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Abstract—In order to enjoy a digital version of the Jordan
Curve Theorem, it is common to use the closed topology for the
foreground and the open topology for the background of a 2-
dimensional binary image. In this paper, we introduce a single
topology that enjoys this theorem for all thresholds decompos-
ing a real-valued image into foreground and background. This
topology is easy to construct and it generalizes to n-dimensional
images.
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I. INTRODUCTION

The main result of this paper is in digital topology, a
subfield within image processing that concerns itself with
the micro-structure of digital images; that is: the rules
with which local neighborhoods are formed. The topic is
important because the micro-structure has macroscopic con-
sequences [12]. A general desire is that the macro-structure
of an image satisfies basic properties of classical topology.
This motivates the now widely accepted convention that
defines the foreground of a binary image as a closed set
and the background as an open set. In two dimensions,
this is equivalent to using the 8-neighborhood rule for the
foreground and the 4-neighborhood rule for the background.
With this convention, the foreground forms a loop if and
only if it separates the background into two components
— a digital version of the Jordan Curve Theorem [11].
This convention is required because the pixels form a non-
simple complex. Indeed, in a simple complex the maximum
number of cells with non-empty common intersection is 3,
while 4 pixels (unit squares) can share a common vertex.
In three and higher dimensions, the gap widens between
the at most n + 1 cells having non-empty intersection in a
simple complex and the 2" cubical cells sharing a vertex
in an n-dimensional digital image. To address the problem,
we follow Kovalevsky [13] in treating the image as a
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complex and not just as a collection of cubes; see also [1],
[17]. However, this does not suffice to compute persistence
diagrams that satisfy fundamental symmetries implied by
Lefschetz and Alexander duality.

Our concrete motivation for addressing the digital
topology problem outlined above is the study of root
systems of agricultural plants [14]. The goal is to
extract phenotypical parameters and to relate them to the
genotypical make-up of the plant [10]. Reconstructing
the 3-dimensional shape from a series of 2-dimensional
photographs, we represent the root system as a set of voxels
(unit cubes) in R [20]. Beyond static root shapes, we also
look at time series and address the growth behavior of
root systems [9]. In this context, we consider functions
defined on voxel representations of root systems, which are
examples of 3-dimensional images. Among other things, we
use the persistence diagrams of these functions to recognize
tips and forks and to assess their robustness. Similarly, we
use the diagram to recognize loops and voids, which should
not be present but often are. Noting that the persistence
diagram of a real-valued function encapsulates information
about all binary images obtained for different thresholds,
we recognize the need for a more sophisticated treatment
of the micro-structure of the image, one that is consistent
with fundamental topological symmetries for all thresholds.

Results. Our main result is the specification of the
micro-structure of an n-dimensional image in terms of
a simplicial complex, and a proof that the implied PL
function gives persistence diagrams that satisfy fundamental
topological symmetries. We state these results now, giving
the proof in Section III. First we need definitions.

Letting U, be the (infinite) set of unit cubes in the regular
grid subdivision of R”, we define a digital image as a real-
valued function, ¢ : U, — R, where U, is a finite subset
of U;. Given a threshold, r € R, the corresponding binary
image is ¢, : U, — {0, 1}, defined by ¢ (U) =1 if p(U) >
r and ¢, (U) = 0 if ¢(U) < r. Writing U for the union
of the cubes in U,, the binary image decomposes U into



the foreground, F, = \J;'(1), and the background, B, =
U - F,. By construction, the foreground is closed and the
background is open. Both change only at a finite number of
thresholds, giving two filtrations: F, C F, and B; C B,, for
r < s. Applying the homology functor, we get a persistence
module,

0—-...>H®F)—...>H®UB,) —»...>0.

