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Abstract

Verifiable Delay Functions (VDFs) introduced by Boneh et al. (CRYPTQ'18) are functions
that require a prescribed number of sequential steps 1" to evaluate, yet their output can be
verified in time much faster than 7. Since their introduction, VDFs have gained a lot of
attention due to their applications in blockchain protocols, randomness beacons, timestamp-
ing and deniability. This thesis explores the theory and applications of VDFs, focusing on
enhancing their soundness, efficiency and practicality.

The only practical VDFs known to date are based on repeated squaring in hidden order groups.
Consider the function VDF(x,T) = 22" . The iterated squaring assumption states that, for
a random group element z, the result of VDF cannot be computed significantly faster than
performing 1" sequential squarings if the group order is unknown. To make the result verifiable
a prover can compute a proof of exponentiation (PoE) 7. Given 7, the output of VDF can
be verified in time much less than 7.

We first present new constructions of statistically sound proofs of exponentiation, which are
an important building block in the construction of SNARKs (Succinct Non-Interactive Ar-
gument of Knowledge). Statistical soundness means that the proofs remain secure against
computationally unbounded adversaries, in particular, it remains secure even when the group
order is known. We thereby address limitations in previous PoE protocols which either re-
quired (non-standard) hardness assumptions or a lot of parallel repetitions. Our construction
significantly reduces the proof size of statistically sound PoEs that allow for a structured
exponent, which leads to better efficiency of SNARKSs and other applications.

Secondly, we introduce improved batching techniques for PoEs, which allow multiple proofs
to be aggregated and verified with minimal overhead. These protocols optimize communica-
tion and computation complexity in large-scale blockchain environments and enable scalable
remote benchmarking of parallel computation resources.

We then construct VDFs with enhanced properties such as zero-knowledge and watermarka-
bility. It was shown by Arun, Bonneau and Clark (ASIACRYPT'22) that these features enable
new cryptographic primitives called short-lived proofs and signatures. The validity of such
proofs and signatures expires after a predefined amount of time 7', i.e., they are deniable after
time T". Our constructions improve upon the constructions by Arun, Bonneau and Clark in
several dimensions (faster forging times, arguably weaker assumptions).

Finally, we apply PoEs in the realm of primality testing, providing cryptographically sound
proofs of non-primality for large Proth numbers. This work gives a surprising application of
VDFs in the area of computational number theory.

Together, our contributions advance both the theoretical foundations and the real-world us-
ability of VDFs in general and in particular of PoEs, making them more adaptable and secure
for current and emerging cryptographic applications.

vii
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CHAPTER

Introduction

Resource-restricted cryptography considers problems that are moderately hard to break but
not infeasible. It was initiated by Dwork and Naor [DN93] in 1992, who introduced the notion
that today we call proof of work (PoW). A proof of work is a protocol that takes a prescribed
amount of computational power to solve on average. Once the result is computed it can be
quickly verified that the result is correct. One example of a proof of work is to find a preimage
of a hash function output starting with d zeros, where d is a parameter that determines the
hardness of the PoW. If the hash function behaves randomly, we don’t know of any faster
algorithm to solve this challenge than just brute-forcing different inputs to the hash function
until we get a result of the required form. Then, given the preimage, anyone can quickly
verify that it is a valid solution. Dwork and Naor introduced the notion of PoWs to prevent
spam email: Assume that sending an email requires to solve a PoW that takes a few seconds
on average. For an honest party that sends only a few emails per hour, this is not a problem.
However, sending out spam emails in bulk now requires a lot of computation power.

In 1996, Rivest, Shamir and Wagner [RSWO96] considered time as another computational
resource that can be restricted. They introduced the notion of time lock puzzles (TLPs),
which allow a sender to encode a message into a puzzle that can only be opened after T’
sequential steps of computation, i.e., after a prescribed amount of time 7T". The authors had
several applications of encrypting a message “into the future” in mind, for example hiding
a bid in an auction until after the bidding period is closed. Their construction is based on
repeated squaring in RSA groups. To encode a message m, Alice samples a random key k
and computes ¢; = Ency(m) with a suitable symmetric encryption scheme Enc. Then she
samples two large random primes p and ¢ and computes the modulus N = pq. Then Alice
chooses a random 1 < x < N and computes ¢y := k-22" mod N, publishes (N, T, ¢1, ¢, x)
as the puzzle and keeps p and ¢ secret. Note that to generate the puzzle she can efficiently
compute ¢(N) = (p—1)(¢—1), then e := 27 mod ¢(N) and finally ¢, := m - 2°. However,
if one does not know the factorization of N, one cannot compute the reduced exponent e
in this way since ¢(V) is unknown. The iterated squaring assumption states that in groups
of unknown order there is no significantly faster way to compute 22" than to perform T
sequential squarings. This assumption was first stated in the work by Rivest, Shamir and
Wagner and it still stands today.! Solving the TLP therefore requires to compute y := 22"

!Bernstein and Sorenson [BS07] showed that one can reduce the sequential time of computing an it-
erated squaring instance 22" from T to T/ loglog(T) using at least T2 processors that need to be able to
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by performing T sequential squarings. Then the message can be obtained by computing
k = ¢y -y~ ! and then decrypting c; with k.

15 years after their introduction, PoWs found a completely different application. They
played a crucial role in the construction of the bitcoin blockchain. In the white paper,
Nakamoto [Nak08] used PoWs to construct a consensus protocol to decide on the order
of blocks in a chain that works as follows: Every party participating in the consensus protocol
keeps a copy of the chain. To add a new block to the chain, each party tries to solve a
PoW on an input that is parameterized by the new block they want to append and the last
block in their blockchain. Whoever solves the PoW the fastest, broadcasts the result to all
parties. All parties that receive the message append the corresponding block to their chain
and start trying to solve a new PoW parameterized by this new block and the block they want
to append.

In 2013, Mahmoody, Moran and Vadhan [MMV13] considered another application of timed
cryptography: non-interactive timestamping. Assume Alice wants to generate a proof that in
the future certifies that she knew a document D already at time t;. A natural idea would be
for Alice to start solving a PoW with input D at time ¢y. If we knew that it takes roughly
time T' to compute the PoW, then the PoW would show that Alice already knew D at least T’
timesteps ago. The authors observed that PoWs, as described above, are not suitable for this
application since they are easily parallelizable: Given n processors, the PoW can be solved n
times faster than with just one processor. Note that the TLP by Rivest, Shamir and Wagner
cannot be parallelized. However, the TLP needs to be set up by someone who knows the
group order (or another trapdoor) and hence it needs to involve a trusted party that knows
the result of the TLP ahead of time. To solve these problems, Mahmoody, Moran and Vadhan
introduce the notion of proofs of sequential work (PoSWs). Those are proofs of work that
are inherently sequential and, hence, the time it takes to solve them is (almost) independent
of the number of processors available. Their construction uses depth-robust graphs and, as a
consequence, requires space linear in T' from the prover. Cohen and Pietrzak [CP18] improve
upon their construction, giving a PoOSW with better parameters, where the space used by
the prover is only logarithmic in T'. A problem that remained open in both of these works,
however, is to construct a PoSW with unique output.

To address this, Boneh et al. [BBBF18] introduced verifiable delay functions (VDFs) in 2018.
VDFs are functions that take a prescribed amount of 1" sequential steps to compute and can be
verified in time much less than T". The function takes an input x together with a time parame-
ter T'. They have found a lot of applications including the design of blockchains [CP19], com-
putational time-stamping [CE12, LSS20] and randomness beacons [Rab83, LW15, SJH"21].
A randomness beacon is a (pseudo-)random number constructed by n parties that don't trust
each other and don’t want any party to be able to bias the number. Combining the ideas of
Lenstra and Wesolowski [LW15] with verifiable delay functions, one can obtain randomness
beacons as follows: Every party ¢ submits an arbitrary number r; during a submission period.
After this period, a VDF challenge is computed from ry,... 7, and the randomness beacon
is set to be the hash of the output of the VDF. If the time parameter T is larger than the
time of the submission period, it is impossible to predict the randomness value before the
submission period has ended and hence no party can bias the outcome via their choice of r;.

The first construction of a VDF was given in [BBBF18] based on incrementally-verifiable com-
putation [Val08]. Loosely speaking, the authors used repeated (structured) hashing as their

communicate. Note that in the context of time lock puzzles, where T is in the order of 230, this would mean
a massive amount of parallelism for a relatively small speed up.



delay function and then relied on incremental succinct non-interactive arguments (SNARGs)
to enable efficient verifiability of the result of the repeated hashing. Unfortunately, such
generic SNARGs are comparatively slow as they involve heavy cryptographic tools, in partic-
ular probabilisticly checkable proofs (PCPs).

Two much more practical VDFs were constructed concurrently by Pietrzak [Piel9] and by
Wesolowski [Wes20]. In both cases the delay function is the repeated squaring function
proposed by Rivest, Shamir and Wagner.? However, in the setting of VDFs no one knows
the order of the group so there exists no party that can compute the result quickly. Instead,
to achieve verifiability, Pietrzak and Wesolowski both construct what we call a proof of
exponentiation (PoE). In a PoE in a group G, a prover P tries to convince a verifier ) that a
tuple (y,z,¢,T) € G? x N? satisfies y = 2 . In other words, a PoE is a proof or argument
system for the language

Lg = {(y,x,q,T) €G> xN?:y=2a% over G}. (1.1)

We refer to ¢ as the exponent and T' as the time parameter. We have already seen that if
the order of G, denoted ord(G), is easily computable, then V can efficiently compute 27" on
its own. Therefore, the language is non-trivial only if it is hard to compute ord(G). Such
groups are called groups of unknown order or hidden order groups. The two types of groups
of unknown order that are presently used are RSA groups [RSA78] and class groups [BW88].
PoEs have found applications as building blocks for not only constructing VDFs but also
succinct non-interactive arguments of knowledge (SNARKs) [BHR*21]. In both applications,
we want the cost incurred by P to compute the PoE to be marginal compared to the T’
exponentiations that are necessary to compute y in the first place.

A PoE needs to satisfy two properties: completeness and soundness. Completeness says that
o ? .
the verifier should accept the PoE whenever the statement y = 29" is correct. Soundness

says that whenever the statement y 27 s false, then no matter which strategy a malicious
prover chooses, the verifier should reject the PoE with high probability.

Wesolowski's PoE [Wes20] is designed as follows: To prove the statement y L 29" the
verifier V samples a random prime ¢ from the set of the first 2* primes and sends it to P.
The prover P then computes integers s and 0 < r < ¢ such that ¢ = s¢ +r. Then it
computes 7 := x* and sends it to V. The verifier V computes »r = ¢’ mod ¢ and checks
if y = 7’2" in G. Completeness of the PoE follows immediately. Soundness is based on the
adaptive root assumption, which states that the following game is hard: The adversary A
outputs a group element g # 1. Then the challenger C gives a random prime ¢ from the first
2* primes to A and A needs to compute ¢'/¢.

Pietrzak's PoE [Piel9] to prove the statement y £ 24" is constructed in a different way. The
. 2T/2 .. . . « ey
prover P first sends the element y =z to V. Note that this implicitly splits up the initial
. ? T/2 ? T/2
statement into two smaller ones, namely © = %" and y = u? "". To fold the two smaller
statements back into one, V samples a random challenge ¢ € {1,...,2*} and sends it to
P. Then both P and V compute a new statement y“u L (,ucx)qT/2 and proceed to prove
this statement recursively in the same manner until they arrive at a statement of the form
7 = 79 for some 2,7 € G. The verifier V can check this statement on its own by performing a
single exponentiation in G. Again completeness of the PoE follows by inspecting the protocol.

2VDFs have also been proposed in other algebraic settings, which we discuss in Section 1.5. However,
the VDFs based on repeated squaring remain the only practical candidates.
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Soundness is based on the low order assumption, which states that it is hard to find elements
of low order in the given group and output it together with the order.

Boneh, Biinz and Fisch [BBF24] give a reduction from the adaptive root assumption to the
low order assumption. That means that if the adaptive root assumption holds, then so does
the low order assumption. A reduction in the other direction is not known. In fact, there
exist groups where the low order assumption holds unconditionally: Pietrzak [Pie19] proposes
to instantiate his VDF in groups that do not contain any low order subgroups. Such groups
are constructed as follows: Choose two large safe primes p and ¢q. That is, (p — 1)/2 and
(q —1)/2 are also prime numbers. Set N = p-q. Then we have that the group of quadratic
residues modulo N has no low order subgroups. Hence, the adaptive root assumption is a
stronger assumption than the low order assumption.

Since the applications of PoEs are non-interactive in nature, a PoE itself must be non-
interactive, i.e., we need to remove the interaction with ) above. Since the protocols are
public-coin, i.e., the messages of V are uniformly random numbers and V does not have any
secrets, we can use the Fiat-Shamir transform [FS87]. This heuristic simply replaces a verifier
message by a hash of the statement and the previous transcript, which P can compute itself.

In this thesis we consider both constructional aspects and applications of VDFs and PoEs. We
will see how to construct practical statistically sound PoEs and how to batch PoEs efficiently.
Then we build VDFs with special properties that are needed for the application to short-lived
proofs, i.e., proofs that are deniable after a prescribed amount of time. Finally, we will see
how to apply PoEs to the context of primality testing. Each of those topics is covered in one
paper. We now give an overview about the motivation and results of each paper.

1.1 Statistically Sound Proofs of Exponentiation

The first paper of this thesis considers statistical soundness of PoEs [HHK22].3 A PoE is
said to be statistically-sound if even a computationally-unbounded cheating prover P cannot
convince V of a false statement (9,z,q,7T),7 # 29" . Such a strong soundness guarantee is
required in some applications. In [BHR'21], where a PoE is used to construct a SNARK,
the underlying PoE must be statistically-sound so that the statistical knowledge-soundness of
the SNARK holds. In the context of VDFs, statistical soundness ensures some security even
when the group order is somehow revealed, e.g., in the following use-case.

Chia is a secure, permissionless blockchain [CP19], built using VDFs and proofs of space
[DFKP15]. In particular, it uses a PoE-based VDF instantiated in class groups, which is
sampled freshly every 10 minutes. It relies on both security properties of this VDF, i.e., (i)
sequentiality, which (loosely-speaking) requires it to be hard to compute the output y := x?

in less than T steps; and (ii) soundness, which, as for PoE, requires it to be hard to generate
proofs for a wrong output 7 # 29" . However, the reliance on these two security properties
is to different degrees, as we explain next. An attacker that occasionally learns the group
order and, therefore, is able to compute the output fast only has a short-term impact on
the security. On the other hand, an attacker that breaks soundness is devastating since it
potentially leads to double-spending.* Therefore, if the VDF used is statistically-sound then,

3This section is taken essentially from [HHK*22].

4A minor nuisance would be the need to roll back the blockchain once a flawed proof was added and
recognized. But an attacker that can forge proofs controls the randomness and, thus, can do things like
attaching a pre-computed chain to the current one in order to do a double-spending attack with only little
resources.
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even in the worst case where the attacker learns the group order,® it will only be able to
compute the correct output fast but will still not be able to lie about its value.

In other scenarios, where the group order is supposed to be known by some parties, using
statistically-sound PoEs allows for a much more efficient setup. The RandRunner protocol
[SJHT21] uses VDF to construct randomness beacons [Rab83]. Every party participating in
the protocol realizing the beacon will sample two safe primes, which defines a “safe” RSA
group where Pietrzak's PoE is guaranteed to have statistical soundness. The fact that these
parties know the factorization is actually a feature, as they are occasionally required to use
it as a trapdoor to quickly compute and broadcast a VDF output and the PoE certifying its
correctness. To prevent cheating, each party must provide a zero-knowledge proof that their
modulus is indeed the product of two safe primes. If one, instead, uses PoEs with statistical
soundness in arbitrary groups, the protocol can be instantiated in any RSA group. Thus, the
expensive zero-knowledge proof can be avoided (at the cost of larger PoEs for the individual
proofs).

A similar scenario comes up in the fair multiparty coin-flipping protocol of Freitag et al. [FKPS21].
This methodology might also be useful for (non-interactive) timed commitments and encryp-
tion [BN0O, KLX20].

We have already seen above that Pietrzak's PoE is statistically sound in certain RSA groups.
For the setting of class groups, on the other hand, our understanding of the low-order and
adaptive root assumptions is still only developing: for example, [BKSW20] showed how to
break the low-order assumption in class groups for some classes of prime numbers and these
are, therefore, not suitable to instantiate [Pie19] and [Wes20]. However, class groups do have
one major advantage over RSA groups in that they have a “transparent” set-up, i.e., the
group can be sampled obliviously in the sense that a random string specifies a group without
revealing the order of the group. Compare this with the RSA group, where the only known
way to generate the group is to first sample primes p; and p, and then output the modulus
N = pypy. But this means the sampler knows the factorization and, thus, the group order
(p1 — 1)(p2 — 1). For such groups with trusted set-up to be used in VDFs or SNARKSs, one
must either employ some trusted party to sample N and then delete p; and p,, or sample
N using expensive multiparty computation (see, e.g., [FLOP18, CCD*20] and the references
therein). We would therefore like to have PoEs that are statistically sound in any group.

Block et al. [BHR™21] construct the first such PoE. Their construction is a clever parallel rep-
etition of A runs of Pietrzak's PoE, where \ is a statistical security parameter. Unfortunately,
this repetition also increases the proof size from logT to A - logT. Therefore, to achieve,
say A = 80 bits of security, the number of repetitions required, and hence the (multiplica-
tive) overhead incurred in proof-size, is larger than 80 group elements, which is too large for
practical applications.

In Chapter 3 we present a statistically sound PoE in any group for the case where the exponent
q is the product of all primes up to some bound B. For such a structured exponent, we
show that it suffices to run only \/log(B) parallel instances of Pietrzak's PoE. This reduces
the concrete proof-size compared to Block et al. by an order of magnitude. Furthermore, we
show that in the known applications, where PoEs are used as a building block, such structured
exponents g are viable. Finally, we also discuss batching of our PoE, showing that many proofs
(for the same G and ¢ but different = and T') can be batched by adding only a single element
to the proof per additional statement. The results in Chapter 3 are published in [HHK"22].

5This can happen, e.g., if the trusted setup failed or the class group sampled turned out weak.
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1.2 Batching PoEs

While the paper presented in the last section includes a batching protocol tailored to the
PoE variants of Pietrzak's PoE, the second paper of the thesis constructs protocols to batch
multiple proofs of exponentiation for any PoE in hidden order groups [HHI25].° In higher-level
protocols, many PoEs are commonly generated, and there is a clear incentive to batch them to
minimize the communication complexity as well as the computational overhead for the users.
Consider, for example, the Chia Network [Inc23] blockchain that currently generates 32 VDF
proofs in expectation every 10 minutes and has a block length of around 4.8 million blocks.’
One possible application of batch PoEs for such blockchains is for efficient onboarding of
new users with “light” clients. Specifically, the miners (or some third party) could regularly
batch all the intermediate PoE statements and provide a single batch PoE. Thus, reducing
simultaneously the storage overhead of the blockchain and clients’ computation when joining
the blockchain and having to verify all the VDFs.

We will also see that batch PoEs can be used towards remote attestation of parallel compu-
tational power. Consider a prover claiming it has a GPU with ten thousand cores. To prove
it indeed has such parallel computational power, the verifier could generate ten thousand
independent PoE-based VDF challenges, each with time parameter T', and ask the prover to
solve all instances in time 7T". After solving all the instances and computing the corresponding
proofs, the prover sends all the results and proofs to the verifier. If the prover can answer in
time not much longer than 7', and all the PoEs are accepting, the verifier would be convinced.
The clear downside of this solution is that the communication complexity and verifier's running
time grow linearly with the claimed parallelism of the prover; the prover sends ten thousand
PoEs, and the verifier must verify all of them. To improve the communication complexity,
it would be natural for the prover to batch the instances to a single one and send a single
PoE for the batched instance. This would decrease the number of proofs but the prover still
needs to send all the results and let the verifier check that the batched instance corresponds
to them. Otherwise, the prover could simply batch only the challenges and solve just the
batched challenge without the need for any parallelism.

Block et al. [BHR™21] and Rotem [Rot21] construct the first batching protocols for PoEs.

The first protocol, introduced concurrently by Block et al. and Rotem, is constructed as
? qT ? T e
follows: To batch n statements of the form y; = x{ ,...y, = 2% , the verifier ¥V samples n

bits by, ..., b, uniformly at random and sends them to the prover P. Then both P and V
compute a new statement

IT v = (I =)

i€[1,n] i€[1,n]

and then P proves only this new statement with a PoE. Assume that at least one of the initial
statements is incorrect. It can be shown that then the new statement is also incorrect with
probability at least 1/2. Hence, the batching procedure has soundness error 1/2. This error
can be amplified by either repeating the batching procedure with fresh random bits A many
times, for statistical security parameter \, or by increasing the size of the random challenges
sent by V. This is the second batching protocol presented by Rotem. In this protocol the
verifier sends n uniformly random numbers 71,...,7, < {1,...,2*} to P. Then P and V

®This section is taken essentially from [HHI25].
At the moment the group of the VDF also changes every 10 minutes in Chia. This is due to their usage
of class groups, whose security properties are not yet well understood.
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compute a new statement
2 iNgT
IT vi=CII =),
i€[1,n] i€[l,n]
which is then proven by a PoE. Soundness of this protocol is based on the low order assump-
tion. In groups that have no low order elements the soundness error is 1/2*,

In Chapter 4 we introduce two batch PoEs that outperform both proposals of Rotem and we
evaluate their practicality. First, we show that the two batch PoEs of Rotem can be combined
to improve the overall efficiency by at least a factor of two. Second, we revisit the work of
Bellare, Garay, and Rabin [BGR98] on batch verification of digital signatures and show that,
under the low order assumption, their bucket test can be securely adapted to the setting of
groups of unknown order. The resulting batch PoE quickly outperforms the state of the art in
the expected number of group multiplications with the growing number of instances, and it
decreases the cost of batching by an order of magnitude already for hundreds of thousands of
instances. Importantly, it is the first batch PoE that significantly decreases both the proof size
and complexity of verification. Our experimental evaluations show that even a non-optimized
implementation achieves such improvements, which would match the demands of real-life
systems requiring large-scale PoE processing. Chapter 4 is based on [HHI25].

1.3 Short-Lived Proofs from VDFs

The third paper of the thesis constructs VDFs with special properties that are needed for
another application of VDFs [HP25].% This application was presented by Arun, Bonneau and
Clark in [ABC22]. The authors construct so called short-lived proofs and short-lived signatures
from VDFs. Short-lived proofs and signatures are only valid for a prescribed amount of time 7.
After time T they are easy to forge by anyone and hence validity cannot be verified anymore.
The authors of [ABC22] achieve this notion for any relation R by combining a proof system
for R with a VDF computation using a simple OR statement: A short-lived proof is correct
if either the proof for R is correct or a VDF computation has been performed. This way the
proof for R is only valid before time T has passed since after time 7" anyone can output a
valid proof by proving that they have performed the VDF computation. One useful property
that short-lived proofs and signatures can have is reusable forgeability, which means that one
slow computation enables efficient proof forgery for many statements.

In their constructions Arun, Bonneau and Clark need two variants of VDFs: zero-knowledge
VDFs and watermarkable VDFs. Zero-Knowledge VDFs are VDFs that can verify that a
prover P knows the result y of a VDF without revealing any other information about ¥ to
the verifier V, i.e., instead of sending the result y to V, P and V engage in a zero-knowledge
proof of knowledge of y. The zero-knowledge VDF in [ABC22] is a zero-knowledge version
of Wesolowski's VDF. Using this VDF in the OR construction described above to obtain
a short-lived proof provides some form of reusable forgeability: After performing one slow
computation of the delay function, one can forge proofs for multiple statements of the same
sender by providing a re-randomized VDF proof for each statement. Using the zero-knowledge
VDF in [ABC22] computing a re-randomized proof takes time roughly 7'/log(T) since this
is the time it takes compute Wesolowski's VDF proof. Since Pietrzak's VDF proof can be
computed in time T/\/T a zero-knowledge version of Pietrzak's VDF would enable much
faster forging times. The authors of [ABC22] leave a construction of a zero-knowledge version
of Pietrzak's VDF as an open problem.

8This section is taken essentially from [HP25].
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Watermarkable VDFs are VDFs in which the proof can be watermarked, i.e., tied to a specific
prover. They were informally introduced by Wesolowski in [Wes20], where he claims that his
VDF can be watermarked by including a unique identifier in the computation of the random
challenge. The authors of [ABC22] point out that security of this scheme is not proven since
the proof of Wesolowski's VDF reveals the value x* for a large s which may speed up the
computation of y = 27 and hence the computation of a proof with a different watermark.
They propose to watermark the proof of their zero-knowledge VDF construction by including a
unique identifier in the computation of the random challenge of the proof. Since the protocol
is zero-knowledge, the watermarked proof does not reveal any information that might help
computing a proof with a different watermark. However, this also means that the value
y = 27" cannot be revealed, which might be relevant in other applications of watermarkable
VDFs.

In Chapter 5 we present the first constructions that transform any PoE in hidden order
groups into a watermarkable VDF and into a zero-knowledge VDF. We note that this gives
the first practical watermarkable VDF with a security proof, and the zkVDF solves the open
problem stated in [ABC22] asking for a zkVDF based on Pietrzak's VDF. Instantiating the
watermarkable VDFs with Pietrzak’s PoE and using it in the [ABC22] construction of short-
lived proofs (without reusable forgeability) we get proofs with significantly faster forging times
and under different (arguably weaker) assumptions than the construction in [ABC22]. The
results of Chapter [HP25] are published in [HP25].

1.4 Primality Testing from PoEs

Another application of PoEs, which is presented in the fourth paper of the thesis, is certifying
non-primality of Proth numbers [HHKP23].° Proth's theorem [Pro78] states that Py, =
k2™ + 1 is prime if and only if, for a quadratic non-residue  modulo P ,,, it holds that

2" = —1 mod Py. (1.2)

To date, the largest-known Proth prime is 10223 - 231172165 41 [Pri16]. Since n is of the
order of magnitude 107 and the square-and-multiply algorithm is the fastest way currently
known to carry out exponentiation, the test roughly requires 107 squarings modulo a 107-
digit modulus. Unfortunately, performing this test does not yield an immediate witness that
certifies the correctness of the result —in particular, if P, is composite, the test does not find
a divisor of P ,,.1% Until very recently, the standard way for another party to independently
validate the test result was by recomputing the result of Equation (6.1). In 2020, Pavel
Atnashev demonstrated that PoEs might be applicable in the context of these specialized
primality tests to avoid the costly second recomputation.!! Since the primality test using
Proth's theorem amounts to iterated exponentiation, it seems immediate that one would
attempt to exploit PoEs also towards efficient verifiability in the context of primality tests for
giant numbers. The idea is for the volunteer to use the (non-interactive) PoE to compute,
alongside the result of the test, a proof that helps any other party verify the result.

9This section is taken essentially from [HHKP23].
ONote that some primality tests, like, e.g., Miller-Rabin [Mil76, Rab80], can be modified to (sometimes)
yield factors in case the number being tested is not a prime.

" More details can be found in thread of . An implementation due to Atnashev
is available on . The idea of using PoEs for certifying giant primes has been discussed also by Mihai
Preda in another in the same forum already in August 2019


https://www.mersenneforum.org/showthread.php?t=25323
https://www.mersenneforum.org
https://github.com/patnashev/llr2
https://mersenneforum.org/showthread.php?t=24654

1.5. Other Related Work

However, we already know that PoEs were constructed for groups whose order is hard to
compute. If one party knows the group order, they can (in many groups) construct false
Pietrzak PoEs that lead a verifier to accept proofs for false statements. In the context of
primality testing the underlying group is Zp, ,, so the group order is known whenever P , is
prime. While this does not speed up the computation of the primality test (since the modulus
is larger than the exponent), it removes the soundness guarantee of the protocol.

In Chapter 6 we show how to construct a sound practical proof of non-primality for Proth
numbers. In particular, we show how to adapt Pietrzak's PoE at a moderate additional cost
to make it a cryptographically-sound certificate of non-primality. That is, a volunteer can,
parallel to running the primality test for Py ,, generate an efficiently verifiable proof at a
little extra cost certifying that P, is not prime. The results of this chapter are published
in [HHKP23].

1.5 Other Related Work

Other candidate VDFs. In [HHKK23] a VDF based on the hardness of computing Lu-
cas sequences over an RSA modulus is constructed. It is shown that there exist a reduc-
tion from repeated squaring to Lucas sequences. No reduction in the other direction is
known. There are several candidate VDFs with sequentiality not based on iterated squar-
ing, such as the permutation-polynomial based construction [BBBF18], the isogenies-based
constructions [DMPS19, CSHT21, Shal9, CSRHT22] and the constructions from lattice prob-
lems [LM23, CLM23]. The constructions in [DMPS19, CSHT21, Shal9] work in the algebraic
setting of isogenies of elliptic curves. Although these constructions provide a certain form of
quantum resistance, they are presently far from efficient. Freitag et al. [FPS22] constructed
VDFs from any sequentially hard function and polynomial hardness of learning with errors, the
first from standard assumptions. The works of Cini, Lai, and Malavolta [LM23, CLM23] con-
structed the first VDF from lattice-based assumptions and conjectured it to be post-quantum
secure. Finally, some VDF candidates rely on “arithmetization friendly” symmetric primi-
tives and practically efficient SNARKs [BBBF18, SB19, KMT22]. However, the sequentiality
of SNARK-based VDFs is yet to be understood, as shown, e.g., by the recent analysis of
MinRoot [LMPR23]. While some of the above construction possibly provide post quantum
security, they are currently not as efficient as the VDFs built from iterated squaring.

Existence of VDFs and PoSWs. There is evidence that to construct VDFs over groups,
the reliance on the group order being unknown is inherent [RSS20, MSW20], which lends even
more importance to PoE protocols from the perspective of efficient VDFs. PoSWs can be
constructed from random oracles [MMV11]. However, VDFs do not exist in the random oracle
model [MSW20, GRY?24]. Finally, we point out that existence of VDFs has implications in
complexity theory, in particular to the existence of average-case hardness in complexity classes
of total search problems such as PPAD [EFKP20, LV20, CHK"19, BCH*22].

