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Abstract Herd immunity, a process in which resistant individuals limit the spread of a pathogen
among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have
evolved multiple immune systems against their phage pathogens, herd immunity in bacteria
remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage
epidemics in structured and unstructured Escherichia coli populations consisting of differing
frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a
mathematical model that quantifies how herd immunity is affected by spatial population structure,
bacterial growth rate, and phage replication rate. Using our model we infer a general
epidemiological rule describing the relative speed of an epidemic in partially resistant spatially
structured populations. Our experimental and theoretical findings indicate that herd immunity may
be important in bacterial communities, allowing for stable coexistence of bacteria and their phages
and the maintenance of polymorphism in bacterial immunity.
DOI: https://doi.org/10.7554/eLife.32035.001

Introduction
The term `herd immunity' has been used in a variety of ways by different authors (see Fine et al.,
2011 ). Here, we define it as a phenomenon where a fraction of resistant individuals in a population
reduces the probability of transmission of a pathogen among the susceptible individuals. Further-
more, if the fraction of resistant individuals in a population is sufficiently large the spread of a patho-
gen is suppressed. Experimental research into the phenomenon has focused mostly on mammals
(Jeltsch et al., 1997 ; Mariner et al., 2012 ), birds (van Boven et al., 2008 ; Meister et al., 2008 ),
and invertebrates (Konrad et al., 2012 ; Wang et al., 2013 ). In human populations the principles of
herd immunity were employed to limit epidemics of pathogens through vaccination programs
(Fine et al., 2011 ), which in the case of smallpox lead to its eradication between 1959 and 1977
(Fenner, 1993 ).

Alongside advances in vaccination programs, the formalization of a general theory of herd immu-
nity was developed. The theory is based on a central parameter, R0, which describes the fitness of
the pathogen, as measured by the number of subsequent cases that arise from one infected individ-
ual in a population (for a historical review of R0 see [Heesterbeek, 2002 ]). Thus,R0 indicates the epi-
demic spreading potential in a population. Given R0 the herd immunity threshold is defined as,

H ˆ
R0 � 1

R0
; (1)

which determines the required minimum fraction of resistant individuals needed to halt the spread
of an epidemic. R0 and subsequently also H are affected by the specific details of transmission and
the contact rate among individuals ( Grassly and Fraser, 2008 ). Many theoretical studies have
addressed the influence of some of these details, in particular maternal immunity ( Anderson and
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May, 1992-08 ), age at vaccination (Anderson and May, 1982 ; Nokes and Anderson, 1988 ), age
related or seasonal differences in contact rates (Schenzle, 1984 ; Anderson and May, 1985 ;
Yorke et al., 1979 ), social structure (Fox et al., 1971 ), geographic heterogeneity ( Anderson and
May, 1984 ; Lloyd and May, 1996 ; Real and Biek, 2007 ), and the underlying contact network of
individuals (Ferrari et al., 2006 ).

Interestingly, little work has focused on the potential role of herd immunity in microbial systems
which contain a number of immune defense systems and have an abundance of phage pathogens.
These defenses vary in their potential to provide herd immunity as they target various stages of the
phage life cycle, from adsorption to replication and lysis. Early defense mechanisms include the pre-
vention of phage adsorption by blocking of phage receptors ( Nordstro Èm and Forsgren, 1974 ), pro-
duction of an extracellular matrix ( Hammad, 1998 ; Sutherland et al., 2004 ), or the excretion of
competitive inhibitors ( Destoumieux-GarzoÂn et al., 2005 ). Alongside these bacteria have evolved
innate immune systems that target phage genomes for destruction. These include host restriction-
modification systems (RMS) (Blumenthal and Cheng, 2002 ), argonaute-based RNAi-like systems
(Swarts et al., 2014 ), and bacteriophage-exclusion (BREX) systems (Goldfarb et al., 2015 ). In addi-
tion to innate systems, bacteria have evolved an adaptive immune system called CRISPR-Cas (clus-
tered regularly interspaced short palindromic repeat) ( Sorek et al., 2013 ). In order for any of these
immune systems to provide herd immunity, they must prevent further spread of the pathogen.
Therefore, unless the phage particles degrade in the environment at a timescale comparable to the
phage adsorption rate, the immune system must provide a `sink' for the infectious particles reducing
the average number of successful additional infections below one. Unlike the early defense mecha-
nisms that may simply prevent an infection but not the further reproduction of infectious particles,
the RMS, BREX, argonaute-based RNAi-like, and the CRISPR-Cas systems degrade foreign phage
DNA after it is injected into the cell, and thus continue to remove phage particles from the

eLife digest When a disease spreads through a population, it encounters certain individuals it
cannot infect. If there are enough of these individuals, the epidemic stops. This phenomenon is
known as `herd immunity', and it occurs in many animals ± for example, it plays an important role in
human vaccination schemes.

