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Abstract. We study observation-based strategies forpartially-observable
Markov decision processes(POMDPs) with parity objectives. An observation-
based strategy relies on partial information about the history of a play, namely,
on the past sequence of observations. We consider qualitative analysis prob-
lems: given aPOMDP with a parity objective, decide whether there exists an
observation-based strategy to achieve the objective with probability 1 (almost-
sure winning), or with positive probability (positive winning). Our main results
are twofold. First, we present a complete picture of the computational complex-
ity of the qualitative analysis problem forPOMDPs with parity objectives and
its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish
several upper and lower bounds that were not known in the literature, and present
efficient and symbolic algorithms for the decidable subclasses. Second, we give,
for the first time, optimal bounds (matching upper and lower bounds) for the
memory required by pure and randomized observation-based strategies for all
classes of objectives.

1 Introduction

Markov decision processes.A Markov decision process (MDP)is a model for systems
that exhibit both probabilistic and nondeterministic behavior. MDPs have been used to
model and solve control problems for stochastic systems: there, nondeterminism rep-
resents the freedom of the controller to choose a control action, while the probabilistic
component of the behavior describes the system response to control actions. MDPs have
also been adopted as models for concurrent probabilistic systems, probabilistic systems
operating in open environments [23], and under-specified probabilistic systems [6].

System specifications.Thespecificationdescribes the set of desired behaviors of the
system, and is typically anω-regular set of paths. Parity objectives are a canonical
way to define such specifications in MDPs. They include reachability, safety, Büchi
and coBüchi objectives as special cases. Thus MDPs with parity objectives provide
the theoretical framework to study problems such as the verification and the control of
stochastic systems.

Perfect vs. partial observations.Most results about MDPs make the hypothesis of
perfect observation. In this setting, the controller always knows, while interacting with
the system (or MDP), the exact state of the MDP. In practice, this hypothesis is often
unrealistic. For example, in the control of multiple processes, each process has only
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access to the public variables of the other processes, but not to their private variables.
In the control of hybrid systems [7, 13], or in automated planning [19], the controller
usually has noisy information about the state of the systemsdue to finite-precision sen-
sors. In such applications, MDPs withpartial observation(POMDPs) provide a more
appropriate model.

Qualitative and quantitative analysis.Given an MDP with parity objective, thequal-
itative analysisasks for the computation of the set ofalmost-sure winningstates (resp.,
positive winningstates) in which the controller can achieve the parity objective with
probability 1 (resp., positive probability); the more general quantitative analysisasks
for the computation at each state of the maximal probabilitywith which the controller
can satisfy the parity objective. The analysis of POMDPs is considerably more com-
plicated than the analysis of MDPs. First, the decision problems for POMDPs usu-
ally lie in higher complexity classes than their perfect-observation counterparts: for
example, the quantitative analysis of POMDPs with reachability and safety objectives
is undecidable [21], whereas for MDPs with perfect observation, this question can be
solved in polynomial time [11, 10]. Second, in the context ofPOMDPs, witness winning
strategies for the controller need memory even for the simple objectives of safety and
reachability. This is again in contrast to the perfect-observation case, where memoryless
strategies suffice for all parity objectives. Since the quantitative analysis of POMDPs
is undecidable (even for computing approximations of the maximal probabilities [19]),
we study the qualitative analysis of POMDPs with parity objective and its subclasses.

Contribution. For the qualitative analysis of POMDPs, the following results are
known: (a) the problems of deciding if a state is almost-surewinning for reachability
and Büchi objectives can be solved in EXPTIME [1]; (b) the problems for almost-sure
winning for coBüchi objectives and positive winning for B¨uchi objectives are unde-
cidable [1, 14]; and (c) the EXPTIME-completeness of almost-sure winning for safety
objectives follows from the results on games with partial observation [9, 5]. Our new
contributions are as follows:

1. First, we show that (a) positive winning for reachabilityobjectives is
NLOGSPACE-complete; and (b) almost-sure winning for reachability and Büchi
objectives, and positive winning for safety and coBüchi objectives are EXPTIME-
hard3. We also present a new proof that positive winning for safetyand coBüchi ob-
jectives can be solved in EXPTIME4. It follows that almost-sure winning for reach-
ability and Büchi, and positive winning for safety and coB¨uchi, are EXPTIME-
complete. This completes the picture for the complexity of the qualitative analysis
for POMDPs with parity objectives. Moreover our new proofs of EXPTIME upper-
bound proofs yield efficient and symbolic algorithms to solve positive winning for
safety and coBüchi objectives in POMDPs.

2. Second, we present a complete characterization of the amount of memory required
by pure (deterministic) and randomized strategies for the qualitative analysis of

3 A very brief (two line) proof of EXPTIME-hardness is sketched in [12] (see the discussion
before Theorem 5 for more details).

4 A different proof that positive safety can be solved in EXPTIME is given in [15] (see the
discussion after Theorem 2 for a comparison).



POMDPs. For the first time, we present optimal memory bounds (matching upper
and lower bounds) for pure and randomized strategies: we show that (a) for posi-
tive winning of reachability objectives, randomized memoryless strategies suffice,
while for pure strategies linear memory is necessary and sufficient; (b) for almost-
sure winning of safety, reachability, and Büchi objectives, and for positive winning
of safety and coBüchi objectives, exponential memory is necessary and sufficient
for both pure and randomized strategies.

