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Abstract. We study observation-based strategies foartially-observable
Markov decision processé®OMDPSs) with parity objectives. An observation-
based strategy relies on partial information about theohjstf a play, namely,
on the past sequence of observations. We consider quaditatialysis prob-
lems: given aPOMDP with a parity objective, decide whether there exists an
observation-based strategy to achieve the objective witbagbility 1 (almost-
sure winning), or with positive probability (positive wiimg). Our main results
are twofold. First, we present a complete picture of the agwional complex-
ity of the qualitative analysis problem f#fOMDPs with parity objectives and
its subclasses: safety, reachability, Buichi, and coBtbfectives. We establish
several upper and lower bounds that were not known in thatitee, and present
efficient and symbolic algorithms for the decidable sulz#as Second, we give,
for the first time, optimal bounds (matching upper and loweurinls) for the
memory required by pure and randomized observation-basatégies for all
classes of objectives.

1 Introduction

Markov decision processesA Markov decision process (MDP a model for systems
that exhibit both probabilistic and nondeterministic baba MDPs have been used to
model and solve control problems for stochastic systenesetmondeterminism rep-
resents the freedom of the controller to choose a contr@mavhile the probabilistic
component of the behavior describes the system responsatiokactions. MDPs have
also been adopted as models for concurrent probabilistiesys, probabilistic systems
operating in open environments [23], and under-specifieailistic systems [6].

System specificationsThe specificationdescribes the set of desired behaviors of the
system, and is typically aw-regular set of paths. Parity objectives are a canonical
way to define such specifications in MDPs. They include reaitiha safety, Biichi
and coBuchi objectives as special cases. Thus MDPs witly pavjectives provide
the theoretical framework to study problems such as thdieation and the control of
stochastic systems.

Perfect vs. partial observations.Most results about MDPs make the hypothesis of
perfect observatianin this setting, the controller always knows, while intethag with

the system (or MDP), the exact state of the MDP. In practitis, iypothesis is often
unrealistic. For example, in the control of multiple prages each process has only
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access to the public variables of the other processes, buib tioeir private variables.
In the control of hybrid systems [7,13], or in automated piag [19], the controller

usually has noisy information about the state of the systhmedo finite-precision sen-
sors. In such applications, MDPs wigtartial observation(POMDPS) provide a more
appropriate model.

Qualitative and quantitative analysis.Given an MDP with parity objective, theual-
itative analysisasks for the computation of the setalinost-sure winningtates (resp.,
positive winningstates) in which the controller can achieve the parity dbjeavith
probability 1 (resp., positive probability); the more gealgjuantitative analysisisks
for the computation at each state of the maximal probabhilitia which the controller
can satisfy the parity objective. The analysis of POMDPsoissiderably more com-
plicated than the analysis of MDPs. First, the decision |emis for POMDPSs usu-
ally lie in higher complexity classes than their perfecsetvation counterparts: for
example, the quantitative analysis of POMDPs with readitplind safety objectives
is undecidable [21], whereas for MDPs with perfect obséomathis question can be
solved in polynomialtime [11, 10]. Second, in the conteX?@iVIDPs, witness winning
strategies for the controller need memory even for the frmpjectives of safety and
reachability. This is again in contrast to the perfect-obest#on case, where memoryless
strategies suffice for all parity objectives. Since the dit@ive analysis of POMDPs
is undecidable (even for computing approximations of th&imal probabilities [19]),
we study the qualitative analysis of POMDPs with parity abijee and its subclasses.

Contribution. For the qualitative analysis of POMDPs, the following résuhre
known: (a) the problems of deciding if a state is almost-suirening for reachability
and Biichi objectives can be solved in EXPTIME [1]; (b) theldems for almost-sure
winning for coBiichi objectives and positive winning fouii objectives are unde-
cidable [1, 14]; and (c) the EXPTIME-completeness of alrsast winning for safety
objectives follows from the results on games with partiadetation [9, 5]. Our new
contributions are as follows:

1. First, we show that (a) positive winning for reachabiligbjectives is
NLOGSPACE-complete; and (b) almost-sure winning for redndlity and Buchi
objectives, and positive winning for safety and coBucljectives are EXPTIME-
harcP. We also present a new proof that positive winning for sadeiy coBiichi ob-
jectives can be solved in EXPTIMEIt follows that almost-sure winning for reach-
ability and Buchi, and positive winning for safety and eaii, are EXPTIME-
complete. This completes the picture for the complexityhef qualitative analysis
for POMDPs with parity objectives. Moreover our new prodfEXPTIME upper-
bound proofs yield efficient and symbolic algorithms to sgbositive winning for
safety and coBiichi objectives in POMDPs.

2. Second, we present a complete characterization of themmbmemory required
by pure (deterministic) and randomized strategies for thalitative analysis of

3 A very brief (two line) proof of EXPTIME-hardness is sketchim [12] (see the discussion
before Theorem 5 for more details).

4 A different proof that positive safety can be solved in EXME is given in [15] (see the
discussion after Theorem 2 for a comparison).



POMDPs. For the first time, we present optimal memory boundgching upper
and lower bounds) for pure and randomized strategies: we #iat (a) for posi-
tive winning of reachability objectives, randomized megiess strategies suffice,
while for pure strategies linear memory is necessary arfacgift; (b) for almost-
sure winning of safety, reachability, and Biichi objec$iv@nd for positive winning
of safety and coBiichi objectives, exponential memory segeary and sufficient
for both pure and randomized strategies.

