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Coarse and bi-Lipschitz embeddability of subspaces
of the Gromov-Hausdorff space into Hilbert spaces

NICOLO ZAVA

We discuss the embeddability of subspaces of the Gromov—Hausdorff space, which consists of isometry
classes of compact metric spaces endowed with the Gromov—Hausdorff distance, into Hilbert spaces.
These embeddings are particularly valuable for applications to topological data analysis. We prove that its
subspace consisting of metric spaces with at most 7 points has asymptotic dimension n(n — 1)/2. Thus,
there exists a coarse embedding of that space into a Hilbert space. On the contrary, if the number of
points is not bounded, then the subspace cannot be coarsely embedded into any uniformly convex Banach
space and so, in particular, into any Hilbert space. Furthermore, we prove that, even if we restrict to finite
metric spaces whose diameter is bounded by some constant, the subspace still cannot be bi-Lipschitz
embedded into any finite-dimensional Hilbert space. We obtain both nonembeddability results by finding
obstructions to coarse and bi-Lipschitz embeddings in families of isometry classes of finite subsets of the
real line endowed with the Euclidean—Hausdorff distance.

46B85, 51F30; 54B20

1 Introduction

The Gromov—Hausdorff distance dgy measures how two metric spaces resemble each other. It was
introduced by Edwards in [27], and then rediscovered and generalised by Gromov [31]. Until around
2000, the Gromov—Hausdorff distance had been mainly used by pure mathematicians who were interested
in the induced topology. That direction is still of great interest, and, as an example, we mention the two
recent papers [3; 4].

In addition to the intrinsic interest in it, a great impulse to study the quantitative aspects of the Gromov—
Hausdorff distance came from its applications in topological data analysis, which is a fast-growing subject
aiming to use topological techniques to analyse a wide range of real-world data (see, for example, [13; 33],
and [30] for a growing dataset of real-world applications). The Gromov—Hausdorff distance provides
a theoretical framework to directly compare point clouds by considering them as metric spaces. This
approach proved to be useful in shape recognition and comparison [43; 46; 47], which arises, for example,
in molecular biology, databases of objects, face recognition and matching of articulated objects.

Comparing two metric spaces using the Gromov—Hausdorff distance directly is computationally expensive.
Even approximating it within a factor of 3 for trees with unit edge length is NP-hard ([2; 59]; see also [43],
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5154 Nicolo Zava

where the author discussed the connection between computing the Gromov—Hausdorff distance and a
class of NP-hard problems). Therefore, creating efficiently computable invariants to approximate the
Gromov—Hausdorff distance is of particular interest. Following [45], an invariant Y associates to a
metric space X an element ¥ (X') of another metric space (2), dy) in such a way that, if X and Y are
two isometric metric spaces, then ¥ (X) = ¢ (Y). Furthermore, an invariant { is stable if there exists a
function p4+: R>¢ — R>( such that

(1 dy(Y(X), ¥(Y)) = p+(den(X. Y))

for every pair of metric spaces X and Y. Stability implies that small perturbations of the metric spaces
have a limited effect on the associated invariants. Therefore, considering similarity recognition, we avoid
false negatives, which are situations where two metric spaces are very similar in the Gromov—-Hausdorff
distance, but their invariants are far apart. Furthermore, stable invariants can be used to provide lower
bounds to the Gromov—Hausdorff distance as shown in [45]. We refer to the latter paper for a wide range
of stable invariants. Additional examples are hierarchical clustering [14; 15] and persistence diagrams
induced by the Vietoris—Rips, the Dowker, and the Cech filtrations ([17; 18]; see also [25] for details and
applications of persistent homology).

In contrast to false negatives, even though still undesirable, it is often acceptable when an invariant
produces false positives, where two dissimilar spaces are mapped to close values. In this paper, we study
when stable invariants are actually bound to lose information because of the unavoidable creation of false
positives. We focus our study on those invariants taking values in a Hilbert space. Those are particularly
relevant for the applications in machine learning pipelines since many algorithms expect either data in the
form of Euclidean vectors or at least access to a so-called feature map into a Hilbert space. As formally
stated in the sequel, we prove that the existence of a stable invariant avoiding false positives strongly
depends on a bound on the cardinality of the metric spaces.

Our approach to the problem requires notions and techniques from coarse geometry. Intuitively, this field,
also known as large-scale geometry, focuses on large-scale, global properties of spaces ignoring local
features. We refer to [52; 58] for a wide introduction. A map ¥ : (X, dx) — (Y, dy) between two metric
spaces is said to be a coarse embedding if there exist two maps p—, p+: R>¢9 — R>¢ such that p_ — oo
and, for every x,y € X,

2 p—(dx (x.y)) = dy (Y (x). ¥ (»)) = p+(dx (x. y)).

In the case of stable invariants, ie, satisfying (1), a lower bound as in (2) prevents false positives since the
larger the Gromov—Hausdorff distance, the larger the distance between the two associated invariants.

Coarse embeddings have been introduced by Gromov and extensively studied in coarse geometry. A
crucial application of this theory is due to Yu, who proved in [65] that those metric spaces that can be
coarsely embedded into a Hilbert space satisfy the Novikov and the coarse Baum—Connes conjectures
generalising results contained in [64]. This result motivated two research directions. On one hand, since
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an explicit coarse embedding can be hard to construct, a plethora of conditions ensuring its existence have
been defined and investigated. We refer the interested reader to [52] for a discussion on the topic and
to [63] for more examples. Among these properties, if a space has finite asymptotic dimension, then it can
be coarsely embedded into a Hilbert space [34; 65]. Asymptotic dimension is a large-scale counterpart of
Lebesgue’s covering dimension introduced in [32] (see also [7]). On the other hand, examples of metric
spaces that cannot be coarsely embedded were constructed, for example, in [22; 39]. Showing that one of
those pathological examples can be coarsely embedded into a metric space X is a technique to prove
that X itself cannot be coarsely embedded into any Hilbert space.

