V — Dp"dx < —/ (logp + V)p"dx +/ pdx .
o (0%) St St @)N{p" >0}

6.11)

By Condition (3) in Definition 3.7 and the boundary condition of p,
(= w"a®) = [ogp+ V) (mo T -m0NE) . 612

In summary, recalling that (y" )dQ = 0, from (6.8), (6.9), (6.10), (6.11), and (6.12) follows
the inequality

bn
H(p) = H(") < 04 (Wha(, u")) —/ (T, —1d)(3xp + p0x V)dx

—_—Jn
=L

+/(logp +V)d (ﬂ# ("= (V")g) - ”#%(Vn - (V")g))

::L;
(6.13)

HT0) ~ br)on) + [ pde— [ ps

Sz (Hn{pm>0} yYe))

::Lg
—(T (@) —an)p(an)Jr/ pdx —/ pdx .

S LN {pm>0} T, 0)

=:L}

We claim that the last three lines in (6. 13) ie., L3, L% and L}, are bounded from above
by negligible quantities, of the order o, (Wb2 (u, /L")) Let us start with L5. Since every
left-neighborhood of 1 is not pug-negligible,

supfx e Q: (x, T,(x)) e} =1,
which, together with the monotonicity of I';,, implies

T,(17) < i -essinf S~1(1). (6.14)
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We now distinguish two cases: either b, < 1 or b, = 1.If b, < 1, given that T,)|, 1) = 1,
the set S~ (1) is wg-negligible by (6.14). Thus

1 1 X
Lgs/b (p(bn)_p(x))dx=_/ (/b axpdz>dx
1 1 X 2
< /Ix—b,,lzdx /(7[ ax,odz> dx
by by \Jb,
6.4) L :
(=)On(Wb2(,u,u"))\// (i ax,odz> dx .

Knowing that p € W!2() and that b, —, 1, it can be easily proven with Hardy’s inequality
that the last square root tends to 0 as n — oo.
Assume now that b, = 1. This time, Inequality (6.14) yields

1
L5 < (T,(17) = Dp(D) +/

T,(17)
We conclude as in the case b, < 1, because the computations that led to (6.4) can be easily

adapted to show that (1 — T,,(17))% = 0,1(1%3 (i, ™). Indeed, the monotonicity of 7,
gives

1
pdx =/ (p(0) = p(1))dx .
T,(17)

1 1

(x — Tn(x))2p(x)dx > )_»/ (X - Tn(l_))zdx-

~2
Wh2 (. ™) = /
2 max{1-¢€,7,,(17)}

T,(17)

The proof for L) is similar to that for L.
Let us now deal with the term Lg:

Ly = / (log p(x) + V(x) —log p(y) = V()d (52 + (r™)ia) -

Define the square-integrable function

|22 +av m@aUA-ED),
s 0 otherwise.

Since Vs{zl} is concentrated on (b, 1) x {1}, and y{% is concentraded on {1} x (7,,(17), 1), as

soon as 7 is large enough for b, and T,,(17) to be greater than 1 — €, we have the equality

(logp(X)JrV(X)—lng(y)—V(y))=/ gdz for ("5 + ("M))-ae. (x,y).

y
Moreover,
X m ~ 1 St 2
/(/ gdZ>d(V")Q < Wha(u, u") / (]l gdz) p dx,
y by, x ~——
<lplizoe
and
X _ 1 1 2
/(/ gdZ)d(V”)ﬁ} < Wba(u, u") / (][ gdz) p"|5;1(1)dx.
y Tn(l_) X N e’

<A
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In both cases, since b, and T,(17) tend to 1 as n — 00, and g € L%(£2), the square roots are
infinitesimal. The same argument can be easily applied at O (i.e. for the integrals w.r.t. (Vn){s(z) )
and (y")%}), and this brings us to the conclusion that L’ is negligible.

