Synthesizing Robust Systems

Roderick Bloem, Karin Greimet, Thomas A. Henzingét, and Barbara Jobstmahn
*Graz University of Technology,EPFL, ¥IST Austria

Abstract—Many specifications include assumptions on the way if the environment does. However, we prefer graceful
environment. If the environment satisfies the assumptionshien degradation: the system error should increase slowly vigh t
a correct system reacts as intended. However, when the enwin- environment error

ment deviates from its expected behavior, a correct systeman Thi f | noti f robust th h
behave arbitrarily. We want to synthesize robust systems that IS paper proposes a formai notion of robustness throug

degrade gracefully, i.e., a small number of environment fdures  graceful degradation for discrete functional safety proes:
should induce a small number of system failures. We defineatio A small error by the environment should induce only a small
games and show that an optimal robust system corresponds to error by the system, where the error is defined quantitgta!
the winning strategy of a ratio game, where the system mininzes 5t of the specification, for instance, as the number aiife.
the ratio of system errors to environment errors. We show tha . e . .
ratio games can be solved in pseudopolynomial time. Gl\{en such.a specmcanonz we define a sy;tgm to be robust if
a finite environment error induces only a finite system error.
. INTRODUCTION As a more fine-grained measure of robustness, we define the
notion of k-robustness, meaning that on average, the number

Suppose that a system is required to accept up t 10Q0qystem failures is at mogt times larger than the number

requests per second and to respond to each request within @ 1\ ir-onment failures. We show that the synthesis questio
seconds. What should the system do when request numper,

es? Th | onti includi - robust systems can be solved in polynomial time as a one-
1001 arrives? There are several options, including teriniga ;- streett game and that the synthesis questiort-fmbust

the system, dropping the extra reque_st, or delayin_g_a rmpor%ystems can be solved usingtio games Ratio games are a
Clearly, all of these approaches satisfy the specification, 6| tyne of graph games in which edges are labeled with a
some are better tha_n others. (Cf [_1]') ) . cost for each player, and the aim is to minimize the ratio ef th
The formal functional specifications used in Design Ausym of these costs. We show that ratio games are positional,
tomation typically only describe the behavior of a system i+ the associated decision problem is in NRo-NP, and
absence of environment failures. That is, (parts of) theispey, ¢ they can be solved in pseudopolynomial time. They can

fication are of the formd — G, whereA is an environment pe gojved in polynomial time if the cost of a failure is assdme
assumption and- is a guarantee. This approach leaves thg§ pe constant.

behavior of the system unspecified whelnis not fulfiled  gection || fixes the notation used in the paper. In Sectign IIl
and neither verification tools nor synthesis tools take Sughy nresent our framework based on error functions, and define

behavior into account. In practice, however, the enviramme, o, siness ank-robustness. In Section IV, we introduce ratio

may fail, due to incomplete specifications, operator efrorgsmes and show how to solve them. Section V shows how
faulty implementations, transmission errors, and the @IS, {; ;56 ratio games to construct correct and robust systems.

a system should not only be correct, it should alsadi®is{ \ye present related work in Section VI and conclude in
meaning that it “behaves ‘reasonably,” even in circumstancgeaction ViII.

that were not anticipated in the requirements specification
[...1" 2] 1. PRELIMINARIES

For instance, consider the following informal specificatio  For 3 wordw = w; .. ., let lw| € NU{oo} be the length of
of an arbiter. Initially, both input- (for request) and outpuf  the word and letw|..i] = wy ... w; be the prefix of length.
(for grant) are low. If the environment raisesthe system will \ye denote the set of all finite (infinite) words over the alptab
eventually raisey. The environment is not allowed to lower 4 by A* (A).
r before g is raised. Afterg is raised,r must be lowered \\e consider systems with a set of input signéland a
eventually, after whicly is lowered. The obvious formalizationggt of output signal®. We defineAP = I U O. We use
of this specification does not have any requirements on thg signals as atomic propositions in the specificationsieefi

behavior of the system if the environment lowers a requastiow, Our input alphabet is thig; = 27, the output alphabet
too early. In fact, if this ever occurs, the system can agdy, ) — 90 and we define = 24°.

arbitrarily from that time on. This is clearly unreasonable Moore machines:We use Moore machines to represent

because the system can fulfill all its requirements evenim t@ystems. AMoore machinavith input alphabel; and output
case. In general, of course, the system may have to fail i’esoéﬂphabetzo is a tuple M = (Q,qo,0,)), whereQ is the

set of statesgy € is the initial state,d : Q x X
This research was supported by the Swiss National Sciencedation o Q Q 1= Q

(indo-Swiss Research Program and NCCR MICS) and the Eunopeion 1S th_e transition function, and : Q@ — _EO is the output _
projects ArtistDesign, COMBEST, and COCONUT. function. In each state, the Moore machine outputs a letter i



Yo, then reads a letters i;, and moves to the next state. Thef Player-1 statesand a setS; of Player-2 statesWhen the
run of M on a sequence = zox;... € X;“ is a sequence initial state is not relevant, we omit it and wri(, £). A play
pop1--- € Q¥, wherepy = go and p;1 = 0(pi,x;). The p = sps1... € S¥ is an infinite sequence of states such that

correspondingvord is A(p) = wow; ... € ¥, wherew, = for all i > 0 we have(s;, s;+1) € E. We denote the set of all
A(p:) Uz;. Thelanguage ofM, L(M) C 3¢, consists of the plays by{2. Given a game grapty = (S, E), a strategyfor
words corresponding to the runs 8f. We defineL*(M) = Player 1 is a functionr; : S*S; — S mapping a sequence of
L(M)nX*. states ending in a Player-1 state to a successor state safch th

