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1 DIFFRACTION GRATING THEORY
We design nanostructures as tilings of fundamental unit cells. As-
suming sufficiently many repetitions, the optical behavior of such
structures is well approximated by an infinite tiling of the unit cell.
A fundamental result from electromagnetic theory – commonly
referred to as the Bloch Theorem [Bloch 1929] – states that the fields
around such a periodic structure exhibit the same periodicity [Eckart
1933]. As an immediate consequence, the possible propagation di-
rections of certain light waves are restricted to a discrete set. This
effect explains the behavior of our design in the terms of diffraction
gratings, which split incoming light into various beams traveling
in different directions. These directions can be fully characterized
by the lateral size L of the unit cell and do not depend on the actual
structures; as illustrated in Figure 1, they are given by the grating
equation

sin(θm ) − sin(θi) =
mλ

L
(1)

where for a given diffraction orderm ∈ {. . . ,−2,−1, 0, 1, 2, . . .} and
incident light at angle θi, them-th order beam direction is given by
the angle θm as shown in Figure 1 (left). Note that this is a general
result and we do not employ scalar diffraction theory in this work.
Diffraction gratings act as a dispersive optical element since the
diffracted beam angles vary with the wavelength λ of the incident
light. It is this property, which gives rise to the rainbow colors that
can be observed when a beam of white light is diffracted; see Figure 1
(center) for an illustration.

Depending on θi, λ, and – most importantly – L, only a subset of
ordersm can satisfy Equation (1), i.e., we have⌈

−L

λ

(
1 + sin (θi)

)⌉ ≤ m ≤
⌊
L

λ

(
1 − sin (θi)

) ⌋
(2)

with the ceiling and floor functions ⌈·⌉ and ⌊·⌋. Thus, the number
of possible diffracted directions increases with size L of the unit cell
and the frequency f = c/λ of the incident light.

1.1 Diffraction Efficiency
While the simple relationship in Equation (1) determines the angles
of the diffracted orders, the actual amount of light that is transmitted
into the various orders depends on the actual unit cell structures and
requires a much more elaborate treatment. It is usually measured
as the ratio of the incident spectral power Pi(θi, λ) and the spectral
power P(θm , λ) of light diffracted into orderm and it is commonly
denoted as (absolute) diffraction efficiency η, i.e.,

η(θi,θm , λ) =
P(θm , λ)
Pi(θi, λ)

(3)
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Fig. 1. Diffraction grating theory. (Left) Depending on the incident angle θi and the ratio of grating period L and wavelength λ, incident light is split into
a varying number of diffraction orders with different directions (e.g., θ1 for order 1). (Center) The amount and direction of diffraction orders vary with
the incident wavelength and create the typical rainbow patterns; here, arrow lengths indicate the orders and carry no physical meaning. (Right) Due to
the reciprocity property of diffraction gratings, the grating efficiencies (resp. transmittance ratios) for the standard setting η(θi, θ3, λ) and the reciprocal
setting η(θ3, θi, λ) are identical.

with 0 ≤ η ≤ 1. A diffraction grating is fully specified by the
knowledge of η. Any incident spectral light distribution Pi(θi, λ) can
be transformed to an outgoing spectral light distribution P(θ , λ) via

P(θ , λ, Pi) =
∫

η(θi,θ , λ) Pi(θi, λ) dθi

=
∑

m∈M (θ,λ)
η(θi(m,θ , λ),θ , λ) Pi(θi(m,θ , λ), λ)

(4)

where the summation is over those orders M(θ , λ) such that the
m-th order exists and coincides with direction θ . θi(m,θ , λ) denotes
the corresponding incident direction according to Equation (1). Note
that P(θ , λ, Pi) describes the full spectral composition of diffracted
light into direction θ . The corresponding observable color c(θ , Pi)
can be readily computed with the help of standard color matching
functions m(λ), i.e.,

c(θ , Pi) =
∫
λ
m(λ) P(θ , λ, Pi) dλ (5)

In this and the following sections we assume unpolarized light,
i.e., all quantities are averaged over all polarizations; details on the
treatment of the polarized components can be found in Section 5 of
the main document.

