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A Simpler and Parallelizable U (
√

log n)-Approximation
Algorithm for Sparsest Cut

VLADIMIR KOLMOGOROV, Institute of Science and Technology Austria (ISTA),
Klosterneuburg, Austria

Currently, the best known tradeoff between approximation ratio and complexity for the Sparsest Cut
problem is achieved by the algorithm in Sherman [FOCS, 2009]: It computes $ (

√
(log=)/Y)-approximation

using $ (=Y log$ (1) =) maxflows for any Y ∈ [Θ(1/log=),Θ(1)]. It works by solving the SDP relaxation of
Arora et al. [STOC, 2004] using the Multiplicative Weights (MW) Update algorithm of Arora and Kale [JACM,
2016]. To implement one MW step, Sherman approximately solves a multicommodity flow problem using
another application of MW. Nested MW steps are solved via a certain “chaining” algorithm that combines
results of multiple calls to the maxflow algorithm.

We present an alternative approach that avoids solving the multicommodity flow problem and instead
computes “violating paths.” This simplifies Sherman’s algorithm by removing a need for a nested application of
MW and also allows parallelization: We show how to compute$ (

√
(log=)/Y)-approximation via$ (log$ (1) =)

maxflows using $ (=Y ) processors.
We also revisit Sherman’s chaining algorithm and present a simpler version together with a new analysis.

CCS Concepts: • Theory of computation→ Parallel algorithms;
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1 Introduction
Partitioning a given undirected graph � = (+ , �) into two (or more) components is a fundamental
problem in computer science with many real-world applications, ranging from data clustering and
network analysis to parallel computing and very large-scale integration design. Usually, desired par-
titions should satisfy two properties: (i) the total cost of edges between different components should
be small, and (ii) the components should be sufficiently balanced. For partitions with two compo-
nents ((, (̄) this means that � ((, (̄) should be small and min{|( |, |(̄ |} should be large, where � ((, (̄)
is the total number of edges between ( and (̄ (or their total weight in the case of weighted graphs).

One of the most widely studied versions is the Sparsest Cut problem whose goal is to minimize
the ratio � ((,(̄ )

min{ |( |, |(̄ | } (called edge expansion) over partitions ((, (̄). Another well-known variant is
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46:2 V. Kolmogorov

the 2-Balanced Separator problem: minimize � ((, (̄) over 2-balanced partitions, i.e., partitions
satisfying min{|( |, |(̄ |} ≥ 2= where = = |+ | and 2 ∈ (0, 12 ) is a given constant.

Both problems are NP-hard, which forces one to study approximation algorithms, or pseu-
doapproximation algorithms in the case of Balanced Separator. (An algorithm for Balanced
Separator is said to be a _-pseudoapproximation if it computes a 2′-balanced partition ((, (̄)
whose cost � ((, (̄) is at most _ times the optimal cost of the 2-Balanced Partition problem, for
some constants 2′ ≤ 2 .) Below we discuss known results for the Sparsest Cut problem. They also
apply to Balanced Separator: in all previous works, whenever there is an $ (_)-approximation
algorithm for Sparsest Cut then there is an $ (_)-pseudoapproximation algorithm for Balanced
Separator with the same complexity.

The first nontrivial guarantee was obtained by Leighton and Rao [16], who presented a$ (log=)-
approximation algorithm based on a certain linear programming relaxation of the problem. The
approximation factor was improved to $ (

√
log=) in another seminal paper by Arora et al. [4] who

used a Semidefinite Programming (SDP) relaxation. Arora et al. [2] showed how to (approxi-
mately) solve this SDP in $̃ (=2) time using multicommodity flows while preserving the $ (

√
log=)

approximation factor. Arora and Kale later developed in [3] a more general method for solving
SDPs that allowed different tradeoffs between approximation factor and complexity; in particular,
they presented an $ (log=)-approximation algorithm using $ (log$ (1) =) maxflow computations
and a simpler version of $ (

√
log=)-approximation with $̃ (=2) complexity.

The algorithms in [2, 3] were based on the Multiplicative Weights (MW) Update method.
An alternative approach based on the so-called cut-matching game was proposed by Khandekar
et al. [11]; their method computes $ (log2 =)-approximation for Sparsest Cut using $ (log$ (1) =)
maxflows. This was later improved to $ (log=)-approximation by Orecchia et al. [19].

The line of works above culminated in the result of Sherman [23], who showed how to com-
pute $ (

√
(log=)/Y)-approximation for Sparsest Cut using $ (=Y log$ (1) =) maxflows for any

Y ∈ [Θ(1/log=),Θ(1)]. This effectively subsumes previous results, as taking Y = Θ(1/log=) yields
an $ (log=) approximation using $ (log$ (1) =) maxflows, while a sufficiently small constant Y
achieves an $ (

√
log=)-approximation and improves on the $̃ (=2) runtime in [2, 3]. In particular,

using the recent almost linear-time maxflow algorithm [8] yields$ (=1+Y) complexity for$ (
√
log=)-

approximation. (As usual, we assume in this article that graph � has< = $ (= log=) edges. This
can be achieved by sparsifying the graph using the algorithm of Benczúr and Karger [5], which
with high probability preserves the cost of all cuts up to any given constant factor.)
Our Contributions. In this article we present a new algorithm that computes an $ (

√
(log=)/Y)

approximation for Sparsest Cut w.h.p. whose expected runtime is $ ((=Y log$ (1) =) ·)maxflow) for
given Y ∈ [Θ(1/log=),Θ(1)], where )maxflow = Ω(=) is the runtime of a maxflow algorithm on a
graph with = nodes and $ (= log=) edges. It has the following features:

(i) It simplifies Sherman’s algorithm in two different ways.
(ii) The algorithm is parallelizable: it can be implemented on $ (=Y) processors in expected

parallel runtime$ ((log$ (1) =) ·)maxflow) (in any version of the PRAM model), where “parallel
runtime” is defined as the maximum runtime over all processors.

(iii) To prove algorithm’s correctness, we introduce a new technique, which we believe may
yield smaller constants in the $ (·) notation. Note that there are numerous papers that
optimize constants for problems with a constant factor approximation guarantee. We argue
that this direction makes just as much sense for the Sparsest Cut problem. The question
can be naturally formulated as follows: what is the fastest algorithm to compute �

√
log=-

approximation for a given constant �? Alternatively, for maxflow-based algorithms one may

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 46. Publication date: September 2025.
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ask what is the smallest � =�Y such that there is a �
√
log=-approximation algorithm that

uses $̃ (=Y) maxflow, for given Y > 0. Unfortunately, it is impossible to directly compare our
constant with that of Sherman: we believe that the paper [23] contains a numerical mistake
(see the footnote 3 in Section 3.4). An additional complication is that optimizing the constants
may not be an easy task. Due to these considerations, we formulate our claim differently:
our proof technique should lead to smaller constants since our analysis is more compact and
avoids case analysis present in [23].

To explain details, we need to give some background on Sherman’s algorithm. It builds on the
work of Arora and Kale [3] who approximately solve an SDP relaxation using a (matrix) MW
Update algorithm. The key subroutine is to identify constraints that are violated by the current
primal solution. Both [3] and [23] do this by solving a multicommodity flow problem. Arora and
Kale simply call Fleischer’s multicommodity flow algorithm [9], while Sherman designs a more
efficient customized method for approximately solving this flow problem using another application
of MW. Our algorithm avoids solving the multicommodity flow problem and instead searches
for “violating paths,” i.e., paths that violate triangle inequalities in the SDP relaxation. We show
that this can be done by a simple randomized procedure that does not rely on MW. Furthermore,
independent calls to this procedure return violating paths that are mostly disjoint, which allows
parallelization: we can compute many such paths on different processors and then take their union.

In order to compute violating paths, we first design procedure Matching(D) that takes vector
D ∈ R3 and outputs a directed matching on a given set ( ⊂ R3 with |( | = Θ(=). (It works by
calling a maxflow algorithm and then postprocessing the flow.) The problem then boils down
to the following: given vector D randomly sampled from the Gaussian distribution, we need to
sample vectors D1, . . . , D so that set Matching(D1) ◦ . . . ◦ Matching(D ) contains many paths
(G0, G1, . . . , G ) with “large stretch,” i.e., with 〈G − G0, D〉 ≥ Ω( ). (Here “◦” is the operation that
“chains together” paths in a natural way.) This was also a key task in [23], where it was needed for
implementing one inner MW step. We refer to an algorithm that samples vectors D1, . . . , D as a
chaining algorithm.

Sherman’s chaining algorithm can be viewed as an algorithmization of the proof in the original
ARV paper [4] and its subsequent improvement by Lee [15].We present a simpler chaining algorithm
with a very different proof; as stated before, the new proof may yield smaller constants.

Concurrent Work. After finishing the first draft of the paper [12], we learned about a very recent
work by Lau et al. [14], which considers a generalization of Sparsest Cut to directed graphs. The
authors presented an algorithm which, in the case of undirected graphs, also simplifies Sherman’s
algorithm by computing violating paths instead of solving a multicommodity flow problem. Unlike
our paper, [14] does not consider parallelization and uses Sherman’s chaining algorithm as a
black box.

