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Abstract

Motivated by an application in cell biology, we describe an extension of the kinetic data struc-
tures framework from Delaunay triangulations to fixed-radius alpha complexes. Our algorithm is im-
plemented using CGAL, following the exact geometric computation paradigm. We report on several
techniques to accelerate the computation that turn our implementation applicable to the underlying bio-
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1 Introduction

Consider a finite set of particles or points in R3, moving in time along continuous trajectories. Interpreting
these points as the centers of moving objects, we are interested in the topological changes the configuration
undergoes. Our interest in this problem originates in a sorting process that segregates cells during zebrafish
development, as studied by Heisenberg and Krens [8]. The sorting process operates on intermixed config-
urations of cells in which different types have different physical properties. One example is a mix of two
cell types, in which the cells of the first type have a strong preference for neighboring cells of the same type
and a strong dislike of exposed boundary, while the cells of the second type have milder preferences and
dislikes. The typical outcome is that the cells of the first type form a ball-like shape that is engulfed by a
spherical shell consisting of cells of the second type (compare Figure 2).

In an effort to formalize the sorting process and to make it amenable to detailed and objective mea-
surements, Heisenberg, Krens, and the authors of this paper introduced the restricted Voronoi medusa as a
mathematical representation. It is a geometric body in 4-dimensional space-time obtained by stacking up
restricted Voronoi regions in R3 [5]. At any moment in time, the Voronoi region of a particle is intersected
with a ball, and the resulting bodies are glued together to form the 4-dimensional structure. Applying per-
sistent homology to the time function on this structure yields fine-grained information about the sorting
process that is difficult to observe directly.

Results. For any moment in time, the dual of the restricted Voronoi tessellation is an alpha shape of fixed
radius. Its evolution under continuous motion of the objects gives rise to a combinatorial representation of
the medusa that carries most of its topological information (see [5]). We make two contributions in this
context:

1. We describe an algorithm that maintains a fixed-radius alpha complex for points moving on piecewise
algebraic trajectories in R3. The algorithm supports insertions and deletions of points and allows for
piecewise algebraic trajectories.

2. We convert the kinetic algorithm into robust and efficient software. Basing the implementation on
the CGAL package for kinetic data structures by Daniel Russel [12], it achieves correctness through
the exact geometric computation paradigm.

Contribution 1 extends previous work for computing kinetic Delaunay triangulations; we believe this exten-
sion to find applications beyond our original problem. The requirement of correctly comparing algebraic
numbers, without tolerance for inaccuracy or approximation in Contribution 2 seriously slows down the
software, even for piecewise-linear trajectories. To counteract, we introduce techniques that speed-up the
computations without sacrificing their correctness. We evaluate the effectivity of these techniques experi-
mentally.

We point out that due to space limitations, this extended abstract omits the algorithm to construct the
medusa out of the kinetic alpha shape. Most steps of this algorithm are straight-forward; special care is
needed, however, when inserting or deleting trajectories during the process. We refer to [10] for a more
extended version of our results.

Outline. Section 2 explains background from computational geometry and topology. Section 3 describes
the kinetic algorithm for fixed-radius alpha complexes. Section 4 describes techniques to speed up the
computations. Section 5 concludes the paper.
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2 Background

We review the fundamental geometric data structures that are required in this work. Voronoi tessellations
and Delaunay triangulations are treated in most computational geometry textbooks, including [2, 3], and
alpha complexes are described in [4, 6]. For the most part, the discussion focuses on the 3-dimensional
case. Most definitions and properties extend to higher dimensions as well as to the plane.

