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Weak multipliers for generalized van der Corput
sequences

par Florian PAUSINGER

Résumé. Les suites de Van der Corput généralisées sont des
suites unidimensionnelles et infinies dans l’intervalle de l’unité.
Elles sont générées par permutations des entiers de la base b et
sont les éléments constitutifs des suites multi-dimensionnelles de
Halton. Suites aux progrès récents d’Atanassov concernant le com-
portement de distribution uniforme des suites de Halton nous nous
intéressons aux permutations de la formule P (i) = ai (mod b)
pour les entiers premiers entre eux a et b. Dans cet article nous
identifions des multiplicateurs a générant des suites de Van der
Corput ayant une mauvaise distribution. Nous donnons les bornes
inférieures explicites pour cette distribution asymptotique asso-
ciée à ces suites et relions ces dernières aux suites générées par
permutation d’identité, qui sont, selon Faure, les moins bien dis-
tribuées des suites généralisées de Van der Corput dans une base
donnée.

Abstract. Generalized van der Corput sequences are onedimen-
sional, infinite sequences in the unit interval. They are generated
from permutations in integer base b and are the building blocks
of the multi-dimensional Halton sequences. Motivated by recent
progress of Atanassov on the uniform distribution behavior of Hal-
ton sequences, we study, among others, permutations of the form
P (i) = ai (mod b) for coprime integers a and b. We show that
multipliers a that either divide b − 1 or b + 1 generate van der
Corput sequences with weak distribution properties. We give ex-
plicit lower bounds for the asymptotic distribution behavior of
these sequences and relate them to sequences generated from the
identity permutation in smaller bases, which are, due to Faure,
the weakest distributed generalized van der Corput sequences.
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1. Introduction

The study of distribution properties of one-dimensional sequences is of
great theoretical and practical importance, since it contributes to a better
understanding of irregularities of distribution in multi-dimensional settings.
Generalized van der Corput sequences are well known examples of low
discrepancy sequences and have been extensively studied over the last 30
years. They are generated from permutations in integer base b and give
rise to multi-dimensional generalized Halton sequences. Recent progress in
the analysis of Halton sequences due to Atanassov [2], see also [16], and
Atanassov and Durchova [3] is the reason why we are interested in linear
permutations of the form P (i) = ai (mod b) for coprime integers a and b.

In a recent study, Faure and Lemieux [12] suggest a construction for
Halton sequences different from the one of Atanassov, which is also based
on linear permutations. This construction, as they show, outperforms clas-
sical Monte Carlo integration in many practical settings. It is based on an
earlier work of Faure [11], in which he gives a computational classification
of multipliers a and observes that multipliers a = 1 or a = b− 1 give weak
results. For an overview of related computational results of various authors
we refer to the concluding section of [11].

In the present paper, we take a closer look at these observations and
develop the theory of Faure [5, 7] further. Based on a new formula (The-
orem 4.1) we apply known methods to determine the explicit asymptotic
distribution behavior of generalized van der Corput sequences that are gen-
erated from a class of linear and linear-like (see definition in Section 2.4)
permutations (Theorem 5.1). We relate our results to an earlier result of
Faure, in which he shows that the original van der Corput sequences (gener-
ated from the identity permutations), are the weakest distributed sequences
within the van der Corput family. His result shows that the asymptotic low-
discrepancy constants of these sequences diverge with increasing base. We
say a set of permutations with this behavior is not distribution preserving.
Our main result implies that linear permutations in base b with a multi-
plier that either divides b + 1 or b − 1 behave asymptotically similar to
original van der Corput sequences in smaller bases, which means that their
asymptotic distribution properties get weaker as the base increases. This
contrasts an earlier result of Faure [8], in which he gives an algorithm that
defines permutations in every base b that behave asymptotically similar to
the original van der Corput sequence in base 2.

Our results have several interesting aspects. First, we establish a new
framework for the exact analysis of the asymptotic distribution behavior
of generalized van der Corput sequences, which is easy to implement on
the computer. Second, we apply this framework to special cases and re-
veal intrinsic distribution properties of certain classes of van der Corput
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sequences. Indeed, our results are independent of any particular choice of
an irregularity measure. Third, our computational results lead to sugges-
tions of how to narrow the search for permutations with good distribution
behavior in high bases (for b larger than 100). Fourth, our results give rise
to several number theoretical questions.

Outline. In Section 2, we review the basic concepts of uniform distribution
theory and define distribution preserving sets of generating permutations.
In Section 3, we review the classical analysis of the diaphony of general-
ized van der Corput sequences due to Faure. Our results are based on a new
variation of a formula for computing the diaphony (Theorem 4.1), which we
derive in Section 4. In Section 5, we prove criteria for identifying multipliers
that lead to sequences with weak distribution properties and give asymp-
totic lower bounds for their distribution behavior. In Section 6, we outline
future directions and open questions. Furthermore, we provide an appendix
with additional computations upon request (florian.pausinger@ist.ac.at).

Notation. For an arbitrary, positive integer b, we denote permutations of
Zb either with P or the small greek letters π and σ. The identity permu-
tation in base b is denoted by idb or id, and the set of all permutations
of Zb is denoted by Sb. If we write σ = (0, 4, 2, 6, 1, 5, 3, 7), we mean that
σ(0) = 0, σ(1) = 4, σ(2) = 2, . . .. If we restrict ourselves to prime bases,
we write p instead of b. We reserve the capital letter X for infinite real
sequences of points in [0, 1[, and use letters J ,P in the calligraphic font
for sets, whereas I, J denote intervals. Furthermore, log always means the
natural logarithm and for i, j ∈ Z, j ⊕ i := j + i (mod b).

2. Basic concepts

In this section, we provide the necessary background for our results.
We introduce the main concepts of uniform distribution theory and define
generalized van der Corput sequences as well as the class of permutations
we study in the remainder of this paper.

