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Machine learning interatomic potential
can infer electrical response

Check for updates

Peichen Zhong1,4, Dongjin Kim2,4, Daniel S. King1,4 & Bingqing Cheng1,2,3

Modeling the response of material and chemical systems to electric fields remains a longstanding
challenge.Machine learning interatomic potentials (MLIPs) offer an efficient and scalable alternative to
quantum mechanical methods, but do not by themselves incorporate electrical response. Here, we
show that polarization and Born effective charge (BEC) tensors can be directly extracted from long-
rangeMLIPs within the Latent Ewald Summation (LES) framework, solely by learning from energy and
force data. Using this approach, we predict the infrared spectra of bulk water under zero or finite
external electric fields, ionic conductivities of high-pressure superionic ice, and the phase transition
and hysteresis in ferroelectric PbTiO3 perovskite. This work thus extends the capability of MLIPs to
predict electrical response –without trainingon chargesor polarization orBECs– andenables accurate
modeling of electric-field-driven processes in diverse systems at scale.

The polarizationP of a systemunderliesmany electrical response properties
including capacitance, dielectric constant, ferroelectricity, piezoelectricity,
ionic conductivity, and infrared (IR) spectra. The Born effective charge
(BEC) tensorZ* quantifies the variation inP due to an atomic displacement
at position ri of atom i1:

Z�
iαβ ¼

∂Pα

∂riβ
¼ ∂F iα

∂E0
β

; ð1Þ

whereα and β label Cartesian directions. The second part of Eq. (1) links the
electrostatic forceF i on atom i resulting from an external electric fieldE0 to
the system.

Modeling electrical response properties has long been a challenge. The
Berry phase definition of the polarization2,3 of periodic insulators can be
obtained from density functional theory (DFT) calculations. Density-
functional perturbation theory (DFPT)4 or the finite field method5 can be
used to compute BECs and other derivatives of the polarization. However,
the computational costs associated with such ab initio methods limit their
applications to large systems or long timescales. On the other hand, fixed-
charge or polarizable empirical force fields are cheap but may lack quanti-
tative accuracy or transferability6,7.

Standard machine learning interatomic potentials (MLIPs)8,9, which
learn surrogate potential energy surfaces from quantum mechanical refer-
ence calculations, are typically short-ranged and do not explicitly consider
electrostatics. Several approaches have been developed to incorporate long-
range interactions, such as learning DFT-derived partial charges10–13 or
maximally localized Wannier centers14,15, or employing long-range

descriptors16,17 or long-range message-passing18. Latent Ewald Summation
(LES)19,20 is a recentmethod that learns a long-range energy contribution Elr

by fitting to the total potential energy E and atomic forces F of configura-
tions:

Elr ¼ 1
2ε0V

X
0 < k < kc

1

k2
e�σ2k2=2jSðkÞj2; ð2Þ

where k is the reciprocal wave vector andV is the cell volume. The structure
factor S(k) given by

SðkÞ ¼
XN
i¼1

qlesi eik�ri ; ð3Þ

and the LES charges qlesi are predicted using a neural network based on local
invariant features Bi of atom i. LES can be combined with any short-ranged
MLIP architecture, such as descriptor-based21–23 or message-passing neural
networks24,25.

However, a natural inclusion of electric response directly within the
MLIP frameworks is missing. Currently, P and BEC have to be learned
separately as tensorial properties26,27, e.g., directly predicting BEC tensors28,29

or local contribution to the dipole moment of a molecule26,27,30 based on
atomic environments, the charge response kernel31, or as the response of the
potential energy to an external field32–34. These advances enable simulations
under an electric field and the extraction of electrical response properties.
Conceptually, however, such approaches are in contrast with the electronic
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structure picture of matter: nuclear positions and electronic wavefunctions
fully determine how the system will interact with an electric field.

Here, we show that polarization and BEC tensors can be naturally
derived from long-range MLIPs within the LES framework. This enables
accurate predictions of electrical response properties, such as IR spectra and
conductivity, solely by learning from energies and forces. Importantly, it is
straightforward to add an external electric field to MLIP-driven molecular
dynamics (MD) simulations, enabling the exploration of electric-field-
drivenphenomena in variousmaterials andmolecules.Wedemonstrate this
method on a range of complex bulk systems, including molecular liquids,
ionic liquids, superionic crystals, and ferroelectric materials.

Results
Theory
Building on the pioneering Molecular Dynamics in Electronic Continuum
(MDEC)model6,7,35,36, the Coulomb interactions between the “free charges”
of atoms are explicitly considered, while the rapidly responding background
electrons are treated as a dielectricmedium. The electrostatic field produced
by the free atomic charge qi of atom i can then be expressed as

EiðrÞ ¼
qi

4πε0ε1jr� rij3
ðr� riÞ; ð4Þ

and the resultant electric force between two atoms is given by:

F ij ¼ EiðrijÞqj; ð5Þ

where ε0 represents the vacuum permittivity, and ε∞ is the high-frequency
relative permittivity (also known as the static or electronic dielectric
constant). For eachbulk systemunderagiven thermodynamic condition, ε∞
is a constant value that can be determined experimentally (e.g., from the
square of the optical refractive index) or calculated from a snapshot using
DFPT with frozen nuclei37. Moreover, ε∞ or refractive index of non-
plasmonicmaterials ismostly related to the density, and typically insensitive
on the pressure or temperature.

We interpret the LES charges qlesi as scaled charges, qlesi ¼ qi=
ffiffiffiffiffiffi
ε1

p
,

acting both as the sources and the receivers of the electric field:

F ij ¼
qlesi qlesj
4πε0r

3
ij
rij: ð6Þ

In the LES algorithm, qlesi are optimized to effectively describe the long-
range component of the total potential energy and atomic forces. For
modeling the energetics and dynamics of a system under no external field,
these LES charges provide a self-contained description of electrostatic
interactions, with no further adjustment needed. To model electrical
response, however, the LES charges can be unscaled to recover the atomic
charges qi.

