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i. Summary 

In the vibrant field of optogenetics, optics and genetic targeting are combined to 

commandeer cellular functions, such as the neuronal action potential, by optically stimulating 

light-sensitive ion channels expressed in the cell membrane. One broadly applicable 

manifestation of this approach are covalently attached photochromic tethered ligands (PTLs) 

that allow activating ligand-gated ion channels with outstanding spatial and temporal 

resolution. Here, we describe all steps towards the successful development and application 

of PTL-gated ion channels in cell lines and primary cells. The basis for these experiments 

forms a combination of molecular modeling, genetic engineering, cell culture and 

electrophysiology. The light-gated glutamate receptor LiGluR, which consists of the PTL-

functionalized GluK2 receptor, serves as a model. 
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1. Introduction 

Biology occurs over a wide range of time and length scales. To understand dynamic 

biological systems, we require tools for both the spatio-temporal observation and 

perturbation of cellular and molecular events. While the past years have seen rapid growth in 

optical (e.g. fluorescence-based) real-time reporters of cellular signals (1), the development 

of means to activate cells on short and small scales has lagged behind. With light being the 

premier choice for both read-out and activation of cellular events, photosensitive molecules 

have recently enabled us to non-invasively control biological signals with high spatial and 

temporal resolution. This is achieved in optogenetics and optochemical genetics either by 

“repurposing” Nature’s light-sensing proteins from bacteria, algae or plants, or by 

engineering synthetic light-gated functionalities (2-4). 

Three synthetic strategies to light-control signals in cells or in vivo are commonly used: 

“Caged” ligands, photochromic (“reversibly caged”) ligands, and PTLs (Fig. 1) (3). “Caged” 

ligands and photochromic ligands can be optically activated with sub-cellular resolution and 

within milliseconds by either releasing the ligand from the cage or by triggering a reversible 

conformational change in the photochrome. After photoactivation, these molecules act as 

free ligands on their specific protein targets (Fig. 1b, c). In contrast, PTLs are linear 

molecules that consist of a ligand moiety, a photochrome in the core of the molecule and a 

reactive group that attaches to the protein (Fig. 1d, e). Site-directed attachment is achieved 

by genetically introducing a cysteine residue near the ligand binding site. After attachment, 

the agonist or antagonist located at the end of the tether is presented to or retracted from the 

binding site by photoisomerization of the PTL core (Fig. 1d). Tethered ligands have the 

unique advantage that they specifically control a selected protein since the cysteine 

substitution is required for attachment and thus for light sensitivity. Receptors with 

substitutions can then be genetically targeted to specific cell types or organs in living 

organisms. PTLs have been developed to light-control several classes of ion channels, 

including nicotinic acetylcholine receptors (5,6), glutamate receptors (7) and K+-channels (8), 
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as well as variant channels with new functionalities derived from molecular studies (9) or 

evolutionary relationships (10,11). In these experiments, the tethered ligands were 

acetylcholine, glutamate and tetraethylammonium, respectively. 

 

[FIGURE 1 NEAR HERE, PLEASE, AND IN COLOR PLEASE] 

 

This section describes how genetic engineering, cell culture and electrophysiology are 

combined to apply PTL-gated ion channels in cell lines and primary cells. In addition, we 

explain how molecular modeling can be applied to test if a PTL is compatible with a target 

receptor and how modeling can aid in the choice of PTL attachment sites. In this way, this 

section includes all steps to perform light-control of an established as well as a new receptor 

based on an existing PTL. While procedures for the HEK293 cell line as well as primary 

neurons are described here, a single cellular model is sufficient for basic functional 

experiments. To explain these experiments, the light-gated glutamate receptor LiGluR, 

consisting of the ionotropic glutamate receptor GluK2 (formerly known as iGluR6) mutated at 

residue L439C and functionalized with MAG1 (maleimide azobenzene glutamate; Fig. 1e), 

serves as a model. 

 

 

2. Materials 

2.1. Molecular Modeling 

1. Desktop computer running Visual Molecular Dynamics (VMD) (12). 

2. Protein Data Bank (PBD) file of the ligand-gated ion channel of interest in complex with 

ligand (here, PDB file 1SD3 containing 2S,4R-4-methylglutamate (4-MG) co-crystallized in 

the ligand binding domain of GluK2 (13)). 

 

2.2. Molecular Biology 
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1. Bacterial cell culture shaker in a 37°C room or 37°C incubator with shaker (~ 225 RPM). 

