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Abstract. A chain rule for an entropy notion H(·) states that the en-
tropy H(X) of a variable X decreases by at most ` if conditioned on an
`-bit string A, i.e., H(X|A) ≥ H(X) − `. More generally, it satisfies a
chain rule for conditional entropy if H(X|Y,A) ≥ H(X|Y )− `.
All natural information theoretic entropy notions we are aware of (like
Shannon or min-entropy) satisfy some kind of chain rule for conditional
entropy. Moreover, many computational entropy notions (like Yao en-
tropy, unpredictability entropy and several variants of HILL entropy)
satisfy the chain rule for conditional entropy, though here not only the
quantity decreases by `, but also the quality of the entropy decreases
exponentially in `. However, for the standard notion of conditional HILL
entropy (the computational equivalent of min-entropy) the existence of
such a rule was unknown so far.
In this paper, we prove that for conditional HILL entropy no meaningful
chain rule exists, assuming the existence of one-way permutations: there
exist distributions X,Y,A, where A is a distribution over a single bit,
but HHILL(X|Y )� HHILL(X|Y,A), even if we simultaneously allow for a
massive degradation in the quality of the entropy.
The idea underlying our construction is based on a surprising connection
between the chain rule for HILL entropy and deniable encryption.

Keywords: Computational entropy, HILL entropy, Conditional chain
rule

1 Introduction

Various information theoretic entropy notions are used to quantify the amount
of randomness of a probability distribution. The most common one is Shannon
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entropy, which measures the incompressibility of a distribution. In cryptographic
settings the notion of min-entropy, measuring the unpredictability of a random
variable, is often more convenient to work with.

One of the most useful tools for manipulating and arguing about entropies are
chain rules, which come in many different flavors for different entropy notions.
Roughly, a chain rule captures the fact that the entropy of a variable X decreases
by at most the entropy of another variable A if conditioned on A. For Shannon
entropy, we have a particularly simple chain rule

H(X|A) = H(X,A)−H(A)

More generally, one can give chain rules for conditional entropies by considering
the case where X has some entropy conditioned on Y , and bound by how much
the entropy drops when given A. The chain rule for Shannon entropy naturally
extends to this case

H(X|Y,A) = H(X|Y )−H(A)

For min-entropy (cf. Definition 2.1) an elegant chain rule holds if one uses the
right notion of conditional min-entropy. The worst case definition H∞(X|Y ) =
minyH∞(X|Y = y) is often too pessimistic. An average-case notion has been
defined by [5] (cf. Definition 2.2), and they show it satisfies the following chain
rules (H0(A) is the logarithm of the size of the support of A):

H̃∞(X|A) ≥ H∞(X)−H0(A) and H̃∞(X|Y,A) ≥ H̃∞(X|Y )−H0(A) .

1.1 Computational Entropy

The classical information theoretic notions anticipate computationally unbound-
ed parties, e.g. no algorithm can compress a distribution below its Shannon
entropy and no algorithm can predict it better than exponentially in its min-
entropy. Under computational assumptions, in particular in cryptographic set-
tings, one can talk about distribution that appear to have high entropy only for
computationally bounded parties. The most basic example are pseudorandom
distributions, where X ∈ {0, 1}n is said to be pseudorandom if it cannot be dis-
tinguished from the uniform distribution Un by polynomial size distinguishers.
So X appears to have n bits of Shannon and n bits of min-entropy.

Pseudorandomness is a very elegant and tremendously useful notion, but
sometimes one has to deal with distributions which do not look uniform, but
only seem to have some kind high entropy. Some of the most prominent such
notions are HILL, Yao and unpredictability entropy. Informally, a distribution
X has k bits of HILL-pseudoentropy [13] (conditioned on Z), if cannot be dis-
tinguished from some variable Y with k bits of min-entropy (given Z). X has k
bits of Yao entropy [1,20] (conditioned on Z) if it cannot be compressed below k
bits (given Z), and X has k bits of unpredictability entropy [14] conditioned on
Z if no efficient adversary can guess X better than with probability 2−k given
Z.4 When we talk about, say the HILL entropy of X, not only its quantity k is of

4 Unlike HILL and Yao, unpredictability entropy is only interesting if the conditional
part Z is not empty, otherwise it coincides with min-entropy.
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interest, but also its quality which specifies against what kind of distinguishers
X looks like having k bits of min-entropy. This is specified by giving two addi-
tional parameters (ε, s), and the meaning of HHILL

ε,s (X) = k is that X cannot be
distinguished from some Y with min-entropy k by distinguishers of size s with
advantage greater than ε.