Those two strategies have been adopted to prove if metric spaces emerging in different fields can be coarsely
embedded into Hilbert spaces. In topological data analysis, collections of persistence diagrams endowed
with various metrics represent a prominent example. It was proved in [48] that the space of persistence
diagrams of at most n points endowed with the Hausdorff distance has finite asymptotic dimension, and
so it can be coarsely embedded into a Hilbert space. This result, despite being nonconstructive, motivated
further research in that direction that eventually led to explicit bi-Lipschitz and coarse embeddings in [6]
and [49], respectively. In the opposite direction, it was proved in [11; 48; 62] that spaces of persistence
diagrams with various metrics cannot be coarsely embedded into any Hilbert space. We also refer to [55],
where the authors showed the equivalence of this problem with the embeddability of Wasserstein spaces.

Another example can be found in [29]. Motivated by the interest in invariants in crystallography and
pharmaceutics (see [26]), the authors used the previously described strategy to prove that spaces of
periodic point sets equipped with the Euclidean bottleneck distance cannot be coarsely embedded into any
uniformly convex Banach space. The constructions used in that paper are adapted from those developed
in [63] to prove the analogous noncoarse embeddability results for families of finite subsets of metric

spaces endowed with the Hausdorff distance.

In this paper, we prove the following results.

Theorem A The space GH=" of isometry classes of metric spaces with at most n points endowed with
the Gromov—Hausdorff distance has asymptotic dimension n(n—1)/2, and so it can be coarsely embedded

into a Hilbert space.

Theorem B The space GH =% of isometry classes of finite metric spaces endowed with the Gromov—
Hausdortf distance cannot be coarsely embedded into any uniformly convex Banach space, and so, in
particular, into any Hilbert space.

As an immediate consequence of Theorem B, the same result holds for the Gromov—Hausdorff space GH,
which is the metric space of isometry classes of compact metric spaces equipped with the Gromov—
Hausdorff distance. In the paper, we prove a stronger version of Theorem B stating that already the much
smaller subspace of GH =% consisting of all isometry classes of finite subsets of the real line cannot be
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coarsely embedded into any uniformly convex Banach space (Theorem 4.2). Thanks to a recent result due
to Majhi, Vitter and Wenk [42], Theorem 4.2, and therefore also Theorem B, will follow from the fact
that an obstruction to coarse embeddability is found in the space of isometry classes of finite subsets of
the real line endowed with the Euclidean—Hausdorff distance (a modification of the Gromov—Hausdorff
distance for subsets of R ).

We conclude the paper focussing on the subspace G % of GH=® whose elements have diameter bounded
by a constant R > 0. Since the diameter of this subsI;ace is bounded, the map collapsing the space into a
point is trivially a coarse embedding. An immediate follow-up question is whether it can be bi-Lipschitz em-
bedded, as in the case of persistence diagrams with at most # points. We provide a partial negative answer.

Theorem C Q’HE“IQ cannot be bi-Lipschitz embedded into any finite-dimensional Hilbert space.

Inspired by [16], where the authors proved that certain spaces of persistence diagrams cannot be bi-
Lipschitz embedded into any finite-dimensional Hilbert space, we compute the Assouad dimension
([5]; see also [10] for an earlier definition) of g?—[:‘ﬁ, and show that it is infinite. This dimension
notion was in fact introduced to provide such embedd_ability obstructions. More precisely, we show that
already the subset consisting of all isometry classes of finite subsets of an interval has infinite Assouad
dimension and cannot be bi-Lipschitz embedded into any finite-dimensional Hilbert space. Again, using
the aforementioned Majhi, Vitter and Wenk’s theorem, we deduce our claims from the analogous results
for the space of isometry classes of finite subsets of an interval endowed with the Euclidean—Hausdorff
distance (Theorem 5.1 and Proposition 5.3).

The paper is organised as follows. In Section 2 we provide the needed background regarding the Gromov—
and the Euclidean-Hausdorff distances. In Section 3, the asymptotic dimension is introduced and
Theorem A is proved. Theorem B is shown in Section 4, and, finally, we define the Assouad dimension
and provide Theorem C in Section 5. We conclude the paper discussing a list of questions in Section 5.1.

Acknowledgements The author was supported by the FWF Grant, Project number 14245-N35. The
author would like to thank Thomas Weighill for the helpful discussions around Theorem 3.10, and
Takamitsu Yamauchi for bringing to my attention the fundamental reference [35]. Furthermore, the author
is thankful for the detailed and helpful comments of the reviewer of this manuscript.

Notation We denote by N, Q and R the set of natural numbers including 0, the set of rational numbers,
and the set of real numbers, respectively. For ¢ € R, we also write

Rye={xeR|x>c¢} and R.,={xeR|x>c}.

For a set X, we denote by | X| its cardinality. Moreover, for n € N, we define the following subsets of
the power set of X:

(X" ={Acx||4=n}. [XF"= ™ @170 = Ju
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2 The Gromov-Hausdorff distance and the Euclidean—Hausdorff distance

‘We recall some basic notions, the definitions of the Gromov—Hausdorff and the Euclidean—-Hausdorff
distances and their relationships. We refer to [12; 44; 45; 54; 61] for comprehensive discussions on the
Gromov—Hausdorff distance.

Definition 2.1 A pair (XX, d) consisting of a set X and amap d: X x X — R is called a nerwork [19].
A network (X, d) is a metric space (and d is a metric) if it satisfies

M1) forevery x,y € X, d(x,y)>0and d(x,x)=0;

(M2) forevery x,y € X,d(x,y)=0if and only if x = y;

M3) forevery x,y € X,d(x,y)=d(y, x);

M4) forevery x,y,z€ X,d(x,y) <d(x,z)+d(z,y).