While bacteria can cause disease, they are themselves targeted by viruses called `phages'.
Bacteria can overcome this threat, and they resist phage attacks in ways that are well understood at
the molecular level. However, little is known about the impact of this resistance at the scale of the
population. Can herd immunity occur in bacteria? If so, what factors influence the threshold at which
it will occur? In other words, what affects the minimum percentage of immune bacteria needed to
stop the spread of a phage infection?

To answer these questions, Payne et al. used both experimental and mathematical methods. For
the experiments, a phage and two strains of bacteria were used, one immune to the virus and one
not. The two strains were combined to form several populations with different percentages of
resistant bacteria, and the phage was added. How the virus could spread in these different
populations was recorded. This confirmed that herd immunity does occur in bacteria and showed
how the resistant bacteria influence the speed which an epidemic spreads in a population.

Building on the experiments, Payne et al. then produced a mathematical model to explore how
different factors affect herd immunity. For example, the model showed that the thresholds for herd
immunity can be predicted from how quickly bacteria and phages replicate. The thresholds are
lower when bacteria reproduce more quickly, but higher when it is the phages that multiply faster.

The model also helps infer a formula that informs on how diseases spread in any species, such as
humans. In particular, it becomes possible to predict herd immunity thresholds based on how
quickly an epidemic spreads in a population where few people are vaccinated. Future research is
needed to adapt the formula to the specific factors that shape disease outbreaks in humans.
Ultimately, this could help policymakers design strategies to deal with infectious diseases, such as
yearly outbreaks of the flu.
DOI: https://doi.org/10.7554/eLife.32035.002
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environment, which increases their potential to provide herd immunity. In order for herd immunity to
arise, the population must also be polymorphic for immunity, which can be achieved if immunity is
plasmid borne. In addition to this, the CRISPR-Cas system is unique in that it is adaptive allowing
cells to acquire immunity upon infection (see Figure 1A,B and C ), which can lead to polymorphism
in immunity even if the system is chromosomal.

In addition to immune system-specific factors, the reproductive rate of phage depends strongly
on the physiology of the host bacterium ( Hadas et al., 1997 ), and the underlying effective contact
network which may vary greatly in bacterial populations depending on the details of their habitat.
Thus, herd immunity will be influenced by the physiological state of the bacteria and the mobility of
the phage in the environment through passive diffusion and movement of infected individuals. Taken
together these details call into question the applicability of the traditional models of herd immunity
from vertebrates to phage-bacterial systems. Thus, experimental investigation and further develop-
ment of extended models that take into account the specifics of microbial systems are required.

Figure 1. Mechanism of CRISPR/Cas type II immunity. The CRISPR/Cas system provides immunity to phages and its main features can be described by
three distinct stages. (A) Acquisition. When a cell gets infected by a phage, a protospacer on the invading phage DNA (indicated as a red bar) is
recognized by Cas1 and Cas2. The protospacer is cleaved out and ligated to the leader end (proximal to the Cas genes) of the CRISPR array as a newly
acquired spacer (red diamond). (B) Processing. The CRISPR array is transcribed as a Pre-crRNA and processed by Cas9 (assisted by RNaseIII and trans±
activating RNA, not shown) into mature crRNAs. (C) Interference. Mature crRNAs associate with Cas9 proteins to form interference complexes which are
guided by sequence complementarity between the crRNAs and protospacers to cleave invading DNA of phages whose protospacers have been
previously incorporated into the CRISPR array. (D) A truncated version of the CRISPR system on a low copy plasmid, which was used in this study lacks
cas1 and cas2 genes and was engineered to target a protospacer on the T7 phage chromosome to provide Escherichia coli cells with immunity to the
phage. The susceptible strain contains the same plasmid except the spacer does not target the T7 phage chromosome.