2.1. Discrepancy theory. Let I = [0, 1[ be the half open unit interval
and let J ⊂ I. For an infinite sequence X = (xi)i≥1 in I and for N ≥ 1,
let A(J, N,X) denote the number of indices i ≤ N for which xi ∈ J. Let
E(J, N,X) := A(J, N,X)−l(J)N denote the discrepancy function, in which
we write l(J) for the length of the interval. Then the star discrepancy,
D∗N (X), and the extreme discrepancy, DN (X), of the first N points of X
are defined by

D∗N (X) = sup
[0,α[⊂I

|E([0, α[, N,X)|, DN (X) = sup
[α,β[⊂I

|E([α, β[, N,X)|.
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Moreover, we define the diaphony FN (X) of the first N points of X by

FN (X) :=
(

2π2
∫ 1

0

∫ 1

0
|E([α, β[, N,X)|2dαdβ

)1/2
.

With this definition we follow [9], for the classical definition of the diaphony
in terms of exponential sums see Zinterhof [17].

We call a sequence X uniformly distributed if DN (X)
N

N→∞−→ 0 and say it is
a low discrepancy (diaphony) sequence if there exist constants K such that
for all N

D∗N (X), DN (X), F 2
N (X) < K logN.

As a consequence, computing the asymptotic values
t∗(X) := lim sup

N→∞
(D∗N (X)/ logN),

t(X) := lim sup
N→∞

(DN (X)/ logN),

f(X) := lim sup
N→∞

(F 2
N (X)/ logN),

enables us to look for sequences with “best” distribution behavior.
In [6] it is shown that the different measures of irregularity of distribution

of sequences can be bounded by each other. In the one-dimensional case,
we have

D∗N (X) ≤ DN (X) ≤ 2D∗N (X),(2.1)
π2

3 D
3
N (X) ≤ F 2

N (X) ≤ 11DN (X).(2.2)

2.2. Generalized van der Corput sequences. In this paper, we study
well known examples of one-dimensional low discrepancy sequences.

Definition. For a fixed base b ≥ 2 and a permutation σ ∈ Sb, the gener-
alized van der Corput sequence, Sσb , is defined by

Sσb (n) =
∞∑
j=0

σ(aj(n))b−j−1,

where
∑∞
j=0 aj(n)bj is the b-adic representation of the integer n ≥ 1.

Remark 1. For more general definitions using sequences of permutations,
we refer to [5]. Van der Corput considered the sequence that is generated
from the identity permutation in base 2. However, sequences that are gener-
ated from the identity permutations in arbitrary bases are usually referred
to as original van der Corput sequences.

Faure was able to compute the exact asymptotic discrepancy values for
the original van der Corput sequences in [5, 7]:
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t(Sidb ) = t∗(Sidb ) =
{

b−1
4 log b if b is odd,

b2

4(b+1) log b if b is even.

f(Sidb ) =

 π2 b4+2b2−3
48b2 log b if b is odd,

π2 b3+b2+4
48(b+1) log b if b is even.

In 2005, he proved that the original van der Corput sequences show the
worst distribution behavior in the class of all generalized van der Corput
sequences in a certain base b, [10]. It follows that the above relations give
upper bounds for the discrepancy values of any sequence in base b. On the
other hand, speaking of sequences with very good distribution behavior,
the smallest known asymptotic values within the family of generalized van
der Corput sequences given in [5, 7, 8] have recently been improved by
Ostromoukhov [13] to t∗(Sσ60) = 0.222223 . . . and t(Sσ84) = 0.353494 . . . and
by Schmid and the author [14] to f(Sσ57) = 1.13794 . . ..

2.3. Distribution preserving sets of permutations. The results of
the previous section show that even if every generalized van der Corput
sequence is a low diaphony sequence, its diaphony constant may depend
on the base b. Therefore we introduce the following optimality criterion for
countable sets of permutations.

Definition. Let J ⊂ N be a countable set of integers and let P be a
countable set of permutations that contains one permutation σ ∈ Sb for
every b ∈ J . The set P is distribution preserving if there exists a constant
K > 0 such that f(Sσb ) < K for all σ ∈ P.

Example. The set of identity permutations is not distribution preserving,
since for every K > 0, we can find a b such that f(Sidb ) > K. In [8], Faure
defined an algorithm and showed that for every permutation σ computed
with this algorithm t(Sσb ) < 1/ log 2. Note that via Inequality (2.2), we can
immediately conclude that f(Sσb ) < 11/ log 2. Hence, this set is an example
of a distribution preserving set of permutations.

2.4. Linear-like permutations. In order to study linear permutations,
which are of the form P (i) = ai (mod p), it is convenient to define the
wider class of linear-like permutations. Let p be prime, 1 ≤ a ≤ p− 1, and
define the ordered tuples

As := (s+ ai : 0 ≤ s+ ai < p, i ∈ N),
for 0 ≤ s < a. Note that these tuples are pairwise disjoint and their union
covers the entire interval of integers from 0 to p − 1. Let π ∈ Sa. Writing
the ordered tuples in sequence, we get a permutation in base p, namely

P (p, a, π) := (Aπ(0), . . . , Aπ(a−1)).
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Example. Let p = 17, a = 4, then A0 = (0, 4, 8, 12, 16), A1 = (1, 5, 9, 13),
A2 = (2, 6, 10, 14), A3 = (3, 7, 11, 15), and

P (17, 4, id4) = (A0, A1, A2, A3)
= (0, 4, 8, 12, 16, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15).

