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Abstract. We consider the two-dimensional BCS functional with a radial
pair interaction. We show that the translational symmetry is not broken
in a certain temperature interval below the critical temperature. In the
case of vanishing angular momentum, our results carry over to the three-
dimensional case.

1. Introduction

In 1957, Bardeen, Cooper, and Schrieffer published their famous paper with
the title “Theory of Superconductivity,” which contained the first, generally
accepted, microscopic theory of superconductivity. In recognition of this work,
they were awarded the Nobel prize in 1972. Originally introduced to describe
the phase transition from the normal to the superconducting state in metals
and alloys, BCS theory can also be applied to describe the phase transition
to the superfluid state in cold fermionic gases. In this situation, one has to
replace the usual non-local phonon-induced interaction in the gap equation by
a local pair potential. Apart from being a paradigmatic model in solid-state
physics and in the field of cold quantum gases, the BCS theory of supercon-
ductivity, that is, the gap equation and the BCS functional show a rich math-
ematical structure, which has been well recognized. See [2,21–25] for works on
the gap equation with interaction kernels suitable to describe the physics of
conduction electrons in solids and [3,6,10–12,15,16] for works that treat the
translation-invariant BCS functional with a local pair interaction. The gap
equation and the BCS functional are related in the way that the former is the
Euler–Lagrange equation of the latter. One main question in the study of BCS
theory is whether the gap equation

Δ(p) = − 1
(2π)d/2

∫
Rd

V̂ (p − q)
tanh (E(q)/2T )

E(q)
Δ(q) dq, (1.1)
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with E(q) =
√

(q2 − μ)2 + |Δ(q)|2 has a non-trivial solution, that is, one with
Δ �= 0. If this is so, the system is said to be in a superconducting/superfluid
state. The function Δ has the interpretation of a spectral gap of an effective
mean-field Hamiltonian that is present only in the superconducting/superfluid
phase, see Appendix in [12] for further explanations. In [12], it has been
demonstrated that, although the gap equation is highly nonlinear, the ques-
tion whether there exists a non-trivial solution can be decided with the help
of a linear criterion. To be more precise, it was shown that the existence of
a non-trivial solution of the gap equation is equivalent to the fact that a cer-
tain linear operator has a negative eigenvalue. Based on a characterization of
the critical temperature in terms of this linear operator, its behavior has been
investigated in the limit of small couplings and in the low-density limit, see
[6,16] and [14], respectively. Recently, there has also been considerable interest
in the BCS functional with external fields, and in particular, in its connection
to the Ginzburg-Landau theory of superconductivity, see [4,5,7–9,17,18,20].

The gap equation in the form stated in Eq. (1.1) and the related BCS
functional can be heuristically derived from quantum mechanics by a varia-
tional procedure under several simplifying assumptions, see [12] and the dis-
cussion in Sect. 2 below. One of these assumptions is that states used in this
variational procedure are translation-invariant which leads to a strong simpli-
fication of the model. While this approximation is presumably valid in the case
of cold fermionic gases with a rotationally invariant pair interaction and is of
great importance when it comes to numerical computations, it is in general
hard to justify its validity. See [1] for examples in the context of solid-state
physics where this approximation is not valid. From a mathematical point of
view, one is faced with a functional that is invariant under translations in the
sense that spatial translations do not change the energy of a state. Due to
the nonlinear nature of the functional, minimizers need not be translation-
invariant, however. If they are not, one says that the translational symmetry
of the system is broken. The aim of this work is to prove the absence of trans-
lational symmetry breaking in two situations: We start by considering the
two-dimensional BCS functional with a radial pair interaction and show that
there exists a certain temperature interval below the critical temperature, in
which the translational symmetry of the system persists. Afterwards, we real-
ize that our analysis directly carries over to the three-dimensional case if the
Cooper-pairs are in an s-wave state. Prior to this work, such a result was
known only in the case of V̂ ≤ 0 and not identically zero, see [19].

2. Main Results

We consider a sample of fermionic atoms in a cold gas in d-dimensional space
(d = 2, 3) within the framework of BCS theory. It is convenient to think of the
sample as infinite and periodic, since this setting avoids having to deal with
boundary conditions at the boundary of the sample. To describe the period-
icity, we introduce the lattice Z

d with the unit cell [0, 1]d = Ω. The special
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form of the lattice does not play any role for us, and the proof carries over
to an arbitrary Bravais lattice. To not artificially complicate the presentation,
we therefore opt for the simplest choice. BCS states are most conveniently
described by their generalized one-particle density matrix, that is, by a self-
adjoint operator Γ on L2(Rd) ⊕ L2(Rd) of the form

Γ =
(

γ α
α 1 − γ

)
, (2.1)

with 0 ≤ Γ ≤ 1. Here γ and α denote the one-particle density matrix and
the Cooper-pair wave function of the state Γ, respectively. Both of them are
represented by periodic operators with period one. In terms of kernels, the
latter means that γ(x + u, y + u) = γ(x, y) and α(x + u, y + u) = α(x, y) for
all u ∈ Z

d and all x, y ∈ R
d. In (2.1), α = CαC, where C denotes complex

conjugation. Note that, in particular, α(x, y) = α(y, x) for all x, y ∈ R
d, due to

the self-adjointness of Γ. In this setting, it is natural to consider energies per
unit volume. Accordingly, we define for a periodic operator A, the trace per
unit volume TrΩ by TrΩ [A] = Tr [χΩAχΩ], where χΩ denotes the characteristic
function of Ω. We call Γ of form (2.1) an admissible BCS state if TrΩ (−∇2 +
1)γ < ∞ and denote the set of admissible BCS states by D. We will, by a
slight abuse of notation, write (γ, α) ∈ D, meaning that the BCS state Γ given
by (2.1) is admissible.

The BCS functional at temperature T ≥ 0, with chemical potential μ ∈ R,
interaction potential V ∈ L2(Rd) and entropy

S(Γ) = −1
2
TrΩ [Γ log Γ + (1 − Γ) log (1 − Γ)],

is then given by

F(Γ) = TrΩ
[(−∇2 − μ

)
γ
]
+

∫
Ω×Rd

V (x − y)|α(x, y)|2 d(x, y) − TS(Γ).