Chain rules for (conditional) entropy are easily seen to hold for some compu-
tational entropy notions (in particular for (conditional) Yao and unpredictabil-
ity), albeit there are two caveats. First, one must typically assume that the
part A we condition on comes from an efficiently samplable distribution, we will
always set A ∈ {0, 1}`. Second, the quality of the entropy (the distinguishing
advantage, circuit size, or both) typically degrades exponentially in `. The chain
rules for (conditional) computational entropy notions H we know state that for
any distribution (X,Y,A) where A ∈ {0, 1}` (X,Y,A) where A ∈ {0, 1}`

Hε′,s′(X|Y,A) ≥ Hε,s(X|Y )− ` (1)

where ε′ = µ(ε, 2`) , s′ = s/ν(2`, ε) for some polynomial functions µ, ν. For HILL
entropy such a chain rule has only recently been found [7,15] (cf. Lemma 2.6),
but only holds for the unconditional case, i.e., when Y in (1) is empty (or at least
very short, cf. Theorem 3.7 [9]). Whether or not a chain rule holds for conditional
HILL has been open up to now. In this paper we give a counterexample showing
that the chain rule for conditional HILL entropy does not hold in a very strong
sense.

We will not try to formally define what constitutes a chain rule for a compu-
tational entropy notion, not even for the special case of HILL entropy we consider
here, as this would seem arbitrary. Instead, we will specify what it means that
conditional HILL entropy does not satisfy a chain rule. This requirement is so de-
manding that it leaves little room for any kind of meaningful positive statement
that could be considered as a chain rule.

We will say that an ensemble of distributions {(Xn, Yn, An)}n∈N forms a
counterexample to the chain rule for conditional HILL entropy if

– Xn has a lot of high quality HILL entropy conditioned on Yn : that is,
HHILL
ε,s (Xn|Yn) = zn where (high quantity) zn = nα for some α > 0 (we will

achieve any α < 1) and (high quality) for every polynomial s = s(n) we can
set ε = ε(n) to be negligible.

– The HILL entropy of Xn drops by a constant fraction conditioned addition-
ally on a single bit An ∈ {0, 1}, even if we only ask for very low quality
entropy: (large quantitative gap) HHILL

ε′,s′ (Xn|Yn, An) < β ·HHILL
ε,s (Xn|Yn) for

β < 1 (we achieve β < 0.6) and (low quality) ε′ > 0 is constant (we achieve
any ε′ < 1) and s′ = s′(n) is a fixed polynomial.

Assuming the existence of one-way permutations, we construct such an ensemble
of distributions {(Xn, Yn, An)}n∈N over {0, 1}1.5n2 × {0, 1}3n2 × {0, 1}.

HHILL
ε′,s′ (Xn|Yn, An) < HHILL

ε,s (Xn|Yn)− 1.25n
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MoreoverHHILL
ε,s (X|Y ) ≈ 3n, which gives a multiplicative gap of (3n−1.25n)/3n <

0.6
HHILL
ε′,s′ (Xn|Yn, An) < 0.6 ·HHILL

ε,s (Xn|Yn) ,

where HHILL
ε,s is high-quality cryptographic-strength pseudoentropy (i.e., for any

polynomial s = s(n) we can choose ε = ε(n) to be negligible) and (ε′, s′) is
extremely low end where ε′ can be any constant < 1 and s is a fixed polyno-
mial (depending only the complexity of evaluating the one-way permutation).
The entropy gap 1.25n we achieve is constant factor of entire HILL entropy
HHILL
ε,s (Xn|Yn) ≈ 3n in X. The gap is roughly the square root of the length

m = 4.5n2 of the variables (Xn, Yn). This can be easily increased from n ≈ m1/2

to n ≈ m1−γ for any γ > 0.
Interestingly, for several variants of conditional HILL entropy, chain rules in

the conditional case do hold. In particular, this is the case for the so called decom-
posable, relaxed and simulatable versions of HILL entropy (cf. [9] and references
therein).

1.2 Counterexamples from Deniable Encryption and One-Way
Permutations

Deniable encryption has been proposed in 1997 by Canetti et al. [3], if such
schemes actually exists has been an intriguing open problem ever since. The only
known negative result is due to Bendlin et al. [2] who show that receiver deni-
able non-interactive public-key encryption is impossible. Informally, a sender
deniable public-key encryption scheme (we will just consider bit-encryption)
is a semantically secure public-key encryption scheme, which additionally pro-
vides some efficient way for the sender of a ciphertext C computed as C :=
enc(pk,B,R) to come up with some fake randomness R′ which explains C as a
ciphertext for the opposite message 1−B. That is C = enc(pk, 1−B,R′), and
for a random B, (C,B,R) and (C, 1−B,R′) are indistinguishable.