Related work. Though MDPs have been widely studied under the hypothesis ofper-
fect observations, there are a few works that consider POMDPs, e.g., [20, 18] for sev-
eral finite-horizon quantitative objectives. The results of [1] shows the upper bounds for
almost-sure winning for reachability and Büchi objectives, and the work of [8] consid-
ers a subclass ofPOMDPs with Büchi objectives and presents a PSPACE upper bound
for the subclass. The undecidability of almost-sure winning for coBüchi and positive
winning for Büchi objectives is established by [1, 14]. We present a solution to the re-
maining problems related to the qualitative analysis of POMDPs with parity objectives,
and complete the picture. Partial information has been studied in the context of two-
player games [22, 9], a model that is incomparable to MDPs, though some techniques
(like the subset construction) can be adapted to the contextof POMDPs. More general
models of stochastic games with partial information have been studied in [3, 15], and lie
in higher complexity classes. For example, a result of [3] shows that the decision prob-
lem for positive winning of safety objectives is 2EXPTIME-complete in the general
model, while for POMDPs, we show that the same problem is EXPTIME-complete.

2 Definitions

A probability distributionon a finite setA is a functionκ : A → [0, 1] such that
∑

a∈A κ(a) = 1. Thesupportof κ is the setSupp(κ) = {a ∈ A | κ(a) > 0}. We
denote byD(A) the set of probability distributions onA.

Games and MDPs.A two-player game structureor aMarkov decision process (MDP)
(of partial observation) is a tupleG = 〈L,Σ, δ,O〉, whereL is a finite set of states,
Σ is a finite set of actions,O ⊆ 2L is a set of observations that partition5 the state
spaceL. We denote byobs(ℓ) the unique observationo ∈ O such thatℓ ∈ o. In the
case of games,δ ⊆ L × Σ × L is a set of labeled transitions; in the case of MDPs,
δ : L×Σ → D(L) is a probabilistic transition function. For games, we require that for
all ℓ ∈ L and allσ ∈ Σ, there existsℓ′ ∈ L such that(ℓ, σ, ℓ′) ∈ δ. We refer to a game
of partial observation as aPOG and to an MDP of partial observation as aPOMDP.
We say thatG is a game or MDP ofperfect observationif O = {{ℓ} | ℓ ∈ L}. For
σ ∈ Σ ands ⊆ L, definePostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ δ} whenG is a
game, andPostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : δ(ℓ, σ)(ℓ′) > 0} whenG is an MDP.

Plays.Games are played in rounds in which Player1 chooses an action inΣ, and
Player2 resolves nondeterminism by choosing the successor state; in MDPs the suc-
cessor state is chosen according to the probabilistic transition function. Aplay in G is

5 A slightly more general model with overlapping observations can be reduced in polynomial
time to partitioning observations [9].



an infinite sequenceπ = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . such thatℓi+1 ∈ PostGσi
({ℓi}) for all

i ≥ 0. The infinite sequenceobs(π) = obs(ℓ0)σ0obs(ℓ1) . . . σn−1obs(ℓn)σn . . . is the
observationof π.

The set of infinite plays inG is denotedPlays(G), and the set of finite prefixes
ℓ0σ0 . . . σn−1ℓn of plays is denotedPrefs(G). A stateℓ ∈ L is reachablein G if there
exists a prefixρ ∈ Prefs(G) such thatLast(ρ) = ℓ whereLast(ρ) is the last state ofρ.

Strategies.A pure strategyin G for Player1 is a functionα : Prefs(G) → Σ. A
randomized strategyin G for Player1 is a functionα : Prefs(G) → D(Σ). A (pure
or randomized) strategyα for Player1 is observation-basedif for all prefixesρ, ρ′ ∈
Prefs(G), if obs(ρ) = obs(ρ′), thenα(ρ) = α(ρ′). In the sequel, we are interested
in the existence of observation-based strategies for Player 1. A pure strategyin G for
Player2 is a functionβ : Prefs(G) × Σ → L such that for allρ ∈ Prefs(G) and all
σ ∈ Σ, we have(Last(ρ), σ, β(ρ, σ)) ∈ δ. A randomized strategyin G for Player2 is
a functionβ : Prefs(G) × Σ → D(L) such that for allρ ∈ Prefs(G), all σ ∈ Σ, and
all ℓ ∈ Supp(β(ρ, σ)), we have(Last(ρ), σ, ℓ) ∈ δ. We denote byAG, AO

G, andBG the
set of all Player-1 strategies, the set of all observation-based Player-1 strategies, and the
set of all Player-2 strategies inG, respectively.

Memory requirement of strategies.An equivalent definition of strategies is as follows.
Let Mem be a set calledmemory. An observation-based strategy with memory can be
described by two functions, amemory-updatefunctionαu: Mem×O×Σ → Mem that
given the current memory, observation and the action updates the memory, and anext-
action functionαn: Mem × O → D(Σ) that given the current memory and current
observation specifies the probability distribution6 of the next action, respectively. A
strategy isfinite-memoryif the memoryMem is finite and the size of a finite-memory
strategyα is the size|Mem| of its memory. A strategy ismemorylessif |Mem| = 1. The
memoryless strategies do not depend on the history of a play,but only on the current
state. Memoryless strategies for player 1 can be viewed as functionsα: O → D(Σ).

Objectives.An objectivefor G is a setφ of infinite sequences of states and actions,
that is,φ ⊆ (L × Σ)ω. We consider objectives that are Borel measurable, i.e., sets in
the Cantor topology on(L × Σ)ω [17]. We specifically consider reachability, safety,
Büchi, coBüchi, and parity objectives, all of them being Borel measurable. The parity
objectives are a canonical form to express allω-regular objectives [24]. For a playπ =
ℓ0σ0ℓ1 . . . , we denote byInf(π) = {ℓ ∈ L | ℓ = ℓi for infinitely manyi’s} the set of
states that appear infinitely often inπ.