This class includes all linear permutations in prime base p:

Proposition 2.1. Let p = am + x be prime with 1 ≤ a ≤ p − 1 and
m := bp/ac. For a permutation P ∈ Sp the following is equivalent: (i) P
is linear, with P (i) = ai (mod p), and (ii) P = P (p, a, π) with π(i) = xai
(mod a) and xa = a− x.

Proof. (i)⇒ (ii): Let P (i) = ai (mod p). Since P (i)+a ≡ P (i+1) (mod p)
for all i, P can be written in terms of the tuples As. The order π of these
tuples is given by

maxAπ(s) + a ≡ minAπ(s+1) (mod p).
We have to show that π(s) + xa ≡ π(s+ 1) (mod a). Let π(s+ 1) > π(s).
Then maxAπ(s) = π(s) + am and π(s+ 1)− π(s) ≡ am+ a ≡ p+ xa ≡ xa
(mod p) and hence π(s) + xa ≡ π(s + 1) (mod a). Let π(s + 1) < π(s).
Then π(s) > x and maxAπ(s) = π(s) + a(m − 1), such that π(s + 1) ≡
π(s) + am ≡ π(s)− x (mod p) and hence π(s+ 1) ≡ π(s)− x ≡ π(s) + xa
(mod a).

(ii)⇒ (i): In this case we have to show that maxAπ(s) +a ≡ minAπ(s+1)
(mod p) for π(s) ≡ xas (mod a). With the distinction π(s) < x and π(s) >
x this follows analogously. �

Note that if we are interested in the one-dimensional distribution prop-
erties of permutations P (i) = a0i + a1 (mod p), it suffices to understand
the linear permutations P (i) = P (a, i) = ai (mod p). Due to [5, Théorème
4.4], we can set a1 = 0 without loss of generality. Moreover, due to [15,
Corollary 3], we can exploit the symmetry of these permutations to re-
strict this class further. Therefore, it is enough to study permutations for
1 ≤ a ≤ (p − 1)/2 since for ā := p − a we have that P (a, i) = p − P (ā, i),
which implies that the sequences generated from these permutations have
the same one-dimensional distribution behavior.

3. Classical analysis of diaphony

In this section, we recall important definitions and results of Faure. The
analysis of the diaphony of Sσb is based on the following functions introduced
and explained in [7].

Definition. For σ ∈ Sb, let Zσb := (σ(0)/b, σ(1)/b, . . . , σ(b − 1)/b). For
h ∈ {0, 1, . . . , b − 1} and x ∈

[
k−1
b , kb

[
, where 1 ≤ k ≤ b is an integer, we
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define

ϕσb,h(x) :=
{
A([0, h/b[, k,Zσb )− hx if 0 ≤ h ≤ σ(k − 1),
(b− h)x−A([h/b, 1[, k,Zσb ) if σ(k − 1) < h < b.

The function ϕσb,h is extended to the reals by periodicity.

Note that ϕσb,h(0) = 0 for any σ ∈ Sb and any h ∈ {0, . . . , b − 1}. In [5]
Chaix and Faure introduced a new class of functions based on ϕσb,h:

Definition.
χσb :=

∑
0≤h<h′<b

(ϕσb,h′ − ϕσb,h)2.

Furthermore, they showed that the diaphony of Sσb can be computed
exactly using such functions and they developed a technique to obtain as-
ymptotic values as well.

Theorem 3.1 (Théorème 4.2 in [5]). For all N ≥ 1, we have

F 2
N (Sσb ) = 4π2

∞∑
j=1

χσb (Nb−j)/b2.

Theorem 3.2 (Théorème 4.10 in [5]). Let

γσb := inf
n≥1

sup
x∈[0,1]

 n∑
j=1

χσb (xbj)/n

 ,
then

f(Sσb ) = lim sup
N→∞

(F 2
N (Sσb )/ logN) = 4π2γσb /(b2 log b).

These two theorems are the starting point of our work. The method of
Faure allows an exact investigation of van der Corput sequences that are
generated from arbitrary permutations. However, the separate analysis of
single permutations can be tedious. Therefore, we aim to exploit the struc-
ture of whole sets of permutations to understand the distribution behavior
of the corresponding sequences altogether. This requires a new representa-
tion of χσb -functions, which we introduce in the following section.

4. Formula in terms of difference vectors

In this section, we derive our first main result. We state a formula for
the computation of χσb in Section 4.1 and prove it in Section 4.2. Note that,
even if a big part of this paper is concerned with the study of prime bases,
this formula holds for arbitrary integer bases b ∈ N.
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4.1. Difference vectors and statement of formula. In [5, Propriété
3.3 and Propriété 3.5], it was shown that the basic χσb -functions are contin-
uous and piecewise quadratic on the intervals [(k− 1)/b, k/b], and χσb (0) =
χσb (1). Moreover,

(4.1) χσb (x) = b2(b2 − 1)
12 x2 +Ax+B,

in each interval
[
k−1
b , kb

]
(1 ≤ k ≤ b), where A and B depend only on σ and

k. Therefore, the set {χσb (k/b) : 1 ≤ k ≤ b} determines the function fully.
To derive a formula for χσb (k/b), we consider the set {σ(i) : 0 ≤ i ≤ k−1}

of the first k elements of the permutation σ. We order this set and denote
the ordered vector by Zσk = (z0, . . . , zk−1). For each Zσk , we define the k-th
difference vector Dσ

k := (d1, . . . , dk) such that dh+1 := zh+1 − zh − 1, for
0 ≤ h ≤ k − 1, where zk := b+ z0. Note that since the elements of Zσk are
increasing, we always get non-negative differences. Furthermore, the indices
of elements of difference vectors are always modulo k. The elements of Dσ

k
represent the number of consecutive values of Zb that are missing between
two elements of Zσk .