Thepolarization (dipolemoment)of afinite systemsuchas a gas-phase
molecule is

P ¼
XN
i¼1

qiri; ð7Þ

and the BEC Z* can be obtained by taking its derivative with respect to r:

Z�
iαβ ¼

∂Pα

∂riβ
¼ qiδα;β þ

XN
j¼1

rjα
∂qj
∂riβ

: ð8Þ

As shown in the second part of Eq. (8), the BEC tensor Z�
i comes from two

contributions: the charge qi, and the dependence of the charges on atomic
positions.

For modeling either crystalline or disordered bulk systems, it is almost
mandatory to apply periodic boundary (PBC) conditions. Importantly, the

value of P cannot be uniquely defined for systems with PBC, according to
the modern theory of polarization2,3. To circumvent such ambiguity, we
propose a generalized formulation of polarization P(k) under PBC:

PαðkÞ ¼
XN
i¼1

qi
ik
expðikriαÞ; ð9Þ

where Pα(k) is the polarization along the α direction, k= 2π/Lα, and Lα is the
length of a periodic cubic cell, while the extension to triclinic cells is
straightforward. Eq. (9) has close connection with existing approaches in
related fields: the response of the system to adding an electric field of finite
wave vectors in the classic electrostatics picture; theBerry phasedefinitionof
the polarization in electron structuremethods2,3, the exploitation of periodic
coordinates or twisted boundary conditions in Quantum Monte Carlo
methods38. The Pα(k) is complex valued, and has no direct correspondence
withmultivaluedDFTpolarization2. At the limit of k→ 0,P(k) becomes the
finite-system expression in Eq. (7). The BEC tensorZ* of atom i can then be
evaluated as

Z�
iαβ ¼ < expð�ikriαÞ

∂PαðkÞ
∂riβ

" #
: ð10Þ

The prediction of BEC enables the calculation of several electrical
response properties. For instance, the current of the polarization of the
system can be obtained as JðtÞ ¼ PN

i¼1Z
�
i ðtÞ � viðtÞ. The current-current

autocorrelation function encodes the ionic electrical conductivity σ via the
Green-Kubo formula,

σ ¼ 1
3VkBT

Z 1

0
dt Jð0ÞJðtÞ� �

; ð11Þ

and the IR spectra via Fourier transform,

IðωÞ /
Z T

0
dt Jð0ÞJðtÞ� �

e�iωt : ð12Þ

Moreover, onceBECare computedusingEq. (10), one can apply a real-
valued constant electric field E0 to the system by adding the electrostatic
forceFi on each atomusing the secondpart of Eq. (1) for the linear response
regime, thus enabling constant-electric-field simulations under PBC.

Example: Water
The theoretical prediction for the IR spectrum of water is a classic problem
but still not fully resolved, andmore sowith the presence of external electric
fields39. We used the Cartesian Atomic Cluster Expansion (CACE)40

potential as the short-rangedMLIP and LES19,20 as the long-range part, and
thereafter refer to this combination as CACE-LR. The RPBE-D3 bulk water
dataset from ref. 28 contains energies and forces of 654 configurations (90%
train/ 10% test split) each of 64 water molecules. Even though we used a
compactCACEmodelwith a cutoff of 4.5Å andnomessagepassing, the test
rootmean square errors (RMSEs) of energy and forces (0.25meV/atomand
21meV/Å) are smaller compared to the errors in ref. 28 (0.8meV/atomand
60meV/Å) and ref. 41 (0.3meV/atom and 27meV/Å) that uses converged
DFT setting and more kernels in MLIP fitting.

Figure 1a compares the BEC tensor elements predicted by LES and
calculated by the reference DFT for 100 water configurations at experi-
mental density and room temperature28. We used the high-frequency per-
mittivity ε∞ = 1.83, which was computed from DFPT calculations28. Only
one snapshot is needed to estimate ε∞ here, as the standard deviation of
σ(ε∞) = 0.008 from different snapshots at the same thermodynamic con-
dition is negligible. Alternatively, one could obtain ε∞ based on the
experimental refractive index of water.

If neglecting PBC and naively using Eq. (8), the predicted BEC
exhibited significant discrepancies from the DFT reference values,
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particularly for atoms near the edge of the simulation cell. In contrast, by
properly accounting for PBCusing Eq. (9) and Eq. (10), the LES BECs agree
well with DFT for both diagonal and off-diagonal components. This shows
that it is necessary to resolve the ambiguity ofP for periodic systems using a
scheme like Eq. (9). Compared with the referencemodel that directly learns
BEC tensors (trainingRMSE32me from ref. 28), the LESmodel yields a test
RMSE of 51 me on the same dataset, demonstrating comparable accuracy
without explicitly training on the tensorial quantities.

We performed MLIP-driven NVT simulations of bulk water (0.25 fs
timestep and 200,000MD steps) under theNosé-Hoover thermostat, at 300
K and experimental density, and extracted the IR spectra using Eq. (12)
based on the LES BEC tensors. As shown in Fig. 1b (black curve), not only
are the predicted shapes and positions of the intramolecular vibrational
modes such as OH stretching band (≈ 3400 cm−1) and bending (≈ 1640
cm−1) mode band in excellent agreement with experiment42, but also the
intermolecular low-frequency libration mode band position43 (≈ 650 cm−1)
and the hydrogen-bond translational stretching mode44 (≈ 200 cm−1) are
well captured. Notably, it is necessary to use the time-dependent BEC
tensors to compute the IR: if using the fixed nominal charges of qH =+ 1 for
hydrogen and qO =− 2 for oxygen (see Fig. 6 in Methods), the shape of the
predicted IR ismuchworse, and the hydrogen-bond translational stretching
band is completely absent.