Simplicial complexes. We recall that a k-simplex is the convex hull of an affinely independent set of k+1
points in some Euclidean space. A face is a simplex defined by a subset of the k + 1 points. It is proper if
the subset is different from the set. Reversing the direction, we call the k-simplex a coface of its face. We
define a simplicial complex as a finite collection of simplices that is closed under the face relation, with the
additional property that any two simplices in the collection are either disjoint or their intersection is a face
of both. The boundary of a k-simplex is the collection of its (k − 1)-faces. The simplices of dimension 0,
1, 2, and 3 are referred to as vertices, edges, triangles, and tetrahedra. The star of a k-simplex is the set of
simplices that contain the k-simplex as a face. Noting that the star is in general not closed under the face
relation, we define the closed star as the set of all simplices in the star and of all faces of these simplices.
It is the smallest simplicial complex that contains the star. Finally, if σ is a k-simplex and u is a point that
does not lie in the k-plane of the simplex, then the join, denoted as u ∗ σ, is the (k + 1)-simplex that is the
convex hull of u and the vertices of σ.

It is convenient to also introduce an abstract counterpart to the above geometric concept of a simplicial
complex. Specifically, an abstract simplicial complex consists of a finite set of (abstract) elements and a
collection of subsets that is closed under the subset relation. We may map each element to a point in some
Euclidean space, and each subset to the convex hull of the points that correspond to its elements. If the
dimension of the space is sufficiently high and the points are well chosen, this is a simplicial complex,
which we refer to as a geometric realization of the abstract simplicial complex. Here is an example of
this construction. Consider a finite set, X , of possibly overlapping bodies, and define the nerve as the
collection of subsets of X with non-empty common intersection. We note that the nerve is an abstract
simplicial complex. Indeed, the bodies are the elements, and if A ⊆ X is a set in the nerve, then every
subset of A is also in the nerve. A useful result is the Nerve Theorem [4], which states that if the bodies
in X are convex then every geometric realization of the nerve has the same homotopy type as the union of
the bodies. Intuitively, this means that one can be transformed into the other by continuous transformations
like bending, shrinking, and expanding, but without gluing and cutting.

Voronoi tessellations and Delaunay complexes. Consider now a finite set of points, U , in R3. The
Voronoi region of a point u in U is the set of points x ∈ R3 that have u as the closest point in U :

vor(u) = {x ∈ R3 | ∥x− u∥ ≤ ∥x− v∥, ∀v ∈ U}.

Note that vor(u) is convex. The Voronoi tessellation of U is the set of Voronoi regions of its points. If the
points in U are in general position, by which we mean that no four lie in a common plane and no five lie
on a common sphere, then the Voronoi regions intersect in a rather predictable pattern. Specifically, the
intersection of any two is either empty or a (2-dimensional) polygon, the intersection of any three is either
empty or a (1-dimensional) edge, and the intersection any four is either empty or a (0-dimensional) point.
Furthermore, the intersection of five or more Voronoi regions is necessarily empty.

We get the dual Delaunay complex if we replace each non-empty intersection of Voronoi regions by
the convex hull of the points that generate the Voronoi regions containing the intersection. That complex
equals the nerve of the Voronoi tessellation, geometrically realized in the canonical way. Equivalently, we
may define the Delaunay complex as the set of convex hulls of subsets of points that have the empty sphere
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property. Specifically, this means that there exists a sphere that passes through the points of the subset
and all other points in U lie strictly outside this sphere. We note that the center of this sphere belongs to
the intersection of the corresponding Voronoi regions. Assuming general position, the Delaunay complex
is a simplicial complex, which is generally referred to as the Delaunay triangulation. It is a geometric
realization of the nerve of the Voronoi tessellation.

Restricted Voronoi tessellations and alpha complexes. Fixing a positive radius, α0, we define the re-
striction of a Voronoi region to be its intersection with the closed ball of radius α0 centered at the generating
point:

res(u) = {x ∈ vor(u) | ∥x− u∥ ≤ α0}.

Again, we usually drop U from the notation. The restricted Voronoi tessellation of U is the set of restricted
Voronoi regions of its points. In contrast to the unrestricted case, each restricted Voronoi region is bounded,
and the tessellation covers only the union of balls and not the entire space.

