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Abstract

This thesis examines how geometry and topology intersect in the representation, transformation,
and analysis of complex shapes. It considers how continuous manifolds relate to their discrete
analogues, how topological structures evolve in persistence vineyards, and how tools from
topological data analysis can illuminate problems in mathematical physics. Central to this
exploration is the question of how structure, both geometric and topological, persists or
changes under approximation, sampling, or deformation. The work develops new approaches
to skeletal and grid-based representations of surfaces, reveals the full expressive capacity
of persistence vineyards, and applies topological methods to the longstanding problem of
equilibria in electrostatic fields. These threads braid together into a broader understanding of
how topology and geometry inform one another across theory, computation, and application.
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CHAPTER 1
Introduction

The mathematical study of shape and space has a long and distinguished history, culminating in
two major branches of mathematics today, geometry and topology. Geometry, the elder branch
of the two, can trace it’s origins back to the Greeks, specifically Euclid who systematised
an axiomatic approach to geometry in his Elements [Euc56]. This work established the
framework of rigorous deductive reasoning that would dominate all mathematics for centuries.
Subsequently, Archimedes would contribute methods for understanding curvature and surface
area, which presaged our modern analytic techniques of calculus [Arc17].
The Enlightenment and early modern period introduced the first arguments that could be
deemed topological. Euler’s solution to the Königsberg bridge problem in 1736 is widely
regarded as the initial branching of topology from geometry, abstracting away from metric
considerations to focus exclusively on connectivity [Eul36]. His formulation of the polyhedral
theorem,

V − E + F = 2

was the first proof that certain properties of geometric objects are invariant under continuous
deformation.
In the nineteenth century, Gauss profoundly advanced geometry by establishing that Gaussian
curvature is intrinsic to a surface [Gau27], meaning it is independent of any particular embedding
in R3. Riemann would extended these geometric concepts to higher-dimensional manifolds
(analogues of surfaces in higher dimensions) and provided the analytic apparatus for what
would become Riemannian geometry [Rie68]. Later, Poincaré instituted an algebraic approach
to topology through concepts such as the fundamental group and homology, which emphasise
the role of invariants in distinguishing topological spaces [Poi95].
The twentieth century saw further refinement and unification. Notably, contributions from
Noether who identified the algebraic structures underlying topological invariants [Noe21];
Milnor who related topology to functions on manifolds [Mil69]; Lefschetz who demonstrated
how discrete representations of objects maintained topological properties [Lef42, Lef49]; and
Whitehead who was able to reduce topological problems to algorithmic ones [Whi49a, Whi49b].
Together these works culminated in our modern algebraic and computational approaches to
the study of shape today.
With the rise in computing power in recent decades, this trajectory has converged with data
science in the form of Topological Data Analysis (TDA). At its core, TDA seeks to extract
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qualitative, structural information from complex data by encoding its “shape” into topological
invariants. Persistent homology, persistence vineyards, and related constructions allow the
tracking of features across scales [ELZ02, CSEH05], providing a bridge between discrete
representations of data and their underlying geometric structures.
This thesis is intended to continue in this tradition. With this in mind our aims are threefold.
Firstly, we attempt to analyse and numerically compare the topological and geometric properties
of smooth manifolds to particular discrete approximations representations. The first such
attempt is encountered in Chapter 3, where we encounter the classical medial axis and introduce
higher order variants. These are skeletal representations of a manifold which capture essential
structural information about the manifold, such as homotopy type. We observe that the
classical medial axis cannot be simplified in a stable way and we present a novel algorithm
for the computation of the higher order variants. Subsequently, in Chapter 4 we investigate
the Delaunay surface which can be considered a grid representation of a manifold generated
from a suitable sample of an ambient space. We prefer to work with samples drawn from a
Poisson point process which result in randomised grid representations that are unbiased to any
particular direction. Interestingly, we find that the geometric properties of these representations
in R3 are distorted on average by fixed amounts dependent only on the dimensions of the
manifold and ambient space.
Secondly, we aim to understand and describe the complex topology of persistence vineyards,
which have become of greater interest recently due to efficacy of the Persistent Homol-
ogy Transform (PHT) [TMB14] in shape analysis. This is covered in Chapter 5 where we
demonstrate that any knot or link (or their corresponding closed braid) can be obtained as a
persistence vineyard, meaning vineyards are as topologically rich as one could hope for.
Our final goal is to apply tools from TDA to a concrete problem in physics. In Chapter 6 we
tackle Maxwell’s electrostatic conjecture [Max73] using persistence. Maxwell conjectured that
the number of equilibria points of the electric field generated by a set of n point charges in
R3, that is, points in space where forces exerted by all point charges are perfectly balanced,
is bounded from above by (n− 1)2. We aim to demonstrate how topological methods can
generate novel insights into this long outstanding problem, by finding charge arrangements
that exceed currently known upper bounds for the number of equilibria and suggest that a
quadratic upper bound is unlikely to be achievable.
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CHAPTER 2
Mathematical Background

An effort is made in this Chapter to extract common concepts that recur in subsequent
chapters, minimizing redundancy and establishing the necessary preliminaries in geometry,
topology, and data analysis.

2.1 Topology and Geometry
A central distinction between geometry and topology lies in the class of transformations
under which objects are considered equivalent. In geometry, we focus on transformations like:
rotations; translations; and reflections. Under these transformations properties such as length
and angle are preserved. Topology loosens these restrictions by considering transformations
that are: continuous; bijective; and have a continuous inverse, which we call homeomorphisms.
Homeomorphisms maintain the overall connectivity and structure of an object but may
drastically alter the aforementioned geometric quantities. The classical example of deforming
a doughnut into a coffee mug, without cutting or gluing, demonstrates how drastically the
geometry of an object can be distorted by a homeomorphism. In the remainder of this section
we will explore some basic properties of 1 and 2-manifolds.

2.2 Manifolds
A d-manifold without boundary is a topological space M, such that for each point p ∈ M
there exists a neighbourhood of p, U ⊂ M, such that U is homeomorphic to Rd for some
d ∈ Z with d > 0. M is compact if within every covering of M with open sets there exists a
finite covering.

A d-manifold with boundary is a topological space M, such that for each point p ∈ M there
exists a neighbourhood of p, U ⊂ M, such that U is homeomorphic to Rd or the closed
d-halfspace, Rd

≥0.

We can quantify the difference between manifolds, or any subsets of a metric space with
distance function ρ, using the Hausdorff distance,

ρH(M,N ) := max
{︄

sup
p∈M

inf
q∈N

ρ(p, q), sup
q∈N

inf
p∈M

ρ(p, q)
}︄
.
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2. Mathematical Background

2.2.1 Knots and Links
The set of distinct compact 1-manifolds without boundary up to homeomorphism is quite
limited, containing only S1. Specifically in three dimensions, we can add specificity by
considering equivalence classes of these embedded circles.
An (oriented) knot is the equivalence class of oriented closed curves embedded in 3-dimensional
Euclidean space, γ : S1 → R3, under continuous deformations that never self intersect. To
simplify the discussion, we will abuse notation and write γ for the map as well as its image in
R3. A link with n components is a disjoint union of n knots, L = γ1,∪ . . . ∪ γn ⊂ R3. We
say two knots (or links) are equivalent if there is an ambient isotopy R3 × I → R3 such that
one knot (or link) is the image of the other, and the map at each time in the interval is also a
homeomorphism. Generally, this equivalence is formalized as a series of Reidemeister moves
(see Figure 2.1, as any isotopy between knots can be related by a sequence of these three
local moves [AB26, Rei27].

Figure 2.1: The Reidemeister moves. Left to right: Type I, Type II, Type III.

For each u ∈ S2, the projection of a knot (or link), γ, in the direction u provides a knot
diagram (or link diagram) of γ with crossings determined by the relative heights in direction
u. Throughout this thesis we assume diagrams with generic crossings, to avoid self tangencies
and infinite numbers of crossings.

2.2.2 Surfaces
The term surface is more commonplace than 2-manifold so it is preferred here. The classification
theorem for surfaces without boundary says there exists two infinite families S2,T,T#T . . .
and P2,P2#P2, . . .. Where T is the torus; P2 is the real projective plane, the surface obtained
by identifying antipodal points of S2; and # represents the connected sum operation which
connects two surfaces by removing a disc from each and gluing an end of a cylinder along each
of the newly created boundaries. The first family corresponds to the orientable surfaces, these
are the surfaces for which one can take a small oriented circle and slide it around any closed
loop in the surface and obtain a circle with the same orientation on the circle. For the second
family of surfaces there exist loops which reverse this orientation, these are known as the
non-orientable surfaces. Due to the classification theorem, the orientable surfaces (which are
simply the connected sums of torii) can be embedded in R3. The non-orientable surfaces on
the other hand can only be shown to be embedded in R4 as a result of the Whitney embedding
theorem [Whi44].
Focusing on orientable surfaces in R3, we can consider some of their geometric properties
which will be important for later chapters. Consider a smoothly embedded surface S ⊂ R3. At
each point p ∈ S, there are infinitely many possible normal sections, curves obtained by slicing
the surface with planes that contain the surface’s normal vector at that point. Each such
curve bends with some curvature, the principal curvatures are the maximum and minimum of
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2.3. Cell Complexes

those normal curvatures, which we label κ1(S) ≥ κ2(S). The sign of the principal curvatures
is inherited from the orientation on S. The normal sections corresponding to the principal
curvatures together with the tangent plane at p form an orthonormal frame, see Figure 2.2.

Normal

Normal Sections
Tangent Plane

Figure 2.2: A neighbourhood of a saddle point in a surface together with the tangent plane at
the saddle point and the two planes of principal curvature which intersect along the normal
vector.

Integrating the mean of these curvatures across the entire surface we obtain the total mean
curvature, Mean(S), whereas integrating their product we obtain the Gaussian curvature,
Gauss(S). Explicitly,

Mean(S) = 1
2

∫︂
p∈S

(κ1(p) + κ2(p)) dp,

Gauss(S) =
∫︂

p∈S
κ1(p)κ2(p) dp.

2.3 Cell Complexes
Given a finite set of vertices V , an abstract simplicial complex, K, is a system of subsets of V ,
σ ∈ K called simplices, which is closed under taking subsets. By which we mean that if σ ∈ K
and τ ⊂ σ, then τ must also be an element of K and we call τ a face of σ. If the cardinality
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2. Mathematical Background

of σ is p + 1, card σ = p + 1, then we call σ a p-simplex or a p-dimensional simplex and
the p = 0, 1, 2, 3 simplices are known as vertices, edges, triangles and tetrahedra respectively.
The dimension of the entire simplicial complex is given by the maximum dimension amongst
its simplices. Let L be a subset of the simplices of K, again closed under taking subsets, then
L is a subcomplex of K. An important collection of subcomplexes are the p-skeleta of K,
denoted K(p), which include only the p-simplices of K and their lower dimensional faces.

If V is in fact a set of disjoint points in Rd, in other words g : V → Rd is a injective map,
we can realise the simplex as the convex hull of it’s vertices, Conv (σ), provided its vertices
are affinely independent. Additionally, if the intersection of two simplices is either empty or a
common face of both, that is, Conv (σ) ∩ Conv (τ) = Conv (σ ∩ τ), then the we obtain a
proper realisation of K, whose underlying space is denoted |K|.

If we were instead interested in complexes where faces can be arbitrary polyhedra or polytopes
we can define polyhedral complexes. Now K is a collection of subsets of V ⊂ Rd that: form
polytopes; are closed under taking faces; and the intersection of any two faces are empty or
another face of K. Notably, polyhedral complexes arise in the context of Voronoi tessellations
and cubical complexes which will be important later in this thesis.

2.4 Voronoi Tesellations and Delaunay Mosaics
Let A ⊆ Rd be locally finite. A is called generic if for every 1 ≤ p ≤ d, no p + 2 points
lie on a common (p − 1)-sphere in Rd. For each point, a ∈ A, we write dom(a,A) for the
points x ∈ Rd that satisfy ∥x − a∥ ≤ ∥x − b∥ for all b ∈ A. We refer to dom(a,A) as the
Voronoi domain of a in A and note that it is a convex polyhedron with faces of dimension
0 ≤ i ≤ d. Any two Voronoi domains have disjoint interiors but they may share common faces
of dimension strictly less than d. The interiors of the Voronoi domains and all their faces form
a partition of R3 into open convex polyhedra. The Voronoi tessellation of A, denoted Vor(A),
is the collection of Voronoi domains [Vor08]. For 0 ≤ i ≤ d, we call the i-dimensional faces of
the Voronoi domains the i-cells of Vor(A). While Vor(A) is not a cell complex, the collection
of its cells is. See the cells bordered with black lines in Figure 2.3.

The Delaunay mosaic of A, denoted Del(A), is dual to the Voronoi tessellation [Del34].
Specifically, for each i-cell of Vor(A), Del(A) contains the convex hull of the points generating
the Voronoi domains that share the i-cell. By construction, this convex hull has dimension
j = d− i, and we refer to it as a j-cell of Del(A). Observe that Del(A) is a polyhedral cell
complex and generically a simplicial complex. We refer to the 1 and 2-cells as (Delaunay)
edges and polygons, and use letters e and p to denote individual such edges and polygons.
In the familiar setting of R3, the corresponding cells in Vor(A) are e∗, which is the Voronoi
polygon dual to e, and p∗, which is the Voronoi edge dual to p. See the shaded cells bordered
with blue lines in Figure 2.3.

The Voronoi tessellation and Delaunay Mosaic will be essential to subsequent chapters. In
Section 2.7 we will see that Delaunay mosaics are fundamental to persistent homology which
is essential to Chapters 5 and 6. The Alpha complex filtration, which tracks the homotopy
type of a union of balls of increasing radii, is a subset the Delaunay mosaic. The medial
axis constructions from Chapter 3 can also be interpreted as the continuous limit of the
Voronoi tessellations of a sample of points a given manifold (including higher order Voronoi
tessellations). While the titular Delaunay surfaces and paths from Chapter 4 obviously owe
their name to the Delaunay complex, the Voronoi tessellation is also intrinsic to the definition
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due to their mutual duality. Finally, we encounter the Voronoi tessellation and its weighted
variant in Chapter 6 as we study the limit of a family of functions that converge to the distance
function.

Figure 2.3: A sample A ⊆ R2, light blue points with its corresponding Delaunay tessellation,
dark blue edges and triangles. The edges of dual Voronoi mosaic domains are shown as black
lines in the background.

2.5 Morse Theory
Morse theory is a fundamental topic in topology which allows one to discern topological
features of a manifold from differentiable functions on that manifold. We follow the work
of Milnor [Mil69] for this section. Let f : M → R be a smooth function on a differentiable
manifold M. Write ∇f(p) and (Hf )i,j(p) = ∂2f

∂xi∂xj
(p) for the gradient and Hessian of f at p.

We call p and f(p) a critical point and critical value of f respectively, if ∇f(p) = 0. All other
values in R are considered non-critical or regular. A critical point is called non-degenerate if
Hf (p) is invertible and degenerate otherwise. Non-degenerate critical points are isolated and
functions with only non-degenerate points have only a finite number of critical points. f is
generically a Morse function if it satisfies:

1. All critical points are non-degenerate

2. Each critical point has a unique value.

The Hessian of a Morse function determines the nature of it’s critical points. The number of
negative eigenvalues is known as the index of the critical point and for dim M = 3 indices of
0, 1, 2 correspond to minima, saddles and maxima respectively.
Three fundamental results of Morse theory describe the relation between a Morse function,
f : M → R, and the topology of M [Mil69]. If [a, b] ⊂ R is a compact interval containing
no critical points of f , then the sublevel sets Ma = f−1(−∞, a] and Mb = f−1(−∞, b] are
diffeomorphic and Mb deformation retracts onto Ma. Additionally, if p is a critical point of
index k and the interval [f(p) − ε, f(p) + ε] contains no other critical points, then Mf(p)+ε is
homotopy equivalent to Mf(p)−ε with a k-cell attached. Using the two previous results we
can deduce that any manifold admitting a Morse function is homotopy equivalent to a CW
complex with a k-cell corresponding to each index k-critical point of f .
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The number of index k critical points of a Morse function on M, Ck, is an upper bound on
the rank of the k-th homology group, βk(M) ≤ Ck known as the Betti number. The Euler
characteristic, which is a topological invariant of M, can also be computed from the critical
points of a Morse function, χ(M) = ∑︁(−1)kCk. Combining these two facts Milnor was able
to prove what are known as the Morse inequalities:

Ck − Ck−1 + . . .+ (−1)kC0 ≥ βk(M) − βk−1(M) + . . .+ (−1)kβ0(M). (2.1)

There is a Morse inequality for each 0 ≤ k < d, and an equation for k = d.

2.6 Homology
In this section we present a crash course on simplicial homology with coefficients in Z2 = Z/2Z
which should provide the reader with a sufficient understanding to proceed with persistent
homology in the following sections.
For a simplicial complex K, a p-chain, c, is a formal sum of p-simplices, σi ⊂ K, denoted
c = ∑︁

aiσi, for ai ∈ Z2. We can add another chain, c1 = ∑︁
biσi, to c in the same way

one would add polynomials, c1 + c2 = ∑︁(ai + bi)σi, where the addition of the coefficients
is performed in Z2. Of course alternative coefficient groups could be selected, however, we
restrict ourselves to the simplest example in this brief overview. The set of p-chains in K
together with chain addition form the chain group which we denote (Cp,+), for each p ∈ Z.
The chain group has: identity, the chain with all coefficients equal to zero; the inverse of a
chain is the chain itself; and associativity inherited from Z2. Additionally, the chain group
inherits commutativity from Z2 and is therefore also abelian.
The chain groups are related to each other by a set of boundary maps which intuitively link
each simplex to the simplices in its boundary. Writing σ = [v0, . . . , vp] for the simplex spanned
by the vertices v0, . . . , vp we define its boundary map as:

∂pσ =
∑︂

i

[v0, . . . , v̂i, . . . , vp] ,

where v̂i indicates that vertex vi is not included in the simplex. The boundary map of a chain
is then simply the formal sum of the boundaries of its simplices. The boundary map commutes
with chain addition, ∂p(c+ c1) = ∂pc+ ∂pc1, and is therefore a group homomorphism.
By sequentially mapping between chain groups via boundary maps we can construct what is
known as the chain complex of K,

. . .
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ . . .

Each chain group contains two important subgroups, the group of cycles and the group of
boundaries. Beginning with the former a p-cycle is a p-chain whose boundary is empty, ∂pc = 0.
Thinking of 1-chains the 1-cycles would include: the empty chain; loops; and unions of loops.
The set of all p-cycles, denoted Zp, is a subgroup of the p-chain group as the p boundary map
commutes with addition. We set the boundary of each vertex equal to 0 and let C−1 equal
the trivial group. Since all the p-cycles map to 0 under the ∂p the cycle group is exactly the
kernel, Zp = ker ∂p.
A p-boundary on the other hand, is a p-chain which forms the boundary of a (p+ 1)-chain,
c = ∂p+1c1 for c1 ∈ Cp+1. Again due to the commutativity of chain addition, the set of
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p-boundaries, denoted Bp, forms a subgroup of the p-chain group. By definition the boundary
group is exactly the image of the boundary map, Bp = im ∂p+1.
The fundemental lemma of homology states that applying the boundary map to a chain twice
results in the zero chain. Due to associativity we can show this by simply showing it is true
for a single simplex. The boundary of a p-simplex, σ, consists of all the (p − 1)-faces of σ
and each (p− 2)-face of σ appears in the exactly two (p− 1)-faces. When we compute the
formal sum each (p − 1)-face will appear twice and cancel out resulting in ∂p(∂p−1σ) = 0.
Additionally, this implies that each p-boundary is also a p-cycle and Bp is a subgroup of Zp.
The p-th homology group of K is then the quotient of these subgroups,

Hp = Zp/Bp = ker ∂p/im ∂p+1.

Intuitively, it counts the number of p-holes, that is p-spheres that are not filled in by (p+1)-discs.
The rank of each group gives the corresponding Betti number of K.
For a subcomplex L of K there is a variant of homology, which will be important to us later,
known as the relative homology of the pair (K,L). Relative homology describes the topology
of K after contracting L to a single point. In this setting the chain groups are given by the
quotients, Cp(K,L) = Cp(K)/Cp(L) and boundary maps ∂p : Cp(K,L) → Cp−1(K,L) are
induced by those in the regular homology. The relative cycle, boundary and homology groups
are then defined in the obvious way,

Zp(K,L) = ker(∂p : Cp(K,L) → Cp−1(K,L));
Bp(K,L) = im (∂p+1 : Cp+1(K,L) → Cp(K,L));
Hp(K,L) = Zp(K, L)/Bp(K, L).

2.7 Persistent Homology
Persistent homology [Fro90, Rob99, ELZ02] is a relatively recent and active area which has its
roots in algebraic topology; see [Oud15, DW22] for recent survey books on this active topic.
Whereas the classical homology, discussed in Section 2.6, is useful for studying topological
features of data, it lacks the discernment to pick the correct scale to extract features from.
Persistent homology remedies this shortcoming by studying nested sequences of sublevel sets
called filtrations, thereby extracting features across many scales. Taking a manifold M and a
nice function to filter it with (for example the height function) yields the persistence module
comprised of homology groups and linear maps induced by the inclusions between sublevel sets

. . . → H(Mai−1) → H(Mai
) → . . . → H(Maj−1) → H(Maj

) → . . . . (2.2)

Composing the maps between consecutive groups, we get a map between any two groups in
the module. We say a homology class α ∈ H(Mai

) is born at Mai
if it is not in the image of

the map from H(Mai−1) to H(Mai
). If α is born at Mai

, it dies entering Maj
if the image

of the map from H(Mai−1) to H(Maj−1) does not contain the image of α, but the image of
the map from H(Mai−1) to H(Maj

) does. The persistence of α is the difference between the
function values at its birth and its death. If the function is a Morse function on a manifold,
then precisely one Betti number βp changes when the threshold passes a critical value. If the
index of the corresponding critical point is p, then either a p-dimensional class is born, so βp

increases by one, or a (p − 1)-dimensional class dies, so βp−1 decreases by one. We use a
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persistence diagram Dp(f) to encode the birth-death information of all of the p-dimensional
homology classes of M arising from the sublevel set filtration induced by the filtering function
f , where each birth/death pair becomes a point in R̄2 = [−∞,∞]2. D(f) is used when
referring to all degrees. See Figure 2.4.

Figure 2.4: A torus (S1 × S1) embedded in R3. In the figure black dots depict points of
H0-persistence, the red dots depict points in H1-persistence, the arrows indicate cycles that
live forever (black for H0, red for H1, and green for H2).

2.7.1 Extended Persistent Homology

There are some drawbacks to the topological summary given by standard persistence, most
notably points at infinity. For example, consider a sublevel set filtration of a shape embedded
in R2 or R3 with nontrivial H0 and H1: at some point connected components and loops
are born, but never die, as they are present in all sublevel sets after their initial appearance.
Even worse, if the input is non-generic and two H1 cycles are born at the same height in the
sublevel set filtration, then they give rise to identical persistence pairs.

To address this, Agarwal et. al. [AEHW06] established a pairing between all critical points of
a height function on a 2-manifold, which Cohen-Steiner et. al. [CSEH08] extended to general
manifolds with tame functions, leveraging Poincaré and Lefschetz duality to create a new
sequence of homology groups where we begin and end with the trivial group. This guarantees
that each homology class that is born will also die at a finite value, replacing all the problematic
points paired with ∞, and guarantees a perfect matching on critical points.

Let Hd(M,Ma) denote the relative homology group of M with the superlevel set Ma =
f−1[a,∞). Again assume we have a tame function and set of critical values a1, · · · , ak, and
note that Hp(Mak

) = Hp(M) = Hp(M,Ma) for any a > ak. From this, we can create a
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new sequence of homology groups

0 → H∗(Ma1) → H∗(Ma2) → . . . → H∗(Mak−1)
→ H∗(Mak

) = H∗(M, ∅) → H∗(M,Mak)
→ H∗(M,Mak−1) → . . . → H∗(M,Ma1) = H∗(M,M) = 0,

which we call the extended filtration sequence. We define the sequence H∗(Ma1) → . . . →
H∗(Mak

) as the upwards sequence and the sequence H∗(M,Mak) → . . . → H∗(M,Ma1)
as the downwards sequence.

Note that this sequence fits the structure of a persistent module, so like standard persistence, it
also has a unique interval decomposition. The only change is that we interpret the persistence
points differently in this setting. Specifically, the points in the persistence diagram can be
partitioned into three different groups: 1) the classes which are born and die in the upwards
sequence, 2) the classes which are born and die in the downwards sequence, and 3) the classes
which are born in the upwards sequence and die in the downwards sequence. Further, we
associate the index of birth and death intervals with the value ai for both Hp(Mai

) in the
upwards sequence and Hp(M,Mai) in the downwards sequence.

This creates three different classes of persistence pairs: those that correspond to a class that
is born and dies in the upwards sweep (ordinary persistence points), those that correspond to
a class that is born and then dies in the downwards sweep (relative persistence points), and
those that correspond to a class that is born in the upwards sweep and dies in the downwards
sweep (essential persistence points). We denote the class of ordinary, relative, and essential
points as Ordp(f), Relp(f), and Essp(f), respectively.

Note that the ordinary diagram is entirely above the diagonal; the relative diagram is entirely
below the diagonal; while the essential persistence points can be on either side. See Figure 2.5.

Figure 2.5: A torus (S1 × S1) embedded in R3. In the figure ordinary, relative and essential
persistence points are depicted as dots, squares and triangles respectively. The colour of a
persistence point indicates its degree, black for H0-persistence, red for H1-persistence, and
green for H2-persistence.
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2. Mathematical Background

The symmetry of the persistence points across the diagonal observed in Figure 2.5 is independent
of the manifold or filtration. In fact, it is a result of the Lefschetz duality between complementary
dimensional homology of a sublevel set and relative homology of an n-manifold and the
corresponding superlevel set, Hp(Ma) ≃ Hn−p(M,Ma). The following duality relations arise
as a result of Lefschetz’s theorem:

Ordp(f) = RelTn−p(f);
Essp(f) = EssT

n−p(f),
Relp(f) = OrdT

n−p(f),

where the superscript ‘T ’ represents reflection of the set of points across the diagonal.

2.7.2 Comparing Persistence
For a suitable metric ρ, the space of persistence diagrams is defined as:

Dgmρ = {D ⊂ R̄2 | ρ(D , ∅) < ∞},

where each D is a multi-set of points in R̄2, including infinite copies of the points on the
diagonal (a, a) ∈ R̄2 for a ∈ (−∞,∞). There are many choices of metric for Dgmρ, some
important examples from the literature are included here. For points in R̄2 the distance between
them is given by ||x − y||∞ = max{|x1 − y1|, |x2 − y2|}. For two functions f, g : M → R,
q ∈ R and p > 0, the Wasserstein distance is defined as,

ρWp(D(f),D(g)) := inf
ϕ

⎛⎝ ∑︂
x∈D(f)

∥x− ϕ(x)∥1/p

∞

⎞⎠p

,

taken over all bijections ϕ : D(f) → D(g) Letting p → ∞ we obtain the Bottleneck distance,

ρB(D(f),D(g)) := inf
ϕ

sup
x∈D(f)

∥x− ϕ(x)∥∞.

Finally, we have the Hausdorff distance,

ρH(D(f),D(g)) := max
{︄

sup
x∈D(f)

inf
y∈D(g)

∥x− y∥∞, sup
y∈D(g)

inf
x∈D(f))

∥x− y∥∞

}︄
.

In each case ϕ ranges over all possible bijections between D(f) and D(g). Bijections include
points from the diagonal in order to balance the number of off-diagonal points between
diagrams and potentially further minimise the cost of a matching.

In the case of extended persistence diagrams matchings must be further restricted such that
each class (ordinary, relative and extended) are matched only to the corresponding class or the
diagonal.

Intuitively, the bottleneck distance describes the worst disparity between the best matching of
points in persistence diagrams: the worst disparity is the “bottleneck” preventing a smaller
distance.
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2.7.3 Vineyards
One can also study the evolution of persistence on a manifold, M, arising from changing
functions. As long as the functions are similar enough, the Stability Theorem [CSEH05] of
persistent homology asserts that their associated persistence diagrams will also be similar; see
also [Tur23] for a discussion of the algebraic details of maps between “nearby” diagrams.
This gives rise to the concept of a vineyard [CSEM06, Tur23]. It formalizes the idea that a
feature of gu is still recognizable in gv, provided the two functions u and v are not too far apart.
Features are points in the diagram, and the association is a matching between the points of
gu and of gv. Cohen-Steiner et al. [CSEM06] propose the so-called vineyard algorithm that
traces the features (points) while continuously deforming gu into gv, realized as an update to
the reduced matrix arising from gu. This update can be done in O(n) time, as compared to
the worst case O(n3) time to compute and reduce the new matrix from scratch.
By tracing a point through a continuous family of diagrams we obtain a vine in the vineyard.
For our purposes in Chapter 5 it will be advantageous to assume that no vines intersect (which
is possible in this setting). However, we note that this is not generally the case. In fact, in
some pathological cases intersections may not even be transversal, meaning a there is no
unique choice on how to extend a vine.