Example. For π = P (17, 4, id) we have Zπ5 = (0, 4, 8, 12, 16) and
Zπ8 = (0, 1, 4, 5, 8, 9, 12, 16), such that Dπ

5 = (3, 3, 3, 3, 0) and Dπ
8 =

(0, 2, 0, 2, 0, 2, 3, 0).

Example. For every identity permutation and for 1 ≤ k ≤ b, we get
Didb
k = (d1, . . . , dk) with dk = b− k and dh = 0 for h 6= k.

Now, we are ready to state our formula for χσb in terms of difference
vectors:

Theorem 4.1. Let b ∈ N. For all σ ∈ Sb and all integers 1 ≤ k ≤ b, let
Dσ
k = (d1, . . . , dk) be the k-th difference vector of σ. Then

χσb (k/b) = 1
2

(
S1(Dσ

k ) + S2(Dσ
k )− 1

6 (b− k)k(2bk − 2k2 + 3k − 2)
)
,

in which S1(Dσ
1 ) = 0 and

S1(Dσ
k ) =

k∑
h=1

dh

k−1∑
i=1

i2dh⊕i and S2(Dσ
k ) = k2

2

k∑
h=1

(dh + 1)dh.

Before we prove this formula in the following subsection, we state a
corollary that was already found in [5, Propriété 3.5,(ii)].

Corollary 4.1. For arbitrary b and σ,

χσb (1/b) = χσb ((b− 1)/b) = (b2 − 1)/12.
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4.2. Derivation of formula. Throughout this section, we write l(h, h′) =
d instead of l([hb ,

h′

b [) = d
b for the length of these intervals. Moreover,

E

([
h

b
,
h′

b

[
, k, Zσk

)
= δσh,h′ −

dk

b
, with δσh,h′ := A

([
h

b
,
h′

b

[
, k, Zσk

)
.

In [10], Faure proved that

χσb (k/b) = 1
2
∑
h6=h′

(ϕσb,h′ − ϕσb,h)2 = 1
2

b−1∑
d=1

 ∑
l(h,h′)=d

(δσh,h′)2 − d2k2

b

 .(4.2)

One crucial observation in the proof is that
∑
l(h,h′)=d δ

σ
h,h′ = kd for all k and

all d. Formula (4.2) motivates to take a systematic look at the values (δσh,h′)2

(see also [15]). We can visualize the summands δσh,h′ in a (b− 1)× b matrix
Mσ
k = (md,h), in which md,h = δσh,h⊕d. This means that md,h represents the

number of the first k elements of σ that lie in the interval [h, h ⊕ d[, (we
think of [0,1[ as a torus).

0 . . h . . b− 1
1
.
.
d
.
.

b− 1



δσ0,1 . . . . . δσb−1,0
. . . .
. . . .
. δσh,h⊕d .

. . . .

. . . .
δσ0,b−1 . . . . . δσb−1,b−2



∑
row = k

.

.∑
row = dk

.

.∑
row = (b− 1)k

Let

N(Mσ
k ) :=

b−1∑
d=1

b−1∑
h=0

(md,h)2,

then we can rewrite Formula (4.2) as

(4.3) χσb (k/b) = 1
2

(
N (Mσ

k )−
b−1∑
d=1

d2k2

b

)
,

and we see that it suffices to study N(Mσ
k ) for 1 ≤ k ≤ b.

Note that each of the k points contribute a triangle of 1’s of the following
form to the matrix: 

1
. .

1 . 1
. . 1
. . . .
1 . 1 0 1 . 1





738 Florian Pausinger

This can be seen from the fact that there is exactly one interval of length
1, namely [j, j+ 1[, with an additional point, if a point is added at position
j. Moreover there are exactly two intervals of length 2, namely [j − 1,
j + 1[ and [j, j + 2[, containing an additional point, if a point is added at
position j and so on. Hence, every matrix Mσ

k can be seen as a sum of k
such triangles. For each Zσk = (z0, . . . , zk−1) there exists such a matrix. In
that way, each permutation generates a sequence (Mσ

k )bk=1 of matrices (see
example below).

To derive the formula, we consider the blocks of dh + 1 consecutive
columns between the elements zh−1 and zh of Zσk separately. For zh ∈ Zσk let
us pick column j = zh of Mσ

k . Note that this column contains the number
of points in the intervals of the form [j/b, (j⊕ d)/b] with 1 ≤ d ≤ b− 1 and
since j = zh all these intervals contain at least one point. The first interval
with two points is at row d = (dh⊕1 + 1) + 1, the first interval with three
points is at row d = (dh⊕1 + 1) + (dh⊕2 + 1) + 1 and, in the general case,
the first interval with 2 ≤ m ≤ k points is at row d = m+

∑m−1
l=1 dh⊕l. We

can therefore write the sum of squares of elements of any column j = zh
for k = 1 as

∑b−1
d=1m

2
d,j = 12 · d1 = b− 1 and for k ≥ 2 as
b−1∑
d=1

m2
d,j =

k−1∑
i=1

i2(1 + dh⊕i) + k2dh.

For an arbitrary column j with zh−1 < j < zh, let x = zh − j. Due to the
triangle structure, we see that this column is a shifted version of column
zh. The difference is that x many 0’s are inserted on top and in return x
many k’s are deleted on the bottom. Therefore, for k ≥ 2, these columns
contain the same number of values 1, . . . , k − 1 as column zh, so that we
can sum the squares of elements of the zh − zh−1 = dh + 1 many columns
as follows:

zh∑
j=1+zh−1

b−1∑
d=1

m2
d,j = (dh + 1)

k−1∑
i=1

i2(1 + dh⊕i) + (dh + 1)dh
2 k2.

For k = 1 we get
∑b−1
j=0

∑b−1
d=1m

2
d,j = 12 · (d1 + 1)d1/2.