(2.2)

Note that the same functional has been considered in [7], where the periodic-
ity was introduced for ease of comparison with the translation-invariant func-
tional. As already mentioned above, the BCS functional can be heuristically
derived from quantum mechanics by a variational procedure. To that end, one
considers the full free energy functional of the system and restricts attention
to quasi-free states only. Due to the Wick rule, the energy and the entropy can
then be expressed solely in terms of the generalized one-particle density matrix
of the quasi-free state under consideration, see [1]. If one assumes additionally
SU(2)-invariance as well as the above periodicity of the state and neglects the
direct and the exchange term in the energy, one arrives at Eq. (2.2). For more
details see Appendix of [12].

The translation-invariant BCS functional F ti is obtained from F by
restricting the set of admissible states to the translation-invariant ones. That
is, the kernels of γ and α take the form γ(x, y) = γ(x−y) and α(x, y) = α(x−y),
respectively. We describe translation-invariant BCS states via their momentum
representations by 2 × 2 matrices of the form
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Γ̂(p) =
(

γ̂(p) α̂(p)
α̂(p) 1 − γ̂(−p)

)
, (2.3)

for p ∈ R
d, where the bar denotes complex conjugation and the hats indicate

that those objects are Fourier transforms of integral kernels that depend only
on x − y. Obviously, Γ̂(p) satisfies 0 ≤ Γ̂(p) ≤ 1 for all p ∈ R

d. The latter
translates to |α̂(p)|2 ≤ γ̂(p)(1 − γ̂(p)) for p ∈ R

d in terms of γ̂ and α̂. Note
that the fact that Γ is self-adjoint implies that α̂ is an even function and that
γ̂ is real-valued. A translation-invariant BCS state Γ is admissible if and only
if γ̂ ∈ L1(Rd, (1 + p2) dp) and α ∈ H1(Rd,dx). By Dti we denote the set of
all admissible translation-invariant BCS states. For T ≥ 0 the translation-
invariant BCS functional with chemical potential μ ∈ R, interaction poten-
tial V ∈ L2(Rd) and entropy S, which we can now write as

S(Γ) = −1
2

∫
Rd

trC2

[
Γ̂(p) log Γ̂(p) +

(
1 − Γ̂(p)

)
log

(
1 − Γ̂(p)

)]
dp,

takes the form

F ti(Γ) =
∫
Rd

(p2 − μ)γ̂(p) dp +
∫
Rd

V (x)|α(x)|2 dx − TS(Γ). (2.4)

Given a state Γ, we define the gap function Δ of that state as the Fourier
transform of 2V (x)α(x). One can then show that the gap function of any min-
imizing BCS state satisfies Eq. (1.1), see [12]. We note that F ti was studied
in [12] without the constraint that α is reflection symmetric. The results there
hold equally if one works only in the subspace of reflection symmetric functions
in L2(Rd), however. In the case of V = 0, the translation-invariant BCS func-
tional F ti is minimized by the pair (γ0, 0) where γ̂0(p) = (1+eβ(p2−μ))−1. The
same statement is true for the periodic BCS functional F . The state (γ0, 0) is
called the normal state and describes a situation where superfluidity is absent.

It was shown in [12, Theorem 1] that there exists a critical temperature
Tc ≥ 0 such for T < Tc, the minimizer of the translation-invariant BCS func-
tional has a nonvanishing Cooper-pair wave function. On the other hand, for
T ≥ Tc, the normal state is the unique minimizer. Additionally, there is a
characterization of Tc in terms of a linear operator. To make this statement
more explicit, let us introduce the function KT : Rd → R given by

KT (p) =
p2 − μ

tanh((p2 − μ)/(2T ))
.

Then, KT = KT (−i∇) defines an operator on L2(Rd) acting by multiplica-
tion with KT (p) in Fourier space. The critical temperature of the translation-
invariant BCS functional is given by

Tc = inf{T ≥ 0 | KT + V ≥ 0}.

In other words, Tc is the value of T such that the operator KT + V has zero
as lowest eigenvalue. Observe that this definition makes sense because KT

is monotone increasing in T . The characterization of Tc in terms of a linear
operator comes about because a minimizer of the translation-invariant BCS
functional F ti has a nonvanishing Cooper-pair wave function if and only if the
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normal state is unstable under pair formation. That is, if and only if the second
variation of F ti at (γ0, 0) has a negative eigenvalue. The operator KT + V is
exactly the second variation of F ti at the normal state in the direction of a
perturbation with γ = 0 and α �≡ 0.

In this paper, we treat the question whether there is translational symme-
try breaking in the BCS model with radial pair interaction V . More precisely,
we study the minimization problem

inf {F(Γ) |Γ ∈ D}
and we are, in particular, concerned with the question whether the infimum
of F is attained by the minimizers of the translation-invariant BCS functional.
If V̂ ≤ 0 with V̂ not identically zero this is already known to be the case, see
[7,19]. In order to study this question, we consider the BCS functional F ti

� on
the sector of translation-invariant BCS states with Cooper-pair wave functions
of angular momentum � ∈ 2N0, that we will define in the next paragraph. Our
strategy consists of showing that there exists �0 such that the minimizers of
F ti

�0
and F coincide under certain assumptions.
Let us now introduce the functionals F ti

� in the case d = 2. They are
obtained from F ti by restricting the domain to Cooper-pair wave functions of
the form

α̂�(p) = ei�ϕσ�(p), (2.5)

for some � ∈ 2Z, where ϕ denotes the angle of p ∈ R
2 in polar coordinates

and σ� is a radial function. Recall that α is an even function, which requires �
to be even. As we will see, the Euler–Lagrange equation of F ti implies that
if (γ, α�) is a minimizer of F ti, then γ̂ has to be a radial function. Therefore,
we define the BCS functional on the sector of Cooper-pair wave functions
of angular momentum � as follows. We make an angular decomposition for
(p, q) �→ V̂ (p − q), that is