1.2 Reciprocity
For a given structure, we aim to compute the observable colors for a
set of outgoing directions. For this, we approximate the diffraction
efficiency function η by sampling both the directions and wave-
lengths. To achieve this, one chooses a set O of outgoing directions
and computes η(θi,θ , λ) for all θ ∈ O and all compatible incident
angles θi according to Equation (1). For each of these computations,

the interaction between the incident light and the structure has to
be simulated. As described in Section 5 of the main document, the
100s of nanometer-scale features of our structures require wave
and polarization effects to be taken into account and we employ
full electromagnetic simulation. In such a setting, different incident
light directions have to be simulated separately. However, the gen-
erally large number of compatible incident angles θi requires an
impractically large amount of simulations.

By exploiting a fundamental property of diffraction gratings, this
issue can be mitigated by exchanging the role of incident and out-
going light. For the materials and light conditions of our setting,
diffraction gratings exhibit a fundamental property – commonly
referred to as reciprocity –, which states that the diffraction effi-
ciency η is symmetric in incident and outgoing angle. As shown in
Figure 1 (right), this can be visualized by comparing two settings:
i) the standard setting with incident light direction θi and outgoing
light direction θm of them-th diffraction order; and ii) the reciprocal
setting with incident light direction θm instead of θi. In the latter
case, there exists a −m-th diffraction order with direction θi and
reciprocity states that the efficiencies of both settings are identical.
Reciprocity allows us to directly compute efficiencies η(θi,θ , λ)

for outgoing direction θ and all compatible incident angles θi by
simulating light incident from direction θ and with power Pi(θ , λ)
and by measuring the powers P(θi, λ) for all θi. This leads not only
to a significant reduction of required simulation, but also avoids
problematic incident light directions for our simulation method (see
Section 5.2.2 of the main document).
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2 COLORIZATION OBJECTIVE
Since we aim to realize a desired surface colorization, our design
objective is stated in terms of color differences. In a continuous
setting, a desired colorization can be stated as a target color func-
tion c̆(θ ) given for all possible viewing directions θ . Formulating this
design task as an optimization problem, we aim to find a nanostruc-
ture, whose simulated colors c(θ ) reproduce the target colors c̆(θ )
as close as possible. In other words, we want to minimize the total
color difference d(c(θ ), c̆(θ )) over all viewing directions. This setting
poses four immediate design choices: i) which distance measure to
choose to quantify the difference between colors; ii) how to aggre-
gate these individual differences over all viewing directions; iii) how
to discretize the wavelengths; and iv) how to discretize the viewing
directions to enable a numerical treatment. In the following, we
describe our design rational for each of these choices.

2.1 Color Difference
Since we perform electromagnetic simulations, we obtain spectral
power distributions as results. The color of such a spectral power
distribution is determined by its tristimulus values X , Y , and Z ,
which mimic the human eye’s response to light of such spectral
distribution. For the three types of cone cell in the human eye,
their corresponding spectral sensitivity functions x̄(λ), x̄(λ), and
x̄(λ) quantify the cells’ responsitivity for each wavelength of the
observed light. Thus, the tristimulus values X ,Y ,Z are obtained as

©­«
X
Y
Z

ª®¬ = K∫
λ I (λ)ȳ(λ) dλ

∫
λ
τ (λ)I (λ) ©­«

x̄(λ)
ȳ(λ)
z̄(λ)

ª®¬ dλ, (6)

where the τ (λ) denotes the spectral transmittance of our nanostruc-
ture, I (λ) the spectral power distribution of the illuminant, and K a
scaling factor. Considering the tristimulus values as components
of a three-dimensional vector gives rise to the CIEXYZ color space
(as long as one of the CIE standard observers is used as spectral
sensitivity functions – in which case they are also referred to as
color matching functions).