Another very recent paper by Agarwal et al. [1] presented a parallel algorithm for approxi-
mate maxflow with polylogarithmic depth and near-linear work in the PRAM model. Using this
algorithm, they presented, in particular, an $ (log3 =)-approximation Sparsest Cut algorithm
with polylogarithmic depth and near-linear work (by building on the work [18] who showed
how to replace exact maxflow computations in the cut-matching game [11, 19] with approximate
maxflows).
Other Related Work. The problem of computing a cut of conductance $̃ (

√
q) assuming the

existence of a cut of conductance q ∈ [0, 1] (with various conditions on the balancedness) has been
considered in [13, 20, 22]. Papers [13, 22] presented distributed algorithms for this problem (in the
CONGEST model), while [21] observed that the BalCut algorithm in [20] is parallelizable: it can
be implemented in near-linear work and polylogarithmic depth. Note that q can be much smaller

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 46. Publication date: September 2025.



46:4 V. Kolmogorov

than 1. Chang and Saranurak [7] presented a distributed CONGEST algorithm for computing an
expander decomposition of a graph.

2 Background: Arora–Kale Framework
We will describe the algorithm only for the 2-Balanced Separator problem. As shown in [3], the
Sparsest Cut problem can be solved by a very similar approach, essentially by reducing it to the
2-Balanced Separator problem for some constant 2; we refer to [3] for details.1

Let 24 ≥ 0 be theweight of edge 4 in� .The standard SDP relaxation of the 2-Balanced Separator
problem can be written in vector form as follows (see [4]):

min
∑

4={8, 9 }∈�
24 | |E8 − E 9 | |2, (1a)

| |E8 | |2 = 1 ∀8, (1b)

| |E8 − E 9 | |2 + ||E 9 − E: | |2 ≥ ||E8 − E: | |2 ∀8, 9, :, (1c)∑
8< 9

| |E8 − E 9 | |2 ≥ 42 (1 − 2)=2. (1d)

Here, E8 ∈ R= for each node 8 ∈ + . The optimum of this SDP divided by 4 is a lower bound
on the minimum 2-Balanced Separator problem. Arora and Kale considered a slightly different
relaxation:

min
∑

4={8, 9 }∈�
24 | |E8 − E 9 | |2 min� • -, (2a)

| |E8 | |2 = 1 -88 = 1 ∀8, (2b)
ℓ (? )∑
9=1

| |E? 9 − E? 9−1 | |2 ≥ ||E?ℓ (? ) − E?0 | |2 )? • - ≥ 0 ∀?, (2c)∑
8, 9∈( :8< 9

| |E8 − E 9 | |2 ≥ b=2  ( • - ≥ b=2 ∀( (2d)

- � 0. (2e)

Here, ? stands for a path ? = (?0, . . . , ?ℓ (? ) ) in graph � , notation “∀(” means all subsets ( ⊆ + of
size at least (1 − 2/4)=, and b = 32 − 422. Matrix - is defined via - = +)+ where + is the = × =
matrix with columns E1, . . . , E= . We have� = L(�) and )? = L(�? ) − L(� (?0,?ℓ (? ) ) ) where L(·) is
the Laplacian of the corresponding graph and �@ for a path @ is the undirected unweighted graph
containing all edges of @. Finally,  ( (8, 8) = |( | − 1 for 8 ∈ ( ,  ( (8, 9) = −1 for distinct 8, 9 ∈ ( , and
 ( (8, 9) = 0 in all other cases.

Note that triangle inequalities (1c) imply path inequalities (2c), while constraints (1b) and (1d)
imply constraints (2d) (see [3]). SDP (Equation (2)) may be looser than Equation (1), but its optimum
divided by 4 is still a lower bound on the minimum 2-Balanced Separator problem.

In the sequel we will use a slight modification of Equation (2) in which constraints (2c) are
enforced for all sequences ? = (?0, . . . , ?ℓ (? ) ) of distinct nodes in � , and not just paths in � . This
modification can only make the relaxation stronger; constraints (2c) are now equivalent to the
triangle inequalities in Equation (1c).

The dual of Equation (2) is as follows. It has variables ~8 for every node 8 , 5? for every path ? ,
and I( for every set ( of size at least (1 − 2/4)=. Let diag(~) be the diagonal matrix with vector ~
1 These details are actually not included in the journal version [3], but can be found in [10] or in https://www.cs.
princeton.edu/∼arora/pubs/mmw.pdf, Appendix A.
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on the diagonal:

max
∑
8

~8 + b=2
∑
(

I( , (3a)

diag(~) +
∑
?

5?)? +
∑
(

I( ( � �, (3b)

5? , I( ≥ 0 ∀?, ( . (3c)

2.1 Matrix MW Algorithm
To solve the above SDP, [3] converts it to a sequence of feasibility problems. First, an interval
[!,* ] is computed containing an optimal value of the objective. One can use, for example, the
algorithm in [19] to get such an interval with * /! = $ (log=) via $ (log$ (1) =) maxflows. Fix a
value U ∈ [!,* ] and replace the objective (2a) with the constraint:

� • - ≤ U. (2a′)

It suffices to try $ (log(* /!)) =$ (log log=) values of threshold U if we are willing to accept the
loss by a constant factor in the approximation ratio.

Let (2′) be the system consisting of constraints (2a′) and (2b)–(2e). To check the feasibility of
this system, Arora and Kale apply the Matrix MW algorithm which we review in Appendix A.
The main computational subroutine is procedure Oracle that, given current matrix - of the form
- =+)+ , + ∈ R=×= , should either (i) find an inequality violated by - , or (ii) find a Θ(1)-balanced
cut of value at most ^U where Θ(^) is the desired approximation factor. Working directly with
matrix + would be too slow (even storing it requires Θ(=2) space and thus Ω(=2) time). To reduce
complexity, Arora and Kale work instead with matrix +̃ ∈ R3×= , 3 � = so that - ≈ -̃

def
= +̃) +̃ .

Let E1, . . . , E= ∈ R= and Ẽ1, . . . , Ẽ= ∈ R3 be the columns of + and +̃ , respectively. Below we give a
formal specification of Oracle. Note that the oracle has access only to vectors Ẽ1, . . . , Ẽ= .

Input. Vectors E1, . . . , E= ∈ R= and Ẽ1, . . . , Ẽ= ∈ R3 satisfying:

| |Ẽ8 | |2 ≤ 2 ∀8, (4a)∑
8, 9∈+ :8< 9

| |Ẽ8 − Ẽ 9 | |2 ≥ b=2

4 , (4b)

| | |Ẽ8 | |2 − ||E8 | |2 | ≤ W ( | |Ẽ8 | |2 + g) ∀8, (4c)

| | |Ẽ8 − Ẽ 9 | |2 − ||E8 − E 9 | |2 | ≤ W ( | |Ẽ8 − Ẽ 9 | |2 + g) ∀8, 9, (4d)

for some constants W, g > 0. Let - =+)+ and -̃ = +̃) +̃ where + ∈ R=×= and +̃ ∈ R3×= are the
matrices with columns {E8 } and {Ẽ8 }, respectively.
Output. Either (i) variables 5? ≥ 0 and symmetric matrix � � � such that:(∑

?
5?)? − �

)
• - ≤ −U, (5)

or (ii) a Θ(1)-balanced cut of value at most ^U .

The number of iterations of the MW algorithm will depend on the maximum possible spectral
norm of matrix U

=
� +∑

? 5?)? −� . This parameter is called the width of the oracle and will be denoted
as d . We will use the bound d = | | U

=
� + ∑

? 5?)? − � | | ≤ U
=
+ ||∑? 5?)? − � | |. The algorithm has the

following guarantee (see Appendix A for details).
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46:6 V. Kolmogorov

Theorem 2.1 [3]. If in the MW algorithm the first ) =

⌈
4d2=2 ln=

n2

⌉
calls to Oracle output option (i)

then the optimum value of SDP (Equation (2)) is at least U − n .

2.2 Oracle Implementation
To implement the oracle, Arora and Kale interpret values 5? as a multicommodity flow in graph � ,
i.e., a flow that sends 5? units of demand between the endpoints of ? . Given this flow, introduce the
following notation. Let 54 be the flow on edge 4 (i.e., 54 =

∑
?34 5? ). Let 38 9 be the total flow between

nodes 8 and 9 (i.e., 38 9 =
∑
?∈P8 9 5? where P8 9 is the set of paths from 8 to 9 ). Finally, let 38 be the

total flow from node 8 (i.e., 38 =
∑
9 38 9 ). Given parameter c > 0, a valid c-regular flow is one that

satisfies capacity constraints: 54 ≤ 24 for all edges 4 and 38 ≤ c for all nodes 8 .
The oracle in [3] computes a c-regular flow 5 for some parameter c and sets � to be the Laplacian

of the flow graph (i.e., the weighted graph where edge 4 has weight 54 ). Capacity constraints then
ensure that � � � (because � − � is the Laplacian of the weighted graph with weights 24 − 54 ≥ 0
on edges 4 ∈ �). Let � be the Laplacian of the demand graph (i.e., the complete weighted graph
where edge {8, 9} has weight 38 9 ). It can be checked that

∑
? 5?)? = � −� . Thus, the oracle needs to

ensure that � • - ≥ U , or equivalently:∑
8< 9

38 9 | |E8 − E 9 | |2 ≥ U. (6)

All degrees in the demand graph are bounded by c , therefore | |� | | ≤ 2c . Thus, the width of the
oracle can be bounded as | |d | | ≤ U

=
+ ||� | | ≤ U

=
+ 2c .

Below we summarize three known implementations of the oracle. The first two are due to Arora
and Kale [3] and the third one is due to Sherman [23].