Related work. Though MDPs have been widely studied under the hypothegigmf
fect observations, there are a few works that consider PO3/BR., [20, 18] for sev-
eral finite-horizon quantitative objectives. The resuftilpshows the upper bounds for
almost-sure winning for reachability and Biichi objecsivand the work of [8] consid-
ers a subclass ®fOMDPs with Biichi objectives and presents a PSPACE upper bound
for the subclass. The undecidability of almost-sure wigrfior coBiichi and positive
winning for Biichi objectives is established by [1, 14]. Wegent a solution to the re-
maining problems related to the qualitative analysis of /BB with parity objectives,
and complete the picture. Partial information has beeniestliich the context of two-
player games [22, 9], a model that is incomparable to MDRsjgh some techniques
(like the subset construction) can be adapted to the cooté¥DMDPs. More general
models of stochastic games with partial information havenlstudied in [3, 15], and lie
in higher complexity classes. For example, a result of [8kshthat the decision prob-
lem for positive winning of safety objectives is 2EXPTIMB+uplete in the general
model, while for POMDPs, we show that the same problem is BXFEFcomplete.

2 Definitions

A probability distributionon a finite setd is a functionk : A — [0, 1] such that
> aca kla) = 1. Thesupportof « is the setSupp(k) = {a € A | k(a) > 0}. We
denote byD(A) the set of probability distributions oA.

Games and MDP$A two-player game structurer aMarkov decision process (MDP)
(of partial observatiohis a tupleG = (L, X, 6, O), whereL is a finite set of states,
X is a finite set of actions) C 2% is a set of observations that partitfothe state
spaceL. We denote bybs(¢) the unique observatiom € O such that € o. In the
case of games) C L x X x L is a set of labeled transitions; in the case of MDPs,
0 : L x X — D(L) is a probabilistic transition function. For games, we regthat for
all ¢ € L and allo € X, there existd’ € L such tha{¢, o, ¢') € 6. We refer to a game
of partial observation as ROG and to an MDP of partial observation a®MDP.
We say thaiG is a game or MDP operfect observatioif O = {{¢} | £ € L}. For
o € ¥ ands C L, definePost(s) = {¢' € L | 3 € s : ({,0,¢') € 5} whenG is a
game, anPostS (s) = {¢’ € L| 3 € s: 6(£,0)(¢') > 0} whenG is an MDP.

Plays. Games are played in rounds in which Playechooses an action itv', and

Player2 resolves nondeterminism by choosing the successor stak¢DPs the suc-
cessor state is chosen according to the probabilisticitram$unction. Aplayin G is

5 A slightly more general model with overlapping observasiman be reduced in polynomial
time to partitioning observations [9].



an infinite sequence = fyool1 . ..0n_14no, ... SUChthat,; ; € Posti ({¢;}) forall
i > 0. The infinite sequencebs(r) = obs({y)opobs(¢1) ... op_10bs(ly)oy, ... is the
observatiorof .

The set of infinite plays irG is denotedPlays(G), and the set of finite prefixes
Lyog . .. on—1L, Of plays is denote®refs(G). A statel € L is reachablen G if there
exists a prefiy € Prefs(G) such thatast(p) = ¢ whereLast(p) is the last state of.

StrategiesA pure strategyin G for Player1 is a functiona : Prefs(G) — X. A
randomized strategin G for Playerl is a functiona : Prefs(G) — D(X). A (pure
or randomized) strategy for Player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obs(p) = obs(p’), thena(p) = «a(p’). In the sequel, we are interested
in the existence of observation-based strategies for Play& pure strategyin G for
Player2 is a functions : Prefs(G) x X — L such that for allp € Prefs(G) and alll
o € X, we have(Last(p), o, B(p, o)) € §. A randomized strategipn G for Player2 is

a functiong : Prefs(G) x X' — D(L) such that for alp € Prefs(G), all o € X, and
all ¢ € Supp(B(p, o)), we have(Last(p), o, £) € 6. We denote bydq, A%, andBg the
set of all Playert strategies, the set of all observation-based Playsrategies, and the
set of all Player strategies ir¢, respectively.

Memory requirement of strategie&n equivalent definition of strategies is as follows.
Let Mem be a set callednemory An observation-based strategy with memory can be
described by two functions,;raemory-updatunctiona,: Mem x O x X — Mem that
given the current memory, observation and the action updatememory, and aext-
action function a,,: Mem x O — D(X) that given the current memory and current
observation specifies the probability distribuficsf the next action, respectively. A
strategy idfinite-memoryif the memoryMem is finite and the size of a finite-memory
strategyw is the sizgMem| of its memory. A strategy imemoryless |Mem| = 1. The
memoryless strategies do not depend on the history of a iplégnly on the current
state. Memoryless strategies for player 1 can be viewedraifinsa: O — D(X).

Objectives An objectivefor G is a sety of infinite sequences of states and actions,
thatis,¢ C (L x X)“. We consider objectives that are Borel measurable, i.ts ise
the Cantor topology ofi. x X)¥ [17]. We specifically consider reachability, safety,
Blichi, coBiichi, and parity objectives, all of them beingr& measurable. The parity
objectives are a canonical form to express.ategular objectives [24]. For a play =
Loooly ..., we denote bynf(w) = {£ € L | ¢ = ¢, for infinitely manyi’'s} the set of
states that appear infinitely oftenin

— Reachability and safety objectivaSiven a set/” C L of target states, theeach-
ability objectiveReach(7) = { lpool101 ... € Plays(G) | Ik > 0: 4, € T }
requires that a target state’inbe visited at least once. Dually, teafetyobjective
Safe(T) = { lpooli01... € Plays(G) | Vk > 0 : £, € T } requires that only
states in7 be visited; the objectivéntil(71, T2) = {loooli01 ... € Plays(G) |
Ik >0:0, € TaAVY) < k:{; €T} requires that only states iy be visited
before a state iff; is visited;

% For a pure strategy, the next-action function specifies glesiaction rather than a probability
distribution.



