
Partners and rivals in direct reciprocity

Christian Hilbe1,2, Krishnendu Chatterjee2, Martin A. Nowak1,3

1Program for Evolutionary Dynamics, Harvard University, Cambridge MA 02138, USA
2IST Austria, 3400 Klosterneuburg, Austria

3Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard
University, Cambridge MA 02138, USA

Reciprocity is a major factor in human social life and accounts for a large part of coop-

eration in our communities. Direct reciprocity arises when repeated interactions occur

between the same individuals. The framework of iterated games formalizes this phe-

nomenon. Despite being introduced more than five decades ago, the concept keeps offer-

ing beautiful surprises. Recent theoretical research driven by new mathematical tools has

proposed a remarkable dichotomy among the crucial strategies: successful individuals ei-

ther act as partners or as rivals. Rivals strive for unilateral advantages by applying selfish

or extortionate strategies. Partners aim to share the payoff for mutual cooperation, but

are ready to fight back when being exploited. Which of these behaviors evolves, depends

on the environment. Whereas small population sizes and a limited number of rounds fa-

vor rivalry, partner strategies are selected when populations are large and relationships

stable. Only partners allow for evolution of cooperation, while the rivals’ attempt to put

themselves first leads to defection.
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In the 1950s, when Merrill Flood and Melvin Dresher wanted to test novel solution concepts

of game theory1,2, they asked colleagues at the RAND corporation to play several rounds of

various two-player games3. One of those games had a peculiar quality: by maximizing their

own payoffs, players would end up in a situation that is detrimental for both. Since then,

the Prisoner’s Dilemma4 (PD) has become a major paradigm to study strategic behavior in

social dilemmas. It is presented as a game in which two players, say Alice and Bob, can either

cooperate or defect (Fig. 1a). If both cooperate, they each get the reward, R, which exceeds the

punishment payoff, P , when both defect. But if one player defects while the other cooperates,

the defector gets the highest payoff T (temptation), whereas the cooperator ends up with the

lowest payoff S (the sucker’s payoff). The game is a PD if T > R > P > S. No matter

what Alice does, Bob maximizes his payoff by defecting. Thus, defection is the only Nash

equilibrium.

Pure defection, however, was not the outcome Flood and Dresher observed in their exper-

iment. Instead their participants seemed to become more cooperative over time. When con-

fronted with those results, John Nash argued that the experimental game was not a Prisoner’s

Dilemma, but a repeated Prisoner’s Dilemma3. Repeated games allow for reciprocity5–7. Play-

ers have additional strategic options: they can react to the outcomes of previous rounds, they

can reward cooperating co-players by cooperating in the future, they can punish defecting co-

players by defecting in the future. Reward and punishment are intrinsic properties of repeated

games.

Direct reciprocity is a mechanism for the evolution of cooperation8, based on the concept

that my behavior towards you depends on our previous interactions. To study direct reciprocity,

assume that after each round of the PD, there is another one with probability δ. Equivalently,

we could assume that there are infinitely many rounds, but future payoffs are discounted by δ.

When the game is repeated, the set of feasible strategies is huge. Instead of merely deciding

whether to cooperate or to defect in a single interaction, a strategy needs to specify what to do
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in every round, given the previous history of interactions. To do so, Alice might for example

condition her next action on whether Bob has cooperated in the previous round. Alternatively,

Alice might cooperate if the running average payoffs of the two players falls within a certain

range9.

Iterated games and the Folk theorem

Repeated interactions allow cooperation to be stable10. To see why, assume Alice and Bob can

choose between two possible strategies, always defect (ALLD) and Tit-for-Tat (TFT) (Fig. 1b).

ALLD defects in every round. TFT cooperates in the first round and then does whatever the

opponent did in the previous round (Fig. 2). When both players use TFT, they get payoff R

in every round. If Alice instead switches to ALLD, she obtains T > R in the first round but

P <R in all subsequent rounds. If future interactions are sufficiently likely, Alice’s short run

advantage is not worth her long time loss.

This logic of reciprocity is simple, but it has been effective to understand when individuals

cooperate under a ‘shadow of the future’. Repeated games have been employed to study topics

as diverse as collusion11,12, venture capitalism13, arms races14,15, food-sharing16,17 and predator

inspection18. Computer scientists and mathematicians have been interested in the computational

complexity of finding best responses19,20.