Let us recall that an isometry between two networks (X, dx) and (Y, dy) is abijective map ¥ : X — Y such
that, for every x, x’ € X, dy (¥ (x), ¥ (x")) = dx (x, x’). In that case, X and Y are said to be isometric.

For a subset 4 of a metric space (X, d), its diameter is
diam 4 = sup d(x, ).
x,y€A
A correspondence R between two sets X and Y is a relation R € X X Y such that every x € X is
in relation with at least one element y € Y and vice versa. Then, for every metric space (Z, d), the
Hausdorff distance is defined as follows: for every X,Y C Z,

dy(X,Y) = inf sup d(x, y).
H( ) ’REXXYcorrespondence(x,y)peR ( y)

Definition 2.2 Given two metric spaces X and Y, their Gromov—Hausdorff distance dgy is

deu(X.Y)= _ inf  inf{du(ix(X).iy(Y))|ix: X — Z and iy: Y — Z isometric embeddings}.
Z metric space

The reader may notice an abuse of notation in the previous definition since all possible metric spaces

form a proper class. However, the infimum value can be achieved by investigating just a set of spaces.

Indeed, it is enough to consider the disjoint union X LI'Y endowed with pseudometrics (where the distance

between distinct points may be zero) whose restrictions to the subsets X and Y coincide with the original

metrics. We refer to [12] for the details.

If two metric spaces are isometric, their Gromov—Hausdorff distance is 0. The converse implication does
not hold in general. However, if X and Y are compact and dgg(X, Y) = 0, then X and Y are isometric.

Denote by GH the set of all isometry classes of compact metric spaces endowed with dgy, where the
Gromov-Hausdorff distance between two isometry classes is the Gromov—Hausdorff distance between
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any pair of representatives. Since two compact metric spaces are isometric if and only if their Gromov—
Hausdorff distance is 0 (see, for example, [12]), GH is a metric space, also called the Gromov—Hausdorff
space. Furthermore, we consider the subspace GH =% of GH consisting of isometry classes of finite metric
space, which is dense in GH. Actually, the subspace QH@“’ of isometry classes of finite spaces endowed
with metrics taking values in Q is dense in GH [54]. Therefore, GH is separable.

The Gromov—Hausdorff distance can be alternatively characterised using correspondences. If (X, dy)
and (Y, dy) are two networks, and R € X x Y is a correspondence between them, the distortion of R is

disR = sup |dx (x1,x2) —dy (1. y2)|-
(x1,Y1),(x2,¥2)€ER

Definition 2.3 [19] Let X and Y be two networks. Then their network distance is

dy(X,Y)=1 inf dis R.

R € X x Y correspondence
It is known that, if X and Y are metric spaces, then dg(X,Y) = dy (X, Y) (see, for example, [12]).

A further characterisation of the Gromov—Hausdorff distance can be found in [36].

In [66], a characterisation of the network distance for quasimetric spaces (ie, networks satisfying (M1),
(M2) and (M4)) in the spirit of Definition 2.2 is provided.

The Gromov-—Hausdorft distance is difficult to compute even in simple cases. For example, the dis-
tance between spheres of different dimensions endowed with their geodesic distance is not known in
general [1; 41]. To approximate it, it is convenient to consider another related distance.

Definition 2.4 Let X and Y be two subsets of R?. Consider them as metric spaces. Then, their
Euclidean—Hausdorff distance dgy is defined as
deg(X,Y) = inf{dH(iX(X), iy(Y)) |lix: X — R? and iy: Y — R? isometric embeddings}.

Using the following folklore result (see, for example, [9, Chapter IV, Section 38]), dgy can be conveniently
characterised.

Theorem 2.5 If f: X — Y is an isometry between two subsets of R4, then there exists an isometry
f:RY > R4 such that f|x = f.
Corollary 2.6 (see, for example, [3, Corollary 4.3]) If X and Y are two subsets of R4 , then

deu(X.Y) = inf d)dH(X7f(Y)),

felsom(R

where Isom(R¢) denotes the group of isometries of R,

Algebraic € Geometric Topology, Volume 25 (2025)



Coarse and bi-Lipschitz embeddability of subspaces of the Gromov—Hausdorff space into Hilbert spaces 5159

Clearly, dgu(X,Y) > dgu(X, Y') for every pair X and Y of subsets of an Euclidean space R¥. Moreover,
the inequality can be strict (for example, see [44]). A lower bound on the Gromov—Hausdorff distance
depending on the Euclidean—Hausdorff distance was provided in [44].

Theorem 2.7 For every pair of compact subsets X and Y of R4,

dou(X,Y) <dpu(X.,Y) <cqv M -dgu(X,Y),

where M = max{diam X, diam Y} and ¢ is a constant depending only on the dimension d.
However, if X and Y are finite subsets of R, linear lower bounds to dgy depending on dgy can be proved.

Theorem 2.8 [42, Theorem 3.2] For every pair X and Y of compact subsets of R,
2den(X.Y) <dgu(X.Y) < dgu(X.Y).

If we denote by E#; (EHT®) the space of isometry classes of compact (finite, respectively) subsets
of the real line endowed with the Euclidean—Hausdorff distance, the canonical inclusion of £#; into
GH and that of EH into GH = are bi-Lipschitz according to Theorem 2.8. Let us recall that a map
¥: X — Y between metric spaces is a bi-Lipschitz embedding if there are two linear maps p—: x —a-x
and p4:x +— b-x, where a, b > 0, satisfying (2).