— Biichi and coBichi objectivesTheBlichiobjectiveBiichi(7T) = { | Inf(m)NT #
('} requires that a state if be visited infinitely often. Dually, theoBlichiobjective
coBiichi(T) = {x | Inf(x) C T } requires that only states i be visited infinitely
often; and

— Parity objectivesFord € N, letp: L — {0,1,...,d } be apriority functionthat
maps each state to a nonnegative integer priority.Jdréy objectiveParity(p) =
{7 | min{ p(¢) | ¢ € Inf(nw) } is even} requires that the smallest priority that
appears infinitely often be even.

Note that the objectiveBiichi(7) andcoBiichi(T) are special cases of parity objec-
tives defined by respective priority functiops p, such thap; (£) = 0 andpy(¢) = 2
if £ € T, andp;(¢) = p2(£) = 1 otherwise. An objective is visibleif it depends only
on the observations; formally, is visible if, wheneverr € ¢ andobs(w) = obs(n’),
thenn’ € ¢. In this work, all our upper bound results are for the genpealty ob-
jectives (not necessarily visible), and all the lower boueslilts forPOMDPs are for
the special case of visible objectives (and hence the loaends also hold for general
objectives).

Almost-sure and positive winningn eventis a measurable set of plays, and given
strategiesy and 5 for the two players (resp., a strategyfor Player 1 in MDPs), the
probabilities of events are uniquely defined [25]. For a Bobgectiveg, we denote by
Pr?’ﬁ(qb) (resp.,Pry(¢) for MDPs) the probability thap is satisfied from the starting
state/ given the strategies andj (resp., given the strategy). Given a games and

a statel, a strategya for Player1 is almost-sure winnindresp.,positive winning
for the objectivep from £ if for all randomized strategie§ for Player2, we have
Pro"?(¢) = 1 (resp.,Prd"?(¢) > 0). Given an MDPG and a staté, a strategyx for
Playerl is almost-sure winning (resp. positive winning) for theeatijve¢ from ¢ if we
havePry (¢) = 1 (resp.,Pry(¢) > 0). We also say that stateis almost-sure winning,
or positive winning for¢ respectively. We are interested in the problems of deciding
the existence of an observation-based strategy for Platfeatis almost-sure winning
(resp., positive winning) from a given state

3 Upper Bounds for the Qualitative Analysis of POMDPs

In this section, we present upper bounds for the qualitanedysis ofPOMDPs. We
first describe the known results. For qualitative analyEMDPs, polynomial time up-
per bounds are known for all parity objectives [11, 10]. ltdavs from the results of [9,
1] that the decision problems for almost-sure winningP@MDPs with reachability,
safety, and Biichi objectives can be solved in EXPTIME.dbdbllows from the results
of [1] that the decision problem for almost-sure winninghwéoBiichi objectives and
for positive winning with Biichi objectives is undecidaiflehe strategies are restricted
to be pure, and the results of [14] shows that the problem iremadecidable even if
randomized strategies are considered. In this sectionpwiplete the results on upper
bounds for the qualitative analysis BOMDPs: we present complexity upper bounds
for the decision problems of positive winning with reachifgisafety and coBiichi ob-
jectives. The following result for reachability objects/es simple, and for a complete
and systematic analysis we present the proof.



Theorem 1. Given aPOMDP G with a reachability objective and a starting state
the problem of deciding whether there is a positive winnitigtsgy from¢ in G is
NLOGSPACE-complete.

Proof. The NLOGSPACE-completeness result for positive reachglbdr MDPs fol-
lows from reductions to and from graph reachability.

Reduction to graph reachabilitiven aPOMDP G = (L, X, 6, O) and a set of target
states7 C L, consider the grapty = (L, E) where(¢,¢') € E if there exists an
actiono € X such thaty(¢,0)(¢') > 0. Let ¢ be a starting state, then the following
assertions hold: (a) if there is a patlin G from ¢ to a state € 7T, then the randomized
memoryless strategy for Player 1dGithat plays all actions uniformly at random ensures
that the pathr is executed irG with positive probability (i.e., ensures positive winning
for Reach(7) in G from ¢); and (b) if there is no path i to reachT” from ¢, then
there is no strategy (and hence no observation-basedgstydte Player 1 inG to
achieveReach(T). This shows that positive winning iROMDPs can be decided in
NLOGSPACE. Graphs are a special casPOMDPs and hence graph reachability can
be reduced to reachability with positive probability?@MDPs, therefore the problem
is NLOGSPACE-complete. |

Positive winning for safety and coBuchi objectivesWe now show that the decision
problem for positive winning with safety and coBiichi olijees for POMDPs can
be solved in EXPTIME. We first show with an example that thepderapproach of
reduction to a perfect-information MDP by subset constamcand solving the perfect
information MDP with safety objective for positive winnimpes not yield the desired
result.