DOI: https://doi.org/10.7554/eLife.32035.003
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To investigate under which conditions herd immunity may arise in bacterial populations, we con-
structed an experimental system consisting of T7 phage and bacterial strains susceptible and resis-
tant to it. Our experimental system can be characterized by the following features. First, we used
two strains of Escherichia coli, one with an engineered CRISPR-based immunity to the T7 phage, and
the other lacking it ( Figure 1D ). Second, we examined the dynamics of the phage spread in different
environments ± spatially structured and without structure. Furthermore, we developed and analyzed
a spatially explicit model of our experimental system to determine the biologically relevant parame-
ters necessary for bacterial populations to exhibit herd immunity.

Results

Properties of resistant individuals
We engineered a resistant E. coli strain by introducing the CRISPR-Cas Type II system from Strepto-
coccus pyogenes with a spacer targeting the T7 phage genome (see Material and Methods). We fur-
ther characterized the ability of the system to confer resistance to the phage. We find a significant
level of resistance as measured by the probability of cell burst when exposed to T7 ( Figure 2A ).
However, resistance is not fully penetrant as approximately 1 in 1000 resistant cells succumb to
infection. In addition, we observe that as phage load increases (multiplicity of infection, MOI) the
probability that a cell bursts increases ( Figure 2A ). In order to determine the herd immunity thresh-
old in our experimental system, we constructed the resistant strain such that upon infection the cell

Figure 2. Efficiency of bacterial resistance. (A) The probability that a resistant cell bursts, relative to a susceptible
cell, at three different initial multiplicities of infection (MOI). The probability that a resistant cell bursts at MOI 1000
is significantly higher than at MOI 10 (p = 0:019, t4 = 3:031) or at MOI 100 (p = 0:022, t5 = 2:674). The error bars
show the standard deviations from the mean. Note that this measure is not a widely used 'efficiency of plating' but
it determines the probability of burst of single resistant cells (see Materials and methods for details). ( B) The
number of colony forming units (CFUs) post phage challenge (see Materials and methods). The mean number of
CFUs after the bacterial cultures were exposed to the phage is not significantly different between susceptible and
resistant strains at MOI 10 (p = 0:239, t22 = 0:721) and (C) at MOI 100 (p = 0:27, t30 = 1:124), indicating that the
resistant cells' growth is halted after the cells are infected by a phage. The error bars show the standard deviations
from the mean. There were no detectable CFUs in either susceptible or resistant cell cultures at MOI 1000. It
should be noted that the indicated MOI values do not correspond to the average number of phages that adsorb
to cells in the experiments. For MOI 10 we estimated the mean number of phages per cell as 0:229and for MOI
100 as 0.988 (see Materials and methods for details). It was impossible to determine the mean for MOI 1000 as
there were no detectable CFUs under such conditions. The data presented in this figure can be found in
Figure 2Ðsource data 1 .

DOI: https://doi.org/10.7554/eLife.32035.004

The following source data is available for figure 2:

Source data 1. Efficiency of bacterial resistance.

DOI: https://doi.org/10.7554/eLife.32035.005
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growth is halted, yet the cell still adsorbs and degrades phages ( Figure 2B,C ). This feature is impor-
tant as it prevents the action of frequency dependent selection which in naturally growing popula-
tions will favor the resistant strain until its frequency reaches the herd immunity threshold. Thus, in
our system if the frequency of the resistant strain is below the herd immunity threshold, the resistant
cells remain below the threshold and are unable to stop the epidemic and the whole population col-
lapses. In contrast, if the frequency of resistant individuals in the population is above the herd immu-
nity threshold, the resistant individuals provide complete herd immunity and the population survives.
These properties allow us to quantify the expanding epidemic in both liquid media and on bacterial
lawns (without and with spatial structure, respectively) using high throughput techniques. Specifi-
cally, it allows us to control for the complex dynamics of the system arising from frequency depen-
dent selection and simultaneous changes in the physiological states of the cells (growth rates
depending on the nutrient concentrations) and phage (burst size, latent period depending on the
cell's physiology).