V̂ (p − q) =
∑
�∈Z

V̂�(p, q)ei�ϕ,

where ϕ denotes the angle between p and q. In other words, this means that

V̂�(p, q) =
1
2π

∫ 2π

0

e−i�ϕV̂ (p − q) dϕ. (2.6)

Since V̂ is a radial function, it only depends on the absolute value of its
argument, that is, on |p − q| =

√
p2 + q2 − 2|p||q| cos(ϕ) and we conclude

that V̂� is radial in both arguments. Furthermore, observe that V̂� = V̂−�.
Then, the BCS functional F ti

� on the sector of Cooper-pair wave functions
of even angular momentum � ∈ 2N0 is given by

F ti
� (Γ�) =

∫
R2

(p2 − μ)γ�(p) dp +
∫
R2

∫
R2

σ�(p)σ�(q)V̂�(p, q) dpdq − TS(Γ�),
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where V� is given in (2.6) and Γ� is determined by the pair (γ�, σ�) with radial
functions γ� and σ�. To be more precise, the domain of F ti

� is given by

D� :={
(γ�, σ�)| γ�, σ� radial and (γ�, α�) ∈ Dti, α̂�(p) = ei�ϕσ�(p) for p ∈ R

2
}
.

Equivalently, F ti
� can be understood as the restriction of F ti to pairs (γ, α) ∈

Dti with the property that γ is radial and that α is of the form given in (2.5).
In Sect. 3, we will show that F ti

� has a minimizer.
Next, we characterize the critical temperature Tc(�) corresponding to the

BCS functionals F ti
� on the sector of Cooper-pair wave functions of angu-

lar momentum � ∈ 2N0. For this purpose, let us introduce H = {f ∈
H1(R2,dp) | f radial }. Then the critical temperature Tc(�) of F ti

� is given
by

Tc(�) := inf
{
T ≥ 0

∣∣ (KT + V�)
∣∣
H ≥ 0

}
. (2.7)

The definition of V� in Eq. (2.6) and the fact that KT + V commutes with
rotations, implies that

Tc = max
�∈2N0

Tc(�)

holds.
Let us now assume that Tc = Tc(�0) and that the lowest eigenvalue

of KTc
+ V is at most twice degenerate. In other words, we assume the

lowest eigenvalue of KTc
+ V to be exactly twice degenerate in the case

�0 �= 0 and we assume it to be non-degenerate in the case �0 = 0. An
exemplary situation satisfying this assumption is illustrated in Fig. 1. The
meaning of this schematic pictures is the following. Since Tc = Tc(�0), the
lowest eigenvalue of KT + V lies in the sector with angular momentum �0. If
we decrease the temperature, this eigenvalue becomes negative and the sec-
ond/third eigenvalue (depending on the degeneracy) will approach zero at
some temperature T̃ < Tc(�0). For this eigenvalue, there are two possibili-
ties: Either it also lies in the sector of angular momentum �0, which means
that T̃ ∈ (Tc(�1), Tc) and this is the case illustrated in Fig. 1, or the next
eigenvalue lies in the next sector of angular momentum, which means that
T̃ = Tc(�1).

The following theorem shows that the translational symmetry in the
BCS model persists if T ∈ (T̃ , Tc). In particular, if �0 = 0, the peri-
odic (and the translation-invariant) BCS functional has a, up to a phase,
unique radial minimizer (γ0, α0) for T ∈ (T̃ , Tc). If �0 �= 0, the periodic
(and the translation-invariant) BCS functional has two minimizers, namely
(γ�0 , α�0) and (γ�0 , α−�0), with γ�0 radial and α±�0 of the form α̂±�0(p) =
e±i�0ϕσ�0(p).
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T
Tc(�0)Tc(�1) T̃

Figure 1. Schematic picture of the lowest eigenvalues of
KT + V as a function of the temperature T . The lowest two
lines represent eigenvalues in the sector of angular momentum
�0. The third line corresponds to the lowest eigenvalue in the
angular momentum �1 sector. The red dots highlight the tem-
peratures at which one of the eigenvalues crosses the T -axis
(color figure online)

Theorem 2.1. Let V ∈ L2(R2) with V̂ ∈ Lr(R2), where r ∈ [1, 2), be radial
and such that Tc > 0. Suppose that Tc = Tc(�0) and that the lowest eigenvalue
of KTc

+ V is at most twice degenerate. If

(γ�0 , σ�0) ∈ D�0

minimizes F ti
�0
, then there exists T̃ < Tc such that

(γ�0 , α�0) and (γ�0 , α−�0) ∈ Dti,

where α̂±�0(p) = e±i�0ϕσ�0(p), minimize the BCS functional F for T ∈ [T̃ , Tc).
For T ∈ (T̃ , Tc) these are the only minimizers of F up to phases in front of α�0

and α−�0 .

Remark 2.2. We want to emphasize that T̃ is determined by the lowest nonzero
eigenvalue of KTc

+V . More precisely, T̃ is given as the value of T such that the
second eigenvalue (counted without multiplicities) of KT + V is zero, which is
illustrated in Fig. 1. In particular, if in addition to the assumption above, the
second eigenvalue of KTc

+ V lies in the sector of angular momentum �1 �= �0,
one can show that T̃ = Tc(�1).

Remark 2.3. The assumptions V ∈ L2(R2) and V̂ ∈ Lr(R2) with r ∈ [1, 2)
in Theorem 2.1 are of technical nature and we expect the Theorem to hold
as long as V ∈ L1+ε(R2) for ε > 0. Note that this is the Lp regularity for
which V is relatively form bounded with respect to the Laplacian in two space
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dimensions. The assumption on the Fourier transform of V is only needed in
the proof of Proposition 4.3. In [10, Proposition 5.6] a similar result is proved
in the case d = 3 under the assumption V ∈ L3/2(R3) which guarantees form
boundedness relative to the Laplacian in this case. Although we expect the
strategy of that proof to carry over to d = 2, our argument is much simpler
than the one given in this reference and so we prefer to keep the additional
assumption on V̂ .