– Reachability and safety objectives.Given a setT ⊆ L of target states, thereach-
ability objectiveReach(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 : ℓk ∈ T }
requires that a target state inT be visited at least once. Dually, thesafetyobjective
Safe(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 : ℓk ∈ T } requires that only
states inT be visited; the objectiveUntil(T1, T2) = {ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) |
∃k ≥ 0 : ℓk ∈ T2 ∧ ∀j ≤ k : ℓj ∈ T1} requires that only states inT1 be visited
before a state inT2 is visited;

6 For a pure strategy, the next-action function specifies a single action rather than a probability
distribution.



– Büchi and coB̈uchi objectives.TheBüchiobjectiveBüchi(T ) = {π | Inf(π)∩T 6=
∅} requires that a state inT be visited infinitely often. Dually, thecoBüchiobjective
coBüchi(T ) = {π | Inf(π) ⊆ T } requires that only states inT be visited infinitely
often; and

– Parity objectives.Ford ∈ N, let p : L → { 0, 1, . . . , d } be apriority functionthat
maps each state to a nonnegative integer priority. Theparity objectiveParity(p) =
{ π | min{ p(ℓ) | ℓ ∈ Inf(π) } is even} requires that the smallest priority that
appears infinitely often be even.

Note that the objectivesBüchi(T ) andcoBüchi(T ) are special cases of parity objec-
tives defined by respective priority functionsp1, p2 such thatp1(ℓ) = 0 andp2(ℓ) = 2
if ℓ ∈ T , andp1(ℓ) = p2(ℓ) = 1 otherwise. An objectiveφ is visible if it depends only
on the observations; formally,φ is visible if, wheneverπ ∈ φ andobs(π) = obs(π′),
thenπ′ ∈ φ. In this work, all our upper bound results are for the generalparity ob-
jectives (not necessarily visible), and all the lower boundresults forPOMDPs are for
the special case of visible objectives (and hence the lower bounds also hold for general
objectives).

Almost-sure and positive winning.An eventis a measurable set of plays, and given
strategiesα andβ for the two players (resp., a strategyα for Player 1 in MDPs), the
probabilities of events are uniquely defined [25]. For a Borel objectiveφ, we denote by
Prα,βℓ (φ) (resp.,Prαℓ (φ) for MDPs) the probability thatφ is satisfied from the starting
stateℓ given the strategiesα andβ (resp., given the strategyα). Given a gameG and
a stateℓ, a strategyα for Player1 is almost-sure winning(resp.,positive winning)
for the objectiveφ from ℓ if for all randomized strategiesβ for Player2, we have
Prα,βℓ (φ) = 1 (resp.,Prα,βℓ (φ) > 0). Given an MDPG and a stateℓ, a strategyα for
Player1 is almost-sure winning (resp. positive winning) for the objectiveφ from ℓ if we
havePrαℓ (φ) = 1 (resp.,Prαℓ (φ) > 0). We also say that stateℓ is almost-sure winning,
or positive winning forφ respectively. We are interested in the problems of deciding
the existence of an observation-based strategy for Player 1that is almost-sure winning
(resp., positive winning) from a given stateℓ.

3 Upper Bounds for the Qualitative Analysis ofPOMDPs

In this section, we present upper bounds for the qualitativeanalysis ofPOMDPs. We
first describe the known results. For qualitative analysis of MDPs, polynomial time up-
per bounds are known for all parity objectives [11, 10]. It follows from the results of [9,
1] that the decision problems for almost-sure winning forPOMDPs with reachability,
safety, and Büchi objectives can be solved in EXPTIME. It also follows from the results
of [1] that the decision problem for almost-sure winning with coBüchi objectives and
for positive winning with Büchi objectives is undecidableif the strategies are restricted
to be pure, and the results of [14] shows that the problem remains undecidable even if
randomized strategies are considered. In this section, we complete the results on upper
bounds for the qualitative analysis ofPOMDPs: we present complexity upper bounds
for the decision problems of positive winning with reachability, safety and coBüchi ob-
jectives. The following result for reachability objectives is simple, and for a complete
and systematic analysis we present the proof.



Theorem 1. Given aPOMDP G with a reachability objective and a starting stateℓ,
the problem of deciding whether there is a positive winning strategy fromℓ in G is
NLOGSPACE-complete.

Proof. The NLOGSPACE-completeness result for positive reachability for MDPs fol-
lows from reductions to and from graph reachability.

Reduction to graph reachability.Given aPOMDP G = 〈L,Σ, δ,O〉 and a set of target
statesT ⊆ L, consider the graphG = 〈L,E〉 where(ℓ, ℓ′) ∈ E if there exists an
actionσ ∈ Σ such thatδ(ℓ, σ)(ℓ′) > 0. Let ℓ be a starting state, then the following
assertions hold: (a) if there is a pathπ in G from ℓ to a statet ∈ T , then the randomized
memoryless strategy for Player 1 inG that plays all actions uniformly at random ensures
that the pathπ is executed inG with positive probability (i.e., ensures positive winning
for Reach(T ) in G from ℓ); and (b) if there is no path inG to reachT from ℓ, then
there is no strategy (and hence no observation-based strategy) for Player 1 inG to
achieveReach(T ). This shows that positive winning inPOMDPs can be decided in
NLOGSPACE. Graphs are a special case ofPOMDPs and hence graph reachability can
be reduced to reachability with positive probability inPOMDPs, therefore the problem
is NLOGSPACE-complete. �

Positive winning for safety and coBüchi objectives.We now show that the decision
problem for positive winning with safety and coBüchi objectives for POMDPs can
be solved in EXPTIME. We first show with an example that the simple approach of
reduction to a perfect-information MDP by subset construction and solving the perfect
information MDP with safety objective for positive winningdoes not yield the desired
result.