Example 1.Consider theeOMDP shown in Fig. 1: in every state there exists only one
action (which we omit for simplicity). In other words, we reaa partially observable
Markov chain. State8, 1, and2 are safe states and form observatignwhile state3
forms observation, (which is not in the safe set). The stéten G is positive winning
for the safety objective as with positive probability thatst is reached and then the
state2 is visited forever. In contrast, consider the perfect infation MDPGX obtained
from G by subset construction (in this caS¥ is a Markov chain). IrGX from the state
{1, 2}, the possible successors dr&, and3, and since the observations are different
at1 and2, as compared t8, the successors ¢fl, 2} are{1, 2} and{3}. The reachable
set of states irGX from the state{0} is shown in Fig. 1. InGK, the state{0} is not
positive winning: the staté3} is the only recurrent state reachable fréa} and hence
from the state{0}, with probability 1, the stat¢3} is reached and3} is not a safe
state. Note that all this holds regardless of the precisaevaf nonzero probabilities.

[ |

Our result for positive safety and coBuchi objectives isdghon the computation of
almost-sure winning states for safety objectives, and erdhowing lemma.

Lemmal. LetG = (L, X, 4, O) be aPOMDP and let7 C L be the set of target
states. If Playel has an observation-based strategyGrto satisfySafe(7") with posi-
tive probability from some staté then there exists a statésuch that (a) Playet has
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Fig. 1. A POMDP G and the perfect information MDE¥ obtained by subset construction.

an observation-based strategy @ to satisfyUntil(7, {¢'}) with positive probability
from ¢, and (b) Playerl has an observation-based almost-sure winning stratedy in
for Safe(7) from¢'.

Proof. We assume without loss of generality that the non-safessitae are absorbing.
Assume that Playel has an observation-based positive winning stratedy G for
the objectiveSafe(7") from ¢, and towards a contradiction assume that for all stétes
reachable front with positive probability usingy in G, Playerl has no observation-
based almost-sure winning strategy fafe(7") from ¢’. A standard argument shows
that from every such stat®, regardless of the observation-based strategy of Player
the probability to stay safe within the nextsteps is at most — ™ wheren is the least
non-zero probability inG andn is the number of states i@. Since under strategy,
every reachable state has this property, the probabiligtdg safe withink - n steps
is at most(1 — »™)*. This value tends t6 whenk — oo, therefore the probability to
stay safe usingr from ¢ is 0, a contradiction. Hence, there exists a stte/hich is
almost-sure winning for Playdr(using observation-based strateglyand such that’

is reached with positive probability frofwhile staying in7 (again usingy). |

By Lemma 1, positive winning states can be computed as thefsstates from
which Playerl can force with positive probability to reach an almost-swiening
state while visiting only safe states. Almost-sure winrstefes can be computed using
the following subset construction.

Given aPOMDP G = (L, X, 6,0) and asef C L of states, th&nowledge-based
subset constructioaf G is the game of perfect observation

GX = (L, %, 5),

where£ = 2\ {0}, and for alls;, s, € L (in particulars, # ()) ando € X, we have
(s1,0,50) € 6K iff there exists an observatianc O such that eithes, = PostS (s;)N
oNT, orsy = (PostS (s1)No)\ T. We refer to states i6'¥ ascells The following result
is established using standard techniques (see e.g., Len?@8 Lemma 3.3 in [9]).
and the fact that almost-sure winning and sure winning (admaing is winning with



certainty as compared to winning with probability 1 for akisure winning, see [9]
for details of sure winning) coincide for safety objectives

Lemma 2. LetG = (L, ¥, §,0) be aPOMDP and7 C L a set of target states. Let
G¥ be the subset construction afig- = {s C T} the set of safe cells. Playérhas an
almost-sure winning observation-based strategg-ifor Safe(7) from ¢ if and only if
Player1 has an almost-sure winning strategyd for Safe(F") from cell {¢}.

Remark 1.Lemma 2 also holds if we replace almost-sure winning by sureiwg,
since for safety objectives almost-sure and sure winnirgoiae.

Theorem 2. Given aPOMDP G with a safety objective and a starting statethe
problem of deciding whether there exists a positive winwipgervation-based strategy
from ¢ can be solved in EXPTIME.

Proof. The almost-sure winning states @ for a safety objective (with observation-
based strategy) can be computed in exponential time usegithset construction (by
Lemma 2 and [9]). Then, given the Jéf of cells that are almost-sure winning @,

let Tw = {¢ € s | s € W} be the almost-sure winning statesGh We can compute
the states from which Playédrcan force7y to be reached with positive probability
while staying within the safe states using standard grattysis algorithms, as in
Lemma 1. Clearly such states are positive winning-irand by Lemma 1 all positive
winning states inG are obtained in this way. This gives an EXPTIME algorithm to
decide from which states there exists a positive winningolaion-based strategy for
safety objectives. |

Algorithms. The complexity bound of Theorem 2 has been established qurslyi
in [15], using an extension of the knowledge-based subssitnection which is not
necessary (where the state spack is2”). Our proof is simpler and also yield efficient
and symbolic algorithms: efficient anti-chain based synahadforithm for almost-sure
winning for safety objectives can be obtained from [9], andifive reachability is sim-
ple graph reachability.

The positive winning states for a coBuchi objective are patad as the set of
almost-sure winning states for safety that can be reachtdpwsitive probability.

Theorem 3. Given aPOMDP G with a coBichi objective and a starting statg the
problem of deciding whether there exists a positive winingervation-based strategy
from ¢ can be solved in EXPTIME.