Variants of VDFs. In addition to the basic VDFs, refined variants of VDFs have also been
explored. For a “continuous” VDF [EFKP20], it should be possible (loosely speaking) to take
a proof and iterate it to produce a proof for the next iteration of the delay function (instead
of having to recompute the proof for the new value from scratch). A “tight” VDF [DGMV20]
necessitates that the amount of work that is required to generate a proof to be “comparable”
to that required to just compute the function.
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Batch verification. The idea of using batching to reduce the amortized cost per opera-
tion has been explored for a host of cryptographic primitives such as, e.g., key agreement
[BY93], signatures [MN96], and public-key encryption [Fia97]. The problem of batching the
verification of multiple exponentiations in arbitrary groups (not necessary of unknown order)
was studied in [BGR98]. They make a heavy use of the random subset and random expo-
nents technique (as pointed out in [Rot21]). Building on [BGR98], Rotem [Rot21] explored
batch-verification of VDFs.

Assumptions in hidden order groups. The low order assumption in RSA groups is an-
alyzed in [SB20]. The authors give equivalence results for weaker forms of the low order
assumption and the factoring assumption for a non-negligible portion of moduli. The low or-
der assumption in class groups is analyzed in [BKSW20]. The authors show that it is broken
for Mersenne primes and other special forms of prime numbers.

10



CHAPTER

Preliminaries

In this thesis, we let A denote a security parameter. We use [n] := {1,...,n} to denote the
set of all positive integers smaller than or equal to n.

2.1 Relations and Interactive Proofs

A relation R C X x W is a set of pairs (x,w), where x is called the instance and w is called
the witness. The set of all values x for which there exists a witness w such that (z,w) € R
is called the language Ly for R.

Definition 1 (interactive proof). For a function € : N — [0, 1], an interactive proof for a
relation R is a pair of interacting PPT algorithms (P, V), called the prover and the verifier,
where P takes as input a pair (z,w) € R and V takes as input x. We require the algorithms
to satisfy the following properties

» Completeness: For every x € Ly, if V interacts with P on the common instance z,
then V accepts with probability 1.

= Soundness: For every © ¢ Ly and every cheating prover strategy P, the acceptance
probability of the verifier VV when interacting with P is less than (|z|), where ¢ is called
the soundness error.

Definition 2 (proof of knowledge). A proof of knowledge is an interactive proof that is knowl-
edge sound, i.e., there exists an efficient extractor &€ such that for every (potentially malicious)
prover P* that makes ) accept proof 7 for instance z of bit-length n with probability ¢, the
extractor £, which can interact with P*, outputs a witness w such that (z,w) € R with
probability at least (0 — €)/poly(n), where poly is some positive polynomial and ¢ € [0, 1] is
called the soundness error.

Sometimes the knowledge extractor £ only manages to output a witness for a relation that
slightly differs to the relation for which completeness holds. In this case we say that the
proof of knowledge soundness is not tight. This can affect the choice of parameters and
assumptions needed for soundness.

11
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To prove knowledge soundness it is often easier to show that the protocol satisfies special
soundness. It is well known that special soundness implies knowledge soundness for 3-round
protocols.

Definition 3 (special soundness). A 3-round protocol is called special sound if there exist a
polynomial time extractor that on input an instance x and two accepting transcripts (a, ¢, 2)
and (a, c, z') with common first message a and ¢ # ¢’ outputs a witness w € R.

In this work we consider special honest verifier zero-knowledge which is a special case of
honest verifier zero-knowledge. Note that proving zero-knowledge against an honest verifier
is sufficient for us because the protocols will be made non-interactive via the Fiat-Shamir
transform.

Definition 4 (special honest verifier zero-knowledge proof). A special honest verifier zero-
knowledge proof is an interactive proof that is zero knowledge when the verifier behaves
according to the protocol. That means there exists an efficient simulator § that, given
instance x € Lgi and a uniformly random value ¢ from the randomness space of the verifier,
can output an accepting transcript for x with verifier's message ¢ which is indistinguishable
from a real transcript with an honest verifier.

It is well known that any constant round interactive proof in which the verifier messages
only consist of random elements can be transformed into a non-interactive proof via the
Fiat-Shamir heuristic [FS87] by deriving the verifier's messages via a suitable hash function.
If the interactive proof is honest verifier zero-knowledge, the non-interactive version is fully
zero-knowledge (i.e., no assumption on the behavior of the verifier is needed) in the random
oracle model. In the random oracle model the hash function is modelled as a publicly available
random function O. The simulator S has programmable access to O, which means that it
can set the output of O to a value of its choice as long as the distribution of the output
values is uniform.

Definition 5 (proof of exponentiation). A proof of exponentiation (PoE) in a group G is an
interactive proof for the language

L={(x,y,e) € G? xN|x25 =y}

Definition 6 (batch proof of exponentiation). A batch proof of exponentiation for m state-
ments in a group G is an interactive proof for the language

L ={{(xi,yi,€) }icpm € {G* x N}™ | zf =y, for all i € [m]}.

In the thesis, we sometimes use the term batching protocol to refer to a batch proof of
exponentiation.

2.2 Verifiable Delay Functions

Verifiable Delay Functions were introduced by Boneh et al. in [BBBF18].

Definition 7. A verifiable delay function (VDF) is a set of algorithms (Setup, Eval,
Prove, Verify), where

12
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Setup(1*,T) — pp on input statistical security parameter 1* and time parameter 7" outputs
public parameters pp.

Eval(pp,z) — (y,«) on input (pp,z,T) outputs (y, ), where « is an advice string.
Prove(pp,,y,«) — (y,m) outputs a proof 7 for y.

Verify(pp,z,y,m) — accept/reject checks that y = Eval(pp,z).

The algorithm Eval is deterministic and can compute the output y in 7" sequential steps. A
VDF must additionally satisfy three properties:

Completeness: For all tuples (pp, z,y, 7), where y = Eval(pp, z) and m = Prove(pp, z, y, @),
algorithm veri fy(pp, x, y, 7) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(\) processors and outputs
= Eval(pp, z) with noticeable probability runs in time at least 7.

Soundness: If Verify(pp,z,y,T) outputs accept, then the probability that y # Eval(pp, z)
is negligible.

2.3 The Group of Signed Quadratic Residues

One example of a hidden order group that has useful properties is the group of signed quadratic
residues [FS00, HK09] with a safe prime modulus. We call a prime number p safe if p = 2p'+1
for a prime number p’. We say that N = pq is a safe prime modulus, if both p and ¢ are safe
primes. Let Z} denote the multiplicative group modulo N. The group of quadratic residues
modulo N is defined as QR := {a* mod N : a € Z%} and the group of signed quadratic
residues is defined as

QRYy ={|b]: b€ QRy},

where | b | is the absolute value of b when representing the elements of Zy as {—(N —
1)/2,...,(N —1)/2}. QRY is a cyclic group with group operation aob :=| a-b mod N |.
Unlike in QR ,, membership in QR} can be efficiently tested: We have that b € QR if
0<b< (N —1)/2 and the Jacobi symbol of b modulo N is +1.

2.4 Assumptions

In this thesis we need the following well-known assumptions in hidden-order groups. In Sec-
tions 4.5.2, 5.3 and 5.6.2 we state the novel assumption that we need in the papers of this
thesis.

Definition 8 (strong RSA assumption). Let GGen(1%) be a randomized algorithm that out-
puts the description of a hidden-order group G. We say that the strong RSA assumption holds
for GGen if, for any probabilistic polynomial-time algorithm A, the probability of winning the
following game is negligible in A:

1. A takes as input the description of a group G output by GGen(1*) and an element
a+ G.

13
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2. A outputs a pair (e,b) € Z x G.
3. A wins if and only if e # 1 and b° = a.

The following assumption, which was first formalized in [BBF24], states that it is (computa-
tionally) hard to find elements of low order. Note that our assumption is a bit stronger than
theirs because our upper bound on the order is 23**2, while they assume the upper bound
22. This is only necessary for the results in Chapter 5. For the other results of the thesis the
bound 2* would be sufficient. There are groups in which this assumption holds information

theoretically because such elements do not exist: The group of signed quadratic residues
QR described above.

Definition 9 (low order assumption). Let GGen(1") be a randomized algorithm that outputs
the description of a hidden-order group G. We say that the low order assumption holds for
GGen if, for any probabilistic polynomial-time algorithm A, the probability of winning the
following game is negligible in A:

1. A takes as input the description of a group G output by GGen(1%).
2. A outputs a pair (d,a) € [23*?] x G.

3. A wins if and only if a # 1 and a? = 1.

The following assumption was first stated by Rivest, Shamir and Wagner [RSW96].

Definition 10 (iterated squaring assumption). Let GGen(1*) be a randomized algorithm
that outputs the description of a hidden-order group G. We say that the iterated squaring
assumption holds for GGen if, for any probabilistic parallel algorithm A that uses at most
poly(X) processors and runs in time less than 7', the probability of winning the following game
is negligible in \:

1. A takes as input the description of a group G output by GGen(1?*), a random group
element x and an integer 7.

2. A wins if it outputs element y = 22"

Remark 1. We note that, strictly speaking, the iterated assumption as stated above does
not hold. Bernstein and Sorenson [BS07] showed that one can reduce the sequential time
of computing an iterated squaring instance 22" from T to T/loglog(T) using at least T
processors. While this is a nice theoretical result, it is not practical in our setting. In practice
the time parameter T" will be at most 232, so the algorithm by Bernstein and Sorenson can
reduce the sequential time by at most a factor of 6, for which it would need at least 7% = 264
processors. For simplicity we will ignore this loglog(T") factor in the rest of the thesis.

In the decisional version of the iterated squaring assumption we consider an adversary that
gets as input a pair of group elements (x,y) and needs to decide whether or not y = 22
The YES instances are pairs (2,22") for a uniformly random group element z. The NO
instances are pairs (z,2%) for uniformly random group elements x and z. Note that it is
necessary to square the element z because 22 is a square and in RSA groups one can rule
out that an element is a square, whenever its (efficiently computable) Jacobi symbol is —1.
The assumption was first stated explicitly in [MT19] and analyzed in the GGM in [RS20].
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Instance: (z,y,7,G), where z,y € G and T' € N is even
Parameters: statistical security parameter \
Statement: 22 =y in G

Protocol:
1. V samples £ < Primes(\) uniformly at random and sends it to P.

2. P computes q € Z>o and 0 < r < £ such that 27 = ¢/ +r and sends 7 = 27 to V.

3. V computes 7 = 27 mod ¢ and checks if y = 7*

reject accordingly.

2" in G. It outputs accept or

Figure 2.1: Wesolowski's PoE [Wes20]. Primes()\) denotes the set of the first A\ prime
numbers.

Definition 11 (decisional iterated squaring assumption). Let GGen(1%) be a randomized
algorithm that outputs the description of a hidden-order group G. We say that the decisional
iterated squaring assumption holds for GGen if, for any probabilistic parallel algorithm A that
uses at most poly(\) processors and runs in time less than 7, the probability of winning the
following game is negligible in A:

1. A takes as input the description of a group G output by GGen(1%), a random group
element x, an integer 7" and a group element y which, with probability 1/2 each, takes
one of the following two forms: either y = 22 for a uniformly random group element z

2T
ory=ux" .

2. A outputs 0 or 1 indicating whether or not y = 22

3. A wins if it outputs the correct bit with probability greater than 1/2.

2.5 Known Proofs of Exponentiation and Batching
Protocols

We present Wesolowski's PoE in Figure 2.1, Pietrzak's PoE in Figure 2.2 and Block et al's
PoE in Figure 2.3. We present the Random Subsets Protocol by [BHR"21, Rot21] in Fig-
ure 2.4a and the Random Exponents Protocol by [Rot21] in Figure 2.4b. Both protocols
are adaptations of the protocols from [BGR98]| to the setting of hidden order groups. For
ease of exposition, we present all protocols in their interactive form. Non-interactive PoEs
and batch PoEs can be obtained via the Fiat-Shamir heuristic [FS87], i.e., by deriving the
verifier's challenges from the statements and current transcript via a suitable hash function.
We note that in the interactive version of Wesolowski's PoE the challenges space needs to
be increased to Primes(2)). See [BBF24, Section 3.3] for an attack on the non-interactive
version with smaller challenge space.
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Instance: (z,y,7,G), where z,y € G and T € N is even
Parameters: statistical security parameter \
Statement: z2° =y in G

Protocol:
1. ForT = 1:

» If 22 =y, output accept.

» Else, output reject.
2. For T > 1:

a) Psendsv=22"to V.

b) If v € G, V outputs reject. Otherwise, V samples r + {0,1,...,2* — 1}
uniformly at random and sends it to P.

c) P and V compute 2/ := z"v and ¢ := 0"y in G.

d) If /2 is even, P and V run the protocol on instance (z’,vy',7/2,G). If T/2
is odd, P and V run the protocol on instance (2,4, (T'+1)/2,G).

Figure 2.2: Pietrzak's PoE [Piel9].

Parameters: statistical security parameter \
Instance: {(z;,y;, T, G)}icy, where 2;,4; € G for all i € [A\] and T' € N is even
Statement: 22 =y; in G for all i € [)]

Protocol:
1. ForT =1:

» If 22 =y, for all i € [)\], output accept.

» Else, output reject.
2. ForT > 1:

a) Psendsv; =22 to V for all i € [\
b) If for some i € [)\], it holds v; € G, then V outputs reject. Otherwise, V
samples S < {0, 1}**** uniformly at random and sends it to P.

c) Forall j € [A], P and V compute

o= [[ (wv:)¥ and o == [] (vigs)® in G.
icA] i€[A]

d) If T'/2 is even, P and V run the protocol on instance {(z}, i, 7/2,G) }icy.If
T'/2is odd, P and V run the protocol on instance {(z}, y*, (T+1)/2,G) }iey.-

)

Figure 2.3: Block et al's PoE [BHR"21].
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Known Proofs of Exponentiation and Batching Protocols

Parameters: e, m,p € N, G, and PoE

Statements: < y; = xs in G
i€[m]
Protocol:

1. V samples a matrix B < {0, 1}/*™
uniformly at random and sends it to

P.

2. V and P construct new statements

y < (x})° , Where
i€[p]

vi= 11w oi= 11 ="

J€[m] J€[m]

3.V and P run p many PoE on

{ui @y}

in parallel.
i€[p]

Parameters: e, m,x € N, G, and PoE
Statements: {yi = xf} in G

i€[m]
Protocol:

1. V samples a vector r < [2%]™ uni-
formly at random and sends it to P.

2.V and P bo'gh construct one new
statement § = (7)€, where

g= 11 W)™, &= 1] (=)™

1€[m)| 1€[m)|

3. V and P run PoE on statement § i

(7)°.

(a) Random Subsets [BHR21, Rot21].

(b) Random Exponents [Wes20, Rot21].

Figure 2.4: Known batch PoEs.
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CHAPTER

Statistically Sound Proofs of
Exponentiation

3.1 Introduction

In this chapter we construct practical statistically sound proofs of exponentiation in any group.
From the discussion in Section 1.1, one may conclude that the PoE of Block et al. [BHR"21]
is the only reasonable option when we need statistical guarantees and want to avoid trusted
set-ups. However, it suffers from the drawback that its proof-size is large, AlogT to be
precise. In this work, we present an efficient PoE that enjoys statistical soundness in all
groups, but only for exponent ¢ that is of a special structured form — for our basic protocol,
q is set as the product of all primes less than some bound B € N. The size of our proof is

AogT/log B,

which is smaller than in [BHR21] by a (multiplicative) factor of log B. It is, however, not
possible to choose B to be arbitrarily large in our protocol as this would adversely affect
the verifier's (computational) complexity. An illustration of how the proof-size and verifier-
complexity of our protocol change with B can be found in Figure 3.1. In our most basic
protocol, the verifier's complexity when B = 521 is roughly the same as in [BHR"21] (Fig-
ure 3.1.(b)). For this B, we get the proof for each of the logT" rounds down from A\ = 80
to 9 = [80/log B] group elements (Figure 3.1.(a)). In practice, this means, e.g., that for
a time parameter 7' = 232 and instantiation in a group with elements of size 2048 bits, the
proof-size drops from 655KB to 74KB.

Finally, for the application to VDFs and SNARKSs, we argue that our special choice of exponent
q does not really matter. In the construction of SNARKs in [BHR"21], it is possible to use
any q as long as it is sufficiently large.® As for VDFs, one typically just sets the exponent
g = 2, and exponentiation, therefore, is tantamount to squaring. For a more general ¢, one
adjusts the time parameter accordingly, as explained next. For an arbitrary ¢, one can use
the square-and-multiply algorithm, so each exponentiation induces |log(q)| (not just one)
sequential squarings with some multiplications in-between. Note that if ¢ was a power of 2

!Note that our structured exponent g is always even. However, many results in [BHR'21] are stated only
for odd values of ¢. In Appendix 3.5, we show that such restriction is not necessary and that their results, in
fact, hold for all values q.
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proof-size in group elements

60 [
e BHR+21

10 E This work
| Pie18
20

200 400 600 800

verifier's complexity in multiplications

————— BHR+21
This work
Pie18

10000

5000 -

200 400 600 800

(b)

Figure 3.1: For 80-bit security, (a) the number of (group) elements sent by the prover per
round and (b) the number of (group) multiplications carried out by verifier, also per round,
plotted for different values of the bound B. The dotted blue line, the solid orange curve,
and the dashed green line represent, respectively, [BHR*21], our protocol, and [Piel9]. In
Figure 3.3 we dissect the solid orange curve in (b).

(which it is not in our case), say 2*, the initial exponentiation would be of the form (""" so
one would set the time parameter to T'= T"/k in order to get a challenge that takes time 7"
to compute. Similarly, for our choice of ¢, one sets the time parameter to 7' = [7"/log(q)]

to get a challenge that takes sequential time 7" to compute.

3.1.1 Technical Overview

In this section, we first describe a basic version of our protocol where the verifier's running
time is not optimal. This allows us to introduce the core ideas behind our PoE. Then we
explain how to improve the verifier's efficiency. We refer the readers to Sections 3.2 and 3.4,
respectively, for the technical details.

Basic Protocol and Proof lIdea

Our starting point is Pietrzak's PoE, in particular, an observation on the fine-grained nature
of its soundness which we exploit in our protocol. Therefore, we start with its high-level
description.

Pietrzak’s PoE and its soundness. The protocol in [Piel9] presented in Figure 2.2 is
recursive in the time parameter 7' and involves logT" rounds of interaction. To prove a
(true) statement 'y = 21", the (honest) prover P, in the first round, sends the “midpoint”
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W= 29" to the verifier V. This results in two intermediate statements

? T/2

p=a27" and y = pd"”, (3.1)

but relative to half the original time parameter T'. Next, V sends a random challenge r to P,
and they merge these two intermediate statements into a new statement

r ?

Yy = (x’)qT/2, where 2/ := 2" - pand ¢ := " - y.
The above steps constitute the “halving” sub-protocol, which is repeated log 7" times, halving
the time parameter each time, until P and V arrive at a (base) statement for 7' = 1. At this
point, ) can efficiently check the correctness on its own by performing a single exponentiation.

To explain our observation, it suffices to focus on the first round of the protocol (but it
applies also to later rounds). Assume that a cheating prover P tries to cheat with a (false)

statement ¢ = 29" that is “a-false”, by which we mean § = y - « for some a € G \ {£1}
and y := 29" . The soundness of the halving sub-protocol depends on the order of « in G,
denoted ord(«). For simplicity, let's restrict our attention throughout this section to the case
where ord(«) is a prime power p°, for a prime p € N and an exponent e € N — the case of
prime power already captures all interesting aspects. Our observation is that if ord(«) = p©
for the original statement then the new statement is still false with probability 1 — 1/p® (over
the choice of ). In other words, the soundness error of this round is 1/p®. More generally, if
ord(a)) = p° for the original statement then for any d < e, P and V derive a new statement
that is o/-false with probability 1 — 1/p?, where ord(a/) = p’ for ¢/ > e — d. We formalise
this observation in Lemma 1.

Dealing with low-order elements by parallel repetition. Note that the above analysis
also explains why Pietrzak's PoE is unsound when the group contains low-order elements:
when, e.g., a statement is a-false for a such that ord(«) = 2, the soundness guaranteed is
only 1/2. To generate a cheating proof, it suffices to find such an a (see [BBF24] for details
of the attack) and, hence, the necessity of low-order assumption. The PoE of Block et al.
[BHR"21] gets around this issue essentially by direct amplification of the weak soundness,
i.e., by running A-many instances of the PoE in parallel, where X is the security parameter.
The protocol is presented in Figure 2.3. We provide an overview of their protocol next.

As in Pietrzak's PoE, the protocol in [BHR'21] is recursive in the time parameter T' and
involves logT" rounds of interaction. At the start of the protocol, P and V have a tuple of

A (possibly identical) statements of the form y L 29", with the same exponent ¢ and time

parameter T'. In the first round, for each statement y ~ 29" in the tuple, P sends the midpoint
i to V, which results in two intermediate statements as in Equation (3.1). Altogether, there
are 2) intermediate statements at this point. Next, V' sends a random challenge (51, ..., S))
to P, using which the intermediate statements are randomly merged into A new statements,
each of the form y Z 27 To be precise, the challenge S; determines a subset of the
intermediate statements, which are multiplied to obtain the i-th new statement. The above
steps constitute the halving sub-protocol for [BHR21] repeated log T" times, halving the time
parameter 1" each time, until P and )V arrive at a statement for 7" = 1. At this point, ) can
efficiently check the correctness on its own by performing A exponentiations.

To see why elements of low order do not affect soundness of the halving sub-protocol any
more, suppose that one of the original statements is a-false with, say, ord(a) = 2 (which
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is the worst case). Just like in [Piel9], we now have the guarantee that at least one of the
2\ intermediate statements is also false. [BHR"21] show that merging using the “random
subset product” technique described above guarantees that each new statement is individually
false with probability at least 1/2 and, by independence of choice of S;s, at least one of the
new statements is false with probability 1 — 22 Thus, a false statement is in some sense
“propagated” till the end, at which point it gets detected by V.

Reducing the number of repetitions using structured exponents. Our basic protocol
is similar to [BHR"21], except for two modifications: (i) we set ¢ to be the product of all
primes (strictly) less than some bound B; and (i) we repeat only p = A/log B times in
parallel. To see why such a structured ¢ helps reduce the number of repetitions from X to p
(while maintaining statistical soundness), we have to appeal to our above observation on the
security of the PoE from [Piel9] and apply it to the setting of [BHR"21]. Suppose, again,
that one of the original \ statements at the start of the protocol is a-false. There are three
cases to be considered.

1. If ord(«) has a “large” prime divisor p > B then we apply our observation to infer
that each new statement is a-false with probability (1 — 1/p), and the independence
of merging now implies a soundness error p~? < B~*. Since p = \/log B, we get
soundness error 27* as [BHR21].

2. Otherwise, ord(«) only has a “small” prime divisor p < B and suppose that ord(«a) =

P°.
a) If the exponent e of the prime power p°© is “large” — to be precise ¢ > C, where
C := logT log B — then we can apply our observation again. There are logT’
rounds and, by an averaging argument, there must exist a round ¢ such that the
prime power drops by at least log B. However, by our observation, even for p = 2

this can only happen with probability at most 2715 = 1/B. Now, it can be
similarly argued that the probability that there exists at least one false statement

in the next round is 1 — B~", and we get the same soundness error as in ltem 1.

b) Otherwise, the exponent e of the prime power p€ is “small”, i.e., e < C. To handle
this case, we modify the protocol so that the statement that (honest) P and V
start with is

instead of y ~ 29" and then make V compute the final exponentiations y‘fc —y

on its own. To see why this helps with soundness, assume that P tries to cheat with
~ 7 T-C . . . ~ T-C .

an a-false statement § = ¢ in the modified protocol, i.e., y =29 ~ -«. Since

ord(a) = p° divides q©, we have al” =1 and, therefore, V's final exponentiation

leads to outright rejection:

R a—— #.

To summarise our approach, the modification in Item 2b forces a cheating prover to cheat
with a-false statements that are “far from being true” in the sense that ord(«) has a divisor
that is either a large prime or a prime power with large exponent. Moreover, it is possible to
catch cheating with such statements building on existing techniques (Items 1 and 2a), aided
by a fine-grained analysis. In Section 3.2, we extend the above analysis to accommodate «
of arbitrary order (Theorem 1).
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Improving Verifier's Complexity

The basic protocol that we just outlined decreases the number of parallel repetitions and,
thus, the proof-size in the non-interactive case, by a factor log B. But the verifier has to
carry out some extra work as it must compute the final exponentiation yqfc — gy on its
own. This can be quite expensive, especially if we batch many proofs together. In the same
group and for the same 7', both protocols of Pietrzak and Block et al. can handle many PoEs
basically at the price of a single PoE plus a small additive complexity overhead for each proof
(this is, in fact, exploited in the SNARKSs from [BHR"21]). In this work, we show that such
batching works even for different values of T'. Though, one problem for our new PoE is that,
while this batching works also for the first phase of our protocol, the final exponentiation of
the verifier cannot be trivially batched and, thus, it must be performed for each statement
individually.

We thus further improve the protocol in two ways getting mostly rid of the extra cost for the
final exponentiation. The first improvement leverages the observation that, by setting ¢ to be
not just the product of all primes (strictly) less than B but taking each prime p with power
log B/ log(p), we can already decrease the exponent C for the final exponentiation from
log T log B to logT. The second improvement comes from the observation that the final
exponentiation y‘fc — 1y can be replaced by just another PoE and, using our batching, this
statement itself can be just batched together with the original statement. As the exponent
(C =log T with the first improvement) is much smaller than T, the final exponentiation now
only needs log(C') = loglog T rounds. lterating this idea log™(7") times, which is at most

2

2
5 =log"(2" ) = log"(2%9%)

in practice, we get the number of exponentiations down to 1 with a modest increase (from
p-logT to p- (logT +log™(T')) group elements) in proof-size. This batching argument only
works so conveniently for 7" of a special form, basically powers of 2: 7" in the (relevant) range
217 < T < 265536 should be of the form T' = 2! 426424422+ 1. For general T the verifier's
cost grows with basically the Hamming weight of log7T". In Appendix 3.5.3 we analyse the
gain in efficiency of the polynomial commitment in [BHR"21] when we use this improved
version of our PoE as a building block instead of the PoE proposed in [BHR™21].

3.2 Basic Protocol

Block et al. [BHR"21] constructed a statistically-sound PoE in any group of unknown order
using the PoE from [Piel9] as starting point (which was described in Section 3.1.1). To
achieve \ bits of security, their construction requires a multiplicative factor of A in proof-size
compared to [Piel9]. Below, we first explain the PoE from [BHR"21] in a bit more detail
(than in Section 3.1.1), and then we explain how our protocol reduces this overhead. For
now we just focus on improving the proof-size, but the verifier complexity of our protocol will
increase, especially in settings where we batch many proofs — later, in Section 3.4, we will
show how to get down the verifier's complexity.

Statistical PoE from [BHR"21]. To interactively prove the statement y = 297, the
prover P and verifier V first make \ copies of the statement.? In every round of the protocol,

2Note that the protocol works also when the starting statements are different as long as the exponent ¢
and time parameter T' match. This is the case for our protocol too.
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the original statements are reduced to “smaller” statements by reducing the exponent ¢’ to
gl = ¢%/? as follows. The i-th round starts with a set of \ statements

? T;
{?Ji = 95;'1 }ie[1,,\]-

Then, P sends A many “midpoints”

T;/2

{pi = xf }ie[l,)\]

resulting in 2\ intermediate statements of the form

? T;/2
{vi = uf ' }ie[1,2)\]-

To avoid a blow-up in the number of statements, VV sends a random subset S C [1,2)] to
P and, then, P and V use S to recombine these 2\ intermediate statements into one using
subset-product:

? T, /2

iesv; = Miesuf

To ensure soundness, it is required to perform A many of such recombinations using inde-
pendent subsets S7,...,S), and the round ends with A many new smaller statements. We
next explain why the recombination step must be performed A\ many times. Suppose only one
of the 2\ intermediate statements is false before the recombination step (which is the worst
case). Then, with probability 1/2, the false statement is not among the selected statements
in the random subset used during the recombination step, and the resulting new statement
is true. If all new statements are true, then the verifier falsely outputs accept at the end of
the protocol and, therefore, the verifier must perform A many independent recombinations to
ensure \ bit security.

Our protocol. We give a formal description of our protocol in Figure 3.2 — for ease of
presentation, we assume that 7' = 2t + C for some t € N.3 Moreover, since the exponent
q is fixed throughout the protocol, we sometimes drop it and use the short-hand (z,y,T') to

denote the statement y = 29" Its soundness is then proved in Section 3.2.1. Below, we give
a high-level overview, slightly more detailed than in Section 3.1.1. We start by listing the
major differences between our protocol and [BHR™21].

1. Instead of sampling a subset S C [1,2)] to construct a new statement using subset-
product, we take each intermediate statement to a random exponent in {0,1,...,2" —
1}, where £ is some small integer, and then multiply them together: see Equation (3.3).

2. We set
¢= II » (32)
prime p<B
where B is some fixed bound, which can be chosen depending on the application of the
PoE.

3. We define a constant C such that the prover gives a proof for the statement 7/ L ogat e

(i.e., a ¢°-th root of the original statement) and the verifier computes the final check
()1 =y itself.

3The case where T — C is not a power of 2 can be handled by a standard approach similar to [Piel9,
Section 3.1].
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The above changes allow us to reduce the number of repetitions from A to p := \/log B (for
A bits security). At a first glance, it could seem like the first change is sufficient to avoid the
need for \ independent recombinations since the probability that a false statement is part of a
new statement is not 1/2 any more but seemingly 1/2%. Unfortunately, it is not the case that
taking x-bit exponents for the recombination step achieves such a drastic improvement in the
bound on the probability of accepting a false statement. Note that the process of raising a
false statement to some exponent can also result in a true statement. This is indeed very

: . 7T . :
likely if a false statement y = 2% is “close” to the true one in the sense that ¥ is the correct
value multiplied by a low-order element «. If, e.g., this element « is of order two and the
statement is raised to an even exponent, say two, the resulting statement (ya)? = (24")2 will
be true. This observation underlies an attack on [Piel9] that was first described* in [BBF24]
and it is also the reason why [Pie19] is statistically-sound only in groups that have no elements
of small order.

To circumvent the above attack using low-order elements, we introduce the second and third
) . . 2
change in the protocol: instead of the original statement y = 27" the (honest) prover only

proves the (smaller) modified statement ¢’ Z 277, where y = 29 7, and the verifier
checks whether y = (y’)qc by itself as the final step. Moreover, to ensure that all the low
orders are covered, we define ¢ to be the product of all small prime numbers up to a certain
bound B as in Equation (3.2). Now, a cheating prover that tries to cheat on an original
statement by proving a false modified statement® will get caught in the final exponentiation
as long as the false modified statement is “close” to the true one, where “close” means that
the correct value can be multiplied by an element o whose order only has small prime divisors
(prime numbers less than B) and the prime divisors have small exponents (integers up to C).