(1) Using $ (1) expected maxflow computations, the oracle computes either a c-regular flow
with c =$ ( U log=

=
) or a Θ(1)-balanced cut of capacity at most $ (U log=).

(2) Using $ (1) expected multicommodity flow computations, the oracle computes either a
c-regular flow with c =$ ( U

=
) or a Θ(1)-balanced cut of capacity at most $ (U

√
log=).

(3) Let Y ∈ [$ (1/log=),Ω(1)]. Using$ (=Y log$ (1) =) expected maxflow computations, the oracle
either computes a c-regular flow with c =$ ( U

Y=
), or a Θ(1)-balanced cut of capacity at most

$

(
U

√
log=
Y

)
.

By the discussion in Section 2.1, these oracles lead to algorithms with approximation factors

$ (log=), $ (
√
log=), and $

(√
log=
Y

)
, respectively.

To conclude this section, we discuss how to verify condition (6) in practice. (Recall that we only
have access to approximations Ẽ8 of vectors E8 .)

Proposition 2.2. Suppose parameters g,W in Equations (4c) and (4d) satisfy g ≤ 2 and W ≤ U
20=c .

Then condition: ∑
8< 9

38 9 | |Ẽ8 − Ẽ 9 | |2 ≥ 2U, (7)

implies condition (6).

Proof. Denote I8 9 = | |E8 − E 9 | |2 and Ĩ8 9 = | |Ẽ8 − Ẽ 9 | |2. We have | |Ẽ8 | |2 ≤ 2, | |Ẽ 9 | |2 ≤ 2 and
hence Ĩ8 9 ≤ 8. By Theorem A.2 we then have |Ĩ8 9 − I8 9 | ≤ W (Ĩ8 9 + g) ≤ 10W . This implies that∑
8< 9 38 9 |Ĩ8 9 − I8 9 | ≤ 10W · ∑8< 9 38 9 ≤ 10W · 2=c ≤ U . The claim follows. �
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3 Our Algorithm
In this section, we present our implementation of the oracle. To simplify notation, we assume in
this section that vectors Ẽ8 for 8 ∈ + are unique and rename the nodes in + so that ẼG = G for each
G ∈ + . Thus, we now have + ⊆ R3 . The “true” vector in R= corresponding to G ∈ + is still denoted
as EG .

Recall that the oracles in [3, 23] do one of the following:

—output a cut;
—output multicommodity flows 5? satisfying Equation (6), and set � to be its flow graph.

Our oracle will use a third option described in the lemma below.

Lemma 3.1. Let" be a set of paths on + such that each ? ∈ " violates the path inequality by some
amount 1

2Δ > 0. In other words, we require that )? • - ≤ − 1
2Δ, or equivalently:

ℓ (? )∑
9=1

| |E? 9 − E? 9−1 | |2 ≤ ||E?ℓ (? ) − E?0 | |2 − 1
2Δ. (8)

Let G� and G� be respectively flow and demand graphs of the multicommodity flow defined by "
(where each path carries one unit of flow). Set 5? = 2U

|" |Δ for all ? ∈ " , 5? = 0 for ? ∉ " , and � = 0.

Then these variables give a valid output of the oracle with width d ≤ U
=
+ 4U (c�+c� )

|" |Δ where c� , c� are
the maximum degrees of G� ,G� , respectively.

Proof. We have � � � and (∑? )? − � ) •- ≤ ∑
? 5? · (− 1

2Δ) = −U , so condition (5) holds. It can
be checked that

∑
? 5?)? = 2U

|" |Δ (�̃ − �̃) where �̃ and �̃ are the Laplacians of respectively G� and
G� . Therefore, d = | | U

=
� + ∑

? 5?)? − � | | = | | U
=
� + 2U

|" |Δ (�̃ − �̃) | | ≤ | | U
=
� | | + 2U

|" |Δ ( | |�̃ | | + | |�̃ | |) ≤
U
=
+ 2U

|" |Δ (2c� + 2c� ). �

Recall that in the specification of the oracle we required paths ? to have distinct nodes (to make
the number of constraints finite). This does not cause problems for Lemma 3.1: if some path in"
does not satisfy this, then before applying the lemma we can shorten it while preserving endpoints
and condition (8).

The following proposition shows how to verify condition (8) for unobserved variables EG ∈ R=

using observed variables G ∈ R3 . Its proof is very similar to that of Proposition 2.2, and is omitted.

Proposition 3.2. Suppose parameters g,W in Theorem A.2 satisfy g ≤ 2 and W ≤ Δ
20( +1) for some

integer  ≥ 1. Then condition

ℓ (? )∑
9=1

| |? 9 − ? 9−1 | |2 ≤ ||?ℓ (? ) − ?0 | |2 − Δ (9)

implies condition (8), assuming that ℓ (?) ≤  .

Remark 1. Sherman [23] explicitly tries to (approximately) solve the multicommodity flow
problem: find valid flows {5? } in � with demands {3G~} that maximize

∑
G,~ 3G~ | |G − ~ | |2. This

is done by an iterative scheme via the MW framework. Using the option in Lemma 3.1 has the
following advantages over this approach.

(1) We can avoid another application of MW and thus simplify the algorithm.
(2) The oracle can be easily parallelized: we can compute different “violating paths” on different

processors and then take their union. (Of course, we still need to make sure that these paths
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46:8 V. Kolmogorov

are “sufficiently disjoint” so that the degrees of graphs G� ,G� and hence the oracle width
remain small.)

3.1 Correlated Gaussians and Measure Concentration
We writeD ∼ N to indicate thatD is a random vector in R3 with Gaussian independent components
D8 ∼ N(0, 1). Throughout the paper notation PrD [·] means the probability under distribution
D ∼ N . We write (D,D′) ∼ Nl for l ∈ [0, 1) to indicate that (D,D′) are random vectors in R3 × R3

such that for each 8 ∈ [3], pair (D8 , D′8 ) is an independent 2-dimensional Gaussian with mean (0, 0))

and covariance matrix
(
1 l

l 1

)
. We write D′ ∼l D to indicate that D′ is an l-correlated copy of D

[23], i.e., (D,D′) is generated according to (D,D′) ∼ Nl conditioned on fixed D. It can be checked
that for each 8 ∈ [3], D′8 is an independent Gaussian with mean l · D8 and variance 1 − l2. Note,
if (D,D′) ∼ Nl then D ∼ N and D′ ∼ N . Conversely, the process D ∼ N , D′ ∼l D generates pair
(D,D′) with distribution Nl . The same is true for the process D′ ∼ N , D ∼l D′.

The key property for obtaining an $ (
√
log=)-approximation algorithm is measure concentration

of the Gaussian distribution. This property can be expressed in a number of different ways; we will
use the following version.2

Theorem 3.3 [17]. Consider sets A ⊆ R3 , B ⊆ R3 with PrD [D ∈ A] = PrD′ [D′ ∈ B] = X . Then:

Pr(D,D′ )∼Nl [(D,D′) ∈ A × B] ≥ X2/(1−l ) .

Given a sequence of numbersl1, . . . , l:−1 ∈ [0, 1), we write (D1, . . . , D: ) ∼ Nl1,...,l:−1 to indicate
the following distribution: sample D1 ∼ N , then D2 ∼l1 D1, then D3 ∼l2 D2, . . ., then D: ∼l:−1 D:−1.
If l1 = . . . = l:−1 = l then we write N:

l instead of Nl1,...,l:−1 for brevity. Finally, if some values
of the sequence (D1, . . . , D: ) are fixed, e.g., (D1, D: ), then we write (D1, . . . , D: ) ∼ Nl1,...,l:−1 | (D1, D: )
to indicate that (D1, . . . , D: ) is obtained by sampling from Nl1,...,l:−1 conditioned on fixed values
(D1, D: ). In that case (D2, . . . , D:−1) are random variables that depend on (D1, D: ).

3.2 Procedure Matching(u)

In this section, we describe a procedure that takes vector D ∈ R3 and either outputs a directed
matching" on nodes+ or terminates the oracle. In this procedure, we choose constants 2′,Δ, f (to
be specified later), and denote:

c =
6U
2′=Δ

. (10)

Let us elaborate line 6. Given flow 5 ′ in� ′, we compute its flow decomposition and remove flow
cycles. Each path in this decomposition has the form ?′ = (B, ?, C) where ? = (G, . . . , ~) with G ∈ �,
~ ∈ �. For each such ? we set 5? = 5 ′

?′ , and accordingly increase demand 3G~ by 5 ′
?′ . Note that we

need to know only the endpoints of ? , and not ? itself. This computation can be done in$ (< log=)
time using dynamic trees [24]. (The same subroutine was used in [23].)

For the purpose of analysis, we make the following assumption: if Algorithm 1 terminates at line
5 or 7 then it returns ∅ (the empty matching). Thus, we always have Matching(D) ⊆ + ×+ and
|Matching(D) | ≤ |+ |.

2Theorem 3.3 is formulated in [17] for the discrete cube, but the proof also works for the Gaussian distribution. For
completeness, we reproduce the proof in Appendix B.
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Algorithm 1: Matching(D)

Lemma 3.4. (a) If the algorithm terminates at line 5 then the returned cut is 2′-balanced.
(b)There exist positive constants 2′, f, X for which either (i) ED |Matching(D) | ≥ X=, or (ii)Algorithm

1 for D ∼ N terminates at line 5 or 7 with probability at least Θ(1).