Although the rules of the game are simple to describe, the outcome is complex to predict.

On one hand, the repeated PD allows for many different equilibria. The folk theorem21,22 guar-

antees that any feasible average payoff can arise in equilibrium, provided that players get at least

the mutual defection payoff P (Fig. 1c). On the other hand, in evolving populations none of

those equilibria are evolutionarily stable23–26. For example, if all members of a population apply

TFT, individuals using ‘always cooperate’ (ALLC) fare just as well. Thus, ALLC may spread

through neutral drift, favoring the subsequent invasion of ALLD7. But ALLD is not evolution-

arily stable either. It can be neutrally invaded by Suspicious Tit-for-Tat (STFT), which defects

in the first round and plays like TFT thereafter. Once STFT is common, more cooperative
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strategies can take over. Such neutral, stepping-stone invasions are always possible27,28, unless

there is a positive probability of mistakes29,30. Moreover, when the dynamics of strategies in a

population is modeled as a stochastic process, chance events during mutation and selection may

help a mutant strategy to invade even if it is initially at a disadvantage (Fig. 1d). Cooperation

thus comes and goes in cycles31–33. Periods of defection alternate with periods of cooperation,

and the respective length of these periods determines how likely we observe cooperation over

time34–39.

Classical strategies for the repeated prisoner’s dilemma

In absence of a universally optimal strategy, research has focused on identifying cooperative

strategies that perform well in a broad range of scenarios40–50. The field owes much of its early

momentum to Robert Axelrod , who invited experts to submit programs to play the repeated PD

in a computerized round-robin tournament40. The shortest program, TFT, submitted by Anatol

Rapaport4 achieved the highest average score, although it did not win any pairwise encounter.

Axelrod attributed the success of TFT to four appealing properties: TFT is never is the first to

defect, it responds to defection by defecting, it returns to cooperation if the co-player does so,

and it is easy for other players to comprehend it. A recent mathematical analysis has shown that

the simple imitation rule employed by TFT makes it “unbeatable” in social dilemmas with two

actions: against TFT, no opponent can achieve arbitrarily high payoff advantages51.

But TFT is not as superior as these results suggested. Its success in Axelrod’s tournament

critically depends on the participating strategies and on the methods used to determine the win-

ner52. For example, the strategy Tit-for-two-Tats (TF2T) would have won the first tournament

if it only was submitted40. TF2T only defects if the co-player has defected in the previous two

rounds (Fig. 2e). Moreover, a strict retaliator like TFT is unable to correct errors: if players

occasionally make mistakes, cooperation between two TFT players breaks down53–55.

An alternative approach to tournaments is to let evolution decide which strategies pre-

vail42,43. Consider a population of players, each one equipped with a specific strategy. Over
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time, successful strategies spread, either because they reproduce faster or they are imitated

more often56,57. In addition, mutation or random exploration introduce novel strategies. When

modeling such evolutionary processes for the iterated PD, the enormous number of possible

strategies makes it often necessary to constrain the available set of strategies. One assump-

tion is that players are reactive: when deciding whether to cooperate in the next round, they

only consider the opponent’s move in the very last round. Reactive strategies are described a

triplet (y, p, q). Here, y is the probability to cooperate in the first round, p is the probability

to cooperate if the co-player has cooperated in the previous round and q is the probability to

cooperate if the co-player has defected58. Although reactive strategies contain both ALLD and

TFT, stochastic simulations typically favor a more lenient strategy. Evolutionary trajectories

often lead from ALLD to TFT and from there to Generous Tit for Tat (GTFT)42. When Alice

applies GTFT, she always cooperates in the first round and after rounds in which Bob has co-

operated. But when Bob defects, Alice still cooperates with some probability q > 0 (Fig. 2f).

The probability q can be chosen sufficiently large to avoid costly vendettas after an error, but

low enough to give ALLD no selective advantage41.