Through transformation functions, it is possible to transform the
CIEXYZ values into coordinates of one of the many existing color
spaces. Generally, these color spaces have specialized purposes, such
as the sRGB color space for electronic displays, the CMYK color
space for printing, or the perceptually uniform color spaces CIELAB
and CIELUV. In the latter, Euclidean distances between different
color values correlate well with the perceived color differences
of a human observer. More advanced perceptually correct color
differences were developed over the decades and the latest standard
is given by the CIELAB Delta E∗ variant CIEDE2000.
In the context of our method, all these color spaces and color

difference functions can be used. The only requirement is the ex-
istence of a derivative of all associated transforms and difference
computation. This is fulfilled by all aforementioned color spaces and
differences function as they are given as analytic expressions. In
our reported results, we employed simple Euclidean distance in the
sRGB color space out of convenience. With increased fabrication
precision, the benefit of using more advanced variants will become
perceivable.

2.2 Difference Aggregation
Given the color differences d(θ ) for each viewing direction θ , an
aggregated value φ is required to judge the overall quality of the
associated nanostructure (in term of the colorization objective). We
use the 1-norm for this purpose (i.e., φ =

∫
θ d(θ ) dθ ) but any other

suitable Lp norm can be used.

2.3 Wavelength Discretization
In a numeric setting, the integrals in Equation (6) have to be ap-
proximated by finite sums. Thus, we need to find a suitable sets of
wavelengths for which the spectral transmissions of the nanostruc-
tures are simulated. Due to the low-index dielectric materials used
for our structures and due to the absence of photonic crystal behav-
ior, we do not observe strong resonances across the visible spectrum.
Accordingly, the spectral power distributions are sufficiently smooth
to be well approximated by a few equidistant samples across the
spectrum. In all our results, we used a spectral sample spacing of
20 nm.

2.4 Viewing Direction Discretization
In order to treat the aforementioned color differences in a compu-
tational setting, the range of viewing angles has to be discretized.
For the range of viewing directions, for which target colors were
defined, we used equidistantly placed samples. Thus, the difference
aggregation is approximated by a finite sum, i.e.,

φ =
∑
θ̆k

∥ c̆( ˘θk ) − c(( ˘θk )) ∥ ≈
∫
θ
d(θ ) dθ .

A detailed formulation of the objective function is given as Equa-
tion (4) of the main document. The number of angular samples is
given by Ntarget in Table 4.
For visualization purposes – such as the results in Figure 7 in

the main document –, we might also be interested in obtaining
colors for viewing directions that do not coincide with on the target
directions ˘θk . For this purpose, we do not interpolate the colors
but the spectral power distributions instead. This is necessary due
to specific properties of our simulation setting, where different
wavelengths travel in different directions. See Sections 3 and 5 for
details.

3 SOURCE DEFINITION
Light is injected into our simulation along planar surfaces above
and below the unit cell (see ΩS in Figure 4 of the main document).
Conventionally, short light pulses are utilized to simulate the struc-
ture’s response to a wide range of frequencies. In this setting, the
recorded signals are transformed into the frequency domain via
some variant of a discrete Fourier transform (DFT). As explained
in Section 5.2.4 of the main document, this approach is not suitable
for our setting due to memory limitations and/or spectral leakage
issues. Since we need only a small number of wavelengths for the
final color transform – as described in Section 2.3 –, we use a set of
superimposed continuous wave sources, which excite each of these
frequencies separately. During simulation, these superposed fields
are propagated simultaneously.
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Fig. 2. Numerical grid dispersion. The Bloch boundary conditions allow the
choice of a propagation direction θi,ref for only a single wavelength (here
550 nm). The finite-difference time-domain (FDTD) method then forces
light waves with a different wavelength to propagate along different direc-
tions θi(λ).