To see this, observe that if the modified statement is /o = 29" © (which is false), the final
exponentiation with ¢ leads to rejection since

C T—C)

()™ =1- (2" ) =27 #y,

where a7 = 1 holds in G because of our assumption that it has low order. The above changes
allow us to restrict to cheating provers that try to convince the verifier of statements that are
“far from true”, i.e., where the correct value is multiplied by an element whose order either
has a large prime divisor or a divisor which is a small prime number with a large exponent.
However, in this case the probability that the protocol ends with only true statements and
the verifier wrongly accepts at the end of the protocol is less than log T - 2= for parameters
C =logTlog B and p = \/log B, where p takes the role of A in [BHR"21], i.e., it is basically
the number of parallel repetitions of Pietrzak’s protocol.

3.2.1 Soundness

We show that our protocol is statistically-sound for arbitrary groups of unknown order. In
particular, soundness holds against cheating provers that can compute group elements of small
order.

4The observation that random batching can be attacked using low-order elements was already made in
[BPOQ].

®|f the (cheating) prover does not cheat on the modified statement, the verifier will anyway catch it during
the final exponentiation.
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Parameters: (determined in the analysis)
1. bound B € N, which defines the exponent ¢ := [, 1ime p<5 P
2. constant for exponentiation C' € N
3. number of parallel repetitions p € N
4. size of individual random coin Kk € N

Statement: y = 24" in Lg

Protocol: For ease of presentation, we assume that 7' = 2 + C. The protocol consists
of t rounds described in Item 3 below.

1. The prover P sends ¢/ = 27 * to the verifier V, defining the initial p statements
{(xo,j,yoyj,Tg)}je[Lp], where Ty := T — C and, for j € [1,p], zo; := x and

Yo =Y
2. Inround i € [1,¢], P and V engage in the following halving sub-protocol:

a) Let {(z;_1,vi15,Ti-1 = 2“”1)}3.6[1#] be the statement from round i — 1.

qTi—1/2

b) P sends V the midpoints {Hi,j =T } , which defines 2p interme-
T ) el

diate statements

{(@i1g, g, Ti i= 711;71/2)}%[17,)] and {(,ui,j?yifl,jaTi)}je[l,p]v

which we denote {(u;, Vi, Ti)}keu 20"
c) V sends a random challenge {ri};c(y jrepion t0 P where 7y ;5 < {0, 1}"

independently for all j € [1,p] and k € [1,2p].

d) Pand Vset {(zi;,vi;, 15)} as the statement for the next round, where

JEML,p]

T = H u:k]k and y; ;= H v;@j”“, (3.3)

ke(1,2p] ke(1,2p]
and proceed to the next round.

3. V accepts if and only if 2} ; =y, ; and (y)1" =y forall j € [1,p].

Figure 3.2: Our basic Proof of Exponentiation.
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3.2. Basic Protocol

Theorem 1. Let B be any prime number such that q := [l,;me <P and p € N be the
number of repetitions per round. If we set C' = logT'log B and let k — oo, the verifier V
will output accept on a false statement (x,y, T = 2" + C') with probability at most t/B".

A parameter of our PoE is the bit-size x of each random element sampled by the verifier. In
the statement of Theorem 1, we consider the limit case with s approaching infinity for the
sake of readability. Note that if r is sampled from a randomness space of size 2 we have
Pr [p divides ] = 1/p+ 1/2%. In the limit case k — o0, the probability is 1/p. In practice,
needs to be chosen carefully such that the protocol is still efficient but the probability of the
above event is close enough to 1/p. We discuss this point further in Section 3.2.2. Before
proving Theorem 1, we analyse in Lemma 1 how the order of a group element precisely affects
soundness; next we provide an overview.

Fine-grained soundness. Let 2¢° © = ¢/ but a cheating prover P claims that 27 © = y/a.
In the execution of the protocol, P first sends a midpoint 4, which results in two intermediate
statements. Note that no matter what the value of 4 is, one of the two statements will be
false, so for now let's assume that P sends a correct midpoint p = 2777 Therefore the
intermediate statements are

? q(T—C)/2

p=x

? q(T—C)/Q

, and Yo =p 7

and in particular, the second statement is a-wrong. In the protocol, we copy each statement
p many times, raise each copy to a random exponent r; and then multiply the 2p statements
together. This results in a new statement that is true whenever

1 T2

ata"? .o = Tt =

This is the case when 71 +ry +--- + 7, =0 mod ord(«), which happens with probability
1/ord(c) if we assume that the randomness space is large enough (see Section 3.2.2 for
discussion on the size of the randomness). This means that whenever ord(«) is large, it is
unlikely that the statement is transformed into a true statement after a single round. However,
the order of the element that makes the statement false can also decrease round by round until
the statement is transformed into a true one. To prove this intuition, we use the following
well-known fact about the order of group elements. A proof can be found in any standard
textbook on group theory (e.g., [DF03, Proposition 5]).

Proposition 1. Let G be a group, oo € G a group element and m a positive integer. It holds
that

my ord(a)
ord(a”™) = ged(ord(a), m)

By Proposition 1 we get that ord(a™ ™" *") < ord(«) whenever ry + 79+ ---+71, =0
mod d, where d is a divisor of ord(«). If the order decreases in all of the p many new
statements obtained this way, a cheating prover has a better chance to end up with a true
statement in one of the following rounds. We want to bound the probability that after some
round of the protocol all of the statements are true. To this end, we need the following lemma
which bounds the probability that recombining a set of m > p statements, where at least
one statement is false, gives p true statements. In the proof of Theorem 1 we always have
m = 2p. Later in Section 3.4 we show how to prove many statements simultaneously so we
will use the lemma with different values m.
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be a set of m statements such that at least one of the
] be a set of p statements defined

Lemma 1. Let {(z:, i, T)}icpimy
statements is a-false for some o € G. Let {(Z;,y;,T)}

JELp
as
= Tji T Tji
Tj = H x," and g; = H Y;
i€[l,m] i€[1,m]

with independently sampled r;; <— Za~ uniformly at random for all i € [1,m] and j € [1, p].
Let B be any prime number. If we let kK — o0, the new statements satisfy the following
properties with probability at least 1 — (1/B)*:

1. If for some primep > B we havep | ord(«), at least one of the statements {(Z;,y;,T)}
is a-false and p | ord(&).

JEL,p]

2. If for some prime p < B and some integer e > log B we have p® | ord(«), at least one

of the statements {(Z;,7;,T)};c;, , is c-false and pelos B | ord(a).

Proof. Since we want to lower bound the probabilities of the above events, it is sufficient
to consider the case where ord(«) has a single prime divisor. So, we assume ord(a) = p°

for some prime p and integer e. Using «, we can express the statements {(xi,yi,T)}ie[l m]

equivalently in the form {(z;, h;a™,T)},c(; ., where :L’?T = h; are the correct values for all
i € [1,m], a; € Z and at least one of the a; = 1. A new statement (&;,y;,T") is computed
as
Zj:= [[ " and gj:= [ (hia®™)7.
1€[1,m] 1€[1,m]
Let & := [licq1,m) @7, By Proposition 1, the order of & is

e

b e—s
m =D
ged(pe, Xy airji)
for some s € {0,1,...,e}. The probability that s > k for any k € {0,1,... e} is

Ui 1
Pr[s > k] =Pr |> ar;; =0 mod p*| = —
i=1 p

To prove the first claim of the lemma, we set e = 1 and p = B: the probability that the new
statement is true is the probability that s = 1, which is 1/B and, therefore, the probability
that all of the p new statements are true is 1/B”.

We prove the second claim of the lemma by setting e > log B and observing that the
probability of s > log B is 1/p'°¢® < 1/21°88 = 1/B — the probability that this is the case
for all p statements is at most 1/B”. O

Proof of Theorem 1. Assume that the correct value in Step 3 of the protocol is ¢ := 24 ¢

but a cheating prover P claims that 3/« L gt C (i.e., makes a statement that is a-false).
Notice that in the case where ord(a) | ¢© we have that (y'a)? = (y/)?° = y and, hence,
the verifier V ends up rejecting after Step 4 of the protocol. It follows that if P wants to
convince V that the result is not g, then it needs to choose an element « such that ord(«)
does not divide ¢“. In this case, P wins if all of the p statements are true after ¢ rounds of
the protocol. From the discussion above, we know that the best option for P is either picking
an element of order 2¢*! or an element of order p, where p is the smallest prime not dividing
q®. We analyse the two cases separately.
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Case 1: Let ord(a) = p. Assume that in round 7 of the protocol we have p many statements

{(@ic1, yior jai=17, Ti*l)}je[l,p] (3.4)

where a;_1; € Z for all j € [1,p]. If a;_;; = 0 mod p, the statement is true.
Otherwise it is false and, by Proposition 1 and the primality of p, we know that -1
has order p. We assume that at least one of the a;_; ; is not divisible by p and we
bound the probability that all of the statements are true in round 7 + 1.

In Step 3 of the protocol, P sends midpoints {t;,; which results in 2p statements

{@icrgo gy T =T/ 2)}jeppy and (g Yi1,0° 7, T) Y sy (35)

which we denote by

{(uiyk,vi,kabivk,ﬂ)} (3.6)

Note that at least one of the b;;, is non-zero modulo p, no matter which elements 4 ;
the prover sends. Hence, the assumption of Lemma 1 is satisfied, so the probability
that all of the statements in round i+ 1 are true is at most 1/B”. By the union bound,
we get that the probability that all statements are true after ¢ rounds is t/B”.

ke[1,2p]

Case 2: Let ord(a) = 2°*! where C' = t/ for some ¢ > log B. In order to end up with a
true statement after ¢ rounds, P has to decrease the order of the false element by a
factor of 2¢ on average per round. In particular (by an averaging argument) there has
to be one round where the order decreases by at least 2¢.

Assume that in round i of the protocol we have p statements given in Equation (3.4).
Without loss of generality, let a®-*1 have the largest order of all a%~-1i. The prover
sends midpoints ; ; which results in 2p statements given in Equation (3.5) which we
then denote as in Equation (3.6). We note that no matter the value of midpoint P
sends, the order of the element that makes one of the two statements

? T; L ? T

/’Li,l — 'I’Lq—l,l and yi—l,laaL 1,1 — /J“g,l
false is at least ord(a®-*1). To see this, assume that y;; is the correct midpoint but
P sends ;13 for some group element 3. Then the second statement becomes

R

i1 s

)

TY
ai—1,1 3—q"*
Yo"

which is y-false for v := a%-11377"  Since a%-11 = v37" we have that ord(a®-11)
divides lem(ord(y), ord(897)). It follows that ord(a®-11) divides either ord(y) or
ord(9"") (and hence ord(3)) because the order of a%-"" is a power of 2.

By Lemma 1, we get that the probability that none of the statements in round 7 + 1 is
a-false, where & is some element with order divisible by ord(a®-11)/2=1, is at most
1/BP. By the union bound, we conclude that P wins after ¢ rounds with probability at
most t/B".

Cases 1 and 2 together yield Theorem 1. O

Corollary 1. For C' := tlog B the Fiat-Shamir transform of our PoE yields a sound non-
interactive protocol in the random-oracle model.
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Proof. As we have seen above, a cheating prover is able to convince the verifier of a false
statement only if there is one round where at least one of the following two events happens
depending on which attack is chosen:

= an a-false statement where ord(a) has a prime divisor of size at least B is transformed
into a true one or

= the order of the false element decreases by at least 2¢/¢,

We know that the probability that the output of a random oracle results in such an event is
(1/B)* since, by our choice of C', we have

1/2°¢/t = (1/B)P.

By a union bound, the probability that a cheating prover that makes up to () queries to the
random oracle will find such a query is at most @ - (1/B)°". O

3.2.2 Efficiency

In this section, we analyse the efficiency of the Fiat-Shamir transform of our PoE for proving
? T .
a statement of the form y = 29 with T'= 2! + C.

Randomness space. In order to keep the cost of exponentiation with random coins low,
we need to make the size of the randomness space as small as possible while ensuring that
divisibility by B is almost uniformly distributed. For concreteness, we use log B + 5 random
bits. Then it holds for any prime p > B and ¢ € Z, that

1 1 1.03
P = dpl < —= N —.
r<—Zg(101;; Bl+5 r=c modp] B + B-25 B

Verifier's efficiency. The work for the verifier consists of two parts: 1) the interactive
part, which is dominated by ¢ - 4p? exponentiations (with exponents of size log B + 5) and p
exponentiations with ¢, and 2) the final exponentiation with ¢©. Each exponentiation with
a z-bit exponent via the square-and-multiply algorithm costs about 1.5z multiplications (i.e.,
z plus the Hamming weight of the exponent), so the small exponentiations have complexity
6tp*(log B + 5). Additionally, the verifier performs 2¢p? multiplications to recombine the
statements. The exponentiation with ¢© takes C - log(q) multiplications. If we set C' =
t - log B, the total of multiplications performed by the verifier is approximately

t-((6log B +32)p? +log B - log(q)) + plog(q) =~ tlog B(6p* + 2B) + 2pB,

where we use the upper bound ¢ = [Tpime p<pP < 4” of Erdés [Erd32] to bound log(q)
by 2B. As an example, consider an implementation where ¢t = 32, B = 521, and p =
[80/log(521)]=9. Then we have log(q) ~ 703, so the cost for the verifier is around 426000
multiplications.

In Figure 3.3, we plot the complexity of the verifier in a single round of the interactive protocol
for different values of B. Additionally, we consider the curves for the verifier's complexity of
only the interaction with the prover and only the final exponentiation separately. Observe that,
for B < 227, the total complexity decreases as B increases due to the fact that the number
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verifier's complexity in multiplications

15000 \
- Total

[~ - )
10000 - - Interactive Protocol

[ = el — = Final Exponentiation
5000 - -

B
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Figure 3.3: Number of multiplications of the verifier in one round for 80-bit security depending
on the bound B. The orange solid curve is the total verifier's complexity for one round, the
blue dotted graph is the cost of the interactive part of the protocol and the green dashed
graph is the cost of the final exponentiation divided by the number of rounds (i.e., we amortize
the cost of the final exponentiation over the number of rounds).

of repetitions \/log B decreases faster than the increasing cost of the final exponentiation
with ¢© (the latter increases linearly with B). Beyond B = 227, it is the other way round
and, thus, the total cost increases. Note that B = 227 implies ¢ ~ 2287 If an application
requires either a value ¢ that is much larger than this or PoEs for multiple statements (e.g.,
in [BHR™21], where A many PoEs are needed in each round), then the final exponentiation of
the verifier becomes too expensive. We present two modifications of the protocol that improve
this complexity significantly: In Section 3.3, we show how to replace C' = logT log B with
C = logT by slightly modifying how we set ¢. In Section 3.4, we show how to compute the
last step interactively without increasing the number of rounds.

Prover’s efficiency. The prover needs to compute 29" and the midpoints p; ;. Computing
27 takes log(q) - T multiplications. If the prover stores the value 24" during that com-
putation, then computing the midpoints takes another p-log(q) - (T/4+T/8+ ...+ 1) =
p-log(q)-T/2 multiplications. This number can be significantly reduced by storing a few more
elements during the computation of 24" similarly to [Piel9, Section 6.2]. For sufficiently large
values of T', the cost for computing the proof can be made small compared to the cost of the
T exponentiations required to compute the output and, moreover, the computation of the
proof can be easily be parallelized. For this reason we mostly ignore the prover’'s complexity
in the comparisons.

Communication complexity. The communication complexity from the prover to the ver-
ifier is of interest as it equals the proof-size after using the Fiat-Shamir heuristic. In each of
the ¢ rounds, our prover sends p many midpoints which are of size log N. If log N = 2048,
t =32, and p = 9 then the communication complexity is approximately 2!9 bits.

Comparison with alternative PoEs. In Table 6.1, we compare our protocol with the proofs
of exponentiation from [Piel9], [BHR'21], and [Wes20]. We list the proof-size and verifier's
complexity. Prover's complexity is omitted since the main computation for the prover in all
the protocols is dominated by the same factor, i.e., the cost of T' sequential exponentiations
to compute the output.

We observe that [Wes20] is the most efficient PoE regarding verifier's complexity and proof-
size. However, it is not statistically-sound. [Piel9] introduces only a minor increase in
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PoE statistically-sound | Verifier's complexity 7|

Our PoE | yes (6(525)” +2B)log Blog T + 125 | moplog T
[BHR"21] | yes 2X\%1log T + 2 log(q) AogT
[Piel9] in some G 3Alog T logT
[Wes20] no logT + 3\ 1

Table 3.1: Comparison of different PoEs. Verifier's complexity is measured in the number
of multiplications and proof-size || in the number of group elements. By \, we denote the
statistical security parameter. [Piel9] is statistically-sound only in groups without elements
of small order.

overhead, but it has the drawback that it is only statistically-sound in groups with no low-
order elements other than the identity. The PoE from [BHR"21] and our PoE are both
statistically-sound in all groups, while the proof-size of our PoE improves by a factor of log B
upon [BHR21] and we compare the communication complexity per round for different values
of B in Figure 3.1.(a).

The verifier's efficiency of our PoE depends on the choice of the bound B which also deter-
mines the size of ¢. In Figure 3.1.(b), we compare the number of multiplications per round
for the verifier in both protocols for different choices of B. Additionally to the work in each
round, the verifier computes A many exponentiations with ¢ in the last round of [BHR"21]
and p many exponentiations with ¢ in the last round of our interactive protocol. We see that
the verifier's complexity improves for B € (59,499), which corresponds to ¢ € (27, 26%5).

It is important to note that this is the verifier's complexity for proving a single statement. The
PoE in [BHR™21] achieves the same verifier's efficiency for proving A many different state-
ments with the same exponent simultaneously. Our protocol incurs additional log T log(q)
multiplications for every new statement, since the verifier has to compute the final expo-
nentiation individually for every statement. In Section 3.4, we give a batching protocol that
reduces the cost of the final exponentiation to log(q), which enables us to prove arbitrarily
many statements simultaneously without significantly increasing the proof-size and verifier's
complexity.

3.3 Reducing Verifier's Complexity by Modifying ¢

In Figure 3.1.(b) we see that for large values of B and ¢ the verifier's complexity increases
because the final computation (y’)qc becomes expensive. The cost of this computation
is C' - log(q), where so far we have set C' = tlog(B). We can reduce this number to

C = tlog(B)/2 by setting ¢ to
g=2*-3 ][ » (3.7)

3<p<B
It is straightforward to check that this does not affect our soundness bound, but it has a
notable effect on verifier's efficiency as shown in Figure 3.4.

This approach can be generalized to setting C' = tlog(B)/k for any integer k < log(B). To
ensure soundness we need to modify ¢ as follows: Let m be the largest prime number such
that m < 2%, Then we set

g =28 3T/ Tos® . 5lk/0gG)] T/ Togtm] . T .

m<p<B
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verifier's complexity in multiplications

15000 \

10000 - \ C=txlog(B)

——— C=t/2+log(B)
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200 400 600 800 1000 1200

Figure 3.4: Number of multiplications of the verifier in one round for 80-bit security depending
on the bound B. The solid blue line represents the number of multiplications in [BHR"21],
the dotted orange curve represents the complexity of our protocol with C' = tlog(B), the
solid red curve is the complexity in our protocol with C' = tlog(B)/2 and the solid green line
represents the verifier's complexity in [Piel9].

verifier's complexity in multiplications

----- BHR+21
Our PoE with optimal q
Pie18
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Figure 3.5: Number of multiplications of the verifier in one round for 80-bit security depending
on the bound B. The dotted blue line represents the number of multiplications in [BHR"21],
the solid orange curve is the complexity of our protocol with C' =t and ¢ as above and the
dashed green line is verifier's complexity in [Piel9] (which is 240 multiplications).

In particular, the choice of ¢ that optimizes verifier's efficiency for large values of B is

qg= H pflog(B)/log(pﬂ
p<B

for which we can set C' = t. The cost for the verifier with this parameters is shown in
Figure 3.5. We conclude that the verifier's complexity of our scheme improves upon [BHR21]

for values of B from 59 up to 2749, which corresponds to values of ¢ between approximately
971 3nd 9400-10g(2749) ~_ 93167

3.4 Reducing (Verifier's) Complexity by Batching

In this section, we show how to prove arbitrary many statements simultaneously without
increasing the number of rounds. This batching protocol serves two purposes:

1. Efficiently proving multiple independent statements. This is needed for example in the
polynomial commitment scheme of [BHR"21], where in each round A many statements
need to be proven;

2. Reducing the verifier's complexity of the final exponentiation with ¢© in our basic
protocol. Instead of performing the computation locally, the verifier can request an
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additional PoE for the statement (y’)qc = y and verify it simultaneously with the
original PoE. While now we need to do a final exponentiation for the new statement,
the constant in the exponent drops from logT" to loglogT'.

In [Rot21] Rotem gives a batching technique for arbitrary PoEs, where the statements have
the same exponent. We describe a batching technique for our PoE, where the statements
can have different exponents. Furthermore, the protocol can be easily adapted to the PoEs
in [Piel9] and [BHR™21].

3.4.1 The Protocol

Assume the prover wants to prove two statements in the same group G:

2ty 2540y

7 q

hy = gf and Ao 2 g3

The statements can either be independent or one of them is the statement from the final
verifier exponentiation of the other. The two statements can be proven simultaneously as
follows. First the prover sends the statements

t

= ¢ and B, =Y .

We can assume that t = ¢ + s for some ¢ € N. Begin with the proof of the first statement.
After executing the protocol for / — 1 rounds and the prover sending midpoints in round /,

we have 2p statements
7 ¢
J€[2p]

The prover makes this 2p + 1 statements by adding h} L 9‘212 to them. Next the verifier
sends p - (2p + 1) random coins and both parties create p new statements similarly to the
original protocol. Then they proceed with the PoE protocol. Note that this process neither
reduces soundness of the proof of the first statement nor of the second statement since by
Lemma 1 we only need one of the statements that are being combined to be false. In the
end the verifier checks if hy = (h})?”" and hy = (h})9”. This process can be extended to

arbitrary-many statements of the form h; < gfywi with the protocol given in Figure 3.6.
Note that in Step 4 we do not specify whether the verifier checks h; = (h;)qic by carrying out
the computation locally or by appending it to the statements. This depends on the size of C'
and on the application.

Remark 2. In the case where the exponents of ¢ are not powers of 2, one can simply
divide a statement of the form y = 29° for S € N into smaller statements as follows. Let
(S0, 81, - - -, Sm) be the binary representation of S. Then we have

s, .ok
> a2 _ xHqsk,Qk

S
x? = at = 1.

? s ? 5,20 .
This gives at most m + 1 smaller statements y; = 27° and y;.; =yl =~ for i € [1,m] where
Yma1 = Y. Again these statements can be proven simultaneously with the batching protocol.

The theorem below follows immediately from the description of the batching protocol and
Remark 2.
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Parameters: Same as in Figure 3.2
t; .
Statements: {hl - ng +c7“} in Lg withand t; >ty >...>t, €N
i€[1,m]

Protocol:

t

1. The prover P sends h; := giqm for all i € [1,m] to V.
2. Execute Step 3 of the PoE protocol for (g1, h,2") for t; — t5 — 1 rounds.

3. Inround i € [1,m — 1] of the batching protocol we have p statements of the form
{(25, 95, 2ti+1+1)}j6[1,p}:

a) The prover P sends p midpoints {,uj}je[l o which results in 2p statements
{(uny vr, 25%1) oy

b) The prover P and verifier V append (g;+1, h;'+1= 2'+1) to the statements re-

sulting in 2p + 1 statements of the form { (i, 0, 2““)}%6[1 2pt1]-

c) The verifier V sends the random challenge {r;} where 1, €

{0,1}".
d) They both set {(Z;,7;,2"+)}
of the PoE protocol, where

= ] " and g;:= ][] o

kel1,2p+1] kel1,2p4+1]

Je,plke(1,2p+1]"

jelt,p] @S the statement for the next execution

e) If i < m — 1. Execute Step 3 of the PoE protocol for t;;1 — t;12 — 1 rounds.
Else: Execute Step 3 of the PoE protocol for t,, rounds until the statements
are of the form {(azj, (I 1)}j6[1,p}.

4. At the end of m — 1 rounds, the verifier V accepts if and only if (z})? = y; for all
j€1,p] and (B))1" = h, for all i € [1,m).

Figure 3.6: Batching protocol for PoE.

Theorem 2. For any m € N the statements {(g;, hi, Si + Ci)}icy ) can be proven in at
most 1 + max; log(S;) rounds where additionally to one execution of the PoE protocol the
following computations need to be performed:

1. P and V perform

m

QPZ h(S;)

=1

additional exponentiations with exponents of size log B + 5. Here h(S;) denotes the
hamming weight of S;;

2.V performs m — 1 additional exponentiations with exponents ¢ for i € [1,m] \
{arg max; S;};

and the communication complexity increases by m — 1 group elements.
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Soundness of the protocol follows immediately from Lemma 1 and Theorem 1 since in the
statement of Lemma 1 we consider a set of arbitrary many statements of the form (z;,y;,T)
in any round. This means that the proof of Theorem 1 also holds when new statements are
added during the execution of the protocol.

Theorem 3. Let B be any prime number such that q := [l,;me <P and p € N be the
number of repetitions per round. If we set C' = logT'log B and let kK — oo, the verifier V
will output accept on statement {(g;, hi, 2" + C;) }icp,m), where t; >ty > ... > t,, and
at least one statements is false, with probability at most t,/B".

3.4.2 Improving Verifier’'s Efficiency

In this section we analyse how the batching protocol reduces the number of multiplications for
verifying a statement of the form y = 29" In Section 3.5.3 we analyse the gain in efficiency

of the polynomial commitment in [BHR"21] when we use this improved version of our PoE
as a building block instead of the PoE proposed in [BHR™21].

The first prover message is the value ¢y’ = 24", where C' > logT'. The key idea is that the
verifier does not carry out the last exponentiation with ¢© but the prover gives an interactive
proof of the statement (y/)9” = y (a “smaller” PoE). This reduces the final exponentiation

to (y”)qc/ =y, where y" is the first prover message in the smaller PoE and C’" > log(C) is
much smaller than C. This statement can again be proven interactively by an even smaller
PoE. In fact, this trick can be applied recursively until the verifier only has to perform a single
exponentiation with ¢ in the final step. We make two assumptions in this section:

1. We have ¢ = TTprime p<p P8 2/18®)1 such that the constant C' in the PoE protocol
is lower bounded only by logT" and not log T log B. This is the trick we discussed in
Section 3.3. This assumption is needed to reduce the exponent from ¢© to ¢ and should
be adopted in practice if one wants to make use of the recursion.

2. Instead of setting C' to exactly log T, we set C' = 92" | 92% 4 92 4 1, which will always
be larger than log T" in practice. This assumption is mainly for the ease of presentation
and need not be adopted in practice.

Reducing the exponent from ¢ to ¢'°¢(©), We know that exponentiation with ¢© takes

C'log(q) multiplications. In order to reduce this cost for the verifier, we slightly modify the

protocol in the following way: Instead of the verifier performing the last exponentiation locally,

the verifier and the prover run the batching protocol with statements

{(‘ruy7T = TO + C)? (yluyvc = SO + Cl)}?

where C" = log(C'). This modification introduces 3p- h(Sy)(log B +5) additional multiplica-
tions during the interactive part of the protocol (by Theorem 2) but reduces the complexity
of the final exponentiation to

C'log(q) = log(C) log(q) ~ loglog T'log(q).

By our special choice of C' we have h(Sy) = 1 so we can ignore it in the remainder of the
section
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Applying the recursion. As we have seen, the exponent ¢© can be reduced to ¢©". Now,
the verifier can either perform the final exponentiation with ¢¢ or apply the above procedure
recursively until the verifier only has to do a single exponentiation with ¢ in the final step.
We denote the number of recursions needed until the exponent is reduced to ¢ by log"(C).
We have that the entire recursion adds at most 3log™(C)p- (log B+ 5) multiplications during
the interactive part of the protocol but reduces the work of the final exponentiation from

log T'log(q) to log(q).

In Section 3.2.2 we saw that the verifier's complexity without any batching is
log T - ((6log B + 32)p* +log(q)) + plog(q).

Our batching protocol reduces the number of multiplications for verifying the proof of a single
statement to approximately

log T(6log B 4 32)p? + 31log*(C)p - (log B+ 5) + (p + 1) log(q)

and increases the proof-size to log"(C') + plog T group elements.

Proving multiple statements. With this optimization of the cost of verifying a single
statement we can now compute the complexity of verifying m statements with our improved
protocol. Each additional statement that either has exponent ¢ or a smaller power of ¢
adds log(q) multiplications to compute the final exponentiation, 3log*(C)p - (log B + 5)
multiplications during the interactive part and increases the proof-size by at most log™(C')
elements. We conclude that m many statements can be proven with verifier's complexity

log T(6log B + 32)p* + 3mlog*(C)p - (log B + 5) + (p + m)log(q)

and communication complexity m log™(C') 4+ plog T

3.5 Application in Polynomial Commitments

In this section, we discuss the application of our protocol to the polynomial commitment
scheme in [BHR™21]. In particular we show in Section 3.5.2 that one can choose the parameter
q to be even and in Section 3.5.3 we analyse the gain in efficiency when we use our PoE as
a building block instead of the one proposed in [BHR*21].

A polynomial commitment scheme [KZG10] allows one party — the committer — to commit to
a (low-degree) polynomial P. Another party — the verifier — can later ask the committer for
an evaluation y = P(z) along with a proof that helps it (efficiently) verify that the evaluation
is consistent with the initial commitment c. There are two main properties that the poly-
nomial commitment must satisfy: correctness and binding. Loosely speaking, a polynomial
commitment scheme is correct if the (honest) committer can convince the verifier of the value
y = P(x) of the polynomial on any point z on its domain, whereas it is (computationally)
binding if no (computationally-bounded) cheating prover can convince the verifier of a wrong
evaluation y' # P(z). Since [BHR"21, BFS20] use their polynomial commitment scheme to
build an argument of knowledge, they require the stronger property called knowledge sound-
ness instead of just binding — i.e., the committer must know a polynomial P(zx) such that
y = P(z) and ¢ is a commitment to P(x) (formalised via an extractor). The ideas above can
be naturally extended to multilinear polynomials.
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3.5.1 [BHR"21] Polynomial Commitments

The time- and space-efficient (zero-knowledge) argument of knowledge from [BHR"21] is
built on top of a time- and space-efficient (multilinear) polynomial commitment scheme. We
first provide an overview of this polynomial commitment scheme, and then highlight the key
properties that it should satisfy.