Automata: A complete deterministiautomatorover the for all sq...s; € S*S;, we have thats;, m1(so...s;)) € E.
alphabet® is a tupleA = (Q, q0,0), where@ is a finite set A Player-2 strategy is defined similarly. We denotelbyand
of states,qo € @ is the initial state, and : Q@ x X — @ is I, the set of all possible Player-1 and Player-2 strategies,
the transition function. Aun of an automato on a word respectively. A strategy ipositionalif it depends only on the
w = wow; ... € ¥*UX¥ is the longest sequenggw) = current state. We present a positional strategys a function
pop1 .. € Q* U QY such thatpy = qo, andp; 1 = 6(ps, w;). from S, to S. Let p(71, 72, s) denote the unique play starting
The product automatord = A; x A, of two automata is at s when Player 1 plays the strategy and Player 2 plays
defined as usual. 9.
A safety automatom = (Q,qo,d, F') is a complete de- The value of a play is given by aalue functionv :
terministic automator{@, qo, ) together with a se¥" C @ Q — R U {—o00,00}. The value of a state under strategy
of accepting statesuch that there are no edges from nons; and ., denoted byv(rwy, e, s), is the value of the play
accepting to accepting states.An infinite ruraiceptingif it p(m1, 72, s)We consider complementary objectives for the two
never leavest'. An automaton accepts a word if its run isplayers: Player 1 tries to minimize the value of a state and
accepting. We call the sdi(A) of infinite words accepted by Player 2 tries to maximize it. (Note that the converse is more
A the language ofA. usual.) The Player-1 value of a stateunder the strategy
Specifications:We use safety automata to specify ther is sup,,cq, (v(71,72,5)). A strategyn; is optimal for
desired behavior of a Moore machine. Given a safety aBlayer 1 in states if the Player-1 value of the state under
tomaton A, we say the Moore machind/ satisfiesA, if the strategyr; is minimal. The Player-2 value and Player-2
L(M) C L(A). In our examples, we also show LTL formulasoptimal strategies are defined correspondingly. The vafue o
describing the discussed properties. Readers familidriit. ~ a states denoted byv(s) is the Player-1 value of the play
[3] will find them useful, while they can be safely ignore bystarting ins, in which both players play optimally.
readers not familiar with LTL. A gameis a game graph together with a value function.
Single and Double Cost Automata: single (double) cost The game graph defines the possible actions of the players.
automatonover the alphabek is a tupleC' = (@, qo,0,¢) The value function describes the objectives of the players.
consisting of a complete deterministic automai@, ¢o,6) A mean payoff gamés describe as a tuplé(S, so, E), w),
and a cost functior : @ x X — N (c: @ x ¥ — Nx N, where (S,s0,F) is a game graph andb : ¥ — N is a
respectively) that associates to each transition a value gayoff function The value function for a play = sgs; . ..
N (N x N, resp.) calledcost In a double cost automaton,in a mean payoff game is(p) = limsup,, o, = > w(e;)
we usec, andc. to refer to the cost function of the firstwith e¢; = (s;,s;11). A one-pair Streett gamés a tuple
and the second component, respectively. Tinximal cost ((S, so, E), F1, F») consisting of a game grapl$, s, £) and
is the smallestiV € N Vg € Q,0 € ¥ : ¢(q,0) < W two setsFy, Fy C S, wherev(p) = 0 iff (Vi > 035 > i:
(ce(q,0),cs(q,0) < W). The cost of a wordv € ¥* UAY, s, € F1) — (Vi >03j >i:s; € Fp). We say a Streett
denoted byC(w), is the sumZ‘W| c(p(w);,w;), For double game iswinning for Player 1lif the value of the initial state
cost automata, we us€.(w) and Cs(w) to refer to the first sq is 0.
and second component, respectively, of the cost of the wordAn automatonA = (Q, g0, ¢) over the alphabeE can be
w. translated into a game gragh, so, ) as follows. We define
The sum of two cost automatd; = (Q1,qo1,01,¢1) and the set of Player-1 states &5 = {s(,, ) | ¢ € Qando; €
Ay = (Q2,q02,02,c2) is the cost automatod = A; + X;}U{so}. The Player-2 stateS, are given by the sef; =
Ay = (@, q0,9,¢), where A is the product of the automata{s, .. | ¢ € @ ando, € Xo}. The set of game states is
Ay and Ay with costsc = ¢ + cg, i€, c((q1,92),0) = the setS =5, US,. Every state of the game (except for the
c1(q1,0)+c2(ge, o). Theproduct of two single cost automatainitial state) represents a state of the automaton and art inp
A1 = (Q1,901,01,¢1) and As = (Q2, go2, 02, ¢2) is a double or output label. Note that this corresponds to moving from
cost automatomd = A4; x A, = (Q, qo0,9,¢), where A is the a transition-labeled to a state-labeled system. Everyoiugg
product of the automatal; and A, with costsc = (c1,¢2), transition of a statg in A is translated into two steps of the
i.e.,c((q1,q2),0) = (c1(q1,0),ca(qa, 0)). game: first, Player 1 chooses a letter from X by moving
Games: A game graphis a finite directed grapli- = to the states;, ), then Player 2 chooses a lettey from
(S, s, E') consisting of a set of statés an initial statesp € S, ¥; and moves according to the transition relation to a new
and a set of edges C S x S such that each state has at leasttates, ,,) such that(q,o, U 0;) = ¢’. Formally, we have
one outgoing edge. The states are partitioned into aSsetthat £y = {(5(4,6.), 5(q,0.)) | ¢ € Q,0, € Yo, andor €



Y1} UA{(50y800,0,) | 00 € Yo}, B2 = {(5(q,0,),5(¢,01)) | SPecifications can forbid words by assigning infinite system
4,4 € Q,0, € Xp,01 € ¥y, andd(q,0, Uo;) = ¢'}, and costs. (In particular, this is possible when such specifinat
E=F,UE;. are given by double cost automata, as below.)
In order to calculate the quality of a robust system we want
to calculate the largest system error for every environment
In this section we introduce our notion of robustness basedor.
on error specifications. We show how error specificatioregeel
to classical specifications and the notion of realizabiltje
conclude with an example.