Remark 2.4. The Fourier transform preserves angular momentum sectors, and
hence, the inverse Fourier transforms of the minimizing Cooper-pair wave func-
tions α̂±�0(p) = e±i�0ϕpσ�0(p) are of the form e±i�0ϕxf�0(x) with f�0 radial.
That is, the Cooper-pairs have definite angular momentum also in position
space.

Remark 2.5. An important step in the proof of Theorem 2.1 is to compare
the minimizers of the BCS functional F ti

�0
on the sector of Cooper-pair wave

functions with angular momentum �0 with the minimizers of the periodic BCS
functional F . The crucial tool for this comparison will be the relative entropy
inequality [7, Lemma 5].

Remark 2.6. It is shown in [10], among other things, that for every � ∈ 2N0 one
can find a radial potential such that the ground state of KTc

+ V has angular
momentum �. This in particular implies Tc = Tc(�) for such a potential. In
the case of weak coupling, that is for KT + λV , where λ ∈ R is small enough,
the methods of [6,16] can be applied to determine the angular momentum �0
of the ground state of KTc

+ V . An application of these methods reduces the
problem of finding the eigenvalues of KT + λV , for λ small enough, to finding
the eigenvalues of a simple matrix, that only depends on the behavior of V̂ on
the Fermi sphere. This is easily solvable numerically. In particular, one sees,
that the eigenvalues are in one-to-one correspondence to the eigenvalues of
the matrix (〈ψn, V̂ ψm〉)n,m≥0, where ψn(p) = einϕ. Moreover, if the lowest
eigenvalue of this matrix is at most twice degenerate one is in the situation
described in Remark 2.2, i.e., T̃ = Tc(�1).

Remark 2.7. In the non-interacting case, that is, for V = 0, the minimizer of
the BCS function F is given by the normal state

Γ̂0 =
(

γ̂0 0
0 1 − γ̂0

)
,

where γ̂0 = (1 + exp((−∇2 − μ)/T ))−1. Let us assume that we are in the
situation of Remark 2.2. Having in mind that the linear operator KT + V ,
which characterizes Tc, is related to the second variation of F at the normal
state Γ0 in the direction of α by

d2

dt2
F(γ0, tα)

∣∣∣∣
t=0

= 2〈α, (KT + V )α〉,

one can understand Theorem 2.1 as follows. We find T < Tc such that KT +V
has exactly one negative eigenvalue λ0. Hence the second variation is smallest



Vol. 19 (2018) Persistence of Translational Symmetry 1515

(and, in particular, negative) if α is an element of the eigenspace of λ0 and
one could therefore hope to find a minimizer of F which lies approximately
in this eigenspace. In fact, Theorem 2.1 states that the minimizers of F for
temperatures T in a certain interval below Tc lie in exactly one specific sector
of angular momentum ±�0. For T = Tc(�1) the next eigenvalue λ1 and its
eigenspace become important, since now also elements of the eigenspace of λ1

are candidates to lower the energy.

In the special case �0 = 0, Theorem 2.1 also holds in three dimensions.

Theorem 2.8. Let V ∈ L2(R3) with V̂ ∈ Lr(R3) for some r ∈ [1, 12/7) be
radial and such that Tc > 0. Assume that zero is a non-degenerate eigenvalue
of KTc

+ V , that is, the corresponding eigenfunction is radial. Then, there
exists T̃ < Tc such that the minimizer of the BCS functional F for T ∈ [T̃ , Tc)
is given by a pair (γ0, α0), where γ0 and α0 are radial functions. Moreover,
(γ0, α0) is, up to phases, the only minimizer of F for T ∈ (T̃ , Tc).

Remark 2.9. Note that V̂ ≤ 0 implies that the ground state of KTc
+ V

is radial in all dimensions. Hence, the assumption that KTc
+ V has a non-

degenerate lowest eigenvalue is always satisfied for interaction potentials V
with this property.

Remark 2.10. As in the case of Theorem 2.1, we expect Theorem 2.8 to hold
under the only assumption that V is relatively form bounded with respect to
the Laplacian, that is, if V ∈ L3/2(R3).

We recall the gap function Δ(p) = 2(2π)−d/2V̂ ∗ α̂(p) with d = 2, 3. The
Cooper-pair wave function of any minimizer of the translation-invariant BCS
functional F ti satisfies the Euler–Lagrange equation(

KΔ
T + V

)
α = 0. (2.8)

Here KΔ
T is the operator defined by multiplication in Fourier space with the

function

KΔ
T (p) =

E(p)
tanh (E(p)/(2T ))

, where E(p) =
√

(p2 − μ)2 + |Δ(p)|2.
The key ingredient to the proof of Theorems 2.1 and 2.8 is that in both situ-
ations KΔ

T + V ≥ 0 holds. The following proposition tells us that this already
implies that |α̂(p)| is a radial function. Hence, our strategy of proof can only
work if this is the case. In particular, it tells us that we cannot extend our
results to situations where the absolute value of the Fourier transform of the
ground state of KTc

+ V is not radial.

Proposition 2.11. Let V be a radial function with V ∈ L2(R2) if d = 2 and
V ∈ L3/2(R3) if d = 3. Assume that (γ, α) is a minimizer of the translation-
invariant BCS functional F ti such that |α̂(p)| is not a radial function. Then
there exists a rotation R ∈ SO(d) such that〈

U(R)α
(
KΔ

T + V
)
U(R)α

〉
< 0, (2.9)

where (U(R)f) (p) = f(R−1p).
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3. Preparations

The proof of Theorem 2.8 works similarly to the proof of Theorem 2.1. In order
to prove Theorem 2.1, we will show that there exists �0 ∈ 2N0, such that the
minimizers of F ti

�0
also minimize F . The following lemma lays the basis for this

approach.
In [12] it was shown that F ti is bounded from below and attains its

infimum on Dti in three dimensions. The same results hold in two dimensions
by analogous arguments, which provides a solution of the BCS gap equation
in this case.

Lemma 3.1. The BCS functional F ti
� is bounded from below and attains its

minimum.