2.8 List of Notation
Mathematical Background
Z;R;Rd the integers; the real numbers; Euclidean d-space
M ⊂ Rd; Sd ⊂ Rd+1 a manifold; d-sphere
p ∈ M;x ∈ Rd a point in an ambient space; a point in a manifold; d-sphere
∥x∥; ρ : Rd → R Euclidean norm; general distance metric
Dd; D̊d;Rd

≥0 Euclidean disc; open Euclidean disc; closed d-halfspace
T;P2; S torus; real projective plane; a surface

σ, τ ;K,L simplicices; simplicial complexes
X ⊂ Rd; Conv (X ); T set of points in Rd; convex hull of X ; a triangulation
K(p); |K| the p-skeleton of K; the realisation of K
P ⊂ Rd a d-polytope

A ⊆ R3,Vor(A),Del(A) locally finite set, Voronoi tessellation, Delaunay mosaic
e ∈ Del(A); e∗ ∈ Vor(A) a Delaunay edge; a Voronoi polygon dual to e

f : M → R;Hf a Morse function; Hessian of f
Ma; Ma sublevel set of M at a; superlevel set of M at a
Ck; βk number of k-critical points of f ; k-th Betti number of M
Cp; Zp; Bp p-th chain group; p-th cycle group; p-th boundary group
Hp(M) p-th homology group of M with coefficients in Z/2Z
D(f); Dp(f) persistence diagram of f ; persistence diagram of degree p
Dgmρ; CVM : S1 → S1 × Dgm space of persistence diagram; closed vineyard map

γ : S1 → R3 (oriented) knot
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Medial Axes
S;M [S] a closed subset set of Rd; medial axis of S
Mλ[S] λ-medial axis of S
M0[M];M1[M];M2[M] insphere axis; midsphere axis; circumsphere axis
R : |M1[M]| → R radius function on mid-sphere axis
Aj

i singularity corresponding to sphere with j type i contact points
A,B;A0, A1, B0, B1 points on sphere; points in link
u = (ABCD) vertex (quadruplet of points)
e = (A;BCD;E) edge on line (triplet of points)
f = (A;B;CD;E;F ) facet in plane (pair of points)

Delaunay Surfaces & Paths
A ⊆ R3 locally finite set
Del(M, A) Delaunay mosaic, restricted Delaunay complex
Del(γ,A); Del′(γ,A); Del′′(γ,A) Voronoi path; subdivided; moved
L; Del(L,A);L′ line; Delaunay path; skew line
Mε Piecewise linear approximation to M

e, p; e∗, p∗ Delaunay edge, polygon; dual Voronoi polygon, edge
δ; η = π − δ dihedral angle; external dihedral angle
µ : R3 → R3 rigid motion
E ∈ Graffd,i plane in the affine Grassmannian
K;Kr convex set; r-parallel body
ϕi : Rd → R i-th intrinsic volume
φ : Rd → R a geometric measure in Rd

Wr(γ); Lk(γ); Tw(γ) writhe; linking number; twist
u ∈ S2; Wru(γ) direction; writhe of knot diagram in direction u
Tt = γ̇(t)/∥γ̇(t)∥ unit tangent vector; derivative
T ; −T tantrix; negative tantrix
P < γ inscribed polygon

αi turning angle of projected path
α : G1,3 × R2 → [−π, π] turning angle map on Grassmannian of lines
χ(P ) chirality of convex polyhedron
n+, n− numbers of Type-I Reidemeister moves

Braiding Vineyards
B;Bi : I → D2 × I a braid; a strand of a B
ρE(·, p)|M radial distance function
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Counting Equilibria
A1, A2, . . . , An ∈ R3 finite number of points
ζ1, ζ2, . . . , ζn ∈ R corresponding charges
V : R3 → R electrostatic potential
mp number of index-p equilibria

θ : R3 → R3 similarity
ℓ; k; c;n no. of layers; no. of vertices; no. of equilibria; no. of point charges

1 ≤ p ≤ ∞ parameter
Vp : R3 → R modified potential
E : R3 → R (weighted) Euclidean distance function
wi; πi(x), φi(x) weight of i-th point; (weighted) Laguerre distance

i =
√

−1 imaginary unit
x = (w, z), Ai = (wi, zi) points in R3 = R2 × R

x = (x1, x2, x3) coordinates in R3

Table 2.1: Notation used in the thesis.
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CHAPTER 3
Medial Axes

3.1 Introduction
The term medial axis was introduced by Blum [Blu67], who suggested its use in the context
of shape recognition. However, the concept predates Blum’s work, likely the concept was first
probed by Erdös [Erd45, Erd46].
The (inside)1 medial axis is a skeleton that captures many geometric and topological features
of an input set. Formally, the medial axis of a closed set S, denoted M [S], consists of all
points in the ambient space (usually Rd) that do not have a unique closest point in S.
In this chapter, the ambient space will be Rd. See Figure 3.1 for a simple example in the plane.
The reach of a (closed) set, S ⊂ Rd, was introduced by Federer [Fed59] as the minimum
distance from S to the medial axis, as a means to study properties of the medial axis and it’s
complement. More recently, its closure has been reintroduced as the central set [MW80].

Figure 3.1: An ellipse with its medial axis, a straight line which is homotopy equivalent to the
inside of the ellipse.

Lieutier proved in [Lie04] that the medial axis captures the homotopy type of the complement
of S, M [S] ≃ (Rd \ S). Given the medial axis of a smooth manifold, the original manifold

1A compact (d − 1)-manifold M ⊂ Rd divides Rd into a compact or inside part and a non-compact or
outside part. By the inside medial axis we mean the part of the medial axis that lies on the inside of the
compact or interior part.
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3. Medial Axes

may be recovered if the distance to the manifold at each point of the medial axis is known
[Wol92]. Damon [Dam03, Dam04, Dam07, Dam05] investigated how to recover the differential
geometry of the manifold from the geometry of the medial axis and the radius function.
In this chapter we investigate the medial axis, firstly, proving the instability of retraction based
approximations; and secondly, generalising the medial axes to higher orders.

3.2 Instability of the Medial Axis
Unfortunately, the medial axis is limited in its use by its (topological) instability under small
perturbations [ABE09]. Here small is understood to be small with respect to the Hausdorff
distance (recall Equation (2.2)), ρH(S,S ′). Compare Figures 3.1 and 3.2 for a standard
example of such instabilities.

Figure 3.2: Two similar manifolds to the ellipse in Figure 3.1 with drastically different inside
medial axes.

If we restrict ourselves to a smaller class of spaces and perturbations, there are stability results
available. Chazal and Soufflet [CS04] proved that the medial axis is stable with respect to
the Hausdorff distance under ambient diffeomorphisms, under strong conditions. Namely,
Chazal and Soufflet assumed that the set, S, is a C2 manifold of positive reach and the
distortion is a C2 diffeomorphism of Rd. Federer [Fed59] proved that the reach is stable under
C1,1 diffeomorphisms of the ambient space, that is, a diffeomorphism of the ambient space
whose derivative and the derivative of the inverse are Lipschitz continuous. Using Federer’s
result Chazal and Soufflet’s work [CS04] was recently improved by Dal Poz Kouřimská, Lieutier,
and Wintraecken to the medial axis of any closed set with bounded complement under C1,1

diffeomorphisms [DPKLW24].

3.2.1 Singularities, generic stability and transitions
Generically a point on the medial axis in three dimensions has two closest points, in which case
the geometry of a neighbourhood (or more precisely the second fundamental form) can be
described in terms of the geometry near the two closest points [vM02, Sie99, SSG99, vM03].
This means that the geometry of the medial axis is (generically) locally stable.
The topology of the singularities of the medial axis can also be classified in a generic setting in
low dimensions. More precisely, any point in the medial axis of a smoothly embedded generic
manifold has a neighbourhood such that the medial axis in this neighbourhood is diffeomorphic
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3.2. Instability of the Medial Axis

to sets in the classification. The classification of singularities of the medial axis is the same as
for the cut locus, which is, roughly speaking, the medial axis for a single point on a manifold,
see Figure 3.3.

The Aj
i notation of Figure 3.3 for the types of singularities was introduced by Arnold. The

subscript, i, refers to the order of contact the sphere makes with the surface and the superscript,
j, indicates the number of this type of contact for this sphere. First order contact, A1, implies
the surface and sphere share a tangent space; second order contact, A2, implies the one of the
principal curvatures of the surface matches the curvature of the sphere; third order contact,
A3, implies the derivative of the curvature of the surface and sphere are also equal. In the
case of third order contact this further implies the surface has a critical point in curvature at
the contact, since the curvature of the sphere is constant.

This classification was found in a variety of settings [Mat83, Buc78, Yom81, Arn13, Tho72,
Loo74, DG14]. In particular, Chapter 13 of [DG14] extensively discusses genericity, and we
refer to this chapter for full discussion on the topic. We refer the reader to Van Manen
[vM07] for a more in-depth overview of this rich topic and its history, as well as to to work by
Damon [Dam06]. Unfortunately, the classification of singularities is only explicitly possible in
sufficiently low dimensions2 and in this chapter we limit ourselves to at most dimension 3.

Figure 3.3: The singularities of the medial axis of a generic surface embedded in R3 (including
the ‘non-singularity’, that is the surface). The double lines indicate open ends.

The generic transitions between singularities of the medial axis, known as perestroikas, in a
one parameter family isotopy between (generic) surfaces in R3 have been studied by Giblin
and Kimia [GKP08], based on earlier work by Bogaevsky [Bog89, Bog02, Bog99, Bog95]. We
represent the transitions given by Giblin and Kimia, and Bogaevsky in Figure 3.4. The A4

1
transition plays a significant role in this section.

2In dimensions 7 or larger, there is no stability of the singularities of the cut locus in the C∞ sense. only
in the C0 sense, see Buchner [Buc77, Buc78], see also [Wal77, Theorem 4 (i) and (ii), page 737]. This is an
essential obstruction to a classification of singularities for the cut locus on manifolds in higher dimensions.
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Figure 3.4: The generic transitions of singularities (perestroikas) of the medial axis in R3.
Adapted from figures by Bogaevsky [Bog02]. We use the same notation as [GKP08], which in
turn follows Arnold. As we will see in Figure 3.9 (see also Figure 3.11) it is the transition of
type A4

1 that causes the (inside) medial axis to become non-collapsible (during the deformation
of the cube into a thickened Bing’s house).

3.2.2 Prunings
Significant effort has gone into the simplification (pruning) of the medial axis. This was
motivated by applications in: graphics (where the medial axis is used as a skeleton, see the
surveys [SBdB16, TDS+16]); data reduction; shape recognition; and machine learning (see
for example [BDC+15, CK11, DHL+19, HD86, LCLJ11, SKK04, SB98, YSC+16]). Various
prunings of the medial axis have been proposed in many different settings [ACK01, AM96,
BBML+18, CL05, DS06, DZ04, GMPW09, LCLJ11, SB98]. See Figure 3.5 for an illustration
of some commonly used prunings and their pitfalls: the object angle, which is of historic
importance in the community but can disconnect the medial axis; the λ-medial axis, which
is used to compute a close approximation of the medial axis but which can truncate “thin”
regions undesirably; and the burning method, which we consider in this chapter.

Since the λ-medial axis is essential to our computations we briefly define it now. For S ⊂ Rd and
M [S] its medial axis, at each point x ∈ M [S] we have a radius function r(x) = infp∈S ∥x− p∥,
nearest neighbour function Π(x) = {p ∈ S|∥x− p∥ = r(x)} and separation of contact points
given by δ(x) = maxp,q∈Π(x) ∥p− q∥. Then for a fixed parameter λ > 0, the λ-medial axis is
given by, Mλ[S] = {x ∈ M [S]|δ(x) ≥ λr(x)}.

The simplification which we focus on for this work is the burning of the medial axis [LCLJ11,
YSC+16], which generalizes Blum’s original “grassfire” analogy for the medial axis. The
burning of the medial axis removes the extremities of the medial axis by “starting a fire” at the
boundary of the medial axis which stops if the fire hits an obstacle, as illustrated in Figure 3.6.
Note that this illustration focuses on 2 dimensions, where the definition is simpler [LCLJ11].
The generalization of burning to 3 dimensions is significantly more complex, as the singularities
are no longer points. We refer the reader to [YSC+16] for the full definition and examples of
this generalization, as the full details are not needed for our main result.

Because of the good experimental results, it was conjectured that the burning method of
simplification of the medial axis would be stable [LCLJ11], i.e. no discontinuous jumps. The

20
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Figure 3.5: Various pruning methods, from left to right: Object angles [AM96, DZ04], (cir-
cum)radius of the set of closest points [CL05] (the λ-medial axis, also used in our computation),
and a burning method proposed in [YSC+16], with various undesirable features indicated. The
value of the object angle, radius of of the set of closest points, and burning time (referred to
as erosion thickness in [YSC+16]) is indicated in colour on top. Reproduced from [YSC+16].

Figure 3.6: The fire front progression on a the medial axis (grey) of a curve (black). As the
fire front (indicated by the red dot) hits an unburned junction, it stops. If the junction is
already burned (with the colour indicating the burn time) the fire continues. As in Figure 3.5
the burning time is indicated in colour.

remainder of this section is dedicated to showing that this is not the case.

3.2.3 Burning Bing’s house
The counterexample is based on the standard deformation retraction from the closed ball
to Bing’s house with two rooms [Bin64], which is a contractible but not collapsible two
dimensional simplicial complex, see Figure 3.7. Bing’s house is not collapsible, as there is no
boundary from which a collapsing sequence could begin.

Bing constructed his house as a deformation retract from a solid cube, see Figure 3.7. The
deformation retraction goes as follows. During the entire construction, with the exception
of the final step, the set will remain three dimensional. As mentioned, we start with a solid
cube. We then start by digging two corridors. Once we have reached the part of the solid
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cube that will become a room, we start hollowing out the room by protruding a rectangular
cuboid into the room. This can be continued until we come near the corridor that goes to the
opposite room. Of course we cannot interfere with the corridor, instead we engulf the corridor
from both sides. Once we are past the corridor, we extend the hollowed space until it almost
touches itself near the flap. We finally flatten the three dimensional set to two dimensions,
creating Bing’s house.
As indicated in Figure 3.7 the deformation retraction of the solid cube to Bing’s house can be
done in a piecewise linear way. At every point before the final state where the set becomes
two dimensional, the boundary is a piecewise linear 2-sphere. Because the boundary of the
piecewise linear complex is a 2-sphere and all angles between adjacent faces of the piecewise
linear complex are π/2, the boundary complex can be made C1,1 by replacing the edges with
parts of cylinders and the vertices with parts of spheres. Such C1,1 manifolds can be smoothed,
even without decreasing the reach, see [KLW24]. This means in particular that a smooth
version of the deformation retraction from the smoothed solid cube to a thickening of Bing’s
house exists.

Figure 3.7: The deformation retraction of a solid cube (topological ball) to Bing’s house.
In the final frame we show the smoothed version of a thickened Bing’s house used in the
computation.

Before we go into the main statement, we consider a deformation of Bing’s house which makes
it collapsible. This deformation will be mirrored in the medial axis in our construction and
is depicted in Figure 3.9, see Figure 3.8 for the nomenclature. In this construction we cut
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Figure 3.8: The various parts of Bing’s house indicated.

a flap open so that the room no longer completely runs around the corridor. This cutting
exposes an edge of one of the walls of the corridor and the path that goes from the edge to
the bottom room. We can use this edge to collapse along the path into the bottom room,
then the bottom room itself, and from this the rest of Bing’s house.

We will now describe the counterexample. It follows the construction of Bing’s house from a
solid cube, but stops just before the set becomes two dimensional. This gives an isotopy of the
boundary of the cube, namely S2, such that the medial axis transitions from being collapsible
and burnable down to a point, into Bing’s house itself.

The precise result is the following:

Theorem 1. There exists a smooth ambient isotopy Ht : [0, 1] × S2 → R3 such that:

• The (inside) medial axis M [H0(S2)] is collapsible/burnable to a single point.

• The (inside) medial axisM [H1(S2)] is Bing’s house and is therefore non-collapsible/cannot
burn (is fireproof).

• The burning of M [Ht(S2)] is not continuous in t with respect to the Hausdorff distance
and Gromov-Hausdorff (as well as the Fréchet distance which is infinite).

• The topology of the burned (inside) medial axis changes from a point to Bing’s house
with two rooms at a single t0 ∈ [0, 1].

• The isotopy Ht can be chosen to be generic in the sense of singularity theory as developed
by Arnold and Thom [Arn13], see in particular [GKP08].
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Figure 3.9: This deformation (top six panels), which cuts a flap open, makes Bing’s house
collapsible. The topology of this transition (in the neighbourhood of the point where the
flap disappears) is precisely that of the type A4

1. The transition of type A4
1 is depicted in

the bottom three panels; the strata are coloured to indicate the correspondence with the
construction directly above.

Proof. Bing constructed his house as a deformation retract from a solid cube, see Figure 3.7.
The isotopy of the sphere we consider is the boundary of this deformation. However instead
of reducing to a two dimensional object we forego the final step so that at any point in the
deformation the set remains a topological (solid) ball and its boundary a sphere. The end
point of this deformation is a thickened version of Bing’s house.

We will only consider the medial axis on the inside of the sphere and not the exterior. The
medial axis of a thickened version of Bing’s house is Bing’s house itself. The deformation is
depicted in Figure 3.7. The essential topological change only happens near the end of the
deformation when the rooms wrap around their respective corridors, see Figure 3.11. At this
moment the bisector between the corridor and the wall disappears and is replaced by the

24



3.3. Higher Order Medial Axes

bisector between the two parts of the room that are wrapping around the corridor and the
medial axis becomes non-collapsible.

The transition as depicted in Figure 3.10 is not generic, it is in fact quite symmetrical and
at the critical transition, see Figure 3.11, there is an entire edge in the medial axis for which
there are 4 nearest points on the boundary of the thickened Bing’s house. For each point on
the edge, the closest points are a point on the exterior wall, a point on the corridor and two
points on either side that lie on the expanding top room.

We can perturb or change the configuration slightly as follows in order to make it generic.
Just before the time where the edge(s) in the medial axis for which there are 4 nearest points
on the boundary of the thickened Bing’s house is created, we can deform a small part of the
thickened Bing’s house. These edges come in pairs, one for the top room and one for the
bottom. For each of the edges the four closest points on the thickening of Bing’s house lie on
two sides of the growing room, one near the corridor, and one on the outside wall. This gives
rise to four curves on the boundary of the thickened Bing’s house. These curves are in fact
straight lines as the thickening of Bing’s house is locally flat in this neighbourhood. In the
middle of these curves on the wall and near the corridor, we deform the thickening of Bing’s
house so that it becomes locally spherical (with a large radius) in a small neighbourhood of
the edge. For the curves on the growing rooms we deform in the same manner, that is, we
make it locally spherical, but with a much smaller radius.

For all points x near the centre of the configuration, the points p ∈ π(x) in the closest point
projection π of x, lie on a part of a sphere. Here the two walls of the expanding top (or
bottom) room become closer, while the distance between the corridor and exterior wall remains
roughly the same. By focusing on the spherical parts, which locally control the transition,
we see this is equivalent to two small spheres moving closer and two spheres remaining at
the same distance, which are exactly a transition between singularities of type A4

1. Figure 3.9
offers a global view of what happens to the topology.

Figure 3.9 also helps to explain why the medial axis becomes collapsible. By the perestroika, the
entire length of the corridor is exposed to the outside. We can therefore start collapsing/burning
from the top of the corridor. We then continue to collapse/burn along parts of the corridor and
separator that have been exposed by the splitting of the flap. We then can continue into the
walls and floor of the bottom room, removing those. This exposes the bottom of the corridor
leading to the top room, and we can collapse/burn this too. Finally we can collapse/burn the
top room itself to a point.

Because Bing’s house cannot be pruned or collapsed we immediately have the following
corollary:

Corollary 1. Collapsing or pruning the medial axis of a domain such that it becomes one-
dimensional, as proposed in e.g. [BBML+18], is not always possible, even if the boundary of
the domain is a smooth sphere.

3.3 Higher Order Medial Axes
The definition of the medial axis as the centres of balls whose boundary touch a manifold in
at least two places, otherwise not intersecting the manifold, lends itself to a straight forward
generalization. Namely, we could take the centres of balls whose boundary contact a manifold
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Figure 3.10: The evolution of the inside medial axis (yellow) as the smoothed solid cube is
deformed into a thickened version of Bing’s house (blue/purple). The smoothed solid cubes in
these five frames coincide with the unsmoothed solid cubes in the first five frames of Figure
3.7. The exact moment at which the medial axis becomes non-collapsible lies between frames
four and five and is depicted explicitly in Figure 3.11.

Figure 3.11: The critical transition of the medial axis is highlighted in red. There are points
on the medial axis equidistant to the two parts of the room that wrap around the corridor,
the corridor itself, and the exterior wall, which can be avoided by a small perturbation. This
transition occurs between frames 4 and 5 of Figure 3.7.

in at least two places, while the intersection of the ball with the manifold is the entire manifold.
Given the nature of contacts and intersections we could label these axes the insphere and
circumsphere axes respectively. The simple case of an ellipse in the plane demonstrates the
two possible axes we obtain in two dimensions, see Figure 3.12. When we pair these axes with
the radii of the spheres at each point we obtain the insphere and circumsphere axis transforms.
This idea was first explored in the master thesis of Elizabeth Stephenson [Ste23a] and the
following paper [EST26].

Alternatively to the sphere definition, it is possible to define these medial axes via the Euclidean
distance function from a point x ∈ Rd restricted to a manifold, M ⊂ Rd, ρE(·, x)|M : Rd →
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Figure 3.12: An ellipse (in black) and its evolute (in red). The standard (0th) medial axis (or
insphere axis) is the gray horizontal line, and the 1st medial axis (or circumsphere axis) is the
vertical gray line.

R :, where x ↦→ ∥p− x∥, which we call the restricted distance function or simply the radial
distance function. When d = 2, the familiar medial axis (insphere axis) is the set points,
x ∈ R2, for which the first minima of the restricted distance function, with respect to an
expanding radius from x, is not unique. The circumsphere axis is then the set of points
for which the final maxima of the restricted distance function is not unique. Because the
indices of a minima and maxima of functions in R2 are 0 and 1 respectively, the insphere and
circumsphere axes have also been called the 0-th and 1-st medial axes.

If one relaxes the condition of critical points being the first or last to occur in a radial filtration
of M, and additionally that critical points of the same index must appear at the same radius,
the insphere and circumsphere axes are seen to be subsets of the symmetry set of M. The
symmetry set simply being the centres of all spheres which contact M in at least two points.

In R3 index 1 critical points correspond to saddles while maxima have index 2. The order
of appearance of saddles with respect to the radial filtration has no clear importance, unlike
for minima and maxima. Instead we require additional definitions and constraints. A sphere,
S, touches M at a point p ∈ M ∩ S if the tangent spaces of M and S at p are equal.
Additionally, S and M touch generically, when the principal curvatures of M at p are different
from the curvature of S, 1/r. A pair (x, r) ∈ Rd × R belongs to the i-th medial axis if:

(i) The restricted distance function ρ(·, x)|M has an index i critical value at radius r ∈ R

(ii) The rank of the i-th homology of the sublevel set ρ(·, x)|−1
M([0, r]) is one

(iii) The number of points in the level set at r touches at least two distinct points generically.
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In R3 the 0-th, 1-st and 2-nd medial axes become the insphere, midsphere and circumsphere
axes and we label them M0[M],M1[M],M2[M] respectively, see Figure 3.13. It is the
midsphere axis we are primarily interested in for this section.

Figure 3.13: From left to right: The insphere axis of a piecewise linear ellipsoid; the midsphere
axis; and the circumsphere axis. All axes are numerically computed and hence consist of
polygons whose edges are drawn in black.

The focal sets of a manifold, are the sets of spheres whose radii are equal to the radii of
principal curvature of points x ∈ M, such that the derivatives of the spheres and M at x are
equal. The cusps of these focal sets are exactly the critical points of curvature of M and the
limit of branches in the symmetry set (possibly also the various medial axes) as the contact
points converge. The midsphere axis terminates in ridges that pass through umbilic points of
M, that is points where the principal curvatures are equal, and hence is bounded partially by
each of the focal sets. We call the union of the symmetry set and the focal sets the extended
symmetry set.

In R2 there is a single focal set, more commonly referred to as the evolute and the symmetry
set depicted in Figure 3.12 consists exclusively of medial axis pieces. In R3 the critical points of
principal curvatures form arcs and loops (referred to as ribs) in the focal sets which correspond
to ridge-like features in M [Por94]. Again in Figure 3.13 the symmetry of the ellipsoid consists
exclusively of medial axis pieces. However, in general the symmetry set can be extremely
complicated, see [Blu67], potentially obfuscating useful information about a manifold captured
by the medial axes.

For the remainder of this section we will explore new and existing algorithms for the computation
of the midsphere axis of surfaces in R3.

3.3.1 Vineyard Algorithm
In the original introduction [EST26], the authors presented an algorithm for the computation of
the midsphere axis based on so called Faustian interchanges in the vineyard of radial distance
function parameterised by R3. A Faustian interchange occurs when two critical points exchange
their types, that is, one point that had given rise to a birth in persistence now gives rise to a
death and the other which had given rise to a death now gives rise to a birth. If we track the
persistence of the radial distance function through a curve that passes through the insphere
axis (respectively midsphere or circumsphere axes), the two minima (respectively saddles or
maxima) with smallest radii (respectively largest for circumsphere axis) will exchange their
types resulting in a Faustian exchange.
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The algorithm in [EST26] proceeds by probing for Faustian interchanges in the vineyard of the
radial distance function over short intervals in R3. The authors were able to do this efficiently
by leveraging the vineyard algorithm introduced in [CSEH05]. When there is a transposition
between filtrations of simplices of the same dimension they check if their interchange of types
is Faustian. In particular they use a neighbouring vertices in a scaled integer lattice to compute
the interval vineyards and include the square that would be the facet between the Voronoi
regions of the vertices into the midsphere axis when a Faustian interchange is detected. The
lattice is swept through in such a way that the reduced matrices between vertices are recycled,
no computations are repeated, and the whole process can be computed in parallel. If n is the
number of vertices in the input manifold and g3 is the number of lattice points, the number of
interchanges to be checked is bounded by O(g2n2).
Similarly to the λ-medial axis they also employ pruning techniques based on either the distance
between interchanging simplices or their persistence. In the former case they implemented
Euclidean pruning which, while less accurate than geodesic distance, is simpler to compute. In
the latter case the persistence of the features involved with the interchange are thresholded. It
was noted in [EST26] that best results were achieved with a combination of both techniques.

3.3.2 Bisector Algorithm
The λ-medial axis, which was discussed and used for computations in Section 3.2, can be
seen to demonstrate how the medial axis can be seen as the continuous limit of the Voronoi
tessellation. We mean this in the sense that by taking an ε-sample from a manifold, Mε and
applying a λ-filtering to the vertices of Vor(Mε) then limε→0 ρH(Vorλ(Mε),Mλ[M]) → 0. It
was this intuition that led us to consider how the midsphere axis of a piecewise linear manifold
might exist within the bisector arrangement of its vertices. A schematic of our proposed
algorithm is as follows.
Input: a triangulation (piece-wise linear approximation), T , of a smoothly embedded closed
surface, M ⊂ R3. T consists of vertices, edges, and triangles, with the global connectivity of
a 2-manifold (without boundary). We call the vertices of T points and write X for the set of
points and n = card X for their number.
Output: a polyhedral complex, M1

λ [T ], that approximates the midsphere axis of the smooth
surface. M1

λ [T ] consists of vertices, edges, and facets (convex polygons), with the global
connectivity of a 2-dimensional stratified space. To make it a ‘transform’, we add the piecewise
smooth radius function, R : |M1

λ [T ]| → R.
Approach: a depth-first search of the bisector arrangement defined by the points in X ,
which generalizes the approach of approximating the medial axis using facets of the Voronoi
tessellation; see [AC08]. Each point of a bisector is the center of a sphere that passes through
the corresponding two points in X . A crossing between two bisectors is actual if each shared
point is the center of the same sphere for both bisectors, and it is spurious otherwise. In
other words, the bisectors define an arrangement of spheres; for example a line is the pencil of
spheres that all pass through the same three points in X . Following the description in [Ede86],
we locally search this plane arrangement without constructing it, but note that we ignore
spurious intersections in this search. The midsphere axis is the subcomplex of visited and then
accepted vertices, edges, and facets of this arrangement. For all geometric operations, we
assume genericity, which we simulate using simulation of simplicity (SoS) [EM90].
Consider a sphere that passes through a point A ∈ X , which is a vertex of T . The link
of A consists of the vertices and edges that bound the disk of triangles that share A; see
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Figure 3.16. We say A is a saddle relative to the sphere if the cyclic sequence of the vertices in
the link alternate twice between inside and outside the sphere: in-out-in-out and then repeat.

We define the bisector arrangement as the projection of the 2-skeleton of a hyperplane
arrangement in R4. The projection introduces extra intersections, which we ignore. While

Figure 3.14: The Hasse diagram of the local neighborhood of a vertex, which is contained in
four lines and six planes, such that each line is contained in three of the planes, while each
plane contains only two of the lines.

this requires that we can distinguish between spurious and actual intersections, we prefer the
description in R3 as it is easier to imagine. The constituents of the bisector arrangement are:

• vertices, each the center of a sphere that passes through 4 of the n points;

• lines, each consisting of points that are equidistant to 3 of the n points;

• planes, each consisting of points that are equidistant to 2 of the n points;

• edges, each the portion between two consecutive vertices on a line;

• facets, each a connected portion after cutting a plane along its lines.

The local connectivity is important and illustrated in Figure 3.14. In particular, each vertex
belongs to six planes and to four lines, and each line belongs to three planes. Note that in an
arrangement of planes in general position, a line belongs to only two planes, but in our setting,
such a line is a spurious intersection and ignored. If a plane contains a vertex, it also contains
exactly two lines that pass through this vertex. So within such a plane, a vertex belongs to
only two lines; that is: we have a simple line arrangement, see Figure 3.15.

By definition, any point x in the interior of a facet is equidistant to two unique points A and
B. Let A0, A1 and B0, B1 be pairs of vertices, in the links of A and B respectively, that are
inside the sphere and separated from each other along the link by vertices outside the sphere.
Hence, Conditions (i) and (ii) of Section 3.3 translate to two necessary conditions for the facet
to belong to the midsphere axis:

Saddle Condition A and B are saddles relative to the sphere with center x and radius r
that passes through A and B, see Figure 3.16.

Path Condition There are paths on T inside the sphere that connect A0 with B0 and A1
with B1, but there are no such paths connecting A0 with B1 and A1 with B0, see the
dashed lines in Figure 3.16.
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A
B

C
D

A
B

C AB

BC AC

Figure 3.15: The line arrangement inside a plane (the bisector of points A,B). The line
equidistant to points A,B,C is in this plane, but also in the planes that are the bisectors
of A,C and B,C, respectively. One of the vertices on this line is equidistant to points
A,B,C,D.

The first condition implies that the vertices in the link of A alternate twice between inside and
outside the sphere. While the second condition ensures that a H1 feature is born from this
sphere.

We construct the set of facets that satisfy these two conditions, together with all their edges
and vertices, as the approximation of the mid-sphere axis. Note that there may be multiple
combinations of the neighbours of A and B which lie inside the sphere and satisfy the saddle
condition. To get the mid-sphere axis transform, we equip each facet with the function that
maps each of its points to the squared radius of the mid-sphere centered at this point, which
globally gives a piecewise quadratic function.

x

A

B

A0

B0 B1

A1

Figure 3.16: The sphere is centered at an interior point of a facet in the bisector arrangement
and passes through the two points for which this facet belongs to the bisector. The sphere
is a mid-sphere of the input surface if the two points are saddles relative to this sphere, and
there are separable patches on M connecting A to B inside the sphere as shown.