Example 1.Consider thePOMDP shown in Fig. 1: in every state there exists only one
action (which we omit for simplicity). In other words, we have a partially observable
Markov chain. States0, 1, and2 are safe states and form observationo1, while state3
forms observationo2 (which is not in the safe set). The state0 in G is positive winning
for the safety objective as with positive probability the state2 is reached and then the
state2 is visited forever. In contrast, consider the perfect information MDPGK obtained
fromG by subset construction (in this caseGK is a Markov chain). InGK from the state
{1, 2}, the possible successors are1, 2, and3, and since the observations are different
at1 and2, as compared to3, the successors of{1, 2} are{1, 2} and{3}. The reachable
set of states inGK from the state{0} is shown in Fig. 1. InGK, the state{0} is not
positive winning: the state{3} is the only recurrent state reachable from{0} and hence
from the state{0}, with probability 1, the state{3} is reached and{3} is not a safe
state. Note that all this holds regardless of the precise value of nonzero probabilities.

�

Our result for positive safety and coBüchi objectives is based on the computation of
almost-sure winning states for safety objectives, and on the following lemma.

Lemma 1. Let G = 〈L,Σ, δ,O〉 be aPOMDP and letT ⊆ L be the set of target
states. If Player1 has an observation-based strategy inG to satisfySafe(T ) with posi-
tive probability from some stateℓ, then there exists a stateℓ′ such that (a) Player1 has
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Fig. 1.A POMDP G and the perfect information MDPGK obtained by subset construction.

an observation-based strategy inG to satisfyUntil(T , {ℓ′}) with positive probability
from ℓ, and (b) Player1 has an observation-based almost-sure winning strategy inG
for Safe(T ) from ℓ′.

Proof. We assume without loss of generality that the non-safe states inG are absorbing.
Assume that Player1 has an observation-based positive winning strategyα in G for
the objectiveSafe(T ) from ℓ, and towards a contradiction assume that for all statesℓ′

reachable fromℓ with positive probability usingα in G, Player1 has no observation-
based almost-sure winning strategy forSafe(T ) from ℓ′. A standard argument shows
that from every such stateℓ′, regardless of the observation-based strategy of Player1,
the probability to stay safe within the nextn steps is at most1− ηn whereη is the least
non-zero probability inG andn is the number of states inG. Since under strategyα,
every reachable state has this property, the probability tostay safe withink · n steps
is at most(1 − ηn)k. This value tends to0 whenk → ∞, therefore the probability to
stay safe usingα from ℓ is 0, a contradiction. Hence, there exists a stateℓ′ which is
almost-sure winning for Player1 (using observation-based strategyα) and such thatℓ′

is reached with positive probability fromℓ while staying inT (again usingα). �

By Lemma 1, positive winning states can be computed as the setof states from
which Player1 can force with positive probability to reach an almost-surewinning
state while visiting only safe states. Almost-sure winningstates can be computed using
the following subset construction.

Given aPOMDP G = 〈L,Σ, δ,O〉 and a setT ⊆ L of states, theknowledge-based
subset constructionof G is the game of perfect observation

GK = 〈L, Σ, δK〉,

whereL = 2L\{∅}, and for alls1, s2 ∈ L (in particulars2 6= ∅) andσ ∈ Σ, we have
(s1, σ, s2) ∈ δK iff there exists an observationo ∈ O such that eithers2 = PostGσ (s1)∩
o∩T , ors2 = (PostGσ (s1)∩o)\T . We refer to states inGK ascells. The following result
is established using standard techniques (see e.g., Lemma 3.2 and Lemma 3.3 in [9]).
and the fact that almost-sure winning and sure winning (surewinning is winning with



certainty as compared to winning with probability 1 for almost-sure winning, see [9]
for details of sure winning) coincide for safety objectives.

Lemma 2. LetG = 〈L,Σ, δ,O〉 be aPOMDP andT ⊆ L a set of target states. Let
GK be the subset construction andFT = {s ⊆ T } the set of safe cells. Player1 has an
almost-sure winning observation-based strategy inG for Safe(T ) from ℓ if and only if
Player1 has an almost-sure winning strategy inGK for Safe(F ) from cell{ℓ}.

Remark 1.Lemma 2 also holds if we replace almost-sure winning by sure winning,
since for safety objectives almost-sure and sure winning coincide.

Theorem 2. Given aPOMDP G with a safety objective and a starting stateℓ, the
problem of deciding whether there exists a positive winningobservation-based strategy
from ℓ can be solved in EXPTIME.

Proof. The almost-sure winning states inG for a safety objective (with observation-
based strategy) can be computed in exponential time using the subset construction (by
Lemma 2 and [9]). Then, given the setW of cells that are almost-sure winning inGK,
let TW = {ℓ ∈ s | s ∈ W} be the almost-sure winning states inG. We can compute
the states from which Player1 can forceTW to be reached with positive probability
while staying within the safe states using standard graph analysis algorithms, as in
Lemma 1. Clearly such states are positive winning inG, and by Lemma 1 all positive
winning states inG are obtained in this way. This gives an EXPTIME algorithm to
decide from which states there exists a positive winning observation-based strategy for
safety objectives. �

Algorithms. The complexity bound of Theorem 2 has been established previously
in [15], using an extension of the knowledge-based subset construction which is not
necessary (where the state space isL×2L). Our proof is simpler and also yield efficient
and symbolic algorithms: efficient anti-chain based symbolic algorithm for almost-sure
winning for safety objectives can be obtained from [9], and positive reachability is sim-
ple graph reachability.

The positive winning states for a coBüchi objective are computed as the set of
almost-sure winning states for safety that can be reached with positive probability.

Theorem 3. Given aPOMDP G with a coB̈uchi objective and a starting stateℓ, the
problem of deciding whether there exists a positive winningobservation-based strategy
from ℓ can be solved in EXPTIME.