Proof. Boundedness from below of F ti
� follows from the fact that F ti is

bounded from below. As in the proof of [12, Lemma 1] we find a minimiz-
ing sequence (γ(n)

� , σ
(n)
� ) in D� that converges strongly in Lp(R2) × L2(R2) to

(γ, σ) for some p ∈ (1,∞), as n tends to infinity. It is an easy consequence
that (γ, σ) ∈ D�. �

The Euler–Lagrange equation of F ti
� takes the same form as the Euler–

Lagrange equation of F ti, which will play an important role in the proof. The
derivation of the Euler–Lagrange equation of F ti given in [19, Proposition 3.1]
translates to the case of F ti

� . Therefore, we will not rewrite the proof here, but
only give the Euler–Lagrange equation of F ti

� in its various forms.
Let us define the gap function Δ� related to the Cooper-pair wave function

σ� by

Δ�(p) =
1
π

∫
R2

V�(p, q)σ�(p)dq. (3.1)

Since V�(p, q) is radial in both arguments Δ�(p) is a radial function, too. Also
define

HΔ�
(p) =

(
k(p) Δ�(p)

Δ�(p) −k(p)

)
(3.2)

with k(p) = p2 − μ. For T > 0, the Euler–Lagrange equation of the func-
tional F ti

� is given by

Γ�(p) =
(

γ�(p) σ�(p)
σ�(p) 1 − γ�(p)

)
=

1
1 + eHΔ�

(p)/T
. (3.3)

The right-hand side of Eq. (3.3) depends only on σ� through Δ� but not on
γ�. That is, γ� is determined by σ�.

Let us define E�(p) =
√

(p2 − μ)2 + |Δ�(p)|2 and the function KΔ�

T , which
for T > 0 is given by

KΔ�

T (p) =
E�(p)

tanh (E�(p)/(2T ))
.

Then KΔ�

T = KΔ�

T (−i∇) defines an operator on L2(R2) acting by multiplica-
tion with KΔ�

T (p) in Fourier space. Calculations given explicitly in [19] show
that (3.3) is equivalent to
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γ�(p) =
1
2

− p2 − μ

2KΔ�

T (p)
, (3.4)

σ�(p) = − Δ�(p)
2KΔ�

T (p)
. (3.5)

Using Eq. (3.1), we see that Eq. (3.5) can be written as(
KΔ�

T + V�

)
σ� = 0. (3.6)

We will also make use of this equation in the form(
KΔ�

T + V
)

α� = 0, (3.7)

where α� is of form (2.5).

4. Proof of Theorems 2.1 and 2.8

We begin with the proof of Theorem 2.1. Let (γ�0 , σ�0) ∈ D�0 be a minimizer
of F ti

�0
and assume Tc = Tc(�0). Let Γ�0 be the BCS state given by the pair

(γ�0 , α�0) with α̂�0(p) = ei�0ϕσ�0(p). Our aim is to show that the inequality
F(Γ)−F(Γ�0) ≥ 0 holds for all Γ ∈ D. We will use a generalization of the trace
per unite volume, which for a periodic operator A on L2(R2,C2) is defined by

Tr0 [A] = TrΩ [P0AP0 + Q0AQ0]

with

P0 =
(

1 0
0 0

)
and Q0 =

(
0 0
0 1

)
.

Note that if A is locally trace class, then Tr0 [A] = TrΩ [A].
We begin by calculating the difference F(Γ) − F(Γ�), where Γ� corre-

sponds to a minimizer of F ti
� as described above. The state Γ is defined by the

pair (γ, α). We find

F(Γ) − F(Γ�)
= TrΩ

[(−∇2 − μ
)
(γ − γ�)

]

+
∫

Ω×R2
V (x − y)

(|α(x, y)|2 − |α�(x, y)|2) d(x, y) − T (S(Γ) − S(Γ�)) .

(4.1)

First, we complete the square in the difference of the interaction terms, which
yields∫

Ω×R2
V (x − y)

(|α(x, y)|2 − |α�(x, y)|2) d(x, y)

=
∫

Ω×R2
V (x − y)

(|α(x, y) − α�(x, y)|2) d(x, y)

− 2
∫

Ω×R2
V (x − y)

(
|α�(x, y)|2 − Re

(
α(x, y)α�(x, y)

))
d(x, y).
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Next, we combine the second term on the right-hand side and the first term
on the right-hand side of (4.1). Let Δ̃�(p) = ei�ϕΔ�(p) where ϕ denotes the
angle of p ∈ R

2 in polar coordinates and Δ� is given by Eq. (3.1). Inserting
the equation α̂�(p) = −Δ̃�(p)/(2KΔ�

T (p)) which follows from Eq. (3.5), we see
that

TrΩ
[(−∇2 − μ

)
(γ − γ�)

]

+ 2Re
∫

Ω×R2
V (x − y)

(
α�(x, y)α(x, y) − |α�(x, y)|2

)
d(x, y)

=
1
2
Tr0

[
HΔ̃�

(Γ − Γ�)
]
.

Here HΔ̃�
is given as in Eq. (3.2) with Δ� replaced by Δ̃�.

At this point, it turns out to be convenient to introduce the relative
entropy H, which for two BCS states Γ, Γ̃ ∈ D is given by

H(Γ, Γ̃) = Tr0
[
Γ

(
log Γ − log Γ̃

)
+ (1 − Γ)

(
log (1 − Γ) − log

(
1 − Γ̃

))]
.

The fact that HΔ̃�
/T = log(1−Γ�)−log Γ� yields the following statement.

Lemma 4.1. Let (γ�, σ�) ∈ D� be a minimizer of F ti
� and let Γ� be given by the

pair (γ�, α�) where α�(p) = ei�ϕσ�(p). Then

F(Γ) − F(Γ�) =
T

2
H (Γ,Γ�) +

∫
Ω×R2

V (x − y)|α(x, y) − α�(x, y)|2 d(x, y)

for all Γ ∈ D, where α = (Γ)12.

Based on this identity, we estimate F(Γ)−F(Γ�0) from below by applying
the relative entropy inequality [7,13].