For each frequency, we inject light as a linearly polarized plane
wave source at an incident angle θi. This is achieved by defining
a time-varying source current JE or JH – depending on the po-
larization – that mimics the effect of an oblique plane wave pass-
ing through the planar source area at y = yS, i.e., JE (x ,yS, z, t) =
JH (x ,yS, z, t) = (0, 0, e2πikx xe−iωt ). The corresponding source in-
tensities are η/8 and 1/(8η) for TE and TM polarization, due to
|E|2 = (η/2)2 |JE |2 and |H|2 = 1/(2η)2 |JH |2. These intensities sup-
ply the denominator for the transmittance definition in Equation 3
of the main document.
Since we assume an infinite tiling of unit cells across the sub-

strate, we utilize lateral periodic boundary conditions during the
simulation. For plane waves with oblique incidence, there exists a
phase shift across the unit cell when looking at the wave’s phase on
the left and the right boundary of the simulated unit cell; for a later
unit cell length L the phase shift is given by e2πikx L where kx is
the x-component of the wave’s wave vector k.

A consequence of using such a (periodic) Bloch boundary condi-
tion in an finite-difference time-domain (FDTD) simulation is that
all kx are effectively set to the same value. This can be considered a
limitation of the FDTD method and it leads to an undesired deflec-
tion of waves. Although kx is held fixed for waves of all frequencies,
the length of their wave vectors k is still determined by their indi-
vidual frequencies f , i.e., ∥ k ∥ = k = 2π f /c , where k denotes the
wavenumber. Thus, the y-component ky of the wavevectors have
to adapt according to k = ∥ (kx ,ky ) ∥.
The result is an angular discrepancy between plane waves of

different frequency that are simulated together.We are free to choose
a reference plane wave source with frequency fref that propagates
in its intended direction θi,ref, i.e.,

kx =
2π fref
c

sin(θi,ref).

All other plane waves sources with frequencies f are forced to emit
their light in the direction

θi(f ) = arcsin
(
fref
f

sin
(
θi,ref

) )
(7)

as shown in Figure 2. This so-called numeric grid dispersion is a
fundamental limitation of the FDTD method and far-field intensities
have to be angle-corrected by a suitable interpolation.

The broadband fixed-angle source technique (BFAST) would allow
multiple frequencies to propagate in the same direction by refor-
mulating the FDTD algorithm itself [Liang et al. 2014]; however we
forgo its use because it becomes unstable in certain settings and it
would further complicate the gradient computation.

Another downside of FDTD stems from the incompatibility of
periodic boundary conditions and the absorbing perfectly matched
layer (PML). At grazing incidences, the PMLs reflect light back into
the unit cell which corrupts the intensity results. Our strategy of
using a reciprocal simulation setting becomes vital in this aspect:
as explained later in Section 7 of the main document, we limit our
colorization objective – and thus our reciprocal incidences – to
viewing directions in an unproblematic range of ≈ ±45° around
the surface normal. This would not be possible in a non-reciprocal
setting with wide-angle illumination.
Further care has to be taken that PML reflections are not unin-

tentionally caused by the aforementioned angle discrepancy. If, for
example, blue light at 450 nm is injected at 40°, red light at 700 nm
would propagate in the same simulation at a grazing angle of 89°!
This poses an essential problem for our signal reconstruction ap-
proach as described in Appendix A: the contribution due to the PML
reflection of the red light corrupt recorded fields, which causes the
reconstruction to fail. Thus, every light component that would cause
such reflections must not be injected into the simulation in the first
place. Therefore, selective frequency culling has to be performed
for each simulation to ensure that only frequencies of interest are
injected. This concept is illustrated in Figure 3 where no samples
are placed in the red exclusion regions.

4 PHASE ALIGNMENT
Regarding the computation of AᵀE, we have to take care of a subtle
issue regarding the relative phases of both fields. While the global
phase is irrelevant for computingφ from the near-field Ez orHz , this
is not the case for the gradient. If we record the fields after a total
simulation time Ttotal, each frequency component A(x, f ) of the
adjoint field will be recorded for a current source e−iωTtotalJA(x, f )
instead of JA(x, f ). This phase difference corrupts the gradient and
as a remedy, we simply correct the individual frequency components
of current sources with a phase correction term eiωTtotal . Out of
convenience, we apply this correction to all sources – even in the
forward setting where it does not matter.