Example. Let b = 7 with σ = (0, 3, 1, 6, 5, 4, 2). For k = 2, we get Zσ2 =
(z0, z1) = (0, 3) and Dσ

2 = (d1, d2) = (2, 3), and for k = 4, we have Zσ4 =
(z0, z1, z2, z3) = (0, 1, 3, 6) and Dσ

4 = (d1, d2, d3, d4) = (0, 1, 2, 0). Then

Mσ
2 =



1 0 0 1 0 0 0
1 0 1 1 0 0 1
1 1 1 1 0 1 1
2 1 1 1 1 1 1
2 1 1 2 1 1 2
2 1 2 2 1 2 2


, Mσ

4 =



1 1 0 1 0 0 1
2 1 1 1 0 1 2
2 2 1 1 1 2 3
3 2 1 2 2 3 3
3 2 2 3 3 3 4
3 3 3 4 3 4 4


.
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For k = 2 and Mσ
2 , we get by inspection N(Mσ

2 ) = 24 · 12 + 9 · 22 = 60 and
by the above formulas:

z1∑
j=1+z0

b−1∑
d=1

m2
d,j = (d1 + 1)12(1 + d2) + 22 (d1 + 1)d1

2 = 12 + 12 = 24,

b∑
j=1+z1

b−1∑
d=1

m2
d,j = (d2 + 1)12(1 + d1) + 22 (d2 + 1)d2

2 = 12 + 24 = 36.

Finally, we take the sum over all k ≥ 2 such blocks of columns to get the
desired formula for N(Mσ

k ):

N(Mσ
k ) =

k∑
h=1

(
(dh + 1)

k−1∑
i=1

i2(1 + dh⊕i) + (dh + 1)dh
2 k2

)

=
k∑

h=1
dh

k−1∑
i=1

i2(1 + dh⊕i) +
k∑

h=1

k−1∑
i=1

i2(1 + dh⊕i) + k2

2

k∑
h=1

(dh + 1)dh

=
k∑

h=1
dh

k−1∑
i=1

i2 +
k∑

h=1
dh

k−1∑
i=1

i2dh⊕i +R2(b, k) + S2(Dσ
k )

= R1(b, k) + S1(Dσ
k ) +R2(b, k) + S2(Dσ

k ),

where S1(Dσ
k ) =

∑k
h=1 dh

∑k−1
i=1 i

2dh⊕i and S2(Dσ
k ) = k2

2
∑k
h=1(dh + 1)dh.

The sums R1 and R2 can be computed without taking any specific structure
of difference vectors into account. We only need

∑k
h=1 dh = b− k:

R1(b, k) =
k∑

h=1
dh

k−1∑
i=1

i2 = 1/6(k − 1)k(2k − 1)
k∑

h=1
dh

= 1/6 (k − 1)k(2k − 1)(b− k),

R2(b, k) =
k∑

h=1

k−1∑
i=1

i2(1 + dh⊕i) =
k∑

h=1

(
k−1∑
i=1

i2 +
k−1∑
i=1

i2dh⊕i

)

=
k∑

h=1

k−1∑
i=1

i2 +
k∑

h=1

k−1∑
i=1

i2dh⊕i = k
k−1∑
i=1

i2 + (b− k)
k−1∑
i=1

i2

= 1/6 b(k − 1)k(2k − 1).

For the special case k = 1, we get N(Mσ
k ) = (d1 + 1)d1/2 = S2(Dσ

1 ).
If we plug the above into Equation (4.3) we obtain Theorem 4.1. This

formula reveals the crucial dependence of the matrices on the structure of
the difference vectors.
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5. Linear-like permutations that are not distribution preserving

In this section we present our second main result. We show for different
sets of linear-like permutations that they are not distribution preserving.
We use these results in two different ways:

• First, we can explicitly determine the asymptotic diaphony con-
stants for every linear permutation with multiplier a that either
divides (p+ 1) or (p− 1).
• Second, we get an estimate how likely we pick a weak multiplier, if
we randomly pick a multiplier in a given (high) base.

In the following we consider permutations of the form
P (am+ x, a, ida) and P (am+ x, a, revida)

for prime bases p = am+ x, with m := bp/ac and
revida := (0, a− 1, a− 2, . . . , 1).

Recall from Proposition 2.1 that for p = am+ 1 we get xa = a− 1 thus
P (am+ 1, a, revida)

is linear. Moreover, for p = am+ a− 1, we get xa = 1 and hence
P (am+ a− 1, a, ida)

is also linear (see Figure 5.1).

Figure 5.1. Relations between the different classes of permutations.

First we study the difference vectors of these permutations in Section 5.1
and 5.2. Then, in Section 5.3, we prove lower bounds for their asymptotic
diaphony values, before we conclude our considerations with two examples
in Section 5.4.

5.1. General structure of difference vectors. Before we apply Theo-
rem 4.1 to permutations of the form

σ1 = P (am+ x, a, ida) and σ2 = P (am+ x, a, revida),
we distinguish three different cases of difference vectors.



Weak multipliers for generalized van der Corput sequences 741

• First, we consider the a special difference vectors generated by the
ordered sets Zl :=

{
z : z ∈

⋃l−1
s=0Aπ(s)

}
, and we denote their cardinality,

which is also the length of the corresponding difference vector, by kl. Note
that for i > j, Ai can be obtained from Aj by adding i− j to each element
and deleting the last element if it is greater than p. Therefore, we can state
a general formula for Dσ1

kl
= (d1, . . . , dkl

) and 1 ≤ h ≤ kl

dh =


max{0, x− l}, if h = kl,
a− l, if h ≡ 0 (mod l) and h 6= kl,
0, if h 6≡ 0 (mod l) and h 6= kl.

This shows that the difference vectors contain m elements (a− l) and pos-
sibly an additional nonzero element (x− l).