It should be noted that our model does not reflect this artificial property ± it assumes that resis-
tant bacteria keep growing after successfully overcoming a phage infection (see Equation (2d) ). This
discrepancy, however, does not affect the model prediction of the herd immunity threshold in our
experimental system for the following reason: time scale of an epidemic spread through a popula-
tion (double exponential phage growth) is substantially shorter than the time scale of bacterial popu-
lation growth (exponential growth). Therefore, whether or not an epidemic is established does not
depend on later dynamics of frequencies of resistant and susceptible individuals in the population, it
only depends on the initial conditions. Similarly, the model correctly captures the dynamics of an epi-
demic in spatially structured populations as the phage spreads radially and in every time-point the
epidemic front encounters a naive population with a constant ratio of resistant to susceptible
individuals.

Herd immunity in populations without spatial structure
To understand the influence of spatial population structure, or lack thereof, we first measured the
probability of population survival (i.e., whether the cultures are cleared or not) in well mixed liquid
environments (no spatial structure) consisting of differing proportions of resistant to susceptible indi-
viduals and T7 phage. When the percentage of resistant individuals is in excess of 99.6% all 16 repli-
cate populations survive a phage epidemic (i.e., show no detectable difference in growth profiles to
the phage free controls; Figure 3 ). Populations with 99.2% and 98.4% resistant individuals show
intermediate probabilities of survival ± 10 out of 16 replicate populations and 4 out of 16 replicate
populations survive, respectively (Figure 3 ). The likely explanation as to why some populations sur-
vive and others collapse is due to the stochastic nature of phage adsorption after inoculation: If the
population composition is close to the herd immunity threshold a stochastic excess of phage par-
ticles adsorbing to susceptible cells may trigger an epidemic, whereas if chance increases the num-
ber of phages adsorbing to resistant individuals, the epidemic is suppressed. However, when
populations have fewer than 96.9% resistant individuals all 16 replicate populations fail to survive
and collapse under the epidemic ( Figure 3 ).

As mentioned in the introduction, phage and bacterial physiology may affect the herd immunity
threshold. To test this we altered bacterial growth by reducing the concentration of nutrients in the
medium by mixing LB broth with 1X M9 salts in different ratios ( Figure 4 ), which concurrently alters
the T7 phage's latent period and burst size ( Figure 5A,B and Table 1). Indeed, we observe as bacte-
rial growth rates decline the fraction of resistant individuals necessary for population survival
decreases (Figure 5C ). When the populations are grown in a 50% diluted growth medium, the frac-
tion of resistant individuals required for a 100% probability of survival is 99.2%; when the fraction of
resistant individuals is 75% or less populations go extinct. In a 20% growth medium the fraction of
resistant individuals required for survival decreases to 96.9%, while the fraction when all replicates
collapse to 50%.

From the experimental observations of the herd immunity threshold values we infer the phage R0

using Equation 1 . In an undiluted growth medium the phage R0 falls between 32 and 256 and
decreases to between 4 and 128 in 50% and between 2 and 32 in 20% nutrient medium. These data
indicate that bacterial populations can exhibit herd immunity in homogeneous liquid environments.
However, bacteria typically live in spatially structured environments such as surfaces, biofilms or
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micro-colonies, therefore we extended our experiments to consider the potential impact of spatially
structured populations.

Herd immunity in spatially structured populations
In order to discern the role, if any, spatial structure plays in herd immunity we conducted a set of
experiments in spatially structured bacterial lawns on agar plates. Spatially structured bacterial pop-
ulations provide a more fine grained measure of herd immunity, compared to the population survival
assays done in liquid culture. On bacterial lawns, phages spread radially from a single infectious
phage particle and the radius of plaque growth on different proportions of resistant to susceptible
individuals can be easily quantified. In addition, these data allow for estimating the speed of the epi-
demic wave front in these different regimes using real-time imaging ( Figure 6A ).