Proof. Let coBüchi(T ) be a coBüchi objective inG = 〈L,Σ, δ,O〉. As in the proof
of Theorem 2, we compute in exponential time the setTW of almost-sure winning
states inG for Safe(T ), and using Lemma 1 the setW of states from which Player1
is positive winning forReach(TW ). Clearly, all states inW are positive winning for
coBüchi(T ), andW can be computed in EXPTIME. We argue that for all statesℓ 6∈ W ,
Player1 is not positive winning forcoBüchi(T ) from ℓ. Note thatδ(ℓ, σ)(ℓ′) = 0 for
all ℓ 6∈ W , ℓ′ ∈ W , andσ ∈ Σ, and thus there are no almost-sure winning states
for Safe(T ) in G reachable fromL \ W with positive probability, regardless of the



strategy of Player1. Therefore, by an argument similar to the proof of Lemma 1, for
all observation-based strategies for Player1, from every stateℓ 6∈ W , the setL \ T
is reached with probability1 and the eventBüchi(L \ T ) has probability1. The result
follows. �

4 Lower Bounds for the Qualitative Analysis ofPOMDPs

In this section we present lower bounds for the qualitative analysis ofPOMDPs. We
first present the lower bounds for MDPs with perfect observation.

Lower bounds for MDPs with perfect observations.In the previous section we ar-
gued that for reachability objectives even inPOMDPs the positive winning problem
is NLOGSPACE-complete. For safety objectives and almost-sure winning it is known
that an MDP can be equivalently considered as a game where Player 2 makes choices
of the successors from the support of the probability distribution of the transition func-
tion, and the almost-sure winning set is the same in the MDP and the game. Similarly,
there is a reduction of games of perfect observations to MDPsof perfect observation
for almost-sure winning with safety objectives. The problem of almost-sure winning in
games of perfect observation is alternating reachability and is PTIME-complete [2, 16],.
It follows that almost-sure winning for safety objectives in MDPs is PTIME-complete.
We now show that the almost-sure winning problem for reachability and the positive
winning problem for safety objectives is PTIME-complete for MDPs with perfect ob-
servation.

Reduction from the CIRCUIT-VALUE-PROBLEM. Let N = { 1, 2, . . . , n } be a set of
AND and OR gates, andI be a set of inputs. The set of inputs is partitioned intoI0
andI1; I0 is the set of inputs set to 0 (false) andI1 is the set of inputs set to 1 (true).
Every gate receives two inputs and produces one output; the inputs of a gate are outputs
of another gate or an input from the setI. The connection graph of the circuit must
be acyclic. Let the gate represented by the node 1 be the output node. The CIRCUIT-
VALUE-PROBLEM (CVP) is to decide whether the output is 1 or 0. This problem is
PTIME-complete. We present a reduction of CVP to MDPs with perfect observation
for almost-sure winning with reachability, and positive winning with safety objectives.

1. Almost-sure reachability.Given the CVP, we construct the MDP of perfect obser-
vation as follows: (a) the set of states isN ∪ I; (b) the action set isΣ = { l, r };
(c) the transition function is as follows: every node inI is absorbing, and for a state
that represents a gate, (i) if it is an OR gate, then for the action l the left input gate
is chosen with probability 1, and for the actionr the right input gate is chosen with
probability 1; and (ii) if it is an AND gate, then irrespective of the action, the left
and right input gate are chosen with probability1/2. The output of the CVP from
node 1 is 1 iff the setI1 is reached from the state 1 in the MDP with probability 1
(i.e., the state 1 is almost-sure winning for the reachability objectiveReach(I1).)

2. Positive safety.For positive winning with safety objectives, we take the CVP, apply
the same reduction as for almost-sure reachability with thefollowing modifications:
every state inI0 remains absorbing and from every state inI1 the next state is the
starting state 1 with probability 1 irrespective of the action. The set of safety target



is the setI1 ∪ N . If the output of the CVP problem is 1, then from the starting
state the setI1 is reached with probability 1, and hence the safety objective with
the targetN ∪ I1 is ensured with probability 1. If the output of the CVP problem
is 0, then from the starting state the setI0 is reached with positive probabilityη > 0
in n steps against all strategies. Since from every state inI1 the successor state is
the state1, it follows that the probability to reachI0 from the starting state 1 in
k · (n+1) steps is at least1− (1− η)k, and this goes to 1 ask goes to∞. Hence it
follows that from state 1, the answer to the positive winningfor the safety objective
Safe(N ∪ I1) is YES iff the output to the CVP is 1.

From the above results it also follows that almost-sure and positive Büchi and coBüchi
objectives are PTIME-hard (and PTIME-completeness follows from the known polyno-
mial time algorithms for qualitative analysis of MDPs with parity objectives [10, 11]).

Theorem 4. Given an MDPG of perfect observation, the following assertions hold:
(a) the positive winning problem for reachability objectives is NLOGSPACE-complete,
and the positive winning problem for safety, Büchi, coB̈uchi and parity objectives is
PTIME-complete; and (b) the almost-sure winning problem for reachability, safety,
Büchi, coB̈uchi and parity objectives is PTIME-complete.

Lower bounds for POMDPs.We have already shown that positive winning with reach-
ability objectives inPOMDPs is NLOGSPACE-complete. As in the case of MDPs with
perfect observation, for safety objectives and almost-sure winning aPOMDP can be
equivalently considered as a game of partial observation where Player 2 makes choices
of the successors from the support of the probability distribution of the transition func-
tion, and the almost-sure winning set is the same in thePOMDP and the game. Since
the problem of almost-sure winning in games of partial observation with safety objec-
tive is EXPTIME-complete [5], the EXPTIME-completeness result follows. We now
show that almost-sure winning with reachability objectives and positive winning with
safety objectives is EXPTIME-complete. Before the result we first present a discussion
on polynomial-space alternating Turing machines (ATM).
Discussion.Let M be a polynomial-space ATM and letw be an input word. Then,
there is an exponential bound on the number of configurationsof the machine. Hence
if M can accept the wordw, then it can do so within somek|w| steps, where|w| is the
length of the wordw, andk|w| is bounded by an exponential in|w|. We construct an
equivalent polynomial-space ATMM ′ that behaves asM but keeps track (in polyno-
mial space) of the number of steps executed byM , and given a word|w|, if the number
of steps reachesk|w| without accepting, then the word is rejected. The machineM ′

is equivalent toM and reaches the accepting or rejecting states in a number of steps
bounded by an exponential in the length of the input word. Theproblem of deciding,
given a polynomial-space ATMM and a wordw, whetherM acceptsw is EXPTIME-
complete.