whose information is summarized in the persistence diagram
of the image, denoted as Dgm(y). The diagram of this
particular filtration is easier to define than to compute
because the sets B, are not closed. For the next step, it
is convenient to extend ¢ to the entire grid, ¢’ : U, — R,
assuming that ¢ and ¢’ are injective and agree on the cubes
in U,, and that ¢’(U’) < ¢'(U) whenever U belongs to
U, and U’ does not. The vertices of the dual complex of ¢’
are the cubes in U;,. Working inductively, in the direction of
increasing dimension, we add the p-simplices by considering
all sets of 27 n-cubes that share a common (n — p)-face.
They form a dual p-dimensional cube, and we let Uy be
the vertex with maximal function value. By induction, all
faces of the p-cube have already been triangulated, and we
triangulate the p-cube by adding the cones of U, over the
(p — 1)-simplices in the triangulation of the opposite faces.
After n + 1 steps, we arrive at the dual complex of ¢’, and
we define the dual complex of ¢, denoted as D, as the full
subcomplex whose vertices are the n-cubes in U,. Writing
D for the union of its simplices, we construct the dual PL
function, 6 : D — R, which agrees with ¢ on the vertices.
We thus arrive at a PL function on a simplicial complex
for which the persistence diagram is defined by the standard
filtrations of excursion and incursion sets. We also have:

MaiN TaeoreM. Dgm(6) = Dgm(yp).

The computational significance of the result is the
existence of standard algorithms for computing the diagram
of 6 [7, Chapter VII]. In contrast, the direct computation of
the diagram of ¢ is difficult because the neighborhood of
an n-cube changes as it migrates from the background to
the foreground. The mathematical significance of the result
is that the diagram satisfies the fundamental topological
symmetries, in particular the reflection properties implied
by Lefschetz and Alexander duality; see [5] and [8].
Contrarily, the diagram computed from the complex formed
by the cubes and their faces does not enjoy these properties.

Outline. Section II presents the background from image
processing and algebraic topology. Section III proves the
Main Theorem. Section IV discusses an application to
the root system architecture of agricultural plants. Finally,
Section V concludes the paper.

II. BACKGROUND

In this section, we describe the background from image
processing and from algebraic topology that provides the
context for the work in this paper; see [19] and [7], [16] for
further information. Since the relevant differences between
2-, 3-, and higher-dimensional images are minor, we cast
all discussions in R”, where n > 0 is an arbitrary but fixed
integer.

Images. We think of an image as a discrete representation
of a continuous function. Specifically, we let Uy = [—%, %]"
be the n-dimensional unit cube centered at the origin, Z"
the set of points with integer coordinates, and U, = Uy +Z"
the subdivision of R"” into integer translates of the unit
n-cube. In R? and R3, the elements of this subdivision
are sometimes referred to as pixels (picture elements)
and as voxels (volume elements). We call U, the cubical
subdivision of R". To construct an image, we let U, C U,
be a finite subset.

DEeriNiTION.  An n-dimensional image is a real-valued func-
tion on a finite subset of the cubical subdivision of R”,
v: U, - R

Collecting all faces of the n-cubes in U,, which are k-cubes
for 0 < k < n, we get a cubical complex, which we denote
as U. Finally, we write U = |U| for the underlying space
of the complex, which we define as the union of interiors
of the cells of different dimensions. For now, U is just the
union of the n-cubes in U, but we will see more interesting
underlying spaces shortly. We think of ¢ as an approximation
of a continuous function on R”, one in which the size of the
cubes dictates the resolution. For example, we may construct
a piecewise constant function @ : U — R by defining

o(x) = ax, eU), )]
where the maximum is over all n-cubes that contain the
point. For later reference, we call ¢ the PC function of the
image ¢. A binary image is a digital image that takes only
two values, 0 and 1. Given a threshold, r, we get a binary
image, ¥ : U, — {0, 1}, by setting

B 1 if o(U) >r,
p) = { 0 if o(U) <r

for all n-cubes U € U,. We note that the PC function of ¢
can be defined by setting (x) to 1, if ¢(x) > r, and to 0, if
o(x) <r.

