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Abstract

In this work, we present hypernode automata as a specification formalism for hyperprop-
erties of systems whose executions may be misaligned among themselves, such as con-
current systems. These automata consist of nodes labeled with hypernode logic formulas
and transitions marked with synchronizing actions. Hypernode logic formulas establish
relations between sequences of variable values among different system executions. This
logic enables both synchronous and asynchronous analysis of traces. In its asynchronous
view on execution traces, hypernode formulas establish relations on the order of value
changes for each variable without correlating their timing. In both views, the analysis of
different execution traces is synchronized through the transitions of hypernode automata.
By combining logic’s declarative nature with automata’s procedural power, hypernode au-
tomata seamlessly integrate asynchronicity requirements at the node level with synchron-
icity between node transitions. We show that the model-checking problem for hypernode
automata is decidable for specifications where each node specifies either a synchronous or
an asynchronous requirement for the system’s executions, but not both.
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1 Introduction

Formalisms like linear temporal logic (LTL) or automata are commonly used to specify and
verify properties of isolated system executions, also known as trace properties. Security
requirements such as information-flow policies cannot be expressed as trace properties as
they require simultaneous reasoning about multiple execution traces. Such requirements
define hyperproperties. From a formal-language perspective, a hyperproperty specifies a
collection of correct systems, that is, it defines a set of sets of traces [12]. HyperLTL [14],
an extension of LTL with trace quantifiers, has emerged as a popular formalism for both
the specification and verification of hyperproperties. The temporal operators of HyperLTL
(and related hyperlogics) progress in lockstep over all traces bounded to one of the quanti-
fied trace variables. We refer to such logics as synchronous hyperlogics. Due to its lockstep
analysis of traces, HyperLTL cannot express, for example, stateful information-flow poli-
cies, requiring that all executions of the system need to satisfy a sequence of security poli-
cies that change over their execution time [3].

In such cases, each system execution transitions through different specification states
at different times, which poses a challenge for formalisms with a bound on the number of
traces it can analyze simultaneously. This limitation has been observed repeatedly and inde-
pendently in recent years by [1, 6, 19] all of whom have proposed asynchronous hyperlog-
ics to address the problem. We take a different route and propose a specification language
for hyperproperties, called hypernode automata, that mixes synchronous and asynchronous
reasoning by combining automata and logic.

Hypernode automata are finite automata whose nodes are labeled with formulas from a
hyperlogic called hypernode logic. Hypernode formulas enable the comparison of execution
trace segments in two modes: synchronous, where all traces are analyzed in lock-step, and
asynchronous, where each trace analysis can progress at a different speed. In the asynchro-
nous interpretation, the focus is on how the values of individual variables evolve, regard-
less of the specific time at which those changes occur. The transitions between nodes (in a
hypernode automaton) are labeled with actions that re-synchronize the analysis of different
execution traces : while the traces can progress independently within hypernodes, they must
synchronize (that is, “wait for each other”) before the analysis moves to the next hyper-
node. Although automata-based languages have been used before to specify synchronous
hyperproperties [8], hypernode automata is the first formalism to systematically distinguish
between trace synchronicity and trace asynchronicity in the specification of hyperproperties,
offering a clearer and more expressive framework for reasoning about complex asynchro-
nous temporal behaviors.

In a nutshell, we address the natural misalignment of system executions in hyperproperty
verification at two levels: (i) within a single (stateless) specification by using stutter-reduced
representations of executions to account for differences in execution pace; and (ii) across
specification states by modeling stateful specifications as automata with actions that govern
the transition between specification states (effectively enabling dynamic re-synchronization
of executions). We explain hypernode logic and automata in more detail below.

In the asynchronous part of hypernode logic, we adopt a maximally asynchronous view
of finite traces: we focus solely on how each program variable evolves, treating the pro-
gression of its values independently from all other variables. Hypernode logic was first
introduced in [2] to capture such asynchronous hyperproperties. At their core, hypernode
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formulas are formed by combining quantification over finite traces with a binary relation
comparing them (either synchronously or asynchronously). While in both the synchro-
nous and asynchronous view, we compare traces up to their prefixing, in the asynchronous
case, we also remove their stuttering steps. Concretely, synchronous comparison is made
using the common prefixing predicate <, while asynchronous comparison is done using the
stutter-reduced prefixing relation z(7) 2 y(n’), for trace variables 7w and 7’ and program
variables x and y. This stutter-reduced prefixing relation asserts that the program variable x
undergoes the same ordered value changes in the trace assigned to 7 as the variable y does
in 7/, but the changes may occur at different times (stuttering), and there may be additional
changes of y in «’ (prefixing). Hypernode logic was recently extended [13] to allow the use
of regular expressions to specify evaluation patterns.

Example: Observational Determinism (OD)

Zdancewic and Myers proposed, in [36], using observational determinism, to capture non-
interference of secure values (i.e. High confidentiality) into public observations (i.e. Low
confidentiality) in concurrent programs. They argue that the challenge in verifying such
properties over concurrent systems lies in separating between non-determinism naturally
occurring in concurrent programs and non-determinism on the public observable behavior
due to the leakage of secret values. They propose comparing pairs of program executions
up to the removal of repeating memory configurations (i.e., stuttering of values) and the
duration of the shortest one. Formally, for every pair of program executions (VaVvr'), if
they have the same public inputs, they should exhibit the same public observable behavior.

We define below, in Fig. 1, OD as a hypernode automata. Our goal is to verify systems
that at execution time continuously receive inputs and produces outputs (i.e., each execu-
tion will undergo multiple rounds of observable input and output behavior). We represent
by ¥in the domain of all possible public input observations. Then, for all executions with
the same init € Y5, we want to verify that their public output is the same up to differences
in the timing of the output.

Hypernode automata synchronize the transition between hypernodes with actions: for
each action sequence, a hypernode automaton specifies a sequence of hypernode formu-
las. In the example above, the different input values act as re-synchronization actions. The
main contribution of this paper is a model-checking algorithm for hypernode automata
(the “specification”) and models defined by a set of (possibly) infinite traces induced by
an action-labeled Kripke structure (the “model”) combining both synchronous and asyn-
chronous analysis of traces. The subroutine that model-checks formulas of hypernode logic
introduces automata-theoretic constructions — left-aligned automata for the synchronous
case and stutter-free automata for the asynchronous one — that are then used in familiar
logical contexts such as filtration and self-composition.

Each mode of analysis over hypernode formulas has different implicit assumptions on
their models (reflecting their different use cases). For the synchronous view, different execu-
tions are compared step-wise over valuations for all program variables. For this reason, the

init € i

—><<V7rV7r’ out(n) Zout(n’) V out(n’) X out(n) j

Fig. 1 Hypernode automaton specifying observational determinism
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usual Kripke structures are an adequate abstraction for models of synchronous hypernode
formulas. As for the asynchronous view, we are interested in models that capture asynchro-
nous computation; that is, allow any possible interleaving of their variables progression. We
prove in this paper that asynchronous hypernode logic interpreted over models that are not
asynchronous (i.e., implicitly defining unbounded dependencies between variables) has an
undecidable model-checking.

Contribution
This paper expands and improves on our preliminary manuscript published at CONCUR
2023 [2] with the following new contributions:

e We present model-checking algorithms for two decidable fragments of extended hyper-
node logic, introduced in [13], which extends the logic introduced in [2] with synchro-
nous comparisons and the possibility to match traces with regular patterns.

o We identified a problem in the statement of Theorem 13 in [2], which stated that model
checking (asynchronous) hypernode logic on Kripke structures is decidable, and cor-
rected the statement to refer only to stutter-reducible Kripke structures.

e We present new results on the undecidability of model-checking of extended hypernode
logic, and the asynchronous fragment of hypernode logic on generic Kripke structures.

o We include all the proofs missing in [2].

Paper organization

Section 2 introduces an example of how we can use hypernode automata to specify and
detect an implicit information flow in a program that has both synchronous and asynchro-
nous modes of operation. Section 3 defines hypernode logic and introduces its respective
model-checking problem. In this section, we also present a new result on the undecidabil-
ity of asynchronous hypernode logic. We present our solution for the model-checking of
synchronous hypernode formulas on Kripke structures in Section 4, where we introduce
left-aligned automata. Section 5 presents the model-checking of asynchronous hypernode
formulas over asynchronous Kripke structures. In the same section, we present stutter-
free automata, which are used in the asynchronous model-checking algorithm. Hypernode
automata are introduced in Section 6, while in section 6.2, we discuss its model-checking
algorithm, which uses the model-checking algorithms introduced in the previous sections.

2 Motivating example
In this example, we show how we can use hypernode automata to verify if programs sup-

porting both synchronous and asynchronous communication modes satisfy observational
determinism.
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Algorithm 1 Gety,y

S = syngc;

do

s:=read(local, status);

in:=read(local, input);

in” := low(in); in” := high(in);

if (s = sync) then
if (in” # 0) then Request(z,in’);
Request(y, inL);

else if (s = async) then

L Request(z,in”) || Request(y,in’);

while true;

Algorithm 2 Request(var, in)

request(url, var, in);
response := read(url, var);
output(local, response);

An example of a system supporting different modes of communication is the program
Get, y (on the left). Get, , reads from a local channel the current system status (either
sync or async) and user input. Depending on the last received status, the program pro-
ceeds to request values for = and y, either via the synchronous or parallel composition of
Request calls, with the public input values read beforehand. The program Request (on the
left) sends a request to an external server, providing a variable name (var) and an input
value (in). When the server returns a response through the external channel, Request
forwards it to the local channel.

We observe that, in the synchronous mode, Get, , requests the value of = only when the
secret input is different from 0. This is an example of an implicit information flow: a mali-
cious agent can learn that the secret value changed by witnessing differences in the public
observable behavior of the system for the same public inputs.

Verifying OD for systems like Get, , is challenging because it requires both synchro-
nous and asynchronous analysis of multiple traces. When the analysis mode can be isolated,
for example, by identifying transitions between operating modes with an action (as in this
example), we can use hypernode automata.

In Fig. 2, we show a possible specification of OD that supports switching between modes
of operation using a hypernode automaton. The self-loops in the automata are labeled with
the two possible public input values, effectively assigning to each hypernode only the traces

Fig. 2 Observational determin- inl,

ism across different synchroniza- < / . S
tion modes Vv x(m) = x(7) ANy(m) = y(r') El L

async L sznc

v x(max() Ay(m ay() DR
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Table 1 Two trace execution segments of the program Get 4, for a server (S) returning the following values:
S(z,a)=0,S(z,b)=p, S(y,a) =qand S(y,b) =r

S g g g async € g g g sync ¢ g g
inl: a € 5 5 b € € € b € €
T1 X: _ o o _ _ _ P _ o o _ _ Y4 D
y: _ q _ r T _ _ q _ _ _ T
st € € € € € € async € € sync e €
inl: € 5 b € € € b € € € b €
7 X — o o _ p p _ _ p p _ _ _
Yy _ _ q _ _ r _ _ _ T _ _ T
Table 2 From observed trace segments to stutter-free traces grouped by input
Observed segments: inkb € € a € e Hypernode View:
T XU _ _ P _ o o _ P _
y: _ r r _  _ q o r  _q
inkb € ¢
T2 XU _ P P _ P
y: . _ T _ T

that share the same input. We denote by = the stuttering-equivalence relation; that is, the
requirement that both traces are in the stutter-reduced prefix relation ().

The main difference between the two hypernodes in the automaton above is the relation
used to compare traces: in the synchronous node, we require them to be equal, while in the
asynchronous node, we require them to be equal up to the removal of their stuttering steps.

In Table 1, we show two possible executions of the program Get, ,. The traces below
have four variables; while two of them (x and y) are program variables (i.e., they are updated
by the program we are verifying), the other two are input actions. In our trace representation,
input actions are present in the trace when the program reads them (we use ¢ to indicate the
absence of actions). In contrast, program variables start with no assigned value (denoted by
the ©_’) until they are assigned a value. At each iteration of the loop, we assume that program
variables are reset to their default (that is, no value has been assigned).

We can see in the traces below that for the last input shown in the table, the trace 7o
exhibits a different public observation than 71, even though they have the same input. This
example showcases the security problem in program Get,, ,,, which can be detected with our
model-checking algorithm.

Table 2 illustrates how nodes with asynchronous hypernode formulas interpret the trace
segments assigned to them. First, note that only traces with the same input value are com-
pared. As a result, two separate comparisons take place. We can also see in the table that
when x and y values are stutter-reduced, then they define the same sequence of valuations
in both traces, up to their common length.
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3 Hypernode logic

In this section, we introduce (extended) hypernode logic. Hypernode logic was first intro-
duced as a fully asynchronous hyperlogic [2]: traces could only be compared up to the
removal of stuttering (i.e., repeating) of independent program variable valuations. The logic
was later extended [13] to allow for a mix of synchronous and asynchronous comparisons
together with regular expressions to specify trace patterns. From now on, when we refer to
hypernode logic, we mean the extended version as in [13].

Given a finite set X of program variables over a finite domain X, a trace segment T is a
finite sequence of valuations in £¥, where each valuation v: X — ¥ maps program vari-
ables to values from the domain. Given two traces 7 and 7/, we define their concatenation
as 7.7/, also written as 77’. For a trace 7 = v, u is a prefix of T, denoted u < 7, while v is
a suffix of T. We denote the set of all trace segments over X and ¥ by (X%)*. A segment
hyperproperty specifies a property of sets of trace segments. Formally, a segment hyper-
property T is a set of sets of trace segments, that is, T C 257",

Hypernode logic specifies relations between unzipped trace segments, which are map-
pings of variables to variable traces. Unzipping transforms each trace segment into a map-
ping from program variables to the sequence of values assigned to them. Formally, for a
trace segment 7 €(XX)*, with 7 =g ... v,, its unzipped trace segment is the mapping
unzip(7) ={x : v (x)v1(x)... | x € X}. The projection of a trace 7 to x, also called the x
-trace (of 7), is defined as 7(x) =(unzip(7))(x). For unzipped trace segments 7, their x
-trace is just the projection of the sequence of values assigned to x in 7, i.e., 7(x). The
i-position of a trace is 7[i] = v; (for unzipped traces, 7(x)[i] = v;(x)) when ¢ < n, and the
empty word, otherwise.

Example: Unzipping Trace Segments

In our motivating example (Section 2), traces are defined over the program variables
X ={x,y} ranging over the domain ¥ ={p,q,0,r, }. The first execution in Table 1
defines the following trace segment over X :

nn={x:_,y: Hx:oy: Hx:0,y:q}
{x: ,y: Hx: ,y: Hx: ,y:ri{{x:py:r}
{x: ,y: Hx:0y: Hx:o,y:q}
{x: Jy: Hx: ,y: Hx:py: Hx:py:r}

When we unzip 71, we get:
unzip(m1) ={x:_o0o___p oo__pp,y: q__rr__q__ T}

While the trace segment 7 is a sequence of single-value valuations, upon unzipping it, we
get a set with two (one for each variable) sequences (or strings) of valuations.

3.1 Syntax and semantics

Hypernode logic (HL) formulas are defined by the following grammar:
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Yu=ce|c|x(m) | Yap | Y+ || Y]
pu=3mp | ~p|leNe|v<P[PZYP

where 7 is a trace variable from a set of trace variables V, x is a program variable from
a set X, e represents the empty word, ¢ is a constant symbol from the domain ¥, |.] is the
stutter-reduction operator, < is the prefix comparison on words, and 3 defines a prefixing
relation on traces up to the removal of their stuttering steps. We refer to formulas defined by
1 in the grammar above as trace formulas. We say that a hypernode formula is c/losed when
all trace variables are quantified.