2. LB medium: 1% bactotryptone, 0.5% yeast extract, 1% NaCl, pH 7.0, autoclaved. 

3. Bacteriological agar. 

4. Ampicillin stock solution (100 mg/mL in water), stored at -20°C in 500 L aliquots. 

5. QuickChange II Site-Directed Mutagenesis Kit (Agilent, Vienna). 

6. QIAprep Spin MiniPrep DNA purification kit (Qiagen, Hilden, Germany). 

7. Gene coding for ion channel in a vector suited for mammalian expression (e.g. 

pcDNA3.1(-)) (see Note 1). 

8. Gene coding for yellow fluorescent protein (YFP) in a vector suited for mammalian 

expression. 

9. Gene coding for YFP in a vector suited for neuron-selective expression (see Note 2). 

10. Mutagenesis oligonucleotide primers and sequencing oligonucleotide primers ordered 

custom-made from any of the many commercial vendors (see Note 3). 

11. Sanger DNA sequencing provided by any of the many commercial vendors. 

 

2.3. Cell Culture and Transfection of HEK293 Cells 

1. Cell culture facility equipped with laminar flow hood, water bath (37°C), incubator (5% 

CO2) and cell counting chamber. 

2. HEK293 cells (CRL-1573, American Tissue Culture Collection, LGC Standards, 

Teddington, UK) cultured according to the provider’s recommendation in 25 cm2 tissue 

culture flasks. 

3. 500 mL Dulbecco’s Modified Essential Medium (DMEM) supplemented with 5% fetal 

bovine serum (FBS), sterile filtered and stored at 4°C. Supplement half of the medium with 

1% penicillin/streptomycin solution, and use the supplemented DMEM unless noted 

otherwise. 

4. Dulbecco’s Phosphate Buffered Saline (DPBS): 8 g NaCl, 200 mg KCl, 200 mg KH2PO4, 

2.16 g Na2HPO47H2O, water added to 1 L and sterile filtered. 
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5. Borate buffer: 1.55 g boric acid, 2.375 g Na+ borate, water added to 500 mL, pH 8.5, 

sterile filtered and stored at 4°C. 

6. Opti-MEM I reduced serum medium (LifeTech, Vienna). 

7. 0.25% Trypsin-EDTA solution (LifeTech). 

8. Lipofectamine 2000 transfection reagent (LifeTech). 

9. Poly-L-lysine (PLL) HBr (molecular weight 70,000-150,000). Open PLL container in the 

laminar flow hood and add water to a concentration of 10 mg/mL. Aliquot in 1.5 mL 

eppendorf tubes and store at -20°C. 

10. Round cover glasses (18 mm diameter, Carolina Biologicals, Burlington, NC, USA) (see 

Note 4). 

11. Polystyrene 25 cm2 cell culture flask with filter lid (0.2 m pore size, sterile). 

12. Polystyrene 12-well plate (sterile). 

 

2.4. Additional Reagents For Cell Culture and Transfection of Hippocampal Neurons 

1. Dissection microscope. 

2. Dissection tools: Large scissors, large forceps, small scissors, 2 sharpened forceps, 

curved spatula and small scalpel. 

3. High glucose MEM: 12.75 g D-glucose with Modified Essential Medium (MEM) added to 

50 mL, sterile filtered and stored at 4°C. 

4. Media: 181 mL MEM, 3 mL high-glucose MEM, 10 mL FBS and 0.2 mL MITO+ Serum 

Extender. Store at 4°C. Once a week, add 1 mL B-27 Serum-Free Supplement (LifeTech) 

and 500 L L-glutamine to 48.5 mL media to produce final medium. Store at 4°C. 

5. Saline: 1.19 g HEPES, 1.80 g D-glucose, Hank's Basic Salt Solution (HBSS) added to 500 

mL, sterile filtered and stored at 4°C. 

6. HBSS washing solution: 7.89 g NaCl, 4.77 g HEPES, 0.30 g KCl, 0.29 g CaCl22H2O, 0.20 

g MgCl26H2O, 0.14 g Na2HPO4, 0.18 g glucose, water added to 1 L, pH 7.3, sterile filtered 

and stored at 4°C. 
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7. BBS solution: 0.82 g NaCl, 0.53 g BES, 10.7 mg Na2HPO4, water added to 50 mL, sterile 

filtered and stored at 4°C. 

8. CaCl2 solution: 18.38 g CaCl22H2O, water added to 50 mL, sterile filtered and stored at 

4°C. 

9. Cytosine-1-β-D-arabinofuranoside (AraC) solution (4 mM), sterile filtered and stored at -

20°C. 