We get similar difference vectors Dσ2
kl

= (d1, . . . , dkl
)

dh =


min{x− 1, a− l}, if h = kl,
a− l, if h ≡ 1 (mod l) and h 6= kl,
0, if h 6≡ 1 (mod l) and h 6= kl.

Here we havem elements (a−l) and possibly an additional nonzero element
min{x− 1, a− l} in the difference vectors.
• Second, we consider difference vectors for arbitrary k, with kl < k <

kl+1 and 1 ≤ l ≤ a − 1. Note that if we add elements of Aπ(l) to Zl these
elements are increasing and therefore change the differences in Dσ1

kl
one

after the other. For each element we insert, we add a 0 to the new difference
vector and decrease an existing nonzero element by 1. Let ∆ = k−kl, then
for Dσ1

k = (d1, . . . , dk) we get

dh =


Dσ1
kl

(h+ ∆), if h > ∆ · (l + 1),
a− l − 1, if h ≡ 0 (mod l + 1), h ≤ ∆ · (l + 1),
0, if h 6≡ 0 (mod l + 1), h ≤ ∆ · (l + 1),

where Dσ1
kl

(h+ ∆) denotes the (h+ ∆)-th element of Dσ1
kl
. We obtain Dσ2

k
in a similar fashion.
• Finally, what remains is the case 1 ≤ k < k1. In this case we always

have k nonzero elements in Dσ1
k . Namely

dh =
{
a− 1, if h < k,
p− k − (k − 1)(a− 1), if h = k.

These vectors are the same for σ2.

Remark 2. With these general difference vectors it is possible to explicitly
compute N(Mσ

k ) for any k and any permutation σ1 or σ2. We omit the
general computation and restrict ourselves to the special cases when σi is
linear, (see shaded area in Figure 5.1). The results carry over to the general
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case without problem, however, the length of the computations increase
significantly without any additional insights.

5.2. Special cases. In this section we consider the two special cases when
σ1 or σ2 are linear.

5.2.1. The case σ = P (am+a−1, a, ida). We distinguish three cases
of difference vectors according to the previous section.
• First Case: For p = am+a−1, we have x = a−1, max{0, x−l} = a−1−l

and kl = ml + l with 1 ≤ l < a.
Thus, we always have m + 1 nonzero elements in the difference vectors

Dσ
kl

and

S2(Dσ
kl

) = k2
l

2

 kl∑
h=1

d2
h +

kl∑
h=1

dh


= 1/2 l2(m+ 1)2(a− l)(a(m+ 1)− l(m+ 1) +m− 1).

Furthermore, for y = 1, . . . ,m, with dy·l = (a− l), we can write

dy·l

kl−1∑
i=1

i2dyl⊕i = (a− l)

(a− l)
m−y∑
j=1

(jl)2 + (a− l − 1)((m− y + 1)l)2

+(a− l)
y−1∑
j=1

((m− y + 1)l + jl)2

 .
For dkl

= (a− l − 1) we get

dkl

kl−1∑
i=1

i2dkl⊕i = (a− l − 1)(a− l)
m∑
j=1

(jl)2.

Hence, if we combine the above formulas, we get

S1(Dσ
kl

) =
kl∑
h=1

dh

kl−1∑
i=1

i2dh⊕i

= 1/6 l2m(m+ 1)(2m+ 1)(a− l)(a(m+ 1)− l(m+ 1)− 2).

• Second Case: Now we compute the sums S1 and S2 for arbitrary dif-
ference vectors with kl < k < kl+1 and 1 ≤ l ≤ a − 1. Let ∆ = k − kl.
According to the general formula we have (∆ + 1) nonzero differences with
value (a− l − 1) and (m−∆) differences with value (a− l).
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Therefore we get

S2(Dσ
k ) = k2

2

(
k∑

h=1
d2
h +

k∑
h=1

dh

)
= 1/2 k2(a− l)(m(a+ l + 1) + a− 2k + l − 1).

In order to compute S1 we have to distinguish the two different values of
positive dh more carefully. First, for y = 1, . . . ,∆, we have dy·(l+1) = a−l−1,
such that

dy·(l+1) ·
k−1∑
i=1

i2dy·(l+1)⊕i =

dy·(l+1)

(a− l − 1)
∆−y∑
j=1

(j(l + 1))2 + (a− l)
m−∆∑
j=1

((∆− y)(l + 1) + jl)2

+ (a− l − 1)((∆− y)(l + 1) + (m−∆ + 1)l)2

+ (a− l − 1)
y−1∑
j=1

((∆− y)(l + 1) + (m−∆ + 1)l + j(l + 1))2

 .
Second, for y = 1, . . . ,m−∆, we have d∆·(l+1)+y·l = a− l such that:

d∆·(l+1)+y·l

k−1∑
i=1

i2d∆·(l+1)+y·l+i =

(a− l)

(a− l)
m−∆−y∑
j=1

(jl)2 + (a− l − 1)((m−∆− y + 1)l)2

+ (a− l − 1)
∆∑
j=1

((m−∆− y + 1)l + j(l + 1))2

+ (a− l)
y−1∑
j=1

((m−∆− y + 1)l + ∆(l + 1) + jl)2

 .
What remains is the difference dk = a− l − 1, for which we get

(a− l − 1)

(a− l − 1)
∆∑
j=1

(j(l + 1))2 + (a− l)
m−∆∑
j=1

(∆(l + 1) + jl)2

 .
Thus, we considered all (m+ 1) positive elements of the difference vectors
and therefore all nonzero summands of S1(Dσ

k ). The final expression we
obtain for S1(Dσ

k ) can be found in the appendix.