IIl. DEFINING ROBUSTNESS

Definition 6. A Moore machineM is k-robust with respect
to an error specification(d.,d;) if 3d € N: Yw € L*(M) :
ds(w) <k -de(w) + d.

Definition 1. An error functionis a functiond : ¥* U X —

NU{oo}. The function is monotonically increasing in the sense OPViously, everyk-robust system is robust, regardless:of
that if ' is a prefix ofw thend(w') < d(w). Also, every robust system ig-robust for some finitek,

see Theorem 15, i.e., for every finite Moore machine, the
growth of the system error is either linear with respect ® th

The error functions define a distance between allowed agflvironment error or unbounded. This motivates our choice o
observed behavior, for instance, by measuring the numbertgé robustness measure as a linear function. The definifion o
failures in some appropriate sense. Thisy) = 0 indicates k-robustness allows us to rank Moore machines with respect
thatw fulfills the specification, and a higher value indicates & error specifications: A smallek is better, it means that
more serious violation of the specification. Error specifie the system error increases slowly with the environmentrerro
provide a measure of “badness” for both the environmemhe constand allows the system finitely many system failures
behavior (usingd.) and the system behavior (using) and independent of the environment error. In this paper, we $ocu
form the specifications we use in the sequel. We assume tBatthe infinite behavior of a machine, and note tHatan
these specifications are provided by the user. be bounded by the product of the size of the Moore machine
and the maximal weight. We leave minimizationcfo future

An error specifications a pair of error functions(d,., d;).

Definition 2. A Moore machine@\/ realizesan error specifi- K
cation (de, dy) if Vw € L(M) : d.(w) = 0 impliesd, (w) = 0. WOrK-

Thus, an error specification induces a classical speciicatiP€finition 7. A Moore maching(k-)robustly (and strictly)

A — G, whered = {w € ¢ | d.(w) = 0} and G = {w € realizesan error specification if it (strictly) realizes the spec-
e | dg(,w) = 0} are sets of infinite words. ification and it is ¢-)robust with respect to the specification.

bidding the system to make mistakes before the environmehpior specifications. The environment (system) error fionct
does. associated withC' maps eachy € ¥* U X to its costC, (w)
Definition 3. A Moore machinel/ strictly realizesan error (Cs(w), respectively). Note that a double cost automaton
specification(d,, dy) if Yw € L*(M) : d.(w[..]w| —1]) = 0 €an be seen as the product of two single cost automata.
impliesd, (w) = 0. An error specification istrictly realizable e can construct an error specification from a set of cost
if there exists a Moore machine that strictly realizes it. ~ automata’s, for the system and'; for the environment. The

o . . error specification (a double cost automaton) is the prodiict
Example 4. An example of a specification that is realizablgnhe sum of allC4. and the sum of alC..

but not strictly realizable isA; A A, — G A G, wherex

is an input,y is an output,A; requires thatz is always true Example 8. Consider a system with two request signajs
(Gz), Ay says thatz is initially equal toy (z < y), Gy and r, as inputs and two grant signalg; and g» as out-
states thaty is always true(Gy), and G, states thatr in the Puts. We want the system to respond to each request with a
first Step andy in the second Step are differeht- ?L) (X y)) grant in the next Step. Forma”y, we require that the SyStem
All Moore machines that realize the specification start witfatisfiesG; = G(r; — Xg;) for i € {1,2}. The system

settingy to false, which violates the guarantees but forces ttf10uld also guarantee that grants are mutually exclusiee, i
environment to do the sarhe Gs = G—(g1 A g2). To avoid a contradicting specification,

o . . . we assume that requests are also mutually exclusive, i.e.,
Definition 5. A Moore machinel/ is robustwith respect to 4 — G —(r; A r,). Figure 1 shows two safety automata, one
an error specification(d,, d,) if Vw € L(M) : de(w) # o0 for A and one forG; and Gs. Note that we summarize labels
implies ds(w) # oo. on edges with Boolean expressions overand g;, where a

This means that a robust system can recover from a finlt@rizontal alignment of two variables represents a confiarc
respect to a specification that it does not realize if it cimsta {0 denote negation and to denote true. States depicted with

word with a finite system error but no environment error. Err¢Wo cycles are accepting states. Note that the automaton for
G5 is exactly the same as fot, wherer, andr, are renamed

1This specification is based on an example by Marco Roveri. to g1 and g,, respectively.



r1
T2

T1 _
rir2

72
r1iT2
(a) Non-robust (b) 2-robust (c) 1-robust
Fig. 3. A non-robust2-robust, and a-robust system.

Fig. 1. Automata forA = G(—(r1 Ar2)) andG; = G(r; — X g;).

T4 i(O)
71(0) i g mgi(l)

the system has cosb.