Proof. Let coBiichi(7) be a coBlichi objective it = (L, X, 4, O). As in the proof

of Theorem 2, we compute in exponential time the Bgt of almost-sure winning
states inG for Safe(7), and using Lemma 1 the sBt of states from which Player

is positive winning forReach(7y). Clearly, all states irf¥/ are positive winning for
coBiichi(7"), andiW can be computed in EXPTIME. We argue that for all stétgsii’,
Playerl is not positive winning foroBiichi(7") from ¢. Note thats (¢, o)(¢') = 0 for
all¢ ¢ W, ¢ € W,ando € X, and thus there are no almost-sure winning states
for Safe(7) in G reachable froml \ W with positive probability, regardless of the



strategy of Playet. Therefore, by an argument similar to the proof of Lemma t, fo
all observation-based strategies for Playefrom every state ¢ W, the setL \ T

is reached with probability and the evenBiichi(L \ 7") has probabilityl. The result
follows. |

4 Lower Bounds for the Qualitative Analysis of POMDPs

In this section we present lower bounds for the qualitativalysis ofPOMDPs. We
first present the lower bounds for MDPs with perfect obsémat

Lower bounds for MDPs with perfect observations.In the previous section we ar-
gued that for reachability objectives evenR®MDPs the positive winning problem
is NLOGSPACE-complete. For safety objectives and almost-winning it is known
that an MDP can be equivalently considered as a game wheyerRlanakes choices
of the successors from the support of the probability distion of the transition func-
tion, and the almost-sure winning set is the same in the MPtlag game. Similarly,
there is a reduction of games of perfect observations to M@iRerfect observation
for almost-sure winning with safety objectives. The problef almost-sure winning in
games of perfect observation is alternating reachabitityia PTIME-complete [2, 16],.
It follows that almost-sure winning for safety objectivasMDPs is PTIME-complete.
We now show that the almost-sure winning problem for reatityaland the positive
winning problem for safety objectives is PTIME-complete féDPs with perfect ob-
servation.

Reduction from the CIRCUIT-VALUE-PROBLEM. Let N = {1,2,...,n } be a set of
AND and OR gates, and be a set of inputs. The set of inputs is partitioned iffo
andy; Iy is the set of inputs set to 0 (false) afdis the set of inputs set to 1 (true).
Every gate receives two inputs and produces one outputpthes of a gate are outputs
of another gate or an input from the setThe connection graph of the circuit must
be acyclic. Let the gate represented by the node 1 be the toutde. The QRcuIT-
VALUE-PROBLEM (CVP) is to decide whether the output is 1 or 0. This problem is
PTIME-complete. We present a reduction of CVP to MDPs withfgaet observation
for almost-sure winning with reachability, and positivenwing with safety objectives.

1. Almost-sure reachabilityGiven the CVP, we construct the MDP of perfect obser-
vation as follows: (a) the set of statesNsU I; (b) the action seti = {I,r };

(c) the transition function is as follows: every nodd/iis absorbing, and for a state
that represents a gate, (i) if it is an OR gate, then for thieacthe left input gate

is chosen with probability 1, and for the actipthe right input gate is chosen with
probability 1; and (ii) if it is an AND gate, then irrespediof the action, the left
and right input gate are chosen with probabili$2. The output of the CVP from
node 1 is 1 iff the sef; is reached from the state 1 in the MDP with probability 1
(i.e., the state 1 is almost-sure winning for the reachigtobjectiveReach(l;).)

2. Positive safetyl-or positive winning with safety objectives, we take the C&fpply
the same reduction as for almost-sure reachability witfidh@ving modifications:
every state inly remains absorbing and from every statdirthe next state is the
starting state 1 with probability 1 irrespective of the anotiThe set of safety target



is the setl; U N. If the output of the CVP problem is 1, then from the starting
state the sef; is reached with probability 1, and hence the safety objeatiith
the targetlV U I; is ensured with probability 1. If the output of the CVP prable
is 0, then from the starting state the $gts reached with positive probability> 0

in n steps against all strategies. Since from every stafg the successor state is
the statel, it follows that the probability to reach, from the starting state 1 in
k-(n+1) stepsis atleast— (1 —n)*, and this goes to 1 dsgoes to. Hence it
follows that from state 1, the answer to the positive winrforghe safety objective
Safe(N U I) is YES iff the output to the CVP is 1.

From the above results it also follows that almost-sure argitipe Biichi and coBuchi
objectives are PTIME-hard (and PTIME-completeness falénom the known polyno-
mial time algorithms for qualitative analysis of MDPs withrfly objectives [10, 11]).

Theorem 4. Given an MDPG of perfect observation, the following assertions hold:
(a) the positive winning problem for reachability objeettvis NLOGSPACE-complete,
and the positive winning problem for safetyjjdi, coBichi and parity objectives is
PTIME-complete; and (b) the almost-sure winning problemréachability, safety,
Buichi, coBichi and parity objectives is PTIME-complete.

Lower bounds for POMDPs. We have already shown that positive winning with reach-
ability objectives inPOMDPs is NLOGSPACE-complete. As in the case of MDPs with
perfect observation, for safety objectives and almose-sutinning aPOMDP can be
equivalently considered as a game of partial observatiarevRlayer 2 makes choices
of the successors from the support of the probability distion of the transition func-
tion, and the almost-sure winning set is the same inRG& DP and the game. Since
the problem of almost-sure winning in games of partial obs@on with safety objec-
tive is EXPTIME-complete [5], the EXPTIME-completenessuk follows. We now
show that almost-sure winning with reachability objecsiaad positive winning with
safety objectives is EXPTIME-complete. Before the resutfirst present a discussion
on polynomial-space alternating Turing machines (ATM).

Discussion.Let M be a polynomial-space ATM and let be an input word. Then,
there is an exponential bound on the number of configuratibtise machine. Hence
if M can accept the word, then it can do so within somig,,| steps, wher¢uw| is the
length of the wordw, andk,, is bounded by an exponential jw|. We construct an
equivalent polynomial-space ATM{’ that behaves a&/ but keeps track (in polyno-
mial space) of the number of steps executedbyand given a wordkw|, if the number
of steps reachek),,| without accepting, then the word is rejected. The machifie
is equivalent tolM/ and reaches the accepting or rejecting states in a numbéspd s
bounded by an exponential in the length of the input word. piteblem of deciding,
given a polynomial-space ATM/ and a wordw, whetherM acceptav is EXPTIME-
complete.