We interpret hypernode formulas over a trace assignments 11:V — (E*)X that maps
trace variables to unzipped trace segments. We start by defining the semantic interpretation
of trace formulas:

M[c] ={c} [y.y'] =Ty T[y']
T[] ={c} [y + '] =I[v] U]

Tx(m)] ={(T1(x))(x)} ] = J nfel”

neN
H[|¢]] = {o102- - ox| o of -0 €[], 0; # o441 for 1 <i < k}.

Observe that II(7) returns an unzipped trace segment, which is a mapping from program
variables to a sequence of values over the given domain. So, for an assignment IT s.t.
II(7) =7, the expression (II(7))(x) returns the x-trace of 7; that is, (II(7))(x) =7(x).
The semantics of trace formulas corresponds precisely to regular expressions, apart from the
interpretation of trace variables and the stutter-reduction operation, which have no counter-
parts in regular expressions. We may abuse the notation and use the stutter-reduction opera-
tor directly on words (for example, | ppogq| = poq).

Example: Semantics of Stutter-reduction

Assume that II(7) = unzip(7y), where 7 is from our previous example. Then,
[|x()]] = {_o_p_o_p}.

The satisfaction relation |= for a formula of hypernode logic is standard apart from the
prefix operator. Because we allow choice and iteration, the evaluation of trace formulas
defines a set of words, and thus the semantics for the prefix predicate must be extended
to sets of words. The intended meaning for using choice in our regular expressions is to
specify alternatives for pattern matching. Concretely, a formula of the form ) <)’ requires
the existence of a pair of words (one generated by v and the other by 1), such that both of
them agree up to the point where the word from the interpretation of ¢ terminates. As usual,
II[r — 7] denotes the update of IT where 7 is assigned to the trace 7 and all other assign-
ments remain the same. Altogether, the satisfaction relation is defined as:
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II,T) = 3rp iff there exists 7 €T s.t. (U[r— 7,T) = ¢;
ILT) =~ iff (ILT) = 3

ILT) A iff ILT) | ¢ and (ILT) | ¢;

ILT) Ey <y iff Irely] 37 ely] 7 < 75

ILT) o 3" iff (ILT) k= [¢] <[¢'].

A set of traces T is a model of a hypernode formula ¢, denoted T' = ¢, iff there exists an
assignment IT such that (I, T) |= ¢.

Example: Semantics of 1) <)’

We begin by looking into using regular patterns to express prefix requirements, as exempli-
fied by the hypernode formula:

(p+q) .ot p<y (1)

specifying that there exists a word in the interpretation of ¢’ (i.e., II[¢)'] for a given assign-
ment IT) with a prefix starting with p or g, followed by one or more letters o until it reaches
the value p. The interpretation II[(p + ¢).0".p] includes all sequences p.o™.p and q.0".p,
for all n > 1 and all assignments II. Then, for all sets of traces 1"

If I[y'] ={qoopg} = (ILT) }= (p+q).0".p<¥’
If O[] ={qooq} = (I, T) ¥ (p+q).0T.p </’
Another use of regular patterns is to specify the maximal size of traces. For a finite domain

{p, q, 0}, we define that there exists a word in the interpretation of ¢ with size at most four,
with the third and fourth value (if reached) being p as:

Yp<(p+qg+o)(p+q+o)pp )

Then, for all sets of traces 7

If M[y] ={pop} = (I, T) E¥<(p+q+o0).(p+q+0)pp
If T[] ={pegp} = (I, T) EY <(p+q+o0).(p+q+o0)pp

Observe that one corollary of the existential semantics of prefixing is that the evaluation of
1 <)’ is monotonic for satisfaction when adding new words to the interpretation of formu-
las 1) and ¢)’. This means that all extensions of satisfying interpretations II[] and II[¢’]
with new words also satisfy ¢ <1)’. We can see the monotonicity at play by extending our
examples:

If T[4)"] ={qoopq, qooq} = (I T) |= (p+q).0".p<¢’
If T[y] ={pop,pgep} = (I, T) Fy<(p+q+0).(p+q+o0)pp
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Although this monotonicity may initially seem counterintuitive, it becomes clear why we
need the existential semantics once we plug in program variables.

Interpreting a program variable under a given assignment yields a word describing the
progression of the variable’s valuations over time. Using trace formulas, we can specify
patterns over these values by requiring them to be in the language defined by a regular
expression. Looking back at formulas (1) and (2), let’s consider the case that ¢ =’ = x(m).
Then, for all T":

If (T1(m))(x) =pop = (ILT) = (p+q).0" p<x(7) and
(ILT) Ex(m)<(p+q+0).(p+q+0)pp

If (T(7))(x) =pggp = (IL,T) I~ (p+ ¢).0" .p<x(m) and
(ILT) e x(m) <(p+q+0).(p+q+0).p.p

Clearly, in these examples, we do not intend to say that the progression of values of x ()
extends (is a prefix of, resp.) all the words described by the regular expression; that is,
interpreting < as language inclusion up to prefixing is not adequate. This can be seen, for
example, in the fact that (p + ¢).o".p < x(7) could never be satisfied as x(7) cannot start
with p and g at the same time. The interaction between regular expressions and values
of program variables becomes more interesting when we combine program variables with
choice. For example:

(p+q).0"p<(x(m) + y(m)) (€)
(x(m) +y(m) <(p+q+0).(p+a+0)pp €
Then, if (II(7))(x) = pop and (IL(7))(y) = pggp, for all sets T":

(ILT) = (p+ q)-0"p<(x(m) + y(r))
(ILT) = (x(m) + y(7)) <(p+ g +0).(p+ g+ 0).p.p

matches our intuition that we only need one of the variable’s values to satisfy the regular
expression. In fact, we can remove the choice operator by splitting the hypernode into a
disjunction; that is, the following are equivalent to (3) and (4):

(p+q).0tp<x(m)V (p+q).0o".p<y(n)
x(m)<(p+q+o).(p+qg+o)pp V y(m)<(p+q+o0).(p+q+o0)pp

We adopt the usual abbreviations: V7 ¢ def =(3r —p), pA¢ def —(—p V')
and ¥+ def P.ap*. We also introduce the notations (¢=1") def

= (<Y AY <)
and (Y ~v’) def (v 29" A Z4p). Observe that it may happen that ¢ =1’ and yet
M) NII[w'] =0 for all trace assignments IT (and analogously for =2). For example,
a+ (b.b)=b+ (a.a) is valid (i.e., all sets of traces are a model of this formula) because
a < aa and b < bb; however, Ha + (b.0)| NII[b + (a.a)] ={a, bb} N {b,aa} =0, for all
trace assignments II.
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Example: Mixing Synchronous and Asynchronous

Hypernode formulas allow mixing synchronous and asynchronous hyperproperties with
regular constraints on variable valuations, as exemplified below:

v (0%.1.0%.1 <flag(r) — 3’ (Aag(n’) 30 A x(7) = x(n))). 3)

This formula requires that for all program executions where flag is raised at least twice,
there must exist another execution where flag was never raised (the value remains 0) s.t.
these two executions coincide on values of x modulo its stuttering. This property can be
interpreted as a quality-of-service requirement: for any run of a system that experiences
two or more failure notifications, it must be possible to restart it so that it behaves as if no
failures had occurred.

In (5), we can see how assumptions on different formulas can play a role in whether to
use the synchronous, <, or asynchronous, =, comparisons. The program variable flag is
assumed to be 1 only at the time the notification is sent, and otherwise 0. Therefore, to count
whether there were at least two notifications, we need to use the synchronous (<) compari-
son. For example, traces 7 and 7o with flag values 71 (flag) =010 and 72 (flag) = 0110
represent a different number of failure notifications; however, when stutter-reduced, they
are indistinguishable (i.e., they are both interpreted as 010). On the other hand, to com-
pare sequences of values of the program variable x that can come from different runs (that
can have different lengths and progress at different speeds), we want to use asynchronous
comparison (). For example, for two unzipped traces 7 and 7" with 7(x) = aaabcbba and
7' (x) = abcbaa assigned to m and 7’ in II, we have (IL, T') |= x(7) = x(n’), for all T".

3.2 Model-checking problem

We are interested in solving the model-checking problem for hypernode logic over Kripke
structures. A Kripke structure is a tuple K =(W, 2% A V) consisting of a finite set W of
worlds, an alphabet which is a set of assignments of variables from X to a finite domain 3,
a transition relation ACW x W, and a value assignment V: (W x X)— X that assigns a
value from the finite domain X to each variable in each world.

In this work, we consider an extension of Kripke structures with sets of entry and exit
worlds, specifying where paths of the model begin and end, respectively. This extension
becomes relevant later (Section 6.2) when we define the model-checking of hypernode autom-
ata. Formally, an open Kripke structure consists of a Kripke structure K =(W, %X A V),
and a pair W =(Wipn, Wout ) where Wi, C W is the set of entry worlds while W C W is
the set of exit worlds.

A path of the open Kripke structure (K, W) is a sequence of worlds wy . .. w,, in K that
starts in an entry world, wg € Wiy, ends in an exit world, w,, € Wy, and respects the transi-
tion relation, (w;, w;+1) € A for all 0 <4 < n. We write Paths(K, W) for the set of paths
of the open Kripke structure (K, W) and Traces(K, W) to define all traces defined by the
paths in Paths(K, W), i.e.,

Traces(K, W) = {V(wo)V (w1)... | wows... € Paths(K, W)}.
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While, the set of unzipped trace segments generated by (K, W) is:

Unzip(K, W) ={x:V(wg,z) ... V(wy,z) | wow;... € Paths(K, W) and x € X }.

Model-checking problem for hypernode logic
Let (K, W) be an open Kripke structure, and ¢ a formula of hypernode logic over the same
set of variables X and finite domain X. Is the set of unzip trace segments generated by
(K, W) a model for ; that is, Unzip(K, W) | ¢?

We prove next that the model-checking problem for hypernode logic is undecidable,
even when restricted to the fragment with only stutter-prefixing comparisons and without
quantifier alternation.

3.2.1 Undecidability of model-checking hypernode logic

We prove that model-checking hypernode formulas over Kripke structures is undecidable
by presenting a reduction from the Post Correspondence Problem (PCP) [28].
An instance Z of the PCP is a finite collection of dominoes:

= {[s] [5]- [5])

where n> 1, and u’ and d* are finite words over an alphabet %, for i <n. A solution (or
match) for a given instance Z is a non-empty sequence of indices i1, ...,%,, such that
w2 uim =dir.di2. ... dim. The problem of finding a solution for a given PCP
instance is undecidable [28].

Theorem 1 Let 3° HL(Z) be the fragment of hypernode logic supporting only asynchro-
nous comparison of traces and having at most two existential quantifiers, that is, formulas
I In’ < where T and 7" are trace variables, and ¢ < is defined by the following grammar:

pzu=x(r") Ix(1") | ~o< | o< Apx

where ' € {m, 7'} and x is a program variable. Model checking 3° HL(X) formulas
over open Kripke structures is undecidable.

Proof Given an instance of the PCP problem Z, we translate it to an equivalent instance
that avoids removing letters when stutter-reducing them. In a nutshell, we define Zg as the

instance that adds the fresh symbol to the right of each letter. For example, given a domino

[%] , in Zg this domino is translated into: [aﬁg&]. Clearly, the instance Zg has a solution

iff 7 also has a solution.

The first step of our proof is to build an open Kripke structure encoding all possible com-
binations of the two sides of the dominoes. Given an instance Z of the PCP problem over a
domain X, we build a Kripke structure over the variables:

e side defining whether the current letter is from the upper or down side of the domino
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by assigning either 0 or 1 to it;
e letter defining the current letter from domain 3;
e domino determining which domino the letter belongs to.
For an arbitrary domino D; € Z where D; = L l with u’ =wuf, ..., u} and d' =di,...d},

we define the Kripke structure K p, =(W;, X ) where:

e there is a world for each possible letter in both sides: W; ={u, ..., u},dj, ... d};
¥, ={0,1} U{4,i} U and X ={side, letter,domino};
the transition relation connects the letters as specified by the instance:
Ay ={(uj,ujyy) [ 1 <1< jFU{(d],dj,,) | 1 <1<k}

e the valuation of side and letter are:

— forl <1<y, V(ul,side) =0, Vi(ul, letter) = u};
- for1<i<k, V'Z-(d'f,side) =1, V'l-(d'f,letter) =di;

e and the valuation of domino is the name of domino except for the last step that is as-
signed the overline name:

- for1 <1< j,Vi(uj,domino) =i and V;(u!, domino) = ;

— forl <1<k, V;(di,domino) =i and V;(di,domino) = .

From now on W, EZX ,A; and V; refer to the states, domain, transition and labels of the
Kripke structure defined by the i*" domino in a given instance Z.

We encode a PCP instance Z with n dominoes as an open Kripke structure
(Kz,Wz1) = (Wz, %%, Az, V1), (Win, Wout)) where:

o Wr=J W;,3z= X, X ={side, letter,domino};

i<n i<n
o Ar= L<J A U{(u \uz\’ul) | i,0 <n}U{(d! \d’l’ d}) i, <n}, which additionally

connects the last letters of each domino of each side with all initial letters of all domi-
noes of the same side;

o V= Vi;
i<n
e the set of initial worlds are all first letters of a domino: Wi, = |J {ui,d!}; and

i<n
e the set of finial worlds are all the last letters of a domino: Wout = J {uf i) d|iu77 -
i<n

Given a PCP instance 7 and its extension with \, the open Kripke structure derived from Zg,
(Kz,, W1, ), has the following properties:

® FEach trace has either only the upper or the down side of dominoes: for all
7 € Unzip(Kz,, Wx,), |7(side] €{0,1};

® Each trace is well-defined: that is, for all 7€ Unzip(Kz,,Wz,) with
|7(domino) | =iyiy .. .dminm, if [7(side)| =0 then 7(letter)=u" ... ui", and if
|7(side) | =1 then 7(letter) =d ... d";

o Stuttering removal does not remove repeated dominoes: for all T, 7/ € Unzip(K 7y, W, )
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with the same side, | 7(side) | =|7’(side) |, if they have the same sequence of dominoes
after stutter-reducing them, | 7(domino) | =|7’'(domino) |, then they should have had
the same sequence of dominoes before the reduction, 7(domino) = 7'(domino);

o There are no stuttering letters because they are all surrounded with the fresh symbol :
for all 7 € Unzip(Kz,, Wz,), 7(letter) =|7'(domino) .

Using these properties, we can prove that an instance Z has a solution iff:

Unzip(Kz,, Wz,) = Indn’ side(n) # side(n’) A

letter(r) ~letter(n’) A domino(r) ~ domino(n’).

O

Our reduction from PCP leverages the ability to mix synchronous and asynchronous

reasoning within the asynchronous fragment of hypernode logic by allowing some variables

to evolve fully asynchronously while others remain synchronized. Later in this work, we

show that when restricting to structures where variables can be analyzed independently, the
model-checking problem for asynchronous hypernode logic becomes decidable.

3.2.2 Decidable hypernode logic fragments

In what follows, we present a model-checking algorithm for a synchronous and an asynchro-
nous fragment of hypernode logic. In both fragments, we allow only comparison between
either two program variables or a program variable and a regular language defined by a
regular expression over constants and the empty word. We refer to this restriction on trace
formulas as the regular fragment, which we often denote by Reg. For both the synchronous
and the asynchronous fragments, we allow for arbitrary quantifier alternation. The only dif-
ference lies in the relation used for the comparisons: the synchronous comparison is only up
to prefixing, while the asynchronous one also removes repeated valuations We refer to these
fragments as HL(Reg, <) and HL(Reg, 3) and summarize our results in Table 3.