The evolutionary dynamics change when players additionally take their own previous move

into account. Such memory-1 strategies have the form (p0; p1, p2, p3, p4), where p0 again rep-

resents a player’s probability to cooperate in the first round, and the other four numbers are the

probabilities to cooperate after the outcomes CC, CD, DC, DD, respectively. The first letter

represents the previous action of the focal player, the second letter refers to the action of the

co-player. Stochastic memory-one strategies have been extensively used in evolutionary game

theory7. They are simple enough to be explored with computer simulations39,48, yet sufficiently

complex to encode a variety of interesting behaviors (Fig. 2). Once individuals can choose

among all memory-1 strategies, evolution often leads to Win-Stay Lose-Shift (WSLS)43,44.

When Alice applies WSLS, she starts with cooperation; thereafter she repeats her previous

action if it yielded at least payoff R in the previous round. If her payoff was less than R, she
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switches to the opposite action (Fig. 2g).

WSLS is the only memory-1 strategy that satisfies three simple principles48: It is mutually

cooperative, retaliating, and error-correcting. That is, WSLS continues to cooperate after mu-

tual cooperation, it retaliates a co-player’s defection by defecting for at least one round, and

two WSLS players restore cooperation after at most one round. Due to these principles, WSLS

evolves in a wide range of scenarios, provided that mutual cooperation is sufficiently profitable

and that the game is iterated for a sufficient number of rounds43–48.

Zero-determinant strategies

While evolutionary game theory traditionally asks which strategies win in evolving populations,

Press & Dyson59 recently posed a different question: Are there strategies for Alice with which

she wins every pairwise encounter with Bob, irrespective of which strategy Bob uses? More-

over, can she achieve this goal in a way that makes it optimal for Bob to cooperate in every

round? Surprisingly, the answer to both questions is yes. The argument involves two steps.

First, Press & Dyson described an intriguing subset of memory-1 strategies, the so-called

zero-determinant (ZD) strategies. For the derivation of these strategies, a particular matrix

plays an important role, which depends on the players’ memory-1 strategies. If Alice employs

a ZD strategy, the determinant of this matrix becomes zero, which explains the curious name

of these strategies. More importantly, Press & Dyson observed that by using a ZD strategy,

Alice can enforce a linear relationship between her own and Bob’s payoff. The exact shape

of this relationship is solely under Alice’s control. Second, they showed that among the ZD

strategies there are so called ‘extortioners’. With an extortionate strategy, Alice can guarantee,

for example, that she always gets twice the payoff of Bob, whereas Bob can do no better than

cooperating in every single round (see Box 1). For that statement to hold, the payoff has to be

rescaled such that the payoff for mutual defection is zero.

If Bob is not cooperative from the outset, Alice can employ an extortionate strategy to

teach him to cooperate59,60. Suppose that Alice is committed to a fixed strategy, while Bob
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is willing to adapt. Bob may occasionally change his strategy in response to Alice’s fixed

behavior. When Alice uses an extortionate strategy, any attempt Bob makes to increase his own

payoff automatically also increases Alice’s payoff. As Bob adapts, he becomes more and more

cooperative over time. As a result, both players’ payoffs increase, but Alice’s payoff increases

by twice as much (Fig. 3a).

After the discovery of extortionate strategies, several studies have explored their general ex-

istence61–64, their evolutionary performance65–70, and their relevance for human interactions71–74.

This work suggests that extortion is feasible in almost any natural setup, even if the social

dilemma involves more than two players61,75, or if players have access to more than two dis-

crete actions62.

Evolving populations, however, typically do not settle at extortion65–70. But extortionate

strategies can still act as catalysts for cooperation65–68. Since extortioners never lose any direct

competition, they can subvert ALLD populations through neutral drift. Once they are common,

they quickly give rise to more cooperative strategies. Evolution leads from extortion to gen-

erosity76. Eventually, successful players provide incentives for mutual cooperation, but they

are also willing to accept a lower payoff than their opponent when mutual cooperation fails

(Fig. 3b).

Of Partners and Rivals

Maybe even more important than the discovery of ZD strategies is the new mathematical for-

malism that comes with them75–83. This formalism can be applied more generally to derive rela-

tionships between the payoffs players can achieve in repeated games. Using these relationships

we find a remarkable dichotomy among the strategies for the iterated PD. Most of the previously

discussed strategies fall into one of two classes: they act as rivals or as partners (Fig. 4). Part-

ners aim to share the mutual cooperation payoff R with their co-player. Should the co-player

not go along, however, they are ready to punish their co-player with lower payoffs. Rivals on

the other hand, aim to have a higher payoff than their respective opponent, no matter what the
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opponent does.