Commitment. To commit to a degree-n multilinear polynomial P : F" — [F over a finite
field F of order p, the committer evaluates P over the Boolean hypercube {0,1}" to obtain
a sequence of field elements (zp,...,2y_1) € FY, where N := 2". This sequence is then
interpreted as a sequence of digits Z base (large-enough) g € N of an integer z € Z — z is
said to be the integer encoding of the polynomial P (see Algorithm 1). The commitment,
finally, is obtained by computing the exponent ¢ = g*, where g is a random element in a group
of unknown order (e.g., RSA group or class groups of imaginary quadratic field). [BHR21]
show how to carry this out using time O(2") and space poly(n) given multi-pass streaming
access to the evaluations of P on the Boolean hypercube.

Evaluation. Let P : " — [F be a degree-n multilinear polynomial with integer encoding
z and, for b € {0,1}, let P, : F*~! — F be defined as P(b,-). Once committed to ¢ = ¢~,
to prove in a verifier-efficient manner that P({) = ~ for some ({ = ((1,(, .-+, Ca),7) €
F" x IF, the committer and the verifier proceed interactively. In the first round the committer
computes, for b € {0,1}, ¢, := g*, where 2z, € Z is the integer encoding of P, and
Yo = Py(Ca, ..., (n). It sends (o, c1,70,71) to the verifier. The verifier checks whether

1.v = Gm + (1 = 1)y (which should hold since P({) = G Pi(Coy-..,C0) + (1 —
C1)Py(C, -, Gn)); and

N/2 N/2
2. CO<Cl)q — gzO-i-q A= g* =,

Note that the second equality in Item 2 relies on the homomorphic property of the integer
encoding and, in turn, the commitment. Since checking co(cl)qN/2 = c involves computing
(c1)4""* which can be expensive to the verifier, a PoE is employed to prove cy/c = (¢1)?""
Now, note that checking the validity of P({) = v has been reduced to checking the validity
of two degree-n — 1 expressions Py((s, ..., (,) = 7. Since recursing on both expressions is
too expensive, the committer and verifier fold them into a single statement via random linear
combination: the verifier sends a random a € F and the new statement is P({’) = 7' with
commitment ¢ = ¢yct, where ¢’ := ((s,...,(,) and v = yo+a~;. The knowledge soundness
(and hence binding) of the commitment scheme is relies on the hidden order assumption in
groups of unknown order.

Requirements from the PoE. Note that the use of the PoE in the [BHR"21] polynomial
commitment is more or less black-box. However, there are two important criteria that it
should satisfy.

1. Firstly, the PoE has to satisfy statistical soundness so that the knowledge soundness
of the polynomial commitment built upon it can be argued ([BHR'21, Lemma 6.4]).°

5To be precise, it suffices for the soundness of the PoE to be based on a hardness assumption that is at
most as strong as the hardness assumption that is used for showing the binding or knowledge soundness of
the polynomial commitment.
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Our PoE satisfies statistical soundness.

2. Secondly, the exponent ¢ used in the PoE protocol is borrowed from the polynomial
commitment. In order for the polynomial commitment to satisfy its homomorphic
properties, [BHR™21] set it to be a large, odd integer — in particular, they require
g > p- 2NN This requirement that ¢ be large, as we saw in Section 3.2 is
advantageous for our PoE. On the other hand, the requirement that ¢ be odd is in
conflict with our trick of choosing an even ¢ as in Equation (3.2). However, we show
in the next section that the requirement that ¢ be odd is not necessary in [BHR"21].

3.5.2 Polynomial Commitments with Structured Base

Recall that the exponent ¢ in the PoE protocol [BHR"21] is borrowed from the polynomial
commitment scheme built upon it. We first observe that none of the claims pertaining to
the integer encoding (Enc,, Dec,) in the polynomial commitment of [BHR"21] and its use in
extraction rely on the exponent ¢ being odd. In fact, the assumption in [BHR"21] that ¢ be
odd is an artefact of [BFS20] (as confirmed in a personal communication with the authors
of [BHR"21]). We show in Lemmas 2 and 3 that the properties of the encoder and decoder
that are necessary for the polynomial commitment of [BHR21] to work also hold for even
— and hence arbitrary — ¢q. This allows us to use structured exponents of the form required
in Section 3.2 (e.g., ¢ as in Equation (3.2)). We first describe (for self-containment) the
integer encoding from [BHR™21] in Algorithm 1 and then prove that they are consistent over
Z(q/2) for any ¢ € N (Lemma 2). We then prove that the homomorphic properties of the
decoding algorithm holds for all ¢ (Lemma 3). Since the rest of the proofs pertaining to the
polynomial commitment are unaffected by the change in exponent, [BHR"21, Theorem 4.2]
can be proven also based on our PoE.

Algorithm 1 Integer encoding from [BHR*21, BFS20].
Common parameters:
1. Base g e N
2. Degree n € N with NV := 2"
: procedure Enc(Z2)
Parse Z =: 2¢,...,2n_1 € Z(q/2)N

return v := 3 pc01)n Pz
end procedure

Ll

. procedure Dec(v)
for k € [0, N] do
Sp_1:=v mod ¢*
if Sp_1>¢"/2then S;_ =S, , — ¢" end if
S, :=v mod ¢F*!
10: if Sp > ¢**1/2 then S, := S;, — ¢**! end if
11: end for
12: return Z := (zo,...,2n_1)
13: end procedure

© ®Noa
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Lemma 2 (Bijectivity of encoder for all ¢, restatement of [BHR"21, Fact 5.1] and [BFS20,
Fact 1]). Let ¢, N € N with ¢ > 2. For any v € Z(q" /2), there exists a unique sequence
z € Z(q/2)N such that v = Enc,(z). Furthermore, z = Dec,(v).

Proof. The proof follows by inspection of that from [BHR™21]. That is, we argue that:

1. the domain and range have the same size; and

2. the composition of decoding and encoding functions is identity.

Since, Z(B) :={zr € Z: —B <z < B}, |tfo||owsthat’Z N/Z‘:’ q/QN’—q To
show Item 2, we proceed by induction on the elements of a sequence Z : LZN_1 E
Z(q/2)"

Base case. To see that the decoder correctly recovers the first element z; from Enc(Z),
we note that its first iteration (i.e., k& = 0) is simply the modulo operation base ¢
followed by a conditional shift by ¢/2. By taking the encoding function Enc(Z) modulo
q, note that the higher powers of ¢ disappear and only zy mod ¢ remains. The correct
representative from [q/2, q/2) is then recovered by the conditional shift.

Induction hypothesis. Assume that the first k£ elements zj,...,2r_1 have been correctly
recovered. In particular, this implies the sequence S_1, Sy, ..., Sk has been correctly
computed.

Induction. To see that the decoder correctly recovers 21, we take Enc(Z) modulo ¢**
Since S, has been correctly computed, and since z,,1¢* + Si = v = Spy1 mod ¢
it follows from the description of the decoder (i.e., zxy1 = (Sky1 — Sk)/q") that |t
recovers the correct representative of 2z, after the conditional shift.

k+1

[]

Lemma 3 (Homomorphism of decoder for all ¢, restatement of [BHR"21, Claim 5.2]). Let
q, N € Nwithq > 2. Alsolet ¢ € N and By, By > 1 be such that By- By < q/(2(). Then, for
every ay,...,a; € Z(By), and integers 21, ...,z € Z(¢" /2) such that Dec,(z;) € Z(B)",

Dec, ( > a; ZZ) = > a;-Decy(z) (3.8)

i€[1,4] 1€[1,4]

Sketch. Once Lemma 2 has been reproved for even ¢, the argument is the same as in[BHR"21].
That is, one argues that:

1. Encoding of LHS and RHS in Equation (3.8) are equal; and
2. Encoding of LHS and RHS in Equation (3.8) are in Z]'. O

3.5.3 Efficiency

In this section we analyse the improvement in efficiency of the polynomial commitment scheme
in [BHR™21] using our PoE, the batching protocol and the optimization in Section 3.3. In the

polynomial commitment scheme the PoE protocol is used to prove statements of the form
2n—k—1

H =y, for every i € [A] and every k € {0,1,...,n— 1}.

L
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Communication complexity. In [BHR"21] the communication complexity of proving A
many statements with the same exponent is A(n — k — 1) group elements. This gives a total
PoE proof-size of

n—1

)\Z(n—k—l)—;\(n—l)n.

k=0

As we have seen in Section 3.4.2, in our PoE the cost of proving An statements, in which the

largest exponent is ¢" !, is

Anlog*(n — 1) +

log(B) (n=1).

We conclude that we decrease the proof-size of the polynomial commitment by a factor of
approximately n/(2log*(n—1)). This number can be increased to n/2 at the cost of a higher
verifier complexity. More generally, the number of recursive steps explained in Section 3.4.2
can be used to choose a trade-off between proof-size and verifier efficiency.

Verifier’s efficiency. In [BHR"21] the verifier's complexity of proving A many statements
with the same exponent is 2\*(n — k — 1) + Alog(g) multiplications. This gives a total
verifier's complexity of

n—1

2)\? Z:((n —k—1) + Mog(q)) = (Alog(q) + 2X\*(n — 1))n.

As we have seen in Section 3.4.2, in our PoE the cost of verifying An statements, in which
the largest exponent is ¢" !, is

(n—1)(6log(B)+32)p*+3 nlog*(C)p- (log(B)+5)+ (p+An)log(q) ~ 15X*n+Anlog(q).

Since in practice we have n ~ 32, we conclude that the verifier's efficiency of the polynomial
commitment scheme implemented with our PoE is comparable to that in [BHR"21].

3.6 Conclusion

In this chapter, we presented a new construction of statistically sound PoEs which is secure
in arbitrary groups, even when the group order is known. By leveraging structured exponents
— specifically, the product of all primes up to a chosen bound — we were able to reduce the
number of parallel repetitions required for soundness, significantly improving over the concrete
efficiency of previous construction by Block et al. While Pietrzak's PoE in groups of signed
quadratic residues is still more efficient than our PoE, those groups require trusted setups.
An interesting open problem is to construct a statistically sound PoE that is as efficient as
Pietrzak's PoE but does not require any restriction on the type of hidden order group.
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CHAPTER

Batching Proofs of Exponentiation

4.1 Introduction

One practically important feature of PoEs is that many statements can be efficiently aggre-
gated to a single statement. In particular, m statements 1 L x5,y Ym L x5, can be
represented by a single aggregate statement [, v; = (TT™, z;)°. This property suggests
that one might be able to construct batch Proofs of Exponentiation, i.e., secure aggregation
protocols that allow one to verify many statements by checking a single PoE. Clearly, the
above naive aggregation does not have any meaningful security properties — it is easy to
produce incorrect statements that would be aggregated into a valid statement, e.g., by ran-
domly permuting the correct y;'s. However, a sound batching procedure can be constructed
by randomizing the aggregation using a suitable vector of exponents ry,...,7, € Z, and
?

considering the batched statement [T, yi* = (IT/%; z;*)°.

Notice that, in the extreme case where the randomization exponents are uniformly random
bits r1,...,r, € Zs, the procedure amounts to the naive aggregation performed on a ran-
dom subset of the original statements. However, it already achieves soundness error % for
an arbitrary collection of statements.! There are two natural approaches for boosting the
soundness (i.e., reducing the soundness error). In applications requiring statistical security, A
parallel instances of the random subset approach can be run to get soundness error 27*. We
refer to the parallel repetition variant of the random subset approach as the Random Subsets
Protocol. It was independently suggested by Block et al. [BHR"21] and Rotem [Rot21].

The overhead stemming from the A parallel repetitions can be avoided when one is willing
to settle for computational soundness guarantees from the batching process. In particular,
one can perform a single randomized batching using exponents from a sufficiently large set
(i.e., 71,...,7m € Zyt), which is computationally sound, assuming that the adversary cannot
efficiently produce group elements of low order. The corresponding batch PoE, which we
call the Random Exponents Protocol, was first proposed by Wesolowski [Wes20] for his VDF
construction and later analysed by Rotem [Rot21] for general PoEs.

1This can be seen by the following argument: Suppose that the i-th statement is false and batch all
statements except for the i-th one. Denote by b the uniformly random bit determining whether the i-th
statement is multiplied to the batched statement or not. If the batched statement is correct, then it will
remain correct if and only if b = 0. If it is wrong, one needs at least that b = 1 for it to become correct. In
both cases, the probability of resulting in a correct statement is at most %
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The practical efficiency of the resulting batch PoE ultimately depends on the number of group
multiplications performed. When raising the instances to uniformly random k-bit exponents
before computing their product, one has to perform 1.5k multiplications in expectation per
each exponentiation. Thus, for K = )\, the Random Subsets Protocol based on computing
products of A random subsets results (in expectation) roughly in half as much work as in
the Random Exponents Protocol that raises each statement to a random A exponent before
computing their product. However, when batching via the Random Subsets Protocol, \ proofs
have to be constructed and verified, while the Random Exponents Protocol results in a single
PoE. Note that proofs can be efficiently verified, but the construction is not as efficient, so
proving A many statements instead of one yields a significant loss in the prover's efficiency
in practice. Hence, the above two batch PoEs from the literature give a trade-off for the
complexities of the verifier and prover.

To evaluate the improvement achieved by the above batch PoEs, we need to compare them
to the baseline when one disregards any attempt at batching and simply verifies all PoEs,
which, e.g., avoids any implementation overhead of batching. Clearly, batch PoEs minimize
the storage requirement, as instead of storing m proofs, one can store A\ or even a single
proof. Below, we discuss the number of expected multiplications per instance in the PoEs
from Pietrzak [Pie19] and Wesolowski [Wes20] to compare with the verification complexity
in the known batch PoEs.

For Wesolowski's proof, presented in Figure 2.1, the verifier checks one group identity y = ‘2"

and uses at most 3k + 1 multiplications in expectation. Setting x = A yields a verification
cost similar to the Random Exponents Protocol for m instances. However, the non-interactive
variant requires £ = 2\ due to an attack by Boneh, Biinz, and Fish [BBF24], making the
Random Exponents Protocol roughly twice as fast in practice. Additional overheads reported
by Attias et al. [AVD22] may further favor the Random Exponents Protocol.

For Pietrzak's proof, presented in Figure 2.2, which proceeds in logT" rounds, each round
requires constructing new statements and costs at most 3x + 2 multiplications in expectation.
A final group identity check adds one multiplication. Thus, the total cost is about (3x +
2)log T, and the batching benefits increase as the time delay parameter T increases.

In this chapter, we present two new approaches for batch PoEs that improve over the known
Random Subsets and Random Exponents protocols in various ways. Additionally, we show
how to use a secure batch PoE for remote benchmarking of parallelism in a publicly verifiable
manner.

4.1.1 New batching protocols

The first approach, which we call the Hybrid Protocol, is a natural combination of the two
known approaches we discussed. It only slightly increases the work performed by the verifier
compared to the Random Subsets Protocol but results in a single PoE proof that has to be
constructed and verified. Specifically, using the Random Subsets Protocol described above,
m instances are first batched to A instances, which are then batched to a single PoE instance
via the Random Exponents approach with \-bit exponents. Our experiments show that this
new batch PoE, while very easy to implement, is already roughly twice as fast as the Random
Exponents Protocol.

The second approach, which we call the Bucket Protocol, can be seen as an optimization of
the Hybrid Protocol that, for a large enough number of instances, is one order of magnitude
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faster than the random exponents approach and five times faster than the random subsets
approach. It is based on a protocol of Bellare, Garay and Rabin [BGR98] for batch verification
of signatures in prime-order groups. The main difference to our construction is that we
ultimately aggregate all statements into one, such that only one proof needs to be computed
and verified in the end, while the original batching of Bellare et al. yields multiple proofs that
need to be verified in parallel.

The main idea of the Bucket Protocol is to optimize the number of multiplications incurred
in the Random Subsets Protocol by decreasing the number of parallel repetitions as follows:
In the Random Subsets Protocol, a new PoE statement is constructed by taking a random
subset of the m original PoE statements and then computing the product of the statements in
the subset. Since we select half of the statements in a random subset in expectation, starting
with m instances and repeating this step A times to amplify the soundness results in Am/2
multiplications in expectation. In the Bucket Protocol, each of the m instances is assigned
uniformly at random to one of K = 2* buckets, where k € N is a parameter of the protocol.
Each bucket then gives rise to a new statement by taking the product of the statements that
are assigned to that bucket, and the resulting K instances are then batched via the Random
Exponents Protocol using random exponents of size k. The soundness analysis shows that,
in this case, p &~ \/k parallel repetitions are sufficient, reducing the number of statement
multiplications from Am/2 to pm, whereas the number of exponentiations is independent
of m. In particular, for any specific number of statements m, we can find the best k£ that
minimizes the number of group multiplications. We discuss the optimal choice of k£ and its
effect on performance in Section 4.4.

In Figures 4.1 and 4.2, we visualise the various batching approaches. The squares represent
PoE instances. All protocols start with m PoE instances represented by the black squares. The
thickness of full arrows highlights the cost in group operations, i.e., thicker arrows correspond
to less efficient aggregation. Dashed arrows represent computation of the final PoE(s).

The soundness analysis. Our soundness analysis of the Bucket Protocol differs from that
of Bellare et al. because they focus on prime-order groups, while we consider groups of hidden
order. Our main technical tool is Lemma 5, which informally states that an adversary can only
succeed in the following game with probability at most 1 over the randomness space unless it
breaks the low order assumption: The adversary outputs a set of statements, at least one of
which is incorrect. The statements are raised to random exponents and multiplied together,
and the adversary wins if the resulting statement is correct.

e

Intuitively, if a statement y = 2¢ is incorrect, then y can be viewed as the correct result
multiplied by a “bad” element. Since every element in a group has an inverse, this factorization
is always possible. Raising the statement to a random exponent r makes this bad element
disappear from the equation only if r is a multiple of its order, an event that occurs with
probability about one over the order.

Rotem [Rot21] proved a similar lemma, but his reduction from the low order assumption
involves guessing the element’s order, resulting in a quadratic loss in winning probability. We
observe that the reduction can efficiently determine the order whenever the adversary's success
probability is non-negligible, thereby preserving the adversary's original winning probability.
Additionally, Rotem’s lemma depends on the maximum order of low-order elements. Our
analysis removes this dependency, showing it is unnecessary and clarifying the roles of the
various parameters involved.
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(a) Random Subsets Protocol [BHR21, Rot21] (Figure 2.4a)
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(b) Random Exponents Protocol [Rot21] (Figure 2.4b)

Figure 4.1: Depiction of the known batch PoEs.
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(a) Hybrid Protocol (Figure 6.3)
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(b) Bucket Protocol (Figure 4.4)

Figure 4.2: Depiction of the new batch PoEs.

Leveraging efficient multi-exponentiation. Group multi-exponentiation, i.e., evaluation
of products of the form [[¥_, ¢, has long been recognized as an important algorithmic task

in cryptography. Various optimized algorithms for multi-exponentiation were proposed going
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back to Straus [Str64] and Pippenger [Pip80] (see Méller [M6l01] and Henry [Hen10] and the

references therein for a historical exposition). The most direct way of computing [1%_, ¢* via

k exponentiations takes roughly Ak group multiplications when the bit-length of the exponents

is A\. The asymptotically optimal algorithm due to Pippenger reduces the multiplication cost

by a multiplicative factor log(\k), i.e., the dominating factor in the number of multiplications
Ak

is Toa (V) instead of Ak, which is clearly a major improvement.

However, all known multi-exponentiation algorithms induce a significant implementation over-
head, and, in the end, the practical gains depend on many factors such as the specific hardware
architecture, available parallelism, (non-trivial) choice of parameters for the algorithm, and
the specific A and k. For example, Attias et al. [AVD23] recently presented an experimental
evaluation of the known multi-exponentiation algorithms on various architectures. In their ex-
periments, they observed a maximal speedup by a factor 1.75 compared to the basic approach
when measuring the total time of the multi-exponentiation.

When using any of the batching protocols in practice, one would (and should) likely experi-
ment with all protocols, combining them with some efficient multi-exponentiation algorithm.
Nevertheless, in the rest of the chapter, we measure the multiplication cost via the basic
multiexponentiation algorithm. We stress that our aim is not to give an unfair advantage to
our protocols in the comparisons. Instead, we wish to use a consistent complexity measure
that seems as the most representative in predicting algorithmic bottlenecks while applying
any of the batching protocols. We leave a deeper implementation study of our protocols for
future work as it is out of the scope of the current work. Next, we discuss the effects of
efficient multi-exponentiation algorithms on our protocols.

Our Hybrid Protocol cannot take significant advantage of advanced multi-exponentiation al-
gorithms. The bulk of its computation is to evaluate products of random subsets of the m
instances, and it applies the Random Exponents Protocol always only to A instances (i.e.,
roughly 128 instances), which is too small to yield any significant practical improvement.
Therefore, it would achieve smaller advantage over an implementation of the Random Ex-
ponents Protocol that uses the best known multi-exponentiation algorithm for the specific
number of instances and architecture.

However, any improvement in the complexity of multi-exponentiation that would speed up
the Random Exponents Protocol should provide similar gains also to our Bucket Protocol.
Specifically, the parameter k in the Bucket protocol allows for a trade-off between the number
of parallel repetitions p = [A/(k — 2)] and the size of multi-exponentiations performed on
the K = 2* buckets. Thus, faster multi-exponentiation would allow to increase the number
of buckets and, correspondingly, decrease further the number of parallel repetitions.

4.1.2 Efficient remote benchmarking of parallelism from batch
PoEs

In Section 4.5, we give a solution to the remote parallel benchmarking problem discussed
in Section 4.1. Recall that the goal of the prover in such a scheme is to convince the ver-
ifier that it has m parallel processors. We show that any efficient PoE batching procedure
Batch can be used for this purpose based on the following observation. Suppose the prover

solves m iterated squaring challenges x4, . .., x,, and knows the corresponding 1, = x%T, Yo =
22" ... ym = x2 . Then, given an arbitrary batched challenge & = Batch((xy, ..., &m);T)
derived using randomness r (e.g., the exponents 7,...,7,, in the Random Exponents Pro-

tocol), it can produce the correct § = 72" fast in a much shorter time than T by running
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the batching procedure on yy, ..., v, and outputting § = Batch((y1,...,¥m);7). On the
other hand, if the prover does not know some of the y;'s then, intuitively, it needs time T'
to produce the correct . This intuition gives rise to a simple protocol with optimal commu-
nication complexity. The verifier sends the prover m iterated squaring challenges and, after
time T, fresh randomness r for the batching procedure defining an iterated squaring challenge
Z. The prover must send back the corresponding  fast. Then, they use any PoE to verify
the correctness of ¢ efficiently. Importantly, the prover sends only one group element 3 and
computes a single PoE. The verifier's complexity is the same as the complexity of the verifier
in the chosen batching protocol as it only needs to compute & = Batch((z1,...,Zmn);T)
and verify the PoE.

To understand the security guarantees of the above protocol, we need to understand the
hardness of solving m parallel repeated squaring instances, which, to the best of our knowl-
edge, has not been considered in the literature. Note that, in our setting, the verifier must
distinguish a prover with m processors from anyone with m — 1 processors or less. In partic-
ular, there must be a significant gap between solving the m instances on m machines, which
takes time T', compared to solving the m instances on m — 1 machines. Since the instances
are uniformly random, we assume that the computation performed for one instance cannot
be reused for speeding up other instances.? Then a trivial lower bound for solving the m
instances on m — 1 machines is 7'+ T'/(m — 1): If we disregard the sequentiality of the
task, then we still need to divide m7T steps among (m — 1) machines. Is there a better lower
bound for m sequential tasks? Upon a closer inspection, one realizes that we are facing a
generalization of the “three toasts” puzzle, asking to toast three slices of bread from both
sides as fast as possible on a pan that can fit only two slices at a time (see, e.g., “Quick and
Toasty" in Mason, Burton, and Stacey [MBS82]). The natural approach is to toast two slices
on one side then flip the first and swap the second for the third. After finishing toasting the
first, we can take it out and use its slot for finishing toasting the second simultaneously with
the third one. It is trivial to extend the same approach to m instances of repeated squaring
on m — 1 processors, matching the lower bound 7"+ 7'/(m — 1). Thus, we can only assume
that solving m repeated squaring instances with delay parameter 7" on m — 1 processors takes
time at least 7'+ 7'/(m — 1).

To prove the security of our benchmarking protocol, we additionally rely on a recent general-
ization of the iterated squaring assumption introduced in [HP25]. Their generalization states
that the sequential hardness of iterated squaring is preserved even for the task of computing
maT . . .

y = (z")* , where r # 0 is chosen by the prover adaptively after seeing the challenge x
and the delay parameter T'. The formal definition of our generalized parallel iterated squar-
ing assumption incorporating the above consideration about solving parallel iterated squaring
instances in the assumption from [HP25] is presented in Definition 19.

Note that, to some extent, the remote benchmarking problem could be addressed using Proof
of Work (PoW) by setting the hardness of the PoW puzzle to match the claimed parallelism
of the prover. However, such a scheme would only measure the hash-rate and would not
necessarily prove much about the parallelism of the prover. A prover using specialized hard-
ware for fast hashing to convince the verifier in a PoW-based scheme is unlikely to be of
much use to the verifier. On the other hand, the ability to perform group exponentiations
fast in parallel attested via our protocol would be of interest for example when one wishes to
outsource proving in modern zk-SNARKSs relying on variants of the KZG polynomial commit-

2Since m, T € polylog(ord(G)), this seems like a reasonable assumption. It even holds, e.g., in idealized
models such as the generic group model [Sho97, Mau05].
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ment [KZG10], where it is estimated that the majority of proving time is spent performing
Multi-Scalar Multiplication (i.e., group multi-exponentiations)[Xav22].

Additionally, the probabilistic nature of PoW comes with various downsides. For example,
even if the prover has the claimed parallel capacity, it might be unlucky and not find a good
enough PoW solution within the time limit, leading to increased latency of such schemes.
In our solution, any honest prover is guaranteed to always succeed in convincing the verifier
within the prescribed time if it has the claimed parallelism.

4.1.3 More Related Work

Batch verification of digital signatures. Fiat [Fiad7] initiated a related line of work
on batch verification of many digital signatures. See Camenish, Hohenberger, and Peder-
sen [CHP12] for a historical overview of the known results. Bellare, Garay, and Rabin [BGR98]
presented a set of protocols for batch verification of modular exponentiation in prime-order
groups. For a generator g of a group G, they consider the problem of verifying statements
of the form y; < g Ym < g™ . Importantly, they work in groups with a publicly known
order, and wish to batch verify exponentiations with a fixed base and varying exponents.
However, their protocols can also be adapted to the setting relevant for VDFs based on PoEs.
Di Crescenzo et al. [CKKS17] extended the small exponent protocol of [BGR98] to the setting
of safe prime RSA groups. However, their proof size is linear in the number of statements to
be batched.

Performance of PoEs in Practice. Attias, Vigneri, and Dimitrov [AVD20] reported on the
practical performance of verification for two PoEs in the context of Verifiable Delay Functions
in RSA groups. The verification time for Wesolowski's VDF can be further optimized in RSA
groups, e.g., as suggested by Attias et al. [AVD22].

4.2 The Hybrid Protocol

In this section, we present our first protocol that improves the number of multiplications
over the Random Exponents Protocol (Figure 2.4b). We exploit the fact that the Random
Subsets Protocol (Figure 2.4a) results in A instances that can be securely batched under
computational hardness assumptions. The resulting Hybrid Protocol (Figure 4.3) reduces the
number of PoEs needed to one while applying the random exponents technique solely to A
instances, i.e., the complexity of the more costly technique is made independent of the number
of batched instances. Its completeness follows by inspection of the protocol. In the rest of
the section, we prove its soundness based on the low order assumption (Definition 9).

Theorem 4. Let PoE be a proof of exponentiation with soundness error v and let G be a
group output by GGen(\). Assuming the low order assumption for GGen with soundness
error |1, the hybrid batching protocol presented in Figure 4.3 has soundness error at most
YA p 427 427 4278,

Before proving Theorem 4, we state two lemmas we use in the proof. For the proof of Lemma 4,
see Block et al. [BHRT21].

Lemma 4 ([BHR"21, Fact 8.1]). For any group G and any x1,...,x, € G, where at least
one of them is not the identity element, we have Prg,_om [[Tics z: = 1] < %
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Parameters:

» group G, exponent e, number of statements m, number of repetitions of subset
multiplications p, size of random coins x, a proof of exponentiation PoE

Statements: {yi = :vf} in G
1€[m]
Protocol:

1. V samples a matrix B < {0,1}**™ and a vector r <+ [2"]? uniformly at random
and sends both to P.

(2

2. V and P both construct new statements {yg < (x’-)e} , where
i€[p]

;o B; ; r B; ;
vi= 11y and i= ] 23

J€[m] J€[m]

3. V and P both construct one new statement § = (%)°, where

4.V and P run PoE on statement § = (Z)°.

Figure 4.3: Our Hybrid Protocol.

The second lemma is similar to [Rot21, Lemma 6.2] but the proof differs. Importantly,
Rotem’s reduction incurs a quadratic security loss, and our reduction is tight.

Lemma 5. Let G be a group andn, e, k € N arbitrary positive integers. Let A be an algorithm
that runs in time t and, with probability €, outputs group elements x1, ..., 2, y1,...,yn € G
such that, for at least one i € [n|, we have x{ # y; and

Pr [H (7)) =11 y] =;+5.

?"17---77'n<_[2n} ’LG[”] ’LG[TZ]

Then there exists an algorithm B that runs in time poly(t,log(e),n,log(671)d~1) and, with
probability e, outputs an element of order at most 6! in G together with its order.