Proof. (a) We repeat the argument from [3]. Since the total flow is at most c2′=, at least 2′=
newly added source edges are not saturated by the flow, and hence their endpoints are on the side
of the source node in the cut obtained, which implies that that side has at least 2′= nodes. Similarly,
the other side of the cut also has at least 2′= nodes, and thus the cut is 2′-balanced.

(b) Assume that condition (ii) is false. By a standard argument, conditions (4a) and (4b) imply the
following: there exist constants 2′ ∈ (0, 2), V > 0 and f > 0 such that with probability at least V
Algorithm 1 reaches line 9 and we have F~ −FG ≥ f for all G ∈ �, ~ ∈ � (see [10, Lemma 14]).
Suppose that this event happens. We claim that in this case |" | ≥ 1

32
′=. Indeed, suppose this is false.

Let �′ ⊆ � and �′ ⊆ � be the sets of nodes involved in " (with |�′ | = |�′ | = |" | = :). The total
value of flow from � to � is at least 2′c= (otherwise we would have terminated at line 5). The value
of flow leaving �′ is at most |�′ | · c ≤ 1

32
′c=. Similarly, the value of flow entering �′ is at most

|�′ | ·c ≤ 1
32

′c=. Therefore, the value of flow from�−�′ to �−�′ is at least 2′c=−2 · 132
′c= = 1

32
′c=.

For each edge (G,~) ∈ "all with G ∈ �−�′, ~ ∈ � −�′ we have | |G −~ | |2 > Δ (otherwise" would
not be a maximal matching in"short). Therefore:∑

? :?=(G,...,~)
5? | |G − ~ | |2 ≥

∑
? :?=(G,...,~)

G∈�−�′,�∈�−�′

5? | |G − ~ | |2 ≥ 1
32

′c= · Δ = 2U.

But then the algorithm should have terminated at line 7—a contradiction. �

In the remainder of the analysis, we assume that case (i) holds in Lemma 3.4(b). (In the case of
case (ii) procedures that we will describe will terminate the oracle at line 5 or 7 with probability
Θ(1).)

We assume that procedure Matching(·) satisfies the following skew-symmetry condition: for
any D, matching Matching(−D) is obtained from Matching(D) by reversing all edge orientations.
(This can be easily enforced algorithmically.)

3.3 Matching Covers
We say that a generalized matching is a set" of paths of the form ? = (?0, . . . , ?: ) with ?0, . . . , ?: ∈
+ such that each node G ∈ + has at most one incoming and at most one outgoing path. We say
that path @ is violating if @ = (. . . , ?, . . .) and path ? = (?0, . . . , ?ℓ (? ) ) satisfies Equation (9). We
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46:10 V. Kolmogorov

denote"violating and"nonviolating to be the set of violating and nonviolating paths in generalized
matching" , respectively. Below we will only be interested in the endpoints of paths ? ∈ " and
violating/nonviolating status of ? . Thus, paths in " will essentially be treated as edges with a
Boolean flag. For generalized matchings"1, "2 we define:

"1 ◦"2 = {(?, G, @) : (?, G) ∈ "1, (G, @) ∈ "2},

where ?, @ are paths and G is a node. Clearly,"1 ◦"2 is also a generalized matching. For generalized
matching" , vector D ∈ R3 and value f ∈ R we define:

Truncatef (" ;D) ="violating ∪ {(G, . . . , ~) ∈ "nonviolating : 〈~ − G,D〉 ≥ f}.

We will consider algorithms for constructing generalized matchings that have the following
form: given vector D ∈ R3 , sample vectors (D1, . . . , D: ) according to some distribution that depends
on D, and return Matching(D1) ◦ . . . ◦Matching(D: ). Any such algorithm specifies amatching cover
as defined below.

Definition 3.5. A generalized matching cover (or just matching cover ) is function M that maps
vector D ∈ R3 to a distribution over generalized matchings. It is called skew-symmetric if sampling
" ∼ M(−D) and then reversing all paths in " produces the same distribution as sampling
" ∼ M(D). We define size(M) = 1

=
E"∼M(N) [|" |] where M(N) denotes the distribution

D ∼ N , " ∼ M(D). We say thatM is f-stretched (resp. !-long) if 〈~ −G,D〉 ≥ f (resp. | |~ −G | |2 ≤ !)
for any D ∈ R3 and any nonviolating (G, . . . , ~) ∈ supp(M(D)). M is :-hop if any path ? ∈ " ∈
supp(M(N)) has the form ? = (?0, ?1, . . . , ?: ) where | |?8 − ?8−1 | |2 ≤ Δ for all 8 ∈ [:]. We write
M ⊆ M′ for (coupled) matching coversM,M′ if" ⊆ " ′ for any D and" ∼ M(D)," ′ ∼ M(D′).

IfM is a matching cover then we define matching coverM[f ] as follows: given vector D, sample
" ∼ M(D) and let Truncatef (" ;D) be the output of M[f ] (D). Clearly, M[f ] is f-stretched.

The following lemma shows how matching covers can be used. We say that direction D ∈ R3 is
regular if 〈~ − G,D〉 <

√
6 ln= · | |~ − G | | for all distinct G,~ ∈ + .

Lemma 3.6. Let M be a :-hop matching cover.

(a) M is ((: + 1)Δ)-long.
(b) If M is

√
6(: + 1)Δ ln=-stretched then "nonviolating = ∅ for any regular D and " ∈

supp(M(D)).
(c) PrD [D is regular ] ≥ 1 − 1

=
.

Proof. (a) By definitions, any nonviolating path ? = (?0, ?1, . . . , ?: ) ∈ " ∈ supp(M(N))
satisfies | |?: − ?0 | |2 ≤ Δ + ∑:

8=1 | |?8 − ?8−1 | |2 ≤ Δ + ∑:
8=1 Δ = (: + 1)Δ.

(b) Suppose there exists nonviolating path (G, . . . , ~) ∈ " ∈ supp(M(D)). Elements G,~ must
be distinct. Part (a) gives | |~ − G | | ≤

√
(: + 1)Δ. Regularity of D thus implies that 〈~ − G,D〉 <√

6 ln= ·
√
(: + 1)Δ—a contradiction.

(c) Consider distinct G,~ ∈ + . The quantity 〈~ − G,D〉 is normal with zero mean and variance
| |~ − G | |2 under D ∼ N . Thus, PrD [〈~ − G,D〉 ≥ 2 | |~ − G | |] = Pr[N (0, | |~ − G | |) ≥ 2 | |~ − G | |] =

Pr[N (0, 1) ≥ 2] ≤ 4−22/2 = 1
=3

for 2 =
√
6 ln=. There are at most =2 distinct pairs G,~ ∈ + , so the

union bound gives the claim. �
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Algorithm 2: SamplePaths1 (D1)

3.4 Chaining Algorithms
By construction, Matching is a (deterministic) 1-hop f-stretched skew-symmetric matching cover.
Next, we discuss how to “chain together” matchings returned by Matching(·) to obtain a matching
cover with a large stretch, as required by Lemma 3.6(b).
Sherman’s Algorithm. First, we review Sherman’s algorithm [23]. In addition to vector D, it takes a
sequence 1 = (11, . . . , 1 ) ∈ {0, 1} as an input.

Theorem 3.7. For any X > 0 and f > 0 there exist positive constants 21, 22, 23 with the fol-
lowing property. Suppose that Matching is a 1-hop f-stretched skew-symmetric matching cover
with size(Matching) ≥ X , and  Δ ≤ 21. Then there exists vector 1 ∈ {0, 1} for which
size

(
SamplePaths1[22 ]

)
≥ 4−23 2

.

In practice vector1 is not known, however it can be sampled uniformly at randomwhich decreases
the expectation by a factor of 2− , which does not change the bound 4−Θ( 2 ) in Theorem 3.7.
Note that [23] does not use the notion of “violating paths,” and accordinglyTheorem 3.7 is formulated
slightly differently in [23]. However, the proof in [23] can be easily adapted to yield Theorem 3.7.3
Robustness to Deletions and Parallelization. Note that Theorem 3.7 can also be applied to any

matching cover Matching′ ⊆ Matching satisfying size(Matching′) ≥ X ′ for some positive con-
stant X ′ < X . Thus, we can adversarially “knock out” some edges from Matching and still get useful
bounds on the size of the output. This is a key proof technique in this article; to our knowledge,
it has not been exploited before. Our first use of this technique is for parallelization. We need
to show that running Algorithm 2 multiple times independently produces many disjoint paths.
Roughly speaking, our argument is as follows. Consider the 8th run, and assume that |"prev | is
small where"prev is the union of paths computed in the first 8 − 1 runs. Let us apply Theorem 3.7
to the matching cover obtained from Matching by knocking out edges incident to nodes in"prev.
It yields that the 8th run produces many paths that are node-disjoint from "prev, as desired. We
refer to Section 3.5 for further details.

3We believe that [23] has a numerical mistake. Namely, consider value X ∈ (0, 1) and weighted graph (+ , �, F ) with
= = |+ | nodes and nonnegative weights F such that F (G,�) = F (�,G ) ≤ 1 for all G ∈ + and � ⊆ + (where
F (-,. ) = ∑

(G,~) ∈-×. F (G, ~)). [23, proof of Lemma 4.8] essentially makes the following claim:

—For any subset � ⊆ + with F (+ , �) ≥ X |� | there exists � ⊆ + such that either (i) |� | ≥ X |� | and F (G, �) ≥ X3 for
any G ∈ �, or (ii) |� | ≥ 1

X
|� | and F (G, �) ≥ X2

=
|� | for any G ∈ �.