As before, we assume general position so we can dualize by geometrically realizing the nerve. The
resulting simplicial complex is called the alpha complex. Since res(u) ⊆ vor(u), for each point u in U , the
alpha complex is a subcomplex of the Delaunay triangulation. Next, we derive an equivalent condition for
a Delaunay simplex to lie in the alpha complex which is more suitable for computations. Each k-simplex
in the Delaunay triangulation has a unique circumscribed (k − 1)-sphere in its supporting k-plane. We
call its center the circumcenter, its radius the circumradius, the ball in R3 with this center and this radius
the circumball, and the sphere that bounds the circumball the circumsphere of the k-simplex. Note that
the circumsphere is the smallest sphere that passes through the vertices of the k-simplex. We call the k-
simplex short if its circumradius is smaller than or equal to α0. Finally, we call the k-simplex Gabriel if its
circumball has no point of U in its interior.

Lemma 1 (Short&Gabriel Lemma) A simplex in the Delaunay triangulation of U belongs to the alpha
complex, for radius α0, if and only if it is short and Gabriel, or it is the face of another Delaunay simplex
that is short and Gabriel.

The face of a short simplex is necessarily short, but the face of a Gabriel simplex is not necessarily Gabriel.
It follows that all simplices in the alpha complex are short, but not all simplices need to be Gabriel. Also
note that a tetrahedron is in the Delaunay triangulation iff it is Gabriel; therefore, it is in the alpha complex
iff it is short. In our application, we use the restricted Voronoi tessellation to model a set of biological cells
for which the positions of their nuclei are known. Indeed, a cell tends to minimize its surface area and
usually does not grow larger than a certain size. Therefore, a restricted Voronoi region appears to be a good
approximation of the actual cell shape and is still simple enough for our computational purposes.

3 Kinetic Alpha Complexes

In this section, we describe the algorithm that maintains the alpha complex for a fixed radius α0 > 0. We
pay particular attention to the certificates that govern the sequence of operations needed to preserve the
correctness of the structure at all times.

The kinetic framework. The input to our algorithm is a finite set of trajectories, each a continuous
map u : [a, b] → R3 with 0 ≤ a < b ≤ 1. For simplicity, we assume it to be piecewise linear, with
a = t0 < t1 < . . . < tk = b such that there are points aj , bj ∈ R3 for which u(t) = (1 − t)aj + tbj for
tj ≤ t ≤ tj+1. In other words, we can write u(t) = (f1(t), f2(t), f3(t)) such that between tj and tj+1,
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each fi is a polynomial of degree 1. We call t0, t1, . . . , tk the bending events of the trajectory. Furthermore,
we assume that the trajectories do not meet each other, that is, u(t) ̸= u′(t) for all u, u′ ∈ U and all t for
which both trajectories are defined.

Our task is to maintain a data structure that goes from an initial configuration, at time t = 0, to the
final configuration, at time t = 1. For that, the data structure is constructed at time t = 0, and maintained
through a sequence of update operations until the final configuration is reached. It is assumed that the
number of updates is finite, and we call the time of an update an event. Events are detected by defining
suitable certificate functions, also referred to as certificates. At any moment t different from any event, we
have a collection of active certificates, all being non-zero at t. Importantly, they guarantee that as long as
no certificate changes its sign, our data structure remains structurally unchanged. To detect the next event,
the algorithm then finds the smallest root of any active certificate that is greater than t. It handles the event
by updating the data structure and the collection of active certificates. Throughout this paper, we make the
simplifying assumption that all events are distinct, that is, no two events happen at the same moment in
time; see also Section 5.

Maintaining the Delaunay triangulation. Since we need it later, we begin by reviewing the kinetic al-
gorithm for 3-dimensional Delaunay triangulations described in [12]. Besides changes brought about by
insertions and deletions of points, and switches to new trajectory segments, there are only two configura-
tions that trigger a structural change in the triangulation:

• five points of U lie on a common sphere, and the open ball bounded by this sphere contains no points
of U ;

• four points of U lie on a common plane, and one of the open half-spaces bounded by this plane
contains no points of U .