Proposition 4.2. Let (γ�, σ�) ∈ D�, be a minimizer of F ti
� , let Γ� be as in

Lemma 4.1 and denote Vy(x) = V (x−y). Then, for all Γ ∈ D, with α = (Γ)12,

F(Γ) − F(Γ�) ≥
∫

Ω

〈
α,

(
KΔ�

T + Vy(x)
)

x
α
〉

L2(R2,dx)
dy

+ TrΩ KΔ�

T (Γ − Γ�)2.

Here, we understand (KΔ�

T +Vy(x))x as an operator acting on the x-coordinate
of α(x, y).

Proof. The claimed estimate is a consequence of an inequality for the relative
entropy that has been proven in [7, Lemma 5]. An application of this inequality
yields

F(Γ) − F(Γ�) ≥ 1
2
TrΩ

[
(Γ − Γ�)

HΔ̃�

tanh
(
HΔ̃�

/(2T )
) (Γ − Γ�)

]

+
∫

Ω×R2
V (x − y)|α(x, y) − α�(x, y)|2 d(x, y).
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The fact that x �→ x(tanh(x/2))−1 is an even function and

H2
Δ̃�

(p) = IC2E2
� (p)

is diagonal implies the statement. �

Next, we show that the operator K
Δ�0
T +V is nonnegative for T ∈ [T̃ , Tc).

Proposition 4.3. Assume V ∈ L2(R2) and V̂ ∈ Lr(R2) for some r ∈ [1, 2). If
the lowest eigenvalue of KTc

+ V is at most twice degenerate then there exists
T̃ < Tc such that K

Δ�0
T + V is nonnegative as an operator on L2(R2) for all

T ∈ [T̃ , Tc).

The proof of Proposition 4.3 is based on spectral perturbation theory
and relies on the fact that K

Δ�0
T + V → KTc

+ V , while Δ�0(T ) → 0, in norm
resolvent sense for T → Tc. We will derive this convergence from the following
lemmas. In order to simplify the notation, we write a � b if there exists a
constant c > 0 such that a ≤ cb. Moreover, we denote by ‖ · ‖ the operator
norm and by ‖ · ‖r the Lr(R2)-norm.

Lemma 4.4. Let T ∈ (0, Tc). The operators KTc
− KT and K

Δ�0
T − KT are

bounded. More precisely, ‖KTc
−KT ‖ � (Tc−T ) and ‖K

Δ�0
T −KT ‖ � ‖Δ�0‖∞.

Moreover, KTc
− KT ≥ 0 and K

Δ�0
T − KT ≥ 0.

Proof. In the proof, we abbreviate AT := KTc
− KT and BT := K

Δ�0
T − KT .

Notice that

K
Δ�0
T (p) =

√
k(p)2 + |Δ�0(p)|2

tanh
(√

k(p)2 + |Δ�0(p)|2/(2T )
)

is an increasing function in T for fixed Δ�0 and vice versa. Hence, AT ≥ 0 and
BT ≥ 0. Both, AT and BT are pseudo-differential operators and by a slight
abuse of notation we denote by AT (p) and BT (p) the symbols of AT and BT ,
respectively. In the following, we abbreviate Tc − T = δT and

IT =
1
T

− 1
Tc

.

A simple calculation yields

AT (p) =
∫ 1

0

IT k(p)2

2 sinh2 (k(p)/(2Tc) + tIT k(p)/2)
dt.

Obviously, for large |p| the smooth function A : p �→ A(p) and all its derivatives
have exponential decay. Moreover, |IT | � Tc − T implies ‖AT ‖ � Tc − T . In
order to derive an analogous representation for BT (p), we define

f(x) :=
d
dx

x

tanh(x/(2T ))
=

T sinh(x/T ) − x

2T sinh2(x/(2T ))
(4.2)

as well as

δE�0(p) =
√

k(p)2 + |Δ�0(p)|2 − |k(p)|. (4.3)
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A straightforward calculation shows that

BT (p) = δE�0(p)
∫ 1

0

f(|k(p)| + tδE�0(p)) dt. (4.4)

Since the function f defined in (4.2) is bounded by 1, we find that |BT (p)| ≤
|δE�0(p)| for all p ∈ R

2. It can be seen directly from the definition of δE�0(p),
see (4.3), that |δE�0(p)| ≤ |Δ�0(p)| for all p ∈ R

2, which implies |BT (p)| ≤
|Δ�0(p)| for all p ∈ R

2. �

Lemma 4.5. Let T ∈ (0, Tc). If α�0 is a solution of the BCS gap equation in
the form of Eq. (3.7), then ‖(1 + p2)1/4α̂�0‖4

4 � 〈α�0 , (K
Δ�0
T − KT )α�0〉.

Proof. We will make use of the following observation, which is implied by the
fact that the function |Δ�0 | �→ |Δ�0 |/K

Δ�0
T is strictly increasing. Eq. (3.1)

implies that

‖Δ�0‖∞ ≤ ‖V ‖2‖α̂�0‖2. (4.5)

We will abbreviate ‖V ‖2‖α̂�0‖2 by c(α�0) in the following. Thus, together with
(3.5), the just mentioned monotonicity of |Δ�0 |/K

Δ�0
T implies that

|α̂�0(p)| ≤ c(α�0)

2K
c(α�0 )

T (p)

for all p ∈ R
2. By taking the square and integrating, we see that

1 ≤ ‖V ‖2
2

4

∫
R2

(
K

c(α�0 )

T (p)
)−2

dp.

Next, we use that tanh(x) ≤ 1 for all x, which leads to

1 ≤ ‖V ‖2
2

4

∫
R2

(
(p2 − μ)2 + ‖V ‖2

2‖α̂�0‖2
2

)−1
dp

We may assume that ‖V ‖2
2‖α�0‖2

2 ≥ μ2 and conclude that

1 ≤ ‖V ‖2
2

4

∫
R2

(
p4/2 − μ2 + ‖V ‖2

2‖α̂�0‖2
2

)−1
dp.

From this estimate, one easily derives that

‖α̂�0‖2
2 ≤ ‖V ‖2

2π
4

32
+

μ2

‖V ‖2
2

.