10. Two sterile glass Pasteur pipettes: The first pipette is barely flame-polished, the second 

pipette is flame polished to half its original diameter. 

11. Round cover glasses (12 mm diameter, Carolina Biologicals, Burlington, NC, USA). 

12. Polystyrene 6-well plate and 24-well plate (sterile). 

13. Cell strainer (40 μm, BD Biosciences). 

 

2.5. Microscopy and Light-activation 

1. Inverted microscope equipped with fluorescence condenser, rotating turret for moving 

filter holders (“filter cubes”) into the light path and 20X fluorescence objective. The 

microscope is placed on an air table and enclosed by a faraday cage. 

2. Light source capable of producing bright monochromatic illumination (> 1 mW/mm2) that 

can be computer controlled (Polychrome V, TILL Photonics, Gräfelfing, Germany) (see Note 

5). 

3. Power meter with wavelength range from 300-800 nm and power range up to 50 mW 

(PM120VA, Thorlabs, Munich, Germany) (see Note 6). Power range can be extended with 

neutral density filters (Thorlabs). 

4. Standard filter set for visualization of YFP in a filter cube. 

5. Total reflectance mirror sized to fit into a filter cube in the diagonal position (e.g. NT43-

875, Edmund Optics, Karlsruhe, Germany). 

6. Empty filter cube. 

7. Standard laboratory spectrophotometer to perform absorbance measurements at a 

wavelength of 360 nm. 
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8. MAG1 in solid form. 

9. DTT stock solution (10mM): 77.1 mg DTT in 10 mL extracellular solution, distributed to 1 

mL aliquots and stored at -20°C. 

10. Concanavalin A solution: 15 mg type VI concanavalin A (Sigma) in 50 mL extracellular 

solution and stored at 4°C. 

 

2.6. Whole-Cell Patch Clamp Measurements 

1. Patch clamp amplifier with data acquisition electronics, electrode holder and software 

installed on a desktop computer (AxoPatch200B, Digidata 1440A, HL-U and pCLAMP 10, 

Biberach, Germany). 

2. Micromanipulator on rotating base mounted to a tower (MP-285ROE, 285RBI and MT-71-

9, Sutter Instruments, Science Products, Hofheim, Germany) (see Note 7). 

3. Glass micropipette puller (P-97, Sutter Instruments). 

4. Extracellular solution: 145 mM NaCl, 4 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM 

HEPES, pH 7.4 (see Note 8). 

5. Intracellular solution: 135 mM K-gluconate, 10 mM NaCl, 2 mM MgCl2, 2 mM MgATP, 1 

mM EGTA, 10 mM HEPES, pH 7.4. 

6. Salt bridge solution: 3 M KCl and 1% electrophoresis-grade agarose in water. 

7. Glass capillary tubes (1.5 mm outer diameter, 1.17 mm inner diameter, 100 cm length, 

Warner Instruments, Hamden, CT). 

8. Unplugged glass Pasteur pipettes (length > 200 mm). 

9. Glass bottom petri dish (glass surface: 25 mm diameter, 0.2 mm thickness, Bioptechs, 

Butler, PA, USA) (see Note 9). 

 

 

3. Methods 

3.1. Molecular Modeling of PTL Substitution Pattern and Attachment Sites 



9 |  
 

1. Molecular modeling is applied to test if a PTL is compatible with a target receptor. In the 

case of MAG1 and GluK2 (Fig. 1), modeling is based on a crystal structure of the ligand 

binding domain of GluK2 with bound 4-MG (13). Note that MAG1 and 4-MG are both 

substituted at the 4’ position (the C atom of glutamate; Fig. 1e) with identical 

stereochemistry, and 4-MG therefore is a valid model for MAG1 with respect to the 

substitution pattern (14). Furthermore, the closed conformation of the ligand binding domain 

indicates that the receptor is an activated conformation (Fig. 1a). 

2. To visualize 4-MG in the ligand binding domain, open PDB file 1SD3 in VMD 

(File/NewMolecule). 

3. In the representations panel (Graphics/Representations), reformat the structure by 

activating drawing method “NewCartoon” for selected atoms “chain A”. 

4. Orient the structure such that the ligand faces the front and highlight the ligand by creating 

a new representation with the drawing method “VDW” for selected atoms “chain A and resid 

998”. The resulting view is shown in Fig. 1f. 