5 INTENSITY INTERPOLATION
In order to compute the objective functionφ in the reciprocal setting,
we require the knowledge of the outgoing spectral light distribu-
tions L(θ̆k , λ) for a set of outgoing directions θ̆k along which we
compute the colors (see Equation 4 of the main document). However,
due to the spectral angle discrepancy as given in Equation (7), it is

ACM Transactions on Graphics, Vol. 37, No. 4, Article 159. Publication date: August 2018.
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Fig. 3. Angular interpolation.We interpolate the transmittances at the target
direction θ̆ s (black crosses) from the spectral samples (colored dots). The
propagation directions θi(f ) for individual simulations are depicted as gray
lines and we maximize their reuse for all spectral components. Note that
our interpolation avoids PML reflections (red regions). See Section 5 for
details.

not possible to propagate all light frequencies in the same direction
when simulating them simultaneously in one FDTD run. This leaves
us with two options:

(1) For each outgoing direction θ̆k , we simulate all frequencies
separately. Since each simulationwould only propagatemono-
chromatic light, we can choose its propagation direction ex-
actly. Note that this approach does not require the aforemen-
tioned frequency culling. The amount of required simulations
is the product of the number of outgoing directions and the
number of simulated frequencies.

(2) We select a set of alternative outgoing directions and simu-
late for each direction all those frequencies that do not need
to be culled. Afterward, we interpolate the results of these
simulations to obtain the desired outgoing light distributions.

Option 1 is impractical due to the vast number of required sim-
ulations – up to several hundred in our setting. Thus, we choose
the alternative option and employ a simple scheme to reduce the
amount of required simulations as shown in Figure 3:

• For the largest wavelength λmax, we choose outgoing di-
rections ϑκ (λmax) that lie halfway between the target di-
rections θ̆k . After simulation, the resulting outgoing spec-
tral light distributions L(ϑκ (λmax), λmax) can be used to ob-
tain L(θ̆k , λmax) through linear interpolation from its nearest
neighbors. This is visualized at the λ = λmax = 700 nm line of
Figure 3, where the values at the target directions θ̆k (i.e., the
black crosses) can be interpolated from the simulated values
at the simulated directions ϑκ (λmax) (i.e., the red dots).

• For the next smaller wavelength λ, we reuse all previous ϑκ .
This does not require frequency culling since the actual prop-
agation angles decrease together with the wavelength. Ad-
ditional outgoing directions are added if the original target
directions θ̆k are not covered anymore (e.g., the left- and right-
most additional directions on the λ = 500 nm line of Figure 3).

When simulating one of these additional directions, the pre-
vious wavelengths are culled, since they are not needed for
the interpolation and they might be located in the exclusion
region where they cause PML reflections.

• This process is iterated until all spectral samples are covered
and all required outgoing spectral light distributions L(θ̆k , λ)
are interpolated from the corresponding L(ϑκ , λ). Note that
all ϑκ and the corresponding interpolation weights are inde-
pendent of the structure and can be computed in a preprocess.

In the context of Figure 3, each simulation corresponds to one out-
going direction (gray line) and propagates all unculled spectral com-
ponents (colored dots) along it. Note that due to the varying number
of frequencies for different simulation, an optimal reconstruction
has to be precomputed for each frequency count (see Appendix A
of the main document).

6 MONITOR PLANE INTENSITY
The total intensity Inf, total(f ) of the near field as mentioned in Sec-
tion 5.1.2 of the main document is obtained by

Inf, total(f ) =
∫

⟨Sy ⟩(x , f ) dx =

=



1
2ωµℜ

©­«
∫

Ez (x , f ) F
(
kyF −1 (Ez (·, f )) (

kx
2π

) )
(x) dxª®¬

1
2ωϵℜ

©­«
∫

Hz (x , f ) F
(
kyF −1 (Hz (·, f )

) (
kx
2π

) )
(x) dxª®¬

(8)

where the integration is taken over the near-field plane in a unit
cell; the two cases are for TE and TM polarization.