A counterexample can be constructed as follows. Assume that X |� | and 1
X4

are integers. For X |� | −1 nodes G setF (G, �) = 1,
for 1

X4
nodes G set F (G, �) = X4, and for remaining nodes set F (G, �) = 0. Then the claim above is false if X |� | − 1 + 1

X4
<

1
X
|� | . The statement can be corrected as follows:

—For any _ ≤ X and any subset � ⊆ + with F (+ , �) ≥ X |� | there exists � ⊆ + such that either (i) |� | ≥ X
3 |� | and

F (G, �) ≥ _ for any G ∈ �, or (ii) |� | ≥ X
3_ |� | and F (G, �) ≥ X

3= |� | for any G ∈ �. (If both conditions are false then
F (+ , �) < X

3 |� | · 1 +
X
3_ |� | · _ + = · X3= |� | = X |� | , which is impossible since F (+ , ~) ≥ X for each ~ ∈ �.)

Then the proof in [23] still works, but with different constants.
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46:12 V. Kolmogorov

Algorithm 3: SamplePaths (D1)

New Chaining Algorithm. Next, we discuss how a similar proof technique (combined with addi-
tional ideas) can be used to simplify Sherman’s chaining algorithm. We will show that Theorem 3.7
still holds if we consider vectors 1 of the form 1 = (1, . . . , 1). The algorithm thus becomes as follows.

Theorem 3.8. For any X > 0 and f > 0 there exist positive constants 21, 22, 23 with the follow-
ing property. Suppose that Matching is a 1-hop f-stretched skew-symmetric matching cover with
size(Matching) ≥ X ,  Δ ≤ 21, and  = 2A for some integer A . Then size

(
SamplePaths [22 ]

)
≥

4−23 
2
.

We prove this theorem in Section 4. Our proof technique is very different from [23] and relies on
two key ideas:

(1) We use induction on: = 20, 21, 22, . . . ,  to show that SamplePaths:[f: ] has a sufficiently large
size assuming that size(Matching) ≥ X: , for some sequences X1 < X2 < X4 < . . . < X = X

and f1 < f2 < f4 < . . . < f = Θ( ). To prove the claim for 2: , we show that for each
node G , function `G (D) is “sufficiently spread” where `G (D) is the expected out-degree of G in
" ∼ SamplePaths:[f: ] (D). In order to do this, we “knock out” edges (G,~) from Matching(D)
for a Θ(X2: − X: ) fraction of vectors D with the largest value of `G (D), and then use the
induction hypothesis for the smaller matching cover of size X: . We conclude that `G (D) is
sufficiently large forΘ(X2: −X: ) fraction ofD’s. We then useTheorem 3.3 and skew-symmetry
to argue that chaining SamplePaths:[f: ] with itself gives a matching cover of large size.

(2) We work with “extended matching covers” instead of matching covers.These are functionsM
that take a pair of vectors (D1, D: ) ∈ R3 ×R3 as input, sample (D1, . . . , D: ) ∼ N:

l conditioned
on fixed D1, D: , and return (a subset of) Matching(D1) ◦ . . . ◦ Matching(D: ). This guarantees
that if (G,~) is removed from Matching(D1) then G has no outgoing edge inM(D1, D: ) (which
is needed by argument above).

Our proof appears to be more compact than Sherman’s proof, and also does not rely on case
analysis. Accordingly, we believe that our technique should give smaller constants in the $ (·)
notation (although neither proof explicitly optimizes these constants).

Next, we discuss implications of Theorem 3.8. Below we denote ddIee = 2
⌈
log2 I

⌉
to be the smallest

 = 2A , A ∈ Z≥0 satisfying  ≥ I.

Corollary 3.9. Suppose that Matching is a 1-hop f-stretched skew-symmetric matching cover with
size(Matching) ≥ X . Define � = 12

222
, � = 1

2�
√
23
, and Ymax =

21
2��2 . Suppose that Δ = �

√
Y

ln= where
Y ∈ (0, Ymax] and �Δ ln= ≥ 1. If  = dd�Δ ln=ee then:

E"∼SamplePaths (N) [|"violating |] ≥ =1−Y − 1.

Proof. Note that  ∈ [�Δ ln=, 2�Δ ln=], and  Δ ≤ 2�Δ2 ln= = 2��2Y ≤ 2��2Ymax = 21.
Denote M = SamplePaths [22 ] . Theorem 3.8 gives size(M) ≥ 4−23 2 ≥ 4−23 (2�Δ ln=)2 = =−Y . We
also have 6( +1)Δ ln=

(22 )2 ≤ 12Δ ln=
222 

≤ 12Δ ln=
222�Δ ln=

= 1 and so the precondition of Lemma 3.6(b) holds forM.
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Algorithm 4: Computing Violating Paths

Let G = ED∼N|D is regular,"∼M(D ) [|" |] = ED∼N|D is regular,"∼M(D ) [|"violating |] (by Lemma 3.6(b)),
~ = ED∼N|D is not regular,"∼M(D ) [|" |] ≤ = and ? = PrD [D is not regular] ≤ 1

=
(by Lemma 3.6(c)). We

have =1−Y ≤ E"∼M(N) [|" |] = (1−?)G +?~ ≤ (1−?)G + 1
=
·= and so (1−?)G ≥ =1−Y −1. Therefore,

E"∼SamplePaths (N) [|"violating |] ≥ (1 − ?)G ≥ =1−Y − 1. �

3.5 Final Algorithm
In the algorithm below we use the following notation: + (?) ⊆ + is the set of nodes through which
path ? passes, and + (") = ⋃

?∈" + (?). Furthermore, if ? is violating then ?violating is a subpath
of ? satisfying Equation (8). Note that lines 1–3 compute sets of paths "̃1, . . . , "̃# , which are then
combined into a single set" ⊆ ⋃

8 "̃8 using one of the two options. Option 1 will be mainly used
for the analysis, while option 2 will be used for an efficient parallel implementation.

Theorem 3.10. Suppose that Matching is a 1-hop f-stretched skew-symmetric matching cover
with size(Matching) ≥ X , and let �, �, Ymax be the constants defined on Corollary 3.9 for value X/2.
Suppose that Δ = �

√
Y

ln= where Y ∈ (0, Ymax] and �Δ ln= ≥ 1. If  = dd�Δ ln=ee and # ≥ X=Y

4 (1−=Y−1 )
then E[|" |] ≥ X=

8 where" is the output of Algorithm 4 with option 1.

Proof. Let E8 be the event that set" at the beginning of iteration 8 satisfies |" | ≤ 0 := X=
4 , and

let W8 = Pr[E8 ]. Let G8 be the expected number of paths that have been added to" at iteration 8 , so
that E[|" |] = G1 + . . . + G# for the final set" . Let ~8 be the expected number of paths that have
been added to " at iteration 8 conditioned on event E8 . Clearly, we have G8 ≥ W8~8 ≥ W~8 where
W := W# .

Next, we bound ~8 . Let" be the set at the beginning of iteration 8 , and suppose that E8 holds,
i.e., |" | ≤ X=

4 . Denote* =+ ("), then |* | ≤  |" | ≤ X=
4 . Let Matching′ ⊆ Matching be the (skew-

symmetric) matching cover obtained by removing from Matching(D) edges (G,~) and (~, G) with
G ∈ * (for allD ∈ R3 ). Clearly, we have size(Matching′) ≥ X − 1

2X = 1
2X . Let SamplePaths

′ be the
matching cover given by Algorithm 3 where Matching is replaced by Matching′. Clearly, we have
SamplePaths′ ⊆ SamplePaths . By Corollary 3.9 applied to Matching′, SamplePaths′ (N)
produces at least =1−Y − 1 violating paths in expectation. By construction, all these paths ? satisfy
+ (") ∩+ (?) = ∅, and therefore ~8 ≥ =1−Y − 1.

We showed that E[|" |] ≥ ∑#
8=1 W (=1−Y − 1) = W1 for the final set " where 1 := # (=1−Y − 1).

We also have E[|" |] ≥ (1 − W)0, and hence E[|" |] ≥ minW ∈[0,1] max{W1, (1 − W)0} = 01
0+1 (the

minimum is attained at W = 0/(0 + 1)). By assumption, we have 1 ≥ 0, and so E[|" |] ≥ 1
20. �

Next, we analyze Algorithm 4 with option 2. Recall that “parallel runtime” is the maximum
runtime over all processors.

Lemma 3.11. (a) Let" and" ′ be the outputs of Algorithm 4 with options 1 and 2, respectively (for
a given run of the loop in lines 1–3). Then |" ′ | ≥ |" |/ 3.
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(b) Algorithm 4with option 2 can be implemented on# processors with parallel runtime$ ( )maxflow+
=( 3 +  log2 = + log# ))) (in any version of PRAM).

Proof. (a) By the construction of " , each node E ∈ + ("∗) is contained in at most  paths
? ∈ " (all of them belong to some "̃8 for fixed 8). Therefore, |+ ("∗) | ≥ |" |/ . We also have
|+ (" ′) | ≥ |+ ("∗) |/ and |" ′ | ≥ |+ (" ′) |/ , since |+ (?) | ≤  for any ? ∈ "∗. Putting these
inequalities together gives the claim.