Kripke structures are natural models for the synchronous interpretation of hypernodes.
However, for the asynchronous interpretation, it is often more appropriate to allow less
synchronization between variables, enabling them to evolve independently. We present an
algorithm to model-check asynchronous hypernode formulas over stutter-reducible Kripke
structures. Informally, a Kripke structure is stutter-reducible if it can be transformed into an
automaton where variables can be stuttered independently while defining the same set of
stutter-free traces as the original Kripke structure. We present, in Section 6.3, models from
the literature that naturally define stutter-reducible Kripke structures.

Table 3 Summary of decidability results

All Kripke Structures Stutter-reducible Kripke Structures
HL(Reg, <) Decidable (Thm. 12) Decidable (Thm. 12)
HL(Reg, 2) Undecidable (Thm. 1) Decidable (Thm. 21)
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4 Model checking synchronous hypernode logic

In general, model checking for hypernode formulas is undecidable. In this section, we intro-
duce a decidable fragment of hypernode logic, referred to as the regular synchronous frag-
ment. This fragment allows only synchronous comparisons between either two program
variables or a program variable and a regular language defined by a regular expression over
constants and the empty word. This fragment is defined by the following grammar:

Yu=elc|py |+ | YT ©
pi=Tmp | —p | o Ap | x(m) <o | §<x(r) | x(m) <x(r)

We observe that, in this fragment, trace formulas do not allow composing program vari-
ables with other trace formulas. This captures the restriction in which constraints on pro-
gram variables are defined by regular languages or another program variable. To simplify
the grammar, we removed program variables from trace formulas and use them explicitly
only within comparisons.

In the rest of this section, we show how to model-check this fragment of HL using con-
structions on lefi-aligned (multi-tape) automata, introduced next.

4.1 Left-aligned automata

A multi-tape automaton [18, 23] is a finite-state automaton with n > 1 heads reading n
tapes (input words). If heads read the tapes in lock-step, we call the automaton synchro-
nous or 0-synchronized (where 0 refers to how much the reading heads diverge). Synchro-
nous multi-tape automata are identical to (aligned) multi-track automata [23, 34], where an
automaton reads a single tape over an n-track alphabet (3 U {\})™ (with A & ¥). Symbol A
is a special symbol that means “read nothing” and is used as a padding symbol when a tape
finishes (in the case of aligned automata).

The algorithms presented in this work are based on multi-track automata. Nonetheless,
we refer to them as left-aligned automata because we want the (left) alignment requirement
to be explicit and syntactic. For multi-track automata, being aligned is a common conven-
tion rather than a requirement, and, mainly, the alignment is achieved by aligning the input
words (it is not a condition on the automata, which is our case). Having alignment as a
condition on the automata is helpful when further restricting them to stutter-free automata.
Another difference to multi-track automata is that our automata read value assignments
instead of tuples of values. However, both aligned multi-track automata and left-aligned
automata are equivalent. Because most of the results about multi-track automata in the lit-
erature are hand-waved, we build the theory behind left-aligned automata in this section.
The goal is to prepare the ground for stutter-free automata, which will be presented in the
next section.

In the rest of the text, A(X, X) denotes the alphabet which is comprised of all assign-
ments of variables in X to values in ¥ or the padding symbol # ¢ X (where at least one
variable is assigned a value from X). Formally, for X ={xo, ..., zm}:

AMX D) =(SU{#N  \{zo: #, oz #)
={20:00,..,Tm 10 | V0 <i<m wehave o, e LU {#}} \ {zo:#, ..., Tm  #}.
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If X and X are clear from the context or are not important, we write simply A instead of
A(X, X). We write A(X) to stress that the alphabet uses variables from X. We do not con-
sider transitions in which all variables are terminated, because later we define the accepted
language of an LAA as all words accepted by it, with the padding symbol # removed. If we
had included assignments of the form {x¢ : #, ..., Zm : #} in our alphabet, the removal of
#-symbols would break the one-to-one correspondence between words with and without it.

Given a nondeterministic finite automaton with the transition relation § : @@ x A x @, the
set In(q, x) is the set of all z-valuations incoming to state g, and Out(q, x) is the set of all
x-valuations outgoing from state ¢; formally:

In(q,x) ={v(x)| (¢',v,q) € 6 for some ¢’ € Q}
Out(q, ) ={v(x) [ (q,v,¢') € 0 for some q' € Q}.

A left-aligned automaton is a nondeterministic finite state automaton over the alphabet A,
where the # symbol on an x-trace cannot be followed by anything else than # (for any x).

Definition 1 (Left-aligned automaton) Let X be a finite set of variables over ¥. A nonde-
terministic left-aligned automaton (LAA) over the alphabet A is a tuple A=(Q), Q. F, 0)
with a finite set Q of states, a set Q C Q of initial states, a set F' C () of final states, and a
transition relation 6 C @ x A x @ that for all states ¢ € ) and variables z € X satisfies the
termination condition:

if # € In(q,x) then Out(q,x) = {#}.

The condition on the transition relation ensures that once a variable x is assigned the termi-
nation symbol # on a transition entering a state ¢, every transition leaving ¢ must assign
# to x. This prevents assigning non-termination values to x on states reachable from ¢ and
thereby guarantees the left-alignedness of variable assignments.

A run of an LAA A is a finite non-empty sequence govoqiv1 - - - Un—1G, alternating
between states and variable assignments starting with an initial state, gy € Q, and following
A’s transition function § (i.e., (¢;,vi, ¢i+1) € 9 for all ¢ < n). As usual, a run is accepting
if it ends in a final state. A path induced by a run r = govoq1v1 . . . V—1¢y is the sequence
of states qoqi . . . ¢n. The trace of the run r, denoted trace(r), is the sequence of variable
assignments vgv; ...VUp—1.

Given variables X = {xo,...,%n} with domain X and an unzipped trace segment
T={Z0: Woy..., Tm : W} Withwy, ..., w, € X*, an LAA A over A(X, X) accepts this
unzipped trace segment if there exists an accepting run ¢ovgqiv1 - . . Vp—1¢n of A s.t.

{ T(z)[i] it < |7(z)|
#

vi(w) = else

In other words, an unzipped trace segment is accepted by .A if there exists an accepting
run in A where for all x, the sequence of assignments for = on the run defines the z-trace
in 7, modulo possible padding with #. The language of A, denoted L(.A), is the set of all
unzipped trace segments accepted by .A.
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Example: Left-aligned Automaton

In Fig. 3 below, we depict a left-aligned automaton that accepts all unzipped trace segments
for the boolean variables {z,y, z}, where all traces start with 0 and the x-trace is a prefix
of the y-trace, which is a prefix of the z-trace. The language accepted by the automaton .A
from Fig. 3 is:

LA)={z:7p,y:Ty,2:T: | T, Ty, 7> € 0.{0,1}" and 7, < 7y < 7}

The union, intersection, and determinization for LAA are as usual for NFA. Let
A1 =(Q1,Q1, F1,01) and Az =(Q2,Q2, Fa,02) be left-aligned automata over the same
alphabet A. We define:

o their union as A; U A2 = (Q1 W Q2, Q19 Qs, Fy W Fy, 0y) over the same alphabet A
where W is the disjoint union, and d,(q) = d;(q) when g € Q; with i €{1, 2};

o theirintersectionas A3 N Ay = (Q1 X Qa2, Qm, R, 0n) over the same alphabet A where
Qn ={(q1.92) | @1 € Q1 and g2 € Q2}, Fr = {(q1.¢2) | @1 € F1 and ¢» € F>} and
on((q1,42),1) = (1, 43) iff 01(q1,1) = ¢} and d2(go, 1) = g3; and_

e the determinization of Ay as  det(A;) = (291,Q1, Fy,04)  where
Fy={S€29 | SN F #0}and 64(S,v)= J 01(¢,v) withv € A.

q€eS

We prove below that LAA are closed under the operators defined above.

Proposition2 LetA; and Az betwoLAAoverthesamealphabet A.Both A; U Agand A; N Ag
are LAA over A with E(A1 UAQ) = £(A1) @] E(.AQ) and £(A1 N .AQ) = E(A] ) N £(A2),
resp. Moreover, for a nondeterministic LAA A, its determinization, det(.A), defines a deter-

ministic LAA automaton accepting the same language, that is, L(det(A)) = L(A).

Proof We observe that union and intersection do not affect the termination condition. Then,
the result follows from the fact that LAA are NFA.

Let A; be an arbitrary LAA.

Fig.3 Left-aligned automaton .A with three traces over the boolean domain. The automaton accepts traces
that all start with 0, z-trace is a prefix of y-trace, and y-trace is a prefix of z-trace
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We show that det(.A;) satisfies the termination condition and thus is also LAA. For
any state in det(.A;) with no predecessors, the termination condition is trivially satisfied.
Now assume a state S’ that has a predecessor and # € In(S’, x) (otherwise the implica-
tion is satisfied). # € In(S’, x) only if there exists a state S and v € A with v(z) = #, s.t.

84(S,v) = S'. By definition, S’ = |J 41(q,v). Because A is LAA and v(x) = #, then for
qes

any ¢’ € 01(g,v) ofany ¢ € S itholds that Out(q’,v) = {#}. Therefore Out(qs,v) = {#}
for any ¢, € S’ and consequently Out(S’,v) = {#}.

The fact that £(det(.A;)) = L(A;) follows directly from the same result for NFA. OJ

To complement LAA, we follow the same approach as for NFA: we start by transforming
it into an equivalent deterministic automaton, followed by completing it, and, in a final step,
we swap the role of final and non-final states. The only challenging step is completing the
automaton, as we must ensure that the completed automaton satisfies the termination condi-
tion. The termination condition prevents us from adding a non-final sink state with a self-
loop to which we connect all missing transitions. The solution we present here introduces
universal lefi-aligned automata to serve as such a sink element.

4.1.1 Completing and complementing left-aligned automata

For any LAA (Q, Q,F, §) and a state ¢ € @, we define two functions allowed : Q — 22(X)
returning all letters from the alphabet allowed to be on outgoing transitions of a given state,
and A, (q) returning all letters that are actually on outgoing transitions of a given state:

allowed(q) ={v e AN | Ve e X : # € In(q,z) = v(z) = #}
Aout(q) = {v € A | (q,v,q') € 6 for some ¢’ € Q}.

A left-aligned automaton A =(Q, Q,F, 0) over A is complete iff for each q € @ it holds that
allowed(q) = Aout(q). The universal left-aligned automaton U, over A is a deterministic
and complete automaton, accepting all left-aligned unzipped traces over A. That is, the
Up(x,s) accepts the language L(Ux(x,x)) = {{zo:uo, .., Tk ur} | uo,...,up € X*}
where {zg,..., 2} = X, as proved in Proposition 4. In a nutshell, states of U, (x » are
tuples where each variable in X is assigned either the label g or g, signaling for each vari-
able whether it can still be assigned to values from the domain (label ¢) or the trace for the
variable is already terminated and the variable can only be assigned to the value # (label

q4)-

Definition 2 Let X = {z,...,zm} be a set of variables over the finite domain
Y. The universal left-aligned automaton over A(X, X)) is Up =(Qu, Qu, Qu, o), where
Qu={q,qu}  \ {{z0: qs,-- -, Tm 1 qu}},and s 5 s’ € &y iff v € A(X,X) and, for all
0<i<m:

1) if s(2;) = qu then v(z;) = #, and
2) ifv(z;) = # then s'(x;) = qy.

Proposition 3 The automaton U, is left-aligned and complete.
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Proof Assume there is a state s’ with a predecessor state s, s.t. (s, v, s') € 0y and v(x) = #.
Then by point 2) in the definition of universal LAA, s’(x) = gx. This implies that for any
outgoing edge with valuation v, it holds that v'(x) = # (point 1) in the definition. So U
is left-aligned.

The automaton is complete. Condition 1) defines all outgoing edges of a state s. If
s(x;) = qg, then by condition 2), it means that # € In(s, x;). At the same time o} = #,
so the set of outgoing transitions is a subset of allowed(s). It is also a superset, because if
# € In(s,x;), then s(z;) = g4 which implies that o} = #. O

Proposition 4 The automaton Uyx sy accepts the universal language, i.e.,
LUnx,s)) = Hzo s wo,. .., T s Wi} | T, ..o Tm € X, wo, ... Wy € X}

Proof Follows from the completeness and the definition of the transition function. O
Example: Universal Left-aligned Automaton

In Fig. 4 below, we depict the universal left-aligned automaton {/x for the set of boolean
variables X = {z,y}.

To define complete left-aligned automata, we define a helper function p : A — {q, g» }*
that takes an assignment from A and maps it into an assignment from {q, g4}~ st. z: 0
gets mapped to  : qx if and only if o = #:

if s(x
po@ ={ ¢ §0 2

Note that the transition function d;; of the universal LAA with variables X then can be
defined as ¢y (s, 0) = p(o) for s and o s.t.: if s(x;) = gy then o = #.

Definition 3 Let A=(Q, Q.F, 0) be a left-aligned automaton over the set of variables X
with domain X.

The completion of Adefines the left-aligned automaton complete(A) = (Q ¥ Qy, Q, F, §')

over the same variables, where @y, are the states of the universal left-aligned automaton Uy,
and ¢’ is defined as

' =6UdU{(qg> puw))|if v e (allowed(q) \ Aowt(q)),q € Q}

TiHFY:X HEDINTREDY DI TRE

Fig. 4 The universal left-aligned automaton U, over the boolean variables X = {z,y}. ¥ instead of a
letter is a shortcut for an arbitrary symbol from {0, 1}. The automaton accepts all left-aligned unzipped
trace segments over {x, y}. All states are both initial and final
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where dy is the transition relation of the universal left-aligned automaton 4y .
We can now prove that our completion procedure returns an automaton accepting the same
language as the input automaton.

Proposition 5 Let A be an LAA. Then, complete(.A) is a complete LAA with the same lan-
guage as A, i.e., L(complete(A)) = L(A).

Proof Consider an arbitrary left-aligned automaton .A. Both .4 and the universal LAA are
left-aligned automata. We have to prove that the extension of the A transition relation pre-
serves the termination requirement and that it completes .A.

For each state ¢ € (, we extend the transition relation with edges ¢ — u(v) s.t.

v € (allowed(q) \ Aout(q)). By the definition of allowed, adding such an edge preserves
the termination requirement.

We now prove that complete(.A) is complete. By the definition of universal automaton,
it follows that universal automata are complete. For all non-complete transitions in .4 (i.e.,
variables that are not terminated yet), we add the missing transition pointing to the matching
universal automaton state; hence, complete(.A) is complete.

Finally, we prove that both automata define the same language. As we kept all A
transitions and final states, it follows that £(complete(.A)) D L(.A). We now prove that
L(complete(.A)) C L(.A). First, we note that no transition connects states from the uni-
versal automaton to states from .A. Then, when a run reaches a state from the universal
automaton, all the subsequent steps are within the universal automaton. Additionally, the
final states do not include states from the universal automaton. Thus, accepting runs include
only transitions in .A. O

Finally, to complement a deterministic and complete left-aligned automaton, we just flip
final with non-final states, i.e., the complement of A =(Q, O, F, 8)is A=(Q, 0,0 \ F,9).