2

Digital topology. The primary topological concern in
image processing is whether things are connected, and to a
lesser extent how they are connected. For this reason, the
topology is usually expressed by specifying which n-cubes
are neighbors. For example, the 26-neighborhood rule in
R3 says that two cubes are neighbors if they share a square



face, an edge, or just a vertex. We take a different approach
and specify topologies as subsets of the cubical complex.
For example, the closed topology of a set of n-cubes
consists of all their faces, which are cubes of dimension
0 < k < n. Assuming a binary image ¢ : U, — {0, 1}, we
let F# C U be the closed topology of ~'(1) and define the
foreground as its underlying space, F = |7 . In contrast, the
open topology contains a k-cube only if all n-cubes that
share the k-cube are in the set. Letting 8 C U be the open
topology of ~'(0), we have 8 = U - F, and we define the
background as its underlying space, B = |B|. Note that 7
is a subcomplex of U, while B is generally only a subset
of U.

The closed and the open topologies are complementary;
that is: if we partition the n-cubes into two collections and
we use the closed topology for one and the open topology
for the other, then we get two complementary spaces. This
is convenient as it lends itself to topological properties
that we intuitively expect. For example, the Jordan Curve
Theorem says that a loop in R?> decomposes the plane,
separating points inside from points outside the loop. If
the foreground is defined by pixels that outline a loop, we
may expect the same property. Indeed, using the closed
topology for the foreground and the open topology for the
background, we get a separation between the pixels inside
and outside the loop formed by the foreground.

Homology. We quantify the connectivity of a space
using its homology groups, whose elements are classes of
homologous cycles; see e.g. [16]. While there are different
formalisms that make this definition precise, they all lead
to the same algebraic framework. Using the formalism of
singular homology, a p-dimensional chain is the sum of
finitely many continuous maps of the standard p-simplex
into the space. The boundary of this chain is the sum
of the restrictions of these maps to the boundary of the
p-simplex. Adding maps and allowing for cancellations,
it is possible that the boundary is empty, in which case
the p-chain is called a p-cycle. If there is a (p + 1)-chain
whose boundary is that p-cycle, then the p-cycle is called a
p-boundary. Finally, two p-cycles are homologous if their
sum is a p-boundary. We thus get equivalence classes of
homologous p-cycles, and the main technical insight is that
these classes form a group that can be used to quantify
the p-dimensional connectivity of the space. To remove the
last bit of ambiguity, we specify the coefficient group used
to add chains. While there are other choices, we prefer
to work with a field, for example with Z/27Z, which is
integer addition modulo 2. For a field, the homology groups
are vector spaces, and the ranks of the groups are the
dimensions of the vector spaces. It is customary to write H,
for the p-th homology group, and to refer to its rank as the
p-th Betti number, 3, = rankH,. We write H = EBP H, for
the direct sum of the homology groups of all dimensions.

Filtrations and persistence. We return to the real-valued
image, ¢ U, — R, and we recall its PC function,
p, as defined in (1). For each threshold, r € R, set
F, = g '[r,00) and B, = @ '(—o0, r), as in Section I. Let s,
to s, be the values in ¢(U,), and consider an interleaved
sequence, rg > s > F| > ... > S, > TIy. Simplifying
the notation, we write U’ = F, and U; = B,,. Since the
foreground increases and the background decreases, we have
UcuUlc...cU”and U, CU,_; C...C U, Replacing
each foreground by the direct sum of its homology groups,
HWUY) = EDP H,(U?), and each background by the direct sum
of its relative homology groups, H(U,U;) = @p H,(U, Uy,
we get a linear sequence of homology groups connected by
maps induced by inclusion:

0 = HU% - ... > HWU™ 3)
= H(U,U,,) - ... - H(U,Up) = 0. 4)

Using coefficients in a field, the homology groups are
vector spaces, and the maps between them are linear. As
described in [5], there is a canonical definition when a
homology class is born and when it dies in the filtration. Its
persistence is the absolute difference between the function
values at which the class is born and dies. The totality of
this information is represented by the persistence diagram
of ¢, denoted as Dgm(y), which is a multiset of points
(called dots) in a double covering of the plane. Each