744 Florian Pausinger

• Third case: For 2 ≤ k < k1, we compute the sums S1 and S2 in an
analogous fashion:

S2(Dσ
k ) = k2

2 ((k − 1)(a− 1)2 + (a(2− k +m)− 2)2 + am+ a− 1− k)

Moreover,
k∑

h=1
dhdh⊕i = (k − 2)(a− 1)2 + 2(a− 1)(a(2− k +m)− 2),

hence

S1(Dσ
k ) =

k−1∑
i=1

i2
k∑

h=1
dhdh⊕i

= −1
6(a− 1)(k − 1)k(2k − 1)(a(k − 2(m+ 1)) + k + 2).

• Summary: For given p and σ as well as any 1 ≤ k ≤ p, we obtain a
value for χσp (k/p) if we plug the according values for S1 and S2, which we
have computed in this section, into the general formula of Theorem 4.1.

5.2.2. The case σ = P (am + 1, a, revida). For p = am+ 1, we have
x = 1, min{x − 1, a − l} = 0 and kl = ml + 1 for 1 ≤ l < a. Note that
the difference vectors are very similar to those of the last section. The only
difference is that the nonzero elements are now followed by zeros, whereas
before zeros were followed by nonzero elements. Again we distinguish three
cases. If we follow the ideas of the previous section we can derive similar
formulas for the sums S1 and S2 (see appendix) and thus, via Theorem 4.1,
also for χσp (k/p).

5.3. Asymptotics of special cases. In this subsection we consider the
asymptotic distribution behavior of the two special classes of linear-like
permutations we have studied so far and bound their asymptotic diaphony
values γσp (see Theorem 3.2) from below. For simplicity, we will not pre-
cisely prove for which k the according χσp -functions attain their maximum.
We only guess the dominant intervals (see definition below) and compute
lower bounds for the asymptotic diaphony values based on these guesses.
However, note that our guesses are motivated by exhaustive computations
and can therefore, without proof, be assumed to give the (almost) exact
asymptotic diaphony values.
Definitions. In order to compute γσp we introduce supporting functions
gσp,n : [0, 1]→ R:

gσp,n(x) = 1
n

n∑
j=1

χσp (xpj).
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P (p, a, π)
p a m π Interval

am+ a− 1 even even ida [k∗, k∗ + 1]
even odd ida [k∗ − 1, k∗]
odd odd ida [k∗ − 1, k∗]

am+ 1 even even revida [k∗, k∗ + 1]
even odd revida [k∗, k∗ + 1]
odd even revida [k∗, k∗ + 1]

Table 5.1. Dominant intervals for the different cases.

Following [5, 7] we examine intervals Inh := [h/pn, (h + 1)/pn], with h ∈
0, . . . , pn − 1, for given gσp,n. We call the interval Inh dominated, if there
exists a set J of integers with h /∈ J such that

gσp,n(x) ≤ max
j∈J

gσp,n((x+ (j − h))/bn),

for all x ∈ Inh. Otherwise the interval is called dominant. It is enough to con-
sider dominant intervals of the functions gσp,n to determine the supremum
of gσp,n+1.
Results. Our computations indicate that the maximum of χσp for σ1 =
P (am+ a− 1, a, ida) is at

k∗ = (da/2e − 1) (m+ 1) + b(m+ 1)/2c,
and for σ2 = P (am+ 1, a, revida) it is at

k∗ = (da/2e − 1)m+ dm/2e.
We guess the dominant intervals of gσp,n accordingly and collect our guesses,
depending on the parity of a and m, in Table 5.1.

Theorem 5.1. Let J be the set of prime numbers.
• For every p ∈ J , take a multiplier 2 ≤ a ≤ p− 2 that divides p+ 1.
Then the set of linear permutations

P = {P (p, a, ida) : p ∈ J , a|(p+ 1)}
is not distribution preserving.
• For every p ∈ J , take a multiplier 2 ≤ a ≤ p− 2 that divides p− 1.
Then the set of linear permutations

P = {P (p, a, revida) : p ∈ J , a|(p− 1)}
is not distribution preserving.

Proof. We split the proof into two parts. First, we show the general idea to
derive a lower bound for the asymptotic constant of a given permutation
in base p. Then we apply this method to derive our explicit bounds.
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For k∗, we consider the interval J = [k∗/p, (k∗ + 1)/p] (or a translation
of it; see Table 5.1) and use Theorem 4.1 to compute the values χσp (k∗/p)
and χσp ((k∗+ 1)/p). Therefore we can compute the coefficients of χσp in the
interval J by applying Equation (4.1) and solving the linear system

χσp (k∗/p) = p2(p2 − 1)
12

(
k∗

p

)2
+A

k∗

p
+B,

χσp ((k∗ + 1)/p) = p2(p2 − 1)
12

(
k∗ + 1
p

)2
+A

k∗ + 1
p

+B,

for A and B. Consequently, due to Theorem 3.2,

γσp = inf
n≥1

sup
x∈[0,1]

 n∑
j=1

χσp (xpj)/n


≥ inf

n≥1

1
n

(
p2(p2 − 1)

12

(
x̄2

0 +
n−1∑
i=1

pix̄2
i

)
+A

n−1∑
i=1

pix̄i + nB

)
=: gσp ,

where x̄i := (k∗ + 1)/pn +
∑n−1
j=i+1(k∗/pj). Finally

f(Sσp ) =
4π2γσp
p2 log p ≥

4π2gσp
p2 log p.

Now we apply this method. Let p = am+a−1 and set k∗ = (da/2e − 1)×
(m+ 1) + b(m+ 1)/2c. For even a = 2s and m = 2t, p = 4st+ 2s− 1 and
k∗ = (s− 1)(2t+ 1) + t.