Proposition 6 Let A be a deterministic and complete left-aligned automaton over A. Then,
Alis a lefi-aligned automaton and L(A) = L(U) \ L(A).

Proof Let A be an arbitrary left-aligned automaton. It follows directly from .4 being a left-
aligned automaton that A is also a left-aligned automaton (complementing an automaton
does not change its transition function). For the same reason, A is a deterministic and com-
plete left-aligned automaton, as well. Then, for all unzipped traces 7 € (E*)X there exists a
run 7 in A for 7 (from completeness); and this is the only run for 7 (from determinism). As
A and A share the same transition function, then r is also the only run in A for 7. Finally,

as the final states are flipped, it follows that r is an accepting run for 7 in A iff r is not an
accepting run for 7 in A. Hence L(A) = L(Ux) \ L(A). O

4.1.2 From formulas of hypernode logic to left-aligned automata
We show how to translate atomic formulas of the synchronous fragment of the hypernode
logic into left-aligned automata. These automata are the building blocks for the model

checking algorithm described in the next section. Examples of the translation of atomic
formulas to automata can be found in Figs. 5 and 6, later in this section. In the subsequent
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z:0,y:% z:0,y: % z:0,y:#

r:ly: X A x:ly:#
xiy: B M

TiHy: X x:0,y:# z:ly:#

Ty z:0,y:#

G

40, 5(q,q4)

Fig. 5 The top automaton is the finite state automaton recognizing 0*10* and below is the LAA for

9
x(m) < 0*10* over the alphabet A({x, y}, {0,1})

Fig.6 Left-aligned automaton for the atomic formula
x(m) < y(n’) over the alphabet A({z, y}, Z)

text, we assume an alphabet A (X, X)) and that U, the universal left-aligned automaton with
alphabet A, is the tuple (Qu, Qur, Quis Ou4)-

Automaton for x(m) < 1

For the term x(7) < ¢ where 1) is a regular expression over %, we first create the finite state
automaton Ay, = (Q, Q,F, d) accepting the language of ¢ (using any of the known meth-
ods, e.g. [9, 11, 31, 33]), and we strip it off of useless states (states from which no final state
is reachable). Notice that from the syntax of hypernode logic, the language must be non-
empty. Let 2, € X be the program variable that represents x(m). We define the automaton

A< = (QuUQu, Q x Qu,QypUQy,d,, ) where

o Qu=Qx{s€Qu|s(zr)#qu}andQu ={s € Qu|s(ry)=qs}
® . isdefined as the smallest set s.t.:
',8') €0z,

1) ifg 5 ¢ €dands 5 s € &y and v(x,) = o, then (¢, 8) —
s) = s € g,

(g
2) ifs 2 s’ € &y and s(2,) # qu and 8’ (v,) = qx, then (g, s) =
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3) ifs 5 s €8y and s(z,) = s'(2) = g, then s = 5" €,

We show that the automaton A, _<, over the alphabet A recognizes unzipped trace seg-
ments where variable 2, maps to words from £(¢)) and other variables map to arbitrary
words.

Proposition7 Let A(X, X') be an alphabet, . a variable from X and 1 a regular expression
over ¥. 7 € L(Az, <) iff exists v € X* s.t. T(27) = u, wo € L(1) and, for all variables
y € (X \{z}) 7(y) € 2.

Proof First, let us make two observations. (1) Every run has a prefix of states in @, and
then possibly an empty suffix of states in (). (2) For any run, all transitions between states
in QQ are transitions 1), transitions between @), and Q)4 are transitions 2), and transitions
between states in ()4 are transitions 3).

(=) By observation 1, any run of A, <, has a prefix p in Q, and by observation
2, valuations on this prefix (if any) are from transitions 1). These transitions are synchro-
nized with A, and therefore there is a run r, in Ay, corresponding to p that is labeled with
trace(p)(xr). The run 7y, in Ay, can be extended to an accepting run because A, has no use-
less states and accepts a non-empty language. Therefore, A, accepts uv for some v where
u = trace(p)(zr).

Finally, 7(y) € ¥* fory € (X \ {z,}) is trivially satisfied.

(<) Let us fix an arbitrary unzipped trace segment 7 with 7(z,) =u st
wv € L(1). W.lo.g assume that |u| =k and m is the length of the longest word in
7, m >k > 0. Because uv € L(Ay), there is a run of A, that accepts uv and a prefix
0004101 ...qx of this run that is labeled with u (v = 0¢0y...0x—1). Now consider an arbi-
trary runr = (g0, So)vo(q1, 81)V1---(Qks Sk )Vk Sk41Vk+1Sk+2-.-Sm Of Ay <, . We have that
v (Tr) = o0y, foreach 0 < ¢ < k, as the first & transitions are transitions 1), and v; () = #
for k < < m as these come from transitions 2) and 3). Therefore, trace(r)(x,) = u. Atthe
same time, there are no constraints on other variables, so trace(r)(y) fory € (X \ {z,}) is
arbitrary. In particular, we can pick the run so that trace(r) (y) = 7(y) forally € (X \ {2 }).
Therefore, there is an accepting run for 7 in A, <, 4. O

Example: Automaton For Atomic Formula With Regular Expression

Automaton for ¢ < x(m)
For terms ¢ < x(w) where ¢ is a regular expression over Y, we again first cre-

ate the finite state automaton Ay = (Q,Q,F, d) accepting the language of

1. Let ¢, € X be the program variable that instantiates x(7). We define the automaton
Ay<par = (Qp U Qu, Q X Qu, QF, 6, ) where

Qp=Qx{s€Qu|s(xx)#qu}
Qr =QuU{(g,s) €Qy|qe F}

0z, is defined as the smallest set s.t.:
1) if¢g S ¢ €dands 5 s € 6y and v(x,) = o, then (¢,5) = (¢, 8') € ..
2) ifs 55 €dyandq € F, then (q,s) = s €5,
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3) ifs 5 s €y, thens 5 s €6,

Proposition 8 Let A(X, X') be an alphabet, . a variable from X and 1 a regular expression
over X. 17 € L(Ayp< ,z,) iff exists v € X* s.t. uw € L(Y), T(2) = wv, and, for all variables
y € (X \{zr}) 7(y) € 2.

Proof (=) If 7 € L(Ay<,z. ), then there is an accepting run for 7. This run has the shape
(g0, 50)V0---(qk, Sk )VkSk+1Vk+1Sk+2..-Sn, Where the prefix is in @y and the suffix is in Q.
Because this run is accepting, states (qx, Sk), Sk-+1, Sk+2 are final (follows from definition
of Qr and transitions 2). Therefore, g, € F. For the prefix in @y of this run, there is a
corresponding run in Ay go0o....0x—1¢, Which is accepting, because g5, € F. Therefore,
0001...0x—1 € L(1)). From transitions 1, we know that v;(x,) = o; for 0 <4 < k and
therefore 7(x,) = 0901...0;. If we let u = 0¢0o1...0%, then we get that 7(x,) = uv s.t.
u € L(1) for some v € X*. The rest of the right-hand side condition is trivial.

(<) Assume an unzipped trace segment 7 s.t. 7(z,) = uv s.t. u € L(¢) and 7(y) € X*
are arbitrary (but fixed) fory € (X \ {z}). We constructarunrof Ay<, .. accepting 7. The
run has the shape (qo, $0)v0---(Gk, Sk )VkSk+1Vk+1Sk+2---Sn. Where qovo(Tx)q101(Tx)...qk
is an accepting run of u in Ay, and S vy Sk41...5y, is a run of a universal automaton. By defi-
nition of transitions, this run exists in Ay <, ... for arbitrary s, s1, ..., s,, and therefore we
can pick them to match 7. O
Automaton for x(m) < y(n')

We construct the automaton for a term x(w) <y(n’) by restricting the univer-
sal automaton. The automaton A,<,, is defined as A,<,, = (Q,Q,Q,J) where
Q= {s € Qus(x)=s(y) =qor s(x) = gu}. The transition relation is defined by the
relation (¢,v,q") € 0 iff (¢,v,q") € oy and v(z) = v(y) or v(z) = #. The automaton for
x(m) < y(n’) is depicted in Fig. 6.

Proposition 9 Let A(X, X)) be an alphabet and x and y variables from X. 7 € L(Az< ,y) iff
7(z) < 7(y).

Proof Consider any run r of A, <, that accepts a segment 7. There are two options. Either
the run starts in a state s with s(z) = gy, and in that case, any future state of the run s’
has s'(z) = g4 and all valuations v of the run have v(z) = #. Therefore, 7(z) = ¢ and
7(z) < 7(y).

The other option is that r starts in a state with s(x) # ¢g. Then there is a maximal
prefix p of » where every state s has s(z) = s(y) = ¢, and by definition of § and ¢, also
every valuation v between these states satisfies v(z) = v(y). That is, for p it holds that
trace(p)(x) = trace(p)(y). Since this prefix was maximal, next state s from r after this
prefix has s(x) = ¢4 and any valuation v on the rest of the path has v(x) = #. As a result,
7(x) = trace(p)(z). But because more letters can be still added to trace(p)(y), we get that
(@) < 7(y).

The other direction is analogous. O

Example: Automaton For x(7) < y(7')
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4.2 Model-checking algorithm

We start by showing how to model-check hypernode formulas of the regular synchronous
fragment over left-aligned automata. Solving the model-checking problem of left-aligned
automata also gives us a model-checking algorithm for Kripke structures, because Kripke
structures can be easily translated into automata that recognize the traces of the Kripke
structure (this is a classical construction). That is, for each open Kripke structure (K, W),
there is a left-aligned automaton such that the automaton accepts the same unzipped trace
segments as generated by (K, W).

Let us define the set X, of propositional variables as Xy, ={z, |z € X and 7 € V}.For
quantifier-free formulas, the model-checking procedure of left-aligned automata is defined
using operations on left-aligned automata defined in previous sections. For trace quanti-
fiers, we introduce projection by erasure of the transitions associated with the quantified
variable. That is, given a left-aligned automaton A = (Q, Q,F, 9) over A(Xy, X)), the era-
sure of a trace variable w € V) defines the left-aligned automaton A_, =(Q, Q,F, ¢ ) over
A(X(V\{ﬂ.}), E) where, for all v € A(X(V\{ﬂ.}), Z):

8 (g,v)={q | W' € A(X,¥) such that (q,vUv',q’) € 6}.

As it holds that (A_r)_r = (A_/)_r, we naturally extend the definition of erasure to
sets of trace variables .A_y . Now we can define the main component of the model-checking
algorithm: the filtration of left-aligned automata over hypernode formulas.

Definition 4 Let A be a left-aligned automaton over A(Xy,Y), and ¢ a formula of hyper-
node logic in prenex normal form. We define the positive and negative filtration of .4 by
, denoted p+[A] and ¢~ [A], respectively, inductively over the structure of ¢ as follows:

(@(m) <y(m)) A =AN As, <y, (2(m)

IN

y(m) A =AN As <,
)

(z(m) <Y)T[A = AN Ap, <, 0 (x ( <Y Al=AN AL <,y
(W <a(m) [Al=ANAy<, o, (b <a(m) [Al=ANAy<, 2,
(1 A o) T[Al = o [A] N oF [A] (1 A p2) " [Al =1 [A] U w5 [A]
()T [A] = ¢~ [A] (—p) " [A] = ¢T[A]
Fre) T [Al =(pT[A]) —& (Fre)"[Al=A S (3rp)T[A]

with A; © Az = (A1_(v;\vp)) N As where V; and V5 are trace variables of A; and A,
resp.

The meaning of filtration functions is that o [A] is the automaton that recognizes trace seg-
ments that are in £(.A) and satisfy o, and ¢~ [A] is the automaton that recognizes trace seg-
ments in £(.A) that do not satisfy ¢. The operation © is simply a difference of two automata
that are made compatible by erasing trace variables from .4; that are not in .A5. Notice that
this operation is always applied with .A; = A, so it holds that V; O V5. Because we require
the input formula to be in prenex normal form, erasing traces happens as the lasts steps and
thus this is the only place in the definition where automata can have different trace variables.
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Given a formula ¢ with n trace variables V and program variables X, we reduce the
problem of model checking a left-aligned automaton .4 with the alphabet A(X, X) to filter-
ing the n-self-composition of A by . W.l.o.g assume that V = {m,..., 7, }. The n-self-
composition of A, denoted by A™ = A, || ... || An, is the parallel synchronous (lock-step)
product construction of .4 with itself n times, where in every .A; we rename each variable x
to z,. This means that .A™ has the alphabet A(Xy, X).

Given an unzipped trace segment 7 over the alphabet A(Xy,, X)), the trace assignment
generated by 7 is defined as IL, (7)(z) = 7(z), for all 7 € V and € X. Notice that if 7 is
accepted by A", then II, defines a trace assignment from {71, ..., 7,} to trace segments
accepted by .A. Now we can formulate the following theorem.

Theorem 10 Let A be a left-aligned automaton, and ¢ a closed regular synchronous hyper-
node logic formula with n trace variables 7y , . .., my. Then, L(oT[A"]) # Diff L(A) = o,
and L(p~ [A"]) # 0 iff L(A) I~ ¢.

Proof Follows from the lemma we prove below for open formulas:

Let ¢ be a regular synchronous hypernode formula over program variables X and trace
variables V with free variables (not bound to a quantifier) V’. Let 7 be an unzipped trace
segment over (3Xv)*,

Then, T € L(p+[A"]) iff (I, L(A)) E ¢; and T € L(p~ [A"]) iff (IL,, L(A)) F~ .

We prove the lemma by induction on the structure of the hypernode formula.

To prove the base case for atomic formulas ¢ < z(mw), x(m) <4, and
x(m) <y(x'), we use propositions 7, 8, and 20. In particular, for the case of z(7) <y(x’),
7€ L((z(m) <y(n')T[A"]) iff T € L(A") and T € L(As, <,y ). As T € L(A"), then
IT, defines a trace assignment from {m,...7m,} to traces accepted by .A and, because
T € L(As, <, y., ), then by Proposition 20, (I, L(A)) f= z(m) < y(r'). We prove analo-
gously for 7 € L((xz(r) <y(x')~[A"]) and other atomic formulas and negative filtrations.

We proceed to the inductive steps and assume as IH that the property holds for arbitrary
hypernode formulas o and ¢’. The inductive case ¢ A ¢’ follows from IH and Proposition 2.
While the inductive case —¢ follows from IH and Proposition 6.

We now move to the case of the existential quantifier — 3my. We start with the positive fil-
tration by proving the =-direction of the statement. Consider arbitrary 7 € L((Imp) T [A"])
over (X%v/)*, By definition of filtration, this is equivalent to 7 € L([A"]_). Then, by
definition of erasure of a trace variable and accepted word of a left-aligned automata, there
exists 75 over (XXV)* such that for all variables x € Xy»: 73(x) = 7(x) and 73 € L(pT [A")).
Recall that, V =V'U{n}. By IH, II., = ¢, and IL; |= Ime.

We now prove the <-direction. Assume a trace assignment exists s.t. II = 3. Then,
by definition of the satisfaction relation for hypernode formulas, there exists an unzipped
trace 7' over (XXV)* accepted by A (i.e., 7' € L(A)) s.t. I[r = 7'] = . Note that the
function to derive a trace assignment (mapping trace variables V to unzipped traces over
%X from an unzipped trace segment 7 over (XXV)* is invertible. Then, by IH, the trace 7
derived from the assignment extension I, = II[r — 7'] is in L(¢ T [A"]). And, by defini-
tion of filtration, 7 € L(IrpT[A"]).