Given a pair of points A,B ∈ X and fixed λ ∈ R, λ > 0, it is possible to decide via a
subroutine if there are any facets f satisfying the Saddle and Path Conditions and hence
belongs to the mid-sphere axis or not.
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Step 1 if ∥A− B∥ ≥ λ proceed to Step 2, otherwise return false.

Step 2 consider each combination of points in the links of both A and B such that the
selected points lying inside of a sphere and unselected points lying outside of the same
sphere would give rise to saddles at both A and B.

Step 3 for each such combination take the half spaces bordered by the bisectors of each
point in the link of A and B and orient them such that the halfspaces of selected points
are oriented towards A (or B) and the halfspaces of unselected points point towards the
point itself.

Step 4 if the intersection of these halfspaces along with the bisector plane of A and B
themselves is non empty we obtain a facet f for the combination selected in Step 1 and
continue to Step 5, otherwise repeat this step with the next combination from Step 2.

Step 5 for each edge e in the boundary of f trace the pencil of spheres defined by e, if any
point C ∈ X enters or exits the sphere, subdivide f by the edge ABC into subfacets
and complete Step 6 with each subfacet in place of f (this represents a branch in the
midsphere axis)

Step 6 letting x ∈ f be the center for a sphere S representing f , take A0, A1 and B0, B1 as
selected points belonging to separate connected components of their respective links
inside S. Perform a search in T inside S starting at A0, and another such search starting
at A1, and return true if one search finds B0 (but not B1), and the other search finds
B1 (but not B0).

For each f found to belong to the mid-sphere axis, we may also return the squared radius
function, R2 : |f | → R, defined by R2(y) = ∥y − A∥2.
Note each bisector AB is subdivided into regions (many of which may be empty) by the
different link combinations from Step 2, see Figure 3.17
In order to extend this subroutine into a complete algorithm we require an efficient means
to search the space of bisectors and a way to identify a starting pair. To address the former
we employ a breadth first search approach. Once we have identified a pair A,B that returns
true from the subroutine we can continue with the with pairs Ai, B and A,Bj , where Ai and
Bj are the points in the links of A and B respectively. Meanwhile, in the current instantiation
we find a starting pair A0, B0 by identifying, pairs of ridges, that is, positive (or negative)
maximal (minimal) ribs of the minimal (maximal) curvature map, on the surface and selecting
one point from each ridge, with minimal pairwise distance. With these additional routines in
place we were able to implement a functional, yet far from optimal, algorithm for computing
the midsphere axis of a surface.

3.4 Discussion
In Section 3.2 we constructed an isotopy of the sphere such that the inside medial axis
transitions from collapsible to non-collapsible.
The frames of the deformation illustrated in Figures 3.7, 3.10, and 3.11 are taken from our
Symposium on Computational Geometry Media Exposition submission [CFSW25b] (available
at https://youtu.be/CFmFP6CHVEk). These animations were made using our own
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3.4. Discussion

Figure 3.17: A close up of the midsphere axis from Figure 3.13. Solid black lines separate
regions where one of the pair A,B changes, whereas light dashed lines separate regions where
one of the points in the links of A or B enters or exits the contact sphere.

implementation of the λ-medial axis and the open source-software Blender [Com18]. Here λ is
chosen very small to ensure that the λ-medial axis is a good approximation of the medial axis.
The exterior medial axis throughout this isotopy remains collapsible (by which we mean
after compactifying the ambient space to S3). This automatically leads to some interesting
questions.
Does there exist an embedding of S2 in S3 where it is not possible to burn/partially collapse
either connected component of the medial axis of S2 at all? We will refer to one of the
connected components as the outside and one as the inside, as before, even though this choice
is arbitrary (unless S3 is explicitly described as the one-point compactification of Euclidean
space).
Can we use the burning of either the inside or outside medial axes to guide an isotopy of the
sphere? See Figure 3.18 for an example of an isotopy guided by burning.
This leads us to the following stronger conjecture.

Conjecture 1. Given any embedding of S2 in S3, there exists a series of isotopies of S2 based
on successive burnings of both the inside and outside medial axes, which yields the standard
symmetrical embedding of the 2-sphere in S3.

We point out that some work on the correspondence between the singularities of the inside
and outside medial axes has already been done [DG14].
Lieutier and Wintraecken [LW23] recently showed that there is a pruning (the (λ, α)-pruning)
of the medial axis that is Hausdorff and Gromov-Hausdorff stable under Hausdorff perturbations
of the input set.
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Figure 3.18: A two dimensional example of an isotopy guided by the burning of the medial
axis.

Finally, although the algorithm for computing the midsphere was correct and functional, the
implementation was not optimised to the extent that triangulations of more than a few thousand
vertices were impractical to compute. For example, our implementation must fully recompute
the halfspace intersection for each saddle arrange between a pair of points. In practice most
saddle arrangements require flipping the norms of a few halfspaces in the arrangement which
could be computed more efficiently. Likewise the Python implementation of the halfspace
intersection algorithm only returns the vertices of the intersection without the face relations
which is what we really need, necessitating an additional convex hull algorithm. With these
optimizations in place the algorithm would already be far more practical for applications.
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CHAPTER 4
Delaunay Surfaces and Paths

4.1 Introduction
This chapter contributes credence to the idea that stochastic geometry is an effective tool to
measure geometric shapes that are otherwise difficult to measure. As a first example consider
a smoothly embedded closed surface, M ∈ R3. Except in rare cases, its area cannot be
computed analytically. To compute it numerically, we may sample points on M and connect
them with triangles to get a piecewise linear approximation whose area is easily obtained.
Sampling progressively finer while avoiding pitfalls like skinny triangles whose normals do not
approach those of the surface, the area of the piecewise linear approximation converges to the
area of M [CMS84].

However, avoiding these pitfalls can be quite difficult in practice and it may not be clear a priori
whether the area indeed converges to the area of M. We refer to [CDS13] for background
on mesh generation questions. Alternatively, we may side-step this problem by exploiting
an interesting result that the Delaunay surface of M for a stationary Poisson point process
in R3 has expected area 3/2 times the area of M [EN25]. The Delaunay surface, which we
denote, Del(M, A), is constructed by collecting the cells in the Delaunay mosaic of a Poisson
point process, A, whose dual Voronoi cells have non empty intersection with the surface. The
computation is not necessarily faster but it is less demanding and error prone than that of the
approximating sequence of piecewise linear surfaces.

The main result of this chapter for Delaunay surfaces, is to extend this result to the integrated
mean curvature of M. Thanks to Hadwiger’s theorem [Had57], this result for mean curvature
completes the distortion factors for all intrinsic volumes, and hence all rigid motion invariant
valuations, in R3. We write Mean(M) for the (integrated) mean curvature of M for which
we find an expected distortion of 3/2.

In contrast to the expected area, for which the corresponding equation holds for every intensity
[EN25], the expected mean curvature differs from 3/2 by a small amount, which vanishes as
the intensity goes to infinity, see Equation (4.6).

Similar to the area, a distortion factor also holds on average, over all rigid motions of M, but
now only in the limit, so we need an appropriate sequence of point sets. For example, we may
formulate the result for A = rZ2 and take the limit as r goes to 0. This version of the result
says that the factor 3/2 is a property of R3 and not of the random point process.
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d = 1 2 3
ϕ0 = Gauss(Del(M, A)) 1 1 1
ϕ1 = Mean(Del(M, A)) 1 4/π ?
ϕ2 = Area(Del(M, A)) 1 3/2
ϕ3 = Vol(Del(M, A)) 1

Table 4.1: Summary of known and unknown distortion factors for intrinsic volumes in low
dimensional ambient spaces. The well known intrinsic volumes for a surface are listed, however
considering instead a curve in the plane (or space), ϕ1 would represent the distortion factor of
length.

The relevant background on Delaunay surfaces; mean curvature and the intrinsic volumes; and
Hagwiger’s characterisation theorem are covered in Section 4.2. The main result, Theorem 5,
and the necessary lemmas are proved in Section 4.3.

Finally, we also investigate the writhe of Delaunay loops in R3 as a first example of non-
valuation measures in Section 4.4. Here we work instead with a knot, γ, in R3, A ⊆ R3

a locally finite set whose convex hull is the entire R3, then Del(γ,A) is the Delaunay loop
of γ and A. We are interested in both the average writhe, Avg[Wr(Del(γ,A))], over all
rigid motions, and the expected writhe, Exp[Wr(Del(γ,A))], for the expected writhe over all
choices of A. Which leads us to the Theorem 8.

4.2 Preliminaries

4.2.1 Delaunay Surfaces
The Gauss circle problem compares the area of a disk to an approximation of the disk
generated by collecting the pixels whose centers lie within the disk as in Figure 4.1 [Har99].
The approximation improves as we decrease the spacing between lattice points. The difference
in area for a unit circle with grid spacing α is given by |π − nα2|, which vanishes as α → 0.

Figure 4.1: We may approximate the disk bounded by the red circle with the pixels whose
centers lie within the disk.

In contrast, the perimeter of the union of pixels does not converge to the perimeter of the
disk. Note that the boundary consists of four staircases whose combined length converges to
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four times the diameter of the unit disk, which as a ratio to the actual perimeter is, 8/2π = 4
π
.

On the other hand, replacing the unit disk with the unit square, the approximation converges
to the correct perimeter. This difference in behavior is caused by the lack of isotropy of the
square grid. This motivates us to view shapes through the lens of an isotropic tiling, and we
use randomness to generate it.

Recall the definitions of Voronoi tessellations and Delaunay mosaics form Section 2.4. Given
a space S ⊆ R3 and a locally finite set A ⊆ R3, the Voronoi domains of A decompose S,
and we are interested in the dual of this decomposition, which is necessarily a subcomplex
of Del(A). The restricted Delaunay complex of S and A, denoted Del(S, A), consists of all
cells in Del(A) whose dual cells in Vor(A) have a non-empty intersection with S. If S is a
closed surface, we write M = S and refer to Del(M, A) as the (closed) Delaunay surface of
M and A, see Figure 4.3 for several examples.

Unless mentioned otherwise, the set A ⊆ Rd is a stationary Poisson point process with positive
intensity ϱ. It can be characterized by the following two properties: the number of points
within a finite collection of pairwise disjoint Borel sets are independent random variables; and
the expected number of points within a Borel set is ϱ times its Lebesgue measure, see for
example [Kin95]. A Poisson point process with positive intensity in Rd has with probability
1: infinitely many points; is locally finite; and is in general position. We prefer to generate
the Voronoi tessellations with a stationary Poisson point process rather than, for example, an
integer lattice, in order to obtain an anisotropic grid.

Given a stationary Poisson point process, A ⊆ R2, and a line segment, L, Baccelli, Tchoumatchenko
and Zuyev consider what they call the Voronoi path of L and A and prove that its expected
length is 4/π times the length of L; see [BTZ00]. See Figure 4.2 for two example Delaunay
paths in the plane. In their work, this path consists of all Delaunay edges whose dual Voronoi
edges have a non-empty intersection with L. It is thus a special case of the restricted Delaunay
complex as defined in [ES97].

Figure 4.2: Left: the Delaunay path of the circle on the square grid sample. Right: the
Delaunay path of the same circle on a less regular sample.

The restricted Delaunay complex of a line segment in midst of a Voronoi tessellation in R2

was referred to as a Voronoi path in [dCD18]. The generalisation beyond line segments and
two dimensions was subsequently referred to as a Voronoi scape in [EN25]. We feel that
the alternative terminology of calling these concepts Delaunay paths, Delaunay scapes, and
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Figure 4.3: Top: Three input piecewise linear surfaces, a Schönhardt polyhedron, a torus and
a bunny (red). Middle: The Delaunay surfaces generated from an integer lattice. Bottom:
The Delaunay surfaces generated from a Poisson–Delaunay mosaic.

in the case of surfaces, Delaunay surfaces is more natural as they consist of cells in the
Delaunay mosaic and not the Voronoi tessellation after all. We will continue with our preferred
terminology and hope that the reader agrees that this is the less confusing of the choices.

The 2-dimensional result in [BTZ00] was generalised to p-dimensional shapes S ⊆ Rd in
[EN25], proving that the expected p-dimensional volume of the Delaunay scape of S is some
constant times the p-dimensional volume of S. Furthermore, [EN25] gives an explicit expression
for the constants, Dp,d, which are displayed in Table 4.2. In words: the length and area in R3

are both distorted by a factor 3/2. The main result of this chapter states that this is also the
case for the mean curvature of a closed surface M ∈ R3, albeit only in the limit.

By definition, a closed surface is a compact 2-manifold (without boundary), so every point
x ∈ M has a neighbourhood homeomorphic to R2. Since we limit ourselves to closed surfaces
in R3, they are also orientable, so there is a unique subset S ⊆ R3 for which M is the boundary.
Under some conditions on M and A, the Delaunay surface has the same properties.

Proposition 1 (Closed Ball Property [ES97]). We say that M satisfies the closed ball property
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d = 1 2 3 4 5 6
p = 1 1 4/π 3/2 16/3π 15/8 32/5π

2 1 3/2 2 5/2 3
3 1 16/3π 5/2 32/3π

4 1 15/8 3
5 1 32/5π

6 1

Table 4.2: Summary of average and expected distortion factors, Dp,d, for p-volumes in d
dimensional Euclidean space [EN25].

if the intersection of M with any i-cell of Vor(A) is either empty or homeomorphic to an
(i− 1)-ball. If M satisfies this condition, then Del(M, A) is homeomorphic to M.

We spend the remainder of this subsection with the consequences of violations of the closed
ball property. We distinguish those that occur generically from others that require degenerate
position and focus on the former. In many situations, the Voronoi surface is not a 2-manifold.
Nonetheless, we are motivated to call it a surface because local reinterpretations of the
complex—such as splitting a vertex into two—allow us to see it as a 2-manifold.
Each violation of the closed ball property is an intersection of M with an i-cell that is not
an (i− 1)-ball. Figure 4.4 displays violations of the closed ball property for i = 3 on the left,
i = 2 in the middle, and i = 1 on the right. Such violations can be avoided by having smaller
Voronoi cells or, equivalently, a denser set A. A typical case of pinching along a triangle (right
case in Figure 4.4) is a fin, which is a polygon that sticks out of a surface to which it is
connected along an edge. Another common violation of the closed ball property is when M
intersects a Voronoi polygon in a topological circle. In this case, Del(M, A) contains a spike,
which is an edge that is not part of any polygon or 3-cell in Del(M, A). Most common are
spikes that stick out of a surface, but more complicated scenarios in which the spike connects
two surface patches are possible.

Figure 4.4: From left to right: pinching at a vertex where the surface, M, intersects a Voronoi
3-cell in two disks; pinching along an edge because M intersects a Voronoi polygon in two
arcs; pinching along a triangle because M intersects a Voronoi edge in two points.

4.2.2 Intrinsic Volumes
This subsection introduces the intrinsic volumes, in particular the integrated mean curvature,
and highlights their importance amongst geometric measures via Hadwiger’s characterisation
theorem [Had57].
For a convex body, K ⊆ Rd, and a radius, r ≥ 0, the parallel body is the set of points at
distance at most r from K: Kr = K + rBd = {x ∈ Rd | miny∈K ∥x− y∥ ≤ r}. As shown

39



4. Delaunay Surfaces and Paths

by Steiner [Ste13] two centuries ago, the d-dimensional volume of the parallel body follows a
polynomial of degree d in r.

Theorem 2 (Steiner Polynomial [Ste13]). Let K be a compact convex body in Rd, and write
κi for the volume of the unit ball in Ri. Then the volume of the parallel body of K is

Vol(Kr) =
∑︂d

i=0 r
d−iκd−iϕi(K), (4.1)

in which ϕi(K) is the i-th intrinsic volume of K.

In R3, the intrinsic volumes are familiar measures: ϕ0 is the Euler characteristic, ϕ1 is half the
mean curvature, ϕ2 is twice the surface area, and ϕ3 is the volume. These measures are called
intrinsic because they do not depend on the dimension of the ambient space, by which we
mean if K ⊆ Rd and dim K < d, then ϕi(K) is the same whether computed in Rd or the
affine hull of K treated as a Euclidean space.
A classic result of Crofton [CS68] expresses the i-th intrinsic volume of a convex body as the
average Euler characteristic of its intersection with a (d− i)-flat in Rd.

Theorem 3 (Crofton’s Integral Formula [CS68]). Let K be a compact convex body in Rd,
and write Graffd,d−i for the affine Grassmannian of (d− i)-planes in Rd. Then

ϕi(K) = i!(d− i)!
0!d!

κiκd−i

κ0κd

∫︂
E∈Graffd,d−i

χ(K ∩ E) dE. (4.2)

Here Graffd,d−i is given a locally finite motion invariant measure, which is normalised such
that the measure of flats intersecting the unit ball is κi.
A geometric measure, φ : Rd → R, is called a valuation if it is additive; that is: φ(∅) = 0 and
for all convex sets K and L, we have

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L). (4.3)

The intrinsic volumes inherit additivity from the Euclidean volumes, so they are valuations.
If a valuation is furthermore continuous (under the Hausdorff distance) and invariant under
rigid motions, a result of Hadwiger [Had57] says that it is a linear combination of the intrinsic
volumes.

Theorem 4 (Hadwiger’s Characterisation Theorem [Had57]). For K ⊆ Rd a compact convex
body, and φ : Rd → R a continuous valuation that is invariant under rigid motions, we have

φ(K) =
∑︂d

i=0 ciϕi(K), (4.4)

for some constants ci independent of K.

Since the intrinsic volumes have these three properties, and these properties are preserved
under linear combination, the converse of the implication is also true.
Both Crofton’s integral formula and Hadwiger’s characterisation theorem extend to smooth
finite unions of compact convex sets, see for example, [KRdB97]. The Steiner polynomial
and Crofton formula have been extended to compact submanifolds of Rd, both smooth and
piecewise linear, via Weyl’s tube formula [Wey39] and normal cycle theory [CMS86], see for
example [Mor08]. In these contexts the intrinsic volumes are often labelled i-th Lipschitz-Killing
curvatures or i-th mean curvatures of a manifold.
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4.2.3 External Dihedral Angles
Consider a piecewise linear closed surface in R3. It is necessarily orientable, so it is well defined
which side of the surface is the inside (the space enclosed by the surface), and which is the
outside (the space that surrounds the surface and reaches all the way to infinity). For an
orientable surface that is not closed, we will talk about the positive and negative sides, defined
in such a way that if this surface is a patch of a closed surface, then the inside is on the
positive and the outside on the negative side. For a polygon of this surface, the outer unit
normal is the unit length vector normal to the plane that contains the polygon and points to
the negative side. Let p1 and p2 be two polygons that share an edge, e, of the surface. We
define the angles at e in terms of a small circle centred at an interior point of e and contained
in a plane normal to e. We require that this circle is sufficiently small so that it intersects p1
and p2 in a point each.
The dihedral angle between p1 and p2 at e is 2π times the fraction of the mentioned small
circle on the positive side of the two polygons. Letting δ be this angle, the external dihedral
angle at e is η = π − δ.
By construction, the dihedral angle satisfies 0 ≤ δ ≤ 2π. We call e a convex, straight, or
reflex edge if δ < π, δ = π, or δ > π, respectively. It follows that the external dihedral angle
satisfies −π ≤ η ≤ π: it is positive when e is convex, zero when e is straight, and negative
when e is reflex. Indeed, η is the (signed) angle between the outer unit normals of p1 and p2.
For a piecewise linear surface, M, with 1-skeleton, M (1), the integrated mean curvature has a
well known discretisation which depends on the external dihedral angle η,

Mean(M) =
∑︂

e∈M(1)

ηe∥e∥. (4.5)

When computing mean curvature of a Delaunay surface it is important to consider the
violations to being a 2-manifold that one may encounter. We will see mean curvature can still
be computed in these cases and therefore we need not assume the Delaunay surface is indeed
a 2-manifold when completing the proof of Theorem 5.
When pinching occurs along a Delaunay edge, e, it either pinches the outside or the inside;
see Figure 4.5. In both cases, we compute the external dihedral angle at e as the sum of the
external dihedral angles at the edges that are glued to each other to form e. These edges are
only imagined, but we can recover the necessary information by inspecting how e∗ intersects
the surface.
Consider the case in which the intersection consists of two arcs. This corresponds to two glued
edges, so e is a face of four polygons. Let δ1 + δ2 + δ3 + δ4 = 2π be the four dihedral angles
between consecutive polygons around e, and assume that δ1 and δ2 are angles on the positive
side, while δ3 and δ4 are angles on the negative side. If e pinches the outside, as in Figure 4.5
on the left, then the external angle at e is computed as η = (π − δ1) + (π − δ2) = δ3 + δ4,
which is necessarily non-negative. If e pinches the inside, as in Figure 4.5 in the middle, then
the external dihedral angle at e is computed as η = (δ3 − π) + (δ4 − π) = −δ1 − δ2, which is
necessarily non-positive.
The above case analysis includes the case in which e is an edge of a polygon obtained by
pinching, such as the edges of a fin. It can be expanded to the case in which three or more
edges are glued. As illustrated in Figure 4.5 on the right, such cases include the possibility
that the inside and outside are pinched simultaneously.
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δ2δ1 δ1 δ2

δ4 δ4

δ3 δ3

Figure 4.5: The intersection of a Voronoi polygon with a closed surface. The shading indicates
the inside of the surface. In all three cases, there is pinching along the corresponding Delaunay
edge. Left: pinching of the outside. Middle: pinching of the inside. Right: simultaneous
pinching of the outside and the inside.

A spike results from the local strangulation of the closed surface, and similar to the case
of pinching, we distinguish between strangulating the inside or the outside. The two cases
are again differentiated by inspecting how the surface intersects the corresponding Voronoi
polygon, namely in a topological circle that encloses either the inside, in which case the
external dihedral angle is 2π, or the outside, in which case the external dihedral angle is −2π.

4.3 Distortion of Mean Curvature
We are now prepared to formally state and prove the main theorem for Delaunay surfaces.

Theorem 5. Let A ⊆ R3 be a stationary Poisson point process with intensity ϱ > 0, and M
a rectifiable closed surface in R3. Then

limϱ→∞ Exp[Mean(Del(M, A))] = 3
2Mean(M). (4.6)

The proof of the Theorem 5 will be presented in four steps. We prove the average version
first and get the probabilistic version from the symmetry of stationary Poisson point processes.
Here is an overview.

1. We begin with three geometric lemmas about the average external dihedral angle between
the polygons sharing an edge in the Delaunay surface.

2. We leverage the work of Cheeger, Müller and Schrader [CMS84] to obtain a piecewise
linear surface that approximates the integrated mean curvature of M to within some
error ε > 0 and exactly in the limit.

3. We recall the work of Edelsbrunner and Nikitenko [EN25], which tells us that the
Delaunay path of the 1-skeleton of the piecewise linear surface on average stretches
length by a factor of 3/2.

4. We argue that the length and external dihedral angle are independent so that the
distortion of the integrated mean curvature can be obtained by multiplication.

4.3.1 Geometric Lemmas
We begin with the aforementioned geometric lemmas about average external dihedral angles,
which are core to our main theorem.
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Let A ⊆ R3 be locally finite and E ∈ Graff3,2 a plane. Assume for simplicity that E does not
pass through any vertex of Vor(A), in which case Del(E,A) is 2-dimensional. By convexity,
E satisfies the closed ball property, so Proposition 1 implies that Del(E,A) is homeomorphic
to E. Indeed, the orthogonal projection to E is a homeomorphism. After orienting E, we
call one half-space the positive and the other the negative side of E. Similarly, Del(E,A)
separates R3 itself into positive and a negative sides. Let E ′ be the same plane but with
opposite orientation, so that Del(E ′, A) = Del(E,A) but with positive and negative sides
exchanged. Hence, the sum and therefore the average of the two external dihedral angles at
any one edge is zero.
For the proof of the main theorem, we need the same conclusion for the more general case of
a polygon rather than a plane.

Lemma 1 (Complementary Dihedral Angles). Let A ⊆ R3 be locally finite, F a (flat) oriented
polygon in R3, and e an edge shared by polygons p and p0 in Del(A). Then the average,
over all rigid motions, µ : R3 → R3, for which e, p, p0 belong to Del(µ(F ), A), of the external
dihedral angle on the positive side of p, p0 vanishes.

Proof. The edge e and polygons p, p0 belong to Del(F,A) iff the dual Voronoi edges, p∗ and
p∗

0, intersect F in a point each. The orientation of F induces consistent orientations of p and
p0, so the dihedral angle on the positive side of the two polygons is well defined.
Next we construct a rigid motion for which the dihedral angle between p and p0 is complementary.
Let x and x0 be the points at which p∗ and p∗

0 intersect F , and call the line in the plane of
F whose points are equidistant to x and x0 the bisector of the two points. We write µ for
the rotation by 180◦ around the bisector of x and x0. By construction, p∗ and p∗

0 intersect
µ(F ), so e, p, p0 also belong to Del(µ(F ), A). However, the orientation is now reversed, which
implies that the dihedral angle on the positive side of p, p0 is complementary to what it was
before. Since the two dihedral angles are complementary, the sum of the corresponding two
external dihedral angles vanishes.

The next lemma considers two consistently oriented half-planes, E1 and E2, glued along their
common boundary, which is a line, L. We call this a wedge and let α be the dihedral angle
on its positive side. We call Del(E1 ∪ E2, A) a Delaunay wedge and Del(L,A) a Delaunay
line, noting that the latter is necessarily a subcomplex of the former. Generically, L does not
intersect any edge of Vor(A), in which case L satisfies the closed ball property, by convexity,
and Del(L,A) is homeomorphic to L. In contrast, the Delaunay wedge may or may not be
homeomorphic to E1 ∪E2 because pinching may occur even in the generic case. Nevertheless,
the dihedral angle at any edge e ∈ Del(L,A) is well defined albeit possibly zero. The lemma
asserts that on the average this dihedral angle is α. To formalise this claim, we consider all
rotations of the wedge about L. Writing µ : R3 → R3 for such a rotation, we have µ(L) = L
and µ(E1 ∪ E2) is still a wedge with dihedral angle α.

Lemma 2 (Average External Dihedral Angles, A). Let A ⊆ R3 be locally finite, e an edge in
Del(A), and E1 ∪E2 a wedge with dihedral angle α such that L = E1 ∩E2 intersects e∗ in a
single point in the interior of the Voronoi polygon. Then the average external dihedral angle
of the Delaunay wedge at e, over all rotations of the wedge about its line, is π − α.

Proof. To compute the average external dihedral angle of the Delaunay wedges at a fixed edge,
e, we let p0, p1, . . . , pk−1 be the cyclic order of Delaunay polygons that share e. Correspondingly,
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p∗
0, p

∗
1, . . . , p

∗
k−1 are the Voronoi edges in the boundary of e∗. Since L crosses e∗ at an interior

point, the portion of the boundary on the positive side of the wedge is a connected arc whose
endpoints are where E1 and E2 cross the boundary of e∗. Suppose E1 crosses p∗

0 in its interior,
and E2 crosses p∗

j in its interior. Writing δi for the dihedral angle between pi and pi+1 (taking
indices modulo k), the dihedral angle of Del(E1 ∪ E2, A) at e is δ0 + δ1 + . . .+ δj−1.
The average is the integral of this sum divided by 2π. The vertex shared by p∗

i and p∗
i+1

contributes to the integral while it is on the positive side of the wedge, which it is during an
angle α of the full rotation. It follows that the average dihedral angle is 1

2π

∑︁k−1
i=0 αδi = α.

The average external dihedral angle is therefore π − α, as claimed.

Next, we generalise to a wedge formed by two polygons, F1 and F2, that share an edge,
S = F1 ∩ F2. In contrast to the half-planes case, such a wedge does not necessarily intersect
the boundary of a Voronoi polygon, e∗, even if S intersects e∗ in an interior point. This
happens also for small e∗, namely when it intersects S near one of its endpoints. To handle
these cases, we formulate the following lemma in terms of a limit process.

Lemma 3 (Average External Dihedral Angles, B). Let A ⊆ R3 be a stationary Poisson point
process with intensity ϱ > 0, e an edge in Del(A), and F1 ∪ F2 a wedge of polygons with
dihedral angle α, such that the line segment S = F1 ∩ F2 intersects e∗ at an interior point.
Then the limit, for ϱ → ∞, of the expected external dihedral angle of Del(F1 ∪ F2, A) at e,
is π − α.

Proof. As the intensity of the Poisson process tends to infinity, the sizes of Voronoi polyhedra
and polygons tend to zero. Because of this, the contribution of edges of Del(S,A) whose
corresponding Voronoi polygons have boundaries that do not intersect F1 and F2 in a point
each decreases to zero in the limit.

Similar to the main theorem, Lemma 3 can also be formulated for the average instead of the
expected external dihedral angle. For this we would need an appropriate sequence of locally
finite point sets, such as rZ2, with r tending to zero.
We provide a computational experiment to give further evidence that a limit statement is
indeed necessary for Lemma 3. Figure 4.6 shows the average dihedral angle at the edges of
the Delaunay wedge computed for a right-angled wedge of two polygons and, for comparison,
a right-angled wedge of two half-planes. Each point is the dihedral angle, averaged (without
weights) over the edges in Del(S,A), in which edges with fewer than two incident Delaunay
polygons do not contribute to this average. Note the averaging is taken over a sample of 400
rotations about the wedge axis, causing the average to be slightly off from the true average,
which in our setting is π/2. Beyond averaging over the rotations, we average over several
samples of a stationary Poisson point process with progressively larger intensity going from left
to right. The difference between the curves for the half-planes and the polygons is proportional
to the fraction of Voronoi polygons whose boundaries do not intersect both polygons of the
wedge, and this difference is seen to decrease as the intensity of the Poisson point process
increases.

4.3.2 Piecewise Linear Approximation and Length Distortion
As stated in Section 4.3, we require a result of Cheeger, Müller and Schrader [CMS84] which
defines discrete Lipschitz-Killing curvatures (a generalisation of intrinsic volumes to smooth
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Figure 4.6: The expected angle of two Delaunay wedges, first with input a wedge of two
triangles that share an edge (orange) and secondly an input wedge of two large rectangles
representing a wedge of half planes (green), both with dihedral angle π/2 (blue).

closed Riemannian manifolds) for piecewise linear spaces and proves that if a piecewise linear
space suitably approximates a smooth space, then the corresponding curvatures are close. We
state the result as applicable to our situation.