Whether a given strategy qualifies as a partner or rival, depends on the payoff values and the

continuation probability. Among reactive and memory-1 strategies for the iterated PD, the sets

of partner and rival strategies can be characterized explicitly (Box 2). For high continuation

probabilities and a considerable benefit to cooperation, the set of partner strategies includes

TFT, GTFT, WSLS, and Grim. The set of rival strategies contains ALLD and the class of

extortioners.

If the expected number of rounds is finite, subjects cannot be rival and partner at the same

time. Partners need to be ‘nice’ to ensure they yield the mutual cooperation payoff R against

like-minded opponents. They are never the first to defect. In contrast, rivals must be ‘cautious’

to guarantee they cannot be outperformed by any opponent. They are never the first to cooperate.

A world of rivals is a world in which everyone defects.

Only in infinitely repeated games without discounting of the future, does TFT offer a com-

promise between these two classes. In that case, the first round does not matter and TFT is both

a partner and a rival: it does not lose out in any pairwise encounter, while still making sure that

it yields the mutual cooperation payoff against players of the same kind.

While the two sets of partner and rival strategies comprise many of the well-known strate-

gies, they do not contain all of them. For example, ALLC and TF2T neither qualify as partner

or rival. Instead, these strategies could be deemed submissive83: players using ALLC or TF2T

avoid ever getting a higher payoff than their opponent.

Partners and rivals in evolution

In general, partners and rivals only comprise a small fraction of strategies for the iterated PD.

For example, among reactive strategies, partners always need to cooperate if the co-player co-

operated in the previous round, while rivals need to defect after a co-player’s defection. Due to

these constraints, the probability that a randomly chosen reactive strategy is either a partner or

a rival is zero (Fig. 5a). Nevertheless, evolutionary trajectories visit the vicinity of these two

8



strategy sets disproportionally often (Fig. 5b–d). Partner strategies are favored when cooper-

ation yields a high benefit, when populations are sufficiently large, and when errors are rare.

However, the reason why partner strategies are favored is different between these cases. High

benefits of cooperation are amenable to the evolution of partners because they increase both the

set of partner strategies and its basin of attraction42,58, from which evolution leads toward part-

ner strategies. In contrast, small population sizes leave the set of partner strategies unaffected,

but small populations select for spite34. When a population contains only a few individuals,

successful strategies do not need to yield a high payoff. They only need to guarantee that the

own payoff is higher than the payoff of all others. In such cases, rivalry pays.

While the results in Fig. 5 focus on evolution among reactive strategies in games without

discounting, the same conclusions hold for memory-1 strategies with discounting (Fig. S2).

There we additionally show that rivalry is favored when the game is only played for a few

rounds, such that partner strategies cease to exist.

These simulation results can be understood using the concept of evolutionary robustness76–79.

If a resident population of size N applies a strategy that is evolutionary robust, no mutant strat-

egy can reach fixation with probability higher than the neutral probability 1/N . In the limit of

large populations and no discounting, Stewart & Plotkin have shown that all partner strategies

are evolutionary robust, and so is a subset of the rival strategies (called robust self-defectors77).

The only other robust set of strategies is the set of robust self-alternators, according to which

Alice and Bob alternate between cooperation and defection (such that p2 = 0 and p3 = 1).

Which behavior will be favored over an evolutionary timescale is surprisingly well predicted by

the dynamics among these three strategy sets77.

Direct reciprocity in the laboratory

Instead of exploring the performance of partners and rivals in virtual populations, one may

ask which behaviors human subjects would adopt, using the controlled setting of laboratory

experiments. While it is notoriously difficult to infer which strategies subjects apply, based on
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their revealed actions, experiments provide some evidence for the above evolutionary results.

For example, the recent finding that subjects become less cooperative when they focus on the

payoffs of their co-players84 can be interpreted as an illustration of the negative effects of rivalry.