Figure 3(b) and 3(c) show two systems that are robust
7gi(1) with respect to the error specification, for any word with
© C! finitely many environment errors the systems produce finitel

Gi many system errors. The system in Figure 3(bR-mbust
Fig. 2. Cost automata counting violations .4fand G, respectively. with respect to the error specification whereas the system in
Figure 3(c) is 1-robust. For the input(r;r2)“ the output of

Starting from the specificatiod — (G A G2 A G3), we . L e
can define what it means for the system and the environm%hqi f&;i]_xgore machine igg2)(g1g2)* and for the second

to fail. In particular, the environment violates assumptid
if it raises r; and r at the same time. This corresponds t
taking the edge from, to s;. In Figure 2(a), we show a cost
automaton that counts every violation of the environmeateN
that once the environment “pays” for taking the edge-s,
we go back to the initial state, resetting the specification. In Section V we show how to synthesize (strictly) realizing
Similarly, if the system violates Guarantég by choosing to robust andk-robust systems from an error specification. We
go fromp; to ps, it also incurs costl as shown in Figure 2(b). also show how these notions can be verified. The next section
Note that it is up to the user to define the cost of a violationtroduces Ratio games, which are crucial to our synthesis
and the state in which to continue after the specification @&gorithms.
violated. A reset or a skip are two natural alternatives. A
reset corresponds to an edge to the initial state. For a skip,
simply add a self-loop. In Figure 2(c) we show an alternative In this section we introduce ratio games, which we need to
cost automaton for7; with i € {1,2}, which uses a mixture synthesizek-robust systems. Intuitively, a system ksrobust
of reset and skip. For the cost automatdn;,, the word if the ratio of the system error to the environment error is
(r1,g1)(r1,91)(71,g1)* has costl whereas it has cost for smaller than or equal té for every word of the system. An
the cost automatod’y, . For the second automaton, the cosbptimal strategy for Player 1 in a ratio game minimizes this
corresponds to the number of unanswered requests. ratio.

The costs on the edges are given by the user. For inStanB%’ﬁnition 9. A ratio gam@ G is a tuple((S, so, E), w1, ws)

the user might consider a violation of the mutual—exclusio&jnsis,[ing of a game grapls, so, ) and two weight func-

popertesty ar s a st vt iher o5 500 Siga e g oo
. . values. The value function for a play= sgs1 ... € S¥ is

Given cost automatd’s,, Cq,, and Cg, that describe

the cost and the behavior associated with a violation of the . Zi:m w1 (84, Sit1)

corresponding property (cf. Fig. 2), we can construct a cost v(p) = 'rr}gnoo hﬁiﬁp 1+ Zl‘ wa (i, Si41)

automatonCq = Cg, + Cq, + Cq, for G = Gy A Gy A Gs. _ S B

The automatorC defines the error function of the system. Ratio games are a generalization of mean payoff games. If

The cost automaton for the environmetii (cf. Fig. 2(a)) wz(e) =1foralle € E, thenG is a mean payoff game. Note

specifies the error function of the environment. The produ#@t the sequence of quotients for» oo might diverge, which

C = Cy x Cg is the error specification. requires the use dfm sup or lim inf. We follow the definition
Figure 3(a) shows a systetV (synthesized withily [4]) Of mean payoff games and take tiensup. The outer-most

for the specificatiod — G. It is easy to see thal/ satisfies lIMit ensures that only the infinite behavior is relevant s i

A — G. As long as the environment satisfidswhich means the definition of k-robustness, i.e., b7, wi(e;) is finite,

that it does not provide, and r, simultaneously, the systemNeénv(p) = 0. The addition ofl in the denominator avoids

responds to each; with the correspondingy; in the next
b ' P @i 20ur graph-based ratio games should not be confused witte thb§5],

step. However)M is not robust with respect t6": The input \nich represent games in a normal form, enumerating atiegies. We cannot
sequence = (rir2)(r172)“ has cost one, but the output ofuse that representation to obtain a polynomial algorithm.

(@ Ca

Note that out of the three systems in Figure 3 (which all
%atisfyA — ) the system in Figure 3(c) is the most robust
one. In our opinion, it is also the one most likely to please th
designer.

IV. RATIO GAMES

1)



division by zero. It does not influence the value «dp) if with maximal weightV. Given a ratio} with0 < a < |S|-W

Yoo o wa(e;) is infinite. and0 < b < |S|-W, we can decide whether a state has value
Themaximal weightV" in a ratio game(S, so, £), w1, w2) v =%, v <%, 0orv> ¢in O(|S|*-W?. |E|) time.

is defined byl = max{w;(e) | e € E, i € {1,2}}. Note that

the valuev(p) of a play p, where both players play positional . " a

strategies, is in the s&f — {0, ‘S"W,oo}. Lemma decision for the mean payoff gam@wer = ((S, so, E), w)

. [STW> -0 T wi i — b —a-
10 shows that ratio games have optimal positional stra&eglé\;'ltlzv\ﬁﬁéove:inctf'}“;gez)e thbe \Z}S? (ofarur;g)z(iﬁ). Gln ;23
which implies that it suffices to consider positional steges similarly tor v R AURLP R

MP-

and that the value of every state ish . N
We show thatr < 7 impliesvyp < 0 andvg > ¢ implies
Lemma 10. Ratio games have optimal positional strategiesqy,s > 0. The decision whethanyp < 0, vpmp = 0, Or vyp > 0

Proof: It suffices to show that the two one-player gameSa be made irO(|S|* - W’ - |E]) time, wherelV” is the