Theorem 6 (PL Approximation of Surface [CMS84]). Let M ⊆ R3 be a closed surface and
let {Mε} be a family of piecewise linear approximations of M, for which the supremum of
lengths tends to zero and the infimum of angles is bounded away from zero. Let NM(x) and
NMε(y) be the outer unit normals at x ∈ M and y ∈ Mε, respectively. For each surface in
the family, there exists a homeomorphism, ϑε : M → Mε, such that ∥x− ϑε(x)∥ < ε, and for
all x ∈ M with ϑ(x) in the interior of a polygon of Mε, we have ∥NM(x) −NMε(ϑ(x)∥ < ε,
and ∥Mean(M) − Mean(Mε)∥ < ε.

Furthermore, we require a result from Edelsbrunner and Nikitenko [EN25], where they compute
the distortion factors for volumes of i-dimensional sets embedded in a Euclidean space of
dimension d ≥ i. However, we settle here for lengths of 1-dimensional sets in R3.

Theorem 7 (Edge Expansion [EN25]). Let S ⊆ R3 be a rectifiable 1-dimensional set, and
A ⊆ R3 a locally finite set such that the convex hull of A is R3. Then, the average length of
Del(S, A), over all rigid motions of S, is 3/2 times the length of S.

4.3.3 Completing the proof
We have collected all the elements required to complete the proof of the main theorem of this
chapter. We begin with the proof for the average, over all rigid motions of M, and afterwards
return to the expectations for a sequence of Poisson point processes.

Beginning with the argument for an average, let M ⊆ R3 be a closed surface. Take a piecewise
linear approximation, Mε, which by Theorem 6 sufficiently approximates the integrated mean
curvature of M, and write M (1)

ε for its 1-skeleton.
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Next, compute the restricted Delaunay complexes of Mε andM (1)
ε , and note that Del(M (1)

ε , A) ⊆
Del(Mε, A). Theorem 7 says that the 1-skeleton of Del(M (1)

ε , A) is on average 3/2 times
longer than M (1)

ε . The 1-skeleton of Del(Mε, A) is generally even longer as it may contain
additional edges.

We also consider the average external dihedral angles at the edge of Del(Mε, A). These
split into two cases: angles about the edges in Del(M (1)

ε , A), which are, on average and
in the limit, equal to the corresponding angles in Mε as shown in Lemma 3, and edges in
Del(Mε, A) \ Del(M (1)

ε , A), which on average are zero by Lemma 1.

We note the independence of length and angle in the Delaunay surface. Recall that the
integrated mean curvature of a PL surface, is the sum, over all edges, of its length times the
external dihedral angle at the edge. The average integrated mean curvature, over all rigid
motions, is thus a weighted sum of such average products. Each Delaunay edge, e, contributes
a number of such average products, namely one for each edge and polygon of Mε. Since the
length of e is constant, each such product is this length times the average external dihedral
angle. As argued above, in the limit the latter is 0 in case of a polygon, and the external
dihedral angle, in case of an edge of Mε. We conclude that the average integrated mean
curvature is distorted, in the limit, by the same factor as the length, namely 3/2.

Finally, to argue for the expectation we take a stationary Poisson point process in R3 which
is invariant under rigid motions. Hence the average integrated mean curvature is also the
expected integrated mean curvature. Hence we get 3/2 as the expected distortion factor in the
limit, when the intensity of the process goes to infinity.

4.4 Distortion of Writhe
The writhing number, or simply the writhe, of a space curve is a geometric measure that
quantifies the coiling of a cord as it is twisted. Writhe is of interest to us in this section
as it is an example of a geometric property that is not an additive valuation and hence not
representable by Hadwiger’s theorem and outside of our analysis so far in this chapter.

Many natural phenomena exhibit coiling behaviour, including supercoiling of DNA helices, in
which chemical and biological properties are characterised by the writhe [KL00]; proteins that
coil to fold DNA into compact forms in nuclei [Lev83]; and twisted magnetic fields where the
writhe can determine their stability [MR92, PL20, YB03]. Several mathematical models of
coiled ribbons have therefore been devised.

Consider a ribbon, (γ, U), as the annulus formed from an ε offset of an oriented closed curve,
γ ⊆ R3, along normals Ut ⊆ S2 at the points γt of the curve. We write Wr(γ) for the writhe
of the closed curve, let Lk(γ) be the linking number between the two boundary curves of the
ribbon, which is also the integer number of rotations of one of these curves about the other
and a topological invariant, and let Tw(γ) be the total number of rotations the ribbon makes
around its core axis1. In this setting, Călugăreanu [Că61], White [Whi69], and Fuller [Ful71]
independently proved that the writhe is characterised as the difference between the number of
rotations and the rate of rotation of the ribbon about γ:

Wr(γ) = Lk(γ) − Tw(γ). (4.7)

1Said otherwise, twist is the angular rate of rotation of γ’s local frame (tangent, normal, binormal) about
its tangent, integrated over γ.
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Recall the definition of knot diagrams from Section 2.2.1. Given an oriented closed curve
γ : S1 → R3 each direction u ∈ S2 provides a knot diagram of γ with some number of
crossings. We can apply a count, ±1, to each crossing in the diagram depending on whether
a rotation of less than 180 degrees clockwise or anti-clockwise provides the same orientation
as the underpass, see Figure 4.7. Calling the sum of these integers the writhe of the knot
diagram, denoted Wru(γ). If we average the writhe over all possible diagrams we obtain an
expression for the writhe independent of the twisting and linking numbers:

Wr(γ) = 1
4π

∫︂
u∈S2

Wru(γ) du. (4.8)

Observe that reversing the orientation of the knot preserves the signs at the crossings and
therefore the total writhe.

+ −

Figure 4.7: Sign rule for writhe of a knot diagram: a crossing is assigned +1 if the under-
crossing strand passes the over-crossing strand from right to left, and −1 if it passes the
over-crossing strand from left to right. Viewed from the opposite direction, under- and
over-passes switch and so do left and right, so the assigned sign stays the same.

Assume the knot γ : S1 → R3 is smooth and the derivative is everywhere non-zero. Write
Tt = γ̇(t)/∥γ̇(t)∥ for the unit tangent vector at γ(t). These vectors define a smooth but
possibly self-intersecting curve on the unit sphere, which we call the tangent indicatrix or
simply the tantrix of γ, denoted T = T (γ). Together, T and −T partition S2 into regions
such that the writhe of the knot diagrams along directions in the same region is constant. Let
R ⊆ S2 be such a region, write Area(R) for its area and WrR(γ) for the writhe of the knot
diagram along a direction u ∈ R.
Proposition 2 (Tantrix Formula for Writhe). Let γ : S1 → R3 be smooth with everywhere
non-zero derivative. Then

Wr(γ) = 1
4π

∑︂
R

WrR(γ) · Area(R), (4.9)

in which the sum is over all regions in the decomposition of S2 by T and −T .

The writhe of a knot can also be computed from its Gauss map, g : (S1 ×S1) \ ∆ → S2, which
sends points s ̸= t of the knot to the point (γ(t) − γ(s))/∥γ(t) − γ(s)∥ on the unit sphere.
We note that (S1 × S1) \ ∆ is the torus with a closed curve removed. Hence, g maps an open
surface onto the 2-dimensional sphere. Taking the limit, as we approach the boundary of the
open surface, we get the tantrix of γ as the image of the removed curve. By distinguishing
whether the map preserves or reverses the orientation of the surface locally at u ∈ S2, we get
the writhe of the knot diagram in direction u as the signed sum of the points in g−1(u). The
writhe of the knot is then the normalised signed area of the map.
Proposition 3 (Double Integral Formula for Writhe [KL00, VALFK79]). Let γ : S1 → R3 be
a smooth knot with everywhere non-zero derivative. Then

Wr(γ) = 1
4π

∫︂
S1

∫︂
S1

⟨Tt × Ts,
γ(t) − γ(s)

∥γ(t) − γ(s)∥3 ⟩ dt ds. (4.10)
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Trace [Tra83] observed that two knot diagrams have the same writhe and Gauss map index iff
they are equivalent via only type-II and type-III Reidemeister moves. The condition on the
Gauss map can be dropped if we allow equally many type-I Reidemeister moves that increase
and decrease the writhe of the knot diagram.
The above formulas have discrete versions for polygonal approximations of a knot. To get an
inscribed polygon, P < γ, we select values 0 ≤ t0 < t1 < . . . < tn−1 < 2π, and let γi = γ(ti)
be the vertices of P . The edges are the line segments between consecutive vertices, with indices
read modulo n. To get the tantrix of P , we take the unit vectors Ti = (γi+1 −γi)/∥γi+1 − γi∥,
which define a spherical polygon in S2, denoted T = T (P ). As before, T and −T partition
S2 into regions within which the writhe of the knot diagrams is constant. We can therefore
compute Wr(P ) with the formula given in Proposition 2.
To discretise the double integral formula, let ei and ej be two non-consecutive edges of P ,
and consider the tetrahedron whose vertices are the endpoints a, b of ei and u, v of ej; see
Figure 4.8 on the left. Direct the remaining four edges of the tetrahedron from the endpoints
of ej to those of ei. Furthermore, scale the vectors a− u, a− v, b− u, b− v to unit length
to get four points on the unit sphere, and write Ai,j for the signed area of the thus defined
spherical quadrangle; see Figure 4.8 on the right. Setting Ai,i = 0 for 0 ≤ i < n, we get

Wr(P ) = 1
4π

∑︂n−1
i=0

∑︂n−1
j=0 Ai,j, (4.11)

as the discrete version of Proposition 3. A fast sweep-line algorithm for polygonal curves, not
reliant on the double integral representation, was given in [AEW04].

Figure 4.8: The spherical quadrangle defined by two non-consecutive edges of a polygonal
knot. The sign of its area depends on the orientation of the two edges along the knot and is
defined by the sign rule illustrated in Figure 4.7.

Finally, for many applications, particularly in cell biology where DNA molecules are usually
represented as open curves, it would be useful to have an expression for the writhe of an open
curve. Some authors attempt to solve this problem by simply connecting the end points of
the curve with a straight line segment [Ful71, VM97]. Others have instead connected the
endpoints of the tantrix curve with shortest spherical arcs [Sta05]. While [BP06] has defined
a method for truly open curves that are anchored at parallel planes or spheres.

4.4.1 Resolving a Knot
We now explain how to turn a knot into a loop consisting of edges in the Delaunay mosaic
of a set A. We use the barycentric subdivision of the Delaunay mosaic as a technical tool

48



4.4. Distortion of Writhe

to prove the equivalence of the knot and this loop, provided A is sufficiently dense. After
explaining how this subdivision can be mapped to a subdivision of the Voronoi tessellation, we
formalise what we mean by a sufficiently dense set.

Let A ⊆ R3 be locally finite and γ : S1 → R3 a knot. We say γ meets the Voronoi tessellation
of A generically if γ does not intersect any edge of Vor(A), and it intersects any 2-cell in at
most finitely many points, and at each such point γ crosses the 2-cell transversally.

We may sequentially collect the dual Delaunay edges and vertices, which intersect Voronoi 2
and 3-cells of Vor(A) respectively, while moving continuously along γ. Hence, every edge is
directed, from the previous to the next vertex. As we saw in the case of Delaunay surfaces, it
is also possible that an edge is collected multiple times, namely once for each point in which
γ crosses the dual Voronoi 2-cell. The resulting multi-set of edges and vertices is an abstract
polygonal knot, which is realised in R3 by gluing all copies of the same edge or vertex to each
other. This realisations is the Delaunay loop, Del(γ,A).

The barycentric subdivision of the Delaunay mosaic of a locally finite set A ⊆ R3 is the
simplicial complex, denoted Sd Del(A), constructed as follows:

• for each cell, σ ∈ Del(A), add the average of the vertices of σ, which is a point, σ̂, in
the interior of σ, as a vertex to Sd Del(A);

• whenever σ0, σ1, σ2, σ3 is a sequence of cells such that σi is i-dimensional and σi−1 is a
face of σi, for 1 ≤ i ≤ 3, add the tetrahedron with vertices σ̂0, σ̂1, σ̂2, σ̂3, as well as its
six edges and four triangles to Sd Del(A).

The simplices of Sd Del(A) can be grouped to subdivide the cells in Del(A) or, alternatively,
the cells of Vor(A). The latter grouping is of interest to us, and we make it geometric by
moving every vertex σ̂ to an arbitrary but fixed interior point of σ∗, which we recall is the
Voronoi cell dual to σ; see Figure 4.9. The edges, triangles, and tetrahedra move accordingly.

Importantly, moving the vertices as described preserves the orientation of each tetrahedron.
Hence, the tetrahedra fit together without gaps or improper overlap, like they did before
the movement. In other words, the movement is an orientation-preserving piecewise linear
homeomorphism between the Delaunay mosaic and a portion of the Voronoi tessellation. It
can be extended to a piecewise linear homeomorphism from R3 to R3 by subdividing the space
outside the Delaunay mosaic into unbounded polyhedra, and this can be done such that every
cell of the Voronoi tessellation is a union of simplices and unbounded polyhedra that share the
selected point in the interior of the cell as a vertex, see again Figure 4.9.

Let γ be a knot and Del(γ,A) its Delaunay loop, in which we assume that γ meets Vor(A)
generically. Every edge in Del(γ,A) is subdivided into two edges in the barycentric subdivision
of the Delaunay mosaic. Let Del′(γ,A) be the polygonal knot obtained after replacing each
edge in Del(γ,A) by the two edges and the vertex they share. It consists of twice as many
edges and vertices, but it has the same underlying space in R3. Finally, we move the vertices
to the selected interior points of the dual Voronoi cells to get a different geometric realisation
of the polygonal knot, which we denote Del′′(γ,A).

Lemma 4 (Equivalence of Subdivided Knots). Let A ⊆ R3 be locally finite, γ : S1 → R3

a knot, and recall that Del′(γ,A) and Del′′(γ,A) are different geometric realisations of the
Delaunay loop of γ and A. Then Del′(γ,A) and Del′′(γ,A) are equivalent.
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4. Delaunay Surfaces and Paths

Figure 4.9: The barycentric subdivision of the Delaunay mosaic of eight points in R2, before
moving its vertices to the selected points of the Voronoi cells on the left and after moving
them on the right.

Proof. Observe that the map from Del′(γ,A) to Del′′(γ,A) is the restriction of the orientation-
preserving homeomorphism introduced above. The existence of such a homeomorphism is the
required condition for the two knots to be equivalent.

Let η : [0, 1] → B3 be an arc embedded in the unit 3-ball such that the endpoints map to
different points on the boundary of the 3-ball. We say η can be straightened within B3 if
there is a ambient isotopy B3 → B3 that fixes the boundary and maps η to the straight line
segment connecting η(0) and η(1). We use this notion to specify when we deem a Voronoi
tessellation sufficiently fine to consider the Delaunay loop of a knot.

We say Vor(A) resolves a knot, γ : S1 → R3, if γ meets Vor(A) generically, its intersection
with any 2-cell in Vor(A) is either empty or a single points, and its intersection with any 3-cell
is either empty or a single arc that can be straightened within the 3-cell without crossing.

Lemma 5 (Resolved Knot). Let A ⊆ R3 be locally finite and γ : S1 → R3 a knot. If Vor(A)
resolves γ, then Del(γ,A) is a (polygonal) knot, and γ, Del(γ,A) are equivalent.

Proof. First we will prove that γ and Del′′(γ,A) are equivalent. As mentioned earlier,
Del′′(γ,A) and Del′(γ,A) are equivalent, and since Del′(γ,A) and Del(γ,A) have the same
underlying space, and are therefore trivially equivalent, this will imply the claim.

To prove the equivalence of γ and Del′′(γ,A), consider a 3-cell, ν, generated by a point
a ∈ A, that has a non-empty intersection with γ. Since Vor(A) resolves γ, this intersection
is a single arc, η : [0, 1] → ν, that can be straightened within ν. The homeomorphism that
does the straightening does not affect the boundary of ν. We compose this homeomorphism
with the straight-line homotopy that maps the line segment with endpoints η(0) and η(1) on
the boundary of ν to the union of the two edges in Del′′(γ,A) incident to the point a ∈ A.
These two edges share one endpoint, and the remaining two endpoints lie on the boundary of
ν, and more specifically in the same 2-cells that contain η(0) and η(1).

Since the homeomorphism does not affect the boundary of ν, the only effect is the movement
of η(0) and η(1) to selected interior points of their respective 2-cells in the boundary of ν.
The homeomorphism within ν can therefore be combined with the homeomorphisms within the
neighbouring 3-cells. This implies that there is a homeomorphism that moves γ to Del′′(γ,A),
which completes the proof of the lemma. This homeomorphism preserves orientation because
the homeomorphisms within the cells preserve the boundaries and therefore the orientation.
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In the remainder of this section we present the proofs for each claim in the following theorem.

Theorem 8. Let γ : S1 → R3 be a knot, A ⊆ R3 a locally finite set with Conv (A) = R3.

1. If A is a lattice, then Avg[Wr(Del(γ,A))] = Wr(γ).

2. If A is a stationary Poisson point process, then Exp[Wr(Del(γ,A))] = Wr(γ).

However, we will first need to define the chirality of a polyhedron and prove a short lemma on
the chirality of centrally symmetric polyhedra.
Specifically, we ask ourselves whether there are convex polyhedra that can arise as a Voronoi
cell that have a bias toward left-turns or right-turns, and how big such a bias may be.

4.4.2 Chiral Polyhedra
To formalise this question, we first introduce notation for the turning angle in the projection.
Fixing the convex polyhedron, P , we introduce the map α : G1,3 × R2 → (−π, π], in which
G1,3 is the linear Grassmannian of lines in R3. Write Fb for the facet with outer normal
b − a. For a line L ∈ G1,3 and a point y ∈ L⊥, the plane orthogonal to L, assume L + y
enters P at an interior point of Fb and exits at an interior point of Fc. In this case, we set
α(L+ y) equal to the turning angle defined by the projection of the ordered triplet b, a, c in
the direction parallel to L. Note that reversing the orientation of L+ y preserves this angle.
We set α(L+ y) = 0 if L+ y does not intersect P or the intersection between L+ y and P
is not generic.
The chirality of P is the average turning angle in the projection defined by the lines that
intersect P :

χ(P ) = 1
2π

∫︂
L∈G1,3

1
Area(PL)

∫︂
y∈L⊥

α(L+ y) dy dL, (4.12)

in which we use half the area of the unit sphere as the measure of G1,3, and write PL for the
projection of P onto L⊥.
For trivial reasons, −π ≤ χ(P ) ≤ π. It is plausible and also true that χ(P ) = 0 if P and
its central reflection, −P , are congruent. In other words, if there is a rigid motion (not
including a reflection across a plane) that maps P to −P . These bodies include all centrally
symmetric bodies, for which P = −P , but also others, such as the regular tetrahedron and,
more generally, all regular pyramids.

Lemma 6 (Polyhedra with Congruent Central Reflections have Vanishing Chirality). Let P
be a convex polyhedron with non-empty interior congruent to −P in R3. Then χ(P ) = 0.

Proof. Write µ : R3 → R3 for a rigid motion that maps P to −P . Let L be a directed line
that enters and exits P at interior points x of Fb and y of Fc. Then α = α(L) is the turning
angle of the projection of b, 0, c in the direction of L. Applying the central reflection, we get
−P and −L and thus a turning angle of −α. Applying µ−1, which is a rigid motion, we turn
−P into P and −L into µ−1(−L), and we preserve the turning angle, −α.
Hence, we obtain a pairing of the lines, L paired with µ−1(−L), such that the turning angles
for the two lines cancel. This implies that the chirality of P vanishes, as claimed.
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Let L be the line of points p + λu, with p ∈ R3 and λ ∈ R, and let u ∈ S2. For a point
x ∈ R3, we call ⟨x, u⟩ the depth of x, noting that it increases from one end of L to the other.
We project Del(L,A) in direction u to get a possibly self-intersecting polygonal curve in the
plane. Write e0, e1, . . . , en for the sequence of edges of Del(L,A), write vi for the vertex
shared by ei−1 and ei, and let αi ∈ (−π, π] be the turning angle at vi, for 1 ≤ i ≤ n. We
have αi > 0 if the ordered triplet vi−1, vi, vi+1 is a left-turn, αi < 0 if it is a right-turn, αi = 0
if the points lie on a straight line in sequence, and αi = π if the points are not in sequence.
The total signed curvature of the curve is the sum of the turning angles:

κ(Del(L,A)) =
∑︂n

i=1 αi. (4.13)

By assumption of A being finite, e0 and en are parallel, which implies that κ(L) is an integer
multiple of 2π. We show that this integer is the negative writhe of Del(γ,A) in direction u.

Lemma 7 (Writhe of Path Diagram). Let A ⊆ R3 be finite, u ∈ S2, and L a line parallel
to u that meets Vor(A) generically. Then the writhe of Del(L,A) in direction u is minus
the total signed curvature of the projection of Del(L,A) divided by 2π: Wru(Del(L,A)) =
−1/2πκ(Del(L,A)).

Proof. Let L′ be a line that is neither parallel nor orthogonal to L. The second requirement
implies that the depth increases monotonically from one end of L′ to the other. Consider the
straight-line homotopy from EA(L) to L′ that preserves depth. During this homotopy, the
path diagram goes through a sequence of Reidemeister moves. Type-II and Type-III moves
affect neither the writhe nor the total signed curvature. Let n+ be the number of Type-I
moves that decrease the writhe, and note that each increases the total signed curvature by 2π.
Let n− be the number of Type-I moves that increase the writhe, and note that each decreases
the total signed curvature by 2π.
We have Wru(L′) = 0 and therefore Wru(Del(L,A)) = n+ − n−. Similarly, κ(L′) = 0 and
therefore κ(Del(L,A)) = 2π(−n+ + n−). The claimed relation follows.

4.4.3 Proof of Theorem 8
We are now prepared to complete the proofs of the two claims in Theorem 8.

Proof of Claim 1. If A is a lattice, then all 3-cells in Vor(A) are translates of the 3-cell
generated by 0 ∈ A, and this 3-cell is centrally symmetric. Lemma 6 implies the total signed
curvature of a line through the 3-cell averaged over all rigid motions vanishes, and hence
contributes nothing to the total for the entire Delaunay path of a line. Without any total
signed curvature Lemma 7 implies there is also no writhe. The latter also holds for knots,
which implies Claim 1 of Theorem 8.

Proof of Claim 2. Let P be a convex polyhedron with non-empty interior in R3, and let −P
be the reflection of P across a plane. Observe that χ(−P ) = −χ(P ). Assuming A ⊆ R3 is
a stationary Poisson point process, every convex polyhedron is as likely as its reflection in
the Voronoi tessellation. Fixing a point, a ∈ A, and varying the others, this implies that the
expected chirality of the 3-cell generated by a vanishes.
The total signed curvature of the Delaunay path of a line is the sum of turning angles defined
by the line and the 3-cells in Vor(A). The expectation of this sum is the sum of expectations,
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which is 0. Applying this result to line segments within an input piecewise linear knot implies
there is no additional contribution to writhe from the Delaunay paths of each individual line
segment. Therefore, Claim 2 of Theorem 8 holds.

4.5 Discussion
We venture that the result for intrinsic volumes generalises to all intrinsic volumes in d-
dimensional Euclidean spaces.

Conjecture. Let A ⊆ Rd be a stationary Poisson point process with intensity ϱ > 0, and
S ⊆ Rd a rectifiable space. Then there is a constant, cd,i, such that the limit of the i-th
intrinsic volume of Del(S, A), with ϱ → ∞, is cd,i times the i-th intrinsic volume of S.

The current evidence for this conjecture are the proofs for the i-dimensional volume measures
in [EN25] and the mean curvature in this paper.
Our original goal for the writhe, which we were not able to prove, was the average non-distortion
over rigid motions, which we leave as a conjecture.

Conjecture. For γ : S1 → R3 a knot, A ⊆ R3 a locally finite set with Conv (A) = R3,

Avg[Wr(Del(γ,A))] = Wr(γ). (4.14)

This question originally motivated our investigation of chiral polytopes in Section 4.4.2.
Specifically, if the conjecture holds there would not exist chiral polyhedra which tile R3 as the
Voronoi tessellation of a point set A ⊆ R3.
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CHAPTER 5
Braiding Vineyards

5.1 Introduction
In this chapter we demonstrate a surprising link between persistence vineyards and knot theory.
Recall, we introduced persistent vineyards in Section 2.7.3 and used them to study shapes and
their higher order medial axes in Section 3.3. Similarly, we introduced the fundamentals of knot
theory in Section 2.2.1. Note that there are many computational aspects of knot theory which
overlap with the study and characterization of low dimensional manifolds’ topology, both of
which have a long history of algorithmic development, see Dehn’s algorithm [Deh11, Deh12] and
the many following algorithmic results in more recent decades on shape and knot recognition
in low dimensions [Rub95, Tho94, Has97, BH99, Bur20].

The first goal of this chapter is to study the aforementioned new link between these two
important branches of computational topology. Thanks to the work of Alexander [Ale23] we
know that every knot or link can be represented as a braid. That is, for every link there is a
braid such that if we glue together the ends of the braid, we recover the link. Recall also that
for a continuous one parameter family of filtrations, we can “stack” the persistence diagrams
of these filtrations; we call the resulting object a vineyard [CSEM06, Tur23, Hic22]. Thanks to
the stability of persistence diagrams, the points in the persistence diagram move continuously
(even Lipschitz continuously) with the parameter. This means that we can follow a point in
the stack of the persistence diagrams and the resulting curve is called a vine. We will prove
that for every link there exists an embedded manifold and a family of functions on M (where
each function is induced by the distance to a point in the ambient space, and where in turn
each point comes from a curve γ) such that the vineyard of the family of function yields the
braid representing the link in the sense of Alexander.

The second goal of this chapter is to show that any type of monodromy can occur in vineyards.
This is part of a new research direction in computational topology. In [AGH+24], the occurrence
of monodromy in the context of the directional persistence transform is studied, more precisely
for 0-dimensional persistence modules of objects embedded in R2. Roughly speaking, the
directional persistence transform considers the persistence diagram of the height function on a
shape for any direction, which in two dimensions gives what we call a closed vineyard (whose
precise definition will be given below). It should be noted that monodromy had already been
identified much earlier in the context of multidimensional persistence in [CEF13] (see also
the Applied Algebraic Topology Research Network video, [Net25]). The authors of [AGH+24]
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conclude with an open question about demonstrating monodromy in higher dimensions, as
well as several interesting and more open ended questions related to better understanding
what monodromy captures about the input shape.

The setting of [AGH+24] is the directional persistent homology transform, the vineyard
generated by the family of height functions along all possible directions. Recently however,
this has been placed in a larger context [OOT24], where one studies the distance to all flats of
any given dimension. In this chapter we focus on that extreme case of 0-flats, which are simply
points. The resulting radial transform is the vineyard generated by the family of distance
functions to each point in Rd, allows for a more geometric understanding of monodromy, and
is critical in our construction.

In this chapter we exhibit that any type of monodromy and the braid associated to any link
can occur in a vineyard. To make our statement more precise, however, we need to introduce
some nomenclature, although full definitions will be deferred until Section 5.2. Intuitively,
monodromy is the effect where if one makes a loop in a base space of a covering or fibre
bundle, the lifted curve may not end up in the same point as you started out with. We say
that the monodromy is of period 2πk (with k > 0) if the lifted curve returns to the starting
point after k revolutions in the base space. In our context, the base space is a closed curve or
loop γ : [0, 2π] → Rd, it is into this image Rd that we have embedded a manifold M (link or
some offset of link, which is a modification of the input link). The fibres are the persistence
diagrams of the Euclidean distance function restricted to the manifold M, that is ρt(p). The
bundle therefore is the vineyard. The lifted curve is a vine γ̃(b0,d0)(t) in the vineyard starting
at (b0, d0) in the persistence diagram of ρ(x, γ(0))M and the periodicity is the smallest k > 0,
such that for all i, γ̃(b0,d0)(0) = γ̃(bi,di)(2πk), where we assume that the vine is non-degenerate
in the sense that it stays away from the diagonal.

The main results for this chapter are that any type of monodromy and braid can be generated
in a vineyard. These are presented in Section 5.3. Additionally, we present interesting results
linking monodromy to the extended symmetry set in Section 5.4.

5.2 Preliminaries

5.2.1 Monodromy
Monodromy is an important concept in mathematics that appears in various guises. We refer
to the review [Ebe05] (the first part of which is almost a review of reviews) and the other
reviews mentioned in that paper for an overview of the various aspects of the theory. In this
chapter we will only consider the simplest incarnation, and only in the setting of topological
data analysis.

Let X̃ be a covering space of X with covering map C : X̃ → X, that is for every x ∈ X there
exists an open neighbourhood x ∈ U and a discrete set J , such that C−1(U) = ⊔i∈JVi and
C|Vj

: Vj → U is a homeomorphism for all j ∈ J . We call the inverse images of points x ∈ X
of the map C the fibres. For a curve γ : [0, 2π] → X we write γ̃ for (one of) its lift(s), that is
a continuous map γ̃ : [0, 2π] → X̃ such that C · γ̃ = γ. If γ is a loop, that is γ(0) = γ(2π),
then we say that γ exhibits monodromy (at the starting point γ̃(0) ∈ C−1(γ(0))) if we have
that the start and end points of its lift γ̃ are different, i.e. γ̃(0) ̸= γ̃(2π). The difference
between γ̃(0) and γ̃(2π) is also referred to as monodromy (this difference can in certain cases
be best represented by a group, see [Ebe05], although we will not need this in our discussion).
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Figure 5.1: Here we see a cover X̃ (in this case a double cover) of the base space X, in this
case a circle as well as the curve γ and its lift γ̃.

If γ is a loop we can extend it, formally speaking, by concatenating with itself. Here we adopt
the convention that if γ and γ′ are two curves parametrized by [0, 2π], then the concatenation
γ ◦ γ′ is parametrized by [0, 4π]. That is, we do not rescale the parametrization interval. We
write

γk = γ ◦ · · · ◦ γ⏞ ⏟⏟ ⏞
k

and ˜︂γk for its lifting. We stress that generally

˜︂γk ̸= γ̃ ◦ · · · ◦ γ̃⏞ ⏟⏟ ⏞
k

,

where γ̃ is the lifting of γ. In fact, the right hand side does not even have to be a continuous
curve. We say that a loop γ (parametrized by [0, 2π]) in the base space X exhibits monodromy
of order k if k is the smallest positive integer such that the lifted curve ˜︂γk satisfies

˜︂γk(0) = ˜︂γk(2πk).