Experimental results also seem to be in line with the qualitative trends of Fig. 5 and Fig. S2:

Subjects become more cooperative if they can expect to interact in more rounds,85,86 or when

the benefit-to-cost ratio of cooperation is high, and when errors are rare.87

Two experiments have aimed to quantify the success of ZD strategies more directly, by

matching human participants either with an extortionate or a generous ZD strategy71,72. The ZD

strategy was implemented by a computer program, but subjects did not obtain any information

about the nature of their opponent. While the extortionate program indeed outperformed each

human opponent in the direct encounter, it was the generous program that reached on average

higher payoffs than the extortioner. For this result, fairness considerations are essential: When

being matched with an extortioner, there is a trade-off between gaining high payoffs, which

would require the human participants to cooperate, and gaining equal payoffs, which would

require them to defect in every round. This trade-off is absent in the generosity treatment:

against generous opponents, full cooperation guarantees both, high and equal payoffs. In line

with this argument, the concern for fairness vanished when participants were explicitly informed

that they are interacting with an abstract computer program, in which case participants were

equally cooperative across all treatments72.

However, extortion may still succeed under appropriate circumstances. A stylized behav-

ioral experiment on climate change negotiations suggests that even if subjects themselves are

not extortionate, they may vote for representatives who are73. In this way, subjects may reap

the benefits of extortion without a need to feel guilty.

Power asymmetries also seem to trigger extortionate behavior: in another experiment, a ran-

domly determined subject was given the option to replace one of her co-players by a currently

inactive player every ten rounds of a repeated PD. The replaced player would then become
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the inactive player, without any opportunity to earn payoffs during that period. Under these

rules, subjects with the replacement option learned to take advantage of their superior position.

They subtly enforced their opponents’ cooperation while being substantially less cooperative

themselves74. It seems that with great power comes rivalry, instead of responsibility.

Beyond the iterated prisoner’s dilemma

While the iterated PD has been the most common model to study direct reciprocity, the repeated

games of our daily lives can have slightly different manifestations. Alice and Bob may face

different one-shot payoffs88,89, they may have to make their decisions asynchronously90–92 or

they may have access to richer strategy sets, instead of just having the binary choice between

cooperation and defection93–95. In other applications, the social dilemma may not only involve

Alice and Bob but also Caroline, Dave, and others37,96. How do the above results extend to

these cases?

None of the results depend on the specific payoff ordering T > R > P > S of the PD. In-

stead, they readily extend to arbitrary social dilemmas that only satisfy R > P , which means

mutual cooperation is preferred over mutual defection, and T >S implying that players prefer

to be the defector in mixed groups. In that case, the existence of ZD strategies is guaranteed75,

and also the characterization of rival strategies (8) carries over83. In particular, these concepts

immediately apply to other well-known social dilemmas, such as the snowdrift game (with

T >R>S >P ) and the stag-hunt game (with R> T >P > S). Only the characterization of

partner strategies (7) requires T+S < 2R. Without this condition, alternating cooperation and

defection would be the social optimum necessitating a different definition of partner. A numer-

ical analysis for evolutionary games among pure memory-1 strategies supports this view38: in

social dilemmas, rival and partner strategies are predominant if mutual cooperation is optimal,

whereas alternating strategies succeed when T+S>2R.

Similarly, the results also extend to social dilemmas with two actions but multiple play-

ers. For example, most of the strategies in Fig. 2 have direct analogues in the multiplayer case,
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including TFT75, WSLS47,48, and extortioners61. Also, the definitions of partner and rival strate-

gies can be extended appropriately. However, in arbitrary multiplayer games the partners among

the memory-1 players have only been characterized among deterministic and ZD strategies75.

For public goods game among memory-k players, Stewart and Plotkin show that a strategy only

needs to resist four “extremal” mutant strategies to qualify as a partner78. Their analysis also

reveals that the relative size of the set of partner strategies increases with the player’s memory,

but decreases with group size. In line with these analytical results, their simulations confirm

that small groups and long memories promote cooperation, and that players learn to expand

their memory capacity when given the option78. An analogous characterization of rival strate-

gies in multiplayer games is still pending, although such an extension seems feasible using the

methods sketched herein (see Box 2).

Finally, there has also been substantial progress on social dilemmas with two players but

multiple actions. ZD strategies can be characterized for continuous action sets62. Moreover,

it has been shown that full cooperation can often be stabilized with partner strategies that only

make use of two of the n possible actions79. At the same time, however, simulations suggest

that evolution does not need to converge to the most efficient outcome. Instead, players may

be trapped in local optima of the fitness landscape, in which players only partly invest into

the public good79. These simulations suggest that players sometimes confine themselves to be

partial partners: in equilibrium, they contribute a considerable amount of their endowment to

the public good, but they may not contribute everything. To obtain a general understanding

when full partnerships evolve, a complete characterization of all partner and rival strategies for

games with multiple actions would be desirable.