5. To verify that an extended 4’ substituent will reach to solvent exposed residues, change 

the drawing methods of chain A to “VDW”. An exit tunnel becomes visible (Fig. 1g, circle), 

confirming that the tail of MAG1 may reach the protein surface while still allowing the ligand 

binding domain to close (7). 

6. In a next step, use the molecular model to identify residues that are surface exposed and 

surround the binding site (Fig. 1g, highlighted residues). Select 4-8 residues and order 

oligonucleotides to alter them into cysteines. In the case of MAG1, attachment to L439, 

L482, G486 and E722 of GluK2 has proven successful (15). 

7. For every new application of a PTL to a receptor, perform steps 1-5 with a suited crystal 

structure to verify that an exit tunnel exists and to find sites for attachment. 

 

3.2. Preparation of Growth Plates 

1. Solubilize 9 g agar in 600 mL LB medium and autoclave. 
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2. After autoclaving, let hot LB medium cool to 50°C, add 600 L ampicillin stock solution 

and swirl to mix. 

3. Pour solution into sterile petri dishes to a depth of ~ 3 mm. 

4. Leave the plates at room temperature and unstacked for 24 h before storing them at 4°C. 

 

3.3. Polymerase Chain Reaction to Generate Cysteine Mutants 

1. Dilute the vector containing the ion channel gene to a concentration of 20 ng/l. 

2. Resuspend lyophilized mutagenesis oligonucleotides (forward and reverse) to a 

concentration of 300 M by adding X*3.33 L water to the original tubes (X is the amount of 

nanomoles delivered in the tube). Vortex for 10 s and spin briefly every 5 min for a total time 

of 15 min. Store at -20°C. 

3. Dilute mutagenesis oligonucleotide primers to 10 M by adding 2 L of each 

oligonucleotide primer to 56 L water. Vortex, spin briefly and store at -20°C. 

4. The PCR is setup following the manufacturer’s instructions with 20 ng template vector (1 

L of the dilution) and 10 picomoles of each oligonucleotide (1 L of the mixture). 

Recommended PCR parameters are: 1 cycle at 95°C for 60 s; 18 cycles at 95°C for 30 s, at 

56°C for 30 s and at 72°C for 600 s; 1 cycle at 95°C for 7 min, and 1 cycle at 4°C until the 

reaction is processed further (see Note 10). 

5. After PCR, add 1 L dpn1 restriction enzyme, pump mix gently, spin briefly and incubate 

at 37°C for not less than 90 min. 

 

3.4. Amplification and Selection of Mutagenized Receptors 

1. Warm up LB agar plates (one for each PCR) at 37°C for 30 min (see Note 11). 

2. Transform PCR without further purification into competent cells. Maintain cells on ice 

during the transformation and treat cells gently without vortexing or excessive pipetting. 

3. Spread bacteria evenly on plates with a sterile glass rod. 

4. Place plates at 37°C upside down overnight. 
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5. On the following day, combine 3 mL LB medium with 3 L ampicillin solution in glass 

tubes (four for each PCR). 

6. Using a pipette tip, pick four colonies of each plate by lightly touching a single colony with 

the tip and dropping the pipette tip into the glass tube. 

7. Place glass tubes at 37°C with shaking (~ 225 RPM) overnight. 

8. On the following day, extract vector from bacteria with MiniPrep kit following the 

manufacturer’s instructions and send vector for verification by sequencing. 

 

3.5. MAG1 Reconstitution 

1. Prepare ~ 3 mg MAG1 in an 1.5 mL eppendorf tube. 

2. Add 200 L DMSO to the tube to yield the MAG1 stock solution (26 mM). 

3. Vortex vigorously for 10 s and spin down briefly. Repeat until all solid has dissolved. 

4. Prepare 10 L aliquots and store them at -20°C in the dark (see Note 12). 

 

3.6. Verification of MAG1 Concentration (see Note 13) 

1. Add 0.5 L MAG1 stock solution to 1 mL DPBS, vortex and spin briefly. 

2. Prepare five 10-fold serial dilutions: Add 100 L of the first MAG1 dilution to 900 L PBS 

to produce a second dilution. Then add 100 L of this second dilution to 900 L PBS to 

prepare a third dilution. Repeat two more times. 

3. In the spectrophotometer, blank absorbance at a wavelength of 360 nm with DPBS and 

measure absorbance for all serial dilutions. 

4. Using measurements in the linear absorbance regime (usually between 0.1 and 1.0 A), 

determine the concentration of the stock solution. This is achieved by plotting A360 against 

concentration and equating Beer-Lambert’s law with the extinction coefficient 0.025 A360/M 

and the dilution factor. 