We now prove the negative filtering. We start with the =-direction, which we prove
by contra-position. Assume that for an arbitrary trace assignment I we have II = Jmep,
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then there exists an extension I, = II[r — 7'] with 7’ € L(A) s.t. Il = ¢. By IH, the
trace 7, derived by Il is accepted by ¢ [A"]. Thus, 7, is not accepted by A™ \ ¢ [A"],
and, by definition, 7, ¢ L£((3mp)~[A"]). For the <-direction, consider an arbitrary trace
assignment s.t. Il = —3mp. Then, II = Vr—p. Equivalently, for all extensions of II,
ie. I, = U[r — 7] for all 7 € L(A), we have I £ ¢. Consider an arbitrary of such
extensions II., then, by IH, for the trace 7. derived by it, we have 7, € £(A™) and
T & L(pT[A"]). Equivalently, 7, € LA™\ ¢1[A"]) and, so 7 € L((Frp)~[A"]). O

We define the translation of an open Kripke structure (K, W) into the LAA A vy) rec-
ognizing all of (K, W) finite traces as usual: by a direct translation preserving the structure
of K. The set of states in A yy) is the same as the set of worlds in K including a fresh
new state, which is the only initial state, and the set of final states in Ak w) is the set of
exit worlds in W. We include in the transition function of A v transitions between the
initial state and all states matching the entry worlds in W. The transition function of Ak w)
is derived directly from the transition relation of K together with the new transitions added
from the initial state, which are labeled as follows: transitions from state w to state w’ in
A(k,w) are labeled by the valuation assigned to the world w’ in K. By translating open
Kripke structures to LAAs and the filtration from Definition 4, we have an effective way to
solve the model-checking problem for hypernode logic over Kripke structures.

Corollary 11 Let (K, W) be an open Kripke structure, and ¢ a closed regular synchronous
hypernode logic formula over the same set of variables. Let n be the number of trace vari-
ables in . Then, Traces(K, W) = @ iff L(¢™ [Alx wyl) # 0.

Proof We start by observing that, by construction, Traces(K, W) = L(A g w)). Then, the
result follows directly from Theorem 10. O

The theorem below follows from the corollary above, all operations used for filtering
being decidable, and checking for non-emptiness of a finite automata also being decidable.

Theorem 12 Model checking the regular synchronous fragment of hypernode logic over
open Kripke structures is decidable.

5 Model checking asynchronous hypernode logic

In this section, we discuss the model-checking of the regular asynchronous fragment of
hypernode logic. The only difference from the fragment presented in the previous section is
that we now allow only asynchronous comparisons; that is, our formulas can only use = to
compare program variables and regular languages. This fragment is defined by the follow-
ing grammar:

Yu=celc|Yy |+ |y
pu=3mp |~ [ Ae | x(m) 3¢ [ ¢ ZIx(n) | x(m) Ix(7)

In the rest of this section, we show how to model-check this fragment of HL using construc-
tions on stutter-free automata, introduced next.

@ Springer



Hypernode automata Page 27 of 52 43

5.1 Stutter-free automata

Definition 5 Let X be a finite set of variables over X. A left-aligned automaton
A=(Q,Q, F,9) is a stutter-free automaton (NSFA) if its transition relation satisfies the
stutter-freedom condition for any ¢ € Q and x € X:

In(q, x) N Out(q, z) C {#}.

In simple terms, an LAA is stutter-free if, for every state and every variable that is not yet
terminated at that state, no variable’s valuation appears in both the incoming and outgo-
ing transitions of that state. We observe that all languages accepted by some NSFA are
stutter-reduced, i.e., for any NSFA A, we have that £(A) = |£(A)] (in this and following
sections, we freely use the stutter-reduction operation |- | on words and languages with the
obvious meaning).

Example: Stutter-free Automata

In Fig. 7 below, we depict a stutter-free automaton that accepts all unzipped trace segments
for the boolean variables {z, y}, where all z-trace segments are of odd size, while all y-trace
segments are of even size, and the first value for both x and y is 0. The language accepted
by the automaton .A from Fig. 7 is:

L(A)={z:7z,y:7y |7 € (01)*0 and 7, € (01)*01}.
The union, intersection, and determinization for NSFA work the same as for LAAs.
Proposition 13 Let A; and Az be two stutter-free automata over the same alphabet A. Both

A; UApand Ay N Ay arestutter-free automataover Awith L(A; U Ag) = L(A;)UL(Ap)
and L(A; NAg)=L(A;)NL(Agz). Moreover, for a nondeterministic stutter-free automa-

T #
- y:1
01

Fig. 7 Stutter-free automaton .4 where 2-traces are of odd size while y-traces are of even size, and the
first valuation for both = and y is 0
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ton A, its determinization, det(A), defines a deterministic stutter-free automaton accepting
the same language, that is, L(det(A)) = L(A).

Proof We observe that the union and intersection do not affect the stutter-free condition;
therefore, the result follows from NSFA being LAA.

Let A be an arbitrary stutter-free automaton. We must prove that det(.A) satisfies stutter-
freedom, i.e., In(S, ) N Out(S, x) C{#}, for all states S of det(.A) and variables = € X.
By definition:

In(S,z) = {v(z) | S€d4(5’,v)forsomeS’ € Qqa} &
In(S,z) ={v(z) | S = U 5(q1,v)forsomeS’ € Qq} &

q1 €51

In(S,z) = {v(z) | Vg€ S 31 € S’ s.t. ¢ € 6(q1,v)forsomeS’ € Qq}.

Thus, (x) for all g€ S, In(q,z) = In(S, x). From A being a stutter-free automaton, we
know that, for all g € S, In(gq, z) N Out(q,z) C {#}. Assume towards a contradiction that
there exists a value (different from the termination symbol #) that is in both the incom-
ing and outgoing transitions of S for a variable z, i.e., [ € In(S, z) N Out(S, x) and [ # #.
Then, by definition of Out(S, x), there exists a state in S, ¢ € S, s.t. (g, x:1) # 0. This
contradicts our conclusion ().

Finally, £(det(A)) = L(A) follows directly from the same result for NFA. O

To make a stutter-free automaton complete, we can use the same procedure as for LAA,
but we must make sure to also fulfill the stutter-freedom requirement: instead of using uni-
versal LAA, we must use a universal stutter-free automaton. Also, to avoid adding new
edges that would violate the stutter-freedom requirement, we must re-define the function
allowed:

allowed(q) = {ve A | v e allowed(q) and Yz € X In(q,x) N{v(x)} C{#}}.

A stutter-free automaton A =(Q, O,F, d) over A is complete if for each ¢ € () it holds that
allowed £ (q) = Aout(q). The universal stutter-free automaton Uy over A is a deterministic
and complete automaton, accepting all stutter-free unzipped traces over A. This means that
Uy accepts the language £(Uy) = |[(Z*)%X .

Definition 6 Let X = {xo,...,%m} be a set of variables over the finite domain 3.

The universal stutter-firee automaton over A(X,X) is Un =(Qu, Qu, Qu, i), where
Qu=Aand

{zi: 0l icjo,m) V0 <i<m, if oy = #
Sul{mi:oitico,m) {Ti 03 Yico,m]) = then o} =# else 0; # 0};
1] otherwise.
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Proposition 14 The universal stutter-free automaton U,(x sy accepts the univer-
sal  language, e, LUxx ) ={{z0:wo,..., T wy} | forallic[0,m] z
e X, w; € X*, andw; = szJ}

Proof Assumeany 7 € E(UA(XE)). The accepting run of 7 is a sequence SgvpS1V1...Vk—15k
where, by definition of &, val; = s;41 for 0 < i < k. Therefore 7 = unzip(vg - ... - Vk—1)
s.t. this sequence is stutter-reduced (again by definition of &;/).

For the other direction, let 7 be an arbitrary unzipped trace segment over A(X) s.t. for all
x € X 7(z) = |7(z)].Then,forallz € X,7(z) = 0¢01...0xs.t.foralli € [0, k — 1]itholds
that o; # 0,41 Let vov1...v,, be a sequence of valuations s.t. 7 = unzip(vovy...v,) (note
that this sequence is unique) and for each two valuations v;,v; 41 for i € [0, m — 1] and
x € X it holds that either v;(z) = # and then v;11(z) = #, or v;(z) # vi11(x). By the
definition of &4, there is a run sgvpS1v1...U;m Sm+1 0f Up and this run is accepting (as any
run of Uy is accepting. O

Example: Universal Stutter-free Automaton

In Fig. 8 below, we depict the universal stutter-free automaton U/x for the set of boolean
variables X = {z,y}.

Definition 7 Let A=(Q, Q, F,¢) be a stutter-free automaton over the set of variables X
with domain X. The completion of A defines the stutter-free automaton complete(A) =
(QUQu, Q, F,0") over the same variables, where (Q;, are the states of the universal stutter-
free automaton I/, and the transition relation is defined as

§ =8Udy U{(qg > ) |if v e (allowedgss(q) \ Aout(q)),q € Q1.

where dy, is the transition relation of the universal left-aligned automaton 4y .
We can now prove that our completion procedure returns an automaton accepting the same
language as the input automaton.

Proposition 15 Let A be a stutter-free automaton. Then, complete(.A) is a complete stutter-
[free automaton with the same language as A, i.e., L(complete(A)) = L(A).

Proof Consider an arbitrary stutter-free automaton .4. Both A and the universal automa-
ton are stutter-free automata, satisfying the stutter-free and termination requirements. To
prove that complete(.A) is a stutter-free automaton, we are only missing to prove that the
extension of the A transition relation (pointing to states in the universal automaton) pre-
serves both requirements. By definition of allowed s, if a variable trace is terminated, it will
remain terminated, so termination is satisfied; and if it is not terminated, we only add the
transitions labeled with values not seen in the incoming and outgoing transitions of a state,
hence it satisfies the stutter-free requirement. We now prove that complete(.A) is complete.
By the definition of universal automaton, it follows that universal automata are complete.
For all non-complete transitions in A (i.e., variables that are not terminated yet), we add the
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NS
HH —

Fig. 8 The universal stutter-free automaton U{%y over the boolean variables {w, y} It accepts all
stutter-free unzipped trace segments over {x, y} All states are both initial and final

missing transition pointing to the matching universal automaton state; hence, complete(.A)
is complete.

Finally, we prove that both automata define the same language. As we kept all A transitions,
it follows that £(complete(.A)) O L(A). We now prove that £(complete(.A)) C L(A).
First, we note that no transition connects states from the universal automaton to states from
A. Then, when a run reaches a state from the universal automaton, all the following steps
are within the universal automaton. Additionally, the final states do not include states from
the universal automaton. Thus, accepting runs include only transitions in .A. O

Finally, to complement a deterministic and complete stutter-free automaton, we just flip
final with non-final states, i.e., the complement of A =(Q, O, F, 8)is A=(Q, 0,0 \ F,9).

Proposition 16 Let A be a deterministic and complete stutter-free automaton over A.

Then, A is a stutter-free automaton and L(A) = (X*)* | \ L(A).

Proof The proof is analogous to the same proof for left-aligned automata. ]
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5.1.1 From formulas of hypernode logic to stutter-free automata

Similar to what we did before for the synchronous fragment, we show how to translate
atomic formulas of the asynchronous fragment of the extended hypernode logic into stutter-
free automata. The translation is basically the same as in the synchronous case, but in the
constructions, we must use the universal stutter-free automaton instead of the left-aligned
universal automaton. Also, we have to stutter-reduce automata for regular expressions, for
which we use a procedure described below. In the subsequent text, we assume an alphabet
A(X,X) and that Uy, the universal stutter-free automaton with alphabet A, is the tuple

(Qus Qu, Quis duy)-

From deterministic finite automata to stutter-free automata

We start by defining how to translate a DFA, A, into an NFA with no stuttering transitions,
Ast, accepting all words that are a stutter-reduction of words accepted by .A. Formally, the
resulting stutter-free NFA should satisfy: £(Ast) =|L(A)]|. The states of the stutter-free
NFA are named using a letter from the domain of A and a set of states from .A. The letter
encodes the label of the incoming transition to the current state, ensuring that no stutter-
ing steps are introduced during the translation. Additionally, we use the auxiliary function
stReach(q, o), defining all states reachable from ¢ only with transitions labeled with o.

Definition 8 The stutter-free NFA induced by the DFA A=(Q, Q, F,0) is
Ast =(2 x 29,2 x Q, % x 27 64 ) where:
5st((0,9),0")={(0",5") | g€ S,0 # 0’ and S’ € stNext(q, ¢')} with

stNext(q, o) ={¢' €stReach(q, o) | 6(¢',0')=¢" and o # o'} U U Ivas
q’ € stReach(q,0)NF

stReach(q, o) ={¢’ | gooqi01 ...0,q is a path of A and V0<i<n o;=0}.
Example: Stutter-reducing DFA
The DFA A in Fig. 9 defines the language £(A) ={pq, pp, pppo}. We will show how to build

its induced stutter-free automaton Ast, which accepts the language £(Ast) ={pq, p, po}.
We start by evaluating the function stReach for each state:

Fig.9 DFA A for stutter-reduction
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stReach s S1 So S3 S4 S5
P {s1,s2,83} {s2,s3} {ss} /)
) 0 0 0 {sa} O 0
q 0 {s5} 0 /I

We look now at the transition relation of Ay, focusing only on the reach-
able states. We start with the initial state, which has only transitions with
p: stNext({s},p) ={{s1, s2, s3}, {s2}}. From the definition of the transition relation,

dst((0, {s}),p) =0st((q, {s}),p) ={(p, {51, 52, 53}), (p, {s2})} while dst((p, {s}),p)=0.

To derive the transitions from (p, {s1, s2, s3}) and (p, {s2}) we first evaluate their stNext:

stNext({s1}),q) = {{s5}} stNext({s1}),0) =0
stNext({s2}),q) = stNext({s2}),0) =0

stNext({s3}),q) =0 stNext({s3}),0) = {{sa}}

As there are no transitions from s4 and s5, we have all we need to draw A, which is
depicted in Fig. 10.

Proposition 17 Let A be a DFA and A be the stutter-free NFA induced from A.
L(Ast) =[L(A)].

Proof We start by observing that by A being a DFA and the construction of Agt, (%) for
all states (o, .5) from A the set S (of states of .A) defines a path in .A with steps con-
nected with transitions labeled with o. This is, there exists a path of A s.t. gqooq10...0¢,
with {qo,...,qn} =S. Moreover, (x*) given a state in the transition function
(¢/,5") €dst((0,5),0"), where S’ is not a single set with a final state, by construction, we
have that there exists ¢’ € S” s.t. stReach(¢’, o) = 5".

We prove £(Ast) C|L(A)] by induction on the size of paths of £(Ast). We explore
the induction case, as it is the most interesting. Consider an arbitrary accepting path of
Ast: (0,50)00(00,51)01 .. (0n—-1,51)0n(0n, Snt1). By the induction hypothesis, we
know there exists a path g\o(qi0} ... 00, _14, of Ast. og...0n_1=|0(...00,_;1] and
q), € Sn. Additionally, we know that after the last occurrence of o,,_o the tail of the path
has only transitions with ¢, 1. Formally, there exists k¥ > 1 s.t. 0y, (r41) =0n—2 and
Ok v Om1 = 07’271. If S,,+1 is not a single set with a final state, let gre € S, be the state
satisfying (+) (i.e., stReach(gpre, 0n) = Sn+1) and gpos € 0(gpre, on). Let path(g, ¢’, o) be
a path defined from ¢ to ¢’ reading only the letter o. Using the induction hypothesis, we can
now define the following path of A: ¢{o(qi0} .. .0}, _,path(q., _s_1:dpre: Tn—1)Tndposs

Fig. 10 Induced stutter-free NFA from .4
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which is a path of A reading a word w € ¢y . .. (¢/,,_,._1) " on. By our induction hypothesis,
|w|]=09...0n. For the case that, S,+1 ={qr} where qr € F', we have that there exists
gpre € Sp s.t. gp € stReach(¢’, o). The rest is analogous.