Reduction from Alternating PSPACE Turing machine. Let M be a polynomial-
space ATM such that for every input wordw, the accepting or the rejecting state
is reached within exponential steps in|w|. A polynomial-time reductionRG of a
polynomial-space ATMM and an input wordw to a gameG = RG(M,w) of par-
tial observation is given in [9] such that (a) there is a special accepting state inG, and



(b)M acceptsw iff there is an observation-based strategy for Player 1 inG to reach the
accepting state with probability 1. If the above reduction is applied toM , then the game
structure satisfies the following additional properties: there is a special rejecting state
that is absorbing, and for every observation-basedstrategy for Player 1, either (a) against
all Player 2 strategies the accepting state is reached with probability 1; or (b) there is a
pure Player 2 strategy that reaches the rejecting state withpositive probabilityη > 0 in
2|L| steps and the accepting or the rejecting state is reached with probability 1 in2|L|

steps. We now present the reduction toPOMDPs:

1. Almost-sure winning for reachability.Given a polynomial-space ATMM andw an
input word, letG = RG(M,w). We construct aPOMDP G′ fromG as follows: we
only modify the transition function inG′ by uniformly choosing over the successor
choices. Formally, for a stateℓ ∈ L and an actionσ ∈ Σ the probabilistic transition
functionδ′ in G′ is as follows:

δ′(ℓ, σ)(ℓ′) =

{

0 (ℓ, σ, ℓ′) 6∈ δ;

1/|{ ℓ1 | (ℓ, σ, ℓ1) ∈ δ }| (ℓ, σ, ℓ′) ∈ δ.

Given an observation-based strategy for Player 1 inG, we consider the same strat-
egy inG′: (1) if the strategy reaches the accepting state with probability 1 against
all Player 2 strategies inG, then the strategy ensures that inG′ the accepting state
is reached with probability 1; and (2) otherwise there is a pure Player 2 strategyβ
in G that ensures the rejecting state is reached in2|L| steps with probabilityη > 0,
and with probability at least(1/|L|)2

|L|

the choices of the successors of strategy
β is chosen inG′, and hence the rejecting state is reached with probability at least
(1/|L|)2

|L|

· η > 0. It follows that inG′ there is an observation-based strategy for
almost-sure winning the reachability objective with target of the accepting state iff
there is such a strategy inG. The result follows.

2. Positive winning for safety.The reduction is same as above. We obtain thePOMDP
G′′ from thePOMDP G′ above by making the following modification: from the
state accepting, thePOMDP goes back to the initial state with probability 1. If
there is an observation-based strategyα for Player 1 inG′ to reach the accepting
state, then repeating the strategyα each time the accepting state is visited, it can
be ensured that the rejecting state is reached with probability 0. Otherwise, against
every observation-based strategy for Player 1, the probability to reach the rejecting
state ink·(2|L|+1) steps is at least1−(1−η′)k, whereη′ = η·(1/|L|)2

|L|

> 0 (this
is because there is a probability to reach the rejecting state with probability at least
η′ in 2|L| steps, and unless the rejecting state is reached the starting state is again
reached within2|L| + 1 steps). Hence the probability to reach the rejecting state
is 1. It follows thatG′ is almost-sure winning for the reachability objective with
the target of the accepting state iff inG′′ there is an observation-based strategy for
Player 1 to ensure that the rejecting state is avoided with positive probability. This
completes the proof of correctness of the reduction.

A very brief (two line proof) sketch was presented as the proof of Theorem 1 of [12]
to show that positive winning inPOMDPs with safety objectives is EXPTIME-hard.



We were unable to reconstruct the proof: the proof suggestedto simulate a nondetermin-
istic Turing machine. The simulation of a polynomial-spacenondeterministic Turing
machine only shows PSPACE-hardness, and the simulation of anondeterministic EX-
PTIME Turing machine would have shown NEXPTIME-hardness, and an EXPTIME
upper bound is known for the problem. Our proof presents a different and detailed proof
of the result of Theorem 1 of [12]. Hence we have the followingtheorem, and the results
are summarized in Table 1.

Theorem 5. Given aPOMDP G, the following assertions hold: (a) the positive win-
ning problem for reachability objectives is NLOGSPACE-complete, the positive winning
problem for safety and coB̈uchi objectives is EXPTIME-complete, and the positive win-
ning problem for B̈uchi and parity objectives is undecidable; and (b) the almost-sure
winning problem for reachability, safety and Büchi objectives is EXPTIME-complete,
and the almost-sure winning problem for coBüchi and parity objectives is undecidable.

Proof. The results are obtained as follows.

1. Positive winning.The NLOGSPACE-completeness for positive winning with reach-
ability objectives is Theorem 1. Our reduction from Alternating PSPACE Turing
machine shows EXPTIME-hardness for positive winning with safety (and hence
the lower bound also follows for coBüchi objectives), and the upper bounds follow
from Theorem 2 and Theorem 3. The undecidability follows forpositive winning
for Büchi and parity objectives follows from the result of [1, 14].

2. Almost-sure winning.It follows from the results of [9, 1] that the decision problems
for almost-sure winning forPOMDPs with reachability, safety, and Büchi objec-
tives can be solved in EXPTIME. Our reduction from Alternating PSPACE Tur-
ing machine shows EXPTIME-hardness for almost-sure winning with reachability
(and hence the lower bound also follows for Büchi objectives). The lower bound for
safety objectives follows from the lower bound for partial information games [9]
and the fact the almost-sure winning for safety coincides with almost-sure winning
in games. The undecidability follows for almost-sure winning for coBüchi and par-
ity objectives follows from the result of [1, 14].