We show a close connection between deniable encryption and HILL entropy:
any deniable encryption scheme provides a counterexample to the chain rule for
conditional HILL entropy. This connection has been the starting point for the
counterexample constructed in this paper. Unfortunately, this connection does
not immediately prove the impossibility of a chain rule, as deniable encryption
is not known to exist. Yet, a closer look shows that we do not need all the func-
tionalities of deniable encryption to construct a counterexample. In particular,
neither the faking algorithm nor decryption must be efficient. We will exploit
this to get a counterexample from any one-way permutation.

1.3 Related Work

The concept of HILL entropy has first been introduced by H̊astad et al. [13],
and the conditional variant was suggested by Hsiao et al. [14]. Other notions of
computational entropy include Yao entropy [1,20], unpredictability entropy [14],
and metric entropy [1].
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Chain rules for these entropy notions are known, e.g., Fuller et al. [8] for
metric entropy, where they also show a connection between metric entropy and
deterministic encryption. A chain rule for HILL entropy was proved indepen-
dently by Reingold et al. [15] (it is a corollary of the more general dense model
theorem proven in this work) and Dziembowski and Pietrzak [7] (as a tool for
proving security of leakage-resilient cryptosystems). This chain rule only applies
in the unconditional setting, but for some variants of HILL entropy, chain rules
are known in the conditional setting as well. Chung et al. [4] proved a chain rule
for samplable HILL entropy, a variant of HILL entropy where one requires the
high min-entropy distribution Y as in Definition 2.5 to be efficiently samplable.
Fuller et al. [8] give a chain rule for decomposable metric entropy (which implies
HILL entropy). Reyzin [16] (cf. Theorem 2 and the paragraph following it in [16])
gives a chain rule for conditional relaxed HILL entropy, such a rule is implicit in
the work of Gentry and Wichs [10].

A chain rule for normal conditional HILL entropy (citing [8]) “remains an
interesting open problem”. The intuition underlying the counterexample we con-
struct (giving a negative answer to this open problem) borrows ideas from the
deniable encryption scheme of Dürmuth and Freeman [6] presented at Euro-
crypt 2011, which unfortunately later turned out to have a subtle flaw. In their
protocol, after receiving the ciphertext, the receiver (knowing the secret key)
helps the sender to evaluate a faking algorithm by sending some information
the sender could not compute efficiently on its own. It is this interactive phase
that is flawed. However, it turns out that for our counterexample to work, the
faking algorithm does not need to be efficiently computable, and thus we can
already use the first part of their protocol as a counterexample. Moreover, as we
don’t require an efficient decryption algorithm either, we can further weaken our
assumptions and base our construction on any one-way permutation instead of
trapdoor permutations.

1.4 Roadmap

This document in structured as follows: in Section 2 we recap the basic definitions
required for paper. In Section 3 we then give the intuition underlying our results
by deriving a counterexample to the chain rule for conditional HILL entropy
from any sender-deniable bit-encryption scheme. The counterexample based on
one-way permutations is then formally presented in Section 4.

2 Preliminaries

In this section we recap the basic definitions required for this document. We
start by defining some standard notation, and then recapitulate the required
background of entropy measures, hardcore predicates, and Stirling’s formula.

We say that f(n) = O(g(n)), if f(n) is asymptotically bounded above by
g(n), i.e., there exists a k ∈ N such that |f(n)| ≤ k|g(n)| for all n > k. Similarly,
f(n) = ω(g(n)), if f(n) asymptotically dominates g(n), i.e., for every k ∈ N,
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there exists nk ∈ N, such that for all n > nk we have that kg(n) < f(n). A
function ν(n) is called negligible, if it vanishes faster than every polynomial,
i.e., for every integer k, there exists an integer nk such that ν(n) < n−k for all
n > nk, or alternatively, if n−k = ω(ν(n)) for all k.

By |S| we denote the cardinality of some set S. We further write s
$← S to

denote that s is drawn uniformly at random from S. The support of a probability
distribution X, denoted by supp(X), is the set of elements to which X assigns
non-zero probability mass, i.e., supp(X) = {x | Pr [X = x] > 0}. A distribution
X is called flat, if it is uniform on its support, i.e., ∀x ∈ supp(X),Pr [X = x] =
1/| supp(X)|. Finally, we use the notation Pr [E : Ω] to denote the probability of

event E over the probability space Ω. For example, Pr
[
f(x) = 1 : x

$← {0, 1}n
]

is the probability that f(x) = 1 for a uniformly drawn x in {0, 1}n.

2.1 Entropy Measures

Informally, the entropy of a random variable X is a measure of the uncertainty
of X. In the following we define those notions of entropy required for the rest of
the paper.