In the end, (6.13) reduces to

b,

H(w) — Hu") < —/ (T = 1)@, p + p 8, V)dx + 0y (Wha (e, ™))

an

—~ 0xp :
Wby (u, 1" V] d n(1),
< z(uu)\//g(ﬁJrﬁ ) x 4+ 0,(1)

which is precisely the statement that we wanted to prove. O

Corollary 6.5 (Theorem 1.6) Assume that V € WL2(Q). Let i € M2(2). Then,

1 2
T 4/0 <8x,/pev> e Vidx ifu= pdx
[owesd| () = and (¥ —1 e Wiy, ©19
00 otherwise,
where & is defined as
: e 1= pdx,
Mz(sz)au@{ (0) if = pdx (6.16)
o0 otherwise.
Additionally, 3Wb2:€ is lower semicontinuous w.r.t. Wb;.

Proof We may assume that © = pdx for some p € L }‘_(SZ), and that £(p) < oo. In particu-
lar, p is finite and we can fix some i € . such that fig =
Step I (inequality <).Let (W")pen, € M2(S2) be such that Who (u”, u) —, 0(and u”* #
). We want to prove that the limit superior
(B = Ewm),
limsup —————
n—00 Wbha(, u™)

is bounded from above by the right-hand side of (6.15). To this aim, we may assume that
the limit superior is actually a limit and that E(u") < &) = &(p) for every n € Ny. In
particular, each measure " is finite and has a density p”. By Lemma 4.1, for every n € Ny,

inf {Wha(,9) : Bo = "} = Wha(u, 1),
VeE.

which ensures the existence of 1" € . such that jig, = " and

Wby (i, i" —
im M =1, aswell as, consequently, lim Wby(t, ") =0. (6.17)
n—00 Wby (p, u") n—00
By (6.17) and Proposition 6.1 (with W = 0), we conclude that
Ew) — Eu™) E(p) — E(p™)
E0 =86y o ER EN),

m i _—— < RHS of (6.15).
n—>o00  Why(u, u'") n—00 Wby (ja, i)
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Step 2 (inequality >). By Propo,s\izion 6.1 (with ¥ = 0), we know that there exists a
sequence (i1"),en, € -7 such that Wby (1", ft) —, 0 (with 1" # i) and

(e — &),

im = RHS of (6.15).
n—oo  Why(jn, ")

If this number is 0, then there is nothing to prove. Otherwise, we may assume that 1 7# i,
for every n, and we conclude by using (4.1).

. L . . Wb
Step 3 (semicontinuity). The lower semicontinuity is proven as in Remark 6.3: if p" -
w and sup,, ’8Wb2(§“ (u") < oo, then, up to subsequences, (w/p”ev> converges weakly

n
in W12(2) and (strongly) in C (2), the limitis /pe" by [6, Proposition 2.7], and /peV —1 €
W(}’z (£2). We conclude by the weak semicontinuity of the functional in (6.2). ]

7 Proof of Theorem 1.5

As in Section 6, throughout this section we restrict to the case where Q@ = (0, 1) C RL.
Fix po € . such that its restriction to (0, 1) is absolutely continuous with density equal
to po. Recall the scheme (1.10): for every T > 0 and n € Ny, we iteratively choose

(7.1)

2
sz(,uv Mnt)
2t '

Mint1ye € argmin (H(M) +
nes

These sequences of measures are extended to maps ¢ +— uf, constant on the inter-
vals [m', n+ 1)17) for every n € Ny.

The purpose of this section is to prove Theorem 1.5. Observe the following fact: State-
ment 3 follows directly from Statements 1-2. Indeed, given the sequence of maps (¢ — ] )¢
that converges to t — [, pointwise w.r.t. WZZ, we infer from (4.1) that (t — (,LL;)Q)T
converges to t — (i4;)q pointwise w.r.t. Wb,. Since the approximating maps are precisely
the same as those built with (1.8), we can apply Proposition 5.21 to conclude Statement 3.
The proof of Theorem 1.6 is thus split into only three parts.

7.1 Equivalence of the schemes

Let us fix a measure ;i € . such that its restriction to = (0, 1) is absolutely continuous.
Denote by p the density of this restriction and assume that £(p) < oo.

Proposition 7.1 [f27 |W (1) — W(0)| < 1, then u € . is a minimizer of

—2
HO+M%£LY+RMM (7.2)
if and only if it is a minimizer of
T2, i
HO+4%QMy%waL (73)

In particular, there exists one single such u; see Proposition 5.3 and Proposition 5.11.
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Proof Let .7 be the function in (7.2) and & be that in (7.3). Recall that Wb, < 7, which
implies that &% < 4. let u € Y, lety € Opt‘;,j72 (i, ) be such that the diagonal A
of 92 x 92 is y-negligible, and define

i=p — ”#Vasz "’77#7/@965” yi=y — ‘mEAdmﬂu ).