We call each such configuration a degeneracy. Consistent with the above assumption of distinct events, we
assume that at every moment of time there is only one degeneracy, and that each degeneracy lasts only for a
single moment. In other words, we can find a small open interval in time during which the given degeneracy
exists at a single point in time, and it is the only degeneracy that occurs during this interval. We can therefore
study the effect of the degeneracy by considering the non-degenerate local configurations right before and
right after the degeneracy. Consider for example a degeneracy of the first type, which involves five points.
Right before the degeneracy, the five points span two Delaunay tetrahedra with a common triangle, and
right after the degeneracy they span three tetrahedra so that each pair shares a triangle and all three share
an edge. Of course, it can also be the other way round. Importantly, we can transform one configuration to
the other by flipping. In this particular case, we substitute three for two or two for three tetrahedra, calling
the operation a 2-3-flip; see Figure 1. To avoid a case analysis, we represent the triangulation using a vertex

Figure 1: Illustration of a 2-3-flip that alters the triangulation of a triangular double pyramid. On the left, the five
points span two tetrahedra meeting in a triangle. After the flip, the triangle is replaced by an edge and the three
incident triangles that connect the edge to the remaining three points.

at infinity that is joined to every simplex in the boundary of the convex hull of U . Effectively, we embed
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the triangulation on a 3-sphere. This way, we can add the point at infinity to the set of four points forming
a degeneracy of the second type, thus getting a degeneracy of the first type, which is handled by a 2-3-flip,
as described above.

Flip events. The transition of the Delaunay triangulation across degenerate configurations is controlled
by two certificate functions. Let u1, u2, u3, u4, u5 be the five trajectories of the points that span two tetra-
hedra sharing a triangle or three tetrahedra sharing a common edge, as in Figure 1. If one of the tra-
jectories belongs to the infinite vertex then we reorder them such that this trajectory is u5. Let ui(t) =
(f i

1(t), f
i
2(t), f

i
3(t)) be the coordinate functions of the finite points, and recall that the squared norm of this

point is the sum of the squares of its three coordinates. If all five points are finite, we create the certificate

det


1 f1

1 (t) f1
2 (t) f1

3 (t) ∥u1(t)∥2

1 f2
1 (t) f2

2 (t) f2
3 (t) ∥u2(t)∥2

1 f3
1 (t) f3

2 (t) f3
3 (t) ∥u3(t)∥2

1 f4
1 (t) f4

2 (t) f4
3 (t) ∥u4(t)∥2

1 f5
1 (t) f5

2 (t) f5
3 (t) ∥u5(t)∥2

 , (1)

which is a univariate polynomial in t that is zero iff the five points are co-spherical. Assuming the coordinate
functions are linear, the degree of the polynomial is 5. If the fifth point is at infinity, we create the certificate

det


1 f1

1 (t) f1
2 (t) f1

3 (t)
1 f2

1 (t) f2
2 (t) f2

3 (t)
1 f3

1 (t) f3
2 (t) f3

3 (t)
1 f4

1 (t) f4
2 (t) f4

3 (t)

 , (2)

which is zero iff the four point are coplanar. We call the polynomials in (1,2) flip certificates and their roots
flip events.

After having constructed the initial certificates, at time t = 0, the algorithm finds the first positive flip
event. It then performs a 2-3-flip, creating certificates for the (new) simplices inside the double pyramid,
and updating the certificates of the simplices in the boundary of the double pyramid. The updating is
necessary because the star of each boundary simplex changes during the flip. After these steps, both data
structure and certificates are again valid, and the iteration continues with the next flip event.