Min-Entropy. Min-entropy is often useful in cryptography, as it ensures that
the success probability of even a computationally unbounded adversary guessing
the value of a sample from X is bounded above by 2−H∞(X):

Definition 2.1 (Min-Entropy). A random variable X has min-entropy k, de-
noted by H∞(X) = k, if

max
x

Pr [X = x] = 2−k .

While a conditional version of min-entropy is straightforward to formulate,
Dodis et al. [5] introduced the notion of average min-entropy, which is useful, if
the adversary does not have control over the variable one is conditioning on.

Definition 2.2 (Average min-Entropy). For a pair (X,Z) of random vari-
ables, the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − log E
z←Z

max
x

Pr [X = x|Z = z] = − log E
z←Z

2−H∞(X|Z=z) ,

where the expectation is over all z with non-zero probability.

Similarly to min-entropy, an adversary learning Z can only predict X with

probability 2−H̃∞(X|Z).
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HILL Entropy. While min-entropy guarantees an information-theoretic bound
on the probability of an adversary guessing a random variable, this bound might
not be reached by any adversary of a limited size. For instance, this is the case
for pseudorandom distributions. This fact is taken into account in computational
variants of entropy.

Before formally defining HILL entropy, the computational equivalent of min-
entropy, we recap what it means for two probability distributions to be close in
a computational sense:

Definition 2.3 (Closeness of Distributions). Two probability distributions
X and Y are (ε, s)-close, denoted by X ∼ε,s Y , if for every circuit D of size at
most s the following holds:

|Pr [D(X) = 1]− Pr [D(Y ) = 1] | ≤ ε .

We further say that two ensembles of distributions {Xn}n∈N and {Yn}n∈N are
ε(n)-computationally-indistinguishable if for every positive polynomial poly(n)
there exists n0 ∈ N such that for all n > n0, it holds that Xn ∼ε(n),poly(n) Yn.

Informally, a random variable X has a high HILL entropy, if it is compu-
tationally indistinguishable from a random variable with high min-entropy, cf.
H̊astad et al. [13]:

Definition 2.4 (HILL Entropy). A distribution X has HILL entropy k, de-
noted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y satisfying H∞(Y ) ≥ k
and X ∼ε,s Y .

Intuitively, in the above definition, k can be thought of as the quantity of
entropy in X, whereas ε and s specify its quality: the larger s and the smaller ε,
the closer X is to a random variable Y with information-theoretic min-entropy
k in a computational sense.

A conditional version of HILL entropy can be defined similarly as a compu-
tational analogue to average min-entropy [14]:

Definition 2.5 (Conditional HILL Entropy). Let X,Z be random variables.
X has conditional HILL entropy HHILL

ε,s (X|Z) ≥ k conditioned on Z, if there
exists a collection of distributions {Yz}z∈Z giving rise to a joint distribution

(Y,Z) such that H̃∞(Y |Z) ≥ k, and (X,Z) ∼ε,s (Y,Z).

It has been shown that conditioning X on a random variable of length at
most ` reduces the HILL entropy by at most ` bits, if the quality may decrease
exponentially in ` [7,15,8]:

Lemma 2.6 (Chain Rule for HILL Entropy). For a random variable X
and A ∈ {0, 1}` it holds that

HHILL
ε′,s′ (X|A) ≥ HHILL

ε,s (X)− ` ,

where ε′ ≈ 2`ε and s′ ≈ sε′2.
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2.2 Hardcore Predicates

The counterexample we present in Section 4 is based on the existence of one-way
permutations, which we define next. Intuitively, a permutation is one-way, if it is
easy to compute but hard to invert. For an extensive discussion, see [11, Chapter
2]. The following definition is from [19]:

Definition 2.7 (One-Way Permutation). A length-preserving function π :
{0, 1}∗ → {0, 1}∗ is called a one-way permutation, if π is computable in poly-
nomial time, if for every n, π restricted to {0, 1}n is a permutation, and if for
every probabilistic polynomial-time algorithm A there is a negligible function ν
such that the following holds:

Pr
[
A(π(x)) = x : x

$← {0, 1}n
]
< ν(n) .

While for a one-way permutation, given π(x) it is hard to compute x in its
entirety, it may be easy to efficiently compute a large fraction of x. However, for
our construction we will need that some parts of x cannot be computed with
better probability than by guessing. This is captured by the notion of a hardcore
predicate [12]. We use the formalization from [18]:

Definition 2.8 (Hardcore Predicate). We call p : {0, 1}∗ → {0, 1} a (σ(n),
ν(n))-hardcore predicate for a one-way permutation π, if it is efficiently com-
putable, and if for every adversary running in at most σ(n) steps, the following
holds:

Pr
[
A(π(x)) = p(x) : x

$← {0, 1}n
]
<

1

2
+ ν(n) .