We then performed NVTMD simulations for bulk water under static
constant external fields E0 (0.05 V/ Å, 0.1 V/ Å, or 0.15 V/ Å) along the z-
direction, by adding electrostatic forces on all atoms according to the second
part of Eq. (1). As shown in Fig. 1b (colored curves), at higher electric field
intensities, the intermolecular librational band (≈ 650 cm−1) blue shifts and
the intramolecular OH stretching band (≈ 3400 cm−1) red shifts. These

trends are consistent with previous studies using DFT molecular
dynamics39,45. The red-shift of theOHstretchingband is generally associated
with stronger hydrogen bonding46 and with more ice-like structures47. The
blue shift of the low-frequency libration mode can be attributed to the
enhanced restrictions on the rotational motion of water molecules imposed
by theH-bonds39. Overall, these shifts under the electricfield agreewell with
the predictions using previous approaches based on the direct learning of
BEC tensors or dipoles27,34, suggesting that our approach, that only learns
from energy and forces, can achieve similarly quantitative predictions of IR
spectra.

Example: Superionic water
This example aims to illustrate the capability of our BEC inference method
for ionic and superionic systems, and its generalizability across a wide range
of conditions.Water atmegabar pressures and thousands ofKelvins exhibits
diverse structural and dynamical behaviors: ionic water with partially dis-
sociated hydrogen atoms (Fig. 2a), the face-centred cubic (FCC) superionic
phase (ice XVIII) with liquid-like hydrogen atoms while oxygen atoms
remain on the crystalline lattice48,49 (Fig. 2b), and ice Xwith a body-centered
cubic (BCC) lattice of oxygen atoms50 (Fig. 2c).

We trained theCACE-LRmodel using5000 configurations (90%train/
10% test split), randomly selected out of the 17,516 structures in the original
MLIP training set that was compiled for predicting the phase diagram of
superionicwater spanning awide range of thermodynamic conditions up to
thousands of kelvin and megabar pressures49. Despite the smaller training
set and a relatively light-weight architecture choice of the CACE-LRmodel,
the test errors on energies and forces are halved compared to the original
study: 7 meV/atom in energy RMSE and 327 meV/ Å in force RMSE,
compared to 14 meV/atom and 740 meV/ Å of the original MLIP49,
respectively.

Figure 2b shows that the predicted LESBEC tensors agreewell with the
ground-truth DFT values for three distinct phases (illustrated in Fig. 2a–c)
under different thermodynamic conditions. We computed the high-
frequency relative permittivity fromDFPT calculations on a single snapshot
at each of the three conditions: ε∞ = 3.1 at 2 g/cm3 and 2000 K, ε∞ = 4.2 at
3 g/cm3 and 3000 K, and ε∞ = 3.7 at 4 g/cm3 and 1000 K. These values were
used to infer the BEC tensors.

At 2 g/cm3 and 2000 K, the liquid water is partially molecular and
partially dissociated with frequent proton jumps. The diagonal BEC
values for hydrogen atoms (ZH

αα) can sometimes exceed the nominal
charge of+ 1. In Fig. 2e, we correlate the distances between all H atoms
and their nearest two oxygen atoms with the mean BEC diagonal
values(3jZH

ααj2 ¼ ðZH
xxÞ

2 þ ðZH
yyÞ

2 þ ðZH
zzÞ

2
). This shows that the anom-

alously large BEC diagnoal values occurs when a hydrogen atom breaks
the bond with its nearest oxygen and forms a bond with the second
nearest oxygen, analogous to the Grotthuss mechanism. At 3 g/cm3 and
3000 K, the FCC superionic ice exhibits even larger fluctuations of BECs
for both hydrogen and oxygen. The anomalous BECs of hydrogen are
again correlated to the O-H bond breaking and formation, and such
events aremore frequent. At 4 g/cm3 and 1000K, the stable phase is ice X
with a BCC lattice of oxygen atoms, and hydrogen atoms are evenly
positionedbetween twoneighboringoxygen atomswith straightO-H-O
bonds. The diagonal values of BEC tensors have very small fluctuations
and are centered around the oxidation numbers of+ 1 for hydrogen and
− 2 for oxygen ions (shown as crosses in the right panel of Fig. 2d).
Intriguingly, the off-diagonal elements of BEC for H show two separate
clusters at positive and negative values.

The ionic electrical conductivity σ is crucial for characterizing ionic and
superionic systems. To compute σ at 2 g/cm3 and 2000 K, we employed a
CACE-LR model that was finetuned using energy, forces, and BEC tensor
values of 100 configurations at the same condition. We performed an
equilibriumMD simulation of 120 ps duration with 54 water formula units,
and such system size was selected to be directly comparable to the previous
DFT MD simulation from ref. 51. we calculated the current-current cor-
relation functions C(t) = 〈J(0)J(t)〉/3e either using the time-dependent BEC

b

Fig. 1 | Electrical response of the RPBE-D3 bulk water. a compares the Born
effective charge tensors (Z*) computed from DFT and predicted using the LES
method. The CACE-LR was trained on the energies and forces of the RPBE-D3 bulk
water dataset28. The main panels compare the diagonal elements of BEC (Z�

αα), and
the insets show the off-diagonal elements (Z�

αβ with α ≠ β). The left panel (no PBC)
corresponds to the LES BECs calculated assuming no periodic boundary condition
using Eq. (8), and the right panel (PBC) shows PBC obtained using the generalized
polarization form in Eqs. (9) and (10). b shows the infrared (IR) absorption spectra
of bulk liquid water in the absence of an external field (black line) and under varying
external field intensities (colored lines) as indicated in the legend. The experimental
IR spectrum in the absence of an external field42 (gray shading) is included for
reference.
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tensor Z*(t) or the fixed nominal charges of qH = + 1 and qO = − 2. These
correlation functions are shown in Fig. 3a, and at short times they are in
perfect agreement with a tour-de-force DFT MD and BEC tensor calcula-
tion of 15 ps from ref. 51. Figure. 3b shows the σ values computed by
integrating the corresponding C(t) functions using the Helfand-Einstein
formula52, a reduced-variance form of the Green-Kubo relation in Eq. (11).
Interestingly, the estimated σ with time-dependent BEC tensors (32 ± 2 S/
cm) is similar to the estimate of σ = 37 ± 2 S/cmwith the constant qH =+ 1
andqO=−2. Suchobservationwas alsomade in ref. 51, andwas rationalized
in ref. 53 from a topological quantization argument albeit only for atomic
liquids with all species adiabatically staying in the same motifs without
changing oxidation states.

One can also compute σ from non-equilibriumMD simulations under
external electric fields. Figure 3c shows the total displacement of charges in
the system over time under different values of the external field E0 along the
z direction, DðtÞ ¼ PN

i qiðziðtÞ � zið0ÞÞ, computed using the constant
charges qH =+ 1 and qO =− 2. σ can be estimated from the slope ofD(t) as
σ ¼ hdDðtÞ=dti=VE0. Such σ values from these finite-electric-field simu-
lations, as displayed in the legend of Fig. 3c, are consistent with the equili-
brium results, but have better statistical convergence and also avoid the
problems associated with the Green-Kubo integration to the infinite time
limit (Eq. (11)).

Example: Ferroelectric perovskite
Ferroelectric materials are unique in that they exhibit spontaneous and
permanent electric polarization, and this polarization can be reversed by
applying anelectricfield54.Anomalously largeBECs that exceed thenominal
charges of ions are often considered hallmarks of ferroelectric materials55–57.
Here,wedemonstrate that ourmethodcanpredict the anomalousBECsand
model the characteristic P-E hysteresis loop in the prototypical PbTiO3

ferroelectric perovskite. At T = 300 K, PbTiO3 exhibits a tetragonal phase
characterized by a short axis a and a long axis c, with the ratio c/a correlated
with the polarization magnitude (see Fig. 4a).

We trained the CACE-LR model using the energies and forces of the
PbTiO3 dataset from ref. 58, computed using SCAN DFT. The potential
achieved test RMSEs of 0.4meV/atom in energy and 79.8meV/Å in forces,
much reduced from the original model with 1 meV/atom in energy RMSE
and 350 meV/ Å in force RMSE from ref. 58.

Without explicitly learning the BEC tensors, Fig. 4b compares them for
45 atomic configurations (including both cubic and tetragonal phase) pre-
dicted using LES and computed using PBE DFT. Not only do the LES
predictions agree well with the DFT reference, the anomalously large
diagonal values of BECs (Z�

αα) relative to the nominal ionic charges (indi-
cated by the plus signs in Fig. 4b) for qPb =+ 2, qTi =+ 4, and qO =− 2 are
captured. The anomalous diagonal BECs in ferroelectrics are typically

Fig. 2 | Analysis of the Born effective charge (BEC) tensors in different phases of
high-pressure water. a corresponds to partially ionic liquid water, b shows face-
centred cubic (FCC) superionic phase (ice XVIII), and c is ice X. The oxygen-
hydrogen bonds are drawn with a cutoff of 1.1 Å. d compares the BEC tensors (Z*)
computed fromDFT and predicted using the LES method, for 100 configurations of

each phase at the specified condition. The CACE-LR was trained based on the
energies and forces from the superionic water dataset49. The main panels compare
the diagonal elements of BEC (Z�

αα), and the insets show the off-diagonal elements
(Z�

αβ with α ≠ β). e illustrates the correlation between the mean diagonal values of Z*

of all hydrogen atoms, and the distances to their nearest two oxygen atoms.
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considered to come from a complex interplay of global charge transfer,
mixed ionic-covalent bonding, and the hybridization between oxygen and
transitionmetal orbitals56. The successful prediction of the BEC tensors here
thus not only showcases the expressiveness of the LES method, but also
indicates that CACE-LR is able to capture the intricate long-range elec-
trostatic interactions in ferroelectric materials59. Unlike previous
approaches27,58,60 that employ separate models for potential energy surfaces
and polarization, CACE-LR properly embeds the latter into the former and
does not explicitly train on polarization.

To characterize the spontaneous polarization of PbTiO3 in the absence
of an external electric field, we performed equilibriumNPT simulations atT
=300K (seeMethods). Because SCAN-DFToverestimates c/a=1.14 for the
ground state tetragonal PbTiO3 structure compared to c/a = 1.06 from
experiments, we applied an isotropic external pressure of 2.8 GPa in the
NPT simulations as used in ref. 58, yielding c/a = 1.07 for the equilibrated
structures in MD. We then calculated the total polarization of the material
as61:

Pα ¼
e
V

X
iβ

Z�
iαβΔuiβ; ð13Þ

where Δuiβ indicates the atomic displacement from the non-polar
centrosymmetric reference state. The polarization predicted based on the
LES BEC tensors is P = 82 ± 2 μC/cm2, consistent with the experimentally
reported polarization P(25∘C) = 81 μC/cm2 62.