Reduction from Alternating PSPACE Turing machine. Let M be a polynomial-
space ATM such that for every input word, the accepting or the rejecting state
is reached within exponential steps fi@|. A polynomial-time reductionRs of a
polynomial-space ATMM and an input wordv to a gameG = Rg (M, w) of par-
tial observation is given in [9] such that (a) there is a splemtcepting state i6/, and



(b) M acceptsv iff there is an observation-based strategy for Playerc to reach the
accepting state with probability 1. If the above reductmapplied taV/, then the game
structure satisfies the following additional propertiére is a special rejecting state
thatis absorbing, and for every observation-based sydtedlayer 1, either (a) against
all Player 2 strategies the accepting state is reached watapility 1; or (b) there is a
pure Player 2 strategy that reaches the rejecting statepwgtive probabilityy > 0in
2|1 steps and the accepting or the rejecting state is reachadowabability 1 in2! 7!
steps. We now present the reductioiP©MDPs:

1. Almost-sure winning for reachabilitsiven a polynomial-space ATM{ andw an
inputword, letG = Rg (M, w). We construct OMDP G’ from G as follows: we
only modify the transition function i’ by uniformly choosing over the successor
choices. Formally, for a statec L and an actior € X' the probabilistic transition
functiond’ in G’ is as follows:

/ AN O (€7 076/) ga’
§'(L, o) (') = {1/|{g1 | (6,0,01) €8} (40,0 €.

Given an observation-based strategy for Player &,imve consider the same strat-
egy inG’: (1) if the strategy reaches the accepting state with pritiyab against
all Player 2 strategies i, then the strategy ensures thatihthe accepting state
is reached with probability 1; and (2) otherwise there is sefRiayer 2 strategy
in G that ensures the rejecting state is reacherilihsteps with probability; > 0,
and with probability at Ieas(t1/|L|)2‘L‘ the choices of the successors of strategy
B is chosen in?’, and hence the rejecting state is reached with probabtliest
(1/|L|)2‘L‘ -m > 0. It follows that inG’ there is an observation-based strategy for
almost-sure winning the reachability objective with targithe accepting state iff
there is such a strategy (. The result follows.

2. Positive winning for safety’he reduction is same as above. We obtair@&/DP
G" from the POMDP G’ above by making the following modification: from the
state accepting, thEOMDP goes back to the initial state with probability 1. If
there is an observation-based strategfpr Player 1 inG’ to reach the accepting
state, then repeating the strategyach time the accepting state is visited, it can
be ensured that the rejecting state is reached with pratyabilOtherwise, against
every observation-based strategy for Player 1, the prétyatoi reach the rejecting
state ink- (212 +1) steps is at leadt— (1—n')*, wheren’ = 5-(1/|L|)2"" > 0 (this
is because there is a probability to reach the rejecting stah probability at least
i’ in 2/F1 steps, and unless the rejecting state is reached the gtatéite is again
reached withire!“l + 1 steps). Hence the probability to reach the rejecting state
is 1. It follows thatG’ is almost-sure winning for the reachability objective with
the target of the accepting state iff@1’ there is an observation-based strategy for
Player 1 to ensure that the rejecting state is avoided witfitige probability. This
completes the proof of correctness of the reduction.

A very brief (two line proof) sketch was presented as the pobdheorem 1 of [12]
to show that positive winning ifFOMDPs with safety objectives is EXPTIME-hard.



We were unable to reconstruct the proof: the proof suggéstsithulate a nondetermin-
istic Turing machine. The simulation of a polynomial-spacadeterministic Turing
machine only shows PSPACE-hardness, and the simulatiomohdeterministic EX-
PTIME Turing machine would have shown NEXPTIME-hardnessl an EXPTIME
upper bound is known for the problem. Our proof presentsfargifit and detailed proof
of the result of Theorem 1 of [12]. Hence we have the follovtlmgprem, and the results
are summarized in Table 1.

Theorem 5. Given aPOMDP G, the following assertions hold: (a) the positive win-
ning problem for reachability objectives is NLOGSPACE-ptate, the positive winning
problem for safety and caRhi objectives is EXPTIME-complete, and the positive win-
ning problem for Bichi and parity objectives is undecidable; and (b) the alvsse
winning problem for reachability, safety andiéhi objectives is EXPTIME-complete,
and the almost-sure winning problem for daodhi and parity objectives is undecidable.

Proof. The results are obtained as follows.

1. Positive winningThe NLOGSPACE-completeness for positive winning with reac
ability objectives is Theorem 1. Our reduction from Alteting PSPACE Turing
machine shows EXPTIME-hardness for positive winning wilfesy (and hence
the lower bound also follows for coBiichi objectives), ane tipper bounds follow
from Theorem 2 and Theorem 3. The undecidability followsgositive winning
for Buichi and parity objectives follows from the result &f [L4].

2. Almost-sure winnindt follows from the results of [9, 1] that the decision profie
for almost-sure winning foPOMDPs with reachability, safety, and Buichi objec-
tives can be solved in EXPTIME. Our reduction from AlterngtiPSPACE Tur-
ing machine shows EXPTIME-hardness for almost-sure wigmiith reachability
(and hence the lower bound also follows for Buichi objecjv&he lower bound for
safety objectives follows from the lower bound for partialarmation games [9]
and the fact the almost-sure winning for safety coincidek aimost-sure winning
in games. The undecidability follows for almost-sure wirgpfor coBiichi and par-
ity objectives follows from the result of [1, 14].