We have
C Q2
(1) < H(i) + @ F (1) + (T3 vie — mhvie) (W) — (;f"f)
0,1 1,0
= F(w) + (W(1) — W(©0)(y0, 1) — y(1,0)) — y(%y() < Fw), (14

where, in the last inequality, we used the assumption on T.
Step 1. It follows from (7.4) that inf ¥ < .7 < ¢. This is enough to conclude that every
minimizer of ¢ is a minimizer of .% too.
Step 2. Assume now that p is a minimizer of .%. Again by (7.4),
FW) =F@) =9(p) < F (.

Therefore, it must be true that .7 (1) = ¢ (1) and that all inequalities in (7.4) are equalities.
This can only happen if y(dgxdg)\ A= yg’g has zero mass, which implies © = fi. It is now
easy to conclude from .% < & and .# () = ¢ (w) that u is a minimizer of ¢. ]

7.2 Convergence

Proposition 7.2 As © — 0, up to subsequences, the maps (t — j); converge pointwise

w.rt. Wby to a curve t +— iy, continuous w.r.t Wby. The restrictions (lu;)q are absolutely
continuous.

Lemma 7.3 Foreveryt > 0and t > 0 such that 2t |V (1) — W(0)| < 1, we have the upper
bound

i < el +1+1). (7.5)

Proof Lett > 0 be fixed. We already know from Remark 5.17 that || (1 )| < ¢. By applying
Lemma 4.8 with ®(x):=1 — x, we find

T° (/‘zi“)w 'uirr)
4t

s

i1y (0) = 1 (0) < /(1 —0d (1 = mip)g +eT+
for every i € Nyg. By summing overi € {0, 1, ..., [t/7] — 1} and using Lemma 5.20,
i (0) = 120(0) < /(1 —x)d (o —petel+t+7) <c(l+7+7).

Thus, the sequence (,u#r (O))T is bounded from above as T — 0. By suitably choosing ®, we
can find a similar bound from below and bounds for u (1). ]

Proof of Proposition 7.2 We can assume that T < 1 and that 27 |[¥(1) — W (0)] < 1. The
proof goes as in Proposition 5.19: for a fixed > 0, we need to prove that

limsup Why(uZ, u?) < o/Ir —s|(1+1),  r.s€[0,1], (7.6)

=0
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and that
k,:: {,uey Sl € c12+1), and pug = pdx with / p log pdx 502(2+t)}
Q

is compact in (., V%z), where the constants ¢ and ¢, are given by Lemma 7.3 and Lemma
5.20, respectively.

The inequality (7.6) follows from (5.27). If (u"),en, is a sequence in K,, thanks to the
bound on the total mass, we can extract a (not relabeled) subsequence that converges weakly
to some p € 7. Let p” be the density of u¢, for every n € Ny. We exploit the bound on the
integral [, p" log p" to extract a further subsequence such that (p"),en, converges weakly
in L'(€2) to some p. We have o = pdx, as well as ||| < ¢1(2 + ) and fQ plog pdx <
c2(24+1);hence u € K +. The convergence u" —, w holds also w.r.t. V%z thanks to Lemma
4.16. O

7.3 Curve of maximal slope

Proposition 7.4 Assume that V € wh(Q). If the sequence (t — |} ). converges pointwise
w.r.t. Wby to a curve t +— i, then the latter is a curve of maximal slope for the functional H
in the metric space (., Wb»).

To prove this proposition, we employ the classical [9, Theorem 2.3.1], but we also crucially
need the results of Section 6. In particular, we rely on the explicit formula for the slope
of Proposition 6.1 and on the consequent semicontinuity observed in Remark 6.3.

Proof Consider the subspace F= {n e H(uw) < H(uo)}. Note that, since H is V%z—
lower semicontinuous (Proposition 4.15), t + u, entirely lies in .. Moreover, 8‘%2'H|

coincides with ‘8 Wh, (H|Q¢)| on.7. Therefore, it suffices to prove that # +— u, is a curve of

maximal slope in ..