Proof. We let B run A and find one pair (x;,y;+) for which zf. # y;« among the group
elements output by 4. This takes time poly(¢,log(e),n). Set z = % /y;~. We claim that
z has order at most 6. This means that B can find the order in time poly(log(6—')6~1)
and output z together with its order. Clearly, A and B3 have the same success probability. It
remains to prove the bound on the order of z. Let (z;,,4i,),--., (2., v ) be the pairs for
which g # yi;. Assume without loss of generality that T5 = Yi; % for some group elements
21,...,2s € G. Note that one of those elements is equal to z and denote the corresponding

50



4.2. The Hybrid Protocol

index by j*. We have

X _

o +6=Pr|[] ) =1]] y:] (4.1)
=Pr H (a:;”)e =] y;”] (4.2)

=Pr | [] (;,z)" =[] y;J] (4.3)

=Pr Hzgijzl} = Pr

e | ] : (4.4)

JE[s],#5*

where the probability is taken over ry,... 7, < [2°]. The first equation holds by assump-
tion. In Equation (4.2), we only take the product over the incorrect statements, since the
correct statements can be cancelled out in the equation. Equation (4.3) holds by definition
of z;'s. Equation (4.4) follows from first cancelling out correct statements and then moving
all elements z; different from z to the other side of the equation. The element on the right
side of the equation is either an element of the subgroup generated by z or not. If it is not
an element of the subgroup, the probability of the event is 0. Otherwise, let o < ord(z) be
such that [ ey, 2+ z;”j = z® and let s be the largest integer such that s - ord(z) < 2~.
Denote Pr := Pr,. . [2x]. Then we have

(4.4) < Pr[z* = 29
=Pr[z" =2%|rix <s-ord(z)] - Prri <s-ord(z)]
+ Pr 2" = 2% | ri > s-ord(2)] - Prry > s-ord(2)]

<5 ord(z) 1 N 2% — s -ord(2) 1
-2 ord(z) 2+ 2% — s - ord(z)
< 1 n 1
~ord(z) 2%
Hence, we obtain that 27% + § < 1/ord(z) 4+ 27" and the claim follows. O

Proof of Theorem 4. Assume that at least one of the initial statements {yi < :Uf} is
1€[m)|

incorrect. An adversary that tries to break soundness of the protocol needs to be successful
in one of the Steps 2,3,4, which means that either in Step 2 or 3 it starts with at least one
wrong statement and at the end of the step all of the statements are correct or it breaks the
soundness of the PoE in Step 4. By Lemma 4, we have that after Step 2 of the protocol

at least one of the statements {yz/ - (932)6} is incorrect except with probability at most
i€[p]

1/2°. Assume that at least one of those statements is incorrect and consider Step 3. Applying

Lemma 5 to the statements {y{ = (x’-)e} , we get that ¢ = (Z)¢ is incorrect except with
i€[p]

(2

probability at most ;i + 27* 4+ 27%. Otherwise, one could find an element of order smaller
than 2* with probability larger than p, which contradicts the low order assumption. In Step 4
of the protocol, V and P run a PoE with soundness error . Taking the union bound, we get
that the soundness error of the protocol is at most v + 1 + 277 4+ 27 4+ 27" assuming the
(-low order assumption. O
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4. BATCHING PROOFS OF EXPONENTIATION

As we have just seen in the proof of Theorem 4, the summand 27 in our upper bound in
the soundness error of the Hybrid Protocol comes from the assumption that it is hard to
find elements of order less than 2* (see Definition 9). Note that a weaker variant of the low
order assumption would suffice to get meaningful security. To weaken the assumption, one
can restrict the bound on the order of elements the adversary can output while winning the
game, for example, to M°8*. This would increase the corresponding term in the bound on the
soundness error from 27 to A7!°8* which is, however, still negligible. Similarly, a weaker
variant of the low order assumption suffices also for our soundness analysis of the Bucket
Protocol presented next. For simplicity of presentation, we stick to the bound of 27 in the
low order assumption throughout the rest of the chapter.

4.3 The Bucket Protocol

In this section, we present an adaptation of the bucket test of Bellare, Garay, and Ra-
bin [BGR98] to the setting of batch proofs of exponentiation. The protocol is presented
in Figure 4.4 and illustrated in Figure 4.2b. Starting with m statements, the following pro-
cess is repeated p = [A\/(k — 2)| times: The prover and verifier uniformly at random place
the m statements into K = 2* buckets and then compute the product of the statements in
each bucket to obtain K new statements, which are aggregated to a single statement using
the Random Exponents Protocol with k-bit exponents. After the p repetitions, the prover
and verifier aggregate the resulting p statements using the Random Exponents Protocol with
A-bit exponents, and they run a proof of exponentiation on the final statement. This last
aggregation step differs from the bucket test in [BGR98], where the p instances are verified
directly in parallel instead of aggregating them to a single statement.

Note that both the prover and verifier must run in polynomial time in A, and, thus, they could
not keep track of 2* buckets. Therefore, without loss of generality, we use 2* as an upper
bound on the number of buckets K = 2* in the proof of the following theorem.

Theorem 5. Let PoE be a proof of exponentiation with soundness error v and let G be a
group output by GGen(\). Assuming the low order assumption for GGen with soundness
error ji < 27% — 27A the bucket batching protocol presented in Figure 4.4 has soundness
error at most y + p + 27 278,

Proof. Suppose that there is at least one incorrect statement among {yZ < xf} . An

i1€[m]
adversary that tries to break the soundness of the protocol needs to be successful in one
of the Steps 2,3,4,5, which means that either in Step 2, 3 or 4 it starts with at least one
wrong statement and at the end of the step all of the statements are correct or it breaks the
soundness of the PoE in Step 5.

Following the analysis in [BGR98], we show that after Steps 2 and 3 at least one of the

statements {yg’ < (x)e is incorrect except with probability 27*. Fix one round i € [p]
i€[p]

and assume that all statements have been assigned to a bucket except for one incorrect

statement. We call a bucket good if the product of all statements in that bucket yields a
correct statement. Otherwise, we call it bad. The event that all K buckets are good after
round 4 can only occur if all but one bucket so far are good: If more than one bucket is bad,
at least one of them cannot become good after the final missing statement is assigned. If all
buckets are good, assigning the final missing statement will make its bucket bad. In order for

52



4.3. The Bucket Protocol

Parameters:

» group G, common exponent e, number of statements m, number of buckets K =
2% where & < )\, number of repetitions of bucketings p = [A/(k — 2)], size of
random coins k, a proof of exponentiation PoE

Statements: {yi = xf} in G
1€[m]
Protocol:

1. V samples two matrices B < [K]?*™ and R < [K]**X and a vector r « [2"]°
uniformly at random and sends both to P.

)
2. V and P both construct new statements {y{b = (2}, e} , where
’ 7 i€[p],bE[K]
/ /
vie= Il y and 2f,= [
J€[m],Bi,j=b j€[m],Bi,;=b

1

3. V and P both construct new statements {y{’ < (x’»’)e} , where
i€lp]

v/ = II i)™ and 2} = [T (af,)"™"

be[K] be[K]

4.V and P both construct one new statement §j — ()¢, where

g= 11w and 7= I («)".
i€[p] i€[p]

2

5. V and P run PoE on statement ¢ =

(7)°.

Figure 4.4: Our Bucket Protocol based on the bucket test from Bellare et al. [BGR93].

all buckets to be good in the end, we at least need the final missing statement to fall into the
only bad bucket. This occurs with probability 1/K = 27*. Now consider Step 3. Applying

Lemma 5 to statements {yz’-b = (x;b)e} for a fixed ¢ € [p]|, where at least one of the
) ’ be[K]
)

statements is incorrect, we get that the resulting statement y/ = (2)° is incorrect except
with probability at most p+27*+27%. Otherwise, one could find an element of order smaller
than 2* with probability larger than 1, which contradicts the low order assumption. Taking

the union bound, we get that at least one of the statements {yg’ < (x;’)e} is wrong except
i€[p]
with probability at most (u +27* + 2% +27%)p < (27F+2)p < 27 since u < 2% — 272 by
assumption. Assume that at least one of those statements is incorrect and consider Step 4.
Applying Lemma 5 to the statements {yg’ < (x;’)e} , we get that §j = (Z)¢ is incorrect,
i€lp]

except with probability at most -+ 2* 4 27%. Otherwise, one could find an element of order
smaller than 2* with probability larger than 1, which contradicts the low order assumption. In
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4. BATCHING PROOFS OF EXPONENTIATION

Table 4.1: The complexity of various batch PoEs for m instances with security parameter X,
and 2* buckets in the Bucket Protocol.

Protocol # multiplications # proofs
No batching 0 m
Random Subsets am A
Random Exponents (BA+2)m 1
Hybrid A(m 43X +2) 1
Bucket [25] (2m+ (3k +2)2 + (3 + 2)) 1

Step 5 of the protocol V and P run a PoE with soundness error . Taking the union bound,
we get that the soundness error of the protocol is at most v + p + 2721 4 27%, O

4.4 Comparison

A comparison of no batching and the four batching approaches is summarised in Table 4.1.
The number of proofs to verify is clear in all approaches. Next, we explain the expected
number of multiplications for each approach. This computation excludes the multiplication
cost of the verification of the PoE proof(s) as that depends on the specific PoE.

Random Subsets: In expectation, the Random Subsets Protocol selects subsets of [m] of
size m/2, and, thus, it computes two products of size m /2 per each of the \ parallel
repetitions.

Random Exponents: The m instances are raised to random A-bit exponents, which is per-
formed using 1.5X\-2m multiplications in expectation. Finally, it needs to compute two
products of m group elements (to construct the resulting z%'s and y's).

Hybrid Protocol: In expectation, the protocol in Figure 6.3 performs the Am multiplications
as in the Random Subsets Protocol. Then, it applies the Random Exponents Protocol
to the resulting A instances.

Bucket Protocol: The protocol in Figure 4.4 performs p = [\/(k—2)] repetitions. In total,
it takes 2pm multiplications to produce the instances corresponding to the buckets as,
in each repetition, every instance participates in exactly one bucket. Then, in each
repetition, the K = 2* bucket instances are aggregated using the Random Exponents
Protocol with coins of size k. Finally, the resulting p instances are merged using the
Random Exponents Protocol with coins of size A.

Note that the approaches are ordered on the basis of their efficiency. The Random Exponents
Protocol increases the number of multiplications compared to the Random Subsets Protocol.
However, it is the first protocol with a single PoE proof. The Hybrid Protocol achieves the
same number of multiplications as the Random Subsets compiler up to an additive overhead
independent of the number of instances m. Finally, the Bucket Protocol is parameterized by
the number of buckets and enables a trade-off between the number of multiplications that
depend on the number of instances and that are independent of the number of instances.
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Figure 4.5: The relative (4.5a) and absolute (4.5b) numbers of multiplications on 100 to 10
instances compared to the random exponent batching approach from Rotem [Rot21] with the
security parameter A = 128 and optimal choice of k in the Bucket Protocol.
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Table 4.2: The measured times (in seconds) for PoE batching approaches in a 2048-bit RSA
group. The last row is extrapolated for the first two approaches due to excessive times.

# instances Random Exponents Hybrid Bucket

100 0.114 0.207  0.130

1000 1.14 0.739  0.368
10000 11.4 6.01 2.05
100 000 114 58.9 14.1
1000000 1140 584 109
10000 000 11400 5840 892

For A = 128 and varying m, Figures 4.5a and 4.5b show the relative and total group multi-
plications. For the Bucket Protocol, we use the optimal k for each m. At m = 1,000, both
the Hybrid and Bucket Protocols significantly reduce expected multiplications compared to
the Random Exponents Protocol. The Hybrid Protocol achieves a roughly threefold decrease
at tens of thousands of instances, as expected based on Table 4.1. With varying k, the gap
between the Random Exponents and Bucket Protocols grows. The Bucket Protocol achieves
a threefold improvement at m = 1,000 and reduces the expected number of multiplications
by an order of magnitude at m = 100,000.

4.4.1 Experimental Evaluation

In this section, we present experimental results that compare the practical performance of
known approaches for PoE batching.

We have implemented all approaches in SageMath 10.1. We have timed the performance on a
machine with a four core 3.60GHz Intel Xeon CPU E5-1620 0 processor with 64 GB of RAM.
For our experiments, we generated 10M random PoE instances of the form y = 22 with a
common 2048-bit RSA modulus (roughly 12 GB of data). We then timed the performance of
the Random Exponents Protocol, Hybrid Protocol, and Bucket Protocol using the SageMath
timeit function. The timing results on multiples of ten from one hundred to ten million
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instances are presented in Table 4.2 and Figures 4.6a and 4.6b.

When comparing Figures 4.5a and 4.6a, we see that the speed-up of the Bucket Protocol
behaves as expected from the theoretical analysis: already at a thousand instances, we see
a significant speed-up, which, with a growing number of instances m quickly converges to a
speed-up of one order of magnitude. However, the speed-up of the Hybrid Protocol is smaller
than one could expect based solely on the number of group multiplications. It is roughly twice
as fast as the Random Exponents protocol, whereas the number of multiplications is almost
reduced by a factor of three. We conjecture that this is due to the complexity of creating the
subsets in the protocol’s first step. In our implementation, we loop through A many uniformly
random bit strings of length m and always check if the current bit b is 0 or 1. We leave
optimizing the implementation open for future work.

4.5 Communication-Optimal Remote Parallel
Benchmarking via Batch PoEs

In this section, we construct an efficient proof of sufficient parallel resources using batch PoEs.
With our protocol, a prover can convince a verifier that it has enough resources to solve m
repeated squaring instances in parallel. The proof consists of one group element and one PoE.
In particular, its size is independent of m. The protocol is presented in Figure 4.7. It can be
instantiated with any PoE PoE and any batching protocol Batch presented in this chapter
that only requires the verifier to check one PoE.

The verifier chooses m random elements x4, . . ., x,, from the hidden order group G and sends
them to the prover, along with a time parameter T'. The verifier then waits for time 7" while
the prover computes y; = a:?T in parallel for all . At time T, the verifier sends a random
value r to define a batching challenge and starts a new timer. Using 7, the prover aggregates
the y;'s into a single value § and returns it to the verifier. Upon receiving ¢, the verifier stops
the timer and checks if the elapsed time is less than ¢ for some t < T'. If the prover took too
long, the verifier rejects. If the timing check passes, both parties use 7 to locally combine the

T
x;'s into a single instance Z. Finally, the prover sends a PoE proof for the statement ¢ =,
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Parameters:

» group G, time parameter 7', number of statements m, another time parameter
t <T/(m —1), a proof of exponentiation PoE, a PoE batching protocol Batch

Protocol:

1. V samples m group elements x1,...,x,, < G, sends them to P, and starts a
timer.

2. P computes y; = 22 for all i € [m] in parallel.
3. After time T, V samples randomness r for Batch and sends it to P.

4. P computes (Z,9) = Batch((x1,...,Zm), (Y1, ..., Ym);7) defining the statement

.7 2T -
g =2 and sends y to V.
5. V stops the timer and checks that it is less than 7"+ ¢t. Otherwise V rejects.

6. V computes & = Batch((z1,...,xy);7) locally and V and P run PoE on state-
T
ment ¢ =5

Figure 4.7: A proof of sufficient resources to solve m repeated squaring instances in time less
than T+ t.

and the verifier then accepts or rejects based on the correctness of the PoE.

By soundness of the PoE, we have that if the prover sends a valid 3 after receiving r in time
less than ¢, then (except with a negligible probability) it has computed all m iterated squaring
instances in time less than T'+t. In particular, if ¢ is small enough, this shows that the prover
has enough computing power to solve m repeated squaring instances in parallel. The proof
size is only one group element plus the size of the PoE. The verifier's complexity is the same
as the complexity of the verifier in the chosen batching protocol.

Before we prove soundness of the protocol, we make some remarks on how to optimize and
adapt the protocol for different applications:

To optimize communication complexity of the protocol, we can replace the m group elements
sent by the verifier with a uniformly sampled key k for a pseudo-random function. With this
key k, both the prover and the verifier can sample the challenges x4, ..., x,, locally without
further interaction.

To remove interaction, we can replace the second message from the verifier using a randomness
beacon b. This beacon b simultaneously serves as the source for the randomness of the
challenge r of the batching protocol and as the starting of the timer. If the prover sends 7 in
time less than t after the beacon was released and the PoE proof is valid, the verifier accepts
the proof. Note that, in order for the proof to remain publicly verifiable after time 1"+ ¢, the
message 7 from the prover needs to be timestamped.

In some applications, public verifiability of the proof of resources is not necessary. For example,
if a company wants to privately benchmark the computing power of prospective contractors
paid for outsourced computation. In this case, we can adapt the protocol as follows: In the
first step, the verifier V constructs an RSA group with a trapdoor, samples the m instances
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from this group and sends the instances and the group to P. Steps 2-5 remain the same. In
Step 6, the verifier can efficiently check that 7 is the correct element using the trapdoor of
the group, avoiding the need for the final PoE

Before we prove the security of our protocol in Section 4.5.2, we recall a result by Attema,
Cramer, and Kohl [ACK21] we use in our proof. The presentation follows the exposition
from [BDH"25].

4.5.1 An efficient tree sampling algorithm by [ACK21]

To prove the knowledge soundness of interactive protocols, a tree of transcripts is often
helpful. Attema, Cramer, and Kohl [ACK21] showed how to sample such a tree efficiently.

Definition 12 (tree of transcripts). A (a1, ..., a,)-tree of transcripts for an n-round in-
teractive protocol is a set of [ ; a; transcripts that can be arranged in the following tree
structure. Consider transcripts of the form (z,cy,...,¢,,a1,...,a,), where x denotes the
instance, ¢q,...,c, the verifier's challenges, and aq,...,a, the prover's messages. Each
transcript corresponds to exactly one path from the root node to a leaf node. The tree's
root is labeled by the instance x, the remaining vertices on the path to a leaf are labeled by
ai,...,a,, where the vertex at level i+ 1 gets the label a;. The edges on the path are labeled
by c1,...,c,, where the edge connecting the vertices on levels ¢ and ¢ + 1 are labeled by c;.
Each vertex at level ¢ has precisely «; children, corresponding to «; distinct choices for ¢; that
label the edges.

Attema et al. reduced the problem of extracting a tree of transcripts for an interactive protocol
to a slightly more general game about finding a “tree of 1-entries” in a 0/1-tensor, which we
describe next. For an n-round protocol, set R as the size of the prover's randomness space and
N as the size of the verifier's challenge space and fix a statement . The (n + 1)-dimensional
tensor H, € {0, 1}*N**N is then defined such that, for any fixed randomness r € [R]
and any vector of challenges ¢y, ..., ¢, € [N], the entry H,[r,cy,...,c,] equals 1 if and only
if the verifier eventually accepts the corresponding transcript. Then, a («q, ..., a,)-tree of
1-entries in H, corresponds to a (ay, ..., a,)-tree of accepting transcripts for the protocol.
We present the tree sampling algorithm TreeFind of Attema, Cramer, and Kohl [ACK21] in
Algorithm 2 that achieves the following.

Lemma 6 ([ACK21]). For any n,R,N € Zwq, let H € {0,1}XN><xN pe an (n +
1)-dimensional tensor and let ¢ € R be the fraction of 1-entries in H. The algorithm

TreeFind™ (ay, ..., o) outputs a (o, . .., ay,)-tree of 1-entries in H with probability at least
S (e 1)
E — — oy — .
N
The expected sample complexity of TreeFindH(al, ..., Q) is at most TT1 | .

Remark 3 (On sampling a tree of 1-round transcripts with structured challenges). In their
result, Attema, Cramer, and Kohl consider n round protocols, i.e., protocols in which the
verifier sends n challenges that are each answered individually by a prover message. However,
note that the algorithm TreeFind is oblivious to the number of prover’'s messages. It only
queries the tensor H and thus only learns whether or not the verifier accepts at the end
of the protocol. We can therefore use Algorithm 2 to obtain a tree of 1-round transcripts
with structured challenges as follows: Let the verifier challenge of the protocol be a vector
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Algorithm 2 The tree-finding algorithm TreeFind from [ACK21].

TreeFind™ (ay, ..., o)
1. a+ R
2: return TreeFindZ (a) with the root labeled by a

TreeFind” (a, x4, ..., z,):
1. if Hla,xy,...,2,) =1 then
2 return new leaf labeled by Hla, z1, ..., z,
3: else
4: return L
5. end if
TreeFind? (a, x4, ..., z;): > fori e {0,...,n—1}
1. 241 < N
2: v a new vertex
3: T = TreeFind/.,(a,21,...,211)
4. if T = L then
5: return L
6: else
7 connect v and the root of 7 by an edge labeled by z;,
8: while v has < «; children do
9: ziy1 < N (without replacement)
10: T = TreeFindﬁl(a, T1yeney Tit1)
11: if 7 # L then
12: connect v and the root of 7 by an edge labeled by ;4
13: end if
14: if all possibilities were tried then
15: return L
16: end if
17: end while
18: end if

of the form s = (s1,...,8,) € [S]™ for some S € Z- and let R € Z-( be the size of
the prover’'s randomness space. For a fixed statement x, we define an (m + 1)-dimensional
tensor H, € {0, 1}5%x5 sych that for any fixed randomness r € [R] and any challenge
s € [S]™, the entry H,(r,s1,...,Sy,) equals 1 if and only if the verifier accepts the prover's
response. By giving TreeFind query access to H, and input (o, ..., q,,), we obtain a tree
of 1-round transcripts, where the vertices at level m + 1 are labeled by the prover's messages
and the other vertices do not have a label. The edges are labeled by the different choices for
S1,...,8n and each vertex at level ¢ has precisely «; children. Note that since s is sent at
once, the order of the entries in s does not matter and we can assume that all the entries ¢
that have a; = 1 are arranged in the lower levels of the tree.

4.5.2 Security Proof

We prove security based on a new assumption that extends the generalized iterated squaring
assumption [HP25], which states that, given a uniform group element z, it takes time T
to compute (z7)%" for any choice of r # 0. Our assumption (Definition 19), which we
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call strong generalized parallel iterated squaring assumption, extends the generalized iterated
squaring assumption to the parallel setting. It states that, given m random group elements
Z1,..., Ty it is hard to perform the equivalent task in time 7'+ T'/(m — 1) on less than
m processors. For technical reasons in our proof, we additionally give the adversary access
to an oracle that on input two group elements (x,y) decides whether or not 2 = y. The
access to such an oracle, for example, allows the prover to sample group elements and test
whether they are solutions to some iterated squaring challenge in time much smaller than 7.
However, note that such test would succeed only with a negligible probability, and, in general,
the deciding oracle does not seem to give the adversary any significant advantage in solving
iterated squaring instances. Nevertheless, it is an interesting open problem to prove security
of our protocol under the parallel generalized iterated squaring assumption (i.e., a weaker
assumption without the deciding oracle) or even only under the generalized iterated squaring
assumption (i.e., reducing to the hardness of a single iterated squaring instance).

Definition 13 (strong parallel generalized iterated squaring assumption). Let GGen(1*) be
a randomized algorithm that outputs the description of a hidden-order group G. We say
that the strong parallel generalized iterated squaring assumption holds for GGen if, for all
T, m € poly()\) and any probabilistic parallel algorithm A that uses at most m — 1 processors
and runs in time less than 7'+ T'/(m — 1), the probability of winning the following game is
negligible in A:

1. A takes as input the description of a group G output by GGen(1*), m random group
elements x1,...,x,, and an integer T'. A additionally gets access to an oracle O that
on input two group elements (x,y), decides whether or not 22 =y

2. A outputs pairs (y1,71)s -+ Ym, ™m) € G X Z.

3. A wins if and only if 1, ..., 7 # 0 and 5y = (252, .. ym = (277)?".

We prove security for the case where Batch is the Bucket protocol, since this is the batching
protocol with the best performance and because extracting v, . . . , ¥, is the most complicated
in this protocol. It is straightforward to use the techniques in the proof for proving security
in the cases where Batch is instantiated as the Random Exponents protocol or the Hybrid

protocol.

To extract a fixed y;, the extractor needs a tree of 8 transcripts that is structured as follows:
The edges are labeled by the entries of the challenge vectors of the verifier and the leaves
are labeled by the prover's output ¢ corresponding to the challenges on the path to this leaf.
The tree is of depth p- (m + K + 1) and the vertices have either degree one or two. Recall
that we can use algorithm TreeFind to find such a tree and assume that the vertices of degree
one are in the lower levels and the vertices of degree two are in the higher levels of the tree
(see Remark 3). In the following, let us consider the subtree in the last three levels where all
vertices have degree two. We extract y; as follows: The edges in the last level of the tree
are labeled by the i-th entries of the challenges used in Step 4 of the bucket protocol. These
challenges are four pairs of the following form:

/ /
7= (T1, s Tim1, Tiy Ti1, s Tp) AN 7 = (71, o i1, 75 i1, oy 7)),

where all entries except for r; and r. are fixed in the higher levels of the tree. Fix two
neighboring leaves and their parent node. Denote the corresponding leaf labels by 3 and /.
Then we have that §j/y’ = ¢"*~"%, where g denotes the corresponding element that an honest
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prover computes in Step 3 of the bucket protocol. We store the element §j/y’ = g™~ and
repeat this procedure for the remaining three subtrees consisting of two neighboring leaves
and their parent node. In the next step, we extract a power of the element computed in
Step 2 for the bucket that x; gets assigned to. We do this in a similar manner as before using
the 4 elements of the form /4 and raising the elements to the correct exponents.

Finally, we can extract y; by dividing the two elements we have obtained. This works because
the challenges in the first round are the bucket assignments. Fix any assignment of buckets
of the first challenge. Then the second challenge is the same except that x; is assigned to
a different bucket. This means that the extracted elements correspond to the product of
(powers of) the same elements except that one of them is additionally multiplied by a power

oT . . s . 9T
of 7" and the other one is not. By dividing the former by the latter, we obtain a power of z; .
Note that we know exactly which power this is because it is a combination of the challenges
the extractor sends. We repeat this procedure for every y; and output the result together
with the corresponding powers. Lemma 6 guarantees that TreeFind can sample a tree for a
fixed y; in expected time polynomial in the success probability of the adversary. Hence, the
extractor obtains m trees in expected time polynomial in m and the success probability of the
adversary.

We note that the algorithm TreeFind expects elements o, ..., a,, as input that indicate the
degree of the vertices of the tree of transcripts. Unfortunately, our extractor does not know
which bucket element y; will land in and thus has to guess which of the buckets K it needs
two distinct challenges. Its success probability in one round is, therefore, reduced by a factor
1/K. We believe that one can adapt TreeFind in such a way that it chooses some of the «;'s
adaptively without any efficiency loss, which would remove the probability loss of 1/K, but
decided to use the algorithm from [ACK21] for simplicity of presentation.

Theorem 6. Let PoE be a proof of exponentiation with soundness error €. Consider an
adversary A that uses at most m — 1 processors and convinces the verifier to output accept in
the protocol in Figure 4.7, where Bat ch is the Bucket protocol, with probability 6 > €. Then
there exists an adversary B solving the strong parallel generalized iterated squaring game with
m — 1 processors in expected time

Smt
(0—¢€)/K—6/K?

T
+2

Finally, we discuss the implications of the above adversary on the security of our protocol
presented in Figure 4.7. Theorem 6 implies that for any 0 > 8mit(m — 1)K /(2T) + 3/ K +¢,
the adversary B breaks the strong parallel generalized iterated squaring assumption. However,
note that the lower bound on § might not be negligible for some choice of parameters m, ¢, K
and T', which means that there could exist an adversary breaking soundness of the protocol
in Figure 4.7 with noticeable probability. In this case, the soundness error can be reduced to
(8mt(m — 1)K /(2T') + 3/ K + €)“ by repeating the protocol w many times.

Proof of Theorem 6. We construct adversary B as follows:

1. B gets as input m generalized iterated squaring instances x1, ..., z,, and access to the
oracle O described in Definition 19.

2. Bsends zy,...,x,, to A and starts the timer.
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3. After time T, B starts the extraction procedure. Recall that the challenges sent by
V in the Bucket Protocol contain two matrices B € [K|**™, R € [K]**K and a
vector r € [2]”. We can arrange the elements of the challenge in a long vector
c € [K]Ptm+E) x [2°]7 by arranging the rows of the matrices consecutively. Denote by
d=p-(m+ K + 1) the dimension of the vector. To extract a power of y; for a fixed
i € [m], B invokes TreeFind with input a = (ay,...aq), where ay_p,+1 = a; = 2 and
a; = 2, for some uniformly random j < [p-m + 1, p- m + K]|. All other entries in «
are set to 1.

4. To answer the queries by TreeFind, B sends the corresponding challenge to A. By
assumption, A sends a response in time ¢ with probability at least §. If it does not
send a response in time t, B answers the query with 0. If A outputs 7 in time, B
constructs the corresponding 7 and queries O on (Z, 7). B forwards the response of O
to TreeFind.

5. If TreeFind outputs a tree of transcripts, B proceeds to the next step. If TreeFind
aborts, B goes back to Step 3.

6. At this step B has a tree of 8 transcripts corresponding to 8 challenges of the following

form:
b1,b2,b3) __ (b1) (b1,b2)
{cl )= (c,... ¢ sy Comy Comeady - 1 Gy
(b1,b2,b3)
<5 Com4pK s Com+pK+15 - -3 Cg—py1 7"'vcd)}b1b2b3€{oﬂ}'

First B checks if one of c§0) and cgl) is equal to j. If not, B goes back to Step 3.
Otherwise, assume without loss of generality that c§0> = j. Denote the corresponding

messages output by A by a(bl’bQ’b‘) To extract y;, B does the following:

a) For all by, by € {0,1}, set a{"") := ¢ /q{01b>1),
b) For b; € {0,1}, set

(b1,1,0)  (by,1,1)
( (b1,0 ))Cd 1p+1 ~C 1p-&-l

(b1)

T
c) Set
() el el e e )
T T
and

= (C;QO) . C§0,1)> (C;LO) i C§1,1)) H ( Eiblpbil()) Cg)_l;)bj7ll)) ‘
b1,b2€{0,1}

7. B repeats the procedure starting from Step 3 for all i € [m].

8. B outputs ((y1,71),- -, (Ym: 7).

We now show that the output of B is always correct. Fix any i € [m]. By inspecting the
bucket protocol we observe that the 8 & values that B computes are of the form

(b1,b2) (b1,b2,b3)
{((]'hy)5 " hg)i-ri B3} o b bse0,1)
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for some elements hy, ho, hs € G. Now if we perform the same operation on those values as
on the values aébl’bQ’bg) in Step 6 of the extraction, we obtain the element z;’. Since we know

that a(®t2202) = 72" for all by, by, by € {0,1}, we also have that ; = (z7")%".

2

It remains to compute the running time of 3. By Lemma 6 we know that TreeFind is successful
in constructing a tree for B with probability at least 6 — e — 3/K and the expected sample
complexity of one run is at most 8. Since we choose j € [p-m + 1,p-m + K| uniformly at
random, we have that the probability of a fixed cgbl) being equal to j is 1/K. Since TreeFind

outputs two distinct values for cz(o) and cz(»l), we have that the probability that one of the values
is equal to j is 2/ K. Hence, we have that TreeFind outputs a tree that let's B extract y; with
probability at least 2/ K - (6 —e —3/K). Since B needs m trees of transcripts, we follow that
the expected running time of B is at most T'+8mt/(2(§ —¢€)/ K —6/K?). This means that B
breaks the strong parallel iterated squaring assumption whenever 8mt/(2(6—¢)/K —6/K?) <
T/(m — 1) and the claim follows. O

4.6 Conclusion

In this chapter, we introduced two new batch proofs of exponentiation that substantially
improve over existing protocols in both theory and practice. First, we showed that combining
the Random Subsets approach with the standard Random Exponents technique leads to a
simple Hybrid Protocol that achieves a better balance of prover and verifier costs, while still
producing a single proof for all aggregated statements. Second, we presented the Bucket
Protocol, an adaptation of a classical bucket-test technique for signature verification, tailored
to hidden-order groups. With an appropriate choice of parameters, the Bucket Protocol
achieves an order-of-magnitude speedup over existing protocols for large batches of instances,
significantly reducing both the proof size and verification overhead.