Positive Almost-sure
Reachability NLOGSPACE-complete (up+loEXPTIME-complete (lo
Safety EXPTIME-complete (up+lo) | EXPTIME-complete [5]

Buchi Undecidable [1] EXPTIME-complete (lo
coBlichi EXPTIME-complete (up+lo) Undecidable [1]
Parity Undecidable [1] Undecidable [1]

Table 1. Computational complexity oPOMDPs with different classes of parity objectives for
positive and almost-sure winning. Our contribution of upged lower bounds are indicated as
“up” and “lo” respectively in parenthesis.



5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory red iy pure and random-
ized strategies for positive and almost-sure winning fachability, safety, Biichi and
coBlichi objectives.

Bounds for safety objectivesFirst, we consider positive and almost-sure winning with
safety objectives iPOMDPs. It follows from the correctness argument of Theorem 2
that pure strategies with exponential memory are suffidi@npositive winning with
safety objectives ilPOMDPs, and the exponential upper bound on memory of pure
strategies for almost-sure winning with safety objectiveBOMDPs follows from the
reduction to games. We now present a matching exponentiaklbound for random-
ized strategies.

Lemma 3. There exists a familyP,),cy of POMDPs of sizeO(p(n)) for a poly-
nomial p with a safety objective such that the following assertioolelh(a) Player1
has a (pure) almost-sure (and therefore also positive) wigistrategy in each of these
POMDPs; and (b) there exists a polynomig@luch that every finite-memory random-
ized strategy for Player 1 that is positive (or almost-sus)ning in P,, has at least
24(") states.

Preliminary. The set of actions of th®OMDP P, is X,, U {#} where ¥,, =
{1,...,n}. ThePOMDP is composed of an initial statg andn sub-MDPsA; with
state space€);, each consisting of a loop over statesy!, . . . ,q;i wherep; is thei-th
prime number. From each sta;}é(l < j < p;), every action inx,, leads to the next
stateq},, with probability }, and to the initial statg, with probability 1. The action
# is not allowed. From];',i, the action: is not allowed while the other actions i,
lead back the first statg and to the initial statg, both with probability%. Moreover,
the action# leads back to the initial state (with probability. The disallowed actions
lead to a bad state. The states of thés are indistinguishable (they have the same ob-
servation), while the initial statg is visible. We assume that the state spagesf the
A;’s are disjoint.

POMDP family (P,).en. The state space d?, is the disjoint union of)4,...,Q,
and{qo, Bad}. The initial state isy, the final state i8ad. The probabilistic transition
function is as follows:

- forall1 <i < nando € X,, we haved(qo, 0)(q}) = ;

—foralll < i <n 1< j < p,ando € X,, o € X, \ {i}, we have

0(q}, 0)(¢)11) = 8(aj, 0)(90) = 8(ap,,0")(ai) = d(qp,. 0')(g0) = 3; and
—foralll <7 < nandl < j < p;, we haved(qo, #)(Bad) = (¢}, #)(Bad) =

(qp, #)(q0) = 1.

The initial state ig,. There are two observations, the stijg} is labelled by obser-
vationoy, and the other states g, U- - -UQ,, (that we call the loops) by observatios
Fig. 2 shows the gamBg,: the witness family of POMDPs have similarities with analo-
gous constructions for games [4]. However the construaif¢d] shows lower bounds
only for pure strategies and in games, whereas we preseat lmyund for randomized
strategies and for POMDPs, and hence our proofs are vepyrelift.



Fig.2. ThePOMDP P. Fig. 3. ThePOMDP P;.

Proof of Lemma 3. After the first transition from the initial state, playgrhas the
following positive winning strategy. Let:; = []’_, p;. While thePOMDP is in the
loops (assume that we have sgeiimes observations consecutively), ift < j < pZ,
then play any actionsuch thaty mod p; # 0 (this is well defined sincg}, is the lcm

of p1,...,pn), and otherwise playt. It is easy to show that this strategy is winning for
the safety condition, with probability.

For the second part of the result, assume towards a cornticatihat there exists a
finite-memory randomized strategythat is positive winning for Playelr and has less
thanp}, states (since}, is exponentialirs;, = 3", p;, the result will follow). Lety be
the least positive transition probability described byfthite-state strategg. Consider
any history of a play that ends witho;. We claim that the following properties hold:
(a) with probabilityl either observation, is visited again fronp or the stateBad is
reached; and (b) the staBad is reached with a positive probability. The first property
(property (a)) follows from the fact that for all actions tlo@ps are left (the state,
or Bad is reached) with probability at Iea%t We now prove the second property by
showing that the statBad is reached with probability at least,, = - - W To
see this, consider the sequence of actions played by syrétagerp when onlyo, is
observed. Eithe# is never played, and then the action playedibsgfter a sequence
of p! states leads tBad (the current state being th@@i for somel < i < n). This
occurs with probability at leash,, ; or # is eventually played, but singehas less than
pl states, it has to be played after less thgnsteps, which also leads ®ad with
probability at leastd,,. The above two properties that (@) U {Bad} is reached with
probabilityl from o, and (b) withinp}, steps after a visit to;, the statéBad is reached
with fixed positive probability, ensures thBtd is reached with probability. Hence
& is not positive winning. It follows that randomized stratsgthat are almost-sure or
positive winning inPOMDPs with safety objectives may require exponential memory.