We invoke [9, Theorem 2.3.1]. Let us check the assumptions. Firstly, the space (57 s v%z)
is complete by Lemma A.3. Secondly, [9, (2.3.2)] is satisfied because the slope |3m2'H|
is V%z-lower semicontinuous; see Remark 6.3 and [9, Remark 2.3.2]. Thirdly, [9, Assump-
tions 2.1a,b] follow from Proposition 4.15 and Proposition 7.1. Finally, to prove [9, (2.3.3)],
let us pick a sequence (u")nen, < 7 that converges to some [ W.L.L. V%z and such
that sup,, |3 i3, H| (4") < co. We will show that H(u") — H (). Note that it is enough to
prove this convergence up to subsequences.Let p", p be the densities of u¢,, 11, respectively.

Since sup,, |8@sz7—(| (u") < oo, up to subsequences, the functions (N/p”ev) converge
n
in C(Q2) to v/pe” . Since V is bounded, we also have the convergence p” — p in C(2). We
write
[H(W") — H(w)| = [Eu™) — Ew) + (1" — waa (W)
< |EW") = E) — (" — we(P)| + W' (V) — n(W)|

Thanks to the uniform convergence p” — p, we have |E(u") — E(n) — (un — W (¥)| —
0. Additionally, by Lemma 4.14,

W (W) — ()| < Why (", u)\/}lug | + el + Wha(ur, w)

from which we conclude, because sup,, Hug ” <sup, [[p" I~ < 00. m]
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Remark 7.5 To be precise, [9, Theorem 2.3.1] applies to the limit of the maps ¢t
[Lf::wﬂr (as opposed to u; = f[i|;/rjz). It can be easily checked that the dis-
tance Wby (7, fif ) converges to 0 locally uniformly in time; see (5.27).

Appendix A Additional properties of VT/-l;z

A1 WB; is not a distance whend > 2

We are going to prove that, when d > 2, the property
VVZ)Q(M,V):O — u=v

in general breaks down. In fact, when applying Wh to two measures u, v € . the informa-
tion about 1 yq and vyg is completely lost, as soon as d€2 is connected and “not too irregular”.
A similar result is [19, Theorem 2.2] by E. Mainini.

Proposition A.1 Ifa: [0, 1] — 0Q is (% + 6)-Hdlder continuous for some € > 0, then
Wb2(5a(0) — Ba(1), 0) =0. (A1)

Consequently: Assume that 0<2 is CO’%Jr-path-connected, meaning that for every pair of
points x, y € 0S2 there existe > 0and a (% + 6)-H(')'ldercurve(x: [0,1] = 0 witha(0) =
x and (1) = y; then, for every u,v € ., we have

Wha(u, v) = Wha(ua, va) . (A2)

Proof StepI.Leta: [0,1] — d2be (% + €)-Holder continuous for some € > 0.Forn € Nj,
consider the points

xi:=a(i/n), ief{0,1,...,n},

and the measure

n—1
yhi= Z S(xixign) -
i=0

It is easy to check that y" € AdiT,j72 (80[(0) — 8 (1), 0); moreover,

n—1 n—1
2 —-1-2 -2
CoyM =Y i —xipl> Scg Yy n T =cen
~ —

where the inequality follows from the Holder continuity of «. We conclude (A1) by let-
ting n — oo.

Step 2. Assume now that 92 is C* %“'—path—connected. Fix a finite signed Borel measure n
on a2 with n(92) = 0, that is, ||n4+] = [In—| =:A. We shall prove that V%z(n, 0) = 0.
Fix €1,e2 > Oand let X = {x1, x2,...,xy} € 02 be a €;-covering for d$2, meaning that
there exists a function P: 02 — X such that [x — P(x)| < €; for every x € dQ2. We pick
one such P that is also Borel measurable (we can by [22, Theorem 18.19]). From the previous
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Step, forevery i, j € {1,2,..., N}, we get y; ; (nonnegative and concentrated on 92 x 9€2)
such that

n#y,',j - 7'[3)/,"]‘ =36y —0; and C(yij) <e.