We observe a decline in the number of plaque forming units (see Appendix 2Ðfigure 1 ) and a
significant decrease in final plaque sizes as the proportion of resistant individuals in the populations
increases (Figure 6B,C ). A reduction in the final plaque size compared to a fully susceptible popula-
tion was statistically significant with as few as 10% resistant individuals in a population ( p ˆ 0:004, t53

= 2:744). In order to determine the effect of resistant individuals during the earlier phase of bacterial
growth (until the bacterial density on the agar plate reaches saturation; Figure 4A ), we analyze the
velocities of plaque growth between 0 and 24 hr post inoculation ( hpi). We find that the speed is sig-
nificantly reduced after 11hpi when the population consists of as few as 10% of resistant individuals
(p ˆ 0:0317, t32 = 1:923). As the fraction of resistant individuals further increases, the speed declines
significantly at earlier and earlier time points: 6hpi with 20% (p ˆ 0:0392, t62 = 1:79), and 5:67hpi with
30% (p ˆ 0:0286, t53 = 1:943). In fact, when the fraction of resistant individuals exceeds 40%, the
reduction in the speed of the spread is statistically significant immediately after the plaques are visu-
ally detectable (Figure 7 ). It should be noted that all populations with such low percentages of resis-
tant individuals in liquid environment collapsed, indicating that spatial structure plays a role in herd
immunity.

Figure 3. Fraction of surviving populations at 18h post phage infection. Bacterial populations consisting of various
fractions of resistant to susceptible individuals infected with » 50 phages, corresponding to a multiplicity of

infection (MOI) of » 10� 4, designed to resemble an epidemic initiated by the burst size from one infected
individual (see Table 2 for burst size estimates). Each population phage challenge is replicated 16 times. The solid
dark green line shows the model prediction, Equation 4 , for the herd immunity threshold ( H), given latent period
(l ), bacterial growth rate (a), and phage burst size (b). Shaded area indicates� 1 standard deviation. The data
presented in this figure can be found in Figure 3Ðsource data 1 .

DOI: https://doi.org/10.7554/eLife.32035.006

The following source data is available for figure 3:

Source data 1. Fraction of surviving populations at 18 hr post phage infection.

DOI: https://doi.org/10.7554/eLife.32035.007
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The results presented in this and the previous section would allow us to use Equation 1 to infer a
value for R0 from the observed threshold between surviving and collapsing bacterial populations,
Figures 3 ,5. We also observe that herd immunity is strongly influenced by spatial organization of
the population, Figure 6 . How the exact value of H (and subsequently the `classical' epidemiological
parameter R0) is affected by various factors such as bacterial growth rate, phage burst size and latent
period is, however, difficult to resolve experimentally. Similarly, quantification of the effect of spatial
structure is hardly achievable solely by experimental investigation. In order to disentangle the roles
of all the factors mentioned above, we proceed with development and analysis of a mathematical
model of the experimental system.

Modelling bacterial herd immunity
We developed a model of phage growth that takes several physiological processes into account:
bacterial growth during the experiment, bacterial mortality due to phage infection, and phage mor-
tality due to bacterial immunity. Furthermore, we use the previously reported observation that
phage burst size b and latent period l depend strongly on the bacterial growth rate a (see Table 1).

The main processes in our model system can be defined by the following set of reactions,

Bs ‡ yN�!
a 2Bs ; (2a)

Br ‡ yN�!
a 2Br ; (2b)

Bs ‡ P�!
A �

BsP
�
�!
1=l

b P; (2c)

Br ‡ P�!
A �

BrP
� �!

fast Br ;

�!
slow b P:

(

(2d)

Susceptible (Bs) and resistant (Br) cells grow at a rate a (no significant difference in growth rate
between strains, a…Bs† ˆ 0:551� 0:045h� 1, a…Br† ˆ 0:535� 0:023h� 1; t70 ˆ 1:867;p ˆ 0:066), Equation 2 ,
by using an amount y of the nutrients N. Phage infection first involves adsorption to host cells,
Equation 2c and Equation 2d , with the adsorption term A specified below. Infected susceptible bac-
teria produce on average b phage with a rate inversely proportional to the average latency l . In con-
trast, resistant bacteria either survive by restricting phage DNA via their CRISPR-Cas immune system

Figure 4. Measuring bacterial growth without phage. ( A) Trajectory of population size on agar plates over time. For modeling, we assume two states of
growth (dashed brown curve): first, the bacterial population grows exponential until the time Tdepl, when nutrients are depleted. From this time on,

growth rate is assumed to be zero and the population saturates at a maximal size Bfinal . Experimental observations fit this proposed growth curve to a
very good extent. After all, half of all nutrients are used up in the last generation indicating that the switch between growth and no-growth should be
fast. (B) Growth rates of bacteria in diluted medium follow closely Monod's empirical law, given by expression Equation 9 . Fit parameters are found to

be amax » 0:720h� 1 and Kc » 0:257(with the latter in dimensionless units as dilution of LB medium), see also Table 1 . The data presented in this figure
can be found in Figure 4Ðsource data 1 .