If k = 1 we say that γ exhibits no or trivial monodromy.

5.2.2 Braids
In this section we formally introduce braids which, as we will see, are closely related to knots
and links which were introduced in Section 2.2.1. The reader is advised to recall the definitions
from Section 2.2.1 to draw a comparison to braids.

A braid on m strands is the disjoint union of m intervals embedded in a solid cylinder, D2 × I,
where each strand, Bi : I → D2 × I, monotonically increases with respect to I, such that
Bi(0) = (di, 0) and Bi(1) = (dj, 1) for each i, where i indexes the strand, so that the set of
endpoints of strands is some permutation of the set of origins. Two braids are equivalent if
they are related by an ambient isotopy which fixes the endpoints, and at each time during
the isotopy the image is also a braid. For each u ∈ S1, the projection of a braid in the
direction u provides a braid diagram of B with crossings. In this chapter we will assume braid
diagrams with generic crossings, and we further use that each braid can be represented in a
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piecewise vertical diagram. That is, the strands in the diagram are vertical except in a (small)
neighbourhood of a crossing. The fact that braids can always be represented in such a way
seems to be folklore; see for example “Reidemeister’s Theorem” and the discussion in [BB05].
A closed braid or braided link is the image of a braid under the map from the solid cylinder to
the solid torus, D2 × I → D2 × S1⊂ R2 × C ≃ R4, which sends (x, y) ↦→ (x, eiy), where eiy

gives the standard embedding from R/2πZ into C ≃ R2. The braid index is the minimum
number of strands required to form a closed braid equivalent to a given link.
Under the standard embedding T of the solid torus in 3-dimensional Euclidean space, where
the embedding is rotationally symmetric around the z-axis and where each strand is oriented
positively, a braid with n strands, once closed, can be considered a link with m components,
where m ≤ n. Note if we concatenate a braid enough times such that the permutation of
its endpoints is trivial, then we have m = n. Importantly, the orientation of each resulting
component is aligned to a positive orientation on the core circle of the solid torus at all points.
We note that previous work has connected braids and braid groups with monodromy [CA11,
CS97, Sal23, Sal24], further motivating the connection which we explore in this chapter.
The following result of Alexander will be essential to our result.

Theorem 9 (Alexander 1923 [Ale23]). Every knot or link is equivalent to a closed braid.

Of course this correspondence is not bijective as each link may be equivalent to many closed
braids. An algorithmic alternative proof of this result was later given in [Vog90]. The complexity
of the algorithm depends on the number of Seifert circles, which are defined as follows. Given
an oriented link diagram, by eliminating each crossing and connecting each incoming strand
with its adjacent outgoing strand we obtain a diagram of oriented circles known as Seifert
circles. By construction the circles do not intersect.
The number of elementary operations of the algorithm in [Vog90] to obtain a braid diagram
from a given link diagram with c crossings and s Seifert circles is at most (s− 1)(s− 2)/2
and the number of crossings in the resulting braid is at most c+ (s− 1)(s− 2).
The braid index of a link is the smallest number of strands needed for a closed braid represen-
tation of the link. The braid index is equal to the minimal number of Seifert circles over all
diagram of the braid [Yam87].

5.3 Monodromy in Vineyards
In the context of persistence of some topological space with the induced distance function from
a point, we need to introduce a number of conventions for monodromy to be well defined. In
fact we will introduce monodromy both associated to an entire vineyard as well as to a single
vine in the vineyard. We will then present the main results of this chapter, demonstrating
monodromy and braiding in detail through several examples.

5.3.1 Monodromy in vineyards: a geometric viewpoint
Let M be a manifold embedded in Rd and γ : [0, 2π] → Rd be a parametrization of a loop
γ. Let ρt(p) : M → R be the function p ↦→ ∥p− γ(t)∥, note that we exclusively refer to
points in M as p. We will now identify the ends of the interval [0, 2π] – that is, we pass
to S1. For each t the function ρt(p) induces a filtration on M, by the sub-level sets of the
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function. Therefore we can consider (for each t) the degree l persistence diagram of this
filtration Dl(ρt(p). The map

CVM : S1 → S1 × Dgm
t ↦→ (t,Dl(ρt(p))),

where Dgm is the space of persistence diagrams, is (trivially) a covering space of S1. We refer
to CVM as the closed vineyard map. As proved in [CSEH05] the points in the persistence
diagram are (Lipschitz) continuous with respect to t. The map CVM is illustrated in Figure
5.2.

Figure 5.2: An illustration of the map CVM. We indicate the persistence diagrams, which
form the fibers, only explicitly in a number of places for reasons of visibility. The knot diagram
below, defines ouroborus knots. Here, we define the ouroborus as an unknot whose knot
diagram is a (finite or segment of a) spiral with the end points connected with a monotone
curve (where monotonicity refers to the relation between the angular and radial coordinates)
such that the connecting segment of the knot diagram crosses over all the intermediate strands.

Remark 1 (Radial transform). We follow the convention from [OOT24] and define the radial
transform as the map that associates to any point p ∈ Rd the diagram Dl(ρt(p)) ∈ Dgm,
which is, slightly more general than the map CVM introduced above.

We note that generically [Tur23, page 3], there are no points of multiplicity greater than
one in a persistence diagram of ρt(p), and hence the connected components in the image of
CVM, that is the vines, are non-intersecting curves. This justifies our earlier assumption from
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Section 2.7.3, that our vineyards are generic in this sense, which we will use throughout this
chapter.
This leads us to the definition of monodromy in the simplest setting (where we stay clear of
the diagonal), which nonetheless is all that is needed for our constructions. Intuitively, we
want to codify monodromy in terms of an integer, which encodes how many of copies of the
vineyard must be glued together in order to have points return to their origins. More formally:
Assume that for all points γ(t), there are no points of multiplicity higher than 1 in
Dl(ρt(p)), which means that all the vines are non-intersecting curves. Assume moreover that
all of the vines are disjoint from the diagonal. We define the following:
Individual vine monodromy: Given a point in the persistence diagram Dl(ρτ (p) for some
τ ∈ S1, write V(t) for the lift of γ(t), which continuously assigns a point in Dl(ρt(p)) for
every t and yields the given point for t = τ . We will now assume without loss of generality
that τ = 0. We say that the vine V(t) exhibits monodromy if the start and end point of the
lifted curve do not coincide. Similar to V(t), write Ṽk(t) for the analogous lift of γk(t). Then
V(t) exhibits monodromy of order k if k is the smallest integer strictly larger than 0, such
that Ṽk(0) = Ṽk(2πk). In other words, the order of the monodromy is the number of points
above any t in the connected component in the image of CVM that contains the given point
in Dl(ρτ (p).
Vineyard monodromy: Following an individual vine (with increasing time t) for a given point
on Dl(ρ0(p) yields a point in Dl(ρ2π(p)) = Dl(ρ0(p)). In other words, the vines or vineyard
induce a map PV from Dl(ρ0(p)) to itself, which permutes the points in the persistence diagram.
We say that the vineyard has monodromy of order k if k is the order of the permutation, that
is, the smallest integer k > 0 such that applying this permutation k times yields the identity
permutation.
See Figure 5.3 for a simple sketch of a knot exhibiting monodromy.
We note that monodromy can be defined when the vines touch the diagonal, which corresponds
more closely to the notion introduced in [AGH+24]. We refer the interested reader to Ap-
pendix 5.B, where we formalize this definition, but we do not need it for our results. In addition,
there may be self-intersections on the diagonal of the completed vineyard. If the vineyards are
non-generic, the situation is significantly more complex as vines can intersect [Tur23]. As this
non-generic case is not needed, we will not consider it any further for this chapter.
We conclude this section by stating the two main theorems for this chapter.

Theorem 10 (Vineyard Monodromy). The radial transform in Rd can exhibit monodromy for
persistence up to degree (d− 2) homology and for extended persistence up to degree (d− 1)
homology. Moreover the order of the monodromy can be k for any integer k ≥ 2.

Theorem 11 (Vineyard Links). Given a link L, and integers d ≥ 3, l ≥ 0, with l < d − 2,
there exists a submanifold M ⊂ Rd and a closed curve γ ⊂ Rd such that identifying the
ends of the degree l vineyard of ρt(p) yields a link which contains the given link as a subset.
That is, the vineyard is topologically equivalent to the link we were given after removing some
spurious connected components, i.e. the output is a link L′ = L̃ ⊔ Y , where ⊔ denotes the
disjoint union of different connected components and L̃ is ambient isotopic to L.

We remark that our construction hinges not only on M but also on a careful choice of γ.
Indeed, fixing M, there can exist closed curves which yield no links in the vineyard.
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Figure 5.3: A schematic demonstrating the effect of the elder rule on our construction. Note
that the gray part of the knot does not contribute to monodromy, as the elder rule dictates
that the first birth is paired with the last death which causes interference with the desired
braiding. By adding a new strand to the outside of the annulus via a trivial twist, we ensure
that there is an elder vine that sits far away from the diagonal and doesn’t interfere with our
desired braid. To simplify the image, the gray portion is not shown in the vineyard.

5.3.2 Braids and Morse theory
We say that a closed braid B is (ϵ, R)-embedded in R3 if the closed braid is contained in
the ϵ-thickening of the circle Ch(0, R) of radius R contained in the horizontal plane. We will
assume throughout this chapter that ϵ ≤ R.

For a point b ∈ B let P be the plane spanned by p and the z-axis such that the normal to P ,
nP is contained in the horizontal plane. Further, let tp be the tangent vector to B at p. Then
the maximal braid angle is given by, θB = maxp∈B ∠TpB, nP .

Intuitively, θB measures the maximal deviation of the tangent direction of the braid from the
angular direction around the z-axis, and quantifies how closely the braid follows a circular
trajectory.

We can consider a small (l + 1)-dimensional α-offset M of a closed braid B. We interpret
‘small’ here as follows: The offset should be small enough such that no self-intersection, nor
intersections with the z-axis occur. In particular, it suffices for the offset to be small compared
to the reach [Fed59] of the closed braid. Formally, the offset is defined as follows: For l = 0,
we do not add an offset. For l ≥ 1, we consider the embedding T × 0 in R3 × Rl−1, where
R3 is the space that contains the standard embedding of the torus, in the sense of a closed
braid. We take M to be the offset of the braid B × 0 in R3 × Rl−1, that is the boundary of
(T × 0) ⊕B(0, α), where ⊕ denotes the Minkowski sum. The resulting manifold M can then
be embedded in Rd where the R3 that contained T corresponds to the first three coordinates.
The maximal braid angle in this context is defined as the maximum over the braid angles: Let
p ∈ M and TpM be its tangent space, then the braid angle is the angle between the normal n
of the hyperplane P × Rd−3, where P is the plane defined by the z-direction and the point p.
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5. Braiding Vineyards

Lemma 8 (Clustering of critical points). Let B be an (ϵ, R)-embedded closed braid and
suppose that M is its (l + 1)-dimensional α-offset, with braid angle θB. If x ∈ Rd satisfies
ρ(x,Ch(0, R)) ≤ η, Ch(0, R) is parametrized by s(θ), and the closest point x′ of x on Ch(0, R)
satisfies x′ = s(0), then the function p ↦→ ∥p− x∥ has no critical points at the closest point
β(θ) on B to p as long as,

θ

2 + θB + arcsin ϵ

2R sin( θ
2) − η

+ arcsin η

2R sin( θ
2)
<
π

2 . (5.1)

This implies in particular that there is no topological change as long as (5.1) is satisfied.

See Figure 5.6 for a illustration of this configuration.
The proof of this lemma depends on one of the Morse theorems referenced in Section 2.5, we
state it explicitly as a theorem now.

Theorem 12 ([Mil69]). Suppose f is a smooth real-valued function on M, a < b, f−1[a, b]
is compact, and there are no critical values between a and b. Then Ma is diffeomorphic to
Mb, and Mb deformation retracts onto Ma.

Proof of Lemma 8. We write β(θ) for a parametrization of B according to the angle of the
circle Ch(0, R). We parameterize the circle as s(θ) = (R sin θ, R cos θ, 0, . . . , 0). Using this
notation we note that the gradient of the function M → R given by ∥q − x∥ is zero at q = p
if for its closest point on B, that is β(θ), we have that ⟨β′, β − x⟩ = 0, where β′ denotes the
derivative of β with respect to θ. This is equivalent to

∠β′, β − x = π/2.

By assumption we have that
∠β′, s′ ≤ θB.

Moreover, because |β(θ) − s(θ)| ≤ ϵ, we also have

sin(∠β − x, s− x) ≤ ϵ

|s− x|
,

as can be seen from Figure 5.4.

Figure 5.4: The angle estimate for ∠β − x, s− x.

Using the triangle inequality of angles (or points on the sphere) we find that

|∠(β′, β − x) − ∠(s′, s− x)| ≤ θB + arcsin ϵ

|s− x|
. (5.2)
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Let us now write x′ for the closest point projection of x on Ch(0, R) and ϕ = ∠(s′, s− x′).
By reparameterization we can assume that x′ = s(0). With this assumption we see by the
construction in Figure 5.5 that ϕ = ∠(s′, s − p′) = θ

2 . Moreover we have that |x′ − s| =
2R sin( θ

2) By the same argument as given in Figure 5.4 we have that

Figure 5.5: The construction for the angle ϕ = ∠(s′, s− x′).

sin∠(s− x′, s− x) ≤ η

|s− x′|
,

so that together with (5.2) we find that⃓⃓⃓⃓
⃓∠(β′, β − x) − θ

2

⃓⃓⃓⃓
⃓ ≤ θB + arcsin ϵ

|s− x|
+ arcsin η

|s− x′|

≤ θB + arcsin ϵ

|s− x′| − η
+ arcsin η

|s− x′|
(by the triangle inequality)

≤ θB + arcsin ϵ

2R sin( θ
2) − η

+ arcsin η

2R sin( θ
2)

This means that if
θ

2 + θB + arcsin ϵ

2R sin( θ
2) − η

+ arcsin η

2R sin( θ
2)
<
π

2

then ∠(β′, β − x) ̸= π/2 and hence there are no critical points. The fact that there is no
topological change follows from Theorem 12.

Remark 2. The important conclusion from the bound of Lemma 8 is that by choosing ϵ < η ≃
θB small compared to min{R, π}, the bound (5.1) is satisfied as long as θB ≪ θ < π − 4θB.

We say that an oriented closed braid B that is (ϵ, R)-embedded is δ-circular if its parametrization
according to arc length β satisfies

⃓⃓⃓
β(t)
R2 + β̈(t)

⃓⃓⃓
< δ, where we use Newton’s notation for the

derivative.
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Lemma 9 (Morse indices of clustered critical points). Let B be an oriented (ϵ, R)-embedded,
δ-circular closed braid, with braid angle θB. Suppose x ∈ Rd satisfies ρ(x,Ch(0, R)) ≤ η,
Ch(0, R) is parametrized by s(θ), and the closest point x′ of x on Ch(0, R) satisfies x′ = s(0).

If an oriented (ϵ, R)-embedded, δ-circular closed braid with n strands, with braid angle θB,

ϵ ≪ R, and
6ϵ
R

+ δ(R + η) ≤ 1
R2 (R − ϵ)(R − η),

and ϵ < η ≃ θB are small compared to min{R, π}, then the function B → R given by
b → ∥b− x∥ has 2n critical points, n maxima and n minima. Let l ≥ 1. If M is a (l + 1)-
dimensional α offset M of the same type of braid satisfying the same conditions then the
function M → R given by p ↦→ ∥p, x∥ has 4n critical points, n maxima and n minima and n
saddle points of Morse index l and n saddle points of Morse index 1.

Proof. Because the conditions of Lemma 8 are satisfied we know that there are no Morse
critical points unless θ ≃ 0 or θ ≃ π so we focus on establishing that there is only one critical
point per strand at θ ≃ 0 or θ ≃ π for B and or two per strand at θ ≃ 0 or θ ≃ π in the case
of M.

The proof for the braid case is the difficult step, and we will see below that the statement for
M follows immediately. The idea of the proof is the following: Because the closed braid is
δ-circular its parametrization β satisfies

⃓⃓⃓
β(t)
R2 + β̈(t)

⃓⃓⃓
< δ. This means that β is forced to turn

inward towards the centre of Ch(0, R), following the circle Ch(0, R), where 0 is the origin of
Euclidean space. This in turn implies that β cannot satisfy d

dt
|β − x|2(t) = 0 for two times

t that are relatively close. In other words the curve cannot be tangent to some sphere (not
necessarily of the same radius) centred at x.

The way that we establish that d
dt

|β − x|2(t) cannot be zero for two nearby values is by
establishing that if d

dt
|β − x|2(t) = 0 then

d

dt

(︄
d

dt
|β − x|2

)︄
(t) = d2

dt2
|β − x|2(t)

is large. If we write β(t)
R2 + β̈(t) = ∆(t) and suppress t from the notation, we see that

d2

dt2
|β − x|2(t) = 2⟨β̈, β − x⟩ + 2⟨β̇, β̇⟩

= 2⟨β̈, β − x⟩ + 2 (because |β̇| = 1)

= 2
⟨︄

− β

R2 + ∆, β − x

⟩︄
+ 2

= −2
⟨︄
β

R2 , β

⟩︄
+ 2 ⟨∆, β − x⟩ + 2 + 2

⟨︄
β

R2 , x

⟩︄
(5.3)

We can now examine the first three terms in (5.3):

• Because B is (ϵ, R)-embedded R − ϵ ≤ |β| ≤ R + ϵ, so that

−2
(︃

1 + ϵ

R

)︃2
≤ −2

⟨︄
β

R2 , β

⟩︄
≤ −2

(︃
1 − ϵ

R

)︃2
,
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which, if ϵ ≪ R, simplifies to

−2 − 6ϵ
R

≤ −2
⟨︄
β

R2 , β

⟩︄
≤ −2 + 6ϵ

R
.

• Because |∆(t)| = |β(t)
R2 + β̈(t)| ≤ δ, Cauchy-Schwarz yields that 2| ⟨∆, β − x⟩ | ≤

δ|β − x| ≤ δ(R + η).

This implies that these three terms are close to zero, i.e.

d2

dt2
|β − x|2(t) ≃ 2

⟨︄
β

R2 , x

⟩︄
.

Because
⃓⃓⃓
2
⟨︂

β
R2 , x

⟩︂⃓⃓⃓
is lower bounded by 1

R2 (R − ϵ)(R − η) assuming that the angle between
β and x is no more than 45 degrees (or more than 135), the first part of the result now follows
if, the angle between β and x is no more than 45 degrees (or more than 135), ϵ ≪ R,

6ϵ
R

+ δ(R + η) ≤ 1
R2 (R − ϵ)(R − ωmax).

For the second part, note that there is a one-to-one correspondence between pairs of critical
points of the distance function to a fixed point on an offset and the critical points of the
distance function to the same fixed point on the curve β itself. Here minima of β correspond
to a pair of a minimum and a critical point of index l on M, while maxima correspond to a
pair of a maximum and a critical point of index 1.

Given these 4n critical points, we can now consider the persistence diagram that results.
Although we work with extended persistence throughout this chapter in order to avoid points
at infinity and establish a perfect pairing of critical points, we note that in fact for the purposes
of establishing monodromy in our knot offset, it suffices to restrict our attention to the behavior
of the ordinary points as well as one single extended point, all above the diagonal, as those
that contribute to the construction of knot or link as mentioned in Theorem 11 are born and
die ‘on the way up’.

Corollary 2. Under the same assumptions as in Lemma 9, the maxima and minima of the
functions B → R given by b ↦→ ∥b− x∥ and M → R given by p ↦→ ∥p− x∥, as well as the
saddle points of the latter function can be divided into two groups, one group occurring at
low values and corresponding to H0 births of cycles in the persistence diagram and one group
occurring at high values and corresponding to H0 deaths in the persistence diagram. Here,
under the assumption1 of Remark 2, low means ≲ RθB, where the ≲ hides a constant, and
high means ≥ 2R − 6RθB. For Hl the situation is identical except for one change, namely
that a single birth occurs at a high value. In ‘ordinary’ persistence theory this cycle lives
forever, while in extended persistence it dies at the global minimum, and in fact lies below the
diagonal.

1 More generally, Equation (5.1) of Lemma 8 divides M (B respectively) into three regions, the part
close to x where Morse critical points can occur, a large region where no Morse critical points can be found,
and finally the part furthest from x where again one may find Morse critical points. The high and low in this
corollary should be interpreted as such.
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Proof. The only thing in this corollary that requires an extra argument on top of Lemma 9, is
the correspondence of the critical points with the births and deaths respectively: Because, by
Remark 2 there are no Morse critical points unless θ ≃ 0 or θ ≃ π, we know that B(x, r) ∩B
(respectively B(x, r) ∩ M) with r ≃ R consists of n topological line segments (topological
cylinder segments Sl+1 × [0, 1]). While at for r > 2R+ η+ ϵ, the set B(p, r) ∩B (respectively
B(p, r) ∩ M) consists of a topological circle or knot (its offset respectively). See Figure 5.6.
The only way this can be achieved with the number of critical points we found in Lemma 9 is if
the births and deaths occur as described in the statement of the corollary, by a simple counting
argument or the pigeonhole principle. We distinguish the two cases, namely B and M: For B
we have n minima and n maxima, and all n minima are needed to create the n topological
line segments (which we know exist if r ≃ R). Similarly, all n maxima are needed to create
the handle attachments that recover the circle (which we know exist if r > 2R + η + ϵ). For
M, we have n maxima and n minima, as well as n saddle points of index l and n of index
1. We need n minima and n saddle points of index l to create the n topological cylinder
segments Sl+1 × [0, 1] (which we know exist if r ≃ R). To form Sl+1 × S1 we need connect
these segments to each other for which we need all the critical points of index 1, so that we
end up with Sl+1 × S1 with n punctures. We need all the maxima to fill all the punctures.

Figure 5.6: A figure illustrating the statement of Corollary 2, highlighting the intersection of
the ouroboros (in yellow) and a family of 3D growing spheres that highlight the n births and
n deaths in H0.

Let f1 and f2 be two functions on the same manifold M. We say that these two functions
are handle-equivalent if the handle decomposition is the same and the times of insertion of
these handles are also identical. We have the following observation.
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Corollary 3. Let B be (ϵ, R)-embedded closed braid and suppose that M is its (l + 1)-
dimensional α-offset, with braid angle θB. We have that the B is a circle and the manifold
M is diffeomorphic to the torus Sl+1 × S1. Under the same conditions as Lemma 9 (and
Corollary 2), we have that, the maps B → R given by b ↦→ ∥b− x∥ and M → R given by
p → ∥p− x∥ are handle equivalent to the height function of the embedding depicted in Figure
5.7.

Figure 5.7: Top: The closed braid. Bottom: The embedding with equivalent height function.
The arrow indicates the direction of the height function. The bis indicate the birth times
and DJ , where J is a roman numeral (i.e. J ∈ {I, II, III}), the death times. We stress
that the picture should be interpreted in a 3D way, and in particular DII does not have to be
larger than DJ , with J ̸= II. We stress that the critical point with the highest value of the
Morse function (DII in the figure) corresponds to a death only in extended persistence, in
non-extended persistence, only a 1-cycle is born there.

Remark 3. We stress that given a closed braid B it is not difficult to adjust the embedding
such that it is (ϵ, R)-embedded and δ-circular with ϵ and δ as small and R as large as
you like. Because if B is a closed braid, its parametrization β(t) can be written as β(θ) =
n(θ)+ω(sin(θ), cos(θ), 0, . . . , 0) for some ω > 0, with n normal to (cos(θ),− sin(θ), 0, . . . , 0).
By redefining β(θ) = ϵ̃n(θ) +R(sin(θ), cos(θ), 0, . . . , 0) for sufficiently small ϵ̃ the δ-circular
(ϵ, R)-embedding can be achieved. By the same argument the observation loop (to be defined
in the proof of Theorem 11) can be made arbitrarily close in terms of η to a circle with radius
R, so that it has reach as close to R as one likes, by [Fed59, Theorem 4.19], and hence has a
nice tubular neighbourhood of that size.
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5.3.3 Vineyard Braiding
We are now prepared to prove the first main result of this chapter, namely Theorem 11.

Proof of Theorem 11. The proof of this theorem is constructive. Thanks to Alexander’s
theorem, Theorem 9, a given link can be represented as a closed braid. To every connected
component of the closed braid we add an extra loop (using a Reidemeister move of type I, so
as not to disturb the equivalence class of the closed braid) as in Figure 5.8. This Reidemeister
move may introduce extra crossings, but at most O(s ·K), where s denotes the number of
strands in the original closed braid and K the number of connected components of the loop.
We now write C for the number of crossings of the resulting closed braid. We write n for
the resulting number of strands, for which we see that n = s + K. We define/construct a
particular embedding of the closed braid such that the original braid appears in the vineyard.
Essentially, the closed braid diagram is parametrized by ω and θ, while the embedding of the
closed braid in R3 is parametrized by ω, θ, and h, as in Figure 5.11. Roughly speaking the
parameter ω corresponds to the birth time, θ is the parameter of the observation loop γ (to
be defined in Step 3) and h corresponds to the death time, again see Figure 5.11.

Our construction proceeds stepwise:

• STEP 1 We start with an embedding which is close to its annular braid diagram, by
which we mean that the embedding of the closed braid lies in a neighbourhood of an
annulus in the plane and the braid is planar with the exception of small neighbourhoods
of the points of crossing. We write θ, r for the coordinates of the annulus, which are
polar coordinates in the plane restricted to the annulus.

• STEP 2 We then modify (if necessary) the braid such that the crossings are equally
parsed on one side of the annulus, that is, if θ is the angle that parameterizes the annulus,
see Figure 5.10, then the crossings are contained in the interval [0 + π

8(C+1) , π− π
8(C+1) ],

where C is the number of crossings. By equally parsed we mean that there is only one
crossing in each of the intervals [π j̃

8(C+1) , π
j̃+1

8(C+1) ] where j̃ ∈ {8, 16, . . . , 8C}.

• STEP 3a We now modify the embedding of the braid in an angular interval [π −
π

4(C+1) , 2π] ∪ [0, π
2(C+1) ]. This interval should be interpreted in a periodic manner. We

do so by twisting the annulus (and by extension the almost annular braid) 90 degrees in
the direction orthogonal to the plane into which the annulus was originally embedded,
see Figure 5.8. We do so in such a way that the twisted annulus and by extension part
of the braid in the angular interval [π + π

8(C+1) , 2π − π
8(C+1) ] is now close to a cylinder.

We do this in a way that preserves cylindrical coordinates, that is, if θ was the planar
angular coordinate of a point on the annulus, after twisting θ is the cylindrical coordinate
of the corresponding point. We denote the resulting twisted annulus by AT .

• STEP 3b We define an observation loop γ to be the curve that follows that twisted
annulus on the outside at a constant distance (less than η, with η as in Lemmas 8 and
9), see e.g. Figure 5.9.We also define coordinates θ̃, ω, ψ̃ with respect to this observation
loop in a tubular neighbourhood of size O(η) of the observation loop. This is possible
thanks to Remark 3. The coordinate ω of a point y in the tubular neighbourhood is
the distance to γ. The coordinate ψ̃ is the angle between a point y in the tubular
neighbourhood of the curve, its closest point on curve πγ(y), and the closest point of
this point on the annulus πAT

(πγ(y)). See Figure 5.10.
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Figure 5.8: For a given link (top left), we construct a closed braid (that is, a braid with ends
identified) embedded near an annulus (bottom left). Note that we add an additional trivial
loop in each connected braid component traveling around the exterior of the annulus. We
then partially twist the annulus (top right) such that the cylindrical vertical portion in gray
and the horizontal portion in yellow are perpendicular to each other. In the top right figure,
the top edge is shown in red and the bottom edge in dark blue to clarify this twisting. It looks
pinched due to the perspective, but is in fact only twisted. The bottom right figure shows
the result of twisting the braid together with the annulus, with some massaging to keep the
crossings in the horizontal part. Due to the addition of the exterior trivial loops from the
bottom left figure, the vineyard consisting of the persistence diagrams of the distance function
to a point following the twisted annulus (bottom right) on the ‘outside’ contains the input
braid with some surgery. See Figure 5.13 for several 3D views of the embedded knot, as well
as 5.16 and the corresponding detailed example and discussion in Appendix 5.A.

Intermezzo: The persistence diagram for a point on the observation curve
Before we continue with the construction we now discuss the persistence diagram for a given
point. In the following step we will further modify the closed braid in the angular interval
[π − π

4(C+1) , 2π] ∪ [0, π
2(C+1) ], but for now we consider the braid fixed. We also assume for

now that the link has only one connected component, that is, it is a knot. Thanks to Lemmas
8 and Corollaries 2-3 we know that the braid and observation curve are chosen in such a way
that all the births occur first and then all the deaths occur, in both distance order as well as
in order along the braid. Let us in particular consider the equivalent embedding of Corollary
3, where we let b1, b2, . . . bn be the births as they occur in order following along the braid
B, as in Figure 5.7; note that we are slightly abusing notation here, as we are identifying
the births with the Morse critical points. Next, let b1

0, b
2
0, . . . , b

n
0 respectively b1

l , b
2
l , . . . , b

n
l ,

where the subscript indicates if the birth occurs in 0 or l-homology, be the corresponding
ordered births of M. Note that we always have n births unless l = 1, when instead there are
n+ 1 births. Again we emphasize that the births are ordered they occur following B starting
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Figure 5.9: The braid follows a twisted annulus and the observation loop is in its proper place,
but without the manipulation of the strands near the antipodal points of the crossing there
can be incorrect crossings in the vineyard.

Figure 5.10: Figure illustrating the notation (the coordinates (θ, ω, ψ̃)) in step 3b of Theorem 11.
The observation loop is the outer loop shown in dark blue, and (the flat part of) the twisted
annulus is shown in grey.

with the first birth, not in order of birth time according to the distance filtration; See Figure
5.7. Similarly, let DI , DII , . . . , DN be the deaths as they occur in order if we consider B,
and DI

0, D
II
0 , . . . , D

N
0 respectively DI

l , D
II
l , . . . , D

N
l be the deaths if we consider them on the

offset of B, M. Again we assume that the deaths are ordered as they occur following B, not
in order of deaths time.