= ® S a _, a o

Figure 1. Left: the image maps every cube in the stylized root system to
its vertical distance from a horizontal line. Right: the persistence diagram
with three dots for the branches and one dot for the loop. The shaded pair
of rectangles corresponds to the level set defined for ‘1%

dot has two coordinates, the value at the birth and the
value at the death of the classes it represents. Since we
use the entire range of values twice, first coming down
in (3) and second going up in (4), we need the double
covering to distinguish between classes that are born
and die coming down, classes that are born coming down
and die going up, and classes that are born and die going up.

Symmetries. The Jordan Curve Theorem has various
generalizations, one being Lefschetz duality, which relates
the homology of a manifold with boundary with the relative
homology of the pair consisting of the manifold and its
boundary. As proved in [5], Lefschetz duality implies
Dgm(f) = Dgm’(f) whenever f is defined on a manifold



without boundary. Here, T is the transformation that reflects
each dot across the vertical axis and replaces its dimension
by the complementary dimension. While the domain of
a digital image cannot be a manifold without boundary,
its boundary can. The symmetry implied by Lefschetz
duality is therefore indirectly relevant as follows. Suppose
the digital image can be extended to a map f on R” that
has no homological critical values, such as for example
every Cartesian coordinate function. Then the diagram
of the function restricted to the boundary is the disjoint
union of the diagram of the image and of its reflection:
Dgm(flaw) = Dgm(fly) U Dgm’(fly); see [8]. Another
useful property of the diagram is the possibility to read
the homology of level sets. As illustrated in Figure 1, the
homology of go‘l(%) can be determined by counting the
dots in the symmetric difference of the rectangles that
determine the homology of the corresponding excursion
set and the relative homology of the pair consisting of
the domain and the incursion set. For this purpose, the
dimension of the dots in the right half of the diagram are
lowered by one [3]. In the particular example, we count
three dots on the left and one dot on the right. After
adjusting the dimension, all four dots are O-dimensional,
which is consistent with the level set consisting of four
components and otherwise having no non-trivial homology.
We close this section by showing that the mentioned

Figure 2. Middle: a torus decomposed into 16 pixels. Left: the diagram
computed with the cubical complex. Note that we have two identical
dots near the top, corresponding to two 1-dimensional classes. Right: the
diagram computed with the dual complex.

properties are easily lost if we do not pay attention to
the micro-structure of the image. Consider the complex
that decomposes the 2-dimensional torus into 16 pixels,
as depicted in Figure 2. The function maps the 14 white
pixels to a common high value and the two dark pixels
to a common low value. Computing persistence with the
cubical complex and the dual complex, we get the diagrams
on the left and on the right. We see the violation of the
symmetry implied by Lefschetz duality in the left diagram.
The algorithm requires closed incursion sets and therefore
does not see the 1-dimensional relative class represented
by curves connecting the two dark pixels. We mention that
[18] compute persistence with the cubical complex, but
they consider only a quarter of the diagram, namely the left
triangle, so Lefschetz duality does not apply.

III. THE PrOOF

We take two steps to prove the Main Theorem stated
in Section I. The first step is geometric, relating the dual
complex of an image with a weighted Voronoi tessellation
of the space. The second step is topological, relating the
foregrounds and backgrounds of the digital image with the
excursion and incursion sets of the dual PL function.