3 The space of metric spaces of at most n points is coarsely embeddable
into a Hilbert space

Given two subsets Y, Z of a metric space (X, d) and a radius > 0 we write

disty (Y, Z) =dist(Y, Z) =inf{d(y,z) | ye Y, z€e Z} and B;(Y,r)= U Bi(y,r),
yeyYy
where B;(y,r) denotes the closed ball centred in y with radius r.

A family of subsets U/ of a metric space X is said to be

o uniformly bounded if there exists R > 0 such that diam U < R for every U € U (if we need to
specify R, we say it is R-bounded);

o r-disjoint for some r > 0 if dist(U, V) > r forevery U,V e U with U # V.

Definition 3.1 [32] Let X be a metric space. The asymptotic dimension of X is at most n € N (and we
write asdim X < n) if for every r > 0 there exists a uniformly bounded cover & = Uy U---UU, of X such
that U; is r-disjoint for every i = 0, ..., n. Furthermore, asdim X = n if asdim X < n and asdim X £ n,
and asdim X = oo if asdim X £ m for every m € N.

Example 3.2 (see [52]) For every n € N, asdim R” = asdim(R>¢)"” = n where R” is equipped with
any p-norm, p € [1, 00], and (R>()" with any of the inherited metrics.
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Let us recall two basic properties of the asymptotic dimension that we are going to use later in this section.

Proposition 3.3 (see [7]) Let (X, d) be a metric space and Y € X be a subspace. Then
(a) asdimY < asdim X, and
(b) asdim Y = asdim X provided that Y is large in X, ie, there exists r > 0 such that B;(Y,r) = X.

The goal of this section is to prove Theorem A, which we obtain as a particular case of the more general
Corollary 3.11.

Lemma 3.4 Foreveryn € N, asdimGH=" >n(n—1)/2.

Proof By [35, Theorem 4.1], GH=" contains isometric copies of arbitrarily large balls of R”"~1)/2
endowed with the supremum metric. Then, [48, Lemma 2.10] implies that asdim GH=" > n(n —1)/2. O

In order to prove the opposite inequality, we need to show different steps. Let us start with recalling a
known result.

Theorem 3.5 ([56]; see also [37, Theorem 4.6]) For every n € N, asdim([X]=", dy) < nasdim X. In
particular, asdim[R]=" < n and asdim[R>(]=" < n.

For every positive integer n € N, let us define X}, as the metric subspace of ([R>(]=""!, dy) whose ele-
ments contain the point 0. According to Theorem 3.5, asdim &), <n + 1 since the asymptotic dimension is
monotone (Proposition 3.3(a)). In the sequel, we improve that bound showing that asdim &}, <n. The proof
outline is similar to and inspired by that of [48, Theorem 3.2]. First, we need a classical preliminary result.

Given two families I/ and V of subsets of a metric space X and r > 0, we define a new family of subsets as
UU YV ={N,UV)|Uecldyu{V eV |VU elU, dist(V,U) > r},

where N, (U, V) =U U|J{V eV |dist(U, V) < r}.

Let us immediately note that | J (V U, U) 2 | JVvulJU.

Lemma 3.6 [7, Proposition 24] LetU be an r-disjoint, R-bounded family of subsets of X with R > r.

Let V be a 5SR-disjoint, uniformly bounded family of subsets of X. Then V U, U is r-disjoint and
uniformly bounded.

Lemma 3.7 Foreveryn € N, asdim X, < n.

Proof Let us prove the result by induction.

If n = 1, then, for every r > 0, the usual uniformly bounded cover used to prove that the real line has
asymptotic dimension 1 (see [7; 52]) can be adapted. More precisely, for every r > 0, define, fori =0, 1,

Uy = {{{0,x} | x € V{} |k e N}, where V| =[(4k + 2i)r, (4k +2i +2)r] S Rxg
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2 Vo 4

Figure 1: A representation of the uniformly bounded cover V = V, U V; showing that
asdimR > < 1. In red, the elements of Vy = {V,? | k € N} and, in blue, the subsets contained in
the family V; = {V}! | k e N}.

(see Figure 1). Then, each Uf; is r-disjoint and Uy U U, forms a uniformly bounded cover of X;. Hence,
asdim X; < 1.

Suppose now that the assertion is true for some » € N. We want to show that asdim X, <n+ 1. Fix a
positive r > 0. Then we can write

where X, consists of subsets 4 of R> such that, if x € 4 has |x| <r, then x = 0. It indeed represents
a partition. In fact, every element C € &, 1 can be decomposed C = Cy U C; where maxyec,|x| <r
and minyec, |x| > r. Then, either Co = {0} and so C € X, 11, or dy(C, C; U{0}) <r and C; U{0} € Xj,.

Let us now consider X, |, and define the subspace Y, = { X \{0} | X € X, } of [R>(]="T!. Monotonicity
of the asymptotic dimension (Proposition 3.3(a)) implies that asdim ), < n + 1. Hence, there exists a
uniformly bounded cover W =Wy U- - -UW,, 4 of ), such that W; is r-disjoint for every i =0,...,n+1.
Let R > r be an upper bound to the diameter of the elements in WW. For every i =0, ...,n 4 1, construct
the family of subsets W; = {W U {0} | W € W;} of &, 1. Note that W = Wy U---UW, 1 is a cover
of X, 1. Furthermore, each element of ' has diameter bounded by R and it is easy to see that each of
the families W;, i =0, ...,n+ 1, is r-disjoint.

Since &) is large in By, (Xy,r), asdim By, (X,,7) < n < n + 1 by the inductive hypothesis and
Proposition 3.3(b). Hence, there exists a uniformly bounded cover V = Vo U---UVy 41 of By, (Xy, 1)
such that V; is 5R-disjoint for every i =0,...,n+ 1.