Conclusion

Direct reciprocity is a mechanism for the evolution cooperation. It is based on repeated inter-

actions between the same individuals. The new mathematical formalism of ZD strategies has

led to a characterization of evolutionarily successful strategies into partners and rivals. Partners
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aim for mutual cooperation, but are ready to defend themselves when being exploited. Rivals

focus on their own relative advantage and on winning. Only partner strategies stabilize coopera-

tion.The rivals’ aim to put themselves first, which is a widespread motivation of current populist

politics, ensures a path toward destruction.

Methods

For the simulation results shown in Fig. 5 and Fig. S2 we have used the method proposed

by Imhof & Nowak33. We consider a population of size N , which initially consists of ALLD

players only. At each time step, one individual is chosen to experiment with a new strategy.

This mutant strategy is generated by randomly drawing the cooperation probabilities from the

interval [0,1]. If the mutant strategy yields a payoff of πM(j), where j is the number of mutants

in the population, and if residents get a payoff of πR(j), then the fixation probability ρ of the

mutant strategy is97

ρ =

(
1 +

N−1∑
i=1

i∏
j=1

exp
[
−s
(
πM(j)− πR(j)

)])−1

. (1)

The parameter s ≥ 0 measures the strength of selection. If s = 0 payoffs are irrelevant and

the fixation probability simplifies to ρ=1/N . For larger values of s, the evolutionary process

increasingly favors the fixation of strategies that yield high payoffs. Once the mutant strategy

has either reached fixation, or gone to extinction, another mutant strategy is introduced.

We have iterated this process for 107 mutant strategies per simulation run. The process

approximates the evolutionary dynamics of finite populations when mutations are sufficiently

rare98,99. It generates a sequence (p0,p1, . . .), where pt is the strategy the residents apply at

time t. Using this sequence, we can compute how often players cooperate on average, and how

often they apply an approximate partner or rival strategy. We compare the abundance of these

strategies with their abundance under neutral evolution, s = 0, in which case the abundance

coincides with the volume of these strategy sets.
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Figure 1: Repeated interactions allow evolution of cooperation. a, In a social dilemma, two cooper-
ators get a higher payoff than two defectors, R > P , but there is a temptation to defect. The temptation
can come in three forms: T > R, P > S, or T > S. The game is a social dilemma if at least one of
those inequalities holds. The prisoner’s dilemma (PD) is the most stringent social dilemma; here all three
temptations hold. The PD is defined by the payoff ranking T > R > P > S. b, If the PD is repeated
with probability δ, players can use conditionally cooperative strategies like Tit-for-Tat (TFT). TFT yields
the mutual cooperation payoff R against itself, and it is stable against ALLD if δ is sufficiently large.
c, The Folk theorem states that for sufficiently large δ, all payoff pairs in which both players get at least
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TFT mutant can have a fixation probability that exceeds the neutral probability 1/N , where N is the
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Figure 4: Partners and rivals. In each panel, the grey diamond depicts the space of possible payoffs for
the two players. The colored areas or lines in the periphery show the feasible payoffs when Alice uses
ALLD, Extortion, TFT, GTFT, WSLS, Grim, TF2T, or ALLC. The colored dot denotes the payoff when
Bob uses the same strategy as Alice. Most of these strategies either qualify as rival (red) or partner (blue).
With a rival strategy, Alice can outperform her opponent; irrespective of Bob’s strategy, she always
obtains at least the payoff of Bob. With a partner strategy, Alice aims to reach the mutual cooperation
payoff without tolerating exploitation. In that case, Bob may be able to get a larger payoff than Alice,
but he cannot get a larger payoff than R. The payoff relations correspond to the infinitely repeated game
without discounting. In that case, TFT is both a rival and a partner. Payoffs are R=b−c, S=−c, T =b
and P =0 with c=1 and b=3.
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Figure 5: Evolution favors partners or rivals. a, For the infinitely repeated Prisoner’s Dilemma,
reactive strategies are points (p, q) in the unit square: p and q are the probabilities to cooperate given the
co-player has cooperated or defected in the previous round. Rivals are given by q = 0 (red boundary).
Partners are given by p=1 and q<q∗, with q∗ as defined in Box 2 (blue boundary). A reactive strategy is
an ε-rival, or an ε-partner, if its distance to the respective set of strategies is at most ε. We show the area
of ε-rivals (red) and ε-partners (blue) for ε = 0.1. For reactive strategies, the area of ε-partners depends
on the payoffs, but it is always smaller than the area of ε-rivals. Most strategies are neither partners nor
rivals (yellow). b–d, To explore the evolutionary relevance of partners and rivals, we have simulated a
pairwise comparison process in a finite population (see Methods). We vary three parameters: efficiency
of cooperation, population size, and error rate. The upper panel shows the resulting cooperation rates.
The lower panel gives the fraction of time the population uses ε-rivals, ε-partners, or other strategies.
Parameters: T =b, R=b− c, P =0 and S=−c, where c=1 is the cost of cooperation and b the benefit
to the co-player. Unless stated otherwise, b=3, N=50, and error rate is zero.
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Box 1: How to gain twice as much as your opponent.
Assume that Alice and Bob interact in a repeated Prisoner’s Dilemma (PD) with payoffs T > R > P > S. For
simplicity, we assume there is always another round, δ = 1. Alice uses a memory-1 strategy (p1, p2, p3, p4).
Bob uses an arbitrary strategy. Suppose that over the course of the entire game between Alice and Bob, the four
outcomes CC, CD, DC, DD occur with relative frequencies v1, v2, v3, v4. Alice’s probability to switch from
cooperation to defection is (1−p1)v1 + (1−p2)v2. Her probability to switch from defection to cooperation is
p3v3 + p4v4. Because Alice can only switch from cooperation to defection if she has switched from defection to
cooperation before, we obtain Akin’s identity80,81