Voronoi tessellation. We can think of the cells in the cubical
subdivision as the Voronoi cells of their centers. Making
essential use of this interpretation, we assign weights to the
centers to produce an approximating simple complex. We
begin with definitions. Given a discrete collection of points
in R”, the (unweighted) Voronoi cell of a point v; in this
collection is the set of points x € R” for which the Euclidean
distance to v; is no larger than to any other point in the
collection: ||x — v;|| < [[x — vj|| for all v;. We generalize this
concept by assigning a real weight, w;, to each point v;. The
weighted Voronoi cell of v; is then the set V; of points x € R”
that satisfy

2 2
lx=vll"=w; < llx=vill" —w; )

for all j; see e.g. [6]. The set of such cells is the weighted
Voronoi tessellation of the collection of points. Its cells
are n-dimensional, closed but possibly unbounded, convex
polyhedra. Together with their common intersections, these
cells form a complex. If the points and their weights satisfy a
genericity condition, then the intersection of any i+ 1 cells is
either empty or has dimension n—i. In particular, this means
that the common intersection of n+2 or more cells is empty.
Complexes with this property are said to be simple.

We use the fact that for any discrete collection of points,
we can find weights such that the weighted Voronoi tessella-
tion forms a simple complex. Indeed, the weight assignments
that do not lead to simple complexes form a measure
zero subset of all assignments. To see this, consider the
geometric primitives used to construct a Voronoi tessellation:
the orientation test and the in-sphere test. The first takes n+1
points as input and decides whether the last point lies on the
positive or negative side of the hyperplane spanned by the
first n points. Writing x; ; for the j-th coordinate of the i-th
point, this is decided by the sign of the determinant of

1 X1,1 . Xl,n
1 X211 e X2.n

A =] . .| (6)
1 Xn+1,1 Xn+1,n

We have a degeneracy if detA = 0, which happens with
probability zero. Similarly, the in-sphere test takes a
sequence of n + 2 points as input and decides whether the
last point lies inside or outside the (n — 1)-dimensional
sphere passing through the other n + 1 points. Here, we
need a second matrix,



I xi1 ... Xin >, xf’j
1 X2.1 e X2.n Z X%’j
A = ) . (D
1 . 2
Xn+2,1 Xni2n 2 Xnt2,j

and the decision is based on the sign of the product of
the two determinants. We have a degeneracy if detA = 0
or det A = 0, which again happens only with probability
zero. To construct the weighted Voronoi tessellation, we
use the same orientation test, and we modify the in-sphere
test by subtracting the weights from the last column of
A. A geometric interpretation can be found in [6, Chapter 5].

Structural stability. Given the cubical subdivision of
R”*, we are interested in assigning weights to the centers
of the n-cubes such that the weighted Voronoi tessellation
perturbs the subdivision. We construct the perturbation
depending on an image, ¢ : U, — R. Assuming ¢ is
injective, we extend it to an injective function ¢’ : U, — R,
where U, is the cubical subdivision, ¢ and ¢’ agree on
the cubes in U,, and ¢'(U’) < ¢'(U) whenever U € U,
and U’ ¢ U,. We can therefore index the infinitely many
n-cubes such that ¢’ (U;) > ¢'(U) > .... As mentioned
earlier, the cubical subdivision is the Voronoi tessellation
of the centers u; of the U;. To define the perturbation, we
let v; be the point u; with the only difference that v; has a
weight, w; = & Here, gis a positive real number, which we
constrain to guarantee that our construction is independent
of the particular choice of &, and i is the index of the n-cube
in the above defined ordering. In other words, we require
that the combinatorial structure of the weighted Voronoi
tessellation does not depend on the particular choice of ¢.
To write this more explicitly, we let I be a sequence of n+1
distinct positive integers, we let £ be a positive integer not
in I, and we write A;.(g) for the matrix in (7), assuming
of course that the first n + 1 input points are the ones with
indices in /, that the (n + 2)-nd input point has index ¢, and
that the weights are assigned using €. Similarly, we write
Ay, noting that this matrix does not depend on €. We say [/
labels a vertex in the weighted Voronoi tessellation of & if
detA; # 0 and detA; - det A () <O for all £ ¢ 1.

DeriniTiON. An interval (0,a) has the stable in-sphere
property if a sequence of n + 1 distinct indices I labels a
vertex in the weighted Voronoi tessellation of ¢ iff it labels
a vertex in the tessellation of &, for all 0 < g, &’ < a.