Define, foreveryi =0,...,n+1,
Uy =W; U, V.

Hence, U = Uy U --- Uy, is a uniformly bounded cover of X, 11 = | JWU(JV and I4; is r-disjoint
forevery i =0,...,n+ 1 according to Lemma 3.6. Thus, asdim X, <n + 1. O

On the family of all isometry classes of finite networks, the network distance d is a pseudometric, ie,
it satisfies the properties (M1), (M3) and (M4) stated in Definition 2.1 [19]. Consider the equivalence
relation between finite networks given by X ~ Y if d (X, Y') = 0. We refer to [20] where this equivalence
relation is completely characterised. The space obtained by quotienting the family of all isometry classes
of finite networks under this equivalence relation is a metric space (it is a standard way to obtain a metric
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space out of a pseudometric space; see, for example, [12, Proposition 1.1.5]). We denote it by N =%,
Let us recall that the distance between two elements in /=% is the network distance between any two
representatives. For the sake of simplicity, we will be directly working with representatives of objects in
N=% instead of their equivalence classes without explicit mention. Let us also consider the following
metric subspaces of N/ =¢:

e S§=? —the family of equivalence classes of finite pseudo-semi-metric spaces, ie, networks satisfying
(M1) and (M3);
e N=" _the family of equivalence classes of networks whose cardinality is at most 7;
o SN — g0 \=H
Define the map D: N = — [R]=% as follows: for every (X,d) € N=%,
D(X)=d(X xX) CR.

The subset D(X) is called the distance set of X . Note that D|g=n: S=" — Xp(n—1)/2- For the sake of
simplicity, we denote by D also the restriction.

Proposition 3.8 [20, Proposition 4.3.4] The map D: N=? — ([R]~%,dy) is well defined and 2-
Lipschitz (ie, dy(D(X),D(Y)) <2dn(X,Y) forevery X,Y € N=%).

Proof Let (X,dy),(Y,dy) € N=% and R be a correspondence such that R = disR = 2d (X, Y). For
every X1, X € X pick yq, y, € Y satisfying (x;, yi) € R, fori =1,2. Then, |dx (x1, x2)—dy (¥1, ¥2)| < R.
Since the same argument can be carried out also for every pair of points y{, y, €Y, dg(D(X),D(Y)) < R.
This inequality also implies that the map is well defined. O

Even if we restrict ourselves to consider only metric spaces that are finite subsets of the real line, the
map D is not injective [8]. However, it has a further property that allows us to deduce an upper bound to

the asymptotic dimension of GH=".

Let us recall that, for a positive integer K € N, a map ¢: (X, dx) — (Y, dy) between metric spaces is
coarsely k-to-1 [50] if

¢ there exists a map p+: R>¢ — R>( such that, for every x, y € X,
dy (9(x), 9(¥)) = p+(dx (x, y))
(ie, ¢ is bornologous);

e for every R > 0, there exists S > 0 such that for every y € Y there are xy, ..., X, € X satisfying

k
¢ (Bay (5. R) € | J Bay (xi. ).

i=1

Coarsely k-to-1 maps play a very important role in providing bounds for the asymptotic dimension.
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Theorem 3.9 ([23; 50]; see also [24]) Let ¢: X — Y be a coarsely k-to-1 surjective map between
metric spaces. Then,
asdim X <asdimY < k(asdim X + 1) —1.

Theorem 3.10 The map D: S=" — D(S=") = Xu(n—1)/2 1s coarsely k-to-1 for some suitable k.

Proof Proposition 3.8 implies that the map is bornologous.

Let us fix R € R>g and D € D(S=") = Xu(n—1)/2- In particular, 0 € D. Suppose that (Y, dy) € S=n
satisfies dy(D, D(Y)) < R. Then, there exists a function f: D(Y) — D such that | f'(a)—a| < R for every
a € D(Y). Furthermore, without loss of generality, we can require that f(0) = 0 (note that 0 € D(Y")).

Define a new object Xy € S=" as Xy = (Y, f ody). Then,

(&) Xy € S=";
(b) D(Xy) < D;

© dy(Y. Xy)<1disid< iR

1
2
Items (a) and (b) imply that
Lyin—
|{(Xy | Y €55 1 du(D(Y). D) < R}| < |D|z"" D < (In(n— 1)+ 1)2"" " =k,

Hence, D is a coarsely k-to-1 map. O
Corollary 3.11 Foreveryn € N, asdim GH=" = asdim S=" = n(n —1)/2.

Proof The claim is implied by
%n(n —1) < asdim GH~" < asdim S=" < asdim D(S~") = asdim X%n(n_l) < %n(n —1),
where the first inequality is stated in Lemma 3.4, the second one follows from Proposition 3.3(a), the

third one from Theorem 3.9, and the last from Lemma 3.7. O

Thus, Theorem A follows since having finite asymptotic dimension implies the existence of a coarse
embedding into a Hilbert space [34; 65].

Remark 3.12 Similarly, we can show that D: N =" — []R]”2 is coarsely (nz)”z—to—l surjective map and
so asdim V=" < asdim[IR]f”2 < n? by Theorems 3.9 and 3.5. Hence,

%n(n —1) < asdim N'=" < 2.
In particular, N'=" can be coarsely embedded into a Hilbert space.
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4 Coarse nonembeddability into Hilbert spaces

Let us now recall some definitions and results coming from coarse geometry as they will be the crucial
stepping stones to prove our main results.

Suppose that the map ¥ : (X, dxy) — (Y, dy) between metric spaces is a coarse embedding. If two maps
p—:R>9 — R>p and p1: R>¢9 — R are such that p_ — oo and (2) is fulfilled, then we call p_ and
p+ control functions, and we say that ¥ is a (o—, p+)-coarse embedding.