To demonstrate the practicality of these constructions, we provided an implementation and
benchmark results showing that, even in a non-optimized setting, our protocols outperform
earlier batch PoEs as the number of instances grows. Additionally, we proposed a new ap-
plication for batch PoEs in remote attestation of parallel computational power. By combin-
ing parallel repeated-squaring challenges with our batch PoEs, a verifier can efficiently test
whether a prover truly possesses a claimed number of parallel processors—while maintaining
near-optimal communication and verification complexity.

Our work highlights both the importance of batching in real-world scenarios that require
frequent generation of PoEs (e.g., verifiable delay functions in blockchain consensus) and
the flexibility of bucket-based methods to optimize performance. We leave a deeper explo-
ration of implementation optimizations, as well as investigating stronger security proofs under
progressively weaker assumptions, as exciting directions for future research.

63






CHAPTER

Practical Short-Lived Proofs from
Verifiable Delay Functions

5.1 Introduction

In this chapter we present the first constructions that transform any PoE in hidden order
groups into a watermarkable VDF and into a zero-knowledge VDF. Our watermarkable VDF
is practically efficient and only slightly increases the proof size of the PoE. However, the
zero-knowledge VDF increases the proof size by roughly 4\ group elements, where A is a
statistical security parameter. While the proof size is still independent of the time parameter
T, a blow-up by 4\ group elements is undesirable in practice.

To address this, we introduce the notion of zero-knowledge proofs of sequential work (zk-
PoSW). We show that zkPoSW can replace zkVDFs in the construction of short-lived proofs
and signatures with reusable forgeability from [ABC22], and also give a construction that
transforms any PoE into a zkPoSW which only increases the proof size of the PoE by 3
group elements. As before, using Pietrzak's PoE we get short lived proofs and signatures with
shorter forging times and different assumptions than [ABC22].

In this chapter we present all VDFs with exponent 27 for simplicity. As before, the 2 could
be replaced by any other constant ¢.

Watermarkable VDFs. We construct the first general watermarkable VDF scheme from
any PoE in hidden order groups. In this construction the proof of the statement y L 22" s

computed as follows:

1. Sample a random r < +[2?%].
2. Compute ' := 2" and ¢/ :=y".

3. Compute a PoE proof mpe; for the statement y/ = (/)2

4. Compute a watermarked zero-knowledge proof of knowledge of 7, denoted by 75 k.

5. Publish x, 2/, 4,9/, mpor and mpox.
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Watermarking the proof of knowledge is done by including a unique identifier in the compu-
tation of the random challenge. Watermark unforgeability holds by soundness of the proof
of knowledge, a decisional variant of the discrete log assumption in hidden order groups and
a decisional variant of the iterated squaring assumption: If the proof of knowledge is sound,
then the only two ways for an adversary to forge a proof with its own watermark are the
following:

» Find r such that " = 2/ and y" = ¢/, copy 7sor and honestly compute 7px. By finding
r, the adversary finds a small discrete log of 2" with base x.

2

= Compute a PoE for a new statement y"" = (x’“')QT faster than time 7T'. If the adversary
is able to do this, then in particular it can also recognize that y is indeed the result of

22" in time faster than T, which breaks the decisional iterated squaring assumption.

The construction in [ABC22] is only slightly more efficient than ours: It increases the proof size
of Wesolowski's proof by one group element, whereas our construction increases the proof size
of a PoE by four group elements. However, our construction can watermark any PoE, while
the construction in [ABC22] cannot be generalized to other PoEs than Wesolowski's. Further,
the watermarkable VDF in [ABC22] cannot reveal the output of the iterated squaring instance
since it is based on a zero knowledge VDF, which may be undesirable for other applications.

Zero-Knowledge VDFs. We construct the first general zero-knowledge VDF from any
PoE in hidden order groups. It is similar to the watermarkable VDF construction but instead
of publishing the element y, the prover just proves knowledge of 3. In this construction the
proof of the statement P y is computed as follows:

1. Sample a random r < +[2%].

r

2. Compute 2/ := 2" and v/ :=y/".
3. Compute a PoE proof mp; for the statement y/ = ()%
4. Compute a zero-knowledge proof of knowledge of y and r, denoted by 7p .

5. Publish z, 2/, 1/, mpor and mpox.

To prove that this scheme is zero-knowledge, the simulator needs a precomputed pair x*, y*

and a PoE for the statement y* < (x*)QT, which we can include in the public parameters.
Then it can output a simulated proof simply by forging the proof of knowledge of y and r.
We need to rely on a decisional version of the discrete log assumption in hidden order groups
so that the adversary cannot decide if there exists a small discrete log between elements z*
and x or not. The bottleneck of this construction is the zero-knowledge proof of knowledge
of y and r. We obtain it by combing Schnorr’s protocol with the Guillou-Quisquater protocol
for proving knowledge of a s-root in hidden order groups. In our setting we can only prove
soundness of this scheme when using challenge space {0, 1} and running A many repetitions,
which makes the scheme impractical.
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Zero-Knowledge Proofs of Sequential Work. We salvage the efficiency of the above
scheme by dropping the requirement of a proof of knowledge of y. This means that our
construction is not a VDF anymore: The prover might not know the unique result y = 22"
since it can also just compute 3/ = (:vT)QT and output a valid proof. However, we assume
that computing the proof still requires T" steps, which is sufficient for a proof of sequential
work. We call the assumption that computing (x”)QT for an adversarially chosen r # 0 takes
T sequential steps generalized iterated squaring assumption. In this construction, given z,
the proof of sequential work is computed as follows:

2

1. Compute y = x ’ together with advice string a.

2. Sample a random r < +[2}].

r

3. Compute 2’ := 2" and ¢/ :=y".
4. Compute a PoE proof 75 for the statement v/ ~ (m’)QT using .
5. Compute a zero-knowledge proof of knowledge of 7, denoted by 7 k.

6. Publish z, 2/, 4,9, mpor and mpox.

New Assumptions. As discussed above, we use two assumptions in this chapter that are
natural modifications of well-known assumptions but, to the best of our knowledge, have not
already been defined in previous work.

= The decisional discrete log assumption with small exponents (defined in Section 5.3)
states that given group elements a, b it's hard to decide if there exists a discrete loga-
rithm w, b = a® even if the discrete logarithm w is guaranteed to be bounded by 2* for
a security parameter \ (rather than uniform as in the standard discrete log assumption).

We require this assumption to hold in the groups of unknown order over which the
corresponding VDFs are defined. In groups of known order a stronger assumption
is sometimes made in Diffie-Hellman key exchange where, for efficiency reasons, the
exponents are chosen to be random numbers of only, say 275 bits (

). In [Can97] Canetti makes an
even stronger assumption (DHI Assumption Il) in groups of order 2¢+1 for a large prime
¢, which implies that discrete log is hard even when the set from which the exponent is
chosen is “well spread”, which basically means it can be an arbitrary set of only slightly
superpolynomial size.

= The generalized iterated squaring assumption (defined in Section 5.6.2) states that given
x, computing a tuple (r,y) such that y = (x”)QT requires T steps. This generalizes
the iterated squaring assumption where one requires r = 1. Rotem and Segev [RS20]
analyze the delay property of generic ring functions. They show that, based on the
hardness of factoring, any generic ring function is a delay function with time parameter
determined by the sequentiality depth of the function. While the generalized iterated
squaring assumption does not consider a function (the correct output is not unique),
we believe that the techniques of Rotem and Segev can be applied in a straightforward
manner to show that, in the generic ring model, breaking the generalized iterated
squaring assumption is equivalent to factoring.
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5.1.1 More Related Work

Time-Based Deniability. Baldimtsi et al. [BKZZ16] build so called proofs of work or
knowledge, with which a prover can prove that they either know the witness of a statement or
it has solved a proof of work puzzle. However, in their work both cases are indistinguishable
from the beginning, whereas in short-lived proofs the cases are indistinguishable only after
time T' has passed. Specter, Park and Green [SPG21] build protocols that prove that either
a prover knows the witness of a statement or it has seen a value released at time T'. Ferrari,
Géraud and Sirkin [FGN15] construct fading signatures that also lose validity after a certain
amount of time based on the RSW time-lock puzzle. However, they need to rely on a trusted
authority that knows a trapdoor and they need that the verifier is more powerful than the
prover.

Colburn [Col18] constructs short-lived proofs and signatures from proofs of work in his master
thesis. The proofs of work in his thesis consist of finding preimages of hash functions and are
thus parallelizable.

Wesolowski [Wes20] was the first one to use VDFs as a building block for time-based denia-
bility. He presents an identification protocol based on a trapdoor VDF that loses its validity
after time T'. Finally, Arun, Bonneau and Clark [ABC22] were the first ones to build general
short-lived proofs and signatures from VDFs.

5.2 Three Zero-Knowledge Proofs of Knowledge

We begin by presenting three zero-knowledge proofs of knowledge. We need the first one
to construct a zero-knowledge proof of sequential work in Section 5.6, the second one to
construct a watermarkable VDF in Section 5.4 and the third one to construct a zero-knowledge
VDF in Section 5.5. The proofs of knowledge are not tight: while the size of the witness of
an honest prover is bounded by 2%, the extractor might extract a witness of size up to 23A+2.
Jumping ahead, this will affect the strength of the low order assumption needed for our VDF
constructions: We will need to assume that it is hard to find elements of order up to 23\ + 2.

5.2.1 Proof of Knowledge of Discrete Log

In Figure 5.1 we present Schnorr's protocol [Sch91] in hidden order groups. We use it as a
building block to construct the zero knowledge PoSW in Section 5.6. Schnorr originally defined
and analyzed the protocol in prime order groups. Later, Kiayias, Tsiounis and Yung [KTY04]
proved that it is also secure in hidden order groups, where knowledge soundness is based on
the strong RSA assumption. We note that the soundness property only guarantees knowledge
of an exponent in +[23**?] instead of +[2}]. This is sufficient for our application. The
authors of [CPP17] claim that knowledge soundness of the protocol can be based on the RSA
assumption instead of the Strong-RSA assumption but we are not aware of a formal proof.

Theorem 7 ([KTYO04]). Under the strong RSA assumption, the protocol in Figure 5.1 is an
honest verifier zero-knowledge proof of knowledge with soundness error 1/2*. The soundness
property guarantees knowledge of an exponent in +[232].

Theorem 7 is a special case of [KTY04, Theorem 10]. For completeness we restate the proof
for this case.
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Instance: (a1, as,G), where ay,a, € G
Parameters: statistical security parameter \
Witness: Exponent w € £[2%] such that a¥ = ay in G

Protocol:
1. P samples t < £[2%"] uniformly at random, computes b := a! and sends it to V.
2. V samples ¢ < [2*] uniformly at random and sends it to P.
3. P computes s :=t + cw and sends it to V.

4.V checks if s € £[2°*1] and af = ba$ and outputs accept or reject accord-
ingly.

Figure 5.1: Proof of Knowledge of Discrete Log [Sch91, KTY04].

Proof of Theorem 7. Completeness follows by inspection of the protocol. To prove knowledge
soundness we construct an extractor £ that outputs a witness w given two accepting tran-
scripts (ag, as, by, c,s) and (ay,as, by, c*, s*). Since both transcripts are accepting, it holds
that aj™" = a5 . Lety = ged(s—s*, c—c*) and a, 3 be such that v = a(s—s*)+B(c—c*).
With high probability it holds that ~ is coprime to the order of G since otherwise we could
factor the group order and in particular break the strong RSA assumption. We thus have

* *
5—s c—c

al Y — CLQ vy
and hence
asfs* +5cfc* c—c*
ag=a; " T = (aSadd) .

Now if ¢ —¢* > v, we can transform the prover into an algorithm that breaks the strong RSA
assumption: aga? is the ((¢ — ¢*)/7)-root of a;. We therefore have that ¢ — ¢* = ~ and
hence w = (s — s*)/(c — ¢*) is the discrete log of a, with base a;. Since s, s* € £[23*1] we

have that w € 4[232*2].

It remains to prove that the protocol is honest verifier zero knowledge. Consider the simulator
S that takes as input a tuple (a1, as, c*), samples s* < £[23}] uniformly at random and
computes b* = aja; “. To prove that this transcript is indistinguishable from a real transcript,
we show that the statistical distance of the random variable s* «— +[23}] to the random
variable s = t + cw for a fixed w € +[2?"] and uniformly random ¢ < 4[23*] and ¢ <«
[2%] is negligible. Since s* is distributed uniformly over £[2%"], it takes each value in this
set with probability 1/23**1. Now consider the distribution of s. Any value in the range
[—23% 4 222 232 — 22A] s selected with probability 2*/(2*23A 1) = 1/23 1 since for any
choice of ¢ we can find a ¢ that yields the respective value. On the rest of the values the
distributions might differ. If follows that the statistical distance of the two distributions is at

most
23)\+1 _ 22)\+1 1

1 93241 - o
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Instance: (aq,aq,as, a4, G), where ay,as,a3,a4 € G
Parameters: statistical security parameter \
Witness: Exponent w € £[2%] such that a¥ = ay and a¥ = a, in G

Protocol:

1. P samples ¢ < [23*] uniformly at random, computes b; := a! and by := a} and
sends (by,bs) to V.

2. V samples ¢ < [2*] uniformly at random and sends it to P.
3. P computes s :=t + cw and sends it to V.

4.V checks if s € £[23*1], af = bya$ and a§ = bya§ holds and outputs accept or
reject accordingly.

Figure 5.2: Proof of Knowledge of same discrete log [KTY04]

5.2.2 Proof of Knowledge of Same Discrete Log

The main tool in our construction of a watermarkable signature scheme is a proof of knowledge
of the same discrete log for two different bases. The protocol is a special case of the general
proof of knowledge for “discrete-log relations sets” introduced by Kiayias, Tsiounis and Yung
in [KTYO04]. It was first constructed in prime order groups by Chaum and Pederson [CP93].
We present it in Figure 5.2.

Theorem 8 ([KTY04, Theorem 10]). Under the Strong-RSA assumption, the protocol in
Figure 5.2 is an honest verifier zero-knowledge proof of knowledge with soundness error 1/2*.
The soundness property guarantees knowledge of an exponent in £[23*+2].

Theorem 8 is a special case of [KTY04, Theorem 10]. The proof is very similar to the proof
of Theorem 7 so we omit it. To make the protocol non-interactive, we apply the Fiat-Shamir
heuristic, i.e., we replace the challenge sent by the verifier by a hash of the instance, the first
message and an identifier ID of the prover. The protocol can be found in Figure 5.3. In our
application to watermarkable VDFs, we need this protocol to be watermarked. We achieve
this by including an ID of the prover in the input of the hash function that computes the
Fiat-Shamir challenge.

5.2.3 Proof of Knowledge of Same Discrete Log with one Hidden
Base

In our zero-knowledge VDF construction we need a proof of knowledge that's similar to the one
in the last subsection but without revealing element a3. The protocol is given in Figure 5.4. It
is a combination of the protocol in Figure 5.2 and the well-known Guillou-Quisquater protocol
[GQI0] for proving knowledge of a root.

Theorem 9. Under the Strong-RSA assumption, the protocol in Figure 5.4 is an honest
verifier zero-knowledge proof of knowledge with soundness error 1/2*. The soundness property
guarantees knowledge of an exponent in +[23\2].
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Instance: (ay,as,as, a4, ID,G), where ay,as,a3,a4 € G and ID is a unique identifier
of P

Parameters: statistical security parameter A, hash function H

Witness: Exponent w € [2%] such that a¥ = ay and a¥ = a4 in G

Protocol:
1. P samples t < [23**1] uniformly at random and computes b, := a! and b, := a3.
2. P computes ¢ := H(ay, ay, as, aq, by, be, ID)
3. P computes s :=t + cw and publishes (by, by, ¢, s) as the proof.

4. To check the proof (by,bs,c,s), V checks if H(ay,as,as,aq,b1,b2,ID) = ¢, s €
+[23*1] and if both af = bja$ and a5 = bya$ hold and outputs accept or
reject accordingly.

Figure 5.3: PoKsDL: The watermarked non-interactive Proof of Knowledge of same discrete
log

Instance: (aq,as,a4,G), where ay,a2,a4 € G
Parameters: statistical security parameter \
Witness: Element a3 and exponent w € £[2%] such that a¥ = ay and a¥ = a4 in G

Protocol: P and V repeat the following procedure A times:
1. P samples a5 <— G uniformly at random, computes b; := af’ and sends b; to V.
2. V samples a bit b < {0, 1} uniformly and random and sends it to P.

3. P samples t < 4[23*] uniformly at random, computes ag := asal, by := a! and
bs := al and sends (ag, by, b3) to V.

4.V samples ¢ < [2*] uniformly at random and sends it to P.
5. P computes s :=t + cw and sends it to V.

6. V checks if s € £[23M1], a5 = bya§ and af = b3(b1af})° hold and outputs accept
or reject accordingly.

Figure 5.4: Proof of Knowledge of same discrete log with one hidden base

Proof. Completeness follows by inspection of the protocol. To prove knowledge soundness
we consider one of the A many executions. We construct an extractor £ that outputs a
witness (w, a3) given four accepting transcripts (b1, 0, ag, bo, bs, ¢, s), (b1,0, ag, ba, b3, c*, s*),
(b1, 1, ag, b5, 05, c**, s**) and (b1, 1, ag, b3, b5, ¢***, ™). € first extracts w and then as.

1. Since the first and the second transcripts are accepting, it holds that ™ = a5 .

Let v = ged(s — s*, ¢ — ¢*) and «, 8 be such that v = a(s — s*) + S(c — ¢*). Then we
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have

and hence

a=d T = (aga)
Now if ¢c—c* > ~y, we can transform the prover into an algorithm that breaks the strong
RSA assumption: agd) is the (¢ — ¢* /v)-root of a;. We therefore have that ¢ — ¢* = ~
and hence w = (s — s*/c — ¢*) is the discrete log of as with base a; and the discrete
log of b; with base ag. By the same argument we get that w = (s** — §™* /¢** — ¢™**)
is the discrete log of bjay with base ag.

2. Now consider the second and third transcript. We have seen above that af = b; and
(a§)™ = byay. This means that a/ag is a w-root of ay.

It remains to prove honest verifier zero-knowledge. Given (ay, as, a4,b,c), the simulator S
constructs an accepting transcript (b1, b, ag, ba, bs, ¢, s) as follows: It first samples s < 4-[23}]
and ag < G uniformly at random. If b = 0, S samples e < +£[2*] uniformly at random
and sets by = a§. If b = 1, it samples b; <= G uniformly at random. Finally, § computes
by = ala;® and by = agbya;*. Indistinguishability follows since the distribution of the
simulated s has statistical distance 1/2* from the distribution of an honestly computed s as

we have seen in the proof of Theorem 7. O]

5.3 Madified Discrete-Log Assumptions

In our constructions we need to rely on the assumption that it is hard to recognize whether
there exists a small discrete log between two given elements or not. Note that this is easy
in one case: Given two elements a,b € G, where a is a square and b is a non-square, there
exists no discrete log of b to base a since a raised to any power yields a square. We assume
that it is hard in all other cases.

Definition 14 (discrete log assumption with small exponents). Let GGen(1*) be a ran-
domized algorithm that outputs the description of a hidden-order group G. We say that
the discrete log assumption with small exponents holds for GGen if, for any probabilistic
polynomial-time algorithm A, the probability of winning the following game is negligible in A:

1. A takes as input the description of a group G output by GGen(1%), and two elements
a,b € G, where a is uniformly random and b = a for some w < £[2*71].

2. A outputs an integer w’ € £[2271].
3. A wins if and only if b = a"’.

Definition 15 (decisional discrete log assumption with small exponents). Let GGen(1?) be
a randomized algorithm that outputs the description of a hidden-order group G. We say
that the decisional discrete log assumption with small exponents holds for GGen if, for any
probabilistic polynomial-time algorithm A, the probability of winning the following game is
negligible in A:
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1. A takes as input the description of a group G output by GGen(1?), and two elements
a,b € G, where a is uniformly random and for b there are two possibilities of probability
1/2 each: Either b = a® for some w «+ +[2*~!] or b = 22" for a uniformly random
group element z € G, where b = 1 if a is a square and b = 0 if not.

2. A outputs 0 or 1 indicating whether or not b = a* for some w € £[2*71].
3. A wins if and only if it outputs the correct bit with probability greater than 1/2.

Remark 4 (the special case of QR ). Note that the decisional discrete log assumption
with small exponents holds information theoretically in the group of signed quadratic residues
QR where N is a safe prime modulus, whenever the group order of QR is at least 2*.
This is because in this group almost all elements are generators and all elements are squares.
Hence, if you pick two random group elements, the discrete log of one element to the base the
other element exists with high probability so the two cases in the assumption are statistically
indistinguishable.

Further, in this case, we have a straightforward reduction from the strong RSA assumption to
the discrete log assumption with small exponents: Given a random group element g, one can
solve the strong RSA challenge by sampling a random group element % and sending (h, g)
to the adversary A that breaks the discrete log assumption with small exponents. When A
outputs w, the reduction sends (w, h) to the strong RSA challenger.

5.4 Watermarkable VDFs

In this section we show how to transform any PoE into a watermarkable VDF. We begin by
recalling the definition of watermarkable VDFs.

5.4.1 Definition

Watermarkable verifiable delay functions were informally introduced by Wesolowski [Wes20].
The first formal definition was given by Arun, Bonneau and Clark in [ABC22].

Definition 16. A watermarkable VDF is a set of algorithms (Setup, Eval,

WatermarkProve, Verify), where

Setup(lA, T) — pp on input statistical security parameter 1* and time parameter T outputs
public parameters pp.

Eval(pp,z) — (y,«) on input (pp,z,7T) outputs (y, ), where « is an advice string.

WatermarkProve(pp,, i, y, &) — (y,7,) outputs a proof for y with embedded water-
mark .

Verify(pp,z,fi,y,m,) = accept/reject checks that y = Eval(pp,z) and that the
watermark i is embedded in 7,.

The algorithm Eval is deterministic and can compute the output y in T sequential steps.
A watermarkable VDF must additionally satisfy four properties: The security properties of
a basic VDF and watermark unforgeability. We state them informally below. The formal
definitions can be found in [BBBF18] and [ABC22].
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Completeness: For all tuples (pp, z, i1, y, 7,), where y = Eval(pp,z) and

7, = WatermarkProve(pp,z, f1,y, ), algorithm Verify(pp,x, i, y,m,) outputs
accept.

Sequentiality: Any parallel algorithm that uses at most poly(\) processors and outputs
= Eval(pp, z) with noticeable probability runs in time at least 7.

Soundness: If Verify(pp,,f,y,m,) outputs accept, then the probability that y #
Eval(pp, ) is negligible.

Watermark Unforgeability: For any pair of algorithms (A, .A;), where Ag runs in time
O(poly(T', \)) and A; runs in time less than T', the probability that (Ao, .4;) wins the
following game is negligible:

1. The challenger C runs Setup(1*,7) — pp and sends pp to (A, A;).
2. Precomputation algorithm Aq(pp) outputs advice string &.

3. Challenger C' samples a random input z, runs Eval(pp,z) — (y,«) and sends
(z,y,&) to Aj.

4. Online algorithm A; sends ¢ many watermark queries p; to C' and obtains
WatermarkProve(pp, T, i, Y, &) — T,

5. Algorithm A; outputs a forgery pair (ps, m,,) and wins if 1, # p; for all i € [q]
and Verify(pp,z, fi,y,T,) outputs accept.

5.4.2 Construction

In Figure 5.5 we present our watermarkable VDF. The main idea is to randomize the in-
stance (z,y) to (2/,y') := (z",y") with a secret exponent r and then provide a PoE for the

/ ? /2T . .
statement y' = (z/)* and a watermarked proof of knowledge for r using the protocol in
Figure 5.2. We present the protocol as non-interactive since only non-interactive proofs need
to be watermarked.

Theorem 10. Let PoE be a complete and sound proof of exponentiation. The algorithms
in Figure 5.5 define a sound and complete VDF, relative to the iterated squaring assumption,
the strong RSA assumption and the low order assumption.

Proof. Sequentiality of the VDF follows immediately from the iterated squaring assumption.
Completeness follows by inspection of the protocol from the completeness property of PoE.
Soundness follows from the low order assumption, the strong RSA assumption and soundness
of PoE. To see this, we show how to transform an adversary A that outputs an accepting
proof

7, = («',y',PoKsDL(pp, z,2',y,y', ID), PoE(pp, 2, ¢, T))

with 22" # y with probability 4 into an adversary B that breaks either the low order assump-
tion, the strong RSA assumption or soundness of PoE with probability . The adversary B
does the following:

1. Try to extract the secret exponent r from PoKsDL. If this is not possible, use A to
break the strong RSA assumption similar to the proof of Theorem 8.
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Setup(1*,T) — pp = (G, H) outputs a finite abelian group G of unknown order and
an efficiently computable hash function H.

Eval(pp,z) — (y,«) on input (pp,z,T) outputs (y,«), where y = 22" and «a is an
advice string for PoE.

WatermarkProve(pp,z, ID,y,a) — (y,7,) outputs y and
T, = (¢',y,PoKsDL(pPP, z, 7', y, 9, ID), PoE(pp, 7', ¢, 1)),
where 2’ := 2" and 3’ := 4" for some uniformly random 7 «+ 4[2*].

verify(pp,z,fl,y,7,) — accept/reject checks if both
PoKsDL(pp,,2’,y,y’, ID) and PoE(pp,z’,y',T)) verify.

Figure 5.5: A Watermarkable VDF from any proof of exponentiation using the proof of
knowledge PoKsDL presented in Figure 5.3. By PoE(pp,z,y,T) we denote the chosen
proof of exponentiation with group parameters pp and statement 22 = Y.

2. If r is extractable, compute 7 := 22 and a = gy~ . If a # 1, check if o = 1. If so,
then « is an element of low order and 7 is a multiple of its order. B3 outputs (a, 7) and
breaks the low order assumption.

3.Ifa=1o0ra" # 1, then (x’)QT # 1y, so PoE(pp,2’,y',T) is a proof for a false
statement, which is a contradiction to the assumption that PoE is sound.

Whenever the proof output by A is accepting but 22" # y, algorithm B terminates in one of
the steps, which concludes the proof. O

Remark 5 (On the running time of algorithm B). Note that in the above proof the running
time of algorithm B might be linear in the time parameter 7' because it needs to solve
an iterated squaring instance in the second step. This means that, to break the low order
assumption or the soundness of the PoE, it needs at least T' steps. Giving an adversary
time linear in T to break the soundness of the PoE is necessary for a meaningful soundness
definition since an honest prover also needs 1" steps to compute the result of an instance and
the corresponding proof. Giving an adversary against the low order assumption time linear in
T to break it, is in line with its usage in the literature (see [Wes20, Piel9], where it is needed
for soundness of PoEs). If B breaks the strong RSA assumption it is much faster since it
never gets to step 2. In particular, we have that its running time is independent of 7" in this
case.

Theorem 11. Let PoE be a complete and sound proof of exponentiation. The VDF defined
by the algorithms in Figure 5.5 is watermark unforgeable in the random oracle model, relative
to the strong RSA assumption, the decisional discrete log assumption with small exponents,
the low order assumption and the decisional iterated squaring assumption.

Proof. We show how to transform an adversary A that wins the watermark unforgeability
game with probability J into an adversary B that breaks either the soundness of PoKsDL
(and hence the strong RSA assumption), the discrete log assumption or the decisional iterated
squaring assumption with probability /2.
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1. Let ¢ be the number of queries that A is allowed to make. Upon receiving as input a
group G and a time parameter T', B precomputes ¢’ > ¢ tuples

{(mia Yis POE(pp> Ly Yi, T))}ie[q’]7

where for all i € [¢/], z; < G is a uniformly random group element, y; = xfT and
PoE(pp, =i, y;, T') is an honestly computed proof of exponentiation. Call L the list of
those tuples. B computes those tuples until L contains ¢ entries in which z; is a square.

2. B gets as input a discrete log challenge (g, g%), where g is a random group element
in G and a is a random number in +[2*7!]. Note that by the decisional discrete log
assumption with small exponents, B should not be able to find a.

3. B sends G to Ay and obtains advice string &.

4. B gets as input a decisional iterated squaring challenge consisting of two group elements
T4,Yq that are either uniformly random elements in G or x4 is uniformly random in G
and yy = 22

5. To simulate the watermark unforgeability game for the statement y ~ 22", it chooses

one of the following two strategies at random, each with probability 1/2. Note that

B can always forge a proof of knowledge of same discrete log since PoKsDL is honest

verifier zero-knowledge and the random oracle is programmable.

Strategy 1: Compute y := ¢2° and 3/ := (¢*)* and send (G, H,g,y,a) to Aj.
When A; makes a watermark query ID;, sample a random r «+ i[2)‘*1], forge
POKSDL(ppmgagarv Y, (y/)T7 IDi) and compute POE(ppagarv (y/)ro)_ Send

m = (¢°7", (y')", PoKsDL(pp, 9, 9", y, (v/)", ID;), PoE(pp, g™, (v')". T))

to A;. If A; wins the game, it outputs

(ID*77T* = (:U*,y*,PoKsDL(pp,g,x*,y,y*, ID*)), PoE(pp,x*,y*,T)).

If (2.,9.) # (wi,y;) for all i € [q], abort. Else, let £ € [2*] be such that
(24, v«) = (g%, (v')"). B tries to extract an exponent w from PoKsDL. If it is
successful, it computes o' := w/¢ over Z and checks if g* = ¢*. If so, it can
output o’ and break the discrete log assumption. If it does not hold then o' # a
but ¢** = g* and hence g /g® is an element of low order /. If it is not able to
extract, it can use A to break the strong RSA assumption similiar to the proof of
Theorem 8.