It is not difficult to see that the stable in-sphere property
implies that the weighted Voronoi tessellations defined by &
and & are structurally the same. To formalize this concept,
we consider the weighted Voronoi tessellation of the points
in Z", with weights assigned as described and & chosen
in (0,a). Let V,(e) be the subset of cells generated by

centers of cubes in U, and let D(g) be the nerve of V,(g),
geometrically realized in R” by mapping each cell to its
generating integer point. We have D(e) = D(g’) for all
0 < & < & < a since (0,a) has the stable in-sphere
property. To see that D(g) is equal to the dual complex,
D, introduced in Section I, we observe that the perturbation
reduces to the lexicographical ordering of the n-cubes used
in the construction of D.

Stable in-sphere property. We show that there exist non-
empty open intervals that have the stable in-sphere property.

StaBLE IN-SPHERE LEMMA. In R”, the interval (0, a,), with

a has the stable in-sphere property.

n = m;

Proof: Consider the 2" vertices of the unit n-cube whose
center is the origin of R”. Picking n+2 of the points, we get a
matrix whose entries in the middle n columns are i%, while
all entries in the first column are 1, and all entries in the last
column are 7. Subtracting the weights from the last column,

which we assume for simplicity are wy, wy, ..., w,2, We get

L1 Llon_,
- - 4
1 ig i; 1-g
AMe) = : : . : : : ®)
. ‘1 . .1 n ’ 2
1 iz ii 1 — gt

After subtracting 7 times the first column from the last, we
see that det A(e) is a polynomial in € in which the coefficient
of &' is plus/minus the determinant of the matrix obtained by
removing the i-th row and the last column. This determinant
is 1/2" times an integer between —(n+1)! and (n+1)!. Since
det A; # 0, by assumption, not all coefficients are zero. Let k
be the smallest index for which we get a non-zero coefficient,
and note that it has absolute value at least 1/2". The absolute
value of det A(g) is therefore at least

& (n+1)! i ; & (n+ 1) gt = g3
— - g = —- .
on n on

" l1-¢

Jj=k+1

Since 0 < ¢ < m, this is larger than 0. In other words,
the sign of the k-th coefficient decides the sign of the entire
determinant. Since the former does not depend on &, neither
does the latter, as required.

Finally, we note that the special choices we made along
the way do not limit the generality of the argument. First,
we can restrict ourselves to the vertices of a unit cube,
because no other sets of n+ 2 integer points define matrices
that are relevant. Second, we can assume that this unit
cube is centered at the origin, because translations in R”
do not affect the computation. Third, the final calculation
generalizes to any choice of n + 2 indices.

Foreground. We now switch gears and use the geometric
constructions to show that the digital image and its dual
PL function have identical persistence diagrams. We begin



with the first half (3) of the extended filtration, which
consists of the homology groups of the foregrounds,
U’ = F,, = ¢ ![r;,); see Section II. Correspondingly, we
write D' = §~[r;, 00) for the excursion sets of the dual PL
function. Our goal is to show that we can substitute ¢ for
¢ when we compute the persistence diagram. We prepare
the proof by defining the perturbed image. To begin, we
introduce ¢ : V,(e) — R, defined by setting ¢(V;) = ¢(U;)
for the n-dimensional cell generated by v;. Writing V for
the union of cells in V,(¢g), the corresponding PC function,
¢ : V — R, maps each point x € V to the maximum value
of the cells in V, (&) that share x. Given a threshold, r;, we
introduce the perturbed foreground, Vi = ¢~'[r;, 00).

Excursion SET LEmma. The homology groups of the fore-
ground and excursion set defined by the same threshold are
isomorphic: H(U") = HD?), for 0 <i < m.