�

Positive Almost-sure
Reachability NLOGSPACE-complete (up+lo)EXPTIME-complete (lo)

Safety EXPTIME-complete (up+lo) EXPTIME-complete [5]
Büchi Undecidable [1] EXPTIME-complete (lo)

coBüchi EXPTIME-complete (up+lo) Undecidable [1]
Parity Undecidable [1] Undecidable [1]

Table 1. Computational complexity ofPOMDPs with different classes of parity objectives for
positive and almost-sure winning. Our contribution of upper and lower bounds are indicated as
“up” and “lo” respectively in parenthesis.



5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory required by pure and random-
ized strategies for positive and almost-sure winning for reachability, safety, Büchi and
coBüchi objectives.

Bounds for safety objectives.First, we consider positive and almost-sure winning with
safety objectives inPOMDPs. It follows from the correctness argument of Theorem 2
that pure strategies with exponential memory are sufficientfor positive winning with
safety objectives inPOMDPs, and the exponential upper bound on memory of pure
strategies for almost-sure winning with safety objectivesin POMDPs follows from the
reduction to games. We now present a matching exponential lower bound for random-
ized strategies.

Lemma 3. There exists a family(Pn)n∈N of POMDPs of sizeO(p(n)) for a poly-
nomialp with a safety objective such that the following assertions hold: (a) Player1
has a (pure) almost-sure (and therefore also positive) winning strategy in each of these
POMDPs; and (b) there exists a polynomialq such that every finite-memory random-
ized strategy for Player 1 that is positive (or almost-sure)winning inPn has at least
2q(n) states.

Preliminary. The set of actions of thePOMDP Pn is Σn ∪ {#} whereΣn =
{1, . . . , n}. ThePOMDP is composed of an initial stateq0 andn sub-MDPsAi with
state spaceQi, each consisting of a loop overpi statesqi1, . . . , q

i
pi

wherepi is thei-th
prime number. From each stateqij (1 ≤ j < pi), every action inΣn leads to the next
stateqij+1 with probability 1

2 , and to the initial stateq0 with probability 1
2 . The action

# is not allowed. Fromqipi
, the actioni is not allowed while the other actions inΣn

lead back the first stateqi1 and to the initial stateq0 both with probability1
2 . Moreover,

the action# leads back to the initial state (with probability1). The disallowed actions
lead to a bad state. The states of theAi’s are indistinguishable (they have the same ob-
servation), while the initial stateq0 is visible. We assume that the state spacesQi of the
Ai’s are disjoint.

POMDP family (Pn)n∈N. The state space ofPn is the disjoint union ofQ1, . . . , Qn

and{q0,Bad}. The initial state isq0, the final state isBad. The probabilistic transition
function is as follows:

– for all 1 ≤ i ≤ n andσ ∈ Σn, we haveδ(q0, σ)(qi1) =
1
n

;
– for all 1 ≤ i ≤ n, 1 ≤ j < pi, and σ ∈ Σn, σ′ ∈ Σn \ {i}, we have
δ(qij , σ)(q

i
j+1) = δ(qij , σ)(q0) = δ(qipi

, σ′)(qi1) = δ(qipi
, σ′)(q0) =

1
2 ; and

– for all 1 ≤ i ≤ n and1 ≤ j < pi, we haveδ(q0,#)(Bad) = δ(qij ,#)(Bad) =

δ(qipi
,#)(q0) = 1.

The initial state isq0. There are two observations, the state{q0} is labelled by obser-
vationo1, and the other states inQ1∪· · ·∪Qn (that we call the loops) by observationo2.
Fig. 2 shows the gameP2: the witness family of POMDPs have similarities with analo-
gous constructions for games [4]. However the constructionof [4] shows lower bounds
only for pure strategies and in games, whereas we present lower bound for randomized
strategies and for POMDPs, and hence our proofs are very different.
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Proof of Lemma 3. After the first transition from the initial state, player1 has the
following positive winning strategy. Letp∗n =

∏n
i=1 pi. While thePOMDP is in the

loops (assume that we have seenj times observationo2 consecutively), if1 ≤ j < p∗n,
then play any actioni such thatj mod pi 6= 0 (this is well defined sincep∗n is the lcm
of p1, . . . , pn), and otherwise play#. It is easy to show that this strategy is winning for
the safety condition, with probability1.

For the second part of the result, assume towards a contradiction that there exists a
finite-memory randomized strategŷα that is positive winning for Player1 and has less
thanp∗n states (sincep∗n is exponential ins∗n =

∑n
i=1 pi, the result will follow). Letη be

the least positive transition probability described by thefinite-state strategŷα. Consider
any history of a playρ that ends witho1. We claim that the following properties hold:
(a) with probability1 either observationo1 is visited again fromρ or the stateBad is
reached; and (b) the stateBad is reached with a positive probability. The first property
(property (a)) follows from the fact that for all actions theloops are left (the stateq0
or Bad is reached) with probability at least12 . We now prove the second property by
showing that the stateBad is reached with probability at least∆n = 1

n
· 1
(2·η)p

∗
n

. To

see this, consider the sequence of actions played by strategy α̂ afterρ when onlyo2 is
observed. Either# is never played, and then the action played byα̂ after a sequence
of p∗n states leads toBad (the current state being thenqipi

for some1 ≤ i ≤ n). This
occurs with probability at least∆n; or# is eventually played, but sincêα has less than
p∗n states, it has to be played after less thanp∗n steps, which also leads toBad with
probability at least∆n. The above two properties that (a)o1 ∪ {Bad} is reached with
probability1 from o1, and (b) withinp∗n steps after a visit too1, the stateBad is reached
with fixed positive probability, ensures thatBad is reached with probability1. Hence
α̂ is not positive winning. It follows that randomized strategies that are almost-sure or
positive winning inPOMDPs with safety objectives may require exponential memory.