We define
|
y:=d, P)gny + (P, Id)gn- + 5 Z N+ (P G))n—(P~1 )y -
ij=1

The V%g-admissibility of y,ie.,y € Adm‘;',vb2 (n, 0), is straightforward. Furthermore,

1 N
€)= [1a=PPA + 100+ 5 Y P - (P e )

ij=1
< 2A612 + Aep,

which brings us to the conclusion that V%z(n, 0) = 0 by arbitrariness of €1, €.

Step 3. Let us assume again that 9€2 is co: %Jr-path-connected, and fix u, v € Y and €3 >
0.Let y be a Wb;-optimal transport plan between g and vg, and set ;1::7[#} Y+ —nﬁy)ag.
It is easy to check that i € . and that g = [iq. Therefore, the previous Step is applicable
to n:=pyq — Maq, and produces y;, on 92 x 92 such that

n#yn — ngy,, =n and C(y) <e3.
The measure y":=y + y, is Why-admissible between w and v. Therefore,
~2
Why (1, v) < CY") = C(y) + €& = Whi(ug, va) + &,
which yields one of the two inequalities in (A2) by arbitrariness of €3. The other inequality

is (4.1). o

A.2 (Lack of) completeness

We prove here two claims from Section 4.6: in the setting where €2 is a finite union of intervals,
the metric space (., Wb,) is not complete, but the sublevels of H are.

Proposition A.2 Assume that d = 1 and that 2 is a finite union of intervals. Then the metric
space (., Wb») is not complete.

Proof Without loss of generality, we may assume that (0, 1) is a connected component
of Q,i.e., (0,1) € Qand {0, 1} C Q.
Consider the sequence

1 1
//vn5=;=§*ﬂ(12*”,1)_50/27n ;dxeﬁ, neNj.

For every n, there exists the admissible transport plan
=5 Lo 1d, 1) (L 2] Admg, (", !
Y =00 ® ; (2—n—12-n) + ( s )# ; @",1) S mez (,LL , M ) 5
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which yields
2—n [e.¢] 3 3
Wb n+1 < / 7d — e 2—n — \/i,
Z Z(M H ) Z 2-n—1 X o Z 8 8
n=1 n=1
hence (1), is Cauchy.

Wh -
Assume now that u” =, w for some u € & and, for every n € Ny, fix y" €
Optip, (u", w). Also fix € > 0. We have

~2 - -
Why(u", 1) = / lx — yPdp" (x, y) = 27" ([e, 1 — €] x 02),
and, using the conditions in Definition 3.7,
el = 7" (le, 1 — €] x Q) = pu"([e, 1 —€]) = 7" ([e, 1 — €] x 9Q)

sz (n", M)
€2

= lu/n([év I - E])

Passing to the limit n — oo, we find

1—€ 1
lual = / Lax
€ X

from which, by arbitrariness of €, it follows that the total mass of g is infinite, contradicting
the finiteness required in Definition 3.7. O

Proposition A.3 Assume thatd = 1 and that 2 is a finite union of intervals. Then the sublevels
of H in & are complete w.r.t. Wb.

Proof Take a Cauchy sequence (") en, € - for V%g in a sublevel of H, that is, H(u") <

M for some M € R, for every n € Ny. Thanks to Lemma 4.14, for every n € Ny we have
Mz HEN = [ Mo dr = 1V + 1) [ | + o)
Q

Z/Qpnlogpndx—(||v||po+1) [ ] + 1) — g w)

— Wha(u, 1O 1| + %] + FB3(ur, 1),

and, since V%z (u", %) isbounded, the family (p"),en, is uniformly integrable. Let (0"* )k,
be a subsequence that converges to some p weakly in L'(€2). For each of the finitely
many x € 9%, let ®z be a Lipschitz continuous function such that

d;(x) =1 and P;z(x) =0ifx € 92\ {x} .
Again by Lemma 4.14, for every x € Q2 and n, m € Ny, we have
W' (%) = " (@)| < |nh(Pz) — ng(Px)|

e Whae, w0 |ty | + s + WH3Gan, )

= ‘/ @5 - (p" — p")dx
Q

~ —~2
t o Wha(e, "W lp s + 97 s + WHGen, )

@ Springer



Variational structures for the Fokker—Planck equation with... Page550f58 23

which implies that (1% (X))ken, is a Cauchy sequence in R, thus convergent to some num-
ber /5. Define

wi=pdx + Z 30z .
xeQ

It is easy to check that u"* —j u weakly; therefore, by Lemma 4.16, also w.r.t. V%z. The
limit p also lies in the sublevel, i.e., H(x) < M, by Proposition 4.15. O

A.3 If Qis an interval, %2 is geodesic, but 7 is not geodesically convex

We prove that (., V%z) is geodesic when © = (0, 1), by using the analogous well-known
property of the classical 2-Wasserstein distance. However, as we expect in light of [6,
Remark 3.4], H is not geodesically A-convex for any A. We provide a short proof by adapting
the aforementioned remark.