We then simulated the P-E hysteresis loop of PbTiO3 at T = 300 K, by
applying an electricfieldE along andagainst thepolarizationdirectionof the
equilibrated structure with a magnitude ranging from 0.02 to 0.08 V/ Å. A
constant value of ε∞ = 7.532 was used here, with detailed in the Methods
section. The analogous simulations for the paraelectric phase at 1000 K are
presented in Fig. 8 of the Methods. Figure. 4c presents the time-averaged
polarization at various external field strengths after equilibration, demon-
stratingpolarization reversal to anegative value atE ¼ �0:06V/Å. Starting
from the MD structure at E ¼ �0:08 V/ Å, we simulated the reverse
polarization process by varying the electric field from −0.06 to 0.08 V/ Å
(blue line in Fig. 4c), which exhibits the expected reverse transition behavior
and completes the ferroelectric hysteresis loop. Note that the width of the
hysteresis loop will be dependent on the system size and simulation time, as
phase transition is an activated event, and the hysteresis loop in Fig. 4c aims
to demonstrate the existence of hysteresis in the ferroelectric PbTiO3. In
contrast, the paraelectric phase (see Fig. 8) exhibit no hysteresis.

Figure 4d illustrates the time evolution of the total polarization during
the non-equilibrium MD trajectory after applying E ¼ �0:06 V/ Å to the

Fig. 3 | Ionic transport properties of the partially
ionic liquid water at 2 g/cm3 and 2000 K. a shows
the current-current correlation functions C(t)
computed using either time-dependent Born effec-
tive charge tensors Z*(t) or fixed normal charges.
b plots the corresponding time integrals for esti-
mating the ionic electrical conductivity σ. In a and
b, the DFT molecular dynamics results are from
ref. 51. c illustrates the time-dependent charge dis-
placement from CACE-LR molecular dynamics
simulations under constant external electric fields
with the specified intensities. The colored lines show
the displacements along the direction of the applied
field, and gray lines show the displacements along
the other orthogonal directions.

a c

b

Fig. 4 | Polarization and Born effective charge tensors in the PbTiO3 perovskite.
aA snapshot of equilibrated PbTiO3 at T = 300 K. bThe BEC tensors (Z*) computed
from LES versus from PBE-DFT calculations for 45 randomly selected configura-
tions. The + symbol indicates the nominal charge of Pb/Ti/O in black/blue/red
color. c P-E hysteresis loop computed from CACE-LR MD simulations under dif-
ferent external electric fields. d Time evolution of the total polarization during the
non-equilibrium MD with E ¼ �0:06 V/ Å applied. e Local dipole spatial dis-
tributions through the polarization reversal event. Each voxel represents a Ti-
centered unit cell.
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original equilibrated structure at T = 300 K. The polarization drops rapidly
from its spontaneous value to negative values, followed by fluctuations
before equilibrating to the new field-induced equilibrium state. To visualize
the atomic-level process for the polarization reversal, we computed the local
dipolemoment p for each Ti-centered unit cell using pα ¼ e

P
jwjZ

�
jαβΔujβ,

where the sum runs over all atoms j in the unit cell, and wj represents the
weighting factor (1 for Ti, 1/8 for Pb, 1/2 for O). Figure 4e shows the spatial
distributions of p from representativeMD snapshots, with the color of each
voxel corresponding to the magnitude of p along the c axis. Snapshots
(2)–(4) reveal the initial stage of the reversal: domains of opposite polar-
ization nucleate, grow, coalesce, and ultimately form a uniformly negatively
polarized state.

Discussion
Thecentral thesis of thepresentpaper is thatMLIPs can infer the responseof
a material or chemical system to an external electric field, by fitting latent
charges (qles) just from the energies and forces of atomic configurations.
Although previous works provide some hints on such a connection, e.g., by
showing that machine-learned charges are correlated with DFT charges20,63,
this paper provides a clear physical picture and provides convincing
demonstrations on diverse systems. Compared with previous approaches
that directly learn either BEC tensors or electrical response
properties27–29,32–34,64, ourmethod embeds these properties in theMLIP itself
and provides a unified framework.

Our approach involves several conceptual advances. First,we recognize
that free atomic charges can be determined by fitting to the energies and
forces, and that it is neither necessarynor advantageous to explicitlyfit to the
semiclassical partial charges from DFT20. Indeed, the DFT partial charges
are not physical observables, and they depend on the specific partitioning
strategy used65–67 and are less indicative of atomic charge states in oxides
with charge transfer effects68. Our approach of not fitting to the DFT partial
charges is in contrast with several other existing long-range MLIP
methods11–14.

Second, we incorporate the background fast-responding charges into
the high-frequency relative permittivity ϵ∞, while explicitly accounting for
the Coulomb interactions between the atomic charges. This is similar to the
concepts of screened Coulomb interactions and the scaled ion charge in the
MDECmodel35,36. MDEC is foundational for designing and justifying non-
polarizable force fields using scaled ion charges6,7, including the popular
SPC-type water models69,70. The accuracy of the LES BEC based on qi ¼ffiffiffiffiffiffi
ε1

p
qlesi provides a “smoking-gun” validation of the MDEC theory. In

addition, our approach is a cleanerway to use the charge scaling framework,
as the flexible charges are learned from ab initio data. In comparison, the
empirical force fields have the scaled charges and other parameters fitted at
the same time to experimental data, which means the errors in describing
the electrostatic interactions can be partially canceled by tuning other non-
bondedparameters and vice versa, so the resulting charges are less reflective
of the true underlying electrostatics. Moreover, the LES framework assigns
flexible charges based on local atomic environments. Such environment-
dependent charges are more expressive than the fixed charges in empirical
force fields. For example, the same LES model is capable of predicting BEC
tensors for dramatically different phases of water, including isolating ice,
superionic ice, and ionic water (Fig. 2). It is difficult to imagine a fixed-
charge model to match this level of expressiveness.