Making use of (4.5), we see that this directly implies that

‖Δ�0‖2
∞ ≤ ‖V ‖4

2π
4

32
+ μ2. (4.6)

In other words, there exists a constant m > 0 that only depends on V and μ,
such that |Δ�0(p)| < m for all p ∈ R

2. In particular, m does not depend on T .
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We have to estimate K
Δ�0
T − KT from below. We recall that |Δ�0 | �→

K
Δ�0
T /|Δ�0 |2 is decreasing. Having in mind that KΔ

T − KT behaves like |Δ|2
for small |Δ| we thus estimate

K
Δ�0
T − KT

|Δ�0 |2
|Δ�0 |2 �

(
Km

T − KT

m2

)
|Δ�0 |2.

Abbreviating yt =
√

k(p)2 + tm2/(2T ) we find that

K
Δ�0
T (p) − KT (p) = 2T

∫ 1

0

d
dt

yt

tanh (yt)
dt

=
m2

4T

∫ 1

0

(
1

yt tanh(yt)
− 1

sinh2(yt)

)
dt. (4.7)

As one easily sees, the function

g(y) =
1
y

1
tanh(y)

− 1
sinh2(y)

is decreasing, which implies

K
Δ�0
T (p) − KT (p) � m2

4T

(
1

y1 tanh(y1)
− 1

sinh2(y1)

)
.

Moreover, g is bounded from below by g(y) ≥ 2/3 (1 + y)−1. Together with
(4.7) this shows that

K
Δ�0
T (p) − KT (p) � |Δ�0(p)|2 1

1 + p2
. (4.8)

Next, we make use of the Euler–Lagrange equation of F ti
�0

, that is the relation
|Δ�0(p)| = 2K

Δ�0
T (p)|α̂�0(p)|. Inserting this identity in (4.8), we see that

K
Δ�0
T (p) − KT (p) �

(
K

Δ�0
T (p)

)2 |α̂�0(p)|2
1 + p2

�
(
1 + p2

) |α̂�0(p)|2,

which implies the statement. �

Lemma 4.6. Let T ∈ (0, Tc). If α�0 is a solution of the BCS gap equation in
form (3.7), then ‖α�0‖2 � (Tc − T )1/2. In particular, ‖Δ�0‖∞ � (Tc − T )1/2.

Proof. The gap equation, see (3.7), can be written as

〈α�0 , (KTc
+ V ) α�0〉 + 〈α�0 , Bα�0〉 = 〈α�0 , Aα�0〉,

where we use the notation introduced in the proof of Lemma 4.4 but drop the
subscript, i.e., A = AT and B = BT for brevity. Lemma 4.4 and the definition
of Tc imply that

〈α�0 , Bα�0〉 ≤ 〈α�0 , Aα�0〉 � (Tc − T )‖α�0‖2
2. (4.9)

From the combination of Lemma 4.5 and (4.9), we deduce that

‖ (
1 + p2

)1/4
α̂�0‖4

4 � (Tc − T )‖α�0‖2
2.
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On the other hand, the Lr(R2)-norm of α̂ is bounded from above by

‖α̂�0‖r ≤ ‖ (
1 + p2

)−1/4 ‖s‖
(
1 + p2

)1/4
α̂�0‖4,

where r > 2, due to the fact that we have to choose s > 4. Thus,

‖α̂�0‖4
r � (Tc − T )‖α̂�0‖2

2. (4.10)

Furthermore, we conclude from the relation between Δ�0 and α�0 given by
Eq. (3.1) that

‖Δ�0‖∞ � ‖V̂ ‖t‖α̂�0‖r, (4.11)

where we choose r > 2 and t ∈ [1, 2) appropriately. Note that the gap equa-
tion in the form (3.5) implies that ‖α̂�0‖2 � ‖Δ�0‖∞. Together with (4.10)
and (4.11), this finally shows that

‖α̂�0‖2 � (Tc − T )1/4‖α̂�0‖1/2
2

and hence proves the first part of the claim. In order to get the estimate on
‖Δ�0‖∞, we go back to (4.10) and insert ‖α�0‖2 � (Tc − T )1/2. Together with
(4.11), this yields the statement. �

Let T ∈ (0, Tc) and z ∈ C\R. Taken together, Lemmas 4.4 and 4.6 show
that ∥∥∥∥(z − (KTc

+ V ))−1 −
(
z −

(
K

Δ�0
T + V

))−1
∥∥∥∥

≤
∥∥∥(z − (KTc

+ V ))−1
∥∥∥

∥∥∥K
Δ�0
T − KTc

∥∥∥
∥∥∥∥
(
z −

(
K

Δ�0
T + V

))−1
∥∥∥∥

� | Im(z)|−2(Tc − T )1/2.

In other words, K
Δ�0
T + V → KTc

+ V for T → Tc in norm resolvent sense for
an arbitrary z ∈ C\R and consequently for all z ∈ ρ(KTc

+ V ).
We are now prepared for the proof of Proposition 4.3.

Proof of Proposition 4.3. We consider the case �0 �= 0. The proof for the case
�0 = 0 is analogous. As illustrated in Fig. 1, we have by assumption that Tc =
Tc(�0) and that the lowest eigenvalue of KTc

+ V is exactly twice degenerate.
Note that in the case that �0 = 0 the smallest eigenvalue is non-degenerate.
From the convergence of K

Δ�0
T + V to KTc

+ V in norm resolvent sense, one
concludes that the lowest eigenvalue of K

Δ�0
T + V is stable.