Proposition A.4 If 2 = (0, 1), then (Y,%) it is a geodesic metric space.

Proof We already know from Proposition 4.11 that (., V%z) is a metric space.
For any two measures (g, 11 € -, we need to find a curve ¢t +— p; such that
Wha (i, o) < (1 = )Wha(po, 1), 0<s <t <1, (A3)
The opposite inequality follows from the triangle inequality and (A3) itself. Indeed,

Wha (10, 1) < Wha (o, i) + Wha (s, j1r) + Wha (s, 1)
(A3) — —
< (+t—=s+1=6)Wba(uo, 1) = Wha(wo, i11) ,

and, in order for the inequalities to be equalities, the identity V%g(us, ) = (t —
s)ﬁﬁn(uo, /1) must be true.

Take y € Optg, (1o, (1) By Proposition 4.19, y is optimal, between its marginals, for
the classical 2-Wasserstein distance. Since the set Q = [0, 1], endowed with the Euclidean
metric, is geodesic, the classical theory of optimal transport (see, e.g., [21, Theorem 10.6])
ensures the existence of a curve (geodesic) # — v, of nonnegative measures on £ with
constant total mass, such that

Wa vy, vp) < (t = )Wa(my, 13y) = (t = ){/C(y) = (t = $)Wha(po, 1) (A4)

for0 <s <t < 1. After noticing that vi —vp = w1 — po by Condition (3) in Definition 3.7,
we define

M=o +vr — Vg, te€(0,1).
We claim that this is the sought curve. Firstly, since
(u)e = (ko)a + (e — (o = (e =0

by Condition (1) in Definition 3.7, and since v () = v; (), we can be sure ElLat u € & for
every . Secondly, every W;-optimal transport plan y;; between vg and v; is W by-admissible
between u; and u,. Hence,

—~ (Ad) —~
Wbho (s, ) < /Clyst) = Wa(vs,v1) < (t —s)Wha(uo, p1) -

[m}
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Proposition A.5 Let Q = (0, 1). The functional H is not geodesically A-convex on the metric
space (., Whb») for any A € R.

Proof Consider the curve

1 ol :
f e |70 =00 e O,
0 if1=0.

Clearly, u; € & forevery ¢ € [0, 1]. We claim that this curve is a geodesic, that H () <
0o, and that lim,_,o H(u;) = oo, which would conclude the proof. The second claim,
namely H (o) < oo, is obvious. The third claim is true because

1
H(,u,):—logt—i-][ Vdx — ¥ (0), te(,1],
0

and, since V € L°(0, 1), the right-hand side tends to co as ¢ — 0. To prove the first claim,
fix0 <s <t <1 and define

S
o= (14, > Id)# e € Admigy, (e, 1) |

which gives

(t —s)?

3 (AS5)

~2 s |2
Wh3 (15, 1) < Clyar) = / e 2] s =
Conversely, for every y € Opt‘%2 (m1, o), Condition (3) in Definition 3.7 implies

yd,D+y1L0)+y{1} x Q) =y, D+y0,1) +y @ x{1}),

and, since y ({1} x 2) = 0 by Condition (2) in Definition 3.7, we have y (1, 0) > y (2 x {1}).
Therefore,

~2
Wb (11, o) = C(y) > C(v) + / e — 112 drl vt + (1, 0)

> C()/S%O}) + /(Ix — 1|2 + l)dﬂ#yg} > /)chn#{ygQ .

By Conditions (1) and (2) in Definition 3.7,
_ 1 1
/xzdn#lygg =/x2dn;yg =/ xzdx = g;
0

> (AS) (t —5)? ~ 2
Why(us, ) = ——5— =@ — $)2Whs (1, o) »

hence

and this concludes the proof. O
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