It is well known that a one-way permutation π with a hardcore predicate
p can be derived from any one-way permutation π′ as follows [12]: for r of the
same length as x, define π(x, r) := (π′(x), r) and p(x, r) := 〈x, r〉, where 〈·, ·〉
denotes the inner product modulo 2.

2.3 Stirling’s Formula

Stirling’s approximation [17] states that for any integer n it holds that:

log n! = n log n− n

ln 2
+O(log n) .

In our results we will make use of the following lemma, which directly follows
from Stirling’s formula.

Lemma 2.9. For every integer a > 1 we have that

log

(
an

n

)
= an log a− (a− 1)n log(a− 1) +O(log n) . (2)
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3 A Counterexample from Sender Deniable Encryption

We start this section by defining sender deniable encryption schemes, and then
show how such a scheme leads to a counterexample to the chain rule for condi-
tional HILL entropy.

As the existence of sender deniable public key encryption schemes is an open
problem, this implication does not directly falsify the chain rule. However, it
shows up an interesting connection, and gives the idea underlying our result, as
the proof given in Section 4 was strongly inspired by deniable encryption. We
stress that the main purpose of this section is to give the reader some intuition,
and thus we do not fully formalize all steps here.

3.1 Sender Deniable PKE

Deniable encryption, first introduced by Canetti et al. [3], is a cryptographic
primitive offering protection against coercion. Consider therefore the following
scenario: a sender sends an encrypted message to a receiver over a public chan-
nel. After the transmission, an adversary who wishes to learn the message sent,
coerces one of the parties into revealing the secret information that was used
to run the protocol (i.e., the secret message, the random tape used to generate
keys, etc.). If the parties used a semantically secure but non-deniable encryp-
tion scheme, the adversary can check the consistency of the protocol transcript
(which was carried over a public channel) and the secret information of the
party, in particular learning whether the provided message was indeed the one
being encrypted. A deniable encryption scheme tackles this problem by provid-
ing a faking algorithm. The faking algorithm allows a coerced party to come up
with fake keys and random tapes that, while being consistent with the public
transcript, correspond to an arbitrary message different from the real one. De-
niable encryption schemes are classified as sender deniable, receiver deniable or
bi-deniable, depending on which party can withstand coercion. For our purposes,
we will focus only on sender deniable encryption schemes.

We will think of an encryption scheme as a two-party protocol between a
sender S and a receiver R. The sender’s input as well as the receiver’s output
are messages m from a message space M . For an encryption protocol ψ, we will
denote by trψ(m, rS , rR) the (public) transcript of the protocol, where m is the
sender’s input, and rS and rR are the sender’s and the receiver’s random tapes,
respectively. Let trψ(m) be the random variable distributed as trψ(m, rS , rR)
where rS and rR are uniformly picked in their supports. A sender deniable en-
cryption scheme is then defines as follows [3]:

Definition 3.1 (Sender Deniable PKE). A protocol ψ with sender S and re-
ceiver R, and security parameter n, is a δ(n)-sender-deniable encryption protocol
if:

Correctness: The probability that R’s output is different from S’s input is neg-
ligible (as a function of n).
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Security: For every m1,m2 ∈ M , the distributions trψ(m1) and trψ(m2) are
computationally indistinguishable.

Deniability: There exists an efficient faking algorithm φ having the following
property with respect to any m1,m2 ∈ M . Let rS , rR be uniformly chosen
random tapes for S and R, respectively, let c = trψ(m1, rS , rR), and let
r̄S = φ(m1, rS , c,m2). Then the random variables

(m2, r̄S , c) and (m2, r
′
S , trψ(m2, r

′
S , r
′
R))

are δ(n)-computationally-indistinguishable, where r′S and r′R are indepen-
dent, uniformly chosen random tapes for S and R.

For notational convenience, when considering bit-encryption schemes (i.e.,
M = {0, 1}), we will ignore the last argument of the algorithm φ. Further, we
will call a scheme negl-sender-deniable if δ(n) is some negligible function in n.

Canetti et al. [3] give a construction of sender deniable encryption with
δ(n) = 1/poly(n) for some polynomial poly(n). However, the problem of con-
structing a sender deniable scheme with a negligible δ(n) has remained open
since (recently, Dürmuth and Freeman [6] proposed a construction of negl-sender-
deniable encryption scheme, but their proof was found to be flawed, cf. the fore-
word of the full version of their paper).

3.2 A Counterexample from Deniable Encryption

In the following we explain how a non-interactive negl-sender-deniable encryption
scheme for message space M = {0, 1} would lead to a counterexample to the
chain rule for conditional HILL entropy. Let ψ be the encryption algorithm of
this scheme.