(b) Clearly, sets "̃8 for 8 ∈ [# ] can be computed in parallel on# processors in time$ ( ()maxflow+
=3 + = log2 =))) per processor (since computing dot products 〈G,D〉 in Algorithm 1 takes time
$ ( =3), and flow decompositions take time $ ( < log=) = $ ( = log2 =)). We can assume that
after computing "̃8 , processor 8 computes a maximal set of paths "̃ ′

8 ⊆ "̃8 that are pairwise
node-disjoint, and updates "̃8 := "̃ ′

8 . Clearly, this step does not affect the output of line 5.
It remains to discuss how to implement line 5 (computing a maximal set of paths" in"∗ which

are pairwise node-disjoint). For # = 2 this can be easily done in $ (=) time: processor 1 sends "̃1

to processor 2, and processor 2 computes the answer. The general case can be reduced to the case
above using a divide-and-conquer strategy with a computation tree which is a binary tree whose
leaves are the # processors. The depth of this tree is $ (log# ), and hence the parallel runtime of
this procedure is $ (= log# ). �

Note in Algorithm 4 step 3 can be run in parallel on # processors; after all of them finish, we
can run the rest of algorithm on a single machine. By putting everything together, we obtain

Theorem 3.12.There exists an algorithm for Balanced Separator that given Y ∈ [Θ(1/log=),Θ(1)],
produces $ (

√
(log=)/Y)-pseudoapproximation w.h.p. Its expected parallel runtime is $ ((log$ (1) =))

)maxflow) on $ (=Y) processors (in any version of PRAM).

Proof. Let X, f be as in Lemma 3.4. Set parameters as in Theorem 3.10, and require additionally
that Y ≤ 1

2 . Condition �Δ ln= ≥ 1 means that this can be done for Y ∈ [Θ(1/log=),Θ(1)]. By
Theorem 3.10 and Lemma 3.11, the output of Algorithm 4 satisfies E[|" |] ≥ X=

8 1+ℎ where ℎ = 0 if
option 1 is used, and ℎ = 3 if option 2 is used.

To implement the oracle, run Algorithm 4 until either procedure Matching(·) (Algorithm 1)
terminates at line 5 or 7, or until we find a set" of violating paths with |" | ≥ X=

16 1+ℎ . In the latter
case use Lemma 3.1 to set the variables. Since we always have |" | ≤ =, the expected number of
runs will be $ (=/ =

 1+ℎ ) =$ ( 1+ℎ).
If the oracle terminates at line 5 of Algorithm 1, then it returns a 2′-balanced cut of cost at most

6U
Δ =$

(
U

√
log=
Y

)
. Otherwise it returns valid variables 5? , � . If the oracle terminates at line 7, then

its width is d = $ ( U
=
+ c) = $ ( U

=Δ ). Now suppose that the oracle finds set " of violating paths
with |" | ≥ X=

16 1+ℎ . Clearly, degrees c� , c� in Lemma 3.1 satisfy c� =$ ( ) and c� =$ (1), so the
oracle’s width in this case is d = $ ( U

=
+ U 2+ℎ

=Δ ). In both cases we have d = $ ( U 2+ℎ

=Δ ). Thus, the
number of calls to Oracle for a fixed value of U is ) =$ ( d

2=2 log=
U2 ) =$ ( 

4+2ℎ log=
Δ2 ).

Next, we bound the complexity of computing approximations Ẽ1, . . . , Ẽ=orig for fixed U as described
in Theorem A.2 in Section A.1. (Here we assume familiarity with Appendix A.) We have g = Θ(1)
and W = Θ{min{ U

=c
, Δ
 
}) = Θ( Δ

 
), thus we need to use dimension 3 = Θ( log=

W2
) = Θ( 

2 log=
Δ2 ). We

need to compute ):3 matrix-vector products of form � · D where : =$ (max{( d= log=
U

)2, log=}) =
$ ( 

4 log2 =
Δ2 ). Each matrix � has the form

∑$ () )
A=1 # (A ) , and each # (A ) can be represented as a sum of

$ ( ) “easy” matrices (e.g., corresponding to matchings) for which the multiplication with a vector
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takes$ (=) time. To summarize, the overall complexity of computing approximations Ẽ1, . . . , Ẽ=orig is

):3 ·) = =$ ( 
15+4ℎ log5 =

Δ8 =), which is $ (= log$ (1) =) since Δ = Θ
(√

Y
log=

)
∈

[
Θ( 1

log= ),Θ( 1√
log=

)
]

and  = Θ(Δ log=) = $ (
√
log=). These computations can be done on a single processor; their

runtime is subsumed by the claimed $ ((log$ (1) =))maxflow) bound.
We saw that 3 = $ (log$ (1) =). From Lemma 3.11, we can now conclude that the algorithm’s

expected parallel runtime is ) ·$ ( )maxflow + =( 3 +  log2 = + log# ))) =$ ((log$ (1) =))maxflow)
on # = Θ(=Y/ ) processors, assuming that option 2 is used. Note that the output of the overall
algorithm is correct w.h.p. since vectors Ẽ1, . . . , Ẽ=orig approximate original vectors only w.h.p (see
Theorem A.2). �

4 Proof of Theorem 3.8
We will need the following definition.

Definition 4.1. A :-hop extended matching cover is function M that maps vectors D,D′ ∈ R3

to a distribution over generalized matchings. It is skew-symmetric if sampling " ∼ M(−D′,−D)
and then reversing all paths in" produces the same distribution as sampling" ∼ M(D,D′). We
define sizel (M) = 1

=
E"∼M(Nl ) [|" |] where M(Nl ) denotes the distribution (D,D′) ∼ Nl , " ∼

M(D,D′). We say that M is f-stretched (resp. !-long) if min{〈~ − G,D〉, 〈~ − G,D′〉} ≥ f (resp.
| |~ − G | |2 ≤ !) for any D,D′ ∈ R3 and any nonviolating (G, . . . , ~) ∈ supp(M(D,D′)). We write
M ⊆ M̃ for (coupled) extended matching covers M, M̃ if" ⊆ "̃ for any D,D′ and" ∼ M(D,D′),
"̃ ∼ M̃(D,D′).

For an extended matching cover M we can define matching cover Ml as follows: given vector
D, sample D′ ∼l D, " ∼ M(D,D′) and let " be the output of M(D). Clearly, if M is f-stretched
then Ml is also f-stretched, and sizel (M) = size(Ml ).

We now proceed with the proof of Theorem 3.8. Define K = {20, 21, 22, . . . ,  }, and let ¤K =

K − { }. (Recall that  has the form  = 2A for some integer A .) Let us choose positive numbers V:
for : ∈ ¤K (to be specified later), and define numbers {f: }:∈K via the following recursion:

f1 = f, (11a)

f2: = (1 + l: )f: − V: ∀: ∈ ¤K . (11b)

For a matching cover M ⊆ Matching and integer : ∈ K we define extended matching cover
M: as follows:

—given vectors (D1, D: ), sample (D1, D2, . . . , D: ) ∼ N:
l | (D1, D: ), compute" =M(D1)◦. . .◦M(D: )

and let Truncatef: (" ;D1) ∩ Truncatef: (" ;D: ) be the output of M: (D1, D: ).

By definition, M: is f: -stretched. It can be seen that (M )l −1 ⊆ SamplePaths for any M ⊆
Matching. Our goal will be to analyze sizel −1 (M ) = size((M )l:−1 ) for M = Matching.

Theorem 4.2. Choose an increasing sequence of numbers {X: }:∈K in (0, 1) and define sequence
{_: }:∈K via the following recursions:

_1 = X1, (12a)

_2: = \2:_
2
:
, \2: = 1

2

( 1
2 (X2: − X: )

)2/(1−l ) ∀: ∈ ¤K . (12b)
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Suppose that:

exp

(
−

V2
:

2(: + 1) (1 − l: )Δ

)
≤ 1

2_2: ∀: ∈ ¤K . (13)

Then for any : ∈ K and any skew-symmetric matching coverM ⊆ Matching with size(M) ≥ X:
there holds sizel:−1 (M: ) ≥ _: .

By plugging appropriate sequences {X: } and {V: } we can derive Theorem 3.8 as follows.

Lemma 4.3. Define X: = (1 − 1
2: )X and V: = 2qf:

√
1 − l: where q = 1

f

(
 Δ · 5 ln 16

X

)1/2. Then
Equation (13) holds, and:

_: ≥
(
16
X

)−2 :
. (14)

Furthermore, if q ≤ 1
8 (or equivalently  Δ < f2

320 ln 16
X

) then:

f ≥ 1
16 f  . (15)

Proof. Recall that l = 1 − 1/ . Let us set X: = (1 − 1
2: )X , then X1 =

1
2X and \ 9 = 1

2

(
X
49

)2 
= �

92 

for 9 ≥ 2 where � = 1
2

(
X
4

)2 
. By expanding expressions (12) we obtain:

_: = X:1

∏
8∈K∩[:/2]

\ 8
:/8 =

(
X

2

):
· ©­«

∏
8∈K∩[:/2]

�8
ª®¬ · ©­«

∏
8∈K∩[:/2]

(8/:)8ª®¬
2 

(1)
>

(
X

2

):
·�:−1 ·

(
2−2:

)2 (2)
> (2�): · 2−4 : =

(
16
X

)−2 :
∀: ∈ K − {1},

where in Equation (2) we used the fact that
(
X
2

):
> 2: ·� , and in Equation (1) we used the fact that

for : = 2A ∈ K we have:

log2
∏

8∈K∩[:/2]
(:/8)8 =

∑
8∈K∩[:/2]

8 log(:/8) =
∑

9∈K∩[2,: ]
(:/ 9) log 9 =

A∑
8=1

2A−8 · 8 < 2A · 2 = 2:,

since
∑∞
8=1 82

−8 = 1
2 5 (

1
2 ) = 2 where 5 (I) = 1

(1−I )2 = ( 1
1−I )

′ =
∑∞
8=1 8I

8−1 for |I | < 1.
Next, we show Equation (13). We have:

V2
:
=  Δ · 20 ln 16

X
· :2 (1 − l: ) ≥  Δ · 10 ln 16

X
· : (: + 1) (1 − l: ),

and so:

exp

(
−

V2
:

2(: + 1) (1 − l: )Δ

)
≤ exp

(
− : · 5 ln 16

X

)
=

( 16
X

)−5 : ≤ 1
2

( 16
X

)−4 : ≤ 1
2_2: .