Third, we derive the Born effective charge tensorZ�
i of each atom from

the predicted unscaled charges q, by taking the derivative of the total
polarization P with respect to atomic positions. For periodic-boundary-
condition systems, where P is not well-defined, we develop a generalized
formulation (Eq. (9)). Unlike theDFTpartial charge, which suffers from the
lack of a unified definition, the BEC tensors are physical observables. The
physicality of the BECs and the value of their predictions are already
recognized in previous machine learning studies that directly fit to this
tensorial quantity28,29. The fact that the LES BEC tensors align well with the
DFT values proves that the LES charges are physical and capable of cap-
turing the electric response of the system.Moreover, the link between q and

Z�
i gives the option to trainorfinetune theMLIPusingDFTBECs, e.g., aswe

did for the water, the superionic water, and the PbTiO3 system in the
Methods section. Successful predictionofBECs is also practically useful, as it
can be used to predict a number of electrical response propertie,s such as IR
and conductivity. It also provides the linear response of forces to an applied
electric field (Eq. (1)), enabling straightforward incorporation of external
fields in MLIP molecular dynamics simulations.

We demonstrated the framework on a diverse set of complex bulk
systems, including liquid water, ionic high-pressure water, superionic water
ice, insulating ice X, and ferroelectric PbTiO3. The LES predicted Z* are
largely in good agreement with DFT, even when trained only on energies
and forces, with further improvement possible by explicitly finetuning on
DFT dipoles or BEC tensors during the training.While this inference-based
approach may result in a higher prediction error for the BEC tensors
compared to models that directly predict these tensorial quantities28,29,64, it
provides a more unified framework by demonstrating that electrical
response is fundamentally encoded within the potential energy surface and
can be learned solely from energies and forces. As the electrical response
predictions come solely from the long-range LES augmentation, any short-
rangeMLIP architecture can be used. The possibility to predict BEC tensors
might also extend to other long-range MLIP methods that rely on atomic
partial charges10–13, although this remains to be tested.

Moreover, the avoidance of training on DFT BEC tensors, which need
to be computed fromcostlyDFPTcalculations,makes our approach feasible
for any standardMLIP training setwith only energy and force labels. This is
particularly convenient for building universal MLIPs that are generally
applicable across the periodic table. Notably, the model generalizes well
across different phases and thermodynamic conditions, as seen in high-
pressurewater (Fig. 2). The framework also enables quantitative predictions
of key electrical response properties, such as the IR spectra of water, ionic
conductivity in high-pressure water, and the P-E hysteresis loop in PbTiO3.

To conclude, this paper resolves a critical limitation of state-of-the-art
machine learning interatomic potentials: their inability to intrinsically pre-
dict electrical response properties. By rigorously linking the latent charges to
the experimentallymeasurable BECs, we bridge the gap betweenMLIPs and
the electrostatics in quantum mechanical systems. Extensions to interfacial
systems are possible and will be a part of our future work71. Our framework
provides a systematic approach to develop and refine MLIPs for modeling
polarizable systems under external fields that can be time or space-depen-
dent, unlocking numerous applications such as electrolyte design, modeling
electrochemical interfaces, piezoelectrics, and pyroelectrics.

Methods
Water
The RPBE-D3 bulk water dataset contains energies and forces of 654 con-
figurations (64watermolecules in each snapshot), whichwere generated via
an on-the-fly learning scheme from MD trajectories at different
temperatures28. The original MLIP trained on this RPBE-D3 data from
ref. 28 has an RMSE of 0.8 meV/atom and 60 meV/ Å for energies and
forces, respectively. Reference 28 also provided an additional RPBE-D3
dataset of 100 configurations that were separately collected from NVT
simulations at experimental density, and 298.2 K. This set includes Born
effective charges in addition to energies and forces.Wewill refer to this set as
RPBE-D3 + BEC.

We trained four versions of CACE-LR: (1) trained solely on energies
and forces with a cutoff radius rcut = 5.5Å using RPBE-D3 data, (2) trained
solely on energies and forces with rcut = 4.5 Å using RPBE-D3 data, (3)
trained solely on energies and forces with a smaller dataset and rcut = 4.5Å
using RPBE-D3+ BEC data, and (4) trained on energies, forces, and Born
effective charges with a smaller dataset and rcut = 4.5 Å using RPBE-D3+
BEC data. For the CACE representation, we used 6 trainable Bessel radial
functions, c = 12, ‘max ¼ 3, νmax ¼ 3, Nembedding = 2, no message passing,
1-dimensional hidden variable, σ = 1 Å, and kc = π (dl = 2 Å).

Table 1 summarizes the number of configurations in each dataset,
along with the applied cutoff settings and the corresponding test RMSE
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values for energies, forces, and Born effective charge (BEC) tensors. BEC
metrics were evaluated on the same 100 water configurations used in Fig. 1.

DFPT calculations with the RPBE-D3 functional using VASP predict
the high-frequency permittivity (ε∞) of water at experimental density and
room temperature to be 1.83. We use this value when converting LES
charges qles to the free atomic charges q. Such value is very close to the
experimental value of 1.78 for water (with the refractive index of water of
1.333 being the square root of this value).

Figure 5 compares the reference DFT and LES BEC predicted by the
model trained on BEC (version 4) for the same 100 water configurations
used in Fig. 1. As expected, training directly on BEC data improves agree-
ment between LES and reference DFT results, although the improvement is
modest. This indicates that while prediction accuracy can be further
enhanced by training with BEC data, the potential trained exclusively on
energies and forces (version 2, Fig. 1) already exhibits sufficiently high
accuracy. In the main text, all the reported results are from the version 2).