Let { X% }ren be a sequence of metric spaces and X be another metric space. We say that a family of
maps {ix: X = X }ren 1S a coarse embedding if there exist two maps p—, p+: R>¢ — R>¢ such that
ir is a (p—, p+)-coarse embedding for every k € N. We say that X contains a coarse disjoint union of
{ X1 }ren if there exists a coarse embedding {ij : X — X} such that

dist(in(Xn), im (Xom)) 2005 o0,

Let us recall that a Banach space (A4, || - ||) is uniformly convex if, for every 0 < & < 2, there exists § > 0
so that, for any two vectors x, y € A with ||x|| = ||y|| = 1, the condition ||x — y|| = & implies that
Il(x 4+ »)/2|| < 1—4. Hilbert spaces are, in particular, uniformly convex Banach spaces.

Theorem 4.1 [39] There exists a sequence {Xj }ren of finite metric spaces such that, if a metric
space X contains a coarse disjoint union of { X} }renN, then X cannot be coarsely embedded into any
uniformly convex Banach space.

The goal of this section is to prove the following result.
Theorem 4.2 EHT® cannot be coarsely embedded into any uniformly convex Banach space.

Hence, Theorem B immediately follows thanks to Theorem 2.8 since a composite of coarse embeddings
is still a coarse embedding.

To prove Theorem 4.2, we intend to apply Theorem 4.1. Following the approach used in [63], let us first
isometrically embed an arbitrary finite metric space into a more manageable space.

Lemma 4.3 (Kuratowski embedding) For every finite metric space X, there are m,n € N \ {0} such
that X can be isometrically embedded into ([0, m]", d}}), where d};, ((x;)i, (yi)i) = maxX;—1,.. n|Xi — yil
for every (x;)i, (yi)i € [0, m]"*.

Therefore, in order to apply Theorem 4.1, we show that £H T contains a coarse disjoint union of the family
{[0,m]" | m,n € N \ {0}}. We intend to define the coarse embeddings ¢J, : [0, m]" — [R]=® recursively.
To do it, let us fix a bijection 7': (N \ {0})?> — N\ {0} defined as follows: for every pair (m,n) € N,
m—+n—1
T(m,n)=m+ Z @i-1) :m+%(m+n—2)(m+n—1).
i=2
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1 2 3 4

Figure 2: A representation of the map 77': N \ {0} — (N \ {0})2.

We represent in Figure 2 the sequence of the points 7'(m,n). By construction, for every two pairs
(m,n), (m',n") e N\ {0}, m+n <m’+n' provided that T (m,n) < T (m’,n’). For the sake of simplicity,
for two pairs (m, n), (m’,n’) € (N \ {0})?, let us write (m,n) < (m’,n’) if T(m,n) < T(m’,n’), and
(m,n) < (m',n’)if (m,n) < (m’,n’) and (m,n) # (m’,n’).

To construct the maps ¢;;,, we need various parameters. Let us define a sequence {a; (m)};en\ {0} of
positive real values depending on m as

ai(m)=4m(i —1).
Furthermore, for every m,n € N \ {0}, we inductively construct

D(m,n) = max{dm(n + 2), ( max D@’ n') +m+ 270y,

m’,n’)<(m,n)

Thus, D(1,1) = 12 (according to the notation that max @ = —o0), and D(m,n) > 4m(n + 2) =
a,(m)+ 12m.

Let us define, for every m, n € N\ {0}, a map ¢, : [0, m]" — [R]="T1 as follows: for every (x;); € [0, m]",
O ((xi)i) =H{ai(m) +x; [i =1,....n} U{D(m,n)}

(see Figure 3). This construction should be compared with that provided in [63]. The crucial difference is
the last point D(m, n). Its purpose is to disincentivise the action of isometries and conveniently increase
the diameter of the image of ¢, (see Lemma 4.4).

Lemma 4.4 The map ¢y, : ([0, m]", d}}) — EHT® is a coarse embedding whose control functions are
independent of m and n. More precisely, ¢}, is a (p—, p4)-coarse embedding, where p_: x — x /2 and
p+ = id. Furthermore, for every (x;); € [0, m]", we have diam ¢}, ((x;);) € [D(m,n) —m, D(m,n)].

Proof It is easy to see that

den (@, ((x)i), 0 ((v)i)) < du(ep ((x)0), o ((v)i)) = diy ((xi)i, (vi)i)
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X1 X2 Xn
ay(m) az(ﬂ) a,(m) D(m,n)
Fee f— —— oo+ —— - —_—f———---- e
L L L
Y1 | I Y2 Vn L J
[ 3m L L >11m
m m m

Figure 3: A representation of the images of two points (x;);, (3;); € [0, m]" along ¢},,. The subset
@m((x;);) is given by the red dots and the black dot, while ¢}, ((;);) consists of the blue dots and
the black dot. In the picture, we can see that dy ((p,’; ((x)i), (p,”n((y,-),-)) =d} ((x)i, (Vi)i)-

for every (x;)i, (1i)i € [0,m]" (see also Figure 3). We want to prove that p_ is the other control function.
Let / € Isom(R?) be an isometry such that

3) dn(om (<)1), [ (om((i)i)) < dp((x0)i, (vi)i) < m.

The isometry " is the composite of a translation g and a rotation 4. If n = 1, then |¢}} ((x;);)| = 2, and so,
without loss of generality, 4 can be taken as the identity.

Claim 4.5 Assume thatn > 2. Then, h = id.

Proof Suppose, by contradiction, that / # id. According to (3), and because of the definition of ¢},
) |/ (D(m,n)) — (a1 (m) + x1)| < m.
Since |(a;(m) + x1) — (ax(m) + x1)| = |ay (m) —ay(m)| —m > 2m, (4) implies that

| f(D(m.n)) —(az(m) + x2(m))| > m.