The above calculations give for n→∞

γσp ≥
s5 − 3s4 + 8s3t5 + 4s3 − 3s2 +

(
20s3 − 12s2) t4

12(2st+ s− 1)

+
(
8s5 + 20s3 − 16s2 + 4s

)
t3 +

(
12s5 − 12s4 + 14s3 − 8s2 + s

)
t2

12(2st+ s− 1)

+
(
6s5 − 12s4 + 12s3 − 6s2) t+ s

12(2st+ s− 1) =: gσp .

We see that the leading terms of gσp are of the form c1 · s2t4 and c2 · s4t2

for some constants c1 and c2. Hence, for

f(Sσp ) ≥
4π2gσp
p2 log p =

4π2gσp
(4st+ 2s− 1)2 log(4st+ 2s− 1) ,

we obtain leading terms of the form s2/ log(4st + 2s − 1) and
t2/ log(4st+2s−1) again multiplied by certain constants. Thus, depending
on whether s ≥ t or t > s, we always get at least one term that grows
beyond any bound if we increase the base, since lim

n→∞
n2

logn2 =∞.
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Exactly the same analysis can be done for the cases when a is even andm
is odd as well as when a is odd and m is odd. Moreover, we can also analyze
permutations P (am+1, a, revida) following the same line of arguments (see
appendix). �

Remark 3. These results also hold for the similar sets of linear-like per-
mutations P = {P (p, a, ida) : p ∈ J , a|(p − 1)} and P = {P (p, a, revida) :
p ∈ J , a|(p+ 1)} (see Remark 2).

Remark 4. The above proof confirms our computational results for these
special cases: For fixed p, if a and m are equal or nearly equal, the corre-
sponding sequences show a better distribution behavior than if one of the
parameters is much larger than the other. If we develop this idea further
and assume for simplicity that a = m = 2s, such that p = 4s2 + x, we see
that the above asymptotic constants are close to π2s2/(12 log 2s) ≈ f(Sid2s).
Hence, f(Sidp̄ ), with p̄ =

√
p− x is a (heuristic) lower bound for the best

permutations of the two classes we have studied in this section.

5.4. Examples. According to the introduction of this section, we can
think of two different ways how to apply Theorem 5.1. We can explicitly
compute asymptotic diaphony constants, which is especially interesting for
sequences in small bases. In high bases, the fact that our sets are not dis-
tribution preserving tells us that the corresponding sequences are weakly
distributed and therefore not interesting for specific applications.

Example. Let p = 19. Then a = 1, 2, 3, 6, 9 are divisors of p− 1 = 18 and
a = 1, 2, 4, 5, 10 are divisors of p+ 1 = 20. Therefore, due to symmetry, we
can explicitly determine the distribution behavior of linear permutations
with multipliers a = 1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17, 18. Furthermore,
let 19 = 4 · 4 + 3, such that a = m = 4 = 2s. With σ = P (19, 4, id4), we
can follow the idea of Remark 4 and get

f(Sid19) = 25.3485 . . . ≥ f(Sσ19) ≥ 2.7394 . . . ≥ f(Sid4 ) = 2.6417 . . . ,

in which we used the results for the original van der Corput sequences of
Faure as well as the bound we computed in Theorem 5.1. To illustrate
Remark 4 further, consider p = 109 = 10 · 10 + 9 = 5 · 21 + 4 with σ1 =
P (109, 10, id10) and σ2 = P (109, 5, id5), then

f(Sσ2
109) ≥ 22.0762 . . . ≥ f(Sσ1

109) ≥ 9.5570 . . . ≥ f(Sid10) = 8.9622 . . .

Example. Let p = 173. The divisors of 172 and 174 let us identify 18 weak
multipliers. The probability of picking a weak multiplier at random is there-
fore approximately 0.1. However, for p = 109 we find 30 weak multipliers
with this method, which yields a probability of 30/109 ≥ 0.25.
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6. Permutation polynomials and future directions

Our main result, Theorem 5.1, is a negative assertion. We show that for
any integer base b, a wide class of permutations, including certain linear
permutations, generate sequences that behave asymptotically similar to
sequences generated from identity permutations in smaller bases. Hence,
these permutations are not suitable for scrambling of Halton sequences in
quasi-Monte Carlo methods.

Future work should concentrate on finding rules for the generation of dis-
tribution preserving sets of permutations, which are amenable for theoreti-
cal investigations of multi-dimensional Halton sequences. Due to promising
numerical results, we wish to introduce and motivate the study of permu-
tation polynomials.

A permutation polynomial (for a given ring or field) is a polynomial that
acts as a permutation P of the elements of the ring. A well known result
of Carlitz [4] about permutation polynomials of a finite field implies that
every permutation P in base p can be represented by a polynomial
(6.1) Pn(x) = (. . . ((a0x+ a1)p−2 + a2)p−2 . . .+ an)p−2 + an+1,

for some n ≥ 0. Defining P0(x) := a0x + a1, we can also express (6.1) as
Pn(x) = (Pn−1(x))p−2 + an+1, for n ≥ 1. The smallest integer n such that
Pn defines P is called the Carlitz rank of P . This notion is introduced and
studied in [1], where also a formula for the number of permutations with
fixed Carlitz rank n < (p− 1)/2 can be found.

In the present paper we study distribution properties of permutations
P = P0(x), where we set without loss of generality a1 = 0. We observed
that the behavior of these permutations heavily depends on the parameter
a0. In [14], we computationally determined the smallest possible asymptotic
constants for sequences in small bases (≤ 50). Even if the best linear permu-
tations generate sequences with a very good uniform distribution behavior,
they do not reach these smallest possible values. Therefore we ask:

• Is it possible to describe sets of permutations with good distribution
behavior in a systematic way with permutation polynomials?
• Are there distribution preserving sets of permutations with fixed
Carlitz rank n?

Remark 5. Computational results indicate a positive answer to the second
question for n = 0 and n = 3 and a negative answer for n = 1 and n = 2.
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