As explained in the following, this is a consequence of theMaxwell
equation when stated in the spatial frequency domain. Using the
Fourier transform on the spatial component of the phasor E(x, f ),
we obtain the spatial-frequency phasor Ê(k/2π , f ) as

Ê
(
k

2π , f
)
=

∫
R2

E(x, f ) eik·x dx = F −1 (E(·, f )) (
k

2π

)
for which the Maxwell equations are given as

k × Ê
(
k

2π , f
)
= ωµ0Ĥ

(
k

2π , f
)
− i ĴH

(
k

2π , f
)

k × Ĥ
(
k

2π , f
)
= −ωϵ̂

(
k

2π

)
∗ Ê

(
k

2π , f
)
+ i ĴE

(
k

2π , f
) (9)

where ∗ denotes convolution.
In source-free regions with constant permittivity – such as the far-

field above and below our structures –, it follows from Equation (9)
that

Ĥ
(
k

2π , f
)
=

1
ωµ0

k × Ê
(
k

2π , f
)

Ê
(
k

2π , f
)
=

1
ωϵ

k × Ĥ
(
k

2π , f
)

with the x-component given as

Ĥx

(
k

2π , f
)
=

1
ωµ0

ky Êz
(
k

2π , f
)

Êx
(
k

2π , f
)
=

1
ωϵ

kyĤz

(
k

2π , f
)
.

(10)
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With the integrated y-component of the Poynting vector∫
⟨Sy ⟩(x , f ) dx = 1

2ℜ
(∫

Ez (x)Hx (x) − Ex (x)Hz (x) dx
)
,

Equation (8) is a direct consequence of the identities of Equation (10).

7 RESULT ANALYSIS
In Tables 1 and 2, we provide quantitative results for all optimized
designs in the main document. When optimizing for a colorization
along the normal viewing direction, we give in Table 2 the color
values for the desired target colorization and the resulting coloriza-
tion using our method. Both colorizations are given in sRGB and
CIEXYZ color space and their difference is given in terms of the
CIEDE2000 standard [Sharma et al. 2004].

For designs, which were optimized for wide-angle viewing direc-
tions, we sampled the color differences on a dense set of viewing di-
rections. For each viewing direction, where a target colorization was
defined, we evaluated its CIEDE2000 color difference with the col-
orization of our results. As shown in Figure 7 of the main document,
the resulting colorizations vary with different viewing directions.
In Table 1, we characterize the distributions of these differences by
providing the mean color difference and standard deviation for each
distribution together with the minimal and maximal color difference
that were encountered.

In Table 3, the colorizations of the fabricated samples are analyzed.
For this, we utilized the sample images obtained with macropho-
tography (see Figures 9 and 10 of the main document). Since each
sample consists of a multitude of small 50 µm× 50 µm patches, three
quantities were computed:
Per-patch color differences. To quantify the stability of the col-

orization inside each patch, we the average color for each
patch. This allows the computation of per-patch CIEDE2000
color difference between all the pixels of the patch and its

Table 1. Result analysis. For each objective, the color differences between
the optimized result and the desired target colorization are characterized by
their mean and standard deviation. Furthermore, the minimal and maximal
color difference for each objective is shown in the last two columns.

CIEDE2000
Figure Result Mean ± deviation Min Max

Figure 7

red 0.299 ± 0.028 0.258 0.357
green 0.374 ± 0.061 0.271 0.471
blue 0.337 ± 0.047 0.263 0.433
yellow 0.288 ± 0.037 0.228 0.403
magenta 0.270 ± 0.025 0.213 0.319
cyan 0.203 ± 0.045 0.103 0.279

Figure 8
split 0.241 ± 0.028 0.205 0.317
split 0.349 ± 0.040 0.305 0.431
split 0.302 ± 0.041 0.235 0.351

Figure 1 foreground 0.374 ± 0.066 0.269 0.555
background 0.378 ± 0.039 0.329 0.428

average color. These differences were aggregated into the av-
erage color differences per patch. Table 3 gives the mean color
differences across all patches and their standard deviations.

Color difference between patches. While the previous quantity
computes the color differences with respect to a per-patch
average color, we also computed the overall color differences
with respect to the average color of the whole sample. This
allows us to judge the colorization stability across all patches.