We sketch the proof for £(Ast) 2| L(A)], which is also done by induction on the size
of paths of £(.A). Given a path of A, qo00q101 . ..0nqn+1, We can define the matching
path in £(Ag) by merging all states connected by the same letter (for example, a path
P S1 D S2 p 3 q becomes p {s1, 52, s3}). We can then match the merged states to states in
Ast with the same letter and possibly a superset of the states of Ag¢ (for example, we match
the previous merged step to the state (p, {s1, s2, s3})). O

Automaton for x(m) Z1
We first create the finite state automaton A| | = (@, Q,F, 0) accepting the language of the
stutter-reduction of the regular expression ¥. Let z, € X be the program variable that instan-
tiates x(7). We define the automaton Ayp< 2, = (Qup U Q#,Q X Qu, Qy UQx,0z.)
where

Qu=Q x{s € Qu|s(zx) # #}and Qy = {s € Qu | s(zx) = #}

0z, is defined as the smallest set s.t.:

1) ifg ¢ €dands 5 s € &y and v(x,) = o, then (¢,8) = (¢, 8') € 8,

2) ifs % s' €6y and s(x,) # # and 8’ (2;) = #, then (¢,5) > &' € 5,

3) ifs 5 s €6y and s(zy) = s'(v5) = #, thens = s’ €4,

Proposition 18 Let A(X, X') be an alphabet, x, a variable from X and 1) a regular expres-
sion over X. 7€ L(Ay< ) iff exists v € X* s.t. T(2x) = u s.t. uwv € [L(Y)] and, for all
variables y € (X \ {z:}), 7(y) € | X*].

Proof The proof is analogous the synchronous case. Because all automata that we use are
stutter-free, all the involved words and unzipped trace segments are stutter-reduced. [

Automaton for ¢ 3 x(m)
We first create the finite state automaton A|v] = (Q, Q,F, 0) as in the previous case.
Let zr € X be the program variable that instantiates x(7). We define the automaton

Ay, wn = (QuUQu, Q X Qu,QF, b, ) where

o Qu=Qx{s€Quls(zx)##}

* Qr=QuU{(gs)€Qylqer}

® . isdefined as the smallest set s.t.:
1) if¢g S ¢ €dands 5 s € 6y and v(x,) = o, then (¢,5) = (¢, 8') € 0.,
2) ifs 55 €dyandq € F, then (q,s) = s €5,
3) ifs 5 s €8y, thens 5 s €6,

Proposition 19 Let A(X, X) be an alphabet, x, a variable from X and 1) a regular expres-
sion over X. 7 € L(Ay < o) iff, exists v € X" s.t. 7(2x) = uv, u € [L(Y)], and, for all
variables y € (X \ {z:}), 7(y) € | X*].
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Proof The proof is analogous the synchronous case. Because all automata that we use are
stutter-free, all the involved words and unzipped trace segments are stutter-reduced. [

Automaton for x(7) Jy(7')

As in the synchronous case, we construct the automaton for a term x(7) Jy(7') by
restricting the (now stutter-free) universal automaton. The automaton A, <,y 1s defined
as A, <, = (Q,Q,Q,5) where Q@ = {s € Qu | s(z) = s(y) or s(z) = #}. The transi-
tion relation is defined by the relation (q,v,q’) € 6 iff (¢,v,q") € &y and v(x) = v(y) or
v(x) = #.

Proposition 20 Let A(X, X) be an alphabet and x and y variables from X. 7 € L(A, < )
iff T(z) < 7(y)andt(z),7(y) € | X*].

Proof The proofis the same as for the synchronous case. Because all trace segments accepted
by the universal stutter-free automaton are stutter-reduced, we also have 7(x), 7(y) € [X*].
O

5.2 Model-checking algorithm

The model checking procedure for the regular asynchronous fragment of hypernode logic
against stutter-free automata is exactly the same as model checking synchronous fragment
against left-aligned automata (Definition 4), except we must do stutter reduction of all
automata that enter the procedure. In particular, the input automaton must be stutter-free and
for building the comparison automata we must use constructions discussed in this section.
The correctness of this model-checking procedure follows from the fact that stutter-free
automata are closed under all operations used in Definition 4.

Theorem 21 Model checking the regular asynchronous fragment of hypernode logic over
stutter-free automata is decidable.

For model-checking asynchronous hypernode logic against an open Kripke structure, we
need to translate it to a NSFA. This cannot be done in general, otherwise we could decide
the model-checking problem for asynchronous hypernode formulas and open Kripke struc-
tures, which is undecidable for this fragment (see Section 3.2). However, given an open
Kripke structure K with the alphabet ©%, we can often find a stutter-reduced automaton
A, recognizing the stutter-reduced unzipped trace segments generated by K. That is, an
NSFA Ag such that:

T € L(Ak) iff 37" € Traces(K, W) s.t. 7(x) = |unzip(7')(z)] for all z € X.  (7)

We call Kripke structures that can be translated into stutter-free automata stutter-reducible
Kripke structures.

Definition 9 A partial computable function S is a stutter reduction function for Kripke struc-
tures iff for all K in its domain it computes a stutter-free automaton A s.t. K and A g satisfy
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condition (7). An open Kripke structure K is stutter-reducible if there exists a stutter reduc-
tion function that has X in its domain.

Assuming the existence of a stutter-reduction function for a particular class of Kripke struc-
tures, the model-checking problem for the regular asynchronous fragment of hypernode
logic becomes solvable for open Kripke structures within this class.

Corollary 22 Assume S is a stutter reduction function for open Kripke structures. If S has
a domain K, then model checking the regular asynchronous fragment of hypernode logic is
decidable for Kripke structures from K.

5.3 From open Kripke structures to stutter-free automata

Unfortunately, it is impossible to decide, in general, if a given Kripke structure can be
transformed into a stutter-free automaton. This claim can be derived from the fact that it is
undecidable if a 2-tape automaton can be synchronized [23]. If were possible, we could first
transform the Kripke structure into a multi-tape automaton, remove stuttering symbols from
transitions (possibly creating copies of states to preserve the language) and then check if we
can synchronize the resulting automaton.

In what follows, we describe several ways in which one can stutter-reduce specific
Kripke structures.

5.3.1 Partial translation of Kripke structures to stutter-free automata

We give a partial algorithm that takes an open Kripke structure and returns an NSFA rec-
ognizing stutter-reduced unzipped paths of the Kripke structure, or it does not terminate
(this case can be turned into a failure by setting a bound on the run of the algorithm as we
suggest later).

The core of the algorithm is translating the Kripke structure into a transducer (i.e., an
automaton with outputs on the transitions). In a nutshell, the transducer reads valuations on
the traces of the Kripke structure, remembers them in the states, and uses the remembered
valuations to output valuations after stutter reduction. If this construction is finite (i.e., it
yields a finite-state transducer) we can derive the goal stutter-free automaton as the projec-
tion to the output of the transducer.

Let K=(WXX AV),(Win,Wous)) be an open Kripke  struc-
ture, W°={w°|we W} be o-marked copies of states W (o as output), and
W# = {w# | w € W} be #-marked copies of states . A transducer is an automaton with
outputs (at this moment not necessarily finite-state) that, in our case, reads valuations from
X and outputs also valuations from %X. We denote a constant valuation v(z) = ¢ for
all z € X simply as ¢, namely for ¢ = € and ¢ = L. A transition of a transducer that reads
a valuation v; and outputs v, is labeled with v;/v,. If v, = €, we write v;/. Assume that
o Z W and L ¢ X. The transducer Tk that outputs stutter-reduced traces of K has states
QC(WuUWeuW#U{e}) x (XX U{L}) x (Z*)% and a transition function & defined
inductively as follows:

1. The initial state go € Q is qo = (e, L,€), and for any initial world w; € Wy,

q = (w;, L,V(w;)) € Qand qg M) q €0.
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2. Ifg= (w#,v,u) € Qwithu # ¢, then ¢ = (w#,umu(ln)) € Qandq ﬂ q €69.

Letg € Q, ¢ = (w,v,v"), and u be an unzipped trace segment s.t. u(x) = [ (v - v')(z)] for
all x € X. Then we have:

3. If Ju(z)| < 2 for some z € X and w € (W UW?). Let z = w if w € W or z is such
that 2° = w € W°. Then forany z - w’ € Aand ¢’ = (w',v,v" - V(w')): ¢ € Q and

qu'Eé.

4. If |u(z)| > 2 for all x € X and w € W, then ¢’ € Q for ¢ = (w'°,u1,u(s.,)) and

g L g

5. Ifw € Wy, thenq € Q forq’ = (w#,ul,um”)) and ¢ ﬂ q €.

Final states of T are (w”,v,¢) € Q. The concatenation of valuations and unzipped trace
segments works as expected variable-wise. For ¢ > 0, the i-th element 7; of an unzipped
trace segment 7 € XX is defined as in Section 6, i.e., it is either 7;(x) = 7(z); if i < |7(z)]
or 7;(x) = # otherwise. The suffix operation 7, is defined as unzip(7;7;41...7;—1) where
7j(x) = # for all z € X (notice that using unzip also has the effect that the # symbols are
removed).

Proposition 23 Given an open Kripke structure K with alphabet 5%, for the transducer T
it holds that T € Traces(K) iff T is accepted by Tk and Tk (7)(z) = |7(z)] forall z € X.

Proof First, we make an obervation (*): when applying rule 3, u gets increased at most by 1
symbol on each variable. Therefore, whenever rule 4 is applied, it cannot be applied again
immediately (from ¢’), because this rule decreases the length of words in u, and initially
these words have a length smaller than 2.

Now, for showing that 7 € Traces(K) iff 7 is accepted by Tk, the output of T is irrel-
evant. We show that the relation R = {(w, (w,v,v")) | w € W} is a weak bisimulation
between K and Tk where we take W °-and T # -states as silent states. Let (w, (w, v,v')) € R.
First, if w is an entry world, then from ¢y we reach (w, L, V(w)) in one step (not passing
non-silent states) and (w, (w, L, V(w))) € R and analogously in the other direction. If w is
an exit world, then from (w, v, v’) we reach a final state (w?, 1, ¢) only through silent states
(rule 5 and then repeated 2).

Now, assume that w — w’ € A. Then, in Tk, we can apply either rule 3 or 4 (or 5,
but this one will not get us anywhere). Assume rule 3. Then there is a direct transition

(w,v,v") RACRIN (w’, -, ) into a related state. If rule 4 applied, then (using observation (*))

rule 3 can be applied again and we have the path: (w, v, v") i> (w°,-,-)) M (w',-, ")
which ends in a related state.

For the reverse simulation, assume that there is a path p from (w, vy, v2) to (w', v}, v})
through only silent states. Then it must have been through a sequence of transitions from
rules 3 and 4 (since after 5 there will be only silent states, and 1 and 2 do not apply). By the
same reasoning as above, we get that path p was built either only by rule 3 or through the
application of rule 3 then 4 and then 3. In both cases, we get that w — w’ € Delta.
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Because there is a weak bisimulation between K and 1T'x on states from W, and T’k reads
the valuation Vw precisely when entering a state (w, -, -), Tk accepts exactly the traces of
K.

We are left to argue that if T accepts a trace 7, the output of T on 7 is a trace 7’ such
that |7(z)] = 7/(z). First, notice that the second element of a state keeps the last valua-
tion that was output. The third one gathers read valuations (rule 3) until rule 4 or 5 can be
applied. If rule 4 was applied, the last output, together with the gathered valuations, has at
least two symbols after stutter reduction on each variable (trace segment u), which means a
new non-stuttering symbol was found on each variable. These symbols are output, and the
rest of the gathered valuations (after variable-wise stutter reduction) are passed to the next
state to be used in the future. In the case of rule 5 that handles final states, Tk outputs w;_.),
(through rule 5 and then rules 2), which are the stutter-reduced gathered valuations (without
the last output) that have not been output yet. O

With the definition of the transducer 7% for an open Kripke structure K, we can define
our translation algorithm:

o Remove self-loops from K by replacing every transition w — w € A by a transition
w — w’ where w’ is a copy of w. That is, we also add transitions w’ — w" for any
transition w — w” (w” # w) and we set V(w') = V(w).

Compute T .
Project T’k to the output automaton (this operation turns a transducer into an automaton
by replacing any label z/y with y).

An example of a transducer Tk for a Kripke structure K is shown in Fig. 11.

Proposition 24 Given an open Kripke structure K, under the condition that T is finite, the
NSFA A as defined above satisfies condition (7).

: E/b )
A 30X3b6 a 5 X0 x:ab
K: - 9 . k) gl . k) :
X:a x:b yia y:ibly:aa
b :
(@) %
X:a x:b
y:b y:a g# x:b .
() >

Fig. 11 An open Kripke structure & with entry world 1 and exit world 3, the transducer 7T’k that com-
putes the stutter reduction of & and the resulting NSFA A i
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Proof Removing self-loops models taking the self-loop just once and it is clear that it does
not change the set of stutter-reduced traces as taking a self-loop once is the same as taking
it any (non-zero) number of times after removing stuttering. The rest follows from Proposi-
tion 23. [J

Example: From Open Kripke Structure to Stutter-free Automata

In practice, we have to put a bound on the computation of T’k as it may be infinite. A
good bound can be limiting the length of u in rules 3—5. Also, notice that the algorithm
is structure-based: when it fails, it does not mean that there does not exists an NSFA that
accepts the stutter-reduced traces of the Kripke structure, but only that this particular Kripke
structure could not be stutter-reduced with this procedure.

One particular type of open Kripke structures that can be stutter-reduced by the algorithm
above are those that generate only finitely-many paths, i.e., acyclic (finite) open Kripke
structures. These Kripke structures still cover many interesting examples of systems like
some one-round cryptographic protocols, or non-recursive multi-party session types [21]. In
model-checking of concurrent systems, it is also common to unroll programs or the transi-
tion relation to obtain acyclic system [5, 17]. This approach is not sound, but it is widely
used to verify a system at least partially rather than not at all in cases where analyzing the
entire system would be infeasible in practice.

5.3.2 Other stutter-reduction functions

Independent Structures To show another situation when we can stutter-reduce a Kripke
structure, consider a case when we know that the Kripke structure corresponds to a com-
position of independently running systems — for example, a network of automata without
synchronization. In such a case, we can create a projection of the Kripke structure to each
variable, stutter-reduce these projections independently (which is always possible as there
is only a single variable), and than compose the Kripke structures back together using the
parallel lock-step composition.