Therefore, because of (3),

) (a2 (m) + x2) — f(an(m) + yn)| = m.

Using the fact that f is an isometry, the triangular inequality, (4) and (5), the following chain of inequalities
descends:

1im < |D(m,n)—an(m)|—m =< [D(m,n)—(an(m)+yn)| = | f(D(m,n))— f(an(m)+ yn)|
< |f(D(m,n))—(a1(m)+x1)|+[(a1(m)+x1)—(az(m)+x2)|+[(az2(m) +x2) = f(an(m)+ yn)|
<m+5Sm+m = Tm.

Thus, we obtain a contradiction. O

We can now assume that the map f = g is a translation. Using the triangular inequality, and since
ajy1(m) —a;(m) =4m forevery i € {1,...,n}, it can be easily check that

[(ai(m)+x;)— f(ai(m)+y;)| <m foreveryi e{l,..., n} and |D(m,n)— f(D(m,n))| <m.
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The point D(m,n), common to both ¢ ((x;);) and ¢};,((y;);), misaligns as soon as f is nontrivial.
Therefore, f creates a trade-off between the misalignment just described and a better alignment of the other
n pairs of points (a;(m) + x; and a; (m) + y;, forevery i € {1,...,n}). Thus, the best Hausdorff distance
that can be achieved is at most dy ((pfn ((x1)i), (p;’n((y,'),-))/2 =d} ((xi)i, (¥i)i)/2, and so the claim.

The final assertion trivially follows from the definition of ¢},,. o
The following result is immediate, but it is an important step in the proof of Theorem 4.2.

Lemma 4.6 If Y and Z are two families of finite subsets of a metric space X,

distg, (V. 2) > % inf |diamY — diam Z|.
Yey
ZeZ
Furthermore, if X = R4 , then

distgy, (V. 2) = 1 ;rg; |diam Y — diam Z|.
ZeZ

Proof Since, for every pair of subsets Y and Z of X,
du(Y, Z) > 1|diam Y — diam Z|,

the first inequality is immediate. The second one follows from the fact that an isometry’s action does not
change the diameter of a subset. O

As a consequence of Lemma 4.6, if J and Z are two families of finite subsets of R with the property
that, forevery Y € Y and Z € Z, diam Y > diam Z,
(6) distg,, (Y, Z) = %( inf diam Y — sup diam Z).

Yey Zez

‘We now have the tools to show the main result of the section, Theorem 4.2, and its consequence, Theorem B.

Proof of Theorem 4.2 We intend to use Lafforgue’s result (Theorem 4.1), and, thanks to Lemma 4.3,
we need to show that EHT® contains a coarse disjoint union of {([O, m]", d;;)}m,neN\{o}' According to
Lemma 4.4, {¢y,: [0,m]" — EHT®} is a coarse embedding. It remains to show that

diStdEH ((p’1111 ([0’ m]n)’ <P,’;,//([0, m/]”/)) T (m,n)+T (m’,n')—o0

Without loss of generality, we assume that (7', n’) < (m, n). Then, according to Lemma 4.4, (6), and the
definition of D(m,n),

7 distag, (@2 (10, m]"), @2, ([0, m'1")) = L(D(m,n) — D', n') —m) = 2Tm-m=1,
From (7), the desired result descends. O
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5 Bi-Lipschitz nonembeddability into finite-dimensional spaces

Let us consider the isometry classes of all finite subsets of the real line with diameter at most R. This set
can be identified with the isometry classes of elements in [[0, R]]=“. Let us denote by SH[T)“’R] this space
equipped with the Euclidean—Hausdorff distance.

Since, for every pair of metric spaces X, Y € GHZ%,
don(X,Y) <  max{diam X, diam Y} < 1R,

the diameter of GHZ% is finite. Therefore, it can be trivially coarsely embedded into a one-point metric
space. However, we can still provide nonembeddability results if we restrict the class of embeddings.
More precisely, we prove the following.

Theorem 5.1 S?—l[f)“’R] cannot be bi-Lipschitz embedded into a finite-dimensional Hilbert space.

Immediately, we can deduce Theorem C since Theorem 2.8 provides a bi-Lipschitz embedding.

To prove Theorem 5.1, we use the Assouad dimension.

Definition 5.2 Given a metric space (X, d), a subset £ C X and r > 0, we denote by N, (E) the least
number of open balls of radius less or equal to r that cover E. Then, the Assouad dimension of X [5; 10] is

dimy X =inf{e >0|3C >0:Vr >0,V € (0, 1], sup Ng,(B5(x,r)) < CB~*},
X

xe

where B (x,r) denotes the open ball centred in x with radius r.

This dimension notion was introduced precisely to prove obstructions to bi-Lipschitz embed metric spaces
into an Euclidean space. In particular, the following properties lead to the desired conclusion (see, for
example, [57]):
e Ifp: X — Y isabi-Lipschitz embedding between metric spaces, dima X = dimpa im(¢) <dimp Y.
e Forevery n € N, dimy R” = n.
Therefore, once we prove that dimp £ H[f)“’R] = oo (Proposition 5.3), Theorem 5.1 immediately follows.

Let us mention that the same strategy was used in [16] to prove that spaces of persistence diagrams cannot
be bi-Lipschitz embedded into a finite-dimensional Hilbert space.

Proposition 5.3 For every R > 0, dimp EH[T)“’R] = 00.