Comparison with the computed result. As a final step, we re-
peat the previous computation but instead of the average
sample color, we compare the individual pixels with the pre-
dicted color of our design method.

From Table 3, we see that the per-patch colorization is very stable,
which is characterized by the small color differences inside each
patch. The color differences across patches are significantly higher,
however. This is caused by the interface finder problem described
in Section 8 of the main document. While the yellow colorization
of Figure 9 could be reproduced well, we encountered a systematic
error with the blue colorization objective of Figure 10. This is char-
acterized by a large average color difference when comparing the
blue color of the fabricated sample with the cyan color as predicted
by our design method. At the same time, the standard deviation of
the color differences is small across the sample, which confirms the
visual impression of having a uniform colorization.

8 RESULT STATISTICS
In Table 4, we give a quantitative structure description for each
result in the main document as well as various characteristics of the
optimization process. Note that reinforcement leads to an increased
focus count, which is not shown here. The number of L-BFGS-B
iteration is given by Niter. Nsim denotes the number of simulation
that is required for the evaluation of the objective function. The
additional computation of its gradient requires the same amount
of simulation. The number of target directions (and corresponding
target colors) is given by Ntarget. Note that Runtime and Niter
are not perfectly correlated since individual L-BFGS-B iterations
evaluate the objective function and its gradient a varying amount
of times.

9 MEASUREMENT SETUPS
The feature sizes of our samples span several orders of magnitude as
they cover an area of square millimeters while the smallest features
have sub-micrometer size. Thus, we employ a range of measurement
setups.

Electron Microscopy. We used aMerlin VP compact by Zeiss at 2 kV
for detailed structure characterizations.

Brightfield Transmission Microscopy. To investigate the overall
structure of 50 µm× 50 µm patches we used a Nikon Eclipse inverted
widefield microscope with 10x, 20x, and 60x objectives. We ensured
correct Köhler illumination for all measurements.

Macrophotography. To test the real-world behavior of our samples,
we used a uniform light-emitting diode (LED) backlight manufac-
tured by Metaphase and a Nikon 5100D digital single-lens reflex
camera (DSLR) with a Tamaron 90mm F/2.8 1:1 macro objective. As
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Table 2. Result analysis. For each objective, the target color, as well as the predicted color of the reinforced structure are given in sRGB and CIEXYZ color
space. Their differences according to the CIEDE2000 standard is shown in the last column.

sRGB CIEXYZ
Figure Result Target color Result color Target color Result color CIEDE2000

Figure 6 (top)

red (1.000, 0.000, 0.000) (0.687, 0.310, 0.437) (0.436, 0.223, 0.014) (0.240, 0.161, 0.128) 0.274
green (0.000, 1.000, 0.000) (0.332, 0.697, 0.362) (0.385, 0.717, 0.097) (0.226, 0.345, 0.121) 0.205
blue (0.000, 0.000, 1.000) (0.204, 0.433, 0.739) (0.143, 0.061, 0.714) (0.148, 0.151, 0.377) 0.228
yellow (1.000, 1.000, 0.000) (0.881, 0.791, 0.318) (0.821, 0.939, 0.111) (0.566, 0.594, 0.127) 0.139
magenta (1.000, 0.000, 1.000) (0.729, 0.331, 0.796) (0.579, 0.283, 0.728) (0.334, 0.209, 0.442) 0.112
cyan (0.000, 1.000, 1.000) (0.008, 0.841, 0.886) (0.528, 0.777, 0.811) (0.369, 0.531, 0.608) 0.095

Figure 6 (bottom)

red (1.000, 0.000, 0.000) (0.914, 0.813, 0.818) (0.436, 0.223, 0.014) (0.687, 0.669, 0.526) 0.369
green (0.000, 1.000, 0.000) (0.734, 0.801, 0.749) (0.385, 0.717, 0.097) (0.525, 0.576, 0.438) 0.284
blue (0.000, 0.000, 1.000) (0.784, 0.823, 0.849) (0.143, 0.061, 0.714) (0.598, 0.632, 0.563) 0.536
yellow (1.000, 1.000, 0.000) (0.913, 0.891, 0.820) (0.821, 0.939, 0.111) (0.742, 0.771, 0.542) 0.259
magenta (1.000, 0.000, 1.000) (0.779, 0.524, 0.770) (0.579, 0.283, 0.728) (0.419, 0.330, 0.427) 0.166
cyan (0.000, 1.000, 1.000) (0.564, 0.772, 0.830) (0.528, 0.777, 0.811) (0.430, 0.501, 0.526) 0.179