(1−p1)v1 + (1−p2)v2 = p3v3 + p4v4. (2)

Let us assume Alice uses a particular rule to determine the four probabilities of her memory-1 strategy. She chooses
three constants α, β, and γ and then takes the four probabilities

p1 = αR+ βR+ γ + 1,

p2 = αS + βT + γ + 1,

p3 = αT + βS + γ,

p4 = αP + βP + γ.

(3)

Such a strategy is called zero-determinant (ZD) strategy59. From (2) and (3) we obtain

α(Rv1+Sv2+Tv3+Pv4) + β(Rv1+Tv2+Sv3+Pv4) + γ = 0. (4)

The expression Rv1+Sv2+Tv3+Pv4 is exactly Alice’s payoff for the repeated game, πA. Similarly, Rv1+Tv2+
Sv3+Pv4 is Bob’s payoff, πB . Thus, if Alice applies a ZD strategy, the payoffs of the two players satisfy

απA + βπB + γ = 0. (5)

Curiously, the values of α, β, γ are solely determined by Alice. In the following, let us assume that the payoffs are
normalized such that P =0. Then Alice may set α=−β/2 and γ=0. The remaining parameter β she can choose
arbitrarily, subject to the restriction that β 6=0 and that the four probabilities in (3) satisfy 0≤ pi≤ 1. In that case
Eq. (5) simplifies to

πA = 2πB . (6)

Alice earns twice as much as Bob, irrespective of Bob’s strategy. Moreover, if Bob tries to increase his own payoff
by using another strategy, he simultaneously always increases Alice’s payoff, too.
ZD strategies with α=−χβ and γ=β(χ−1)P are called extortionate. The parameter χwith 0<χ<1 determines
by how much Alice’s payoff exceeds Bob’s. For P 6= 0, extortionate strategies enforce (πA−P ) = 1

χ (πB−P ).
That is, if the two players get a payoff higher than P , Alice gets a disproportionate share of the surplus.
Some ZD strategies have been known before. For example, if Alice uses an ‘equalizer’ strategy, she imposes a
fixed payoff for Bob irrespective of Bob’s strategy.100
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Box 2: Of partners and rivals.
When Alice and Bob play a repeated Prisoner’s Dilemma (PD) with T+S<2R, Alice applies a partner strategy
(called good strategy by Akin80,81) if the following two conditions hold:

(i) If Bob applies the same strategy as Alice, both get the mutual cooperation payoff, πA=πB=R.