Let B be a uniformly random bit, and let RS be the uniform distribution
of appropriate length that serves as the random tape of the sender. Over this
space, we now define the following random variables:

– Let C be a ciphertext, i.e., C := ψ(B,RS).
– Let R′S be the fake random tapes for the sender, i.e.,

R′S := φ(B,RS , C)

Fix now a transcript c, and let bc be the bit that the receiver outputs for c.
We then define the sets Rc and R′c as follows:

Rc := {rS | c = ψ(bc, rS)},
R′c := {φ(bc, rS , c) | rS ∈ Rc}.

Note that for every r′S ∈ R′c, we have that c = ψ(1− bc, r′S).
In the following we will make two simplifying assumptions about the en-

cryption scheme. We note that we make these assumptions only for the sake of
presentation. The subsequent arguments can still be adapted to work without
them:
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(i) Firstly, for all public keys and all ciphertexts c1, c2, we have that |Rc1 | =
|Rc2 | and |R′c1 | = |R′c2 |. We will call these cardinalities |R| and |R′|, re-
spectively. Put differently, we assume that |R| and |R′| only depend on the
security parameter n.

(ii) Secondly, we assume that φ induces a flat distribution on R′c, i.e., if Z is the
conditional distribution on Rc given c, then φ(bc, Z) is flat on R′c.

We now argue that the gap between HHILL
ε,s (R′S |C) and HHILL

ε′,s′ (R
′
S |C,B) is

very large.5

1. The deniability property implies that no PPT adversary can distinguish
between real and fake random tapes for the sender. Thus, the distributions
(RS , C) ad (R′S , C) are computationally indistinguishable. Therefore,

HHILL
ε,s (R′S |C) ≥ H̃∞(RS |C) = log(|R|).

2. Now consider HHILL
ε′,s′ (R

′
S |C,B). We argue that this value is bounded above

by (roughly) H̃∞(R′S |C,B). This is because given ciphertext c and bit b,
there exists an efficient test to check if r ∈ supp(R′S) or not. Indeed, given a
random tape r, a transcript c and bit b, we can check if r is in the support of
R′S or not as follows: run the sender in ψ with input 1− b and random tape
r. The resulting ciphertext is equal to c, if and only if r lies in the support
of R′S . Thus, for any distribution Z such that (R′S , C,B) and (Z,C,B) are
computationally indistinguishable, it must be the case that the support of
Z is (almost) a subset of the support of R′S . Using further that R′S is flat,
we get that:

HHILL
ε′,s′ (R

′
S |C,B) ≈ H̃∞(R′S |C) = log(|R′|) .

3. To complete the argument, we need to show that the difference between
log(|R|) and log(|R′|) is large. We do so by relating this difference to the
decryption error of the encryption scheme. Consider a ciphertext c that
decrypts to bit b. Consider the set of all random tapes that produce this
ciphertext c. Out of these, |Rc| of them encrypt bit b to c, while |R′c| of them
encrypt bit 1 − b to c. Thus, an error will be made in decrypting c when
the sender wanted to encrypt bit 1− b, but picked its random tape from the
set R′c. Combining this observation with the simplifying assumptions made
earlier, we get that the decryption error of the encryption scheme is given

by |R′|
|R|+|R′| . As the decryption error is negligible by Definition 3.1, we obtain

that:
log(|R|)− log(|R′|) = ω(log(n)) .

Combining the above arguments yields that the difference between HHILL
ε,s (RS |C)

and HHILL
ε′,s′ (R

′
S |C,B) is at least super-logarithmic in the security parameter of

the encryption scheme.

5 For clarity of exposition, we will not detail the relation of the parameters ε, s and
ε′, s′ in this section. The counterexample in Section 4 gives a formal treatment of
all parameters, though. Furthermore, we do not make the public key explicit in the
conditional entropies in the following.
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4 Disproving the Conditional Chain Rule

In the previous section we showed that the existence of sender-deniable bit en-
cryption schemes would disprove the chain rule for conditional HILL entropy.
However, the existence of such schemes is currently unknown. Thus, in this sec-
tion we give a counterexample which only relies on the existence of one-way
permutations.

In the following we let π : {0, 1}∗ → {0, 1}∗ be a one-way permutation with
hardcore predicate p : {0, 1}∗ → {0, 1}. Furthermore, we define the probabilistic
algorithm C, taking a bit b and a parameter n in unary as inputs, as follows:

– C draws 3n distinct elements x1, . . . , x3n
$← {0, 1}n such that p(xi) = b for

1 ≤ i ≤ 2n and p(xj) = 1− b for 2n < j ≤ 3n.
– C outputs π(x1), . . . , π(x3n) in lexicographical order.