Bounds for reachability objectives.We now argue the memory bounds for pure and
randomized strategies for positive winning with reachability objectives.



1. It follows from the correctness argument of Theorem 1 thatrandomized memory-
less strategies suffice for positive winning with reachability objectives inPOMDPs.

2. We now argue that for pure strategies, memory of size linear in the number of states
is sufficient and may be necessary. The upper bound follows from the reduction to
graph reachability. Given aPOMDP G, consider the graphG constructed fromG
as in the correctness argument for Theorem 1. Given the starting stateℓ, if there
is path inG to the target setT obtained fromT , then there is a pathπ of length
at most|L|. The pure strategy for Player 1 inG can play the sequence of actions
of the pathπ to ensure that the target observationsT are reached with positive
probability inG. The family of examples to show that pure strategies requirelinear
memory can be constructed as follows: we construct aPOMDP with deterministic
transition function such that there is a unique path (sequence of actions) of length
O(|L|) to the target, and any deviation leads to an absorbing state,and other than
the target state every other state has the same observation.In this POMDP any
pure strategy must remember the exact sequence of actions tobe played and hence
requiresO(|L|) memory.

It follows from the results of [1] that for almost-sure winning with reachability objec-
tives inPOMDPs pure strategies with exponential memory suffice, and we nowprove
an exponential lower bound for randomized strategies.

Lemma 4. There exists a family(Pn)n∈N of POMDPs of sizeO(p(n)) for a polyno-
mialp with a reachability objective such that the following assertions hold: (a) Player1
has an almost-sure winning strategy in each of thesePOMDPs; and (b) there exists a
polynomialq such that every finite-memory randomized strategy for Player 1 that is
almost-sure winning inPn has at least2q(n) states.

Fix the action set asΣ = {#, tick}. ThePOMDP P ′
n is composed of an initial

stateq0 andn sub-MDPsHi, each consisting of a loop overpi statesqi1, . . . , q
i
pi

where
pi is thei-th prime number. From each state in the loops, the actiontick can be played
and leads to the next state in the loop (with probability1). The action# can be played
in the last state of each loop and leads to theGoal state. The objective is to reachGoal
with probability 1. Actions that are not allowed lead to a sink state from which it is
impossible to reachGoal. There is a unique observation that consists of the whole state
space. Fig. 3 showsP ′

2.

Proof of Lemma 4. First we show that Player1 has an almost-sure winning strategy
in P ′

k (from q0). As there is only one observation, a strategy for Player1 corresponds
to a functionα : N → Σ. Consider the strategyα∗ as follows:α∗(j) = tick for all
0 ≤ j < p∗k andα∗(j) = # for all j ≥ p∗k. It is easy to check thatα∗ ensures winning
with certainty and hence almost-sure winning.

For the second part of the result assume, towards a contradiction, that there exists a
finite-memory randomized strategŷα that is almost-sure winning and has less thanp∗k
states. Clearly,̂α cannot play# before the(p∗k +1)-th round since one of the subMDPs
Hi would not be inqipi

and therefore Player1 would lose with probability at least1
n

.
Note that the state reached by the strategy automaton defining α̂ after p∗k rounds has
necessarily been visited in a previous round. Sinceα̂ has to play# eventually to reach



Goal, this means that# must have been played in some roundj < p∗k, when at least one
of the subgamesHi was not in locationqipi

, so that Player1 would have already lost
with probability at least1

n
· η, whereη is the least positive probability specified byα̂.

This is in contradiction with our assumption thatα̂ is an almost-sure winning strategy.

Bounds for Büchi and coBüchi objectives.An exponential upper bound for memory
of pure strategies for almost-sure winning of Büchi objectives follows from the results
of [1], and the matching lower bound for randomized strategies follows from our result
for reachability objectives. Since positive winning is undecidable for Büchi objectives
there is no bound on memory for pure or randomized strategiesfor positive winning. An
exponential upper bound for memory of pure strategies for positive winning of coBüchi
objectives follows from the correctness proof of Theorem 3 that iteratively combines
the positive winning strategies for safety and reachability to obtain a positive winning
strategy for coBüchi objective. The matching lower bound for randomized strategies
follows from our result for safety objectives. Since almost-sure winning is undecidable
for coBüchi objectives there is no bound on memory for pure or randomized strategies
for positive winning. This gives us the following theorem (also summarized in Table 2),
which is in contrast to the results for MDPs with perfect observation where pure mem-
oryless strategies suffice for almost-sure and positive winning for all parity objectives.

Theorem 6. The optimal memory bounds for strategies inPOMDPs are as follows.

1. Reachability objectives: for positive winning randomized memoryless strategies are
sufficient, and linear memory is necessary and sufficient forpure strategies; and for
almost-sure winning exponential memory is necessary and sufficient for both pure
and randomized strategies.

2. Safety objectives: for positive winning and almost-surewinning exponential mem-
ory is necessary and sufficient for both pure and randomized strategies.

3. Büchi objectives: for almost-sure winning exponential memory is necessary and
sufficient for both pure and randomized strategies; and there is no bound on mem-
ory for pure and randomized strategies for positive winning.

4. coB̈uchi objectives: for positive winning exponential memory is necessary and suf-
ficient for both pure and randomized strategies; and there isno bound on memory
for pure and randomized strategies for almost-sure winning.

Pure PositiveRandomized PositivePure AlmostRandomized Almost
Reachability Linear Memoryless Exponential Exponential

Safety Exponential Exponential Exponential Exponential
Büchi No Bound No Bound Exponential Exponential

coBüchi Exponential Exponential No Bound No Bound
Parity No Bound No Bound No Bound No Bound

Table 2.Optimal memory bounds for pure and randomized strategies for positive and almost-sure
winning.
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