Proof: To begin, let D be the nerve of the cells in
V., () with value at least r;. Clearly, Diisa subcomplex of
D, namely the full subcomplex defined by the vertices with
value at least ;. The underlying space of D' is a subset of
D/, and there is a deformation retraction from the latter to
the former; see [7, p. 136]. It follows that both have the same
homotopy type. Similarly, the Nerve Theorem implies that
|D/| and V' have the same homotopy type and, by transitivity,
so do D' and V.

It remains to show that U’ and V' have isomorphic
homology groups. Here, we exploit that the centers of the
n-cubes in the foreground receive larger weights than those
in the background. It follows that the foreground encroaches
upon the background; that is: U’ € V'. Hence, every cycle
in U’ is also a cycle in V. To prove the converse, we note
that V' depends on &, but we dropped the parameter from
the notation because we get identical nerves for all choices
of € in (0,a,). We can therefore choose & as small as we
like, which pushes the cycles in V' arbitrarily close to U'.
Using a compactness argument, for the representatives of
a homology class, we conclude that the cycles also exist
in U'. Finally, U’ and V' could fail to have isomorphic
homology groups if a non-bounding cycle in one space
bounds in the other. This cannot happen for a bounding
cycle in U’ since the chain it bounds also belongs to V'.
In the other direction, we use a compactness argument, as
before.

Background. Here, we are concerned with the second half
(4) of the extended filtration, which consists of the homology
groups of the backgrounds, U; = B,, = (,Zfl(—oo, r;). Note
that U; is a union of n-cubes minus some of their faces
and is therefore not necessarily closed. Thus U; cannot be
represented by a subcomplex of the cubical subdivision
which would induce closed topology. Taking singular
homology defined by finite chains, we get groups that
are isomorphic to the regular homology groups of a

suitable closed subset of U;. Correspondingly, we write
D; = 6 '(—oo,r;] for the incursion set of the dual PL
function defined by r;, and we introduce the perturbed
background, V; = ¢~ (=00, 7;).

Incursion SET LEMmaA. The relative homology groups of
the background and incursion set defined by the same thresh-
old are isomorphic: H(U, U;) ~ HD,D;), for 0 < i < m.

Proof: The first half of the proof concerns the absolute
homology groups of the background and the incursion set.
The analysis is similar to the proof of the Excursion Set
Lemma. Let D, be the nerve of the cells in V,(g) with
value at most r;, and note that it is a full subcomplex of
D. Its underlying space, |D;l, is a subset of D;, and there is
a deformation retraction implying that both have the same
homotopy type. By the Nerve Theorem, |D;| and V; have the
same homotopy type, and by transitivity, so do D; and V;.
Next, we show that U; and V; have isomorphic homology
groups. In contrast to the situation for excursion sets, we
do not have the inclusion of U; in V;, nor do we have
the inclusion the other way round. Indeed, V; is locally
contained where U; is open, and it locally contains where
U; is closed. In spite of this difference, we can exploit the
possibility to choose € > 0 as small as we like, and use
a compactness argument to show that H(U;) and H(V;) are
isomorphic.

The second half of the proof considers five consecutive
terms in the exact sequence of the pair (U,U;), with the
relative homology group in the middle position. In parallel,
we consider the sequence for the pair (D, D;):

H,(Ui) = H,(U) = H,(U,U) = H,1(U) = Hp-1(U)
T T T T T
H,(D;) = Hy(D) > H,[D, D) = H,1(Dy) = H,_i(D).

The above argument implies vertical isomorphisms between
the first two and the last two groups. To prove that each
square in the diagram commutes, it would be convenient if
the vertical isomorphisms were induced by inclusions. They
are not, but we can change the drawing of D so that they
are. Specifically, we take the barycentric subdivision of D,
and we map each vertex to the center of the corresponding
cube, which is the common intersection of n-cubes and
therefore of dimension 0 < k < n. Because of the degenerate
intersections, this can result in identical realizations of
different abstract simplices. More important than not having
a global geometric realization in R” is that now all simplices
of D; are subsets of U;. Using this drawing, all vertical
maps are induced by inclusions. All horizontal maps in the
diagram are induced by inclusions, which implies that all
squares commute. Since the horizontal sequences are exact,
by construction, we now have everything ready to apply
the Steenrod Five Lemma and to conclude that the middle
vertical map is also an isomorphism, as claimed; see [16, p.
140].