(5. = 0, respectivelyS; = () have optimal positional Maximal welgh2t|n the mean-payoff game [7]. We have <
strategies [6]. Consider a game graphwith S, — 0. Take © W =151 Wg ' th2us the decision for the ratio game can be
in G a simple cycle with the minimum ratio of all simple Made INO(|S[*- W= |E[) time. _
cycles.We show that the positional strategy that goes to ~ SUPPOS€rr < §. We show that Player 1 can achieve
this simple cycle and stays within it forever is optimal. Biot2 'un of value at most) in Gwe and thusuwe <
that the valuev(p) of the playp induced by the strategy; 0. Let m; be a positional qpnmal Pla_lyer—l strategy for
is r, since the outer-most limit in Eq. 1 allows us to ignoré’R and let m be a positional optimal strategy for
a finite prefix of p. If + = 0, the claim trivially holds. If Player 2 in Gwe. Because both strategies are positional,
r = oo, then in any simple cycle the sum of the weight€(s0;71,m2) consists of a stem and a simple cycle, say
ws is 0 and the sum of the weights, is strictly greater 2.~ (€1, €m) = (€1, ). Note thatwr(p) =
than 0. This implies that all edges on cycles have weight 2 Zlgei and uyp(p) = vYi wl(ei);a 2uizgw2(es) Sup-
wy(e) = 0 and in every cycle there is at least one edge =i=Ccn ' . - a ; o
wit% )w1(e) > 0, and so any infinite play has ratiso. For pose) iy wi(e:) > 0, then, sinceng < 7 azn:d 'Swtl?g)s finite,

i=0 < a

" wa(e;) — b

Proof: We reduce the decision for the ratio game to a

0 <r < oo, letr be ¢ for some integers, b > 0 and letp’ be We have}""  ws(e;) > 0. It follows that -
an arbitrary play in the single player game. We decompdse. = 55" wi(e;)-aS™"  wo(es o
into a sequence of ratigs, 42 ... by the following procedure implies ”ZL:O ( )E"ZO ) <, If 3 icowi(e) =0,
(cf. [7]): we put the states g on a stack in the order of their then "2=i= '““(67');“ =g 2(e) _(“Zijf wale)) g,
appearance, once we encounter a sfafet is already on the  The proof thatvg > ¢ implies thatuwe > 0 is similar,
stack, we remove the sequence from the first to the secapging an optimal strategy for Player 2 k. m
appearance of and compute its ratig*. Note that the sum . ] .

of the weightsw; andws in this cycle can be;-times larger Theorem 12. Given a ratio game(5, E), w1, w) with max-
thana; andb;, respectively, where; is some integer constantimal weightW, the value for every < .5 can be computed

betweenl and TV - |S|. Note that the height of the stack is at" O(IS]° - W2 - |E] - log(|S] - W)).

most|S|. Due to the outer-most limit, we can ignore the part  proof: We use the decision procedure from Lemma 11 to
of p’ that is always left on the stack in thle computation of thgarform a binary search on the list of possible valtiag oo
valuev(p'). Then,v(p') = limsup, , # for some If the ratio is greater thanS| - I, it is infinite. There are

. LDy cirbi less than(|S| - W)? different ratios, thus we need at most
constantd) < ¢; < W - |S|. Since the minimum S|mple-cycle2 “log(|S| - W) calls to the decision procedure. -
Given an algorithm to find the values of the game we can

ratio is 3, we know thatyt > 7 for all i > 0 and together

with the fact thate;’s are poslltlve integer constants, we knOV\l/JSe the “group testing” technique from [7] to find optimal

that v(p’) > limsup, ., % and therefores(p’) > ¢.  positional strategies.

1

i=1

The proof for Player-2 games is analogous. ®  Theorem 13. Given a ratio gamé (S, E), wy , wo) with max-

_The decision problem of a ratio (mean payoff) game igyna| weightiv, positional optimal strategies for both players
given a ratior (mean payoft) decide if the value of the game 4, pe found (S| - log(@) |E| - log(|S| - W) - W2).
is at least- (v). The decision problem for mean payoff games 151
is in NP N co-NP [7]. We show how the decision problem for All our ratio game algorithms are polynomial in the size of
ratio games can be reduced to the decision problem of méhg game graph but pseudopolynomial in the weights. They
payoff games. The reduction shows that the decision probléte polynomial ifiV = 1.
for ratio games is in NP) co-NP. We also use this reduction to
calculate the values of the states in a ratio game. The rieduct V. VERIFYING AND SYNTHESIZING ROBUST SYSTEMS
is similar to that used by Lawler [8] for the reduction of mati

- This section describes the verification and synthesis algo-
graphs to the minimal mean cycle problem.

rithms for robust systems. First, we establish the coriaiat
Lemma 11. Let Gr = ((S, s0, E), w1, w2) be a ratio game between the ratio in Definition 9 androbustness.



Any error specificationC with cost functionse, and A. Verification

¢s can be translated into a ratio gam@ The weight  \ye show that any robust systemiisrobust.
functions w; and wo are given by the cost functions, ] ) ]
and c. respectively. Formallyuw;2)((5(q.0.)s S(q.00))) = O Theorem 15. If a Moore machine\/ with n); states is robust

and wy(2)((S(g.0)> S(ar.00))) = Ca(e) (q;ao U ’ai), where With respect to an error specificatio@’ with nc states and
(S(quoi)s S(qio)) € E1 aNd (Sq00) 8(qr.0n) € FEo (see Mmaximal system cos¥, then} is (nc - nas - W)-robust.
Section II). Every plaype = 502 8(a0,00)1 5(a’,0:): 8(/,05) -+ - Proof: Let CM be the product of” and M. Lemma 14
of G corses?onds to arupc = qog... of € onw = gshows thatM is k robust if the ratio of all runs inCM
(00,0) (05, 07). is smaller or equal tdk. Since one-player ratio games are