 

3.7. Preparation of Cover Glasses for HEK293 Cells 
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1. Cell culture should be performed under sterile conditions in a laminar flow hood. 

Instruments and containers should be disinfected by spraying them with 70% EtOH prior to 

placing them in the hood. 

2. Dilute PLL solution to a concentration of 0.05 mg/mL in borate buffer. 

3. Add 2 mL diluted solution to the wells of a 12-well plate. 

4. Add a single 18 mm cover glass to each well and incubate cover glasses for 2-8 h (see 

Note 14). 

5. Transfer the desired number of cover glasses (typically 4-8) to a new 12-well plate. 

6. Wash cover glasses three times with water (add and aspirate water) and allow to air dry. 

 

3.8. Preparation of HEK293 Cells 

1. Warm trypsin solution, DPBS and DMEM in water bath to 37°C. Warm 9 mL DMEM in a 

culture flask in the incubator (see Note 15). 

2. Add 1.5 mL DMEM to each cover glass prepared previously in the 12-well plate. 

3. Remove cells from incubator and aspirate media. 

4. Add 10 mL DPBS, let stand for 10 s and aspirate. 

5. Add 3 mL trypsin solution and let stand for 3 min. 

6. To detach cells from flask, tap flask against a vertical surface. 

7. Add 7 mL media to the flask and pipet up and down with a serological pipette (see Note 

16). 

8. Transfer 1 mL cell suspension to the culture flask that contains 9 mL pre-warmed media. 

Place flask in incubator to passage the culture in the future. 

9. Transfer the remaining 9 mL cell suspension to a 50 mL conical tube. 

10. Centrifuge at 2000 RPM for 3 min and aspirate supernatant. 

11. Resuspend cells in 2 mL media by carefully pipetting up and down ten times with a 

serological pipette. 

12. Count cells, transfer 80,000 cells to each cover glass and allow 8-24 h for cells to settle 

before transfection. 
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3.9. Transfection of HEK293 Cells 

1. Warm DMEM with no antibiotics added in water bath to 37°C. 

2. Remove 12-well plate from incubator and replace DMEM on cells with pre-warmed 

DMEM. 

3. For each cover glass to be transfected, combine 25 L Opti-MEM I, 0.2 g ion channel 

vector, 0.01 g YFP vector in a 1.5 mL eppendorf tube (see Note 17). 

4. For each cover glass to be transfected, combine 25 L Opti-MEM I and 1 L 

Lipofectamine in a 1.5 mL eppendorf tube. 

5. Let stand for 5 min. 

6. Add lipofectamine solution to vector solution and tap tube gently to mix. 

7. Let stand for 20 min. 

8. Add 50 L transfection mix to each cover glass. 

9. Allow 18-24 h for expression (see Note 18). 

 

3.10. Preparation of Cover Glasses for Hippocampal Cell Culture 

1. Add 2 mL 70% EtOH to all wells of a 24-well plate. 

2. Add a single 12 mm cover glass to each well and incubate for 10 min. 

3. Wash three times with water. 

4. Treat the cover glasses with PLL as described above. 

5. After treatment, wash cover glasses three times with water and allow to soak in water for 

 1 h. Wash one more time and let dry. 

 

3.11. Dissection (P0 to P4 Sprague Dawley pups) 

1. Autoclave dissection tools prior to dissection. 

2. Warm saline in water bath, warm media in incubator and bring trypsin solution to room 

temperature. 
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3. Fill two 60 mm petri dishes halfway with warm saline. 

4. Sever neck at base of head with large scissors and place under dissecting scope. 

5. Remove skin from back to front with forceps. 

6. Slice the skull from back to front with small scissors. 

7. Peel back the skull to each side with large forceps, dislocate brain with curved spatula and 

slide brain into petri dish containing the saline. Repeat for additional pups and then transfer 

all brains into a new dish. 

8. Remove cerebellum and separate hemispheres with scalpel. 

9. Remove meninges from the outer surface of the brain (see Note 19). 

10. Identify the hippocampus as a curved structure that is slightly denser and therefore has a 

dark contrast to the rest of the tissue. Gently cut away the hippocampus being very careful 

not to damage the tissue. 

11. Remove remaining meninges with minimal to no damage to the hippocampus and clean 

away any excess tissue still attached to it with small scalpel. 