Bounds for reachability objectives.We now argue the memory bounds for pure and
randomized strategies for positive winning with reachigbilbjectives.



1. It follows from the correctness argument of Theorem 1 thatiomized memory-
less strategies suffice for positive winning with reachgbilbjectives inPOMDPs.

2. We now argue that for pure strategies, memory of sizellimthe number of states
is sufficient and may be necessary. The upper bound followvs fthe reduction to
graph reachability. Given BOMDP G, consider the grap&’ constructed frond?
as in the correctness argument for Theorem 1. Given theéngjastate/, if there
is path inG to the target sef” obtained from7, then there is a path of length
at most|L|. The pure strategy for Player 1 (& can play the sequence of actions
of the pathrw to ensure that the target observatiohsare reached with positive
probability inG. The family of examples to show that pure strategies rediniear
memory can be constructed as follows: we constri®D&DP with deterministic
transition function such that there is a unique path (secgiefiactions) of length
O(]L|) to the target, and any deviation leads to an absorbing stateother than
the target state every other state has the same observatitiis POMDP any
pure strategy must remember the exact sequence of actibegtiayed and hence
requiresO(|L|) memory.

It follows from the results of [1] that for almost-sure wimgi with reachability objec-
tives inPOMDPs pure strategies with exponential memory suffice, and weprowe
an exponential lower bound for randomized strategies.

Lemma 4. There exists a familyP,,),en 0f POMDPs of sizeO(p(n)) for a polyno-
mial p with a reachability objective such that the following as&ars hold: (a) Playen
has an almost-sure winning strategy in each of the@MDPs; and (b) there exists a
polynomialq such that every finite-memory randomized strategy for Playenat is
almost-sure winning itP, has at leas2?(™ states.

Fix the action set a&’ = {#,tick}. The POMDP P, is composed of an initial
stategy andn sub-MDPsH;, each consisting of a loop ovgr statesy!, . . ., q;,i where
p; is thei-th prime number. From each state in the loops, the actican be played
and leads to the next state in the loop (with probabilityThe action# can be played
in the last state of each loop and leads to®oel state. The objective is to reaval
with probability 1. Actions that are not allowed lead to aksstate from which it is
impossible to reacfioal. There is a unique observation that consists of the whote sta
space. Fig. 3 showB;.

Proof of Lemma 4. First we show that Player has an almost-sure winning strategy
in P, (from go). As there is only one observation, a strategy for Pldyeorresponds
to a functiona : N — Y. Consider the strategy* as follows:a*(j) = tick for all

0 <j < p;anda*(j) = # forall j > pi. Itis easy to check that* ensures winning
with certainty and hence almost-sure winning.

For the second part of the result assume, towards a cortiragithat there exists a
finite-memory randomized strategythat is almost-sure winning and has less than
states. Clearlyy cannot play# before the(p; + 1)-th round since one of the subMDPs
H; would not be |nqp and therefore Player would lose with probability at Ieas%
Note that the state reached by the strategy automaton dgfinafter p; rounds has
necessarily been visited in a previous round. Sifid®s to play# eventually to reach



Goal, this means tha must have been played in some roynd p;, when at least one
of the subgame#/; was not in Iocatiorq;',i, so that Playei would have already lost
with probability at Ieast}l -1, wheren is the least positive probability specified by

This is in contradiction with our assumption tiats an almost-sure winning strategy.

Bounds for Biichi and coBiichi objectivesAn exponential upper bound for memory
of pure strategies for almost-sure winning of Biichi obijexg follows from the results
of [1], and the matching lower bound for randomized strateddllows from our result
for reachability objectives. Since positive winning is ecilable for Biichi objectives
there is no bound on memory for pure or randomized stratégig®sitive winning. An
exponential upper bound for memory of pure strategies feitpe winning of coBuchi
objectives follows from the correctness proof of Theorerha& iteratively combines
the positive winning strategies for safety and reachattititobtain a positive winning
strategy for coBuchi objective. The matching lower bouadraindomized strategies
follows from our result for safety objectives. Since almsste winning is undecidable
for coBlichi objectives there is no bound on memory for pureaadomized strategies
for positive winning. This gives us the following theorens@asummarized in Table 2),
which is in contrast to the results for MDPs with perfect alszagon where pure mem-
oryless strategies suffice for almost-sure and positivaninnfor all parity objectives.

Theorem 6. The optimal memory bounds for strategie®@MDPs are as follows.

1. Reachability objectives: for positive winning randoatiznemoryless strategies are
sufficient, and linear memory is necessary and sufficiengdce strategies; and for
almost-sure winning exponential memory is necessary affidisat for both pure
and randomized strategies.

2. Safety objectives: for positive winning and almost-surming exponential mem-
ory is necessary and sufficient for both pure and randomiategjies.

3. Buchi objectives: for almost-sure winning exponential mgnis necessary and
sufficient for both pure and randomized strategies; anddah®no bound on mem-
ory for pure and randomized strategies for positive winning

4. coBichi objectives: for positive winning exponential memsrgécessary and suf-
ficient for both pure and randomized strategies; and themoi®ound on memory
for pure and randomized strategies for almost-sure winning

Pure PositivieRandomized Positiv@ure AlmosfRandomized Almost
Reachability Linear Memoryless | Exponentia Exponential
Safety | Exponential Exponential Exponentia Exponential
Buchi No Bound No Bound Exponentia Exponential
coBliichi | Exponential Exponential No Bound No Bound
Parity No Bound No Bound No Bound No Bound

Table 2. Optimal memory bounds for pure and randomized strategigsoiitive and almost-sure

winning.
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