Figure 9 yellow (1.000, 1.000, 0.000) (0.855, 0.777, 0.629) (0.821, 0.939, 0.111) (0.574, 0.583, 0.317) 0.244
Figure 10 blue (0.000, 1.000, 1.000) (0.511, 0.875, 0.930) (0.528, 0.777, 0.811) (0.504, 0.631, 0.681) 0.110

Table 3. Result analysis. For the fabricated samples, the average color differences are quantified for three aspects: i) the color stability inside the patches;
ii) the color stability across different patches; and iii) the color difference when compared with the predicted color for the reinforced structure.

Average CIEDE2000 differences
Figure Result Per patch Between patches Compared with result

Figure 9 yellow 0.011 ± 0.005 0.047 ± 0.019 0.076 ± 0.030
Figure 10 blue 0.007 ± 0.003 0.020 ± 0.015 0.218 ± 0.013

shown in Figure 4, the sample and the backlight were mounted on a
rotating table that enabled us to simulate varying viewing directions.
A zero aperture iris, as depicted in Figure 5, was used to simulated
varying incident light cones.
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Table 4. Result statistics.

Objective function
Figure Result Focus count Initial Final Runtime Niter Nsim Ntarget

Figure 6 (top)

red 36 0.159 0.023 03:27:50 67 1 1
green 22 0.144 0.023 03:05:13 62 1 1
blue 32 0.159 0.020 03:02:46 48 1 1
yellow 39 0.090 0.009 01:31:29 39 1 1
magenta 30 0.098 0.028 00:43:50 21 1 1
cyan 17 0.067 0.006 01:03:34 10 1 1

Figure 6 (bottom)

red 36 0.232 0.210 00:30:24 7 1 1
green 29 0.241 0.117 03:20:38 54 1 1
blue 29 0.249 0.187 01:06:11 15 1 1
yellow 36 0.114 0.090 02:21:39 18 1 1
magenta 37 0.126 0.029 04:23:59 55 1 1
cyan 34 0.121 0.023 02:43:08 43 1 1

Figure 7

red 37 0.175 0.118 12:22:47 35 23 9
green 35 0.175 0.139 05:59:52 20 23 9
blue 39 0.168 0.075 03:47:42 40 23 9
yellow 31 0.103 0.067 06:51:09 34 23 9
magenta 28 0.103 0.082 01:51:37 17 23 9
cyan 28 0.096 0.056 05:02:50 24 23 9

Figure 8
split 26 0.142 0.095 08:52:12 22 23 9
split 26 0.154 0.135 02:07:08 8 23 9
split 37 0.152 0.107 03:28:53 16 23 9

Figure 9 yellow 16 0.083 0.062 01:00:44 15 1 1
Figure 10 blue 11 0.074 0.047 00:13:50 10 1 1

Figure 1 foreground 35 0.167 0.134 08:37:16 22 33 15
background 30 0.161 0.148 03:02:17 9 33 15

Table 5. Macrophotography setup – legend of Figures 4 and 5.

Annotation Description
1 Digital single-lens reflex camera (DSLR) with a

macro objective.
2 Sample holder with mounted sample. The fabri-

cated structure is visible as a bright spot in the
center of the glass substrate in Figure 5.

3 Zero aperture iris.
4 Uniform light-emitting diode (LED) backlight
5 Rotating table. Several translation and rotation

stages are used to place the sample exactly on the
rotation axis of the table.
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Fig. 4. Macrophotography setup – top view. See Table 5 for a description of
the annotations.

Fig. 5. Macrophotography setup – top view. See Table 5 for a description of
the annotations.
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