We now define two random variables R and R′ conditioned on a value c =
C(1n, b) as 1.5n-tuple in {0, 1}n as follows:

R consists of

– a uniformly random subset of
x1, . . . , x2n of cardinality n,
and

– a uniformly random subset of
x2n+1, . . . , x3n of cardinality
n/2,

in lexicographical order.

R′ consists of

– a uniformly random subset of
x1, . . . , x2n of cardinality n/2,
and

– x2n+1, . . . , x3n,

in lexicographical order.

Having said this, we can now state the main result of this paper. Informally,
it says that R′ conditioned on C has high HILL entropy of high quality, while
additionally conditioning on the single bitB decreases both, quantity and quality
of the entropy by factors polynomial in n:

Theorem 4.1 (Counterexample for a Conditional Chain Rule). Let p be

a (σ(n), ν(n))-hardcore predicate for π, and let B
$← {0, 1} and C = C(1n, B).

Then for all sufficiently large n it holds that:

HHILL
ε,s (R′|C)−HHILL

ε′,s′ (R
′|C,B) >

5

4
n ,

where

ε(n) = nν(n), ε′(n) = 0.99,
s(n) = σ(n)−O(n(σp(n) + σπ(n)), s′(n) = 1.5n(σp(n) + σπ(n)),

where σp(n) and σπ(n) denote the required running times to evaluate p and π,
respectively, on n-bit inputs.

We now briefly want to discuss what the theorem means for the potential
loss of quality and quantity of conditional HILL entropy.
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Loss in Quality of Entropy. Note that ε and s are roughly of the same size
as the security parameters of p, while ε′ and s′ are completely independent
thereof. This means that even if we have (σ(n), ν(n)) = (poly1(n), 1/poly2(n))
for some polynomials polyi(n), i = 1, 2, as is the case for cryptographic hardcore
predicates, the loss of neither of the parameters can be bounded above by a
constant, but is polynomial in n.

Loss in Quantity of Entropy. Despite this large tolerated loss in the quality of
the entropy, Theorem 4.1 says that conditioning on a single bit of extra informa-
tion can still decrease the conditional HILL entropy by arbitrarily large additive
factors by choosing n sufficiently large.

Together this implies that in order to formulate a chain rule for conditional
HILL entropy, neither the loss in quality nor in quantity could be bounded by a
constant, as would be desirable for a reasonable such rule, but must also depend
on the size of the random variable R′ whose entropy one wants to compute.

4.1 Proof of Theorem 4.1

Before moving to the proof of the theorem, we prove that (R,C) and (R′, C) are
computationally indistinguishable.

Lemma 4.2. Let p : {0, 1}∗ → {0, 1} be a (σ(n), ν(n))-hardcore predicate for π.
Then, for R,R′ and C as defined above it holds that:

(R,C) ∼ε(n),s(n) (R′, C) ,

where ε(n) = nν(n) and s(n) = σ(n)−O(n(σp(n) + σπ(n)).

Proof. Assume that there exists an algorithm D running in s(n) steps, for which

|Pr [D(R,C) = 1]− Pr [D(R′, C) = 1] | > ε(n) .

Consider the following series of hybrids. The distribution of H0 is given by
(R′, C0) = (R′, C). Now, when moving from Hi to Hi+1, C is modified as follows:
one element π(xj) of Ci satisfying p(xj) = b, for which xj is not part of R′, is
substituted by a random π(x̄j) satisfying p(x̄j) = 1 − b, and Ci+1 is reordered
lexicographically.

Then, by definition, we have that (R′, C0) = (R′, C). Furthermore, it can be

seen that over the random choices of B
$← {0, 1}, it holds that (R′, Cn) = (R,C).

Furthermore, there exists an i such D can distinguish (R′, Ci) and (R′, Ci+1) with
advantage at least ε(n)/n.

We now show how D (outputting either i or i + 1 for simplicity) can be
turned into an algorithm A of roughly the same running time, which predicts

p(x) given π(x) for a uniformly chosen x with probability at least 1
2 + ε(n)

n . On
input y = π(x), A proceeds as follows:

– A uniformly guesses a bit b′
$← {0, 1};
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– it then computes x1, . . . , x2n−i−1
$← {0, 1}n satisfying p(xj) = b′, as well as

x2n+1−i, . . . , x3n
$← {0, 1} for which p(xj) = 1− b′;

– A then calls D on π(x1), . . . , π(x2n−i−1), y, π(x2n+1−i), . . . , π(x3n), sorted
lexicographically;

– finally, A outputs b′ if D returned i, and 1− b′ otherwise.