12. Carefully transfer hippocampus to 15 mL conical tube filled with saline. 

 

3.12. Preparation of Hippocampal Cells 

1. Remove all but 4.5 mL saline from hippocampus, add 500 L trypsin and invert to mix. 

2. Place at 37°C for 8 min. 

3. Add 9 mL saline to dilute trypsin, invert to mix and remove solution using serological pipet. 

Repeat for a total of four washes. 

4. Add 1 mL media and triturate six times with large diameter Pasteur pipette. Remove 

media with suspended cells and strain into a 50 mL conical tube. 

5. Repeat previous step with small diameter Pasteur pipette if more cells are desired. 

6. Count cells and dilute to a concentration of 200,000 cells/mL. 

7. Add 500 L cell suspension to each well and place in incubator. 

8. After 15 min, replace media to eliminate debris that has not attached to cover glass. 
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9. After 4-7 d in culture, AraC is added to a final concentration of 4 M to prevent growth of 

glia. 

10. To maintain cultures, replace half of the media with fresh media once per week. 

 

3.13. Transfection of Hippocampal Cells 

1. For each cover glass, warm 1 mL transfection media (985 L MEM supplemented with 15 

l high glucose MEM), 500 L HBSS and 500 L growth media in the wells of a 6-well plate 

placed in the incubator. 

2. Bring CaCl2 solution, BBS and expression vectors to room temperature. 

3. Remove cells from incubator and transfer media from cells to a well of the 6-well plate. 

4. Add 500 L transfection media to cells and aspirate. 

5. Add 500 L transfection media to cells. 

6. Mix, in this order, 1.15 L CaCl2 solution, 1.2 g ion channel vector, 0.1 g YFP vector 

with neuron-specific promoter and add water to a final volume of 33 L. 

7. To the mixture, add 33 L BBS drop-wise, mix, and transfer 30 L to the center of each 

cover glass immediately. 

8. Observe cells regularly during the next 6 h. After the shortest amount of time that 

generates a fine layer of precipitate, aspirate transfection media and incubate cells in HBSS. 

9. After the shortest amount of time needed to dissolve precipitate (typically 2-15min in 

HBSS), wash cells with 500 L conditioned media (aspirated from the cells previously) and 

add both conditioned and fresh media to cells (500 L each). 

 

3.14. Preparation of Whole-Cell Patch Clamp Measurements 

1. Using the flame of a gas burner, bend the end of a Pasteur pipette into a “U”-shape where 

the “sides” and the “bottom” of the U are ~ 2 cm long (see Note 20). 

2. Heat salt bridge solution in a microwave until homogenous. Allow to cool to 50°C. 
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3. Aspirate solution in a 1 mL pipette tip and fill the U-shaped glass to complete the salt 

bridge. Store the salt bridge in 3 M KCl at 4°C. 

4. Using glass capillary tubing and a multistage puller, prepare micropipettes with taper 

length of  4 mm, tip diameter of  2 m and electrical resistance of 2-8 MΩ. 

 

3.15. Preparation of Microscopy 

1. Connect the light source to the data acquisition electronics and configure the software 

such that the wavelength can be computer-controlled. 

2. Connect the optical output of the light source to the back port of the microscope. 

3. To direct light of all wavelengths to the sample, fix a total reflectance mirror with superglue 

in the spare filter holder at the position reserved for the dichroic mirror. Place this filter cube 

in the turret (see Note 21). 

4. Place the filter cube for YFP imaging in the turret unmodified. 

5. Measure the intensity of the light exiting the objective using the power meter (see Note 6). 

 

3.16. MAG1 Labeling of HEK293 Cells and Neurons (see Note 22) 

1. In the laminar flow hood, fill four wells of a 12-well plate with 1 mL extracellular solution 

and supplement one well with DTT to a final concentration of 1 mM. Fill one well with 

concanavalin A solution. 

2. To remove growth medium, transfer a cover glass with HEK293 cells or neurons from 

growth medium to extracellular solution. 

3. To activate surface cysteines, transfer the cover glass to extracellular solution with DTT 

and incubate for 10 min. 

4. To remove DTT, transfer cover glass to extracellular solution and incubate for 2 min. 

5. For concanavalin labeling, transfer cover glass to concanavalin A solution and incubate 

for 10 min (see Note 23). 

6. In the meantime, thaw MAG1 stock solution and illuminate with UV light for 1-15 min (see 

Note 24). 
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7. Dilute illuminated MAG1 in one of the wells to a final concentration of 10-50 M (see Note 

25). 

8. Transfer cover glass to this solution and incubate for 10-30 min. Keep the well plate in the 

dark during this time. 

9. Transfer cover glass to a well with extracellular solution and keep in the dark until the 

experiment. 