We performed equilibrium NVT simulations in ASE at a density of
0.997 g/cm3 and 300 K for a system of 64 water molecules, employing the

Nosé-Hoover thermostat. The finite-field MD simulations followed the
same setups. As the sum of Z* is not exactly zero due to the small residual
prediction errors, in the finite-field MD simulations, the total mean forces
on all atoms were removed every step to eliminate the non-zero center-of-
mass velocities arising under the electric field. Although such mean forces
do not affect any physical observables, they can interfere with the ther-
mostat and the visualizationof the trajectories. In all cases,MDsimulations
were conducted for 50 ps with a time step of 0.25 fs. IR spectra were
calculated from the MD trajectories employing Eq. (12), which
involves computing the polarization current of the system,
JðtÞ ¼ PN

i¼1Z
�
i ðtÞ � viðtÞ. A Gaussian filter was applied following the

Fourier transform, and each IR spectrum was normalized by its
integrated area.

Figure 6 shows that the IR spectrum calculated using fixed nominal
charges does not reproduce peak intensities and shapes well. Moreover, it
completely fails to capture the hydrogen-bond stretching mode at
approximately 200 cm−1. These results highlight the importance of accu-
rately predicting Born effective charges to obtain detailed and reliable IR
spectra.

Figure 7 presents computational IR spectra of liquid water obtained
using four differently trained potentials (Table 1). All four versions of the
CACE-LR potentials exhibit consistent peak positions and intensity
trends, closely matching the experimental IR spectrum. Notably, these
potentials differ in training dataset size, cutoff radius, and inclusion of
Born effective charges, demonstrating robustness and reliability across
varying training conditions.

Fig. 5 |Comparison of DFT BEC and LES BEC using the version (4) potential that is
trained 100 structures with energy, forces, and BEC.

Fig. 6 | IR spectrum computed using fixed nominal charges (qH = + 1 for
hydrogen and qO = − 2 for oxygen) based on the MD trajectory generated with
model version (2). The experimental IR spectrum42 is included as gray shading for
reference.

Fig. 7 | Water IR spectrum with four differently trained MLIP. Comparison of
computational IR spectra of liquid water obtained from four differently trained
MLIPs based on RPBE-D3 data. The experimental IR spectrum42 is included as gray
shading for reference.

Table 1 | Performance of four versions of the CACE-LR
potentials on each test set

Version 1 2 3 4
E+F E+F E+F E+F+BEC

Nconfig 654 654 100 100
rcut(Å) 5.5 4.5 4.5 4.5

E 0.22 0.25 0.26 0.19

F 18.88 21.01 23.84 25.34

Z�
αα 0.11 0.06 0.05 0.04

Z�
αβ 0.04 0.04 0.05 0.03

Z�
αα R

2 0.97 0.99 0.99 1.00

Z�
αβ R

2 0.90 0.90 0.89 0.94

Reportedmetrics are test rootmean squared errors (RMSE)s: inmeV/atom for energy (E),meV/Å for
forces (F), and e for Born effective charge (BEC) tensors, separated into diagonal (Z�

αα ) and off-

diagonal (Z�
αβ with α ≠ β) components. R2 coefficients for BEC components are also included.
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Superionic water
The original training set of superionicwater has 17,516 configurations (90%
train/10% test split), spanning a wide range of thermodynamic conditions
(300 K-15,000 K, 1 g/cm3-7 g/cm3), and it was trained using N2P272 with a
cutoff of 12 Bohr, yielding test RMSE errors of 14meV/atom i n energy, and
740 meV/A in forces49.

We randomly selected 5000 configurations (90% train/10% test split)
from the original dataset. For the CACE-SR part, we used rcut = 3.5 Å, 6
Bessel radial functions, c = 12, ‘max ¼ 3, νmax ¼ 3, Nembedding = 3, and 1
message passing layer. The LES model uses a one-dimensional hidden
variable, σ = 1Å, and kc = π (dl = 2Å). The test RMSEs are 7 meV/atom in
energy, and 327 meV/A in forces.

For comparing BECs, we randomly selected 100 configurations of 54
water molecules at 3 g/cm3 and 3000 K from DFT MD trajectories from
ref. 51. We also selected 100 uncorrelated configurations of 54 water
molecules fromMLPMDsimulations at 2 g/cm3 and 2000K, and at 4 g/cm3

and 1000 K. We employed VASP to calculate the Born effective charge
tensor for these configurations usingDFPT, with a plane-wave cutoff of 400
eV at the Baldereschi point, consistent with ref. 51.

We further finetuned the CACE-LR model using the energy, forces,
and BEC values of the 100 configurations (90% train/10% test split) at

2 g/cm3 and 2000 K. Before the finetuning, the RMSE errors in energy,
forces, and BEC are 4.5 meV/atom, 103 meV/A, and 0.136 e, respectively.
After the finetuning, the test RMSE errors reduced to 0.67 meV/atom and
101 meV/A, and 0.09 e, respectively.

For computing conductivities, we used this finetuned model to per-
form equilibrium NVT simulations in ASE at 2 g/cm3 and 2000 K for a
system of water molecules, employing the Nosé-Hoover thermostat. The
timestepwas set to 0.3 fs, and the simulation length is 120 ps (400,000 steps)
following 3 ps of equilibration. The finite-field MD simulations follow a
similar setup, except that a shorter simulation time of 30 ps (100,000 steps)
was used.

PbTiO3 perovskite
To fit the CACE-LR potential, we used the original training (4432 config-
urations) and test datasets (600 configurations) from ref. 58 and randomly
allocated 10% of the original training data as the validation set. Both the
training and test datasets contain the SCAN-DFTcalculated energy and forces
of PbTiO3 atomic configurations fromDP-GENMD simulations at 300/600/
900K, covering the cubic (ferroelectric) and tetragonal (paraelectric) phases in
3 × 3 × 3PbTiO3 unit cells (135 atoms). For the CACE-SR part, we used rcut =
6.0Å, 6 Bessel radial functions, c=12, ‘max ¼ 3, νmax ¼ 3,Nembedding = 3, and
1 message passing layer. The LES model uses a one-dimensional hidden
variable,σ=1Å, andkc=π (dl=2Å).TheCACE-LRpotential trainedonlyon
SCAN DFT energy and forces denotes E+ Fmodel.