(ii) By applying a different strategy, Bob can get at most R, in which case Alice gets the same payoff. That is, if
πB≥ R then πB=πA=R.

In contrast, Alice applies a rival strategy (or competitive strategy83) if she always gets at least the payoff of
Bob, πA ≥ πB . The two definitions make no restriction on Bob’s strategy. Bob may remember arbitrarily many
rounds.
We can characterize all partners and rivals among reactive strategies (y, p, q). Without discounting, δ=1, a reactive
strategy is a partner if and only if p=1 and q <q∗ with q∗=min{1−(T−R)/(R−S), (R−P )/(T−P )}. It is
a rival if and only if q=0. In both cases, the initial cooperation probability y can be chosen arbitrarily; the only
exception are strategies with p= 1 and q = 0. Such strategies are always rivals, but TFT with y = 1 is the only
such strategy that is also a partner.
A similar characterization is possible for discounted games and for memory-1 strategies83. In that case, Alice’s
strategy (p0; p1, p2, p3, p4) is a partner if and only if

p0 = p1 = 1,

δ(T −R)p4 − δ(R− P )(1− p2) + (1− δ)(T −R) < 0,

δ(T −R)p3 − δ(R− S)(1− p2) + (1− δ)(T −R) < 0.

(7)

A partner strategy is never the first to defect. TFT is a partner strategy if δ>(T−R)/(T−P ) and δ>(T−R)/(R−S).
WSLS is a partner strategy if δ > (T−R)/(R−P ) and δ > (T−R)/(T−S), which is a sharper condition. Alice
uses a rival strategy if

p1 arbitrary,
p0 = p4 = 0,

δ(p2 + p3) ≤ 1.

(8)

ALLD is always a rival strategy. Extortion is a rival strategy if 2P < T+S.
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Figure S1: Partners and rivals in games with discounted payoffs. We have calculated which payoffs
are feasible for the eight strategies in Fig. 4 when the game only has a finite expected number of rounds.
The payoff relationships for ALLC and ALLD remain unchanged. For the depicted parameter value
δ = 0.7, we can redefine the memory-1 strategies for GTFT and for the extortionate strategy, such that
they enforce the same payoff relationship as in Fig. 4. For the other four strategies, TFT, Grim, WSLS,
TF2T, the feasible payoffs change. In particular, when the expected number of rounds is finite, TFT is a
partner strategy but not a rival strategy (since TFT cooperates in the very first round). Parameters are the
same as in Fig. 4, except for δ.
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Figure S2: Evolution of partners and rivals among memory-1 strategies. We have explored the
evolution of partner and rival strategies when players use memory-1 strategies (p0; p1, p2, p3, p4). a, In
repeated games with discounting, δ < 1, partner strategies are required to set p0 = p1 = 1 to allow for
mutual cooperation. The other three elements p2, p3, p4 need to obey the two inequalities in (7). Rivals
are required to set p0=p4=0 to ensure that no opponent can outperform them in a pairwise encounter.
The value of p1 can be chosen arbitrarily, while the values of p2 and p3 need to satisfy δ(p2+p3) ≤ 1, see
Eq. (8). Both sets have measure zero within the set of all memory-1 strategies. b–e We have simulated
a pairwise imitation process on the space of memory-1 strategies, and we have recorded the average
cooperation rate (upper panel) as well as the frequency with which players use an approximate partner
or rival strategy. Here, we define a memory-1 strategy to be an approximate partner strategy if it yields
a payoff of at least R(1 − ε) against itself, and if the inequalities in (7) are satisfied. We speak of an
approximate rival strategy if it yields a payoff of at most P (1 + ε) against itself, and if the inequality in
(8) is satisfied. We use ε = 0.2, for which approximate partners and rivals make up roughly 5% of the
volume of all memory-1 strategies. Approximate partners are favored when cooperation yields a high
benefit, when the population is large, when there is a substantial number of round, and when actions are
implemented reliably. Parameters: For the simulations we use payoffs R=b−c, S=−c, T =b and P =0
with b=3 and c=1, population size N =50, δ = 0.995 (corresponding to an expected number of 200
rounds), error rate ε=0, and selection strength s=10. In a, we use δ = 0.9 for better clarity.
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