Strategy 2: Send (pp,Z4,vq, @) to Ay. If x4 is a square, then remove all tuples
(x4, y:, POE(PP, Ti, ¥;, T')), where x; is not a square, from the list L. When A,
makes a watermark query ID;, pick an unused tuple (z;,y;, PoE(pp, x;, yi, T))
from L, forge PoKsDL(pp, Z4, Z;, Ya, Yi, ID;) and send

7; == (i, yi, POKSDL(PP, d; T4, Ya, Yi, ID;), POE(PP, 24, ¥i, T))

to A;. By the decisional discrete log assumption with small exponents and the
zero-knowledge property of PoKsDL, m; is indistinguishable from an honestly com-
puted watermarked proof. If A; outputs

(ID*,TF* = (x*vy*a POKSDL(pp7xd7$*7yday*v ID*)vPOE(ppax*7y*7T))v
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check if (z.,y.) = (z;,y;) for some i € [g] and abort if it holds. Otherwise, try
to extract the secret r from PoKsDL. If this is not possible, use A to break the
strong RSA assumption as above. If it is possible, we have that the statement
Yq = 22" holds since the PoE is sound. In this case B sends 1 to the decisional
iterated squaring challenger. If A; does not output a tuple of the form above, B
sends 0 or 1 to the decisional iterated squaring challenger each with probability
1/2.

If adversary B does not abort in Strategy 1, it breaks either the strong RSA assumption or
the decisional discrete log assumption with small exponents with probability . If B does
not abort in Strategy 2, it either breaks the strong RSA assumption with probability ¢ or it
recognizes a true instance in the decisional iterated squaring game with probability 1/2+ /2.
Since aborting in Strategy 1 and aborting in Strategy 2 are mutually exclusive, the claim
follows. O

Remark 6 (On the running time of algorithm 5). Note that in the first strategy B runs in
time linear in T' to break the strong RSA assumption or the discrete log assumption. We
therefore need to assume that these assumptions are secure against adversaries that run in
time linear in 7', which is at most 232 in practice.

The next corollary follows from the discussion in Remark 4.

Corollary 2. Let PoE be a complete and sound proof of exponentiation and let G = QR
where N is a safe prime modulus. The construction in Figure 5.5 is a watermarkable VDF in
G relative to the decisional iterated squaring assumption and the strong RSA assumption.

Efficiency Watermarking a PoE with the construction in Figure 5.5 increases the complexity
of the underlying PoE scheme as follows:

= The proof size grows by 4 group elements and one integer of size at most 23**!,

= The verifier needs to perform 4 additional small group exponentiations (with exponents
of size at most 23**1) and 2 group multiplications.

= The prover needs to perform 4 additional small exponentiations (with exponents of size
at most 231%).

5.5 Zero-Knowledge VDFs

5.5.1 Definition

Zero-knowledge verifiable delay functions were introduced by Arun, Bonneau and Clark in
[ABC22].

Definition 17. A zero-knowledge VDF is a set of algorithms (Setup, Eval, Prove
Verify, Sim), where

Setup(1*,T) — pp on input statistical security parameter 1* and time parameter 7" outputs
public parameters pp.
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Eval(pp,z) — (y,«) on input (pp,z,7T) outputs (y, ), where « is an advice string.
Prove(pp,,y,«) — 7 outputs a proof m of knowledge of element y.
Verify(pp,z,7) — accept/reject checks that 7 is a valid proof of knowledge.

Sim(pp,z,c*) — m outputs a simulated proof of knowledge 7* using randomness c*.

The algorithm Eval is deterministic and can compute the output y in 7" sequential steps.
A zero-knowledge VDF must additionally satisfy four properties: Completeness, sequentiality,
knowledge soundness and zero-knowledge.

Completeness: For all (pp,z,y, ), where y = Eval(pp,z) and 7 = Prove(pp, z,y, @),
algorithm vVerify(pp, x,y, 7) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly()\) processors and outputs
y = Eval(pp,x) with noticeable probability runs in time at least 7.

Knowledge Soundness: For any adversary A that outputs a proof 7 for instance x of
bit-length n, such that Verify(pp,x, ) outputs accept with probability J, there
exists an extractor £ that with probability at least (0 — ¢)/poly(n) outputs element
y = Eval(pp,z) in time less than T', where poly is some positive polynomial and
e € [0, 1] is called the soundness error.

Zero Knowledge: There exists a simulator S that, given instance = and randomness c*,
outputs a proof 7* in time less than 7" such that Verify(pp,z, ") outputs accept
and 7* is indistinguishable from an honestly computed proof.

5.5.2 Construction

Our construction of a zero-knowledge VDF can be found in Figure 5.6. We note that this
construction can be transformed into a watermarkable zero-knowledge VDF by including a
unique identifier in the computation of the randomness in the proof of knowledge of same
discrete log. Since this extension is a straightforward combination of our two constructions,
we refrain from analyzing it formally.

Theorem 12. Let PoE be a complete and sound proof of exponentiation. The algorithms
in Figure 5.6 define a zero-knowledge VDF, relative to the iterated squaring assumption, the
strong RSA assumption, the low order assumption and the decisional discrete log assumption
with small exponents.

Proof. Sequentiality of the VDF follows immediately from the iterated squaring assumption.
Completeness follows by inspection of the protocol and from the completeness property of
PoE. Knowledge soundness follows from the low order assumption, the strong RSA assumption
and soundness of PoE. To see this, we describe an extractor £ that outputs y = 22" in time
less than T' by interacting with an adversary A that outputs an accepting proof

7= (2/,y',PoKsDLh(pp, z, 2", y'), PoE(pp, 2, ¢/, T)).

The extractor £ first tries to extract an exponent r and a base element ¢ from PoKsDLh
such that " = 2/ and " = ¢/. If this is not possible, it can break the strong RSA assumption
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setup(1*,T') = pp = (G, 27, yi, PoE(pp, 7, ¥7, T), 25, y5, POE(PP, 23, y3, 1), H)
outputs a finite abelian group G of unknown order, a random square z7}, a random
non-square x5 and the corresponding PoEs and an efficiently computable hash
function H.

2T

Eval(pp,z,T) — (y,«) outputs (y,a), where y = x
PoE.

and « is an advice string for

Prove(pp,z, ID,y,«) — T outputs
m = (2',y/, PoKsDLh(pp, z,2",y'), PoE(pp, 7', /', T)),
where 1’ := 2" and 3 := y" for a uniformly random r < £[2*%].

Verify(pp,z,m) — accept/reject checks if PoKsDLh(pp,z,2’,y’) and
PoE(pp, 2/, y’,T) verify.

Sim(pp,x,c*) — 7* on input pp,x,c*, simulates PoKsDLh(pp,z,z*,y*) with ran-
domness ¢* and outputs

7" = (2, y",PoKsDLh(pp, z, 2", y"), PoE(pp, 2", y", T)),

for x* := 7, if x is a square and z* < {x},z3} uniformly random if = is a
non-square.

Figure 5.6: A zero-knowledge VDF from any proof of exponentiation. PoKsDLh is the non-
interactive version of the proof of knowledge presented in Figure 5.4. By PoE(pp, z,y, 1) we
denote the chosen proof of exponentiation with group parameters pp and statement 22 = Y.

similar to the proof of Theorem 9. Assume that § # y. Then we would have that (7/y)" =1
and hence §/y would be an element of low order. Hence, by the low order assumption § = y.
Since the running time of the extractor is independent of 7', knowledge soundness follows.

It remains to prove zero knowledge. Consider the simulator Sim. From the zero-knowledge
property of PoKsDLh and the decisional discrete log assumption with small exponents, we
follow that the simulated proof 7* is computationally indistinguishable from an honest proof.

O

The next corollary follows from the discussion in Remark 4.

Corollary 3. Let PoE be a complete and sound proof of exponentiation and let G = QR
where N is a safe prime modulus. The construction in Figure 5.6 is a zero-knowledge VDF
in G relative to the iterated squaring assumption and the strong RSA assumption.

Efficiency Transforming a PoE into a zero-knowledge VDF with the construction in Fig-
ure 5.6 increases the complexity of the underlying PoE scheme as follows:

» The proof size grows by 4\ + 2 group elements and A many integers of size at most
23/\+1_
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» The verifier needs to perform 4\ additional small group exponentiations (with exponents
of size at most 23**1) and 3\ group multiplications.

= The prover needs to perform 3\ + 2 additional small exponentiations (with exponents
of size at most 23}).

5.6 Zero-Knowledge Proofs of Sequential Work

Our construction of a general zero-knowledge VDF is not practical, with the proof of knowl-
edge of y being the bottleneck. Without it our construction does not satisfy the definition of
a zero-knowledge VDF: If the prover just needed to output x,2’, 1y’ and a proof of knowledge
of 7 such that 2 = 2/, then it could first raise x to a random 7 and then compute i = (z')2" .
In particular, it would produce the output without ever knowing y. The main observation in
this section is that, while this protocol does not satisfy the definition of a zero-knowledge
VDF, it is still sufficient for the application to short-lived proofs presented in [ABC22, Section
7] because the prover still needs at least T steps to compute the output. The protocol can
be found in Figure 5.7 and the application to short-lived proofs in the next section.

5.6.1 Definition

Definition 18. A zero-knowledge proof of sequential work is a set of algorithms (Setup,
Prove Verify, Sim), where

Setup(l’\, T) — pp on input statistical security parameter 1* and time parameter T outputs
public parameters pp.

Prove(pp,,y,a) — m outputs a proof m of sequential work of 1" steps.
Verify(pp,z,7) — accept/reject checks that 7 is a valid proof of sequential work.

Sim(pp,z,c*) — © outputs a simulated proof of sequential work 7* using randomness c*.

The algorithm Eval is deterministic and can compute the output ¥ in T" sequential steps. A
zero-knowledge proof of sequential work must additionally satisfy four properties: Complete-
ness, sequentiality, soundness and zero-knowledge.

Completeness: For all (pp,z,y, ), where y = Eval(pp,z) and 7 = Prove(pp, z,y, @),
algorithm Verify(pp, x, m) outputs accept.

Sequentiality: Any parallel algorithm that uses at most poly(\) processors and outputs a
proof 7', such that Verify(pp,z,n’) outputs accept with noticeable probability
runs in time at least 7.

Zero Knowledge: There exists a simulator S that, given instance x and randomness c*,
outputs a proof 7* in time less than 7" such that Verify(pp,z,7*) outputs accept
and 7* is indistinguishable from an honestly computed proof.
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setup(1*,T') = pp = (G, 27, yi, PoE(pp, 7, ¥7, T), 25, y5, POE(PP, 23, y3, 1), H)
outputs a finite abelian group G of unknown order, a random square z7}, a random
non-square x5 and the corresponding PoEs and an efficiently computable hash
function H.

Prove(pp,x) — m outputs
7:= (2',y,PoKDL(pp, z, '), PoE(pp, 2, v, T)),
where 2’ := 2" and for some uniformly random 7 <+ 4[2*].

Verify(pp,z,7) — accept/reject checks if both PoKDL(pp,z,z’) and
PoE(pp, 2,y ,T)) verify.

Sim(pp,x,c*) — 7* on input pp,x,c*, simulates PoKDL(pp, z, z*) with randomness
c* and outputs

*

" = (2", y", POKDL(pp, z,z"), PoE(pp, z*, y", T)),

for x* := 7, if x is a square and x* <« {x},z3} uniformly random if = is a
non-square.

Figure 5.7: A Zero-Knowledge Proof of Sequential Work from any proof of exponentiation
PoE. PoKDL is the non-interactive version of the proof of knowledge presented in Figure 5.1.
By PoE(pp, z,y,T) we denote the chosen proof of exponentiation with group parameters
pp and statement 22 = y.

5.6.2 The Generalized Iterated Squaring Assumption

For the security of our construction we need to make the following assumption.

Definition 19 (generalized iterated squaring assumption). Let GGen(1") be a randomized
algorithm that outputs the description of a hidden-order group G. We say that the generalized
iterated squaring assumption holds for GGen if, for any probabilistic parallel algorithm A that
uses at most poly(\) processors and runs in time less than 7, the probability of winning the
following game is negligible in A:

1. A takes as input the description of a group G output by GGen(1?*), a random group
element x and an integer 7.

2. A outputs a pair (r,y) € Z x G.

3. A wins if and only if 7 # 0 and y = (2")2".

5.6.3 Construction

Theorem 13. Let PoE be a complete and sound proof of exponentiation. The algorithms
in Figure 5.7 define a zero-knowledge PoSW, relative to the generalized iterated squaring
assumption, the strong RSA assumption and the decisional discrete log assumption with
small exponents.
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Proof. Completeness follows by inspection of the protocol and from the completeness property
of PoE. Sequentiality of the PoSW follows from the generalized iterated squaring assumption,
the RSA assumption and soundness of PoE: Assume that an adversary A can output 7 in
time less than T'. We construct an adversary B that breaks either the RSA assumption or the
generalized iterated squaring assumption as follows:

1. B obtains as input a the description of a group G and a generalized iterated squaring
challenge = € G.

2. B forwards G and z to adversary A.

3. If A is successful, it outputs a valid proof

7w = (2,9, PoKDL(pp, x, '), PoE(pp, 2, y', T)).

4. B first tries to extract the secret exponent r from PoKDL. If this is not possible, it can
use A to break the RSA assumption similar to the proof of Theorem 7.

5. If it is possible, B outputs (r,7’) to break the generalized iterated squaring assumption.

The running time of B is independent of 7. By soundness of PoE we have that B breaks one
of the two assumptions with the same probability as the winning probability of A. It remains
to prove zero knowledge. Consider the simulator Sim. From the zero-knowledge property of
PoKDL and the decisional discrete log assumption with small exponents, we follow that the
simulated proof 7* is computationally indistinguishable from an honest proof. m

The next corollary follows from the discussion in Remark 4.

Corollary 4. Let PoE be a complete and sound proof of exponentiation and let G = QR
where N is a safe prime modulus. The construction in Figure 5.7 is a zero-knowledge PoSW
in G relative to the generalized iterated squaring assumption and the strong RSA assumption.

Efficiency Transforming a PoE into a zero-knowledge proof of sequential work with the
construction in Figure 5.7 increases the complexity of the underlying PoE scheme as follows:

= The proof size grows by 3 group elements and one integer of size at most 23A+1,

= The verifier needs to perform 2 additional small group exponentiations (with exponents
of size at most 23**1) and 1 group multiplications.

= The prover needs to perform 3 additional small exponentiations (with exponents of size
at most 234).

5.7 Short-Lived Proofs from our Zero-Knowledge
PoSW

In this section we discuss how one can use our zero knowledge PoSW in the short-lived proof
construction of [ABC22]. The main idea in the construction of [ABC22] is to transform any
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setup(1’,T) — PP = (PP.wsosw: PPr) = (G, b, y*, mh 0, H, ppr) outputs a finite
abelian group G of unknown order, a uniformly random b* < G, y* = (b*)%",
Thox = POE(PPwposus 05 Y™, 1), an efficiently computable hash function H and
the public parameters of the proof system for R.

Prove(pp, T, z,b,w) — (T xposu, TR) OUtpULS

— Forged
Toxposw = (0, Y, POKDL(PP,xposm b 0); Teor),
where POKDL(PP,yposn, 05 0) is forged with challenge ¢;.

— An honestly computed proof 7 with random challenge ¢5 such that ¢; +¢; =
¢ = H(z,b,a), where a is the first element of 7.

Forge(pp,T,z,b) = (T,xposu, TR) OUtputs

— Honestly computed

ﬁ—szoSW = (b/> ?//7 POKDL(ppszoSW7 b? bl)? POE(ppszoSW7 bla yla T))

with random challenge ¢;.
— A forged proof 7 with challenge ¢5 such that ¢; +co = ¢ = H(x, b, a), where
a is the first element of 7.

Verify(pp,Z, T,xposw, TR) — accept/reject checks m,yposw and mx and outputs
accept if and only if both proofs verify.

Figure 5.8: A short-lived proof from our zero knowledge PoSW. PoKDL is the non-interactive
version of the proof of knowledge presented in Figure 5.1. By PoE(pp,z,y,T) we denote
the chosen proof of exponentiation with group parameters pp and statement 22 = Y.

sigma protocol ¥ for a relation R into a short lived proof for R by combining > with a zero-
knowledge VDF (which is also a sigma protocol) via the standard OR combination of sigma
protocols. Since anyone can construct a valid VDF proof in T' steps, the combined proof
loses its validity after time 7" - poly(\). The zero-knowledge property of the VDF is needed
since an honest prover needs to be able to forge a VDF proof in time less than T', which is
indistinguishable from an honest proof also after time 7" - poly(\) has passed. We first recall
some facts about sigma protocols before presenting our construction of a short-lived proof.

5.7.1 Sigma Protocols

Definition 20 (sigma protocol). A sigma protocol (X-protocol) is an interactive honest
verifier zero-knowledge proof of knowledge consisting of three messages:

» a first message by P denoted by u,
= a second message by V denoted by c and

» a third message by P denoted by z.
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Cramer, Damgérd and Schoenmakers [CDS94] showed that the set of relations with %-
protocols is closed under disjunction: Let ¥ = (uy,c1,21) be a sigma protocol for relation
R1 and 3y = (ug, ca, 22) be a sigma protocol for relation R, and let x; be an instance of R4
and x5 an instance of Ry. The following protocol is an honest verifier zero-knowledge proof
of knowledge of either a witness w; for x; or a witness wy for x5. Assume without loss of
generality that P knows witness w; .

1. P picks a random ¢y and simulates 5 = (ug, Co, 22).
2. P computes the message u; and sends (uq,us) to V.
3. V sends a random message c to P.

4. P computes ¢; = ¢ @ ¢y, computes the honest third message z; and sends (21, 22) to

V.

5. V accepts if and only if ¢; @ ¢y = ¢ and the transcripts for both >; and X, are valid.

5.7.2 Our Construction

In this section we show how to transform any sigma protocol 3 for a relation R into a short-
lived proof for relation R. The protocol can be found in Figure 5.8. It differs from the
construction of [ABC22] in three ways:

» We don't work with a zero-knowledge VDF but a zero-knowledge PoSW. This is possible
because the protocol does not need the uniqueness property of the VDF.

» We need to include a precomputed PoE in the public parameters because the honest
prover simulates the outputs of the zkPoSW and in our construction the simulator needs
a precomputed PoE.

» Our zkPoSW is not a sigma protocol but the proof of knowledge PoKDL is. In our
construction it is sufficient to combine ¥ and PoKDL via the standard disjunction of
sigma protocols.

Using Pietrzak's PoE [Piel9] one can not only re-randomize the precomputed PoEs but also
the PoEs needed for the forged proofs. Hence, it achieves much faster forging times than the
construction based on a zero-knowledge version of Wesolowksi's proof given in [ABC22].

5.8 Conclusion

In this chapter we have seen how to efficiently watermark any proof of exponentiation to
obtain practical watermarkable VDFs. We also constructed practical zero-knowledge proofs
of sequential work that can be used to build short-lived proofs for any NP statement with
fast forging times. Our zero-knowledge VDF construction is asymptotically efficent but not
practical: The proof size grows by a factor A because the proof of knowledge that is being
used as a building block needs A repetitions to be sound. One interesting open problem
that remains is to construct a practical zero-knowledge version of Pietrzak's VDF, by either
removing the need for )\ repetitions in our general construction or by working directly with
Pietrzak’'s protocol.
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CHAPTER

Primality Testing from Proofs of
Exponentiations

6.1 Introduction

The search for giant primes has long focussed on primes of special forms due to the availability
of faster, custom primality tests. Two of the most well-known examples are

Mersenne numbers of the form M, = 2" — 1, for some n € N, which can be tested using
the Lucas-Lehmer or the Lucas-Lehmer-Reisel test [Luc78, Leh27, Rie69]; and

Proth numbers of the form P, = k2" + 1, for some n € N and odd k € N, which can be
tested using Proth’s theorem [Pro78].

To harness the computational resources required for finding giant primes, there are massive
distributed projects like (Great Internet Mersenne Prime Search) and ded-
icated to the search for giant primes of special forms, including the ones above. A volunteer
in such a distributed project can download an open-source software that locally carries out
primality tests on candidate numbers, at the end of which, a candidate is either rejected as

a composite number or confirmed as a new prime. The largest-known prime as of now is a
Mersenne prime (252789933 — 1) with 24,862,048 decimal digits found by GIMPS [GIM18].

Testing primality of giant numbers. The search for large primes is a time-consuming
process: the GIMPS warns that a single primality test could take up to a month. The
reason for this is that these tests — whenever the prime candidate has no small prime factors!
— require the computation of a very long sequence modulo an extremely large number. For
example, Proth's theorem [Pro78] states that Py, = k2" + 1 is prime if and only if, for a
quadratic non-residue x modulo P, it holds that

2" = —1 mod Py,. (6.1)

LGIMPS first tests by trial division whether a candidate number has any prime divisors of size up to a
bound between 266 and 28'. Only when this is not the case is that they run a more expensive specialized
primality test: details can be found on page.
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To date, the largest-known Proth prime is 10223 - 231172165 41 [Pri16]. Since n is of the
order of magnitude 10" and the square-and-multiply algorithm is the fastest way currently
known to carry out exponentiation, the test roughly requires 107 squarings modulo a 107-
digit modulus. Unfortunately, performing this test does not yield an immediate witness that
certifies the correctness of the result —in particular, if P, is composite, the test does not find
a divisor of P,,.2 Until very recently, the standard way for another party to independently
validate the test result was by recomputing the result of Equation (6.1). In 2020, Pavel
Atnashev demonstrated that proofs of exponentiation might be applicable in the context of
these specialized primality tests to avoid the costly second recomputation.?

PoEs and efficient verification of primality tests. Since the primality test using Proth's
theorem amounts to iterated exponentiation, it seems immediate that one would attempt
to exploit PoEs also towards efficient verifiability in the context of primality tests for giant
numbers. The idea is for the volunteer to use the (non-interactive) PoE to compute — alongside
the result of the test — a proof that helps any other party verify the result. For this approach
to be feasible,

1. computing the proof should not require much more additional resource (relative to the
iterated exponentiation induced by the specialized primality test), and

2. the cost of verifying a proof should be significantly lower than that of recomputing the
exponentiation.

Recently, this approach has been deployed in both GIMPS [GIM20] and PrimeGrid [Pri20],
where (non-interactive) Pietrzak's PoE [Piel9] is used to certify (both primality and non-
primality) of Mersenne and Proth numbers when used along with Lucas-Lehmer-Riesel test
and Proth’s theorem, respectively. In fact, one of the recently-found Proth primes,

, has been certified so.

However, PoEs were constructed for groups whose order is hard to compute like, e.g., RSA
group [RSAT78] or class group [BW88]. If one party knows the group order, they can not
only speed up the exponentiation but also (in many groups) construct false Pietrzak PoEs
that lead a verifier to accept proofs for false statements. In the context of primality testing
the underlying group is Zp, ,, so the group order is known whenever Py ,, is prime. While
this does not speed up the computation of the primality test (since the modulus is larger
than the exponent), it removes the soundness guarantee of the protocol. As we discuss next,
a malicious prover can falsely convince a verifier that any Proth prime is composite using
Pietrzak's protocol in those groups.

6.1.1 Our Contribution

The statistical security guarantee of Pietrzak's PoE applies only to groups where the low
order assumption holds. This presents an issue with its usage in the GIMPS and PrimeGrid
projects since there are no guarantees on the structure of the group in these applications. In

2Note that some primality tests, like, e.g., Miller-Rabin [Mil76, Rab80], can be modified to (sometimes)
yield factors in case the number being tested is not a prime.

3More details can be found in thread of . An implementation due to Atnashev
is available on . The idea of using PoEs for certifying giant primes has been discussed also by Mihai
Preda in another in the same forum already in August 2019
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fact, if Py, is prime, the order of the group is Py, — 1 = k2" so low-order elements (e.g.,
of order 2) do exist and can be found without much effort. We show in Section 6.3 how a
malicious volunteer can exploit the attack from [BBF24] to generate a proof that “certifies”
an arbitrary Proth prime as composite with constant probability. Indeed, people at GIMPS
and PrimeGrid were aware of this [Atn22] and Pietrzak's PoE is currently employed in these
projects more-or-less as a checksum to catch benign errors (e.g., hardware errors). When a
volunteer is malicious and deliberately tries to mislead the project, there are no guarantees.
This could force the volunteer network to waste additional computation and possibly postpone
the discovery of another giant prime by years.

Are Cryptographically-Sound Certificates Possible?

In our work, we explore whether any cryptographic guarantee for practical proofs is possible
in the above scenarios. Whilst it is theoretically possible to use existing results to certify non-
primality, these measures, as we discuss in Section 6.1.1, turn out to be too expensive. As a
first step towards practical proofs, we show how to achieve soundness for proving non-primality
of Proth numbers. That is, we construct an interactive protocol for the language

L:= {(k,n) € N?: kisodd and P, = k2" + 1 is not a prime}. (6.2)

While ideally, one would want to certify both primality and non-primality, the latter is much
more important for projects like GIMPS and PrimeGrid: they worry about missing out on
primes rather than false claims stating that a composite is a prime. Primes are very sparse*,
so double checking claims of primality is not a problem, but performing each primality check
twice to catch benign errors or a malicious volunteer is almost twice as expensive as using a
sound non-primality test as suggested in this work.

Our interactive protocol has statistical soundness: if the candidate number to be tested is
indeed a Proth prime, then even a computationally unbounded malicious prover (a malicious
volunteer) will not be able to convince the verifier (say a server run by the project) that it is
composite.

Theorem 14 (Informal). There is a practical public-coin statistically-sound interactive proof
for the non-primality of Proth numbers.

We provide an overview of our interactive protocol in the next section. Since it is public-coin,
our interactive protocol can be made non-interactive via the Fiat-Shamir transform [FS87].
In general, the Fiat-Shamir transform only works for constant round protocols, which is not
the case for our protocol, so showing that Fiat-Shamir works in our case needs a proof.

Corollary 5 (Informal). In the random-oracle model, there is a practical statistically-sound
non-interactive proof for the non-primality of Proth numbers.

Concrete Efficiency

We defer exact details about the complexity of our protocol to Section 6.4.3. Here, we provide
concrete (worst-case) numbers for our non-interactive proof using the largest Proth prime
known to date as the candidate: 10223 - 231172165 41 [Pri16]. For k = 10223, n = 31172165
and security parameter \ = 80:

“For N € N, let 7(N) denote the number of primes less than N. By the prime number theorem,
asymptotically () approaches N/log(IN). For the case of Proth numbers, however, even the question of
whether there are infinitely many of them is open [BKT22].
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= the prover (additionally) stores 5584 group elements (which is around 20GB) and per-
forms 13188 multiplications;

= the verifier performs 10046 multiplications; and

» the proof size is 26 elements of size 31172179, i.e., around 102 MB.

Note that recomputing the result of the primality test would take n = 31172165 multiplica-
tions, so our protocol reduces the number of multiplications by a factor of [31172165/(13188+
10046) | = 1341. Note that this takes the order of hours rather than days. In Section 6.4.4,
we show that the additional cost of our protocol compared to the one that is being used
now (which is not cryptographically sound) is moderate: In the above example, the prover
performs 2021 and the verifier 4046 multiplications more than in the current implementation.

Applicability of Existing Statistically-Sound PoEs.

The issue with low-order elements when using Pietrzak's PoE out-of-the-box can be resolved
using alternative PoEs that are statistically sound in arbitrary groups.® Indeed, such PoEs
were recently proposed [BHR*21, HHK™22]. [BHR"21] can be regarded as a parallel-repeated
variant of Pietrzak's protocol but, to achieve statistical soundness, the number of repetitions
is as large as the security parameter. This leads to significant overhead in terms of both
proof-size and computation. For example, to compute the PoE of [BHR"21] for the Proth
prime from Section 6.1.1, the prover needs to perform 893312 multiplications and it takes
the verifier 318800 multiplications to verify the proof consisting of 2080 group elements (i.e.,
8160 MB). This means that our protocol reduces the number of multiplications of [BHR™21]
by a factor of 52 and the proof size by a factor of 80. The overall approach in [HHK*22] is
similar to that in [BHR'21], but it improves on the complexity of [BHR"21] whenever it is
possible to choose the exponent to be a large ¢ of a special form. In the primality testing
application, we do not have the freedom to choose the exponent and, for the case of ¢ = 2,
the complexity of [HHK™22] is comparable to that of [BHR"21].

6.1.2 Technical Overview

Our starting point is Pietrzak's PoE (PPoE, Figure 2.2). Applying PPoE out-of-the-box as a
certificate of non-primality for a Proth number P, is not sound since the group Z*Pk,n might
have easy-to-find elements of low order. We show in Section 6.3 that this is indeed the case
and it is not hard to generate PPoE proofs that “certify” a prime P}, as composite.

Working around low-order elements. The way low-order elements are dealt with in
[BHRT21, HHK™22] is via parallel repetition and/or by working with exponents ¢ of a par-
ticular form. As explained in Section 6.1.1, we cannot exploit either of these techniques
because of efficiency reasons and the restriction on the exponent placed by the primality test.
Nevertheless, our interactive protocol, described in Figures 6.1 and 6.3, builds on some of
the ideas in [Pie1l9, HHK™22] to get around the issue of low-order elements for the specific
exponentiation considered in Proth’s test (Equation (6.1)). Below, we give an overview of
how this is accomplished — we refer the readers to Section 6.4 for a more detailed overview.

®One could also use SNARGs [Kil92, Mic94] for this purpose but, being a general-purpose primitive, the
resulting schemes would not be practically efficient.
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Figure 6.1: Overview of the protocol in Figure 6.3. All computations are done in the group
Ny Where N = k2" + 1.

For a prime N := P, suppose that = € Z} is a quadratic non-residue.® Suppose that a
malicious prover P* tries to convince the verifier V that

2 = —pmod N, 14 pelZi. (6.3)

Since N is a prime and the result must be —1 by Proth’s theorem, the statement (z, —p, k2" 1)
corresponding to Equation (6.3) is p-false. Our protocol exploits the fact that V' does not
care about the exact value of zF2" ™" and it rejects as long as the correct result is not equal to
—1. This observation greatly simplifies the task for V. As we show, it is sufficient to perform
a few efficient checks on the order of p, depending on which V can choose a sound method
for verification.

= Our starting point is the case where ord(u) is “large”, by which we mean ord(u) 1
k2Moe(m) (Step 3). We show in this case that it is possible to use PPoE out of the
box to prove the statement (z*, —u,n — 1), which is equivalent to the statement in
Equation (6.3). Key to proving this is the following observation on the fine-grained
nature of soundness of PPoE: the “falseness” of a statement in each round of the
sub-protocol cannot decrease by too much. More precisely, if the cheating prover starts
with an a-false statement then the new statement is (3-false for some 3 whose order
cannot be much smaller than a's. Therefore, if the cheating prover starts off with
a statement that is sufficiently false, which turns out to be when ord(«a) = koM og(n)
then the statement in the final round remains false with overwhelming probability and is
rejected by the PPoE verifier. We formalise this observation in Lemma 7 and point out

®In the actual protocol, we explain how the verifier can check if the Jacobi symbol of z is —1 (Step 1 in
Figure 6.3).
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that, while a similar lemma was proved in [HHK™22], there are some crucial differences:
see Remark 7.