To evaluate the LES BECs against DFT BECs, we randomly selected
443 atomic configurations from the training set for DFT calculations. These
configurations were further split into train/val/test sets with a ratio of 8:1:1
for fine-tuning purposes. The test set comprised 45 atomic configurations
and was used for comparison in Fig. 4. For computing LES BECs, we
replicated the supercells of these configurations 3 × 3 × 3, to eliminate the
finite-size effects due to finite k. As a proof of concept, we performedDFPT
calculations for the BEC tensors at the generalized gradient approximation
(GGA) level of accuracy. Given that BECs are physical observables and the
SCAN functional is not currently supported for DFPT, we believe using the
PBE functional for the reference calculation is a rational andpractical choice
under these constraints. According to our test, the LEC-BEC derived from
SCAN-DFT demonstrates good agreement with the PBE-DFT BEC. The E
+ F model was further fine-tuned with the PBE-DFT energy, forces, and
BEC. Figure 8 displays the comparison after fine-tuning, which demon-
strates a marginal improvement from an RMSE of 0.586 e to 0.384 e for
diagonal components and from 0.257 e to 0.254 e for off-diagonal com-
ponents of the BEC tensors when comparing the E + Fmodel to the fine-
tunedmodel. The DFPT calculations were performed using VASP with the
PBE functional73, a Gamma-centered k-point, and a plane-wave energy
cutoff of 680 eV. The DFT calculations were performed on 3 × 3 × 3 the
PbTiO3 unit cell, with a convergence of 10−6 eV in total energy.

For computing the ferroelectric properties of PbTiO3, we employed
the E+ Fmodel to perform equilibriumNPT simulations using ASE at P
= P0 + Pa with the Nosé-Hoover thermostat. Here, P0 represents the
ambient pressure (1 bar) and Pa = 2.8 GPa is an applied correction to
compensate for the DFT overestimation of the c/a ratio as suggested in
ref. 74. The simulation structure was initialized with a 9 × 9 × 9 supercell
of the cubic PbTiO3 unit cell (space group Pm3�m). The MD simulations
were conducted with a timestep of 2 fs. For simulations without external
electric fields, we performed 100 ps production runs following 10 ps of
equilibration. The finite-field MD simulations followed a similar proto-
col, except that a shorter simulation time of 50 ps was used.

To estimate the high-frequency dielectric constant ε∞, we performed
small-scaleMDsimulationswith a 3 × 3× 3 supercell atT=300K to sample
equilibrated structures. These atomic configurations were subsequently
analyzed using DFPT to obtain the microscopic dielectric constant. We
calculated the averaged diagonal value ε∞ = 1/Niα∑iαεαα = 7.532 of the
dielectric constant tensor, where the standard deviation of σ(ε∞) = 0.1 from
different snapshots at the same thermodynamic condition is small. Note
that although we used 50 snapshots to obtain the average ε∞, one snapshot

Fig. 8 | Finetuned BECs for the PbTiO3 and external field response of the
paraelectric phase. aComparison ofDFTBEC and LESBECusing the potential that
is trained 354 structures with energy, forces, and BEC. b P-E hysteresis loop com-
puted fromCACE-LRMD simulations under different external electric fields for the
paraelectric phase at 1000 K.
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would have been sufficient due to the small σ(ε∞) This pre-computed,
averaged scalar value was then used as the fixed scaling factor of

ffiffiffiffiffiffi
ε1

p
for

computing the polarization of PbTiO3 in the large-scale MD simulations
presented in Fig. 4a, c, d, e, and no additional DFPT calculation is needed.

For the plots in Fig. 4b–e, a parity transformation of−1 was applied to
align the BEC and polarization direction with conventional notation.

In addition,we calculated theP-E curve for theparaelectric phase atT=
1000 K. The MD simulations revealed the absence of spontaneous polar-
ization at zero electric field, and no hysteresis was observed for the para-
electric phase (see Fig. 8b).

Notes on implementation
The LES method was implemented in the CACE code, https://github.com/
BingqingCheng/cace. In practice, we use an Atomwisemodule to predict
an internal hidden charge qrawi ¼ QϕðBiÞ based on a set of local invariant
representations Bi. The long-range energy is then computed using an
Ewaldmodule as

Elr ¼ 2π
V

X
0 < k < kc

1

k2
e�σ2k2=2j

XN

i¼1
qrawi eik�ri j2: ð14Þ

To obtain the LES charges qles in the unit of [e], the internal hidden
charges qraw should be scaled by a factor of 1/9.48933, due to the internal
normalization factor used (1/2ε0 = 1).

We then use a Polarizationmodule to compute the polarization
of the system based on qrawi . If the system is finite, the non-periodic
expression (Eq. (7)) is used, and if the system is periodic, the generalized
polarization in Eq. (9) is used. One can add a normalization factor in this
module. The default setting is to remove the mean average charge before
computing the polarization. If the factor of

ffiffiffiffiffiffi
ϵ1

p
=9:48933 is used, the

correct magnitude of the polarization will be recovered.
We then use the Grad module to take the derivative of polarization

with respect to atomic positions using autograd (see Eq. (8)). For finite
systems, this step already provides the BECs. For periodic systems, however,
weneed to use theDephasemodule to remove the complex phase factor in
Eq. (10), inorder toget the real-valuedBECs.Example scripts for computing
BECs are provided in the SI repository.

Data availability
The training sets, training scripts, BEC inference scripts, and trained CACE
potentials are available at https://github.com/BingqingCheng/LES-BEC.

Code availability
The CACE package is publicly available at https://github.com/
BingqingCheng/cace.
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