This construction may succeed also when the partial algorithm fails. Consider, for exam-

ple, two systems that can have runs of arbitrary length and that run independently. It is easy
to do their lock-step composition which will be a stutter-free automaton, but if we first
compose them using interleaving composition and then apply the partial algorithm, it will
fail as the interleaving composition will contain also paths where the two system diverge
arbitrarily (e.g., when one runs after the other).
Synchronized Multi-tape Automata To conclude this section, we remark that there exist
an algorithm [24, Theorem 6] to transform an s-synchronized multi-tape automaton (i.e., a
multi-tape automaton where any two reading heads never diverge more than s steps unless
one of them finished reading) to a synchronous multi-tape automaton. If we transform an
open Kripke structure to an automaton and then replace stuttering symbols on transitions
by the empty symbol (meaning read nothing), we get an (asynchronous) multi-tape automa-
ton (it may be necessary to duplicate some states to preserve the language while remov-
ing stuttering symbols). If it happens that this multi-tape automaton is s-synchronized, we
can use the algorithm from [24] to obtain synchronous multi-tape automaton which is also
stutter-free.
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Although we described three ways how to get stutter-free automata from some open
Kripke structures, the class of stutter-reducible Kripke structures is still restricted. In Sec-
tion 6, we argue that hypernode automata mitigate this limitation to some extent.

6 Hypernode automata

Hypernode automata are finite automata where states are labeled with formulas from hyper-
node logic, and transitions are labeled with synchronizing actions.

6.1 Syntax and semantics

Hypernode automata are interpreted over action-labeled traces. Let 4 be a finite set of
actions, 3 be a finite domain disjoint from A (that is, ANX =()) and X a set of program
variables. We denote by A, = A U {e} the set with actions from A together with the empty
label € (e & A).

An action-labeled trace p over actions A and ¥¥ is a finite or infinite sequence of pairs,
each consisting of a valuation and either an action label from 4, or the empty label <. For-
mally, p € (5% x A)* or p € (2% x A.)%. We use (2% x A.)™ to refer to the set with

. . . . def .
finite and infinite traces; that is, (2% x A.)®° = (2% x A.)* U(ZX x A.)¥. We require,
for technical simplicity, that for infinite action-labeled traces, infinitely many labels are non-
empty (and, thus, that every trace segment is finite).

The action sequence act(p) of an action-labeled trace p=(vo, ao)(v1, a1)(ve, az) .. .,
where v; € ¥ and a; € A, for all i > 0, is the projection of the trace to its actions, with all
empty labels € removed; that is, act(p) = agaj . .. with aga ... € ape*aje* ... anda, € A
for all 7 > 0. Given a set of action-labeled traces R C(XX x A.)°, the projection of R with
respect to a finite action sequence p € A* is Rp]|={p€ R|p < act(p)}.

An action-labeled trace property is a set of action-labeled traces. A hypernode automaton

accepts action-labeled trace properties, and thus specifies an action-labeled hyperproperty.

Definition 10 A deterministic, finite Aypernode automaton (HNA) over a set of actions A
and a set of program variables X is a tuple H =(Q, 4, v, ), where @ is a finite set of states
with ¢ € @ being the initial state, the state labeling function -y assigns a closed formula of
hypernode logic over the program variables X to each state in O, and the transition function
0:Q x A— (@ is a total function assigning to each state and action a unique successor
state.

We assume the totality and determinism of the transition function only for the simplic-
ity of the technical presentation. A run of the HNA 7 is a finite or infinite sequence
r=qpao q101 ¢2a2 . . . of alternating hypernodes and actions which starts in the initial
hypernode ¢o = § and follows the transition function, i.e., §(¢q;, a;) = ¢;11 forall ¢ > 0. We
refer to the corresponding sequence p =agajas . .. of actions as the action sequence of r.
Note that each action sequence defines a unique run of H.

Each step in the run of a hypernode automaton defines a new slice on a set of action-
labeled traces. Let R be a set of action-labeled traces, p = apas ... a, be a finite action
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sequence, and p = (v, ap)(v1,a}) ... be an action-labeled trace s.t. p € R[p]. We write
(D, ag) for the initial trace segment of p which ends with the action label ag. Formally,
p(&,a0) = vy . .. v such that aj, = ag, and a}, =€ for all 0 <i < k. Furthermore, we write
p(apas - .. a;,a;41) for the subsequent trace segment of p which ends with the action label
a;+1 after having seen the action sequence aga; . . . a;. Inductively, if:

o plapay ...a;—1,a;) = vy...v where a]_; =a;—1 and aj, =a;,
® a;.q = al, for some m >k, and
o forallk<j<m,d,=¢

then p(apay ... a;,4i4+1) =Vkt1 - .. Uy We extend slicing to sets of action-labeled traces
accordingly:

R(9,a) ={p(D,a) | p€ R} and R[p|(apa; . ..a;, aiy1) ={p(aoa: ...a;,ait1) | p € R[p]}.

Definition 11 Let % =(Q, §,~,9) be an HNA, and R a set of action-labeled traces. Let p
be a finite action sequence in A*. The set R is accepted by H with respect to the action
sequence p = qg . . . Gy, denoted R |=, H, iff for the run goap g1a; ... ¢nan, all slices of
R induced by p are models of the formulas that label the respective hypernodes; that is,

R[p)(&,a0) E v(q0), and R[p](ag - . . ai—1,a;) = v(g;) forall 0 < i < n.

A set R of action-labeled traces is accepted by the HNA H iff for all finite action sequences
pe A*, if R[p] # 0, then R =, H. The language accepted by H is the set of all sets of
action-labeled traces that are accepted by #H, denoted L£(7{). Note that this definition
assumes that all finite and infinite runs of HNA are feasible; such automata are often called
safety automata. Refinements are possible where finite runs must end in final states or, for
example, infinite runs must visit final states infinitely often.

6.2 Model-checking hypernode automata

We study the model-checking problem for hypernode automata over Kripke structures
whose transitions are labeled with actions.

Given a Kripke structure K with a transition relation A, and given a set 4 of actions, an
action labeling for K over A is a function A : A — 24< that assigns a set of action labels
(including possibly the empty label €) to each transition.

A path in the Kripke structure K with action labeling A is a finite or infinite sequence
wWoap wiag waas . .. of alternating worlds and actions which respects both the transition
relation, (w;, w;+1) € A, and the action labeling, a; € A(w;, w;41), for all i > 0. We write
Paths(K, A) for the set of all such paths. The path ¢ =wpag wiay ... defines the action-
labeled trace V(wo)aop V(wi)a; .. .. We write Traces(/, A) for the set of action-labeled
traces defined by paths in Paths(K, A). By Paths(K, A, wg) we denote the set of all paths
in Paths(K, A) that start at the world wy. As before, Traces(K, A, wp) refers to the set of
all action-labeled traces that are defined by paths in Paths(K, A, wy).

We are now ready to formally define the central verification question solved in this paper,
namely, the model-checking problem for specifications given as hypernode automata over
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models given as pointed Kripke structures (i.e., Kripke structures paired with a designated
initial world) with action labeling. The conversion of concurrent programs, such as those
from Section II, into a pointed Kripke structure with action labeling is straightforward; its
formalization is omitted here for space reasons.

Model-checking problem for hypernode automata Let (K, wg) be a pointed Kripke
structure for set of variables X over a finite domain ¥, and let A be an action labeling for K
over a set A of actions disjoint from the domain. Let H be a hypernode automaton over the
same set X of variables, domain ¥ and set A of actions. Is the set of action-labeled traces
generated by (K, A, wo) accepted by H; that is, Traces(K, A, wg) € L(H)?

Model-checking hypernode automata requires slicing the model according to its action-
labeled steps and matching the slices to their respective hypernode specification. We intro-
duce the slicing of a pointed Kripke structure (K, A, wg) with action labeling A, as a finite
automaton, called Slice(K, A, wp). We then solve the model-checking problem by compos-
ing the slicing of our model, (K, A, wy), with the specification automaton, H, and checking
whether the result, Join(#, K, A, wy), is non-empty. In a nutshell, the composite automaton
accepts all sequences of actions that witness a violation of the specification of the hypernode
automaton by the Kripke structure and action label given as a model. We depict an overview
of the model-checking algorithm in Fig. 12.

We start by defining the slicing of a given Kripke structure K =(W, X, A, V) and
action labeling A. The building blocks of this slicing are Kripke substructures induced
by a subset of the transition relation in the input model for the model-checking algo-
rithm. Formally, for a Kripke structure K =(W, X, A, V') and action labeling A, the sub-
structure induced by a transition relation A" C A is K[A'|=(W', X, A, V|w), where

Pointed Kripke Structure Action labelling Hypernode Automaton
- X
[1\ =W, 2%, 4A,V) ] [A:A 5 A ] [H =(Q.4.7.9) ]
wo € w

Slicing of K w.r.t A

[snce(K, A, wo) =(Q,0,6) 1
Lemma 25:

For a run Woag - - - W,,a,, of Slice(K, A, wy):

Paths(W;) = Paths(K, A, wo)(ag . . . a;—1, a;), for i < n.

Model-check slices against hypernodes

(Join(?’-lf7 K, A, w) ]

Theorem 26:
Traces(K, A, wo) € L(H) iff L(Join(H, A, wg))=10.

Fig. 12 Model-checking algorithm for hypernode automata with relevant results
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W' = {w](w,w") € Aor (w',w) €A’ for some w' € W} and V]|p : (W' x X =)
s.t., for all worlds w € W/, V] (w) = V(w).

We are interested in open sub-structures that, starting from a given entry set of worlds,
include all transitions required to reach the next transition labeled with action a, using only
transitions labeled with the empty action. The transition relation defined by all transitions
in a path of the action-labeled Kripke structure (K, A) from a world in Wiy, to the first step
labeled with action a € A is defined as:

(K, A, Win) La={(w;, wj41) | wee. . wp_1€ wpa € Paths(K, A), wy € Win and j <n}.

Once we have all transitions from a given initial set of worlds to the next step
labeled with action a, we can straightforwardly define the open substructure
induced by (K,A,Wiy)|a, which we denote by K[(K,A, Wi,)|a]. Formally,
K[(K, A, Win) | a] = (Kg, (Win, Wout)) where K, = K[(K,A,Wiy)|a] and the set
Wous = {w | (w',w) € (K,A, Win) |a and (w,w”) € Ast. a € A(w,w”)}  contains
all possible exit points with action a.

We define now the finite automaton Slice(K, A, wp) encoding all possible slicings
of the pointed action-labeled Kripke structure (K, A, wp). The states of the automaton
Slice( K, A, wy) are all open substructures induced by paths from any set of entry worlds to
the next step with a matching action a € A. Then, the transition relation of Slice( K, A, wq)
connects, for all actions a, open substructures where the exit worlds of the source open
structure can transition with action a (in the original Kripke structure) to the entry worlds
of the target structure.

Definition 12 Let (K, wg) be a pointed Kripke structure with worlds W, and let A be an
action labeling for K with actions A. The slicing Slice(X, A, wp) =(Q, (), J) is a finite
automaton where:

o Q={K[(K,A,Wi)la]|acAand W;, CW} is a set of states and
Q= {(K, ({wo}, Wout)) € Q | Wour C W} is the set of initial states;

o §:Q x A— Qisatransition function s.t. 6 (K, (Win, Wout)), @) =(K', (W, Wi))
iff:

— (K, (Win, Wout)) exits with action a, that is, for all w € Wy there exists w’ € W
such that a € A(w, w'); and

— the set of entry worlds W/, define a maximal subset of the worlds accessible with
action a from the exit worlds in W; that is, for all (K", (W, W/, ,)) € Q that are
different from (K, (W, W/ )):

if Wl C{w]|a € Aw',w) for some w’' € Wy}, then Wi, € W/.
We remark that, for all open Kripke structures K and actions a, there is a unique maximal set
of worlds accessible from the exit worlds of K through a transition labeled with a. Note that,

for every open Kripke substructure defined as K[(K, A, Wiy) | a]) and K[(K, A, W/ ) | a],
their union defines K[(X, A, Wi, U W/) | a], which is a state of the slicing.
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We prove, in Lemma 25 below, that every finite action sequence p defines a unique path
in this automaton, and the slices in each path contain the same trace segments as the traces
derived from the action-labeled Kripke structure with action pattern p.

Lemma 25 Let (K, wy) be a pointed Kripke structure, and A an action labeling for K with
actions A. For every finite action sequence p=ay . . . ap, in A*, if Traces(K, A, wp)[p] # 0,
then p defines a unique run Ky ay - - - K, a,, of Slice( K, A, wy) such that for all 0 < i < n,
Paths(K;) =Paths(K, A, wyp)(ag - .. a;i—1, a;).

Proof Consider an arbitrary Kripke structure K =(W, X% A V), world wy € K and
action labeling A : (W x A) — W. From the transition function of Slice(A (K, wo)) being
deterministic, it follows that all action sequences p € A* in (K, wq) with labeling A, i.e.
Traces(A(K, wg))[p] # 0, define a unique path in Slice(A (K, wo)).

We still need to prove that paths defined by a slice are the same as slicing the paths
generated by A(K,wp), which we prove by induction on the size of the sequence. For
the base case, for all sequence actions of size 1, ag, the induced path in Slice(A (K, wp))
is Ko, then we need to prove that Paths(Kq) = Paths(A(K))(2, ag). By Definition 12,
Paths(Ko) = Paths((K[(K, {wo}) | ao])). And, by definition open substructure induced
by a, Paths(K[(K, {wo}) | ao]) = {wo. . .wy, | (wo, €). . .(wn—_1,&)(wy,ap) €Paths(K)}.
Thus, Paths(K[(K, {wo}) | ag]) = Paths(A(K))(2, ao).

Now for the induction step, we assume as induction hypothesis (IH) that
the statement holds for sequences of size n. Consider now a sequence of size
n+1, ag...a,. By IH, we know that Paths(K;) = Paths(A(K))(ao ... a;—1, a;) for all
0 < ¢ < n. We are only missing to prove that Paths(K,,) = Paths(A(K))(ao ... an—1,an).
By IH, we know that Paths(KK,,_1) and Paths(A(K))(ag ... an—2,a,—1) have the same
terminal states. Then, it follows that Paths(K,) and Paths(A(K))(ao...an—1,an)
have the same initial states Wi,. And, from an analogous reasoning from the base case,
Paths(K,,) = Paths(K[(K, Wiy) | a,,]) = Paths(A(K))(ag ... an—1,a,) O

The final step in the model-checking procedure is the synchronous composition of the
slicing automaton (derived from our model) with the hypernode automaton given as our
specification. Naturally, the states of this composition are pairs of open Kripke substructures
and hypernode logic formulas. Our goal is to reduce the model-checking problem to check
if the composite automaton is non-empty. In particular, we say that the Kripke structure is
not a model of the specification automaton H, if we can reach a final state in the composite
automaton. For this reason, in the composition defined below, the final states are all the
states defined by a pair with an open Kripke substructure that is not a model of its paired
hypernode formula.

Definition 13 Let H=(Qn,q,7,0n) be a hypernode automaton. The inter-

section of H with the slicing of a pointed, action-labeled Kripke struc-
ture (K, A,wg), Slice(K,A wy)=(Qs,Qs, Fs,5), 1is the finite automaton
Join(H, K, A, we)=(Q, Q, F, A, ) where:

o Q={(K,q)|KeQs,q€Qnand WE~(q)} U{(K,7) |[K€Qs,q€ Qs and KEy(q)}
is the set of states;
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initial state Q = {(K,§) €Q | K€ Q,} U{(K,§) €Q | Ke Q. };
final state I = {(K,q) | (K,g) € Q}; and
transition function 0:Q x A — @, where for all (K,q) €@, we have

5((K,q),a) ={(K',¢") € Q15(q) = (¢, a) and K’ € 6(W, a)}.

The finite automaton Join(H, K, A, wy) reads sequences of actions. We define its runs and
accepting runs as usual. The language of the automaton is empty, if there are no accepting
runs.