We will assume without loss of generality that b1 is the lowest birth value. Because of the
elder, rule the death of the cycle created at b1 dies (in extended persistence) at the maximal
death value, that is maxJ D

J , for B. Similarly b1
0, b

1
l respectively die at maxJ D

J
0 , maxJ D

J
l

respectively for M.

The other persistence points are less straightforward, as they follow the mergers of the sublevel
sets of the equivalent embedding of Corollary 3; see Figure 5.7. However, the most important
case for us will be the following: Consider first any ordinary H0 points, so we have b1, bj, bk
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with 1 ̸= j < k ̸= 1. Assume that b1 is the earliest birth. Suppose that the death times are all
larger than all birth times and are ordered as follows

max{DI , DII , . . . , DJ−2, DK+1, DK+2, . . . DN} < min{DJ−1, DK}
max{DJ−1, DK} < min{DJ , . . . , DK−1}, (5.4)

then the connected component born at time bj merges with the connected component born at
time b1 at time DJ−1 and the connected component born at time bk merges with the connected
component born at time b1 at time DK for B. In other words, under these conditions there
are points (bj, DJ−1) and (bk, DK) in the persistence diagram.
We now consider l-homology persistent homology of the manifold M. In general, as in Figure
2.5, the births in l-homology follow the births in 0-homology closely. By this we mean the
following: As before we write B for the braid and M for its (l+ 1)-offset, and we compare the
same Morse function (distance to a point, or height if we consider the equivalent embedding)
on these two spaces (B and M, respectively). The birth of 0-cycles (b1, b2, b3 in Figure
5.7) on the braid B are close both geometrically and with regard to the value of the Morse
function (the distance to a point or the height function, where in the latter case we consider
the equivalent embedding) to the critical points that give rise to the birth of 0-cycles and
l-cycles on M. There is also a simple correspondence with one exception between deaths of
0-cycles for the braid and deaths of 0- and l-cycles on M, meaning that the critical points
that correspond to deaths for B are close to a pair of critical points (one maximum and one
saddle) that correspond to deaths in 0- and l-homology. The exception is the last death of
a 0-cycle in extended persistence on B; here we instead have a Morse critical point which
corresponds to the birth of a 1-cycle for the braid and which lives forever in the non-extended
persistence, but corresponds to a death of a 0-cycle in extended persistence. There are again
two corresponding nearby critical points on M for this final critical point on B, however in
this case the saddle corresponds to the birth of a 1-cycle (which corresponds to S1 in S1 × Sl).
This means that there is an extra point in the l-persistence diagram if l = 1. Most importantly
this point can be distinguished by the fact that its birth time is much higher than all other
points in the persistence diagram. However, because the births and deaths of B and M are
so intimately linked (except for the final death), we have the following: Consider b1

l , b
j
l , b

k
l and

1 ̸= j < k ̸= 1. Assume that b1 is the earliest birth. If l = 1 further assume that bm
l=1 is the

final birth and j ≤ m ≤ k − 1. If now moreover the death times are ordered as follows

max{DI
l , D

II
l , . . . , D

J−2
l , DK+1

l , DK+2
l , . . . DN

l } < min{DJ−1
l , DK

l }
max{DJ−1

l , DK
l } < min{DJ

l , . . . , D
K−1
l }, (5.5)

then the l-cycle born at time bj
l merges with the l-cycle born at time b1

l at time DJ−1
l and

the l-cycle born at time bk
l merges with the l-cycle born at time b1

l at time DK
l for M. In

other words under these conditions there are points (bj
l , D

J−1
l ) and (bk

l , D
K
l ) in the persistence

diagram.

• STEP 4 As discussed in the intermezzo, the first birth is always coupled to the last
death in the persistence diagram. We write bj,c

k (t) and DJ,c
k (t) for the births and deaths

respectively of ρ(·, γ(t))|M per connected component c, where we stick to the convention
that b1,c

k (t) is the first birth (in k-homology) for each connected component c. We use
similar notation for B. Here, we note that although this distance value is continuous,
the Morse critical point where this minimum is attained at is not continuous. A similar
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effect was called a Faustian interchange in [Ste23b]. With this notation we can conclude
that our first observation implies that for each c there is a point (b1,c

k (t),maxJ D
J,c
k (t))

in the vineyard at level t and the vine consisting of these points if closed (by identifying
the vineyard at times 0 and 2π) will yield a circle for each c. To put it differently this
will lead to a surgery as depicted in Figure 5.11. Finally, we also note that if l = 1 there
is an additional 1-cycle, that is born much later than all the other 1-cycles.

Figure 5.11: left: We see the particular closed braid that we called the ouroboros. Right:
We see the θ and ω coordinates in the vineyard, where the h coordinate is in the direction
orthogonal to the plane and R̃ is the distance from the observation loop to the origin in
the annulus. Here we identify ω with R̃ − bj and h with DJ ′ − 2R̃, where DJ ′ is the death
time of the cycle born at bj, corresponding to a strand as indicated in the figure. The elder
rule induces surgery indicated with a dashed line (as depicted on the right). Note these are
simplified sketches.

We further note that because vines are continuous (and even Lipschitz) thanks to
[CSEH05], the only thing which we need to worry about is the crossings, because if all
the birth values are distinct the birth values give precisely the ω coordinates in Figure
5.11, death times corresponding to the coordinate h do not matter.

We recall that there is only one crossing per (angular) interval [π j̃
8(C+1) , π

j̃+1
8(C+1) ] where

j̃ ∈ {8, 16, . . . , 8C} and no crossings in [π + π
8(C+1) , 2π − π

8(C+1) ]. Because the death
times only matter for the crossing we can change the death times between crossings
without creating topological problems. For a crossing in the interval [π j̃

8(C+1) , π
j̃+1

8(C+1) ]
we dictate the death times by the geometry of the strands in the angular interval
[π j̃−1

8(C+1) + π, π j̃+2
8(C+1) + π]. We do so by changing the ψ̃ coordinates of the strands in

the interval, so that the death times for the interval [π j̃
8(C+1) , π

j̃+1
8(C+1) ] change, but the

birth times in the interval [π + π
8(C+1) , 2π − π

8(C+1) ] remain the same, see Figure 5.12.
This in particular ensures that we do not introduce (extra) crossings in the vineyard that
are not present in the closed braid we start with.

Between these intervals we interpolate between the different geometries of strands (again
by changing the ψ̃ coordinates), which we can do because as mentioned the death times
do not influence the topology of the closure of the braid appearing in the persistence
diagram.
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5.3. Monodromy in Vineyards

γ

γ

ψ̃

Figure 5.12: Manipulating the ψ̃ changes the death times (vertical section of Figure 5.8, not
to scale).

Now let us consider a crossing of two strands in the interval [π j̃
8(C+1) , π

j̃+1
8(C+1) ] that

are both not born first. As in the intermezzo, we denote with a little bit of abuse of
notation by bj,c(t) and bk,c̃(t) (for B, or bj,c

0 (t), bk,c̃
0 (t),bj,c̃

l (t) and bk,c
l (t) respectively

in the case of M) both the birth times for these strands as well as the Morse critical
points, where c, c̃ denote different connected components. We further stress that as in
the intermezzo the j and k indices in bj,c(t) and bk,c̃(t) refer to order along the closed
braid not the order of insertion. In the case where l = 1 we further assume that neither
j nor k corresponds to the birth with the very high birth value, that is the point where
in non-extended persistence the second 1-cycle that lives forever is born.
We distinguish two different cases, one where c = c̃ and one where c ̸= c̃. We start with
the latter: We will focus on the (somewhat simpler) B case, as the M case is virtually
identical. Because the birth times correspond to Morse critical points on different
connected components, changing the order does not influence the pairing between Morse
critical points and birth and death in the persistence diagrams. This means that as long
as the death times are distinct in [π j̃

8(C+1) , π
j̃+1

8(C+1) ] and the cycle born at bj,c(t) dies
before the one born at bk,c̃(t) for one t in this interval, then the cycle born at bj,c(t) dies
before the one born at bk,c̃(t) for all t in this interval and at continuous and distinct
death times. Let us write DJ ′,c(t) and DK′,c̃(t) for the death times. This means that
the persistence diagram (at level t in the vineyard) contains the points (bj,c(t), DJ ′,c(t))
and (bk,c̃(t), DK′,c̃(t)), each of which locally describe a vine. This in turn implies that
if (locally) DJ ′,c(t)′ > DK′,c̃(t) then the vine (bj,c(t), DJ ′,c(t)) in the vineyard crosses
under the vine (bk,c̃(t), DK′,c̃(t)) and the reversed order of death corresponds to an
under crossing. This is achieved (as mentioned) by manipulating the ψ̃ coordinate. An
easy way to achieve this if the component c passes under c̃ is to push all strands of c in
and all strands of c̃ out and the reverse for an over pass. If one would like to repeat this
discussion for M one only need to add a lower order 0 or l respectively.
We note that in the case where l = 1, the birth with the very high birth value, that is
the point where in non-extended persistence the second 1-cycle that lives forever is born
and was denoted by m in the intermezzo, is separate (because of the high birth value)
and therefore gives a disconnected circle in the closure of the vineyard.
Now we consider the case that c = c̃. To simplify notation, we will drop the index c from
the notation altogether. We again focus on the B case, the case M is almost identical.
If the death times satisfy (5.4) for each t in [π j̃

8(C+1) , π
j̃+1

8(C+1) ], then there are points
(bj(t), DJ−1(t)) and (bk(t), DK(t)) in the persistence diagram. We can ensure that (5.4)
holds by changing the ψ̃ coordinates as before, see Figure 5.12. Because the assumption
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(5.4) does not constrain the relative order of bj(t) and bk(t) nor the relative order of
DJ−1(t) and DK(t). This means that we can change the order of birth time (which
occurs thanks to the crossing in the closed braid B) during the course of the interval
[π j̃

8(C+1) , π
j̃+1

8(C+1) ] and we can fix the relative order of DJ−1(t) and DK(t) as needed
(which we can again do by manipulating ψ̃, see Figure 5.12). If DJ−1(t) > DK(t)
in [π j̃

8(C+1) , π
j̃+1

8(C+1) ] then the bj vine crosses over the bk vine, while for the reversed
order the bj vine crosses crosses under the bk vine. We refer to the appendix for an
extensive example of this procedure in the case of the braid depicted in Figure 5.8. This
means that regardless of whether we have an over or under crossing, we locally push the
strands with the critical points DI , DII , . . . , DJ−2, DK+1, DK+2, . . . DN in (towards
the centre of the annulus) by a lot, and the strands with critical point DJ , . . . , DK−1

out (from the centre of the annulus) by a lot. This leaves the strands with DJ−1 and
DK in the middle, and one may push the strand with DJ−1 a little out and the DK a
little in if we want the bj vine segment to pass over the bk part of the vine, with the
reverse pushing for the under crossing. This in particular shows that the braid B can be
faithfully reconstructed in the persistence diagram, although we also introduce some
one extra loop per connected component of the link if l ̸= 1 and two if l = 1.

The only thing left to remark is that the conditions of Lemma 8 and Corollary 2 can always be
satisfied thanks to Remark 3.

5.3.4 Vineyard Monodromy
In this section we give the second main result of this chapter, namely that every order of
monodromy can be found in a vineyard and in any dimension l of Hl, with l ≤ d−2. This result
follows almost immediately from Theorem 11, and answers one of the main open questions of
Arya et al. [AGH+24], albeit in a slightly different context.

Proof of Theorem 10. The result follows by applying Theorem 11 to the (l-offset) of the
ouroborus knot, that is the closure of the braid with k + 1 strands and k over crossings, as
depicted in Figure 5.11.

5.4 Avoiding Monodromy in R2

Recall that the authors of [AGH+24] were able to demonstrate that so-called star shaped
objects cannot create monodromy in the persistent homology transform. In this section we
aim to show sufficient conditions on the observation loop in R2 so as to avoid the generation
of monodromy in the vineyard of the restricted distance function. Our conditions are based
entirely on the geometry of the objects as described by their extended symmetry sets.

5.4.1 Persistence and the Extended Symmetry set
Consider a simple closed curve γ : S1 → R2 and a point p = γ(t). The distance function
ρx : γ → R has critical points where the radius and tangent of γ are perpendicular, that is
⟨γ′(t), γ(t) − x⟩ = 0. Let e ∈ R2 be a point on the evolute of γ, that is, e is centre of of the
osculating circle of γ at p and a degenerate critical point of ρx. Additionally, let ein, eout be
two points in a small neighbourhood of e which lie on opposite sides of the evolute. At ein
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the degenerate critical points splits into two disjoint critical points, while conversely at eout
the degenerate critical point resolves into a single critical point. Hence crossing the evolute
results in the birth or death of a persistence point depending on the direction of traversal.
The converse statement also holds as in order to generate a new persistence point you must
pass through a degenerate radius function which corresponds exactly to points of the evolute.
Indeed, the evolute partitions the plane into regions where the combinatorics of the persistence
diagram of the radial distance function are fixed.

Additionally, we can further subdivide the plane using the symmetry set (recall from Section 3.3
the union of the symmetry set and the evolute is known as the extended symmetry set). Each
point in the symmetry set is generated by a circle that touches the curve in at least two
points and leaves of the symmetry set terminate in A3 contacts (extrema of curvature in
γ and cusps of the evolute). The nature of these contacts, whether the contact point on
the curve has greater or lesser curvature compared to the contact sphere, can be used to
partition the manifold like pieces of the symmetry set by their impact on the radial distance
persistence diagram. When both contact points have less curvature than the curve it implies
that a radial distance persistence diagram from this point will produce two points with equal
death coordinate. Said differently, crossing such a piece of the symmetry set will exchange
the ordering of the births of two pieces in the persistence diagram. Similarly, if both contact
points have lesser curvature the ordering of death coordinates will be exchanged, and if the
contact points have different types the ordering of a birth and death will be exchanged.

From this we can conclude the following.

Lemma 10 (Preventing monodromy). Under the conditions described above if the observation
loop does not enclose a singularity of the extended symmetry set, it cannot produce monodromy.

Proof. We first assume the observation loop is contained completely within a cell of the
extended symmetry set. Further assume for the sake of contradiction that monodromy exists
for such an observation loop. For monodromy to exist after one full rotation of the observation
loop a permutation σ is applied to the points in the persistence diagram. Consider the difference
between birth values of distinct points in the persistence diagram hi,j := bi(t) − bj(t), where
t is the observation loop parameter, which is a continuous function. Since we do not cross
the symmetry set birth values never coincide so the relative order of the births remains the
same and hi,j ̸= 0 for all i, j. However, if σ is not the identity permutation then there are
persistence points such that bi(2π) = bσ(i)(0) and bj(2π) = bσ(j)(0), with i ̸= j, such that
the order of bi and bj at t = 0 and t = 2π differs. This implies that hi,j(0) and hi,j(2π)
have opposite signs and therefore by the Intermediate Value Theorem that there must exist
t ∈ (0, 2π) with hi,j(t) = 0. This contradicts the uniqueness of birth values within a cell of
the extended symmetry set and with an identical argument for the death values implies that
no nontrivial permutation and hence no monodromy can occur.

Now we allow the observation loop to pass through pieces of the extended symmetry set
but restrict it from enclosing singularities. We examine the combinatorial properties of the
intersection of the loop and the extended symmetry set. A loop that does not enclose a
singularity of the extended symmetry set intersects each piece of the symmetry an even number
of times, and the order of intersecting faces creates a well formed expression. In so doing the
exchanges in orderings of births and deaths (and creation and deletion of points when crossing
the evolute) are cancelled out starting from the centre of the palindrome such that the only
possible permutation is the identity.
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It remains to prove which type or combination of types of singularities in the extended symmetry
set which when enclosed by an observation loop result in monodromy. However, we were able
to find the curve depicted in Figure 5.14, which exhibits monodromy without a particularly
complicated singularity structure. This example should be a relatively simple case to investigate
in future work in this direction.

5.5 Discussion
We conclude by reflecting that the construction in this chapter implies that vineyards are as
topologically complex as one may hope or fear, opening up a number of interesting directions
for future work. We note that as stated in [OOT24], the radial transform presents some
significant advantages over the more well-studied directional transform, and we feel it warrants
greater study. In particular, it is quite critical in our construction, and allowed for better
understanding of monodromy and braiding in higher dimensions.
Theorem 11 implies that comparing closed vineyards with a measure that completely reflects
the topology is likely to be a difficult problem, computationally speaking. By this we mean the
following: Suppose that we want to compare periodic evolving phenomena using persistence,
and thus are faced with closed vineyards. Now suppose that we want a distance between two
closed vineyards that respects the topology. As these vineyards can contain arbitrary knots
and links embedded in them, solving this problem would necessarily mean recognizing those
structures within. While the exact complexity of knot recognition is formally still open, in
practice it has proven to be quite difficult, as it sits at the intersection of NP [INT23, Has97]
and co-NP [Lac21] and is connected to several known hardness results [KT21]. In particular,
it is known to be NP-hard to test unknottedness if the number of simplifying Reidemeister
moves allowed while unknotting is specified as a part of the input [dMRST21].
That said, the richness of structure present in vineyards may still allow for subtle distinctions
and invariants to be calculated. In fact, our results in some sense show that vineyards are
more than the sum of parts, as the choice of base loop in our example is in fact critical
for the resulting vineyard to have any braiding, and the resulting vineyard can exhibit quite
complex behavior. However, these subtleties come at a high computational cost, and finding a
compromise between topological fidelity and computational complexity will be an important
challenge for future work.
We conclude with a few specific open questions:

- Can we describe monodromy simply by the ordering and type of the pieces of the symmetry
set that are crossed or by the type of the singularities enclosed by an observation loop?

- Are there good combinations of link invariants and distances, like the Wasserstein
distance, that still capture a lot of the topology, provide a practical similarity measure,
and are relatively easy to compute? If so, could these invariants prove useful in topological
data analysis, given the rising use of the persistent homology transform in real world
applications?

- Are there geometric conditions (that are easy to verify) on a pair of closed vineyards
that imply that the closed vineyards are isomorphic?
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- Could tools from topological data analysis, and in particular statistical work on vine-
yards [MTB+15], provide new practical insights into knot and link recognition?

- On the application side, it would be interesting to ask: Do even simple non-trivial knots or
links (like the trefoil knot, Hopf link, or Borromean rings) exist in persistence diagrams of
real data? There is some indication that knots are present in proteins [Let12], otherwise
we would suggest looking in persistence diagrams of biological systems containing circular
DNA [NCMRA24].

5.A Example
As an example of pushing outward and inward on the strands by manipulating the ψ̃ coordinates
in Step 4 of the proof of Theorem 11 we discuss the example shown in Figure 5.8 in detail.
We number the crossings c1, . . . , c13 as indicated in Figure 5.15. The manipulation proceeds
as below. We emphasize that all of the death values associated to points near a crossing need
to be generic, that is no two identical death values. We will not repeat this for every crossing.

• At c1 yellow crosses under red, hence we push all red strands out and all yellow ones in.
We will refer to this as yellow before red.

• At c2 the strand on which b2 lies crosses under the strand with b3, in accordance with
(5.4) we push DIII in and DII out so that DI lies in between (blue in the figure), what
you do with the yellow strands doesn’t matter (as long as it is generic). The way that
we push is also indicated in blue in the figure.

• At c3 red crosses under yellow, hence we push the yellow strands out and the red ones
in, i.e. red before yellow.

• At c4 red crosses over yellow, hence push the red strands out and the yellow ones in, i.e.
yellow before red.

• Similarly to the crossing at c2 (but at c5, the strand with b2 crosses under the strand
b3), at c5 we push DI in and push DII out so that DIII (green in the figure) lies in the
middle (there is no condition on the yellow strands except genericity).

• At c6 red goes before yellow.

• The crossings c7, c8, and c9 almost coincide in the figure, however, the red crosses in all
cases over yellow, so that yellow needs to go before red2, because the first birth in red
exchanges strand the coupling is automatic and leads to a disconnected component (i.e.
surgery is performed).

• At c10 yellow goes before red.

• At c11 the order of the strands really doesn’t matter as long as all death values are
distinct (generic), because this is another first birth interchange (on yellow this time).

2Strictly speaking it is not necessary that yellow needs to go before red as long as you choose consistently
for both crossings because at the red crossing the first birth changes from one strand to another, which leads
to surgery so that the outer strand disconnects, which means that after a Reidemeister II move you are fine.
However to fit with the text in the proof it is best to have yellow before red.
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• The crossing at c12 is again similar to the crossings at c5 with the strand containing
b2 crossing under b3. We stress that because we label the critical points in their order
along the braid, and the first birth has exchanged strands, the strand that contains b2 is
not the same strand that contained b2 at c5 (where by the same we mean identification
via shortest paths on the link). The strands that are associated to DI , DII , and DIII

change as a consequence as well, see Figure 5.15 (purple). This having been said, we
follow the same procedure as at c5: At c12 push DIII out and DII in, so that DI ends
up in the middle (there is no condition on the yellow strands except genericity), indicated
in purple in the figure.

• At c13 red goes before yellow.

5.B Monodromy touching the diagonal
If we drop the assumption that the vines do not touch the diagonal, but still assume that none
of the persistence diagrams contain points with higher multiplicity, it is possible to formulate
a notion of monodromy that is more equivalent to that contained in prior work [AGH+24]. To
make sense of the definition given below and to provide an alternative formulation to the one
in the body of this chapter, we need the following observation: Let Ṽmax(t) be a vine defined
on its maximal domain (tmin, tmax), where tmin, tmax ∈ R ∪ {±∞}, that contains the point
V(0).

More formally Ṽmax(t) is the restriction to the maximal open interval such that the lift of the
curve γ : R → R/2πZ : t ↦→ t mod 2π, contains no limit points on the diagonal for this open
interval.

If we are given a vine V(t) defined on [0, 2π] we call the vine Ṽmax(t) defined on its maximal
domain that coincides with V(t) on the interval [0, 2π], the maximal extension of V(t). If
the domain of a maximal extension is finite, then we say that the vine has a finite maximal
extension.

If the number of points in each persistence diagram is finite (as we assume), then either both
tmin and tmax are (plus/minus) infinite or neither of them are. This is clear because if one of
them is infinite we must return to the same point in the persistence diagram after some time
2πk (since the number of points in the persistence diagram is finite), in which case Ṽ(t) is
periodic and is defined on (−∞,∞).

Using this definition we may reformulate our definition of the order of the monodromy from
Section 5.3:

Remark 4. Assume that there are no points of higher multiplicity in Dl(ρt(p)), for all γ(t) and
by extension the vines are non-intersecting curves. Assume moreover that all of the vines are
disjoint from the diagonal. The vine V(t) exhibits monodromy of order k iff k is the smallest
positive integer such that Ṽmax(0) = Ṽmax(2πk), where Ṽmax(t) is the maximal extension of
V(t).

In this setting, that is where we allow vines to contain points in the diagonal (as limit points),
and the goal again is to glue together in a way that we have the exhibited periodicity of
monodromy as an integer. More formally:
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Assume that there are no points of multiplicity higher than 1 in Dl(ρt(p)), for all γ(t) and by
extension the vines are non-intersecting curves. We will follow the same notation as above.
Individual vine monodromy: Let V(t) be the vine and Ṽmax(t) is its maximal extension. If
its maximal domain is (−∞,∞), then the vine does not touch the diagonal and the definition
from Section 5.3 and the reformulation in Remark 4 both apply. Let us now assume that
tmin, tmax are finite. By reparametrizing we can assume (without loss of generality) that
tmin = 0. The order of monodromy is now defined as the smallest positive integer k, such
that tmax < 2πk. As before, we will say that the monodromy is trivial if k = 1.
We will also define the completion along the diagonal of a vine V . Let Ṽmax : (tmin, tmax) →
Dl(ρt(p)) be the maximal extension of V , and write

vmin = lim
t↘tmin

Ṽmax(t)

vmax = lim
t↗tmax

Ṽmax(t)

for the two limit points of the vine on the diagonal. Let k be the order of monodromy of V
we define the completing diagonal vine VD as

VD :(tmax, tmin + 2πk) → Dl(ρt(p))

t ↦→
(︃
t, vmax

(︃
1 − t− tmax

tmin − tmax + 2πk

)︃
+ vmin

t− tmax

tmin − tmax + 2πk

)︃
.

The start and end points of the concatenation VD ◦ Ṽmax coincide and therefore by identifying
tmin and tmin + 2πk we can consider this to be a map on R/2πkZ. The set R/2πkZ can be
viewed as k cover of the circle R/2πZ, where we identify R/2πZ with the loop γ. Composing
with this cover map gives a map VC : γ(t) ↦→ Dl(ρt(p)), which exhibits monodromy in the
way we defined above. We call VC the completion of the vine V .
Vineyard monodromy: We now call the vines whose maximal extension do not intersect the
diagonal (or equivalently those whose maximal domain is (−∞,∞)) non-rooted vines, while we
call those that intersect the diagonal (or equivalently those whose maximal domain has finite
length) rooted vines. We write k1, . . . , kn for the orders of monodromy of non-rooted vines and
write l1, . . . , lm for the orders of monodromy of the rooted vines. Let lmax = max{l1, . . . , lm},
then we define the order of monodromy of the vineyard as the smallest k that is a common
multiple of k1, . . . , kn and is larger than lmax. We also call k the common order of monodromy
of all the vines.
We can complete the vineyard in the same way as before, but with k the common order of
monodromy of all the vines, instead of an individual vine. We call the result the completed
vineyard.
We stress that there may be self-intersections on the diagonal of the completed vineyard.
We note again here that if the vineyards are non-generic, the situation is significantly more
complex as vines can intersect [Tur23]. We have not considered the non-generic case in this
work, however it may be of interest for future study.
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Figure 5.13: Top: a side view of a 3-dimensional embedding of the link depicted in Figure
5.8, where the crossings and strands are perturbed in a particular way to get the desired
monodromy (see the description in Figure 5.8). The red and gold portions are the two sections
of the link, and the blue curve is an observation loop for the radial transform, where the
dark blue portion corresponds to the section of vineyard visualized in the bottom. See also
the proof of Theorem 10 and the corresponding Example in Appendix 5.A for the full details
of the perturbation. Middle: Front-angled view of the embedded link. Bottom: A sideways
view of our computed vineyard, showing the diagrams computed from the radial transform of
observation points taken from the fraction of the full period (from 0 to 2π) depicted in dark
blue segment of curve above. This segment of the vineyard captures all crossings and exhibits
monodromy of period 2π · 3. To transform this braided vineyard into a closed braid, we would
identify the “sides”, or slices, at 0 and 2π.
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-2 -1 0 1 2

-2

-1

0

1

2

Monodromy Figure

Figure 5.14: Minimal example of monodromy in the plane. Left: Curve (blue), evolute (green),
and symmetry set (red). Right: Corresponding extended persistence vineyard exhibiting
monodromy in both H0 and H1 demonstrating a non-trivial permutation.

Figure 5.15: The crossings and the specific correspondence between the deaths or critical
points and the strands indicated.
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Figure 5.16: Different views of the Example. Top: together with observation loop (blue) and
twisted annulus (transparent gray). Bottom: front view of just the manipulated trefoil-circle
link.
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CHAPTER 6
Counting Equilibria of the Electrostatic

Potential

6.1 Introduction
In 1873, James C. Maxwell [Max73] conjectured that the electric field generated by n point
charges in generic position has at most (n− 1)2 isolated zeroes.
The first (non-optimal) upper bound was only obtained in 2007 by Gabrielov, Novikov and
Shapiro, who also posed two additional interesting conjectures [GNS07]. This upper bound was
improved upon in [EFO25]. Prior to this work however, little was known about arrangements
of charges that could approach even Maxwell’s conjectured upper bounds.
In this chapter, inspired by [GNS07] and based upon our article [EFO25], we explore examples
and construct configurations of charges achieving the highest ratios of the number of electric
field zeroes to point charges found to this day. These configurations fall drastically short of
the best known upper bounds and even that of Maxwell’s conjecture lending credence to the
possibility that a quadratic upper bound is not tight.
Additionally, we will explore the computational and explicit methods for finding these equilibria.
Finally, we construct a counterexample to Conjecture 1.8 in [GNS07] that the number of
equilibria cannot exceed those of the distance function defined by the unit point charges.

6.1.1 The Electrostatic Potential
The electrostatic potential generated by n point charges located at A1, A2, . . . , An ∈ R3 of
magnitudes ζ1, ζ2, . . . , ζn ∈ R is the function V : R3 \ {A1, A2, . . . , An} → R defined by

V (x) =
∑︂n

i=1
ζi

∥x− Ai∥
, (6.1)

in which ∥x− Ai∥ is the Euclidean distance between the two points. A one dimensional slice
of the electrostatic potential for a single unit charge is depicted in Figure 6.1. The electric
field is the gradient of this potential.
In this chapter, we only consider the case in which all the charges ζi are unit charges. The
zeros of the electric field are the equilibria or the critical points of the potential. They are also
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6. Counting Equilibria of the Electrostatic Potential

Figure 6.1: One dimensional section of the electrostatic potential of a single charge.

sometimes referred to as electrostatic points as they are the points at which the electric field
vanishes, thus corresponding to equilibrium positions for test charges.
We recall briefly some essentials of Morse theory necessary for our analysis (see Section 2.5
for a more complete summary). An equilibrium of a smooth function is non-degenerate if
the Hessian at the point is invertible. A useful result of Morse–Cairns in [MC69] yields that
for the generic location of a single point charge, all equilibria of V are non-degenerate. In
this case, the Hessian has 0, 1, 2, or 3 negative eigenvalues, corresponding to the number
of directions of principal curvature in which the function is decreasing. In Morse theory, this
number is called the index; see e.g. [Mil69]. Equilibria of index 0, 1, 2, 3 are referred to as
minima, 1-saddles, 2-saddles, and maxima respectively.
Importantly, the electrostatic potential in R3 is harmonic; that is: its Laplacian vanishes at
every point. To explain, it is not difficult to check that the function x ↦→ 1/∥x∥ is harmonic on
R3\{0}. Sums, translates, and multiples of harmonic functions are again harmonic, which
implies that V is harmonic. It follows that V enjoys the mean value property: V (x) is the
average of the values of V on any sphere centered at x that neither passes through nor encloses
any of the Ai. Hence, if nonzero, V has neither minima nor maxima in R3 \ {A1, A2, . . . , An}.
Although the electrostatic potential itself is not Morse, since R3 \ {A1, A2, . . . , An} is not
compact, the equilibria are in correspondence with those of a Morse function. Namely, we can
consider the function f : R3 ∪ {∞} → R which agrees with V except in small neighbourhoods
of each charge where we cap the electrostatic potential with maxima and extended V by
continuity at infinity by setting f(∞) = 0 which is a minima (see Figure 6.2). If the
neighbourhoods are chosen small enough this has no impact on the existing 1 and 2-saddles
of V . Additionally, any degenerate equilibria of V will disappear under a slight perturbation of
the charges, again without influencing the existing equilibria.
An early application of Morse theory, carried out by Morse himself [MC69], gives a lower bound
on the number of equilibria of V .
Let mp be the number of index-p equilibria of M . After subtracting the one minimum at
infinity and the n maxima at A1 to An, we get m0 +m1 +m2 +m3 − (n+ 1) as the number
of equilibria of V . By the Euler–Poincaré relation, we have m0 −m1 +m2 −m3 = 0 because
the Euler characteristic of S3 ≃ R3 ∪ {∞} vanishes. By construction, m3 = n and m0 = 1,
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6.1. Introduction

Figure 6.2: One dimensional section of the electrostatic potential of a single charge capped so
as to make it Morse.

which thus implies m2 −m1 = n− 1. Hence, the number of equilibria of V is

m1 +m2 = 2m1 + n− 1 ≥ n− 1. (6.2)

This lower bound is tight since placing n point charges along a straight line in R3 defines a
potential with only n− 1 equilibria, all of which are 2-saddles, see Figure 6.3.