DOI: https://doi.org/10.7554/eLife.32035.008

The following source data is available for figure 4:

Source data 1. Bacterial growth on soft agar plates (tab Figure 4A ) and bacterial growth in LB medium of various dilutions (tab Figure 4B ).

DOI: https://doi.org/10.7554/eLife.32035.009
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or ± less likely ± succumb to the phage infection. However, when the MOI is large even resistant cells
become susceptible to lysis resulting in the release of phage progeny (see Figure 2 ) (Westra et al.,
2015 ; Chabas et al., 2016 ).

In our system, bacteria eventually deplete the available nutrients, N…t > Tdepl† ˆ 0, resulting in the
cessation of growth. This decline in bacterial growth affects phage growth ± latency increases and
burst size decreases, such that phage reproduction declines dramatically (see Table 2). We define
the critical time point at which cells transition from exponential growth to stationary phase as,

Tdepl »
1
a

log
B¥

B0

� �
: (3)

Here, B0 and B¥ are the initial and final bacterial densities, respectively. In the initial exponential
growth phase, our estimates from experimental data for growth parameters are a ˆ 0:63h� 1, b ˆ
85:6phages=cell and l ˆ 0:60h, for bacteria and phages, respectively ( Tables 1 and 2). After time

Figure 5. Herd immunity threshold in liquid culture as a function of bacterial growth. ( A) Phage burst size (b) change as a function of nutrient
concentrations. (B) Latent period (l ) increase across the range of nutrient concentrations. Values forb and l are given in Table 2 . (C) Population survival
analysis upon phage challenge as a function of the fraction of resistant cells and the intrinsic growth rate (nutrient availability, N). Bacteria survive the
phage infection (full circles), collapse (empty circles), or exhibit both outcomes (circled dots) in the 16 to 18 replicates, done in 3 independent batches.
Light green errorbars at investigated dilutions of LB show the expected value and its standard deviation of H…a†, Equation 5 , with standard error
propagation of the measured b, l and a. In order to interpolate herd immunity to dilutions N not probed in experiments (dark green line), we use a
second order polynomial in N to fit the data for both b=l and b, which excellently matches the average measurements (a naive linear fit displays non-
negligible deviations and non-sensical negative values). In addition, the dependence a ˆ a…N†is obtained by numerically inverting the Monod growth
rate dependence, see Equation 9 . The data presented in this figure can be found in Figure 5Ðsource data 1 and Figure 5Ðsource data 2 .

DOI: https://doi.org/10.7554/eLife.32035.010

The following source data is available for figure 5:

Source data 1. Figure 5A B source data: Phage burst sizes and latent period in different dilutions of the growth medium.

DOI: https://doi.org/10.7554/eLife.32035.011
Source data 2. Figure 5C : Fraction of surviving populations in different dilutions of the growth medium.

DOI: https://doi.org/10.7554/eLife.32035.012

Table 1. Estimated parameters for bacterial growth using Monod kinetics.
Undiluted LB medium (N ˆ 1) is assumed to have 15mg=ml nutrients (10mg=ml Tryptone, 5mg=ml
yeast extract). The full dataset is shown inFigure 4 .

Estimate Units

amax 0:720~…�0:011†
�
h� 1

�

Kc 0:257~…�0:012† Dilution N of LB
�
0. . . 1

�

DOI: https://doi.org/10.7554/eLife.32035.013
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Figure 6. Properties of expanding phage epidemics on bacterial lawns. ( A) Example of plaque morphology and size change over 48 hours for
populations with 50% resistant cells (top) and a control with 100% susceptible cells (bottom). (B) Mean plaque size area through time. Colors indicate
the different fraction of resistant individuals (color coding as in panel C). Note the distinct two phases of plaque growth ± initially, phage grow fast with
exponentially growing bacteria but slow once the nutrients are depleted ( » 10 hr). The plaque radius is reduced, relative to 100% susceptible
population, even when only a small fraction of resistant individuals are in the population. ( C) Final plaque radius at 48 hpi. Green line shows the
prediction from the model for the plaque radius r. Grey numbers indicate the number of plaques measured. Error bars indicate the standard
deviations. The data presented in this figure can be found in Figure 6Ðsource data 1 .