Proof We want to provide, for every « > 0 and every C > 0, a radius r > 0, a constant 8 € (0, 1], a finite
subset A of [0, R] and M = [CB~* + 1]-many finite subsets A, ..., Ay of [0, R] with the following
properties: dpu(A, A;) <r and dgu(4;, Aj) > 2Br forevery i, j € {1,..., M }. Therefore, the open ball
centred in A with radius » cannot be covered by fewer than M -many open balls with radius Sr (A; and
Aj are contained in the same ball only if 7 = j), which will conclude the proof since M > Cf™¢.
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. .
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Figure 4: A representation of the subsets 4, A; and A4; defined in the proof of Proposition 5.3.
The distinctive points / —s € A; and il —s € A; are emphasised in red. The light grey strips are
meant to visualise the fact that dy(A, A1) <r and dy(4, 4;) <r.

Define [ = 2(M—R+1)’ r= é, s = 27’ and 8 = % We construct the subsets A and A; as

A={j-1|1jef{0,....,M+1}}U{R},
Ai={j-l+s|je{l.....,MN\{i}yui-1—s}U{0, R, R}.
The subset 4 and A4; are represented in Figure 4. Tt is clear that dgy(A, A;) < r since s < r (actually,

du(A, Aj) = s < r). It remains to show that, for every pair of distinct indices i, j € {1,..., M},
dEH(A,',Aj) >2s>r.

Leti, j € {l,..., M} be two distinct indices. Assume, by contradiction, that dgn(A4;, 4j) < 2s, and
let f be an isometry of R such that dy(A4;, f(A})) <2s. Adapting the argument of Claim 4.5, we can

assume that f is a translation.

For the sake of simplicity, for every k € {1,...,n}, we name the points of Ay as
al(§=0, a]f=l—|—s, a’,ﬁ_l=(k—1)l—|—s, a],i=kl—s,
a£+1=(k+1)l+s, el a]X,Ile—i—s, a’X/[H:%R, aIX,Hrz:R.

Following the strategy used in the proof of Lemma 4.4, we can show that, for every k € {0, ..., M + 2},
) |} — f(a])] <2s.
Assume, without loss of generality, that i < j. Then, in particular,
©)] |a{—ajj:|=(j—i)l—2s and |a§—a§-|=(j—i)l+2s.
Using the triangular inequality, (8), (9) and the fact that f is an isometry we obtain
(j =D +2s = |a} —a}| < |a} = f @D + | f(a]) = [ (@))]| + | [ (a]) — a}]

<la] —al|+4s = (j—i)l +2s.

Hence, we have found a contradiction. O
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Remark 5.4 As a byproduct of the proof of Proposition 5.3, we obtain that the Assouad dimension of
the family of all finite subsets of an interval equipped with the Hausdorff distance is infinite. Indeed,
in the notation of the mentioned proof, dy(A4, A;) = s <r, but dy(A4;, Aj) = 2s > r for every pair of
distinct indices i, j € {1, ..., M }.

5.1 Questions about bi-Lipschitz embeddability and Assouad dimension

Let us conclude the presentation with a discussion about potential future research directions concerning
the bi-Lipschitz embeddability of the Gromov—Hausdorff space. First of all, Theorem C leaves the
following question open.

Question 5.5 Can gH;‘ﬁ, be bi-Lipschitz embedded into an infinite-dimensional Hilbert space?

Furthermore, it is natural to ask what the embeddability properties are if we bound the cardinality of the
metric spaces as in Section 3. Let us define gHE’}e =GH="N GHZ} forn € N and R > 0.

Question 5.6 Can GH=" and gHi’,’e be bi-Lipschitz embedded into a (finite-dimensional ) Hilbert space?

To approach Question 5.6, we may investigate the Assouad dimension of those spaces. The inequalities
dima GH=" > dimp GHZy = Jn(n—1)

can be derived similarly to the proof of Lemma 3.4. Indeed, according to [35, Theorem 4.1], g?—[f’}e
contains a subspace isometric to an open ball in R (=1)/2 of sufficiently small radius, which has Assouad
dimension n(n — 1)/2 [57, Lemma 9.6(iii)]. Hence, monotonicity and bi-Lipschitz invariance of the
dimension imply the desired estimate. However, to the best of the author’s knowledge, no upper bounds
are known for the dimension of those spaces, and the following questions remain open.

Question 5.7 What are dimy GH=" and dima g?—[i';e? Atre they finite?

A connection between Questions 5.7 and 5.6 has already been exploited to deduce Theorem C, namely,
infinite Assouad dimension prevents the existence of bi-Lipschitz embeddings into finite-dimensional
Hilbert spaces. However, unlike the situation described for asymptotic dimension and coarse embeddings, a
positive answer to the second part of Question 5.7 does not imply the existence of a bi-Lipschitz embedding
into some R”. Indeed, having finite Assouad dimension is not a sufficient condition for the existence of
a bi-Lipschitz embedding even into some infinite-dimensional Hilbert space [38; 40; 53; 60]. However,
some positive results can be proved at the cost of modifying the original metric space. For a metric space
(X,d) and 0 < ¢ < 1, the s-snowflaking of X is the metric space (X, d¥), where d¢(x, y) = (d(x, y)).

Theorem 5.8 (Assouad embedding theorem [5]) If (X, d) is a metric space with finite Assouad
dimension, then, for every 0 < & < 1, there exists a bi-Lipschitz embedding of (X, d?) into R" for some
n depending only on dims X and ¢.
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Let us also mention that, if % < & < 1, the parameter n in the Assouad embedding theorem can be

chosen independently from ¢ ([51]; see also [21] for an explicit map construction). We address the

interested reader to the monographs [28; 57] for more details. A positive answer to the second part of

Question 5.7 could then motivate the search for computable bi-Lipschitz embeddings of the e-snowflaking

of GH=" or Q’;‘—LE'I’e into some finite-dimensional Hilbert space, further tightening the connection between

computational topology and dimension theory.
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