Figure 6.3: One dimensional section of the electrostatic potential of three charges along a line.

There are however configurations with more than n − 1 equilibria, and as mentioned in
the introduction to this chapter, the quadratic upper bound (n − 1)2 was conjectured by
Maxwell [Max73]. This bound is realised for n = 3, for example when placing charges at the
vertices of an equilateral triangle, see Figure 6.4.

However, configurations that achieve this bound are not known for n > 3, and numerical
experiments suggest that for randomly placed charges the ratio of the number of equilibria
over point charges is bounded and rather low.
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6. Counting Equilibria of the Electrostatic Potential

Figure 6.4: Two dimensional section of the electrostatic potential of three charges arranged as
the vertices of an equilateral triangle. Lighter contours indicate higher values of the potential.
Equilibria are indicated by red crosses.

The major goal in this chapter, which is carried out in Section 6.3, is therefore to study special
configurations of point charges, such as those obtained by placing them at the vertices of
certain solids.

6.2 Method
Finding critical points of a function f : R → R is a simple problem familiar to high school
mathematics students. The electrostatic potential, in principle, is no more difficult. We need
to find the points x ∈ R3 \ {A1, A2, . . . , An} where the electric field vanishes. However, one
will quickly realise the complexity of solving this problem explicitly when considering more than
a handful of charges. We are therefore forced to experiment with computational techniques.
The simplest computational approach to this problem would be to compute the squared norm
of the electric field, ∥∇V ∥2, in a grid of sample points around the charges and then count the
number of connected components as you remove grid elements above a decreasing threshold.
However, our experimentation with solids revealed that some equilibria are highly degenerate,
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6.2. Method

meaning there are many equilibria in a small volume and are extremely shallow, by which we
mean that the threshold required to separate nearby equilibria can be smaller than what is
practical.

6.2.1 Cubical Persistence
To remedy the degeneracy and depth of the equilibria a more topological approach was taken
to the problem. As outlined in Section 2.5, the critical points of a Morse function, f : M → R,
occur precisely at the points where topological changes in the level sets occur. Additionally,
from Section 2.7 the number of critical points is twice the number of persistence pairs in the
filtration by f and critical edges and critical faces correspond to 1 and 2-saddles respectively.
We followed the efficient algorithm for computing persistence of cubical data outlined in
[WCV12] and implemented in [Ču20]. When interrogating topological changes depicted, such
as in Figure 6.13, we used the marching cubes algorithm [LC87] as implemented in Python’s
sci-kit image package [VdWSNI+14].
While persistence is still vulnerable to the degeneracy of the electrostatic potential, the
topological nature of the technique provides us good evidence when further scrutiny of an
identified equilibria is required.

6.2.2 Local Homology
Once a potential equilibria is identified from the persistence of V we use the local homology
at a point to determine whether it is in fact an equilibrium or not, and if so, the level of
degeneracy it may have.
For x ∈ R3 \ {A0, A1, . . . , An}, let ε > 0 be smaller than the distance between x and any of
the n point charges, and write B(x, ε) and S(x, ε) for the closed ball and sphere with center
x and radius ε.
The local homology of V at x is the limit, for ε going to zero, of the relative homology of
the pair (B−(x, ε), S−(x, ε)), in which B−(x, ε) ⊆ B(x, ε) and S−(x, ε) ⊆ S(x, ε) are the
subsets of points y with V (y) ≤ V (x).
To visually represent these groups, we define a binary function on the unit sphere, which maps
u ∈ S2 to black if V (x) < V (x+ εu), and to white if V (x) ≥ V (x+ εu) for every sufficiently
small ε > 0.
In words: the potential increases if we leave x in a black direction; and it decreases or stays the
same if we leave x in a white direction. See Figure 6.5 for the binary functions of a non-critical
point and the four types of non-degenerate equilibria and Table 6.1 for the corresponding
ranks in the local homology. Writing W ⊆ S2 for the white points, the local homology of x is
the homology of the cone over W relative to W .
Observe that every geometric realization of the solid yields the same local homology. Indeed,
a similarity, which is a map θ : R3 → R3 that is the composition of: a scaling; a rotation; a
translation; and possibly a reflection, preserves the types of equilibria. To prove this claim, we
write x′ = θ(x) and V ′ : R3 \ {A′

1, A
′
2, . . . , A

′
n} → R for the potential defined by the point

A′
i with charges ζ ′

i = ζi.
Lemma 11. Let V, V ′ be the potentials defined by a finite set of point charges, before and
after applying a similarity, respectively. Then there is a bijection between the equilibria of V
and V ′ such that corresponding equilibria have the same type.
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6. Counting Equilibria of the Electrostatic Potential

Figure 6.5: From left to right: the binary functions on the unit 2-sphere for a non-critical
point, a minimum, a 1-saddle, a 2-saddle, and a maximum.

p = 0 1 2 3
non-critical 0 0 0 0
minimum 1 0 0 0
1-saddle 0 1 0 0
2-saddle 0 0 1 0
maximum 0 0 0 1

Table 6.1: The ranks in local homology at the points whose binary functions are illustrated in
Figure 6.5.

Proof. A rotation, translation, and reflection does not change the value at a point, except
that it transfers this value to the image of that point. This is not true for a scaling. Letting
s > 0 be the scaling factor of the similarity, we have

V ′(x′) =
∑︂

i

ζ ′
i

∥x′ − A′
i∥

=
∑︂

i

ζi

s∥x− Ai∥
= 1

s
V (x), (6.3)

at every x ∈ R3. Since multiplication with a positive constant preserves the local homology
at a point, this establishes the claim for the bijection that maps an equilibrium to its image
under the similarity.

As we will see in the following section the ranks of local homology of degenerate equilibria of
regular and semi-regular solids can be quite large so the local homology is quite useful in order
to quantify degeneracy.

6.3 Regular and Semi-Regular configurations
We consider the vertices of the Platonic solids and semi-regular polyhedra as potentially
interesting point charge configurations. We cover the families of these solids individually in
the follow subsections.

The numbers of equilibria given in Tables 6.3, 6.4 and 6.5 were obtained by first computing
cubical persistence and local homology, further investigating graphically with level sets around
critical values and finally, where possible solving explicitly the location of equilibria. We
discovered that all equilibria are non-degenerate, except at the center of the solid, which
unfolds into two or more such equilibria.

88



6.3. Regular and Semi-Regular configurations

6.3.1 Platonic Solids
A Platonic solid is a convex polytope such that

• all facets are the same regular polygon;

• all vertices have the same local shape.

There are 5 Platonic solids, see Figure 6.6.

Figure 6.6: From left to right: Platonic Solids following the order in Table 6.2.

Figure 6.7: From left to right: the binary functions for the centers of the tetrahedron, cube,
octahedron, dodecahedron, and isocahedron (these are degenerate equilibria and so are neither
1-saddles nor 2-saddles).

The rank vectors of each platonic solid is listed in Table 6.7. As an example, the tetrahedron
has a rank vector of (0, 0, 3, 0), which is consistent with three 2-saddles co-located at its
center. It is also consistent with one minimum, four 1-saddles, and six 2-saddles co-located at
the center, where the four 1-saddles cancel with the minimum and three of the 2-saddles. The
latter choice is suggested by the face structure of the tetrahedron, which has one tetrahedron,
four triangles, and six edges.

p = 0 1 2 3
tetrahedron 0 0 3 0
cube 0 5 0 0
octahedron 0 0 5 0
dodecahedron 0 11 0 0
icosahedron 0 0 11 0

Table 6.2: The ranks in local homology at the centers of the Platonic solids, with binary
functions shown in the lower row of Figure 6.7. Observe that the last column in Table 6.3 is
the alternating sum of these ranks.
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6. Counting Equilibria of the Electrostatic Potential

solid f -vector 2-saddles 1-saddles center
Tetrahedron (4,6,4,1) 0 0 3
Cube (8,12,6,1) 12 0 -5
Octahedron (6,12,8,1) 0 0 5
Dodecahedron (20,30,12,1) 30 0 -11
Icosahedron (12,30,20,1) 0 0 11

Table 6.3: Numerical results for the electrostatic potential defined by placing the point charges
at the vertices of the five Platonic solids. The first entry in each f -vector is the number of
point charges. The next two columns give the number of observed 2- and 1-saddles. In each
case, the center is a degenerate equilibrium, for which we give the alternating sum of ranks
in local homology. In each case, the number vertices exceeds this alternating sum plus the
number of 2-saddles minus the number of 1-saddles by 1.

Through lengthy but straightforward computations and arguments, we were then able to
rigorously show the existence of the claimed equilibria. As an example, we present the full
proof for the case of the cube, but the argument generalizes to the other Platonic solid with
more electrostatic points beside the center, e.g. the dodecahedron.

Proposition 4. The electrostatic potential defined by the (eight) unit point charges located
at the vertices of a cube in R3 has twelve equilibria beside the one at the cube’s center. These
occur along the segments connecting the cube’s center to the midpoints of its edges.

Proof. Assume without loss of generality, that the vertices of the cube are located at the
points (±1,±1,±1). The cube is invariant by a discrete group of symmetries, G, which
contains, in particular, the reflections on the planes P1 = {(x1, x2, x3) ∈ R3 | x2 = 0}
and P2 = {(x1, x2, x3) ∈ R3 | x1 + x3 = 0}. Denote these reflections σ1, σ2 : R3 → R3,
respectively. Letting v1 = (0, 1, 0) and v2 = (1, 0, 1) be vectors orthogonal to these planes,
the reflections change their signs: σ1(v1) = −v1 and σ2(v2) = −v2. Furthermore, the
electrostatic potential V generated by unit charges at the vertices of this cube is invariant by
these symmetries, i.e. V ◦ σ1 = V ◦ σ2 = V . Hence, we find from the symmetry that, along
Pi,

⟨∇V, vi⟩ = ⟨σi(∇V ), σi(vi)⟩ = −⟨∇V, vi⟩, (6.4)

and therefore ⟨∇V, vi⟩ = 0, for i = 1, 2. In particular, along

P1 ∩ P2 = {(x1, x2, x3) ∈ R3 | x2 = 0, x1 + x3 = 0} (6.5)
= {(x, 0,−x) ∈ R3 |x ∈ R} (6.6)

we have ⟨∇V, v1⟩ = 0 and ⟨∇V, v2⟩ = 0, which we write more explicitly as

∂V

∂x2
(x, 0,−x) = ∂V

∂x1
(x, 0,−x) + ∂V

∂x3
(x, 0,−x) = 0. (6.7)

We now prove the existence of an equilibrium of V by finding one in P1 ∩ P2. Due to
Equation (6.7), we need only prove that there is an x ∈ R such that the function f(x) =
V (x, 0,−x) has a critical point, i.e. we must find x such that f ′(x) = 0; that is:

∂V

∂x1
(x, 0,−x) − ∂V

∂x3
(x, 0,−x) = 0. (6.8)
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6.3. Regular and Semi-Regular configurations

Figure 6.8: Plot of f ′(x) whose zeroes correspond to electrostatic points lying in the line
P1 ∩ P2.

The function f ′(x) is odd and varies continuously with x. We can explicitly compute it and
therefore evaluate it at any point; see Figure 6.8. Evaluating the explicit formula for f ′(x) we
find that

f ′(−1) = 8
27 + 8

√
5

25 > 0, (6.9)
f ′(−1/2) = − 4

63

[︂√
7
(︂√

3 − 27
√

11
121

)︂
− 18

7

]︂
< 0, (6.10)

f ′(1/2) = 4
63

[︂√
7
(︂√

3 − 27
√

11
121

)︂
− 18

7

]︂
> 0, (6.11)

f ′(1) = 8
27 + 8

√
5

25 > 0. (6.12)

We therefore conclude from the intermediate value theorem that there are two extra equilibria
of V (zeroes of f ′(x)) located at points (x∗, 0,−x∗) and (−x∗, 0, x∗) for x∗ ∈ (1/2, 1). Notice,
in particular, that such points lie along the straight lines passing through the cube’s center
and the midpoints in its edges.
These two points are in the same orbit of the group of symmetries of the cube and this orbit
has cardinality 12 thus resulting in such a number of extra equilibria.

Recall that the unit point charges at the vertices of the equilateral triangle in R3 define four
equilibria, which implies that the ratio of equilibria over the number of vertices is 4/3. Based
on the numbers given in Table 6.3, we deduce that the corresponding ratios for the Platonic
solids are 1/4, 13/8, 1/6, 31/20, and 1/12, respectively, with the highest ratio for the cube.

6.3.2 Archimedean and Catalan Solids
An Archimedean solid is a convex polytope such that

• all facets are regular polygons;

• all vertices have the same local shape.

Conventionally, there are 13 Archimedean solids, but depending on the interpretation of the
second condition, there may be a 14-th, see Figure 6.9.
In particular, we may or may not require vertex-transitivity (for any two vertices, there is a
symmetry that maps one vertex into the other), which holds for the 13 Archimedean solids but
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6. Counting Equilibria of the Electrostatic Potential

Figure 6.9: From left to right, top to bottom: Archimedean Solids following the order in
Table 6.4

not for the Elongated Square Gyrobicupola. The latter is similar to the Rhombicuboctahedron
but has one of the square cupola rotated by 45◦ relative to the opposite cupola. Comparing
rows 5 and 14 in Table 6.4, we see that the Elongated Square Gyrobicupola generates fewer
equilibria than the Rhombicuboctahedron.

solid f -vector 2-saddles 1-saddles center
Truncated Tetrahedon (12,18,8,1) 18 4 -3
Cuboctahedron (12,24,14,1) 24 8 -5
Truncated Cube (24,36,14,1) 36 8 -5
Truncated Octahedron (24,36,14,1) 36 18 5
Rhombicuboctahedron (24,48,26,1) 36 8 -5
Truncated Cuboctahedron (48,72,26,1) 72 20 -5
Snub Cube (24,60,38,1) 36 8 -5
Icosidodecahedron (30,60,32,1) 60 20 -11
Truncated Dodecahedron (60,90,32,1) 90 20 -11
Truncated Icosahedron (60,90,32,1) 90 12 -19
Rhombicosidodecahedron (60,120,62,1) 90 20 -11
Truncated Icosidodecahedron (120,180,62,1) 180 50 -11
Snub Dodecahedron (60,150,92,1) 90 20 -11
Elongated Square Gyrobicupola (24,48,26,1) 32 8 -1

Table 6.4: The equilibria of the electrostatic potential of point charges at the vertices of the
thirteen Archimedean solids and the Elongated Square Gyrobicupola. The f -vector gives the
number of vertices, edges, facets, and the solid itself, in this sequence. Except possibly in the
last case, the center is a degenerate equilibrium, and in each case, the number of 1-saddles is
non-zero; compare with Table 6.5.

The Catalan solids are dual to the Archimedean solids, so the vertices have multiple possible
local shapes, and the facets are congruent to each other. There are again 13 classical
examples, and the Pseudo Deltoidal Icositetrahedron as a 14-th solid that is not facet-transitive.
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Comparing rows 5 and 14 in Table 6.5, we see that the Pseudo Deltoidal Icositetrahedron
generates again fewer equilibria than the similar Deltoidal Icositetrahedron.

Figure 6.10: From left to right, top to bottom: the Catalan solids following the order in
Table 6.5

solid f -vector 2-saddles 1-saddles center
Triakis Tetrahedron (8,18,12,1) 10 0 -3
Rhombic Dodecahedron (14,24,12,1) 18 0 -5
Triakis Octahedron (14,36,24,1) 18 0 -5
Tetrakis Hexehedron (14,36,24,1) 20 0 -7
Deltoidal Icositetrahedron (26,48,24,1) 30 0 -5
Disdyakis Dodecahedron (26,72,48,1) 30 0 -5
Pentagonal Icositetrahedron (38,60,24,1) 48 0 -11
Rhombic Triacontahedron (32,60,30,1) 42 0 -11
Triakis Icosahedron (32,90,60,1) 42 0 -11
Pentakis Dodecahedron (32,90,60,1) 50 0 -19
Deltoidal Hexecontahedron (62,120,60,1) 72 0 -11
Disdyakis Triacontahedron (62,180,120,1) 72 0 -11
Pentagonal Hexecontahedron (92,150,60,1) 102 0 -11
Pseudo Deltoidal Icositetrahedron (26,48,24,1) 26 0 -1

Table 6.5: The equilibria of the electrostatic potential of point charges at the vertices of the
thirteen Catalan solids and the Pseudo Deltoidal Icositetrahedron. The f -vector gives the
number of vertices, edges, facets, and the solid itself, in this sequence. Except possibly in the
last case, the center is a degenerate equilibrium, and in each case, the number of 1-saddles
vanishes; compare with Table 6.4.

We note that all Archimedean solids define electrostatic potentials with a positive number
of (non-degenerate) 1-saddles, while all Catalan solids generate no such 1-saddles; compare
Tables 6.4 and 6.5. Curiously, also the Platonic solids generate no 1-saddles; see Table 6.3.
At this time, there is no explanation for this curious observation.
Finally, recall that the amongst the Platonic solids the Cube gave the highest ratio of equilibria
to charges. Amongst the Archimedean and Catalan solids we obtain an even higher ratio of
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33/12 for the cuboctahedron; see the second row of Table 6.4. Indeed, this is the highest ratio
we observe for the regular and semi-regular polytopes surveyed thus far.

6.3.3 Anti-prisms
Beyond the families of solids seen thus far, we wish to consider the prisms and anti-prisms,
which are parametrized by an integer, k, and a positive real number. A k-sided prism is
the Cartesian product of a regular k-gon and an interval. It has two regular k-gons and k
rectangles as facets. We call the aspect ratio of the rectangles the relative height of the prism.
Lemma 11 applies only if two prisms agree on k and on the relative height, i.e. there exists a
similarity. Indeed, for the same k, the number of equilibria generated by unit point charges at
the vertices of the prism depends on the relative height. We shed light on this dependence for
the more interesting second family. A k-sided anti-prism has two regular k-gons in parallel
planes as facets, one rotated relative to the other so that there are 2k isosceles triangles that
connect the k-gons and complete the list of boundary facets; see Figure 6.11 for examples.
The relative height of the anti-prism is the distance between the two k-gons over the length of
their edges. Note that for k = 3 and the relative height chosen so that the isosceles triangles
are equilateral, the 3-sided or triangular anti-prism is the (regular) octahedron.

Figure 6.11: Anti-prisms for k = 4, 5, 6.

Our experiments show that for k ≥ 4, the relative height of the k-sided anti-prism can be
chosen so that the electrostatic potential for unit point charges placed at the vertices has one
2-saddle for each edge, one 1-saddle for each isosceles triangle, and one additional 1-saddle at
the center; see Figure 6.12 for illustrations and Appendix 6.A for analytic proofs of some of
these equilibria. For k ≥ 4, the ratio of equilibria over vertices is therefore

1
2k (4k + 2k + 1) = 3 + 1

2k , (6.13)

For k = 6, this is the same ratio we get for the cuboctahedron after perturbing the point
charges so that the degenerate equilibrium at the center unfolds into individual non-degenerate
equilibria; see Section 6.3.4 for details. To maximize this ratio, we minimize the number of
sides, which suggests that the 4-sided or square anti-prism is our best choice. In contrast, the
equilibria for the 3-sided or triangular anti-prism are either too close to distinguish visually or
are absorbed by a degenerate equilibrium at the center.
In addition to the results on the maximum number of equilibria for anti-prisms, we discover an
interesting universal phenomenon: the existence of a transition that occurs when the relative
height of the prism or anti-prism is

√
2. This transition is universal in the sense that it occurs

for both prisms and anti-prisms formed with any regular k-gon and always at relative height√
2.

94



6.3. Regular and Semi-Regular configurations

Figure 6.12: From left to right: the hexagonal, pentagonal, square anti-prisms with the
heights chosen to maximize the number of equilibria. The ratios of equilibria over vertices
are 37/12 < 31/10 < 25/8, respectively. Observe how a ring of alternating 1- and 2-saddles gets
successively more concentrated around the center.

Theorem 13. Consider the electrostatic potential generated by unit point charges at the
vertices of any prism or anti-prism.

1. Its center is a non-degenerate equilibrium iff the relative height is not
√

2, in which case
the center is a 1-saddle for relative heights less than

√
2 and a 2-saddle for relative

heights larger than
√

2.

2. Moreover, if the relative height is larger than
√

2, there are two additional 1-saddles
along the axis of the prism or anti-prism.

3. Furthermore assuming a square or triangular anti-prism and a relative height smaller
than

√
2, there is an equilibrium on every line segment connecting the center of the

anti-prism to the midpoint of a lateral edge.

The full proof is provided in Appendix 6.A.

6.3.4 Increasing the Ratio
We can further increase the ratio in two steps. The first of these arises from the realization
that the equilibrium at the center of a Platonic solid is necessarily degenerate and we can
perturb the location of the charges so that it unfolds into several non-degenerate ones. Indeed,
by Theorem 6.3 in [MC69], the point charges can be perturbed such that all equilibria are
non-degenerate and arbitrarily close to the degenerate equilibria that give rise to them.

Setting N = m1 −m2 + n− 1, we note that this is the alternating sum of local homology
ranks at the center. It is also a lower bound for the number of 1-saddles and 2-saddles the
degenerate equilibrium unfolds into.

For example, we get three 2-saddles near the center of the tetrahedron, five 1-saddles near the
center of the cube, and so on. Perturbing the vertices of the five Platonic solid thus increases
the ratios to 3/4, 17/8, 5/6, 41/20, and 11/12, respectively.

Perturbing the vertices of the cuboctahedron increases the ratio to 37/12. Compare this with
the ratios 37/12 < 31/10 < 25/8 for the hexagonal, pentagonal, square anti-prisms displayed in
Figure 6.12, which are obtained without any perturbation.
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6. Counting Equilibria of the Electrostatic Potential

In the second step, we iteratively substitute the vertices of a much smaller copy of the solid
for each vertex of the original solid. Iterating ℓ− 1 times, we get a configuration with ℓ layers.
Letting n be the number of vertices of the solid and m the number of equilibria defined by
these n charges, the number of point charges in the ℓ layers is nℓ = nℓ, and the number of
equilibria is

m ·
(︂
nℓ−1 + nℓ−2 + . . .+ 1

)︂
= m · n

ℓ − 1
n− 1 = m

n− 1 · (nℓ − 1). (6.14)

In particular, the ratio of the number of equilibria by electric charges in the ℓ-th iteration is
given by m

n−1 · nℓ−1
nℓ

, which for ℓ = 1 coincides with the initial ratio of m
n

, and as ℓ → +∞
converges to m

n−1 .
In all examples we have computed, the iterated square anti-prism achieves the largest fraction
25/7 in the limit, when ℓ → ∞. This is the highest ratio ever observed by a wide margin. In
particular, we find that for any ε > 0, there is an iteration ℓ∗ such that all further iterations
ℓ > ℓ∗ have a ratio greater than 25/7 − ε.
This establishes the iterated square anti-prism as the greatest lower bound for the maximum
ratio of equilibria to charges for the electrostatic potential and naturally leads to the question
of whether one can find an example of a configuration which achieves a greater ratio.

6.4 1-parameter Family of Potentials
In the same way as in [GNS07], we generalize the set-up by introducing a real parameter,
p > 0, which modifies the effect of the distance to the point charges on the potential function:

Vp(x) =
∑︂n

i=1

(︄
ζi

∥x− Ai∥

)︄p

. (6.15)

Comparing Equation (6.15) with Equation (6.1), we see that V = V1. The main purpose of
this 1-parameter family of functions is to interpolate between the electrostatic potential and
the (weighted) Euclidean distance function.
The latter is the limit of one over the p-th root of Vp, as p goes to infinity:

E(x) = lim
p→∞

1
p

√︂
Vp(x)

= lim
p→∞

(︄∑︂n

i=1
ζp

i

∥x− Ai∥p

)︄−1/p

= min
1≤i≤n

∥x− Ai∥
ζi

. (6.16)

6.4.1 No Maxima
For p = 1, Vp is harmonic and therefore has neither minima nor maxima. A weaker property
still holds for more general values of p. Specifically, if p ≥ 1 and all charges are positive, then
Vp does not have any maxima:

Proposition 5. Let Vp : R3 \ {A1, A2, . . . , An} → R as defined in Equation (6.15), and
assume ζi > 0 for every 1 ≤ i ≤ n. Then for every p ≥ 1, Vp has no maximum.

Proof of Proposition 5. The case p = 1 follows immediately from the fact that V1 = V is
harmonic. Hence, it suffices to consider the case p > 1. For this, we show that the Laplacian
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Figure 6.13: Cut-away views of three level sets of V1 (upper row) and three level sets of V1.3
(lower row) defined by point sources at the vertices of the octahedron. From left to right: the
values are chosen slightly less than, equal to, and slightly greater than the potential at the
center of the octahedron. Removing the front of the surface reveals some of the complication
at the center. For V1 there is a degenerate equilibrium (see Figure 6.5 for the local homology),
but for V1.3 there is a minimum with a single point in the level set at the center.

satisfies ∆Vp > 0. Since it is the trace of the Hessian and thus the sum of the diagonal
eigenvalues, there must be at least one positive eigenvalue, which is incompatible with the
existence of a maximum.
To carry out the computation of ∆Vp, we write ri(x) = ∥x − Ai∥ and thus Vp(x) =∑︁n

i=1 ζ
p
i /ri(x)p. Let x1, x2, x3 be the coordinates in R3 and Ai = (ai1, ai2, ai3). Then, using

∂ri

∂xj
(x) = xj−aij

ri
, we compute

∂Vp

∂xj

= −p
∑︂n

i=1
ζp

i

rp+1
i

∂ri

∂xj

= −p
∑︂n

i=1
ζp

i

rp+2
i

(xj − aij); (6.17)

∂2Vp

∂x2
j

= −p
∑︂n

i=1 ζ
p
i

(︄
1

rp+2
i

− (p+ 2)xj − aij

rp+3
i

∂ri

∂xj

)︄
(6.18)

= −p
∑︂n

i=1 ζ
p
i

(︄
1

rp+2
i

− (p+ 2)(xj − aij)2

rp+4
i

)︄
(6.19)

= −p
∑︂n

i=1
ζp

i

rp+2
i

(︄
1 − (p+ 2)(xj − aij)2

r2
i

)︄
. (6.20)

Finally, summing over the three coordinate directions, we find that

∆Vp =
∑︂3

j=1
∂2Vp

∂x2
j

= −p
∑︂n

i=1
ζp

i

rp+2
i

(︄
3 − (p+ 2)

∑︂3
j=1

(xj − aij)2

r2
i

)︄
(6.21)

= −p
∑︂n

i=1
ζp

i

rp+2
i

(3 − (p+ 2)) = p(p− 1)
∑︂n

i=1
ζp

i

rp+2
i

, (6.22)

which is positive if all ζi are positive.
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If one trades the assumption that p ≥ 1 for p ≤ 1 we can actually conclude, from the same
proof, that there are no maxima. On the other hand, if one continues to assume that p ≥ 1,
but that instead that all ζp

i are negative, then the same proof shows that there are no minima
when p ≥ 1.
These conclusions are particular cases of the following more general statement which can be
inferred from the same proof. Suppose that p > 0, then:

• if (p− 1)ζp
i > 0 for all i ∈ {1, 2, . . . , n}, then there are no local maxima;

• if p = 1, then there are neither local minima nor maxima;

• if (p− 1)ζp
i < 0 for all i ∈ {1, 2, . . . , n}, then there are no local minima.

Figure 6.13 shows a few level sets of V1 and V1.3. The tiny sphere around the center of the
octahedron in the lower left level set suggests that the center is a genuine minimum of V1.3,
which cannot occur if p = 1 since this would contradict the harmonicity of V1. In fact, we can
prove the following result showing that for p > 1, the origin is indeed a local minimum of the
potential.

Proposition 6. Let {A1, A2, . . . , A6} be the vertices of an octahedron and for p ≥ 1

Vp(x) =
6∑︂

i=1

1
∥x− Ai∥p

.

Then, the center of the octahedron is a local minimum of Vp for all p > 1.

Proof of Proposition 6. With no loss of generality, we can choose the vertices of the octahedron
at the points (±1, 0, 0), (0,±1, 0), (0, 0,±1), in which case the center of the octahedron
coincides with the origin, (0, 0, 0). Then, using the computations carried out in the proof of
Proposition 5, we find that

∂2Vp

∂xi∂xj

(0, 0, 0) = 0, (6.23)

∂2Vp

∂x2
i

(0, 0, 0) = 2p(p− 1), (6.24)

for i ̸= j and i ∈ {1, 2, 3}, respectively. Hence, the Hessian of Vp at the origin is positive
definite whenever p > 1 and the result follows.

Finally, we point out that in this and other examples, the origin becomes a non-degenerate
equilibrium for p > 1. Thus, in terms of non-degeneracy, increasing the power, p, can have a
similar effect as perturbing the point charges; see [MC69, Thm 6.3].