It remains to show that f ≥ 1
16f if q ≤ 1

40 . If  = 1 then the claim is trivial. Suppose that
 ≥ 2. Denote c: = f:/(:f) and W: = (1 + l: )/2. Equation (11b) can be written as 2:fc2: =
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2W: · :fc: − 2qf:
√
2(1 − W: ), therefore recursions (Equation (11)) become:

c1 = 1, (16a)

c2: = W:c: − q
√
2(1 − W: ) ∀: ∈ ¤K . (16b)

Denoting Γ: =
∏
8∈K∩[: ] W8 and expanding these recursions gives:

c2: = Γ: − q
∑

8∈K∩[: ]

Γ:
Γ8

√
2(1 − W8 ) ∀: ∈ ¤K . (17)

Recall that 4−G > 1 − G > 4−G/(1−G ) for G < 1. From this we get:

l: = (1 − 1/ ): > 4−:/( −1) > 1 − :
 −1 ⇒ W: > 1 − :

2( −1) .

We claim that Γ /2 ≥ 1
8 .

4 Indeed, if  < 32 then this can be checked numerically. Suppose that
 ≥ 32. We have ln(1 − G) > − 1

1−G · G for G ∈ (0, 1) and thus:

ln Γ /2 >
∑
:∈ ¤K

ln
(
1 − :

 −1

)
> − 1

1− 16
31

∑
:∈ ¤K

:
 −1 = − 31

15 ⇒ Γ /2 ≥ 4−31/15 > 1
8 .

Clearly, we have Γ: ≥ Γ /2 >
1
8 for all : ∈ ¤K . Therefore:∑

8∈K∩[ /2]

√
2(1−W8 )
Γ8

≤ 8
∑

8∈K∩[ /2]

√
8

 −1 = 8√
 −1

· (
√
20 +

√
21 +

√
22 + . . . +

√
 /2)

= 8√
 −1

·
√
 −1√
2−1 < 8√

2−1 < 20.

Using Equation (17), we conclude that if q < 1
40 then c ≥ Γ /2 (1 − 20q) ≥ 1

8 ·
1
2 = 1

16 . �

4.1 Proof of Theorem 4.2
To prove the theorem, we use induction on : ∈ K . For : = 1 the claim is trivial. In the remainder
of this section, we assume that the claim holds for : ∈ ¤K and prove it for 2: and skew-symmetric
matching cover M ⊆ Matching with size(M) ≥ X2: . Clearly, the skew-symmetry of M implies
that M: is also skew-symmetric. We introduce the following notation; letter G below always
denotes a node in ( .

—Let `G (D,D′) be the expected out-degree of G in" ∼ M: (D,D′).
—Let aG (D) = ED′∼dD [`G (D,D′)] where d := l:−1.
—Let AG be a subset of R3 of Gaussian measure X := 1

2 (X2: − X: ) containing vectors D with the
largest value of aG (D), i.e., such thatWG := inf{aG (D) : D ∈ AG } ≥ sup{aG (D) : D ∈ R3−AG }.

—Let ¤M ⊆ M be the matching cover obtained from M by removing edges (G,~) from M(D)
and edges (~, G) from M(−D) for each D ∈ AG . Clearly, ¤M is a skew-symmetric matching
cover with size( ¤M) ≥ X2: − 2X = X: .

—Let ¤̀G (D,D′) be the expected out-degree of G in" ∼ ¤M: (D,D′).
—Let ¤aG (D) = ED′∼dD [ ¤̀G (D,D′)], and let _G = | | ¤a | |1. Note that 1

=

∑
G∈+ _G = sized ( ¤M: ) ≥ _:

where the last inequality is by the induction hypothesis.

Lemma 4.4. WG ≥ _G .

4Numerical evaluation suggests a better bound: Γ /2 > 0.432.
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Proof. By the definition of ¤M, we have ¤̀G (D,D′) = 0 for any D ∈ AG and D′ ∈ R3 . This
implies that ¤aG (D) = 0 for any D ∈ AG . We have ¤M ⊆ M and thus ¤M: ⊆ M: . This implies that
¤aG (D) ≤ aG (D) ≤ WG for any D ∈ R3 − AG . We can now conclude that _G = | | ¤aG | |1 ≤ WG · 1. �

Let H be an extended matching cover where H(D′1, D′2) is defined as follows:

(∗) sample (D′1, D1, D2, D′2) ∼ Nd,l,d | (D′1, D′2), sample "1 ∼ M: (D′1, D1), sample "2 ∼ M: (D2,
D′2), compute" ="1 ◦"2, output"good = Truncatef2: (" ;D′1) ∩ Truncatef2: (" ;D′2).

It can be seen that H ⊆ M2: under a natural coupling. Consider the following process: sample
(D′1, D′2) ∼ Ndld and then run procedure (∗). By definitions, we have sizedld (H) = 1

=
E[|"good |].

Let"good
G be the set of paths in" that go through node G , and denote gG = E[|"good

G |]. From these
definitions we get that sizedld (H) = 1

=

∑
G∈+ gG .

Lemma 4.5. gG ≥ X2/(1−l )_2G − 2Y where Y := exp
(
− V2

:

2(:+1) (1−ld )Δ

)
.

Proof. Define random variable ?1 and ?2 as follows:

—if G has an incoming path in"1 then let ?1 be this path, otherwise let ?1 =⊥;
—if G has an outgoing path in"1 then let ?2 be this path, otherwise let ?2 =⊥.

Let Egood (?1, ?2) = [?1 ≠⊥ ∧ ?2 ≠⊥]. Let Ebad
1 (?1, D′2) be the event that ?1 = (~1, . . . , G) ≠⊥,

?1 is nonviolating and 〈G − ~1, D′2〉 < f := ldf: − V: . Similarly, let Ebad
2 (?2, D′1) be the event that

?2 = (G, . . . , ~2) ≠⊥, ?2 is nonviolating and 〈~2 −G,D′1〉 < f . Note, if [Egood (?1, ?2) ∧¬Ebad
1 (?1, D′2)]

holds then ?1 ◦?2 = (~1, . . . , G, . . . , ~2) is either violating or satisfies 〈~2−~1, D′2〉 ≥ f: +f = f2: (and
similarly for Ebad

2 (?2, D′1)). Therefore, gG ≥ Pr[Egood (?1, ?2)] − Pr[Ebad
1 (?1, D′2)] − Pr[Ebad

2 (?2, D′1)].
Clearly, vectors (D′1, D1, D2, D′2) are distributed according toNd,l,d . Equivalently, they are obtained

by the following process: sample (D1, D2) ∼ Nl , sample D′1 ∼d D1, sample D′2 ∼d D2. Define
BG = {D : −D ∈ AG }. By Theorem 3.3, we will have (D1, D2) ∈ AG × BG with probability at
least X2/(1−l ) . Conditioned on the latter event, we have Pr[?1 ≠⊥] ≥ WG and Pr[?2 ≠⊥] ≥ WG
(independently), where the claim for ?1 follows from the skew-symmetry of M: . This implies that
Pr[Egood (?1, ?2)] ≥ X2/(1−l )W2G ≥ X2/(1−l )_2G .

We claim that Pr[Ebad
1 (?1, D′2)] ≤ Y. Indeed, it suffices to prove that for fixed D′1, D1, ?1 we have

Pr[Ebad
1 (?1, D′2)] ≤ Y under D2 ∼l D1, D′2 ∼d D2 (or equivalently under D′2 ∼ld D1). Assume that

?1 = (~1, . . . , G) ≠⊥ is nonviolating (otherwise the desired probability is zero and the claim holds).
Since M: is f: -stretched, we have 〈G − ~1, D1〉 ≥ f: . We also have A := | |G − ~1 | | ≤

√
(: + 1)Δ by

Lemma 3.6(a). The quantity 〈G − ~1, D′2〉 is normal with mean ld 〈G − ~1, D1〉 ≥ ldf: and variance
(1 − (ld)2)A 2 (since e.g., we can assume that G − ~1 = (A, 0, . . . , 0) by rotational symmetry, and
then use the definitions of correlated Gaussians for 1-dimensional case). Therefore,

PrD′2∼ldD1
[
〈G − ~1, D′2〉 < f

]
≤ Pr

[
N(ldf: , (1 − (ld)2)1/2A ) < ldf: − V:

]
= Pr

[
N(0, 1) < − V:

(1 − (ld)2)1/2A

]
< exp

(
−

V2
:

2(1 − (ld)2)A 2

)
≤ Y.