= Next is the case where ord(u) is “small and odd" (Step 2), i.e., the order is some divisor
d of k. In this case, V can verify the statement in Equation (6.3) without any help
from P* as follows: find the inverse of 2" modulo d and raise i? to that element.’
By Equation (6.3), this yields the same element as x* if the prover is honest. If N
is prime, this will yield a different element than z¢ as we show in Section 6.4.2. This
quick verification is only possible since d and 2™ are coprime, so it can only be used in
this case.

» Finally, consider the case where the order is “small and even”, by which we mean
ord(p) | 22198 (Step 4). Here, we are in a situation where PPoE does not guarantee
soundness (since the statement is not “false enough”). However, as in [HHK22], it is
possible to reduce the task of checking Equation (6.3) to that of verifying, using PPoE,
the “smaller” statement obtained by taking the 2*1°6(")_th root of Equation (6.3). To
be precise, P and V verify the statement (z*,3,n — 1 — Alog(n)) using PPoE and, if
convinced, V then checks whether 42" '“*™ = — i, by itself, using a final exponentiation.
This final exponentiation forces a malicious prover P* to cheat with an element of high
enough order during the PPoE. To see this, assume for example that P* sends the honest
result y = 22" """ Then, Vs final exponentiation leads to outright rejection since

oA log(n) o kon—1—Xlog(n)\ 9Alog(n) . kon—1
y = (z ) =z F

On the other hand, P* cheating with an element of such high order during the PPoE
makes the verifier reject this PPoE with overwhelming probability (as in the first case).

We refer the reader to Sections 6.2 and 6.4 for the formal analysis.

6.1.3 More Related Work

General-purpose primality testing. Pratt showed that primality testing (of arbitrary inte-
gers) lies in the class NP, via the eponymous Pratt certificates [Pra75] (an alternative certifi-
cate of primality is the Atkin-Goldwasser-Kilian-Morain certificate [AM93, GK86]). Coupled
with the fact that non-primality has succinct certificates in the form of factorization (which
can be efficiently checked by integer multiplication) placed primality testing in NP N co-NP.
Probabilistic tests like Solovay-Strassen [SS77], Miller-Rabin [Mil76, Rab80] and Baillie-PSW
[BW80, PSW80] soon followed, which placed primality testing in classes like BPP, RP or
ZPP.2 Finally, Agrawal, Kayal, and Saxena [AKS04] settled the question by showing that
primality testing is in P. We refer the readers to [AKS04] for a more detailed exposition on
(general-purpose) primality testing.

Giant prime numbers and custom primality tests. In addition to Mersenne numbers
M,, and Proth numbers P ,,, numbers of special form that have been targetted in the search
for giant primes include Fermat numbers F;, := 2% 4 1 (which are a special case of Proth
numbers), generalised Fermat numbers F,;, := a®" + b*" and Woodall numbers W,, :=

"Note that if u has order d, then —pu has order 2d (which is not coprime to 2"~1), which is the reason
we have to square the statement in Equation (6.3) before computing the inverse of the exponent.
81n fact, Miller's test [Mil76] runs in strict polynomial time assuming the Generalised Riemann Hypothesis.
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n-2" — 1. We refer the readers to for a more comprehensive list. These numbers
of special forms are amenable to custom primality tests that run faster than general-purpose
primality tests. For example, the Lucas-Lehmer (LL) test [Luc78, Leh27] is a determinstic
primality test for M, that runs in time O(n - u(n)), where pu(n) denotes the complexity of
multiplying two n-bit integers.? In comparison, for M,,, the complexity of deterministic AKS
primality test is O(n°®) and the complexity of probabilistic Miller-Rabin test is O(An - zu(n))
(for a statistical error of 27*). GIMPS relies on the Lucas-Lehmer-Riesel [Rie69] test, which
is a generalization of the Lucas-Lehmer test for numbers of the form k2™ — 1. PrimeGrid
performs a variety of primality tests including Proth’s theorem [Pro78] for Proth numbers.
They were first to realize that (Pietrzak's) PoE can be used to certify the results of Proth’s
primality test [Pri20]. They also noticed that low-order elements can affect the soundness
of the protocol and, therefore, included some checks on the order of the result [Atn22]. For
Proth number P, ,, given a quadratic non-residue modulo F;,, the complexity of Proth's
test [Pro78] is O(log(k) - nu(n)); otherwise it is a Las Vegas test (since we currently know
how to generate a quadratic non-residue only in expected polynomial-time). An alternative is
to use the deterministic Brillhart-Lehmer-Selfridge test [BLS75].

6.2 Pietrzak’'s PoE in Groups of Known Order

In this section, we recall Pietrzak's PoE (PPoE) [Piel9] and some of its properties. The
protocol is presented in Figure 2.2. By inspection of the protocol we see that it has perfect
completeness. Pietrzak proved the following complexity results in [Piel9]:

Proposition 2 ([Piel9, Section 6.2]). On instance (x,y,T,G) PPoE has the following effi-
ciency properties:

1. V performs 3\ logT" multiplications in G.

2. P performs 2v/T multiplications in G and stores \/T group elements to compute the
proof.

3. The size of the proof is logT elements of G.

Furthermore, Pietrzak proved that the PoE is statistically sound in groups without low-order
elements, in particular safe prime RSA groups. Boneh et al. later proved computational
soundness in groups where it is hard to find low-order elements (the low-order assumption)
[BBF24]. Ideally, we would like to use PPoE in a group of known order, where an adversary
can find low-order elements in polynomial time. However, Boneh et al. showed that this is not
sound by presenting an attack with low-order elements in [BBF24]. In the following section,
we analyze in what way these low-order elements affect the soundness of PPoOE.

6.2.1 (Non-)Soundness

We analyze the soundness of PPoE in groups of known order. Assume that the correct
result of an exponentiation is 2 = y mod N but P claims that for some o # 1 mod N
it is 22° = ya mod N. We sometimes call  the “bad” element and say that the second
statement is a-false. Note that the prover's statement is of this form without loss of generality

9Since these numbers have a succinct representation, the complexity of these tests is, strictly-speaking,
exponential in the size of the input (which is n for M,).
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because every element has an inverse in a group. This means that if the prover claims that
the result is some group element 3, we can always find a group element « such that 5 = ya.
Soundess of PPoE only depends on the order of this bad element «. If its order only has
small prime divisors with small exponents, the probability that repeated exponentiation of this
element with a random exponent decreases its order to one, and thus the verifier's check for
T =1 passes, is not negligible.

The following lemma bounds the probability that the order of the bad element “drops” by
a factor p’ in one round of PPoE. It will be the main tool in proving soundness of our
non-primality certificate later on.

Lemma 7. Let (z,ya,T,G) be an a-false statement for some o € G, u € G an arbitrary
group element, p° any prime power that divides the order of a and let r < {0,1,...,2* — 1}
be sampled uniformly at random. Assume that the statement (z"p, p"yo, T'/2,G) is 3-false
for some 3 € G. For any ¢ < e, the probability that p°=**' does not divide the order of 3 is
at most 1/p*.

Proof. If the statement (x"u, "y, T/2) is B-false, we have p = ~22™* such that 8 =

r—2T/2

ary . We want to bound the following probability

efls _ ap87é57(7’_2T/2)p67£5 _ 1] . PI'I:/}/(T_2T/2)p€7ZS _ a_p 8]

Bl .
1 1

~ ord () T

_ged(d,pets) 1

p + o (6.4)

where d denotes the order of v and s is any positive integer not divisible by p. The inequality
follows from the fact that the size of the randomness space is 2*. Now assume that the above
event holds. Then we have 77 5™ = o """s for some integer m, hence

d

d _pe—(’.s _ d pe—Zsm _
ord(« ) = ord(y ) eed(d p—tsm)

and equivalently
d= ord(&_pﬁés) ged(d, p*~fsm) > pf ged(d, p°sm).

Plugging into (6.4) we get

e—/
Pr[apeflsly(r_QT/Z)pefés )< ged(d, p°~*s) N 1

1
~ ptecd(d, pe—tsm) = 2> tox

< 1
_ﬁ 2A'

]

Remark 7. A lemma of flavour similar to Lemma 7 was proven in [HHK™22, Lemma 1] for a
parallel-repeated variant of PPoE. However, there are major differences between these: (i) the
new statements in the protocol in [HHK"22] (and also [BHR*21]) are obtained in a slightly
different way, using multiple random coins and (i) [HHK*22, Lemma 1] was only proven for
restricted choices of numbers p and e. Hence, Lemma 7 does not follow from [HHK™22,
Lemma 1].
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Instance: (z,y,T,G), where z,y € G, T € N is even and 22 =yinG
Input to P*: a € G

Parameters: statistical security parameter \

Statement: 22° = ya in G

Protocol:
1. ForT = 1:

» If 22 =y, V outputs accept.

» Else, V outputs reject.
2. For T > 1:

a) P* sends v = a~'z2""" to V.

b) If v € G, V outputs reject. Otherwise, V samples r + {0,1,...,2* — 1}
uniformly at random and sends it to P*.

c) P* and V compute 2’ := z"v and ¢ := 0"y in G.

d) If T/2 is even, P* and V run the protocol on instance (z',vy',T7/2,G) with

input a?*~""1 to P*. If T/2 is odd, P* and V run the protocol on instance
(J’JJ y/27 (T + 1)/2, G) with input 042(2T/2_T_1) to P*.

Figure 6.2: An attack with success probability at least 1 — (1 — 1/ ord(«))"s7.

Corollary 6. Let (z,ya,T,G) be an a-false statement for some o« € G and 2¢ any power of
2 that divides the order of . The probability that 2¢=¢ does not divide the order of the bad
element after one round of PPOE is at most 1/2°.

Proof. By Lemma 7 we know that the probability that 2! does not divide the order of
the bad element of the instance (2,3, T/2,G) is at most 1/2°. Now if T is odd, the new
instance of the protocol is (z/,4, (T + 1)/2,G), so the bad element is squared once. This
reduces its order by a factor of 2, which yields the claim. m

6.3 Attacking Pietrzak’s Protocol in Proth Number
Groups

In this section we show how a malicious prover P* can falsely convince the verifier V that
a Proth prime is composite when using Pietrzak's PoE. This attack was first described in
[BBF24]. Let N = k2™ +1 be prime and z be any quadratic non-residue modulo N. Since N
is prime, it holds that z¥2""" = —1 mod N. The easiest way for P* to cheat is claiming that
the result of this exponentiation is 1 instead of —1 and then multiplying the honest messages by
—1 until the recombination step (Step 2d of PPoE) yields a correct instance. The probability
that V accepts this false “proof” of non-primality is 1—1/2'98("~1) = 1—(n—1)~1. To see this,
consider the first round of the protocol. P* multiplies the correct midpoint v = (x’“)QUH)/2
by —1 and sends the message —v to V. V samples a random coin r and they both compute
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/ k (n—1)/2

¥ = —x"v and ¢ = (—v)" to create the new statement z’ = 1'. Plugging in the
values for 2/, 1/ and v, we see that the new statement is correct whenever r is an odd integer:

I/Q("*U/? /

=Y
PN (_:EkrU)Q(”—l)/Q _ (—U)T
& " = (-1
& () = (-1

If r is even, the statement remains false and P* does the same in the next round. V
only outputs reject if all of the random coins are even which happens with probability
1/2°¢=1 = (n — 1)7! since log(n — 1) is the number of rounds. Otherwise V outputs
accept on a false statement. A generalization of this attack is shown in Figure 6.2. Instead
of multiplying the correct statement by —1, P* multiplies the correct statement by an arbitrary
group element « and adapts its messages accordingly. The success probability can be lower
bounded by 1 — (1 —1/ord(a))"5=1 which is the probability that in at least one round the
bad element is raised to a multiple of the order of «v. If ord(«) is not a prime number, this
bound is not tight since the order of the bad element can decrease during the execution of
the rounds, making the success probability even higher. In the case where N is prime, the
prover knows the group order N — 1 = k2" and its factorization and can therefore construct
elements of sufficiently low order.

6.4 Certifying Non-Primality of Proth Primes

In this section, we present the interactive protocol for verifying that a Proth number N =
k2" 4+ 1 is not prime, i.e., that 2*2""" = —; mod N for some ; # 1 and z a small prime
number that is a quadratic non-residue modulo N. This means that from now on all group
operations will be performed in the group Z3},.

The protocol presented in Figure 6.3 consists of four steps in which V performs different
checks on the order of the element ;i and then chooses the best method for verification
accordingly. An overview can be found in Figure 6.1.

In the first step, V checks if x has Jacobi symbol —1 modulo N since the primality test is
only conclusive if = is a quadratic non-residue. To this end, V first computes a := N mod x
and, if a # 0, checks if the Jacobi symbol () = (%) is —1. If a = 0 we know that x is
a divisor of V and hence N is composite, so V can already accept in Step 1. If the Jacobi
symbol is 1, it is unclear if x is a quadratic residue mod N so V rejects the proof. If the
Jacobi symbol is —1, the protocol moves on to the next step.

In the second step, V' checks if the element i has small odd order dividing k2", i.e., order
dividing &, by computing /i := ¥ mod N. If i # 1, the order of s does not divide & and
V goes on to the next step. If i = 1, V can easily find the order d of u by factoring the
(small) integer k. Then V can verify the statement without any message from P. In fact, V
only verifies the statement 22" = ;2 by computing the 2"-th root of ;2. Unfortunately we
can not compute the 2"~ '-th root of —x because —u has order 2d and the inverse of 271
modulo 2d does not exist. This additional squaring step eliminates potential “bad” elements
of order 2, so this check only proves that k2 = —u -« mod N, for some element « of
order 2 or a = 1. Luckily, this is enough information for ) since we only want to rule out the
possibility that the result of the exponentiation is —1 and p~! # « since p has odd order.
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If V gets to the third step, we know that the order of 1 does not divide k. To make sure
that it does not divide k times a small power of 2 either, V checks if #2*"**" %1 mod N.
If this holds, we know that V) can accept a PPoE for the statement z*2"' = —p mod N
because a malicious prover will only be successful in convincing V with negligible probability.
If 152*"**" =1, such a PoE is not sound, so V goes on to the next step.

If V gets to the last step, we know that the order of 1 is too small to soundly accept a PPoE.
However, we now know that the order of 1 is even, so we can use the following trick: Instead of
sending a PPoE for the statement 2%2"" = —; mod N, P sends a PPoE for the statement
22— mod N for some element y € Z%. Then V checks if 42" = —p. If this
holds and the PoE is correct, V outputs accept. Else, V outputs reject.

Remark 8. The complexity of Steps 3 and 4 of our protocol could be slightly improved with
the following changes:

= Instead of V computing the exponentiation i2"**" in Step 3, P could send a proof
for the statement 72" ™" £ 1. This can be done in a sound manner since again V
only wants to rule out one result, so P and V can execute Steps 2-4 recursively. This
reduces the work for ¥V but increases the work for P. However, the PoEs can be batched
together similarly to the batching protocol in [HHK™22] so the proof size only grows

by one group element.

= If V and P find out in Step 3 that 32 ™" = 1, they also know the smallest integer
~2/\logn—i

i such that fi7 # 1. This means that, in Step 4, P can send a PoE for the

statement
n—1—Xlogn-+i
(z*)? "=y mod N,

2)\ logn—1

and V only needs to check if y = —p mod N. This reduces the work for V by
7 multiplications.

For simplicity of the analysis and because the improvements are minor, we omit these changes
and analyze the protocol as it is stated in Figure 6.3.

6.4.1 Completeness

In this section, we show that V' always outputs accept if P is honest.

Theorem 15. The protocol in Figure 6.3 has perfect completeness.

Proof. We show that if P is honest, }V does not output reject in any step and outputs
accept in one of the steps.

Step 1. Assume that = does not divide N since otherwise V accepts in the first step and com-
pleteness holds trivially. If P is honest, = has Jacobi symbol (§;) = —1. Furthermore,
since x is prime and does not divide NV, we have

(1) = o () = (2) = (),

where the first equality follows from the law of quadratic reciprocity. Hence, V does
not reject in this step and goes on to the next one.
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Instance: (n,k,z,u), where n € N, 0 < k < 2"~ an odd integer, p € Z% with p # 1
and x € Z}% a small prime number with Jacobi symbol —1 modulo N := k2" + 1

Parameters: statistical security parameter \

—1

Statement: """ = —; mod N

Protocol:
1. V computes a := N mod z and if a # 0 the Jacobi symbol (2).

» If a =0, output accept.
= Ifa#0and (%) =—1, go to Step 2.

» Else, output reject.
2. P and V compute ji; := u*¥ mod N

» If iy # 1, go to Step 3.

» Else, V computes d := ord(y) and a := 27" mod d. If zF = ;** mod N
output accept. Else, output reject.

3. P and V compute fip := 32 " mod N.

» If i, =1, go to Step 4.

» Else, P sends PPoE(2*, —u,n — 1, N). If the PPoE verifier accepts, output
accept. Else, output reject.

4. a) P sends a group element y and a PPoE (z*,y,n — 1 — Alogn, N) for some
y € Zy . If the PPOE verifier rejects, output reject. Else, go to Step 4b.

2/\ logn

b) V computes 7 :=y mod N. If § = —p output accept. Else, output

reject.

Figure 6.3: The non-primality certificate.

Step 2. If iy # 1, V does not output anything in this step and goes on to the next one.
Assume ji; = 1 and let a := 27" mod d, where d is the order of u. Then we have

pr= ()" = (")) =2 mod N
so V accepts if P is honest.

Step 3. If i = 1, V does not output anything in this step and goes on to the next one. If
1is # 1, completeness follows immediately from the completeness property of PPoE.

Step 4. If P is honest, the verifier does not reject in Step 4a by the completeness property
of PPoE. In Step 4b, the verifier checks if

2A logn ( k2n—1—klogn)2klogn

= —u mod N,

which holds if P is honest.
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6.4.2 Soundness

For our purposes, it is sufficient to consider a relaxed definition of soundness. We only want
to rule out the event that a malicious prover P can convince V that a Proth number is not
prime even though it is. This means we do not need to care about a cheating prover that
convinces V of a wrong result of the exponentiation 2*2"" mod N as long as the correct
result is not —1.

Definition 21. We call a non-primality certificate sound if the probability that V' outputs
accept on a statement (n, k,z, 1) for some p # 1 but z¥2" = —1 mod N is negligible.
We call that probability the soundness error.

A2

Theorem 16. The protocol in Figure 6.3 has soundness error at most 277 log n.

Proof. We bound the probability that V falsely accepts an incorrect statement in each step
individually.

Step 1. If V accepts in Step 1, z is a divisor of NV so N must be composite. Assume that
this does not hold and x has Jacobi symbol 1 modulo N, i.e., (%) = 1. Then,

(3)- ()= o).

so V rejects in Step 1.

Step 2. Recall that we consider a relaxed definition of soundness (see Definition 21). This
means that we only need V to reject, when the correct result of the exponentiation is
—1. We show that if this is the case and ji; = 1, V always rejects in Step 2(b). Assume
that N is prime. If V gets to Step 2(b), we know that d is a divisor of k£ and hence
odd. This means that p? has order d. V computes a := 27" mod d and checks if
2% = (—p)?* = p** mod d.

1. Since N is prime it holds that (2%)*""" = —1 mod N so the order of z is 2"k.
This means that the order of z* is 2"

2. On the other hand, we know that the order of ;2 is d so the order of y?® is a
divisor of d and hence odd.

1. and 2. together yield that ¥ # ;?* mod N so the verifier rejects.

Step 3. If V gets to Step 3 and i # 1, we know that the order of the bad element p is
divisible by 2*'°¢T  This means that a malicious prover convinces V to falsely accept
if the execution of the PoE reduces the order of the bad element on average by 2* per
round. In particular, there must be at least one round where the order drops by at
least 2*. By Corollary 6, this happens with probability at most 27**2 for a fixed round.
Applying a union bound, we conclude that, in this case, VV accepts with probability at
most 272 ]og n.1°

10PrimeGrid has already implemented a check 1#2** = 17 [Atn22]. Our analysis shows that an exponent
of 64 is not sufficient for cryptographic soundness as this only gives 64/log(n) bits of security “per round”;
once we apply the Fiat-Shamir methodology to make the proof non-interactive, each round can be attacked
individually.
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Step 4. If V gets to Step 4, a malicious prover needs to cheat in Step 4 (a) since otherwise
the check in Step 4 (b) will not go through. This means that the prover needs to
multiply the claim in Step 4 (a) by a bad element . What can we say about the order
of a? We know that it needs to pass the following check:

Alog T
)2

(yor =~
where y2*"**" = —1. This means that « is of the following form:
2)\logT
It is well known that
ord(«)

ord(a?) =

~ ged (24, ord(a)) = ord(n).

(A proof can be found in any standard textbook on group theory, e.g., [DF03, Proposi-
tion 5]). Now the order of 1 is even so we know that ord(a) = 2¢ ord(u) fori = Alog T
In particular, we have that 2*1°¢7 s a divisor of the order of o. We can apply Corollary 6
and a union bound by the same argument as above and conclude that V' accepts with
probability at most 27**2log n in this case.

All the cases together show that V outputs accept with probability at most 2=**2logn
whenever N is prime. O

Corollary 7. The Fiat-Shamir transform of the protocol in Figure 6.3 yields a statistically
sound non-interactive protocol in the random oracle model: The probability that P finds a

non-primality certificate for a prime number with up to () random oracle queries is at most
QQ—A+2_

Proof. As we have seen in the proof of Theorem 16, a cheating prover P can convince V
to accept a proof of non-primality of a prime number only if P manages to decrease the
order of the bad element by at least 2* in one of the rounds of a PPoE. By Corollary 6, this
happens with probability at most 2722, where the probability depends only on the random
coins. Assume that 7 makes up to @ queries to the random oracle. By the union bound, the
probability that P finds a query that triggers the above event is at most Q2 **2. O

6.4.3 Efficiency

In this section, we analyze the complexity of the Fiat-Shamir transform of the protocol pre-
sented in Figure 6.3. Note that this complexity depends on the step in which the protocol
returns the output. We summarize the results of this section in Table 6.1.

Prover’'s complexity.

We compute the number of multiplications the prover has to perform additionally to finding

a quadratic non-residue modulo N and computing the initial exponentiation.

Step 1. |If the protocol returns the output in Step 1, P does not perform any additional
computations.
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Output in | Prover's complexity Verifier's complexity Proof size
Step 1 0 logn 0
Step 2 1.5log k 2.5logk + 2logn 0

Step 3 1.5logk + Alogn + 2y/n | 1.5logk + (4\+ 1)logn | logn
Step 4 1.5logk + Aogn +2y/n | 1.5logk + (5A + 1)logn | logn + 1

Table 6.1: Complexity of the protocol in Figure 6.3 depending on the step in which it outputs
the result. Prover's and Verifier's complexity are measured in the number of multiplications
and proof-size in the number of group elements. We denote by A the statistical security
parameter.

Step 2. 7P checks if ¥ = 1 via “square and multiply”, which is approximately 1.5log k
multiplications. If this holds, P does not perform any other computations.

Step 3. |If the protocol runs until Step 3, P has checked if ¥ = 1, which did not hold
and now checks if (1%)2"'*", which is Alogn additional multiplications. If this holds, P
computes the proof of PPoE(x*, —u,n — 1, N) which, by Proposition 2, can be done with
2,/n multiplications and storage of \/n group elements.

Step 4. If the protocol runs until Step 4,P has checked if 4% = 1 and (u*)2*"**", which
did not hold. Now P computes the proof of PPoE (z*,y,n — 1 — Alogn, N), which, by

Proposition 2, can be done with 2y/n — Alogn multiplications and storage of /n — Alogn
group elements.

Verifier's complexity.

Step 1. Computing a := k2" + 1 mod z takes approximately log n multiplications. Com-
puting the Jacobi symbol (%) takes approximately log? z multiplications. Since z is a very

small prime number in practice, we will ignore the log® = multiplications from now on.

Step 2. V checks if u¥ = 1 via “square and multiply”, which is approximately 1.5log k
multiplications. If this holds, ¥V computes 27" mod d, where d is the order of u. This is
another logn + log & multiplications.

Step 3. If the protocol runs until Step 3, V has checked if /¥ = 1, which did not hold and
now checks if (uk)ylog", which is Alog n additional multiplications. If this holds, V verifies
the proof of PPoE(z*, —i,n — 1, N) which is 3\1logn multiplications by Proposition 2.

Step 4. If the protocol runs until Step 4,1 has checked if ¥ = 1 and (#)2"™*", which did
not hold. Now V verifies the proof of PPoE (z*,5,n — 1 — Xlogn, N), which is 3\ log(n —
Alogn) multiplications (by Proposition 2) and then performs an exponentiation with exponent
221ogn “\which is another \log n multiplications.

Proof size.

Step 1. If V already accepts or rejects in Step 1, there is no proof needed.

Step 2. If u¥ =1, V can check the result themselves so there is no proof needed.
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Step 3. If P sends a proof in this step, the proof size is equal to the size of the proof of
PPoE(x*, —p,m — 1, N), which is log(n — 1) by Proposition 2.

Step 4. If P sends a proof in this step, it consists of a group element 3 and the proof of
PPOE (2%,y,n — 1 — Alogn, N), which is log(n — 1 — XAlogn) by Proposition 2.

Example.

We give a numerical example of the complexity of the protocol when it outputs the re-
sult in Step 4 (the most expensive case) using the largest Proth prime known to date:
10223 - 231172165 4 1 [Pri16]. For k = 10223 and n = 31172165 we have [logk] = 14
and [logn]| = 25. If we choose the security parameter as A = 80, we get that the prover
stores [v/31172165] = 5584 group elements, performs 13188 multiplications, the verifier per-
forms 10046 multiplications and the proof size is 26 elements of size 31172179, i.e., around
102 MB. Note that recomputing the result of the primality test would take n = 31172165
multiplications in the same group, so our protocol reduces the number of multiplications by
a multiplicative factor of [31172165/(13188 + 10046) | = 1341.

Our protocol also achieves significant savings compared to [BHR21]: To compute the PoE of
[BHR™21], the prover needs to perform 2)\\/n = 893312 multiplications and the verifier does
22 log n+2)\ = 318800 multiplications to verify the proof consisting of Alogn = 2080 group
elements (i.e. 8160 MB). This means that our protocol reduces the number of multiplications
of [BHR'21] by a factor of 52 and the proof size by a factor of 80.

6.4.4 Comparison with Pietrzak’s PoE

We saw in Section 6.4.3 that the complexity of the protocol is the highest, when it out-
puts the result in Step 4. Even in this case the additional cost compared to the naive
implementation of PPoE is moderate: Instead of performing 2,/n multiplications, P needs
1.51logk + Alogn + 2v/n multiplications to compute the proof. Using the numbers from
the example in Section 6.4.3 this is 2021 extra multiplications on top of the 11168 multi-
plications that are performed in the naive implementation. Instead of performing 3\logn
multiplications, V needs 1.5log k + (5\ + 1) log n multiplications to verify the result. This is
4046 additional multiplications to the 6000 multiplications of the naive implementation in our
example. The proof size grows by one group element from logn to logn + 1. In our example,
this corresponds to a proof size of 102 MB instead of 98 MB. If the protocol outputs the result
in Step 1 or Step 2 it is even more efficient than PPoE. Recall that the implementation of
PPoOE in groups of known order does not have any soundness guarantees and for the groups
that we are using, there are known attacks that break soundness. In contrast, we showed in
Section 6.4.2 that our protocol is statistically sound in these groups. We conclude that our
protocol yields a major soundness improvement at moderate additional costs.

6.5 Conclusion

In this chapter, we presented an efficient protocol that gives a certificate of non-primality
for Proth numbers. While we believe that a certificate of non-primality is more useful than
a certificate of primality in the context of search for giant primes, constructing the latter is
certainly an intriguing problem. Though, our techniques are not directly applicable to prove
primality of Proth numbers because our protocol only rules out that the correct result is
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6.5. Conclusion

one specific number (namely —1). Conversely, when proving primality one has to rule out
all results except for one (again —1). Constructing a cryptographic certificate of primality
therefore remains an open problem.

Another open problem is to demonstrate the applicability of PoEs towards certifying (non-)
primality of other types of numbers such as, for example, Mersenne numbers, which are of
the form N = 2" — 1. The primality of Mersenne numbers is tested via the Lucas Lehmer
test amounting to computation of long modular recursive sequences. Equivalently, the test
can be performed via exponentiation in an extension ring: It can be shown that N is prime
if and only if (2 + /3)N+1/2 = —1in Zx[v/3]. Thus, one could hope to employ PoEs also
in the context of Mersenne number. However, there are some major differences to the case
of Proth numbers. In particular, the order of the corresponding multiplicative group is not
necessarily efficiently computable even when the candidate is a prime, which is one of the
issues preventing the use of our protocol.
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CHAPTER

Conclusion

In this thesis we studied verifiable delay functions based on iterated squaring and their founda-
tional building blocks proofs of exponentiation. We considered both theoretical and practical
aspects of VDFs and PoEs.

Chapter 3 considered statistically sound PoEs that are secure even when the group order is
known, enabling the use of transparent setups without sacrificing security. Our construction
reduces the proof size of statistically sound PoEs for structured exponents, making statistically

sound PoEs more practical for deployment in blockchain systems and cryptographic proofs
such as SNARKSs.

Next, in Chapter 4, we enhanced the scalability of PoEs through efficient batching protocols.
These allow the aggregation of multiple proofs into a single one, which substantially reduces
communication and verification costs. Our constructions demonstrate significant performance
gains over existing batch PoEs and introduce the first batch PoE that significantly reduces
both proof size and verifier complexity.

When exploring advanced applications in Chapter 5, we constructed zero-knowledge and wa-
termarkable VDFs, which are needed for the construction of short-lived proofs and signatures.
These primitives offer authentication that expires after a predefined amount of time.

Finally, Chapter 6 demonstrates the utility of PoEs in primality testing, particularly for Proth
numbers. By adapting Pietrzak's PoE protocol, we offer cryptographically sound certificates
of non-primality, which significantly reduce the workload in the ongoing search for giant prime
numbers.

The results of this thesis advance the state of the art of verifiable delay functions, offering
provably secure, efficient, and versatile cryptographic constructions. Our contributions open
pathways for further research into post-quantum secure VDFs, optimized implementations,
and broader integrations in cryptographic protocols and blockchain ecosystems.
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