Figure 3. The 3-dimensional reconstruction of a root system. Left: the set
of voxels that forms the model of the root system. Right: a more intuitive,
smooth surface representation whose only purpose is the visualization of
the model.

Final step. We are now ready to finish the proof of the Main
Theorem stated in Section I. Consider the filtration defined
by the foregrounds and backgrounds of the first function, and
the filtration defined by the excursion sets and incursion sets
of the second function. Connecting them with the vertical
isomorphisms implied by the above two lemmas, we get

0— ...oHU)Y > ... s> HUU)— ...>0

T T T T
00— ...5HD)—>... sHD,D)— ... >0

The horizontal maps are induced by inclusions. Furthermore,
using the drawing of P described in the proof of the
Incursion Set Lemma, the vertical isomorphisms are induced
by inclusions. It follows that all squares in the diagram
commute. The claim follows by the Persistence Equivalence
Theorem in [7, p. 159].

IV. APpPLICATION

To illustrate the results of this paper, we construct the
dual complex and the dual PL map of the 3-dimensional
image in Figure 3. The set of voxels models a root system
reconstructed from a series of 2-dimensional images [20].
Choosing a voxel near the top as the origin, we compute a
real-valued function that approximates the geodesic distance
(inside the root system) from the origin. The dual complex
and PL map are then constructed as described in Section I.

Using the PL map, we compute the persistence diagram,
which contains a wealth of useful information, as we now

explain. We distinguish between white, gray, and black dots
representing 0-, 1-, and 2-dimensional homology classes,
respectively; see Figure 4. Each white dot in the left triangle
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Figure 4.  The persistence diagram of the geodesic distance function
defined for the 3-dimensional model of a root system in Figure 3.

represents a branch in the root system (a O-dimensional
homology class in the sequence of excursion sets), with
vertical distance from the baseline equal to the length of
this branch. Each gray dot in the same triangle represents
a ceiling depression, perhaps right below a fork. Similarly,
each black dot in the right triangle represents a floor depres-
sion. Since depressions are mere artefacts of the model, it
is not surprising that they are all very close to the baseline.
The dots in the middle diamond represent homology classes
of the model, as opposed to of excursion or incursion sets of
the geodesic distance function. There is only one white dot,
which shows that the model consists of a single connected
component, as it should. All other dots in the square mark
mistakes that happened in the reconstruction process. In
particular, the gray dots represent loops, which are typically
caused by a failure to separate almost crossing branches due
to a lack of resolution. The black dots represent voids, which
are caused by fluctuations of the estimated density function
used in the reconstruction. The horizontal distance from the
axis of the diagram represents the size of the loop or void. In
the case at hand, all dots are close to the axis and therefore
represent only minor flaws in the model. To repair them, we
can simply fill the voids with voxels, but to remove loops
in a manner that reflects the original root system is more
difficult and will be discussed elsewhere.

V. Discussion

The main contribution of this paper is the definition of the
adaptive topology of a real-valued image, represented by the
dual simplicial complex, and a proof that the persistence
diagram of its implied PL function agrees with the one
defined by closed foregrounds and open backgrounds. We
are therefore justified to call it the persistence diagram of
the image. Algorithms that construct the persistence diagram
from the filtration of excursion and incursion sets can be
found in [7, Chapter VII]. Assuming the dimension is a
constant, the number of simplices in the dual complex is at



most proportional to the number of n-cubes. The mentioned
algorithms take worst case time at most proportional to the
cubic power of the number of n-cubes, but are observed to
be much faster in practice. Furthermore, there are sub-cubic
algorithms that are either difficult to implement [15], whose
running time depends on the output [4], or that are restricted
to particular kinds of data [7, Chapter VIIL.2].
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