Theorem 26 Let (K, wy) be a pointed Kripke structure with action labeling A. Let H be
a hypernode automaton over the same set of propositions and actions as (K, A). Then,
Traces(K, A, wy) € L(H) iff the language of the finite automaton Join(H, K, A, wy) is
empty.

Proof Consider arbitrary K = (W, %% A V) over a domain A, a world wy € W and a
action labeling A : (W x A)—WW. We want to prove that Traces(A(K, wy)) ¢ L(H) iff
L(Join(H, A(K,wp))) # 0.

Traces(A(K,wo)) ¢ L(H) iff there exists a sequence of  actions
p=ap...a, that is in Traces(A(K,wp)), i.e. Traces(A(K,wp))[p]# 0, and
Traces(A(K, wo))[p] = H[p]. Wlog, we can assume that only the last slice does not satisfy
the corresponding node in . Let H[p] = qoao - - - ¢nan. Then, Traces(A(K, wo))[p] ¥ H[p]
if (%) for all 0<j<mn, Traces(A(K,wo))(ao...a;j—1,a;)=¢q; while
Traces(A(K,wp))(ag ...an-1,an) = ¢o. By Lemma 25, Traces(A(K,wo))[p] # 0
defines a unique path in Slice(A(K,wy)), Koao ... K,a, that preserves the path slicing
defined by A(K,wy). Thus, from (%), definition of Join(H, A(K,wy)) and Lemma 25,
(Ko, go)ag - - - (Ky, G )ay, defines an accepting runin Join(H, A(K, wo)). Note that (K,,, G, )
is in Join(#H, A(K, wp)) (and it is final) because Traces(A(K,wg))(ag - - . Gn-1,an) = qn-

O

Theorem 27 Let (K, wy) be a pointed Kripke structure over the set of variables X and
domain X, let A be an action labeling for K over a set A of actions disjoint from the
domain, and let H be a hypernode automaton over the same set X of variables, domain
X and set A of actions. Let Join(H, K, A, wy) = (Q, Q,F, A, 0) be the intersection of
the Kripke structure (K, wy) and the hypernode automaton H w.r.t the action labeling A.
The model checking problem defined over (K, wy), A and H. is decidable if, for all states
(K, q) € Qor (K,q) € Q in Join(H, K, A, wy) (for some open Kripke structure K and
state q of H) that are reachable from the initial states in Q, it is decidable to decide whether
K is a model of 7(q), where +y is the state labeling function in H.

We observe that by combining the theorem above with Theorem 12, which establishes
decidability for regular synchronous hypernode formulas, and Theorem 21, which does the
same for stutter-reducible Kripke structures and regular asynchronous hypernode formu-
las, we obtain decidability for hypernode automata and Kripke structures whose intersec-
tion involves hypernode formulas and open Kripke structures lying within these decidable
fragments.
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6.3 Models of asynchronous systems

As discussed previously, for model-checking asynchronous hypernode logic, we need to
translate an open Kripke structure to an NSFA, which cannot be done in general. Fortu-
nately, when model-checking hypernode automata, formulas from nodes are model-checked
against the slices of the Kripke structure, not against the Kripke structure itself, and
oftentimes the slices define stutter-reducible Kripke structures. Moreover, for hypernode
automata that mix synchronous and asynchronous nodes, we need only the slices that are
model-checked against asynchronous hypernode logic to be stutter-reducible. Therefore,
the Kripke structure that we model-check with a hypernode automaton can be arbitrary as
long as the automaton breaks it down into slices that can be model-checked by particular
hypernodes.

For example, consider the program in Fig. 2. We know that the system supports two com-
munication modes (synchronous and asynchronous), and we can precisely determine when
a mode change occurs, since each transition is triggered by a specific action. Given that
the hypernode automaton partitions the Kripke structure derived from the program accord-
ing to the mode-switch actions, the slice associated with asynchronous communication is
stutter-reducible. This is because, in asynchronous mode, updates to program variables are
independent of one another. This slice is shown in Fig. 13.

Example: A Slice of a Kripke Structure

Figure 13 shows the Kripke structure for the asynchronous part of the program in Fig. 2. The
example assumes that the variables are boolean, and the server function S is implemented as
S(z,0)=1,5(z,1) =1,5(y,0) =0,5(y,1) = 1.

In the rest of this section, we discuss several models from the literature defining Kripke

structures that are suitable for model checking against hypernode automata with asynchro-
nous hypernodes.
Multiparty session types [22] describe the behavior of parties (components, agents) with
respect to communication. For example, the following global type (a type describing the
communication from the point of an external observer) is a variation on the classical two-
buyer protocol [22]:

e A e 7 s 7 e R
in: e inl e in® : e inl e
x :0 x :0 b d 1 b d 1

01 D _ 0

\y J \y J \y J \y J

e 7 s 7 s R e R
in: e inl: e inl e inl e
b d 0 b d _ X b'e 1

1 0

\y J \y J \y J \y J

Fig. 13 Open acyclic Kripke structure for the asynchronous part of the program in Fig. 2
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b —s:buy.t
. b — s:decline. t
b — s: query.s — b: price. + b — s decline. t

b —s:buy.t

pt. + b — a:assess.a — b: price. +{

b — s: done.

The protocol describes a communication between a seller (s), buyer (b), and a person who
can assess (a) the value of goods. The buyer sends a query about an item and the seller
responds with price. Then the buyer can choose to directly buy or decline the item, or asks
a to assess the price and buy or decline after that. The whole protocol then repeats via the
recursion variable ¢ and the least fixpoint operator x4 until the buyer notifies the seller that
the interaction is done.

Each multiparty session type can be represented by a communicating automaton [10]
with a special structure — it has a tree-like shape with possible transitions from leaves to the
root state (corresponding to recursion) [30]. Therefore, multiparty session types perfectly
fit HNAs where actions coincide with the recursive transitions: slices are one round of the
protocol, which yields an acyclic Kripke structure that we can stutter-reduce. Note that
HNAs do not need to be single-state in this case. We may be interested in specifying differ-
ent properties in different rounds of the protocol.

Communicating sequential processes (CSP) [20] is a process algebra where processes
communicate through a synchronous handshake on a specified set of events. That is, a pro-
cess can proceed with a synchronized event if all other processes (that synchronize over this
event too) also proceed with this event. Processes proceed independently of all other events
(i.e., they interleave).

The scenario when all processes synchronize on the same set of events is a good fit for
HNAs: all processes run independently until they all synchronize (if they do not run inde-
pendently forever) and they repeat this pattern until they terminate (if they terminate). It is
straightforward to see that if we take the synchronization events as actions for an HNA, then
the nodes of this HNA will analyze sub-structures where the processes progress indepen-
dently. In the previous section, we saw that we can translate such (possibly cyclic) sub-struc-
tures into stutter-free automata and therefore model-check with asynchronous hypernodes.

Note that the situation is analogous for asynchronous finite automata [35] (also called
network of automata [16] with asynchronous product, which is sometimes called the mixed
product [26]) provided that all automata synchronize on the same set of events. Similarly,
one can also compose Mealy machines using asynchronous product [29].

We close this section with the observation that situations where multiple systems run
independently between synchronization points arise frequently, and, for these cases, it may
be possible to directly derive stutter-free automata for asynchronous nodes in HNAs. In
addition to the two examples explored above, parallelization libraries may execute a piece
of code for different inputs by independent threads, and synchronization takes place only
after all threads finish (this is, e.g., the default mode of parallelizing loops with OpenMP
[27]). Other examples can be found in sessions in a web browser (where there is no synchro-
nization), robots performing a distributed task, synchronizing once sub-tasks were done,
blockchain miners that mine independently, synchronizing on the publication of a new
block, voting protocols, divide-and-conquer algorithms, and so on.
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7 Related work

The first general approaches to reason about hyperproperties [15] (like HyperLTL) adopted
semantic interpretations with synchronous analysis of trace sets, evaluating temporal
modalities in lock-step over the traces currently assigned to the trace variables. As proved
in [3] HyperLTL cannot express asynchronous transition of specification states, which is an
example of an asynchronous hyperproperty. This intrinsic limitation to synchronous traces’
traversal hinders the applicability of such approaches to reason about security properties in
real-world systems. Recently, many formalisms have been presented to address this limita-
tion, which we will introduce next. The general problem of model-checking asynchronous
hyperproperties turned out to be highly undecidable [19].

The first logic studied to express asynchronous hyperproperties was hyper p-calculus
[19], called Hu. It extends the linear-time p-calculus [32] by adding explicit quantifica-
tion over traces and annotating propositional variables with trace variables (in a similar
fashion as done for LTL by HyperLTL). Additionally, the next operator is parameterized by
a trace variable, specifying which trace variable progresses one step at that point of the for-
mula evaluation, thus supporting an asynchronous analysis of traces. In the same paper, the
authors introduce the parity multi-tape Alternating Asynchronous Word Automata (AAWA),
which they prove to be expressively equivalent to trace-quantifier free formulas of Hy.

Both Hpe and AAWA turned out to have highly undecidable model-checking problems
[19]. The undecidability of model-checking asynchronous hyperproperties is often caused
by the interaction of having to compare time positions that are arbitrarily far apart with the
possibility for an unbounded number of traces. In [19], the authors introduce two semantic
fragments of Hy, each limiting one of the two sources of unboundedness. The k-synchro-
nous fragment imposes a distance up to k between positions of any traces being compared.
In contrast, the k-context-bound requires the traces to be partitioned in at most k contexts
(traces in the same context progress synchronously). In comparison, with hypernode autom-
ata, we achieve decidability by entirely different means: we decouple the asynchronous
progress of program variables, while allowing resynchronization through automaton-level
transitions. The synchronization feature reduces the problem of model-checking asynchro-
nous hyperproperties (which may define sets of infinite traces) to the problem of model-
checking sequences of sets of finite traces.

Example: Side note: Relative Expressiveness

As for HyperLTL formulas, the trace quantifiers always precede time operators in Hy for-
mulas. Hypernode automata, however, allow a restricted form of quantifier alternation
between time operators and trace quantifiers by mixing automata and logic in the same for-
malism. Earlier in this document, and in [3], we showed that a change in the order between
trace and time quantifiers proved to be problematic for HyperLTL, turning a hyperproperty
that can be expressed in HyperLTL to not be expressible with a HyperLTL formula anymore.

Inspired by the insights of that result, we conjecture that Hu and hypernode automata
have incomparable expressive power and support our claim with the hypernode automaton
in Fig. 14. The hypernode automaton specifies that the asynchronous progress of a proposi-
tional variable p is fully described by a finite trace 7 within each slice induced by a repeated
action a.
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~ Gt pla sp@ 4

Fig. 14 Hypernode automaton specifying that within each slice of a trace set induced by observing action
a, there exists a trace in each slice that describes the progress of the propositional variable p in the slice

We observe that each new slice induced by observing the action a may have a different
trace 7 assigned to the trace variable m, witnessing the asynchronous progress of p, with
the length of the traces in each slice being finite but unbounded. Additionally, as there is
no bound on how many times we will observe the action a, the number of slices is also
unbounded. This means that we do not have a bound on the number of outermost existential
trace quantifiers that would be necessary for the Hy formula to guarantee we can have a
different trace witness for each slice in any set of traces.

An alternative approach to specifying asynchronous hyperproperties is to enrich
HyperLTL with asynchronous reasoning. Stuttering HyperLTL (HyperLTLg) and context
HyperLTL (HyperLTL), both introduced in [6], extend HyperLTL with new asynchro-
nous operators; while, Asynchronous HyperLTL (A-HyperLTL) [1] adds quantifiers over
trajectories mapping at each step which traces progress (the others will stutter). Stutter-
ing HyperLTL introduces annotation of temporal operators with LTL formulas, describing
indistinguishable time sequences (i.e., a sequence is indistinguishable as long as the LTL
formula valuation does not change). Then, the next time considered while evaluating a stut-
tering HyperLTL formula over a set of traces is when the valuation of the annotated LTL
formula changes its value, introducing asynchronous traversal of traces. Context Hyper-
LTL follows a different route: it includes a unary modality parameterized by a set of trace
variables, called context. Traces within a context progress together, while traces outside a
context stutter. Asynchronous HyperLTL introduces a new type of quantification (instead of
a new operator like in the previous two formalisms), which, together with trace quantifiers,
must occur before any temporal formula. In particular, A-HLTL adds quantification over
trajectories, which are sequences of sets of trace variables, with each step defining the set
of trace variables progressing in that step with all the other variables stuttering. Following
similar strategies as done for Hy, the authors presented fragments with decidable model-
checking for all the HyperLTL extensions mentioned above.

Bozelli et al. studied in [7] the relative expressiveness of all the mentioned formal-
isms and proved that all of them are subsumed by Hy [7]. Due to trace-related quantifiers
always preceding time quantification in all formalisms above, we conjecture that there are
hyperproperties that hypernode automata can specify while Hyu can not. Hence, hypernode
automata are not subsumed by Hy and, due to the results in [7], the same holds for all the
asynchronous HyperLTL extensions. We elaborate on this point in the Side Note: Relative
Expressiveness above.

More recently, Beutner et al. introduced an extension of HyperLTL with second-order
quantification, called Hyper?LTL [4]. First-order quantifiers in Hyper?LTL assign traces to
trace variables (as in HyperLTL), while second-order quantifiers range over sets of traces.
The full Hyper?LTL (i.e., second-order quantifiers ranging over all possible trace sets) has
a highly-undecidable model-checking problem [4]. To remedy this problem, they introduce
Hyper? LTLg, where sets are constrained to satisfy given minimality or maximality require-
ments. From this fragment, they presented an algorithm to approximate solutions to the
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model-checking problem for the case where the only constraints allowed are minimality
and guards induce least-fixed points. Hypernode automata reasoning is at the first-order
level. This means that, while model-checking hypernode formulas, we only care about the
set of traces generated by the model, and we do not need to reason about sets of possible
trace sets to check for asynchronous properties. Hence, the Hyper? LTL approach is, in this
sense, more general than hypernode automata. However, for the same reason as in previous
HyperLTL extensions, we conjecture that there are hypernode specifications that Hyper?
LTL cannot express.

In the team semantics reinterpretations of LTL presented by Krebs et al. [25], the
authors introduced an asynchronous variant. However, they prove that the asynchronous
team semantics of LTL is subsumed by universal HyperLTL. (where all trace quantifiers
are universal quantifiers). Hence, this is not a suitable formalism to express asynchronous
hyperproperties.

8 Conclusion

In this paper, we introduced hypernode automata to specify hyperproperties on systems that
can exhibit both synchronous and asynchronous executions. At the top level of our formal-
ism, we have an automaton structure synchronizing transitions between different specifica-
tion nodes. By using actions to synchronize traces, we enable the analysis of trace segments
of varying lengths (as actions may occur at any point in each trace). At the node level, we
support both synchronous or asynchronous formulas of hypernode logic, effectively allow-
ing to specify a rich set of specifications. We observe that the logic used within hyper-
nodes need not be limited to hypernode logic. Our model-checking algorithm for hypernode
automata seamlessly supports the use of other specification logics within hypernodes, such
as HyperLTL.

Numerous additional topics arise directly from this work, which, though straightforward,
require further investigation. These include the study of hypernode automata with partial
and nondeterministic transition relations and those with infinitary acceptance conditions
(e.g., hypernode Biichi automata). Additionally, it will be interesting to compare the expres-
siveness between different formalisms to specify asynchronous hyperproperties and hyper-
node automata. Finally, it is also interesting to explore further which other models may be
adequate to reason about asynchronous hyperproperties.
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