6.4.2 Counterexample
For positive and equal charges, the function E : R3 → R defined in Equation (6.16) is
commonly referred to as the Euclidean distance function of the Ai and studied through the
Voronoi tessellation, which assigns to each Ai the region of points that are at least as close
to Ai as to any of the other points. If the charges are not necessarily the same (but still
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positive), then E : R3 → R is a weighted version of the Euclidean distance function, namely
with multiplicative weights 1/ζi. The corresponding tessellation of R3 is the multiplicatively
weighted Voronoi tessellation [AE84, OBS+00]. Both types of tessellations are described in
more detail in Section 6.5.
The hope expressed as Conjecture 1.8 in [GNS07] is that V : R3 → R cannot have more
equilibria than E : R3 → R, in which the latter are defined using the limit process in
Equation (6.16). We restate the conjecture now, letting #j denote this limiting number of
equilibria of Vp for p ≫ 1 and j ∈ {0, 1, 2, 3}.

Conjecture 2 (Conjecture 1.8 (a) in [GNS07]). For n unit point charges in generic position,
and all p ≥ 1, the number of index j equilibria of Vp is at most #j.

However, we were able to show this conjecture is false using one of the Archimedean solids
from Section 6.3.2, which we demonstrate now.
Let A1 to A24 be the unit point charges at the vertices of the truncated octahedron, the
Voronoi domain in the body centered cubic lattice, and consider the resulting 1-parameter
family of potentials,

Vp(x) =
∑︂n

i=1
1

∥x− Ai∥p
. (6.25)

Figure 6.14 shows truncated octahedron together with the equilibria of the electrostatic
potential defined by placing unit point charges at its vertices. This polytope has 14 faces (6
squares and 8 hexagons) and 36 edges (24 shared by a square and a hexagon and 12 shared
by two hexagons). Correspondingly, E has 14 1-saddles and 36 2-saddles, which we compare
to the 18 1-saddles and 36 2-saddles of V . Hence, the Euclidean distance function has fewer
1-saddles than the electrostatic potential of the same unit point charges, and it has equally
many 2-saddles. In total, V has more equilibria than the limiting Euclidean distance function,
which contradicts Conjecture 1.8 in [GNS07].
Making use of the obvious symmetries, we may associate equilibria of the electrostatic potential
with the facets and edges of the polytope. For example, the line that passes through the
centers of two opposite squares is the intersection of four planes of symmetry, and it passes
through three equilibria: the center and a 1-saddle near the square on either side.
A more interesting example is the line that passes through the midpoints of two opposite
edges shared by two hexagons each, which is the intersection of two planes of symmetry, see
Figure 6.14. We observe that such a line passes through five equilibria: the center and two
saddles on each side of the center. It is the only example we have so far, in which an edge of
the polytope seems to be associated with more than one equilibrium. Furthermore, equilibria
located along lines obtained as the common fixed locus of at least two reflections can be
deduced to exist using the method implemented in Proposition 4 for the cube.

6.5 Distance Functions
Conjectures 1.8 and 1.9 in [GNS07] motivate us to take a closer look at the Voronoi tessellations
defined by the Euclidean distance function and its weighted version. The former relates to the
case in which all points have equal charges, while the latter models the situation is which all
charges are positive but not necessarily equal to each other.
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Figure 6.14: Equilibria of the electrostatic potential generated by unit point charges at the
vertices of the truncated octahedron. In total there are 36 light blue 2-saddles, 18 dark red
1-saddles, and the degenerate equilibrium at the center. For better visualization, we split these
equilibria into two groups, with one 1-saddle and four 2-saddles near each of the six squares
displayed in the left panel, and one 1-saddle as well as one 2-saddle for each of the twelve
edges shared by two hexagons in the right panel.

6.5.1 Euclidean Distance

If the number of equilibria were monotonically non-decreasing with growing p, then the number
of such points of V could be bounded from above by the number of such points of E. To
study the latter we recall the definition of Voronoi tessellations and Delaunay mosaics from
Section 2.4.

Following [GNS07], we call a Voronoi cell effective if its interior has a non-empty intersection
with the interior of the corresponding Delaunay cell. Corresponding cells have complementary
dimensions and lie in orthogonal affine subspaces, which implies that the intersection is either
empty or a point. Effective cells are interesting because they are in bijection with the equilibria
of E. Indeed, with increasing p, the equilibria tend toward the intersections of corresponding
Voronoi and Delaunay cells. Figure 6.15 illustrates that already for p = 2 the equilibria are
barely distinguishable from these intersection points. The Upper bound Theorem for convex
polytopes [McM71] implies that the Voronoi tessellation of n points in R3 has at most O(n2)
cells, and thus at most that many effective cells. Recently, [EP24, Theorem 3.1] proved that
this bound is asymptotically tight:

Theorem 14. For every k ≥ 2, there exist 2k + 2 points in R3 such that the Voronoi
tessellation has (k + 1)2 − 1 effective 1-dimensional and k2 effective 2-dimensional cells.

Does this lower bound translate to any meaningful lower bound for the electrostatic potential
defined by the same number of points with equal charges? Perhaps not, since the construction
in [EP24] is delicate and we have not been able to obtain a quadratic number of equilibria of
V for similarly placed points.
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Figure 6.15: The equilibria of V2 generated by unit point charges at the vertices of the
truncated octahedron. Compared with V1, we note a drastically reduced number of 1-saddles
and a minimum at the origin; see Figure 6.14 where we used two copies of the solid to show
all equilibria. While p = 2 is still not large, the equilibria are already close to the barycenters
of the facets and edges of the solid.

6.5.2 Weighted Euclidean Distance
If we allow points with different charges, then E is the multiplicatively weighted Euclidean
distance function; see Equation (6.16). We can still define Voronoi domains, tessellation, and
cells, but there are significant differences:

• a domain is no longer the common intersection of closed half-spaces but of n− 1 closed
balls and closed complements of balls, and thus not necessarily connected;

• already in R2, the tessellation may consists of Θ(n2) vertices, (circular) edges, and
(connected) regions [AE84];

• there is no established dual structure, like the Delaunay mosaic in the unweighted case.

In the plane, the maximum numbers of cells in the Voronoi tessellation differ even asymptotically
between the unweighted and the weighted cases: Θ(n) versus Θ(n2). In R3 on the other
hand, the maximum number of cells is Θ(n2) in both cases. There is at most one equilibrium
of E per Voronoi cell, so we have at most Θ(n2) such points. However, the difference in the
maximum number of cells in R2 begs the question whether the maximum number of equilibria
differ in the same way. We think not.

Conjecture 3. The number of equilibria of the weighted Euclidean distance function defined
by n points with positive real weights in R2 is at most some constant times n.

The number of equilibria in the plane is relevant because they can be turned into higher index
equilibria in three dimensions.

6.5.3 Slices
Consider the Voronoi tessellation that represents the weighted or unweighted Euclidean distance
function defined by n weighted or unweighted points in R3. We call the restriction to a plane
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or a line a slice. These restrictions look a lot like the lower-dimensional tessellations, but they
are more general and can be defined by adding a weight to the respective squared distance to
the i-th point:

πi(x) = ∥x− Ai∥2 + wi; (6.26)

φi(x) =
(︄

∥x− Ai∥
ζi

)︄2

+ wi, (6.27)

in which wi is the squared distance of Ai from the plane or line. The weighted squared distance
in Equation (6.26) is known as the power or Laguerre distance, and while it is a special case
of Equation (6.27), it received substantially more attention in the mathematical literature.
In both cases, the 1-dimensional tessellation has at most O(n) cells and thus at most that
many equilibria.1 This is also true for the 2-dimensional tessellation defined by the weighted
squared distance in Equation (6.26), but see Conjecture 3 for the more general weighted
squared distance in Equation (6.27). By reducing to the same denominator and appealing to
the fundamental theorem of algebra, one obtains that, for even p > 0 and Vp defined by n unit
point charges, its restriction to a straight line in R3 has at most p(n− 1) + 2n− 1 equilibria.
While we have no proof, we venture that this bound can be strengthened to at most O(n)
equilibria for any p > 0, and extended to 2-dimensional slices. To focus, we formulate a more
restricted version:

Conjecture 4. Let V : R3 \ {A1, A2, . . . , An} → R be the electrostatic potential as in
Equation (6.1). Then the restriction of V to any straight line or flat plane in R3 has at most
O(n) equilibria.

6.6 Discussion
Inspired by the article of Gabrielov, Novikov and Shapiro [GNS07], we studied the connection
between the electrostatic potential and the (weighted) Euclidean distance function defined
by a finite collection of point charges. We focus on the 3-dimensional case and on positive
charges, which may or may not all be the same. We have two main results: the discovery of a
best known lower bound for the maximum ratio of equilibria to charges; and a counterexample
to Gabrielov, Novikov and Shapiro’s conjecture bounding the number of equilibria of the
electrostatic potential by those of the Euclidean distance function.

A more nuanced formulation of the conjecture inspired by a result about the heat-flow in
[CE11], could however still hold:

Is the L1-norm of the persistence diagram of Vp always smaller than that of Vq for
any 1 ≤ p ≤ q? In other words, does the combined “strength” of the equilibria
monotonically decrease with shrinking parameter, p?

Such decay in strength does not contradict the increase in number of equilibria, which can
indeed happen, as shown by our counterexample. The main question of determining the

1Indeed, for the weighted squared distance in Equation (6.26), each point generates at most one interval
along the line. This is not true for the weighted squared distance in Equation (6.27), but it is not difficult to
see that the point with minimum charge generates a single convex cell in three dimensions and therefore at
most one interval along the line. The linear bound now follows by induction.
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maximum number of equilibria of an electrostatic potential defined by n point charges in R3

remains open.
We also tested placing a charge at the centre of the various solids discussed in this chapter. In
some instances this did improve the number of equilibria but not enough to exceed the best
results already discussed.
Further experiments were carried out to count the number of equilibria of arrangements
with randomly placed charges and charges of different signs. Several variations of random
arrangements were trialed: a uniform random distribution of n unit charges; a uniform random
distribution of n unit positive and n unit negative charges; a uniform random distribution of n
uniform [0, 1] random charges; and a uniform distribution of n charges such that ∑︁ ζi = 0.
The results of this experiment were not particularly insightful in terms of Maxwell’s conjecture
as the average number of equilibria in the best case (the positive random charges) grew at a
near constant rate with n. In particular, a pair of positive charges will result in an equilibria
at the midpoint between the two while a positive and negative charge will not, so one would
expect fewer equilibria with arrangements of both signs. Proving the expected number of
equilibria under these circumstances would however be an interesting result in itself, but beyond
the scope of this thesis.
Additionally, in the course of this investigation Oliveira was able to improve upon the upper
bound on the number of equilibria Gabrielov, Novikov and Shapiro obtained in [GNS07] using
a similar technique involving Bézout’s theorem which we outline now.

Theorem 15. Let n ∈ N, A2, . . . , An ∈ R3, and ζ1, . . . , ζn ∈ R\{0}. Then, for the generic
position of A1 ∈ R3, the number of isolated critical points of V is at most

2n × (3n− 2)3.

The proof begins by computing the system of equations which define a critical point, and
clearing out their denominators. The resulting equations can be made into polynomials by a
trick that formally introduces extra variables to encode the quantities given by square roots.
Next he shows that the non-degenerate critical points of V correspond to non-isolated zeroes
of the polynomial system. Finally, he employs Bézout’s theorem which provides an upper
bound on the number of isolated solutions to these polynomial equations by the degrees of
the relevant polynomial equations.
Finally, we summarise the results discussed and obtained in this chapter in Table 6.6. The
disparity between our best obtained lower bounds and the best known upper bound is still
quite drastic.

6.A Proof of Theorem 13
In this appendix, we provide details about the equilibria of the electrostatic potential for unit
point charges placed at the vertices of regular prisms and anti-prisms. After introducing the
building blocks of the analysis, we focus on the square and triangular anti-prisms. Together
these complete the proof of Theorem 13.

6.A.1 Regular polygons
Let V0 be the electric potential generated by unit point charges located at the vertices of a
regular N -gon centered at the origin, 0 ∈ R3, and placed on the horizontal plane spanned by

103



6. Counting Equilibria of the Electrostatic Potential

New lower bound Conjectured upper bound New upper bound Former Upper bound
n 3.52(n − 1) (n − 1)2 2n(3n − 2)3 22n2(3n)2n

4 10.56 9 16 000 1.846 76 × 1018

5 14.08 16 70 304 6.492 51 × 1026

6 17.6 25 262 144 5.462 98 × 1036

7 21.12 36 877 952 1.028 04 × 1048

8 24.64 49 2 725 888 4.123 06 × 1060

9 28.16 64 8 000 000 3.399 44 × 1074

10 31.68 81 22 478 848 5.603 05 × 1089

11 35.2 100 61 011 968 1.805 37 × 10106

12 38.72 121 160 989 184 1.1166 × 10124

Table 6.6: Growth of the various bounds discussed in this chapter. Note the lower bound
values are only representative of the growth rate as the construction is built specifically for
n = 8l vertices where l is the number of recursion layers.

the first two coordinate vectors. Denote by R the radius of the circle that passes through its
vertices, and by α = 2π

N
the smallest angle that is a rotation symmetry of the N -gon. We

start by proving that the partial derivatives are symmetric with respect to the horizontal plane,
and they all vanish at the origin.

Lemma 12. Let V0 : R3 → R be the electrostatic potential of unit point charges at the
vertices of a regular N -gon, as described, and write x = (x1, x2, x3) for a point with its
Cartesian coordinates in R3. Then

∂V0

∂x3
(x1, x2, x3) = −∂V0

∂x3
(x1, x2,−x3) and ∂V0

∂x1
(0, 0, x3) = ∂V0

∂x2
(0, 0, x3) = 0. (6.28)

Proof. The configuration is invariant by reflection through the x3 = 0 plane, which contains
the N -gon. Hence, V0(x1, x2, x3) = V0(x1, x2,−x3) and differentiating with respect to x3
gives the first relation. To see the second relation, note that the invariance of the N -gon
under rotations of the horizontal plane by an angle α implies

V0(x1, x2, x3) = V0(x1 cosα + x2 sinα,−x1 sinα + x2 cosα, x3), (6.29)

for all x = (x1, x2, x3) ∈ R3. Differentiating with respect to x1 and x2, respectively, and
evaluating at x1 = x2 = 0 yields

∂V0

∂x1
(0, 0, x3) = cosα∂V0

∂x1
(0, 0, x3) − sinα∂V0

∂x2
(0, 0, x3); (6.30)

∂V0

∂x2
(0, 0, x3) = sinα∂V0

∂x1
(0, 0, x3) + cosα∂V0

∂x2
(0, 0, x3). (6.31)

This gives a system of linear equations for ∂V0
∂x1

(0, 0, x3) and ∂V0
∂x2

(0, 0, x3) whose only solution
is when both vanish, as claimed.

It will also be useful to have the second partial derivative at the origin in vertical direction.

Lemma 13. For V0 : R3 → R as before and all x3 ∈ R, we have

∂2V0

(∂x3)2 (0, 0, x3) = − N

(R2 + x2
3)5/2

(︂
R2 − 2x2

3

)︂
. (6.32)
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Proof. Denote the vertices of the N -gon by Ai = (ai,1, ai,2, 0), for i = 1, 2, . . . , N , and write
ri for the distance of Ai from a point x = (x1, x2, x3). Then the first and second partial
derivatives along the vertical direction are

∂V0

∂x3
= −

N∑︂
i=1

1
r2

i

∂ri

∂x3
= −

N∑︂
i=1

x3

r3
i

; (6.33)

∂2V0

(∂x3)2 = −
N∑︂

i=1

(︄
1
r3

i

− 3x3

r4
i

∂ri

∂x3

)︄
= −

N∑︂
i=1

(︄
1
r3

i

− 3x
2
3
r5

i

)︄
= −

N∑︂
i=1

1
r5

i

(︂
r2

i − 3x2
3

)︂
. (6.34)

Evaluating the second partial derivative at (0, 0, x3), we have r2
i = R2 + x2

3 independent of i,
which implies Equation (6.32).

6.A.2 Rotated prisms
We get a prism by connecting a regular N -gon with a copy of itself translated in an orthogonal
direction. If we first rotate the copy by an angle β—around its center and within its plane—we
call the convex hull of the two N -gons a β-rotated prism. For β = α

2 , this is an anti-prism.
Its axis is the line that passes through the centers of the two N -gons, its radius is the distance
of the vertices from this line, and its height is the distance between the planes that contain
the two N -gons. We now consider the electrostatic potential obtained by placing unit point
charges at the vertices of such a β-rotated prism. Supposing the N -gons lie in horizontal
planes at distance h

2 above and below the origin, the electrostatic potential is

V (x1, x2, x3) = V0(x1, x2, x3 + h
2 )

+ V0(x1 cos β + x2 sin β,−x1 sin β + x2 cos β, x3 − h
2 ). (6.35)

Not surprisingly, the type of the equilibrium at the origin depends on the height, but with the
exception of a particular height, it does not depend on the angle of the rotation.

Theorem 16. Let β ∈ R/2πZ, R > 0, and h > 0. Consider the electrostatic potential
generated by unit point charges at the vertices of a β-rotated prism with radius R and height
h. Then, its center is a non-degenerate equilibrium iff h ̸=

√
2R, in which case the center is a

1-saddle if h <
√

2R and a 2-saddle if h >
√

2R. Moreover, in the latter case there are two
additional 1-saddles along the axis of the β-rotated prism.

Proof. To use the form of the potential in Equation (6.35), we assume that the two N -gons
of the β-rotated prism lie in horizontal planes and its center is the origin in R3. We start by
confirming that the origin is always an equilibrium. Using Lemma 12, we obtain

∂V

∂xi

(0, 0, 0) = ∂V0

∂xi

(0, 0, h
2 ) + ∂V0

∂xi

(0, 0,−h
2 ) = 0, (6.36)

which for i = 1, 2 is true because both partial derivatives vanish, and for i = 3 follows from
the symmetry across the horizontal coordinate plane. Next we investigate the Hessian at the
origin. By differentiating the identity ∂V0

∂x3
(x1, x2, x3) = −∂V0

∂x3
(x1, x2,−x3) with respect to x1,

x2, and x3, we obtain
∂2V0

∂xi∂x3
(x1, x2, x3) = − ∂2V0

∂xi∂x3
(x1, x2,−x3); (6.37)

∂2V0

(∂x3)2 (x1, x2, x3) = ∂2V0

(∂x3)2 (x1, x2,−x3), (6.38)
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for i = 1, 2. Hence, using the first of these identities, we have

∂2V

∂xi∂x3
(0, 0, 0) = ∂2V0

∂xi∂x3
(0, 0, h

2 ) + ∂2V0

∂xi∂x3
(0, 0,−h

2 ) = 0. (6.39)

This shows that λ3 = ∂2V
(∂x3)2 (0, 0, 0) is an eigenvalue of the Hessian at the origin. Using the

second identity above, we see that this eigenvalue satisfies

λ3 = ∂2V

(∂x3)2 (0, 0, 0) = ∂2V0

∂xi∂x3
(0, 0, h

2 ) + ∂2V0

∂xi∂x3
(0, 0,−h

2 ) = 2 ∂2V0

(∂x3)2 (0, 0, h
2 ). (6.40)

The rotational symmetry by β ̸= 0 then implies that the remaining two eigenvalues must
coincide: λ1 = λ2 = λ. Furthermore, since V is harmonic, we have λ = − ∂2V0

(∂x3)2 (0, 0, h
2 ).

It remains to compute this quantity and show it vanishes precisely when h =
√

2R as claimed
in the statement. This can be done by making use of Lemma 13 to obtain

∂2V

(∂x3)2 (0, 0, 0) = − 2N
(R2 + x2

3)5/2

(︂
R2 − h2

2

)︂
, (6.41)

which vanishes iff h =
√

2R. Furthermore, the eigenvalues of the Hessian at the origin are

λ3 = − 2N
(R2 + x2

3)5/2

(︂
R2 − h2

2

)︂
; (6.42)

λ1 = λ2 = N

(R2 + x2
3)5/2

(︂
R2 − h2

2

)︂
. (6.43)

We therefore conclude that for h <
√

2R we have λ1 = λ2 > 0 and λ3 < 0, so the origin is a
1-saddle. On the other hand, if h >

√
2R we have λ1 = λ2 < 0 and λ3 > 0, and so the origin

is a 2-saddle. However, in this case there are at least two additional equilibria along the axis
of the β-rotated prism, which by construction is the x3-axis. To prove their existences, we
compute the derivatives of V along this axis:

∂V

∂xi

(0, 0, x3) = ∂V0

∂xi

(0, 0, x3 + h
2 ) + ∂V0

∂xi

(0, 0, x3 − h
2 ) = 0 + 0 = 0, (6.44)

for i = 1, 2. Hence, we need only look for zeroes of ∂V
∂x3

(0, 0, x3), which we compute as

∂V

∂x3
(0, 0, x3) = ∂V0

∂x3
(0, 0, x3 + h

2 ) + ∂V0

∂x3
(0, 0, x3 − h

2 ). (6.45)

To compute the two terms on the right-hand side, we use Lemma 13 and find that
∂V0
∂x3

= −∑︁N
i=1

x3
r3

i
, where ri(x1, x2, x3)2 = (x1 + ai1)2 + (x2 − ai2)2 + x2

3. From this it follows
that

∂V

∂x3
(0, 0, x3) = −

∑︂N

i=1

x3 + h
2

r3
i (0, 0, x3 + h

2 )
−
∑︂N

i=1

x3 − h
2

r3
i (0, 0, x3 − h

2 )
(6.46)

= −N
x3 + h

2(︂
R2 + (x3 + h

2 )2
)︂3/2 −N

x3 − h
2(︂

R2 + (x3 − h
2 )2
)︂3/2 . (6.47)

Evaluating this at the top and bottom of the β-rotated prism, we obtain
∂V

∂x3
(0, 0, h

2 ) = − h

(R2 + h2)3/2 < 0 and ∂V

∂x3
(0, 0,−h

2 ) = h

(R2 + h2)3/2 > 0. (6.48)
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On the other hand, further differentiating with respect to x3, as in the proof of Theorem 16,
we find that

∂2V

∂x2
3

(0, 0, 0) = − 2N
(R2 + x2

3))5/2

(︂
R2 − h2

2

)︂
, (6.49)

which is positive when h >
√

2R. Hence, there exists ε > 0, such that ∂V
∂x3

(0, 0, t) is positive
for t ∈ (0, ε) and negative for t ∈ (−ε, 0). Combining this with the previously computed
values of ∂V

∂x3
at the centers of the two N -gons, the intermediate value theorem implies that

∂V
∂x3

has two additional zeroes along the x3-axis.

We now characterize these equilibria by showing that they are 1-saddles. At both, V (0, 0, x3)
increases on the left and decreases on the right, so they are local maxima of the potential
restricted to the x3-axis. Given that the potential is harmonic, at least one of the remaining
eigenvalues of the Hessian must be positive, and by rotational symmetry so must the other.
As the Hessian has a single negative eigenvalue, both equilibria are 1-saddles.

6.A.3 Existence results for equilibria in anti-prisms
We consider anti-prisms whose top and bottom faces are N -gons and denote their minimum
angle of symmetry by α = 2π

N
. Let R > 0 be the radius of these N -gons and h > 0 the height

of the anti-prism, then its relative height is defined by h
R

.

Identify R3 ∼= C × R, then for ℓ ∈ {1, . . . , N} we denote the vertices of the top N -gon as
Aℓ = (Rei(ℓα+ α

4 ), h
2 ) and those at the bottom N -gon as Bℓ = (Re−i(ℓα+ α

4 ),−h
2 ). Then, the

electrostatic potential generated by placing unit point charges at the vertices of this anti-prism
is

V (x) = Vu(x) + Vd(x),

where
Vu(x) =

N∑︂
ℓ=1

1
|x− Aℓ|

, Vd(x) =
N∑︂

ℓ=1

1
|x− Bℓ|

.

We now state and prove the following result.

Theorem 17. Let V be the electric potential generated by placing unit point charges at the
vertices of an anti-prism as above and suppose its relative height satisfies h

R
<

√
2. Then,

there are electrostatic points located along the line segments connecting the center of the
anti-prism to the midpoints of its lateral edges.

Proof. We consider the case of the line segment connecting the center to the midpoint of the
edge connecting AN to BN . The remaining cases can be handled similarly.

The midpoint between AN and BN is AN +BN

2 = (R cos(α
4 ), 0, 0) and we can parameterise the

segment that connects the origin to it using t ∈ [0, 1] ↦→ (tR cos(α
4 ), 0, 0). The derivatives of

V (x) in the normal directions n1 = (0, 1, 0) and n2 = (0, 0, 1) are given by

⟨∇V, n1⟩ = ∂Vu

∂x2
+ ∂Vd

∂x2

⟨∇V, n2⟩ = ∂Vu

∂x3
+ ∂Vd

∂x3
.
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Now, we compute each of the terms in the right hand side in turn. We start with

∂Vu

∂x2
= −

N∑︂
ℓ=1

(x2 −R sin(ℓα + α
4 ))

|x− Aℓ|3

∂Vd

∂x2
= −

N∑︂
ℓ=1

(x2 +R sin(ℓα + α
4 ))

|x− Bℓ|3
,

on the other hand, along the line connecting 0 to AN +BN

2 , we have x2 = 0 = x3 and

|x− Aℓ| = |(x1 −R cos(ℓα + α
4 ), R sin(ℓα + α

4 ), 0)|
= |(x1 −R cos(−ℓα − α

4 ), R sin(−ℓα − α
4 ), 0)|

= |x− Bℓ|.

which shows that along such a line

∂Vu

∂x2
= −∂Vd

∂x2
.

On the other hand,

∂Vu

∂x3
= −

N∑︂
ℓ=1

(x3 − h
2 )

|x− Aℓ|3

∂Vd

∂x3
= −

N∑︂
ℓ=1

(x3 + h
2 )

|x− Bℓ|3
,

and, again, along the line x = 2 = 0 = x3 we have

∂Vu

∂x3
= −∂Vd

∂x3
.

Hence,

⟨∇V, n1⟩ = 0 = ⟨∇V, n2⟩.

Now, we finally consider the directional derivative in the direction of the tangent vector to the
line under consideration v = (1, 0, 0)

⟨∇V, v⟩ = ∂V

∂x1

= ∂Vu

∂x1
+ ∂Vd

∂x1

= −
N∑︂

ℓ=1

(︄
(x1 −R cos(ℓα + α

4 ))
|x− Aℓ|3

+
(x1 −R cos(−ℓα − α

4 ))
|x− Bℓ|3

)︄
.

Furthermore, along the line x2 = 0 = x3, we have

⟨∇V, v⟩ = −
N∑︂

ℓ=1

(︄
(x1 −R cos(ℓα + α

4 ))
|x− Aℓ|3

+
(x1 −R cos(−ℓα − α

4 ))
|x− Bℓ|3

)︄

= −2
N∑︂

ℓ=1

(x1 −R cos(ℓα + α
4 ))

|x− Aℓ|3
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and inserting x1 = tR cos(α
4 ) gives

⟨∇V, v⟩ = − 2
R2

N∑︂
ℓ=1

t cos(α
4 ) − cos(ℓα + α

4 )(︂
(t cos(α

4 ) − cos(ℓα + α
4 ))2 + (sin(ℓα + α

4 ))2 + h2

4

)︂ 3
2
.

Now, notice that cos(α
4 ) ≥ cos(ℓα+ α

4 ) with strict inequality for ℓ ̸= N , which shows that for
t = 1 we have ⟨∇V, v⟩ < 0. On the other hand, for evaluating this quantity near t = 0, we
compute its Taylor series at t = 0

⟨∇V, v⟩ = 16
R2

1
((4R2 + h2)

3
2

N∑︂
ℓ=1

cos(ℓα + α

4 )

+ 16t
R2

cos(α
4 )

(4R2 + h2) 5
2

N∑︂
ℓ=1

(︃
12R2 cos(ℓα + α

4 )2 − 4R2 − h2
)︃

+O(t2).

Now, using the facts that
N∑︂

ℓ=1
cos(ℓα + α

4 ) = 0,
N∑︂

ℓ=1
cos(ℓα + α

4 )2 = N

2 ,

we find that

⟨∇V, v⟩ = 16t
R2

cos(α
4 )

(4R2 + h2) 5
2

(︂
6NR2 − 4NR2 −Nh2

)︂
+O(t2)

= 16Nt
R2

cos(α
4 )

(4R2 + h2) 5
2

(︂
2R2 − h2

)︂
+O(t2).

Hence, if h <
√

2h we have that along this line ⟨∇V, v⟩ is positive for small positive t > 0.
Combining this with the previously proven fact that it is negative for t = 1 we find, from the
intermediate value theorem, that ⟨∇V, v⟩ has a zero at some t ∈ (0, 1). This finishes the
proof that ∇V has a zero along the segment connecting 0 to AN +BN

2 .

For h =
√

2R, the complexity of the degenerate equilibrium at the origin is encapsulated by
the Taylor expansion of the potential at the origin in homogeneous harmonic polynomials. As
we shall see, not only the degree-2 terms vanish2, but also the degree-3 terms do.
Lemma 14. Let V : R3 → R be the electrostatic potential generated by unit point charges
placed at the vertices of the square anti-prism. For h =

√
2R, its Taylor series at the origin is

given by
V (x1, x2, x3) = 8

√
6

3

(︂
1 − 7

108(x4
1 + x4

2) − 14
81x

4
3 − 7

54x
2
1x

2
2 + 14

27x
2
3(x2

1 + x2
2)
)︂

+ . . . , (6.50)
with terms of order exceeding 4 not shown.

Again, we compute the Taylor expansion at the origin as a way to understand the degenerate
critical point there for h =

√
2R.

Lemma 15. Let V : R3 → R be the electrostatic potential generated by unit point charges
placed at the vertices of the triangular anti-prism as specified at the beginning of this subsection.
For h =

√
2R, its Taylor series at the origin is given by

√
3 − 7

√
3

216

(︂
x4

1
8 + x4

2
8 + x2

3
3 + x2

1x2
2

4 − x2
1x

2
3 − x2

2x
2
3 + 5

√
2

2 x2x3(x2
2 − x2

1)
)︂

+ . . . , (6.51)
with terms of order exceeding 4 not shown.

2We already knew this from the vanishing of the Hessian in the proof of Theorem 16.
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