It can be seen that A’s input to D is a sample of (R′, Ci), if the secret p(x) = b′,
and a sample of (R′, Ci+1) otherwise for a random b′. It thus follows that A
guesses p(x) correctly with the same probability as D is able to distinguish
(R′, Ci) and (R′, Ci+1) for random bit b. The complexity of A is essentially that
of D, plus that for drawing, on average, 6n random elements in {0, 1}n and
evaluating π and p on those, yielding a contradiction to p being a (σ(n), ν(n))-
hardcore predicate. ut

Proof (of Theorem 4.1). The claim is proved in two steps.

A Lower Bound for HHILL
ε,s (R′|C). By Lemma 4.2 we have that (R,C) ∼ε,s

(R′, C). We thus get that

HHILL
ε,s (R′|C) ≥ H̃∞(R|C) = − log

((
2n

n

)(
n

n/2

))−1
= log

(
2n

n

)
+ log

(
2n2
n
2

)
= 3n+O(log n) ,

where the first equality holds because R is uniformly distributed in its domain
and |R| does not depend on C, and the last one holds by (2). For sufficiently
large n, this expression is lower bounded by 2.95n.

An Upper Bound for HHILL
ε′,s′ (R

′|C,B). Recap that HHILL
ε′,s′ (R

′|C,B) ≥ k if there ex-

ists a distribution X such that (X,C,B) ∼ε′,s′ (R′, C,B), and H̃∞(X|C,B) ≥ k.
To prove our theorem we will now prove an upper bound on HHILL

ε′,s′ (R
′|C,B)

by showing that the conditional average min-entropy of every X satisfying
(X,C,B) ∼ε′,s′ (R′, C,B), is not significantly larger than the conditional av-
erage min-entropy of R′.

Let now X be such that the joint distribution (R′, C,B) and (X,C,B) are
close. We then observe that:

Pr
[
X /∈ supp(R′(c, b)) : b

$← {0, 1}, c $← C(1n, b)
]
< ε′ .

This holds because given (x, c, b), we can efficiently verify if x ∈ supp(R′) or
not: simply check that for exactly n components of x, their hardcore predicate
evaluates to 1 − b, and secondly, that all components of x occur in c. Thus, if
the probability X falling in the support of R′ is more than ε′, there exists an
efficient distinguisher that tells the two distributions apart with advantage more
than ε′.
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Now, call a pair (c, b) bad if the above probability is larger than 1
1.01 , else,

call it good. Then, by Markov’s inequality, the fraction of bad (c, b) is at most
1.01ε′. We then get that:

H̃∞(X|C,B) = − log E
c,b

max
x

Pr [X = x|C = c ∧B = b]

= − log

∑
c,b

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]


≤ − log

 ∑
good (c,b)

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]

+
∑

bad (c,b)

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]


≤ − log

 ∑
good (c,b)

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]


Using that for each (c, b), R′ is uniformly distributed in its support, and that
for good pairs we have that Pr [X ∈ supp(R′(c, b))] > 1− 1

1.01 = 1
101 , we get that

maxx Pr [X = x|C = c ∧B = b] is upper bounded by

1

101
max
r

Pr [R′ = r|C = c ∧B = b] =
1

101

(
2n

n/2

)−1
,

which follows directly from the definition of R′. Using further that a fraction of
at least 1− 1.01ε′ of all (b, c) is good, this now allows us to continue the above
inequality chain by:

≤ − log

 ∑
good(c,b)

Pr [C = c ∧B = b]

101
max
r

Pr [R′ = r|C = c ∧B = b]


≤ − log

(
(1− 1.01ε′)

1

101

(
2n

n/2

)−1)

= 4
n

2
log 4− 3

n

2
log 3 +O(log n)− log

(
1− 1.01ε′

101

)
< 1.65n+O(log n) + 20,

where the last two inequality follow from (2) and our choice of ε′.
Now, for sufficiently large n, we get that this term is upper bounded by 1.7n,

and the claim of the theorem follows. ut

5 Conclusion

Computational notions of entropy have found many applications in cryptogra-
phy, and chain rules are a central tool in many security proofs. We showed that
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the chain rule for one (arguably the most) important such notion, namely HILL
entropy, does not hold.

Given that the chain rule holds and has been used for several variants (like re-
laxed, decomposable or simulatable) of HILL entropy, the question arises whether
the current standard notion of conditional HILL entropy is the natural one to
work with. We don’t have an answer to this, but our results indicate that it is
the only right notion in at least one natural setting, namely when talking about
deniable encryption.

We hope the connection between chain rules for HILL entropy and deniable
encryption we show will open new venues towards constructing the first deniable
encryption scheme.
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