Radius events. Next, we extend the kinetic algorithm from Delaunay triangulations to alpha complexes.
As before, we use a fixed radius α0 > 0. We represent the alpha complex by equipping each Delaunay
simplex with a flag that indicates whether or not the simplex belongs to the alpha complex. To construct
these flags at time t = 0, we check every Delaunay simplex for being short and for being Gabriel. Following
the Short&Gabriel Lemma in Section 2, we add all Delaunay simplices that are short and Gabriel, as
well as all their faces, to the alpha complex. To maintain the flags, we construct a certificate for each
edge, triangle, and tetrahedron whose roots are the times when the circumradius of the simplex equals α0.
To simplify the discussion, we assume the generic case in which the circumradius changes from strictly
smaller to strictly larger than α0, or vice versa. We call these functions radius certificates and their roots
radius events. Whenever a Delaunay simplex is inserted or deleted, the algorithm also creates or removes
the corresponding radius certificate. The certificate of an edge compares the length to 2α0, and taking
squares, we get a polynomial of degree 2. The radius certificates of a triangle and a tetrahedron are more
complicated, but can be derived from suitable minors of the matrix that defines the circumsphere of the
simplex; see [14] for the formula in the tetrahedral case. We will discuss the triangle case in Section 4.
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After initializing the alpha complex and the certificates, the algorithm looks for the next event. If this is
a flip event, we proceed as described above. In addition, we update the flags that identify the alpha complex
as a subcomplex of the Delaunay triangulation. Because all tetrahedra involved in the 2-3-flip have the same
circumsphere, they are either all short or all non-short. If they are short, all new Delaunay simplices are
added to the alpha complex, and otherwise, none of them is added to the alpha complex. Second, consider
the case in which the next event is a radius event. Let σ be the corresponding Delaunay simplex. If σ
goes from non-short to short, then its proper cofaces are necessarily non-short. We check whether σ is also
Gabriel, noting that this is always the case if σ is a tetrahedron. If so, σ is added to the alpha complex
together will all its faces. On the other hand, if σ goes from short to non-short, then its proper faces are
necessarily short. We remove σ from the alpha complex, unless is was not in the complex even before the
event. If the event causes the deletion of σ from the alpha complex, then this may have consequences for
its faces. In particular, if σ was the last proper coface of τ in the alpha complex, and τ is not Gabriel, then
τ is also deleted from the alpha complex. Afterwards, the algorithm continues with the next event.

Redundancy of Gabriel events. Perhaps surprisingly, flip and radius events suffice to maintain the alpha
complex. Flip certificates monitor when tetrahedra become non-Delaunay, and radius events monitor when
simplices become short or non-short. We do not need certificates that monitor when simplices become
Gabriel or non-Gabriel. To understand why such certificates are not necessary, we call a time t G-critical
for a simplex σ, if at that time, σ changes from Gabriel to non-Gabriel, or vice versa.

Lemma 2 (G-criticality Lemma) Let t be a G-critical time for a short Delaunay edge or triangle. Then
this edge or triangle has a proper coface that is in the alpha complex at time t.

PROOF. Denote the edge or triangle by σ and consider its circumball, Bσ, at time t. No point of U lies in
the interior of Bσ, but there is a point u on the bounding sphere that is not a vertex of σ. The join u ∗ σ is
another simplex in the Delaunay triangulation, and it is a proper coface of σ. It has the same circumball as
σ, which implies that u ∗ σ is short and Gabriel and therefore belongs to the alpha complex at time t.

The lemma implies that when a short edge or triangle changes its Gabriel status, it is a face of a simplex
in the alpha complex. The status change has therefore no impact on its membership in the alpha complex.

Other events. We briefly mention the remaining types of events supported by our algorithm. First, we
consider a bending event, at which a trajectory starts a new segment. Such an event leaves the alpha complex
unchanged, but all flip and radius certificates that involve the coordinates of the corresponding vertex are
recomputed. These are the certificates associated to the simplices in the closed star of the vertex.

Second, we allow for insertions and deletions of points. The two operations are mostly symmetric,
and we only discuss the insertion of a point u. We add u to the Delaunay triangulation by identifying all
tetrahedra whose circumballs contain u, referring to their union as the conflict region of u. Since these
tetrahedra no longer satisfy the empty sphere criterion, we remove them from the Delaunay triangulation,
together with their faces in the interior of the conflict region. Next, we add u and connect it to all simplices
in the boundary of the conflict region. After the operation, these simplices form the boundary of the closed
star of u. Finally, the simplices in the closed star are checked for being in the alpha complex, and their
certificates are created or updated.