 

[FIGURE 2 NEAR HERE, PLEASE, AND IN COLOR PLEASE] 

 

3.17. Patch Clamp Measurements and Photoswitching 

1. Add 500 L extracellular solution to glass bottom petri dish and transfer the cover glass to 

the dish. 

2. Connect the glass bottom dish to a dish with the reference electrode using the salt bridge. 

3. Adjust the microscope for visualization of YFP by choosing the appropriate filter cube and 

by switching the light-source to 510 nm excitation light. 

4. Using the eye pieces, identify a transfected cell (see Note 26). 

5. Apply positive pressure to the micropipette while lowering it into extracellular solution to 

prevent adsorption of debris at the liquid-air-interface. 

6. Position the micropipette over the center of the cell (see Note 27). 

7. Slowly lower the micropipette until it presses down on the cell surface, causing an 

indentation. 

8. Place the modified filter cube that holds the total reflectance mirror in the light path. 

9. Adjust the holding potential to -70 mV. 

10. Release the positive pressure from the micropipette, observe GΩ seal formation and use 

negative pressure to break through the cell membrane. Allow 5 min to obtain a seal 

resistance greater than 100 MΩ. 
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11. Photoswitching can be accomplished by changing illumination wavelengths while 

recording from the cell in voltage-clamp or current-clamp mode (Fig. 2). Illumination at a 

wavelength of 380 nm coverts MAG1 into the cis-isomer that opens GluK2 and produces 

and inward (negative) current in voltage-clamp or depolarization in current-clamp. 

Illumination at a wavelength of 500 nm light coverts MAG1 into the trans-isomer allowing 

GluK2 to close. 

 

 

4. Notes 

1. In our experience, all mammalian expression vectors containing the cytomegalovirus 

(CMV) promoter performed well in HEK293 cells and neurons with robust protein 

expression. Increased expression of ion channels was achieved using the hybrid CMV 

enhancer/chicken β-actin promoter along with woodchuck hepatitis virus 

posttranscriptional regulatory element (16). Most ion channel genes can be obtained in 

expression vectors from Addgene (http://www.addgene.org/). 

2. Co-transfection of fluorescent proteins allows selecting transfected cells in patch clamp 

experiments. Furthermore, fluorescent proteins under the control of cell type specific 

promoters can be used to distinguish cell types. To target neuronal cells in hippocampal 

cell cultures, a modified pcDNA3.1(-) expression vector containing the neuron-specific 

human synapsin 1 promoter is available from the authors. 

3. Mutagenesis oligonucleotide primers can be reliably designed using the PRIMERX 

website (http://www.bioinformatics.org/primerx/) following the QuickChange parameters. 

Sequencing oligonucleotide primers should be designed according to the 

recommendations of the sequencing provider, which also may offer universal 

oligonucleotide primers that bind to many vectors. 

4. In our experience, cover glasses from some other manufacturers require additional 

cleaning in 70% EtOH solution followed by washing in water. 
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5. In the past years, the polychrome has become a standard light source for optogenetic 

experiments as it offers bright illumination with maximum wavelength flexibility. A good 

alternative are filter-based light sources capable of producing high-intensity illumination (> 

10 mW/mm2) with fast switching time between filters (< 2 ms) (DG4, Sutter Instruments, 

Science Products, Hofheim, Germany). 

6. For accurate optogenetic experiments, it is required to measure the light intensity 

produced in every individual setup. This is commonly done at the very end of the light 

path by measuring the light exciting the objective. The total intensity is measured using 

the power meter, while the illuminated area can be estimated to be the field of view. 

Latter can be determined using a micrometer-sized grid. For a more elaborate 

measurement, the illuminated area is controlled using an aperture or pinhole. Most 

optogenetic applications work well with intensities of > 1 mW/mm2, and MAG1 can be 

reliably converted with as little intensity as 0.1 mW/mm2. 

7. In the simplest patch clamp setup, the micromanipulator with mounted patch clamp 

electrode is attached on the optical table using a tower stand, while the cells are placed 

on the X-Y-table of the microscope. The major advantage of this setup is that localizing 

fluorescent cells is facilitated as the cells are moved relative to the objective. The major 

disadvantage is that the field of view or focus cannot be changed after a cell has been 

patched. 

8. In a modified extracellular solution, Na+ ions can be replaced by N-Methyl-D-glucamine to 

reduce cell toxicity caused by PTLs acting as a very weak agonist during labeling. 