In particular, this tells us that there exists T̃ < Tc such that K
Δ�0
T + V

with T ∈ (T̃ , Tc] has exactly two eigenvalues λ1(T ), λ2(T ) ∈ {z ∈ C| |z| < r}
for some radius r > 0. Combining this with the fact that the Euler–Lagrange
equation (3.7) of F ti

�0
reads

(KΔ�0
T + V )α = 0, (4.12)

we conclude that λ1(T ) = λ2(T ) = 0. Having in mind that K
Δ�0
T is an increas-

ing function of T and of Δ�0 , what we have seen by this argument is that the
effects of these monotonicity properties exactly correspond. In other words, we
have shown that there exists T̃ < Tc such that K

Δ�0
T + V is nonnegative for
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all T ∈ [T̃ , Tc]. It is not hard to see that T̃ can be chosen as pointed out in
Remark 2.2. �

Proof of Theorem 2.1. We know from Lemma 3.1 that for �0 determined by
Tc(�0) = max�∈2N Tc(�) the functional F ti

�0
has a minimizer (γ�0 , σ�0). Proposi-

tion 4.2 and Proposition 4.3 show that for Γ�0 given by (γ�0 , α�0), with α�0 as
in (2.5),

F(Γ) − F(Γ�0) ≥ 0,

holds for all Γ ∈ D. Moreover, if F(Γ) − F(Γ�0) = 0, then γ = γ�0 and
α ∈ ker(KΔ�0

T + Vy) by Proposition 4.2. Consequently, α takes the form α =
ψ1α�0 + ψ2α−�0 , where α±�0(p) = e±i�ϕσ�0(p) and ψ1 and ψ2 denote complex
constants. It remains to show that either ψ1 = 0 and |ψ2| = 1 or |ψ1| = 1 and
ψ2 = 0. Observe that, in particular, (γ�0 , α) ∈ Dti and as we know that F ti has
a minimizer, we conclude that (γ�0 , α) satisfies the Euler–Lagrange equation
of F ti, that is

γ�0(p) =
1
2

− p2 − μ

2KΔ
T (p)

,

where Δ = π−1V̂ ∗ α̂. Hence, |Δ| is a radial function and consequently either
ψ1 = 0 or ψ2 = 0. In other words, (γ�0 , σ�0) ∈ D�0 . Thus, in order to find
minimizers of F , it is sufficient to find the minimizers of F ti

�0
. As we know

that F ti
�0

has minimizers, the only thing left to show is that (γ�0 , σ�0) is, up to
a phase, the only minimizer of F ti

�0
. The fact that other possible minimizers

(γ�0 , ψσ�0), for some ψ ∈ C, have to satisfy the gap equation (3.6) of F ti
�0

reads
(
K

ψΔ�0
T + V�0

)
(ψσ�0) = 0.

Together with the monotonicity of K
ψΔ�0
T in ψ this implies that |ψ| = 1. �

The proof of Theorem 2.8 is analogous to the proof of Theorem 2.1 with
one exception.

Proof of Theorem 2.8. In case �0 = 0 all given arguments also apply in the
three-dimensional case. The only exception is Lemma 4.6, where we need to
modify the assumptions slightly. One easily sees that V̂ ∈ Lr(R3) with r ∈
[1, 12/7) is a sufficient assumption in this case. �

Proof of Proposition 2.11. We will carry out the proof for d = 3 and after-
wards comment on the case d = 2. The Cooper-pair wave function of
any minimizer of the translation-invariant BCS functional satisfies α̂(p) =
−Δ(p)/(2KΔ

T (p)) which is implied by the Euler–Lagrange equation of F , see
[12] or compare with Sect. 3. Hence, |α̂| is radial if and only if |Δ| is radial.
With Eq. (2.8) and the assumption that V is a radial function, one checks that
it is sufficient to show〈

U(R)α,KΔ
T U(R)α

〉
<

〈
α,KΔ

T α
〉
. (4.13)
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Using the above relation between α̂ and Δ, we write
〈
U(R)α,KΔ

T U(R)α
〉

=
1
4

∫
R3

|Δ(p)|2
KΔ

T (p)2
KΔ

T (Rp) dp

=
1
4

∫ ∞

0

∫
Ωr

|Δ(p)|2
KΔ

T (p)2
KΔ

T (Rp) dω(p) r2dr,

where Ωr denotes the sphere with radius r and dω(p) denotes the uniform
measure on Ωr. On Ωr, that is, for fixed radius r = |p|, we can understand
|Δ(p)|2/KΔ

T (p)2 as a function f that depends only on |Δ(p)|. There also exists
a function g such that KΔ

T (Rp) = g(|Δ(Rp)|) for all p ∈ Ωr. The functions f
and g are both strictly increasing.

Consider the expression

M(R) :=
∫

Ωr

[g(Δ(Rp)) − g(Δ(p))][f(Δ(Rp)) − f(Δ(p))]dω(p)

The functions f and g depend only on the magnitude of Δ(Rp) resp. Δ(p).
Since f and g are strictly increasing we have that M(R) > 0 unless |Δ(Rp)| =
|Δ(p)| for a.e. p. To see this, assume that |Δ(Rp)| and |Δ(p)| differ on a set
of positive measure. Now consider the set {p : |Δ(Rp)| > |Δ(p)|} and the
set {p : |Δ(Rp)| < |Δ(p)|} At least one of them must have positive measure.
Hence, on the union of these sets

[g(Δ(Rp)) − g(Δ(p))][f(Δ(Rp)) − f(Δ(p))] > 0

since f and g are both strictly increasing. Using the rotation invariance of the
measure ω, we find

0 < M(R) = 2
∫

Ωr

g(Δ(p))f(Δ(p))dω(p) −
∫

Ωr

g(Δ(p))f(Δ(Rp))dω(p)

−
∫

Ωr

g(Δ(Rp))f(Δ(p))]dω(p)

and hence one of the integrals∫
Ωr

g(Δ(p))f(Δ(Rp))dω(p)

or ∫
Ωr

g(Δ(Rp))f(Δ(p))dω(p)

must be strictly below ∫
Ωr

g(Δ(p))f(Δ(p))dω(p).

Accordingly, there exists a R ∈ SO(3) such that∫
Ωr

|Δ(p)|2
KΔ

T (p)2
KΔ

T (Rp) dω(p) <

∫
Ωr

|Δ(p)|2
KΔ

T (p)2
KΔ

T (p) dω(p). (4.14)

To conclude that Eq. (4.13) holds, it suffices to note that Δ is a continuous
function, see the first paragraph in the proof of [12, Proposition 3], which
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implies that both sides of Eq. (4.14) are continuous functions of r. If d = 2 the
proof goes through in the same way with the only difference that the continuity
of Δ is concluded from Δ(p) = π−1V̂ ∗ α̂(p), the assumption that V ∈ L2(R2)
and the Riemann–Lebesgue Lemma. �
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