Lemma 14. Given a Moore machiné/ and an error specifi- positional _(Lemma_l 10), the Ie_lrgest ra_tio corresponds to the
cation C' with cost function, andc,, M is k-robust iff for all largest ratio of a simple cycle i@}, which cannot be larger

wordsw € L(M), the runp(w) = o ... of C onw = wy ... thannc-nar - W becausel is robust. L
satisfies Next, we show how to verify if a given Moore machine is

robust ork-robust.

l
v(w) = lim limsup Zi:lm ¢s(gi,wi) <k. (2) Theorem 16. Given a Moore machiné/ with n,, states,
M=o oo 143 ce(qi, wy) and an error specificatiorC' over the alphabet:, with n¢
Proof: If there exists ad € N such that for States and maximal co$t’, we can decide if\/ is robust in
all finite prefixes w' = wy...w, of w we have O(nc-ny-X)time. Given &, we can check ifi/ is k-robust

S es(gnw) < koo YT (g, w) + d, then in O(nd, - n3, - %) time.

% <k+ m holds as well. This Prqof: Let CM t_Je the product ol” anq M. M is not _
S g robust iff CM contains a cycle that contains an edge with
implies that lim,, .. limsup,_, — < k nonzero system cost and no edge with nonzero environment
1Y i o) .. cost. This can be checked in time linear in the number of edges
becaufehmsupzﬂoo ZZ o Ce(qi,wi) is e|ther some lf|n|te in CM, which isnc - nar - . We have thatV/ is k-robust if
valued' or infinite. In the first casey;’ Cs(qw“’l) < k-d'+d 6 maximum simple cycle ratio i@ is smaller or equal to
for anyn > 0. Thereforelimsup;_. ZL 0s(ai,w;) 18@IS0 1 "The maximum simple cycle ratio in a graph withstates
finite. Then lim,,, . limsup;_, % — 0<%k andm transitions can be found i®(n? - m) time [9], thus
Celdnt we can find the maximum ratio i@(n, - n3, - ¥) time. ®

In the second casdjm,, ., limsup,;_, 1+Zl

converges td). i @0 g Synthesis

For the other direction, consider the productM of Next we show how to use Streett games to synthesize
C and M. Then, for all w € L*(M), C.(w) = (strictly) realizing and robust systems and how to use ratio
CM.(w) = ZLZ'O’lce(qi,wi) and C,(w) = CM,(w) = 9ames to synthesize (strictly) realizidgrobust systems with

thilo_l Cs((h’; wi)u Wherepczw(ll)) =40 - qluw is the run of optimal k.
CM on w. Consider an arbitrary finite word € L*(M), if | emma 17. Given an error specificatiod” with . states and
lw| < |C]-[M], thenCM,(w) < |C|-[M]-W and Cs(w) < alphabets, we can decide if a robust system exist®im?-3.)

k- Ce(w) + d holds for anyk > 0 andd = |C| - [M]-W. time. If a robust system exists, it can be synthesizex{ir?-3)
Otherwise, if|w| > |C] - |M|, we can decompose the runume

poum(w) into simple cyclesey, ..., ¢, and a simple pathp

consisting of the remaining nodes. (See proof of Lemma 102 Proof: We translate the specification into a one-pair
Now consider the infinite words., ..., u., that correspond Streett gamef; is the set of states with incoming transitions

to the runs leading to the cycles, . . ., c,., respectively, and with system costs andy is the set of states with incoming

looping there forever. We know that, .. ., u,, are inL(M) transitions with environment costs. One-pair Streett gacam

and, due to Eq. 2, thab(u;) < k for all 1 < j < m. be solvedinO(n-m), wheren is the number of states and
L . L J — —_ _ . . .

Therefore, for every cycle, the sums of the weightsand " iS the number of transitions [10]. u

¢s in the cycle, are either both or their ratio is smaller or Theorem 18. Given an error specificatiof’ with n states and
equal tok. Let k = ¢ and letg*,..., 3= be the ratios of zlphabety, we can decide if a robust and (strictly) realizing
the cycles whose ratio is nonzero, th@'“’ d cs(qi,w;) = system exists if)(n?-X) time. The system can be synthesized
d'+350 dj - a; andZ'“’ Weelgi,wi) = d” + >y dj b in O(n? - X) time.

for some) < d',d” < |C]|M]-W andl < d; < |C] |M|-W. Proof: In order to decide if a robust and realizing

Using the fact that, if for alll < J < m, 3 S 5 system exists, build the product automatél, = (Q x

holds then}~"" | d; - a; < b, Zm dj - bj holds, we obtain {4, 4, gs}.qo,0,c) of the error specificatior”’ and the au-
Z,'L.'ig” cs(qi,w;) < %Zz: ce(qz,wz) + d’, which proves tomatonA; shown in Figure 4(a). Le€' A} be CA,, where
that M is k-robust. B the system costs of all transitions corresponding to th@ loo