4 Implementation and Experiments

In this section, we turn to implementation issues. In particular, we discuss how to implement the algorithm
in a robust manner, we study the effect of practical choices, and we present experimental results obtained
with our software.
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Robust computation. Recall the basic structure of a kinetic data structure as explained in Section 3:
it consists of certificate functions, which are polynomials in t, and each step advances the state to the
smallest root larger than the current time. To maintain the certificates and to advance to the next event, the
algorithm computes and compares real roots of univariate polynomials. These roots are algebraic numbers
— irrational in general — which makes the computations non-trivial. The naive solution of approximating
these roots by inexact floating-point numbers can have unpredictable effects. It is not true that the outcome
is just slightly wrong, e.g. by switching the order of events that happen almost simultaneously, but the
incorrect order can lead to inconsistent configurations, causing program crashes, non-termination, and non-
sensical results. This problem is well-known in geometric contexts [11] and several approaches have been
proposed. We follow the exact geometric computation (EGC) paradigm, popularized by Chee Yap [16]. It
suggests that the basic primitives be mathematically correct, so that an algorithm using these primitives is
in the position to compute provably correct results. Translated to our situation, we require that the events
of our process are handled in the mathematically correct order. The price we pay for this interpretation of
robustness is the burden to compute with algebraic numbers.

We implement our algorithm using the CGAL library1, which is designed in the spirit of the EGC
paradigm. Another aspect of CGAL is its generic programming approach: algorithms access underlying data
structures and primitives through a well-defined interface, so that these layers can be easily replaced with
alternative implementations. More specifically, we make use of the kinetic data structures package [13],
which provides an EGC implementation of kinetic Delaunay triangulations in two and three dimensions.
Internally, the package contains an algebraic kernel, providing the low-level functionality needed to handle
roots of polynomials, and a combinatorial layer, maintaining the data structure and the certificates over
time. As mentioned earlier, we have extended the combinatorial layer to maintaining an alpha complex.

Experimental set-up. We use datasets obtained with the COMPUCELL3D software2, which allows for
the simulation of a 3-dimensional cell segregation process using a Monte-Carlo algorithm for energy min-
imization; see the companion paper [5] for more details. We focus on simulated as opposed to observed
data because they offer a better control of the input size and the direct accessibility of the cell trajectories.
In our particular example, the cells are colored blue or red, each color with probability one half, and the
parameters of the simulation are chosen so that the blue cells eventually engulf the red ones; see Figure 2
for an illustration. We created datasets for several input sizes. In all cases, each trajectory represents the

Figure 2: The restricted Voronoi tessellation at four moments in time. At the beginning, the cells form a cubical
grid (upper-left). The cells move toward the center of the available space, and the blue cells begin to engulf the red
cells (upper-right and lower-left), allowing for satellites while this happens. Finally, the blue cells form a sphere
surrounding a ball of red cells (lower-right).

path of a cell nucleus which exists throughout the entire process. Hence, no new cells are ever inserted after
the start of the process, and no old cells are deleted before the end of the process. The trajectories follow

1Computational Geometry Algorithms Library, www.cgal.org.
2www.compucell3d.org/.
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a global rhythm in which each trajectory starts a new segment at each value in a common sequence of
bending events. In between two bending events, each trajectory is linear. All experiments are performed on
a Intel Core 2 Dual CPU clocked with 2.4 GHz each, with 3 MB of cache size, and 4 GB of total memory.
The code runs under Debian Squeeze, compiled with gcc-4.4.5 and CGAL version 3.9.

INPUT #S TIME IN SEC #EVENTS

traj bends Del Alpha flips rad
20 20 7 740 512 631
20 40 29 1,550 1,011 1,335
20 80 81 3,205 2,019 2,503
20 160 188 6,473 3,978 4,506
10 40 7 487 369 554
20 40 29 1,549 1,011 1,335
40 40 79 3,975 2,874 2,171
80 40 229 9,897 7,856 4,977

160 40 495 21,516 17,667 5,998

Table 1: Columns from left to right: the number of trajec-
tories and bending events per trajectory, the time to main-
tain the Delaunay triangulation and the alpha complex, and
the number of flip and radius events.