9. Glass bottom dishes proved to be an easy and affordable alternative to imaging chambers 

typically used in patch clamp experiments. They can be reused many times or disposed 

after single use. 

10. We have obtained good results when using 20 ng of template vector and following the 

manufacturer's protocol, especially for the number of cycles. For the mutagenesis of 

genes in long or problematic vectors, we recommend supplementing the reaction with 

additional 40 ng template vector and 3 L DMSO. 
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11. Place plates upside down with the base sitting on the ridge of the lid on one side. In this 

way, condensation will not accumulate on the agar surface and humidity is reduced. 

12. The maleimide group of a PTL is sensitive to hydrolysis and precautions are necessary 

to avoid water contact until the labeling reaction. Store PTL solids in an eppendorf tube 

that is placed in a 50 mL conical tube containing  1 cm of desiccant at the bottom. Place 

the conical tube in the dark and at -20°C or -80°C. Parafilm wrapping of the eppendorf 

tube is neither required nor desired. When resuspending PTLs, use DMSO that was 

aliquoted from a new stock and stored in individual tubes in a container with desiccant. 

PTL stock solutions in DMSO are stored as described above for the solid and can be 

stored for one year. Stock solutions should be sufficiently concentrated such that DMSO 

concentration during labeling does not exceed 1% (at a PTL concentration of up to 50 

M). While it has not shown to be a problem, the number of freeze-thaw cycles should be 

kept to a minimum. 

13. This procedure can also be used to determine MAG1 concentration if no scale with mg 

sensitivity is available. 

14. While 2-8 h are recommended for treatment, cover glasses can be left in PLL solution for 

several weeks, and PLL solution can be reused at least six times if kept sterile. 

15. Warming media in the incubator is preferred over the water bath for equilibration with 

CO2 and consequently proper pH. 

16. Use of serological pipets is recommended as 1 mL pipette tips can damage cells. 

17. For transfection of most glutamate receptor vectors, the amount of lipofectamine and 

vector can be scaled down substantially (up to 5-fold) compared to the recommendation 

in the manufacturer’s protocol. It is critical to use miniscule amounts of fluorescent protein 

vector compared to ion channel vector (typically 10-20 times less fluorescent protein 

vector than the ion channel vector). 

18. For whole-cell patch clamp measurements, HEK293 cells should be sparse at the time of 

experiment to prevent gap junction formation between adjacent cells. For many other 
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purposes (e.g. imaging) a confluent layer works well and gives best transfection efficiency 

and cell health. 

19. Meninges will cause microglial growth in the cell culture that is harmful to neuronal 

growth. When removing meninges, discard damaged hippocampal tissue. 

20. In a first step, hold the pipette horizontally and heat it 2 cm from the end until the terminal 

piece drops by gravity to produce a right angle. Repeat to complete the U-shape. Using a 

glass cutter and appropriate safety equipment, separate the “U”-shape from the rest of 

the Pasteur pipette. 

21. It is not safe to look into the eye pieces when using this modified filter cube as unfiltered 

stray light may reach to the eye piece. 

22. While this procedure describes MAG1 labeling of cells expressing LiGluR, it is generally 

applicable to other PTLs and ion channels. Labeling and wash steps can be executed 

either at room temperature or at 37°C. DTT treatment and UV preillumination are optional 

steps that yield the greatest efficiency of MAG1 labeling and thus photoswitching. 

23. Concanavalin A blocks desensitization of GluK2 and is required for experiments in 

HEK293 cells but not neurons. 

24. Efficiency of MAG1 labeling is increased if MAG1 is converted to the cis-isoform in UV 

light before the labeling. This can be achieved with any handheld UV source, e.g. a UV 

LED pointer, and at any light intensity. Indicative values: At an intensity of 0.04 mW/mm2 

(max 365 nm) allow 15 min, at an intensity of 5.5 mW/mm2 (max 374 nm) allow 30 s.  

25. It is essential to pump mix the solution to fully dissolve MAG1 as DMSO solutions tend to 

“sink” to the bottom of the well. Prepare the MAG1 dilution fresh for every cover glass to 

be labeled. 

26. Cells with medium bright fluorescence often allow the formation of high quality whole-cell 

seals compared to very bright cells. 

27. Micropipette positioning can be achieved in the following steps. After focusing on the 

cell, move the focal plane above the cell by turning the focus wheel on the side of the 
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microscope by  two turns. In a next step, lower the micropipette until it is in this new 

focal plane and move it to be centered on the field of view. In the final step, refocus on 

the cell lower the pipette slowly. 
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