The number of states in the game graphi&;|+n- |20,
the number of edges i | + |E2|, where|E{| = n - [¥o]
and|Ez| = n-n-|X;|. A winning strategy for Player 1 can
be found nO(n* - (1% + [Zol)* - lox(“EelindZtlh) -
(IBol +n-[%]) -log(n - (|21 + [Eol) - W) - W?). u
Theorem 20. Given an error specificatiol” with n states,
input alphabe®:;, output alphabek, and maximal costV,
if a robust and (strictly) realizing system exists,karobust

true true system with minimak that (strictly) realizes the specification
(a) AutomatonA;. (b) AutomatonAs. can be synthesized @(n®-(|2;|+|Zo|)* log( (\‘Eg\rr‘l'z\z‘l_\) )-
I (o]
Fig. 4. Automata for calculating realizability and strietatizability (|EO| +n- |§]I|) . 10g(n . (|§]I| + |§]O|) W) - WQ).
on stateq, in Figure 4(a) are set td. Formally, the cost Proof: For realizability translate”’ A} from the proof of

function of CA} is ¢/((q,x),0) = (1,¢e((q,2),0)) if x =¢q2 Theorem 18 into a ratio game. The system dofir ¢.-states
andd((¢q,z),0) = g2, and’((¢,z),0) = ¢((¢,z),o) in all guarantees that for any word with C(w) # 0 andC,(w) =
other cases. Next, translatéd] into a Streett game as above) the ratio of the corresponding run has vaksein the ratio
(proof of Lemma 17). A robust and realizing system exists iffame. The ratios of other plays are not changed. If a plasvisi
the game is winning, and the winning strategy correspondsdae;-state finitely often, the ratio is not influenced because we
a robust and realizing system. only look at the ratio in the limit.
First, assume there exists a winning strategy. No play For strict realizability translate”’A; from the proof of
in which Player 1 plays optimally visits a-state in- Theorem 18 info a ratio game. Singg-states have system
finitely often, because such a play has an infinite sy§ostl and environment cost, any run with a system failure
tem error and zero environment error. Consequently, &€fore an environment failure has valte in the ratio game.
words w = (0,,0;)(c’,,0!) ... associated with a plap = A Moore machine corresponding to an optimal strategy of
505 8(g0,00)> S(a’,01)s S(¢',07,) - - - Where Player 1 plays optimally Player 1 is robust and (strictly) realizes the error spegifin.
satisfy C.(w) = 0 implies Cs(w) = 0. Thus, the Moore If k is the value of the initial state thel is k-robust. ®
machine clo.rres_ponding to the winning strategy realize_s t_@e Synthesizing from Reset Error Specifications
error specification. Second, assume there exists no winning, . I
: - s shown in Example 8eset error specificationare an
strategy. A play where Player 2 plays optimally, has a finite, ™. . e
: P ) intuitive kind of error specification. We show here that gver
environment cost and an infinite system cost. Either there . P .
. - e realizable reset error specification can be realized byablist
exists no robust system or the play visitg-astate infinitely

: -~ __Moore machine.
often. In the second case no system realizes the specificatio

Similarly, to check for a robust and strictly realizing sysDefinition 21. A reset error specificatiors a double cost
tem, we build a Streett game from the product automat@htomaton with maximal codt, such that for all transitions
C Al of C and the automatonl, of Figure 4(b), where the (¢,0) With cc(q,0) = 1 or ¢s(q,0) = 1 the next state is
system costs of all transitions corresponding to the loop 6f¢: ) = qo-

stateg, are replaced byl and their environment costs arérpegrem 22. Given a realizable reset error specificatiar,
set to 0. Then, again any Player-1 optimal play avoidls 5 1.rohust system can be synthesized in linear time.
states. Consequently, for all words associated with a play

where Player 1 plays optimally, all finite prefixes satisfy Proof: TranslateC' into a ratio game with a linear blowup,
Co(w'[..Jw'| = 1]) = 0 implies Cs(w') = 0. Thus, the Moore as in Lemma 19. We show that for an optimal strategy the
machine corresponding to a winning strategy strictly zeei ratio is not greater tham. Let = be a strategy such that for
the error specification. m allresulting play = qoqi - . . 272 ce(gi, gi+1) = 0 implies

Y ico ¢s(i, gi+1) = 0. Thus, the system will not incur a cost
Lemma 19. Given an error specificatiorC’ with n states, from any state reachable using without environment cost.
input alphabet;, output alphabekEo, and maximal costV, The only time a system cost may be incurred is when the
if a robust system exists,arobust system with minima&lcan environment incurs a cost of 1, in which case the system may
be synthesized i (n® - (|S4] + [Sol)* - log(UF8E5E) - also incur cost 1 and the system returns to the initial state.

(1Zo| +n-[21]) -log(n - (|1%1] + [Xol) - W) - W?). VI. RELATED WORK

Proof: We synthesizé:-robust systems with ratio games. We have defined a system to be robust if a small environ-
The game graph is constructed from the double cost automaionent error leads to a small system error. Other approaches
C (see Section Il). Lemma 14 shows that a positional strategye possible. In the continuous domain, it is natural to irequ
with value k corresponds to &-robust Moore machine. An systems to be continuous, which guarantees robustness in th
optimal positional strategy corresponds td:-@obust system sense that a small output error can be guaranteed by an appro-
with smallest possiblé andd < |C| - W. priately small input error [11]. This notion is not apprcgig



in the discrete setting, as discrete functions are in gémeta the system behaves well in the presence of environment
continuous. Consider, for example, a specification thatireq failures (assuming that any invariants used as antecedents
that the value of the outpytis always true (false) if the initial weak), but Eisner states that control-intensive applicetiare
inputr is true (false, respectivelyjr — Gg)A(—-r — G—g). typically not robust [18].