INPUT #S TIME IN SEC #CERTIFICATES

traj bends before after before after
20 20 740 361 20,211 10,262
20 40 1,550 770 40,897 20,622
20 80 3,205 1,579 82,287 41,037
20 160 6,473 3,142 163,511 80,489
10 40 487 248 12,932 6,324
20 40 1,549 770 40,897 20,622
40 40 3,975 1,892 105,754 54,426
80 40 9,897 4,882 259,848 139,816

160 40 21,516 10,181 566,589 303,065

Table 2: Third and fourth columns: the time to main-
tain the alpha complex before and after Optimization
1. Fifth and sixth columns: the number of radius cer-
tificates before and after Optimization 1.

INPUT #S TIME IN SEC

traj bends deg 10 deg 6
20 20 361 151
20 40 770 342
20 80 1,579 734
20 160 3,142 1,515
10 40 248 105
20 40 770 344
40 40 1,892 912
80 40 4,882 2,374

160 40 10,181 5,157

Table 3: Timings for maintaining the alpha complex
using a degree 10 versus a degree 6 certificate func-
tion for monitoring the circumradii of triangles.

INPUT #S TIME IN SEC

traj bends kds ak d filter cache
20 20 151 84 72 47
20 40 342 176 152 98
20 80 734 364 310 198
20 160 1,515 731 622 390
10 40 105 55 49 30
20 40 344 177 152 100
40 40 912 458 392 256
80 40 2,374 1,180 1,024 689

160 40 5,157 2,566 2,256 1,481

Table 4: Timings for maintaining an alpha complex
using the kds kernel, the ak d kernel, the latter
with Descartes filtering, and in addition with enabled
cache.

In a first test, we compare the running times for maintaining the Delaunay triangulation and the alpha
complex, see Table 1. Comparing the third and fourth columns of the table, we see that the radius events
slow down the algorithm by more than a magnitude, in spite of the fact that their number is not much larger
than the number of flip events. In the remainder of this section, we explain improvements of our algorithm
aimed at reducing the performance gap between Delaunay and alpha complexes.

Number of certificates. The bottleneck is the construction of radius certificates and the computation of
their real roots. Recall that in our original formulation, we maintain a radius certificate for each edge,
triangle, and tetrahedron. Our first optimization is based on the observation that many of these certificates
are not necessary: if a simplex is short, then all its faces are short, and if a simplex is non-short, then all its
cofaces are non-short.

Optimization 1 Whenever a triangle or tetrahedron becomes short, we remove the radius certificates of
its proper faces, and when an edge or triangle becomes non-short, we remove the radius certificates of its
proper cofaces.
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Of course, this implies that we sometimes have to construct certificates that would otherwise still exist. For
example, we construct the certificate of a triangle at the time its third edge becomes short. On the other
hand, we avoid unnecessary certificates, for instance the certificates of the boundary edges of a triangle that
stays short for the whole simulation. As we see in Table 2, the strategy saves time in practice. We observe
that the constructions of radius certificates and the running time both decrease roughly by a factor of two.

Degree. We turn to the computation of certificates. Assuming piecewise-linear trajectories, the radius
certificate of an edge is a polynomial of degree 2; compare with Section 3. There is a standard construction
of a radius certificate of a tetrahedron, which is a polynomial of degree 8; see [14]. Our interest lies in
the remaining triangle case. The current CGAL implementation computes the squared circumradius of a
triangle ∆ in R3 with an expression of the form

r2∆ =
num2

x + num2
y + num2

z

4den2
, (3)

where den is the determinant of the matrix in (2), and numx, numy, numz are expressions formed by
minors of this matrix. The corresponding certificate,

num2
x + num2

y + num2
z − 4α2

0den
2,

is a polynomial whose degree is 10, which is higher than the degree for the tetrahedron. We replace (3) by
a simpler expression. Writing u, v, w for the three vertices of the triangle, the circumradius can also be
written as

r∆ =
∥u− v∥ · ∥u− w∥ · ∥v − w∥

2∥(u− w)× (v − w)∥
, (4)

a formula that is straightforward to derive using elementary matrix calculus; see also Wikipedia [15].

Optimization 2 Monitor the radius of a triangle using the following certificate function:

∥u− w∥2∥u− w∥2∥v − w∥2 − 4α2
0∥(u− w)× (v − w)∥2.