In a similar way, we prove that Pr[Ebad
2 (?2, D′1)] ≤ Y. The lemma follows. �

We showed that:

sizedld (H) ≥
(
1
=

∑
G∈+

X2/(1−l )_2G

)
− 2Y.
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Let us minimize the bound on the RHS under constraint 1
=

∑
G∈+ _G ≥ _: . Clearly, the minimum is

obtained when _G = _: for all G ∈ + , in which case the bound becomes:

sizedld (H) ≥ X2/(1−l )_2
:
− 2Y ≥ _2: ,

where we used Equations (12b) and (13).
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Appendices
A Matrix MW Algorithm
It this section, we review the method of Arora and Kale [3] for the checking the feasibility of system
(Equation (2′)) consisting of constraints (2a′) and (2b)–(2e). The algorithm is given below.

Algorithm A1: MW Algorithm

It can be checked that # (C ) • - ≥ 0 for all feasible - satisfying Equation (2′) (see [3]). Thus,
matrix # (C ) can be viewed as a cutting plane that certifies that - (C ) is infeasible (or lies on the
boundary of the feasible region).

The procedure at line 3 is called Oracle, and the maximum possible spectral norm | |# (C ) | | of the
feedback matrix is called the width of the oracle. This width will be denoted as d .5

Theorem A.1 [3, Theorems 4.4 and 4.6]. Set [ = n
2d2= and ) =

⌈
4d2=2 ln=

n2

⌉
. If Algorithm A1 does

not fail during the first ) iterations then the optimum value of SDP (Equation (2)) is at least U − n .

The oracle used in [3] has the following property: if it fails then it returns a cut which is 2
512 -

balanced and has value at most ^U , where value ^ depends on the implementation. One of the
implementations achieves ^ = $ (

√
log=) and has width d = $̃ ( U

=
). (The runtime of this oracle

will be discussed later.) Setting n = U/2 yields an $ (^) =$ (
√
log=) approximation algorithm that

makes $̃ (1) calls to the oracle.

A.1 Gram Decomposition and Matrix Exponentiation
Consider matrix- = - (C ) computed at the C th step of Algorithm A1. It can be seen that- is positive
semidefinite, so we can consider its Gram decomposition:- =+)+ . Let E1, . . . , E= be the columns of
+ ; clearly, they uniquely define - . Note that computing E1, . . . , E= requires matrix exponentiation,
which is a tricky operation because of accuracy issues. Furthermore, even storing these vectors
requires Θ(=2) space and thus Ω(=2) time, which is too slow for our purposes. To address these

5Note that [3] formulated the algorithm in terms of the “loss matrix”" (C ) = − 1
d
# (C ) that satisfies | |" (C ) | | ≤ 1. Namely, it

used the update, (C ) = exp
(
−[̄∑C−1

A=1 "
(A )

)
with [̄ = d[, and set [̄ = Y

2d= in their Theorems 4.4 and 4.6.
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issues, Arora and Kale compute approximations Ẽ1, . . . , Ẽ= to these vectors using the following
result.

Theorem A.2 [3, Lemma 7.2]. For any constant 2 > 0 there exists an algorithm that does the
following: given values W ∈ (0, 12 ), _ > 0, g =$ (=3/2) and matrix� ∈ R=×= of spectral norm | |�| | ≤ _,
it computes matrix +̃ ∈ R3×= with column vectors Ẽ1, . . . , Ẽ= of dimension 3 = $ ( log=

W2
) such that

matrix -̃ = +̃) +̃ has trace =, and with probability at least 1 − =−2 , one has:

| | |Ẽ8 | |2 − ||E8 | |2 | ≤ W ( | |Ẽ8 | |2 + g) ∀8, (A1a)

| | |Ẽ8 − Ẽ 9 | |2 − ||E8 − E 9 | |2 | ≤ W ( | |Ẽ8 − Ẽ 9 | |2 + g) ∀8, 9, (A1b)

where E1, . . . , E= are the columns of a Gram decomposition of - = = · exp(�)
Tr(exp(�) ) . The complexity of this

algorithm equals the complexity of computing :3 matrix-vector products of the form � · D, D ∈ R= ,
where : =$ (max{_2, log =5/2

g
}).

Note that matrices � used in Algorithm A1 have norm at most [d) . Therefore, we can set
_ = Θ( d= log=

U
) when applying Theorem A.2 to Algorithm A1. Parameters W and g will be specified

later.
From now on, we make the following assumption.

Assumption 1. We have (unobserved) matrix + ∈ R=×= and (observed) matrix +̃ ∈ R3×= with
- = +)+ , -̃ = +̃) +̃ and Tr(- ) = Tr(-̃ ) = = satisfying conditions (A1) where E1, . . . , E= are the
columns of + and Ẽ1, . . . , Ẽ= are the columns of +̃ .

A.2 Oracle Implementation
Let us denote ( = {8 ∈ + : | |Ẽ8 | |2 ≤ 2}. We have

∑
8∈+ | |Ẽ8 | |2 = Tr(+̃) +̃ ) = = and thus |( | ≥ =/2.

First, one can eliminate an easy case.

Proposition A.3. Suppose that  ( • -̃ <
b=2

4 . Then setting ~8 = −U
=
for all 8 ∈ + , I( = 2U

b=2
, I( ′ = 0

for all ( ′ ≠ ( , and � = 0 gives a valid output of the oracle with width d = $ ( U
=
) assuming that

parameters g,W in Theorem A.2 satisfy W ≤ 1
2 and g ≤

b

2 .

Proof. Denote I8 9 = | |E8 − E 9 | |2 and Ĩ8 9 = | |Ẽ8 − Ẽ 9 | |2. We know that /̃ :=
∑
8 9 Ĩ8 9 =  ( • -̃ <

b=2

4
where the sum is over 8, 9 ∈ ( . Also, |I8 9 − Ĩ8 9 | ≤ W (Ĩ8 9 + g) for all 8, 9 . This implies that:

 ( • - =
∑
8 9

I8 9 < /̃ + W/̃ + =2

2 Wg ≤ (1 + W) b=
2

4 + =2

2 Wg ≤
b=2

2 .

Note that # (C ) = −U
=
� + 2U

b=2
 ( . We have

∑
8 ~8 + b=2

∑
( I( = = · (−U

=
) + b=2 · 2U

b=2
= U and

# (C )•- = −U
=
�•-+ 2U

b=2
( (•- ) ≤ −U

=
·=+ 2U

b=2
· b=

2

2 = 0, as desired. Also, | |# (C ) | | ≤ | |−U
=
� | |+| | 2U

b=2
 ( | | =

$ ( U
=
). �

Now suppose that
∑
8, 9∈( | |Ẽ8 − Ẽ 9 | |2 =  ( • -̃ ≥ b=2

4 . We will set # (C )
8 9

= 0 for all (8, 9) ∉ ( × ( .
When describing how to set the remaining entries of # (C ) , it will be convenient to treat # (C ) , - , -̃ ,
and so on as matrices of size |( | × |( | rather than =×=, and ~ as a vector of size |( |. (Note that - and
-̃ are the submatrices of the original matrices, and Tr(- ) ≤ =.) With some abuse of terminology
we will redefine + = ( and = = |( |, and refer to the original variables as +orig and =orig ∈ [=, 2=].
Thus, from now on we make the following assumption.
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Assumption 2. | |Ẽ8 | |2 ≤ 2 for all 8 ∈ + and
∑
8, 9∈+ :8< 9 | |Ẽ8 − Ẽ 9 | |2 ≥

b=2orig
4 ≥ b=2

4 .

Let us set ~8 = U
=

for all 8 ∈ + and I( = 0 for all ( , then
∑
8 ~8 + b=2orig

∑
( I( = U . Note that

# (C ) = U
=
� + ∑

? 5?)? − � and U
=
� • - ≤ U , so condition (∑? 5?)? − � ) • - ≤ −U would imply that

# (C ) • - ≤ 0. Our goal thus becomes as follows.

Find variables 5? ≥ 0 and symmetric matrix � � � such that (∑? 5?)? − � ) • - ≤ −U .

We arrive at the specification of Oracle given in Section 2.1.

B Proof of Theorem 3.3
Here, we repeat the argument in [17]. For a function 5 : R3 → R≥0 denote | |5 | |? = (ED [5 ? (D)])1/? .
Let )l 5 is the function R3 → R≥0 defined via ()l 5 ) (D) = ED̂∼lD 5 (D̂). ()l is called the “Ornstein-
Uhlenbeck operator.”)

Theorem B.1 [6]. Let 5 : R3 → R≥0 and −∞ < @ ≤ ? ≤ 1, 0 ≤ l ≤
√

1−?
1−@ . Then:

| |)l 5 | |@ ≥ ||5 | |? .
Let 5 , 6 be the indicator functions of sets A,B, respectively. Set ? = 1 − l and @ = 1 − 1/l , so

that 1/? + 1/@ = 1 and
√

1−?
1−@ = l . Note that | |5 | |? = | |6| |? = X1/? . We can write:

Pr(D,D′ )∼Nl [(D,D′) ∈ A × B] = E(D,D′ )∼Nl [5 (D)6(D′)] = ED [5 )l6]
≥ ||5 | |? | |)l6| |@ 1~ A4E4AB4 � ¥>;34A 8=4@D0;8C~
≥ ||5 | |? | |6| |? 1~ Theorem B.1

= X2/(1−l ) .
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