Here, a minimal difference in the input, namely a change of
the initial input, causes a maximal difference in the output ) _ )
The importance of robustness is widely recognized. Rinard, W& have introduced a notion of robustness for functional
for instance, advocates acceptability-oriented computtat- specifications based on grapeful degradation. We have shqwn
ing that “complex computer systems should have a natuf@w to solve the verification problem .and the synthess
resilience to errors” [12]. problem for robust systems. The synthesis problem is solved
Attie et. al [13] argue that fault-intolerant programs arfrough a novel type of games. o
often unrealistic. They introduce a framework to specify e consider the worst case only: when a specification

fault-tolerant concurrent programs with CTL formulas an@nly allows for k-robust systems, we do not distinguish
differnent levels of tolerance, and show how to synthesiR$tween systems in which every trace is stricthyrobust
such programs. Contrary to our work, this work considefd those in which some traces have fewer system faults.
closed systems and requires the developer to specify pessfBowever, Chatterjee [personal communication] has shoan th
faults explicitly. Cury and Krogh consider synthesis ofusb admissible (undominated) strategies do not always exist fo
controllers for discrete event systems, where a contradler M&an-payoff games, and this result easily generalizestio ra
optimal if it produces the correct behavior for a maximalafet 92mes, foiling the hope for a fully general solution. Anathe
plants including the original. This approach can beneficlzé  VeNue fo_r |mproyement would be to minimize the constant
combined with ours to yield systems that fulfill the guaraste ¢ in the inequality between system and environment errors.
in a maximal set of cases and gracefully degrade otherwisEUrthermore, itis an open question how to extend our approac

Faella [14] considers the question of the appropriate bi. liveness. _ _ _
havior when a game is lost. He considers two notions onelt would be interesting to evaluate to which extent our notio

based on dominating strategies and one based on a projoab‘ﬂft robustness matches the intuitive notions designers use.

VIlI. CONCLUSIONS

distribution over the input. In the former setting, he maizies REFERENCES
the ,Set of inputs for which the game, IS won, and_m the Iattef’l] A. M. Davis, Software Requirements — Analysis and Specification
setting, the probability that the game is won. A similar geob Prentice Hall, 1990.

is considered in [15], where an unrealizable specificatign [2] C. Ghezzi, M. Jazayeri, and D. Mandriokundamentals of software

: : : p engineering Prentice-Hall, Inc., 1991.
which corresponds to a lost synthesis game, is generalzed [E A. Pnueli, “The temporal logic of programs,” ilEEE Symposium on

a specificationA — G for a maximally weak environment Foundations of Computer Scienderovidence, RI, 1977, pp. 46-57.
assumptionA. None of these papers considers appropriaté] EMJCTStn;ggg and 1Fi'7 Bllgim, “Optimizations for LTL syrgle’ in
. . . . . . , , pp- — .
behaw_or in the cases Wh_ere a system failure is |neV|tabI?5] R. G. Schroeder, “Linear programming solutions to ragiones "Oper-
which is central to our notion of graceful degradation. ations Researghl970.
D’'Souza and Gopinathan [16] consider a specification thdé] H. Gimbert and W. Zielonka, “Games where you can play roptly

; ; ; : without any memory,” inCONCUR 2005, pp. 428-442.
is built from a ranked set of requirements, which may be con, \}' Jocc ond M. Paterson, "The Complexﬁg, of mean payodinges on

tradictory. The requirements are “conflict tolerant”, iswhen graphs,”Theoretical Computer Scienceol. 158, pp. 343-359, 1996.
overruled, they continue giving “advice.” This is achieved(8] E. Lawler, Combinatorial Optimization: Networks and Matroids

: ) Courier Dover Publications, 1976.
through means closely related to our weighted edges. DiSOUfg] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient algorits for

and Gopinath describe how to synthesize controllers in whic' ~ optimum cycle mean and optimum cost to time ratio problemsDAC,
advice from a requirement is alternately followed and iguor 1999, pp. 37-42.

; ; ; N. Piterman and A. Pnueli, “Faster solutions of Rabind gBtreett
The question they answer is how to synthesize a system tHat games.” inLICS, 2006, pp. 275-284.

always follows the highest ranked advice. The approackmiff [11] T. Henzinger, “Two challenges in embedded systemsydegiredictabil-
from ours in the focus on contradictory specifications rathe ity and robustness Philosophical Trans. of the Royal Socie8008.

- : - : [12] M. C. Rinard, “Acceptability-oriented computing,” i@OPSLA Com-
than environment failures, and in the fact that the propgoac panion 2003, pp. 221-239.

is chosen greedily, whereas we solve a global optimizatigrs) p. Atie, A. Arora, and E. A. Emerson, “Synthesis of taidlerant

problem to find the appropriate behavior. igrslcirégntzg(r)igramSACM Trans. Program. Lang. Syswol. 26, pp.
Alur, Kanade, and We|s§ .[17]' consider prlorlltlzed rqulr‘?m M. I_:aellid, “Gémes you cannot win,” iWorkshop on Games and

ments and present an efficient way to synthesize the hlghes{ Automata for Synthesis and Validatio?007.

priority requirement. This is related in the sense that teai [15] K. Chfatterjeeh T-_Hendz:inog’\?(r:. Sgdzgd gobstTZ\;\n,l;IimMem assump-

2 . . . . tions for synthesis,” i , Pp. —16l.
specification may be left unfulfiled if necessary. What ig g o S A Gopinathan, “Conflict-tolerant faas” in CAV
missing, from our perspective, is a way to “return” to a highe 2008, pp. 227-239.

priority requirement_ [17] R. Alur, A. Kanade, and G. Weiss, “Ranking automata aaches for

; ; ; ; o prioritized requirements,” irCAV, 2008, pp. 240-253.
Eisner considers properties in CTL of the fOILm— AG¢ [18] C. Eisner, “Using symbolic model checking to verify tfeglway stations

(¢ always holds) and calls a system robustyif holds in of Hoorn-Kersenboogerd and Heerhugowaard, CiHARME 1999, pp.
all states, not just in the reachable states. This implias th ~ 97-109.