The degree of this certificate is 6. We see the effect of this improvement in Table 3. The running time
improves by more than a factor of two.

Algebraic kernel. As already mentioned, the CGAL package for kinetic data structures contains an inter-
nal algebraic kernel, which, among other things, is used to isolate the roots of polynomials and sort them
in the event queue. By the generic design of the package, the combinatorial layer communicates with the
kernel via a small and well-defined interface, which makes it possible to replace the algebraic kernel with a
different implementation.

In recent years, a mature and generic algebraic kernel for geometric computations has been developed
[1]. It has been integrated into CGAL and is available since version 3.7 under the name Algebraic kernel d.
We refer to it as the ak d kernel. Both the internal kds and the ak d kernels use subdivision methods for
root isolation, but they differ in the strategy for detecting empty intervals and isolating intervals. The kds
kernel uses Sturm theory [17, §7], while the ak d kernel is based on Descartes’ rule of sign [7], which leads
to a better performance in practice; see [9] for a comparison of various root solvers. The difference between
the third and fourth columns in Table 4 shows that exchanging the kernel yields another improvement of
roughly a factor of two.
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Filter and cache. We get further optimizations by exploiting the special structure of our experimental
setup. For any certificate, we are only interested in the roots between the current time and the next bending
event, when the certificate becomes invalid. Many certificates do not have roots in this interval, but may
have roots outside. The current implementation first computes all real roots and thereafter discards the ones
that lie outside the mentioned interval.

Optimization 3 We use Descartes’ rule of sign to certify the non-existence of roots in the interval until the
next bending event, and if successful, we skip the root isolation algorithm.

The fifth column of Table 4 shows the improvement. More than ninety percent of the certificates that do
not have a root before the next bending event are filtered out. As a final improvement, we avoid isolating
the roots of the same polynomial multiple times.

Optimization 4 We store polynomials together with their real roots in the interval until the next bending
event in cache, which is cleared at the next bending event.

We see in the sixth column of Table 4 that the cache yields another substantial speed-up, which suggests that
certificates are frequently devalidated and revalidated during the runtime of the algorithm. We remark that
also the kds kernel would benefit from caching. Comparing the running times for maintaining the alpha
complex before and after the four steps of optimization, we see that the performance improves by roughly
a factor of 15. Moreover, compared to maintaining the Delaunay triangulation, the optimized algorithm
is slower by a factor up to 4. It is no surprise that the extension to alpha complexes is expensive. After
all, it requires additional radius certificates, which have higher degrees than the flip certificates needed to
maintain the Delaunay triangulation. We have demonstrated that with some algorithmic engineering, the
overhead needed for alpha complexes can be kept within a moderate bound.

5 Discussion

The main contributions of this paper are a kinetic algorithm for alpha complexes and its implementation
with exact arithmetic. There is no theoretical obstacle to generalizing our algorithm and its implementation
to the weighted case, in which different Voronoi regions are restricted to within different size balls. A more
challenging problem is the extension to bodies different than balls, e.g. arbitrarily oriented ellipsoids.

We took a considerable effort to accelerate the implementation of the kinetic alpha complex algorithm,
since this was necessary to compute examples of reasonable size in acceptable time; the instances computed
in [5] each took about 4 hours with our best configuration. Nevertheless, there are opportunities to further
speed up the software, in particular on the level of the algebraic kernel. For example, it would be desirable
to restrict the root isolation method to within a given interval, without wasting any time on roots outside
this interval. We believe that kinetic data structures are an important tool in the topological analysis of
time-varying shapes. We hope that our work on cell segregation initiates further work on such data. To
facilitate this research, it would be useful if our extension of CGAL’s package on kinetic data structures is
transformed from an experimental branch to a redesign of the package. It is desirable that such a redesign
solves the problem of degeneracies in the implementation of kinetic Delaunay triangulations and alpha
complexes. Except for some special cases, the current versions of both algorithms are not guaranteed to
work correctly when two or more events happen at exactly the same time.
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