DOI: https://doi.org/10.7554/eLife.32035.014

The following source data is available for figure 6:

Source data 1. Plaque radii for all population compositions and time points.

DOI: https://doi.org/10.7554/eLife.32035.015

Figure 7. Speed of phage epidemic expansion on bacterial lawns. (A) Speed of expanding phage epidemics for all population compositions is initially
high, before it drops once nutrients are depleted at around 10hpi (hours post infection). (B) Plaque speed significance. Comparing speeds of plaque
spread with the 100% susceptible control. Linear regression of a sliding window spanning 4 hours of the radius sizes was calculated for all individual
plaques and all compositions of the populations between t0 and t24. Slopes of the linear regressions for all compositions of the populations were
compared using a two-sided heteroscedastic t-test against the 100% susceptible dataset. The data presented in this figure can be found in Figure 7Ð
source data 1 .

DOI: https://doi.org/10.7554/eLife.32035.016

The following source data is available for figure 7:

Source data 1. Speed of plaque expansion in populations consisting of varying proportions of resistant to susceptible bacteria.

DOI: https://doi.org/10.7554/eLife.32035.017

Payne et al. eLife 2018;7:e32035. DOI: https://doi.org/10.7554/eLife.32035 9 of 33

Research article Ecology Evolutionary Biology



Tdepl, bacterial growth rate is set to zero ( a ˆ 0) and phage growth is reduced to bdepl ˆ

3:0phages=cell and l depl ˆ 1:69h. Such a two state model ± constant growth rate while nutrients are
present and no growth after depletion ± describes the observed population trajectories in experi-
ments sufficiently well (see Figure 4 ).

Modelling herd immunity in populations without structure
An important parameter for estimating herd immunity is the fraction S of susceptible bacteria in the
population. As a first estimate, a phage infection spreads in well mixed bacterial cultures if b S>1,
which leads to a continuous chain of infections: the product of burst size b of phage particles and
the probability S of infecting a susceptible host has to be larger than one. As a first approximation,
one could identify R0 with the burst size b, which is compatible with the observed herd immunity
thresholds when inverting Equation 1 .

However, the growing bacterial population could outgrow the phage population if the former
reproduces faster (e.g., in the case of RNA coliphages, van Duin, 1988), which introduces deviations
from the simple relation between R0 and H as shown in Equation 1 . We capture this dynamical effect
in a correction to the previous estimate as bS> 1 ‡ la (see Materials and methods): more phages

have to be produced for the chain of infections to persist in growing populations. The correction l
1=a

is the ratio of generation times of phages over bacteria ± usually, such a correction is very small for
non-microbial hosts and can be neglected. Ultimately, herd immunity is achieved if the threshold
defined by H ˆ 1 � Sc is exceeded, with Sc the critical value in the inequality above. Rearranging, we
obtain an expression for the herd immunity threshold

H ˆ
b � 1� la

b
: (4)

This estimate of H coincides to a very good extent with the population compositions of suscepti-
ble and resistant bacteria where we observe the transition from surviving and collapsed populations
in experiments (see Figure 3 ). Moreover, simulations presented in the Appendix (section Simulation
of recovery rate) show a range in the bacterial population composition with non-monotonic trajecto-
ries for Bs and Br (see Appendix 1Ðfigure 1B ), which is comparable to the range in composition we
find in both outcomes, that is, some surviving and some collapsing populations in experiments. For
such parameter choices, stochastic effects could then decide the observed fates of bacteria. As pre-
sented above, the herd immunity threshold changes when the bacterial cultures grow in a diluted
growth medium. In a set of independent experiments we measured bacterial growth rate a, phage
burst size b and phage latent period l under such conditions (see Figure 4B and Table 2). From
these data we estimated the dependence of the phage burst size on the bacterial growth rate, b…a†,
using a numerical quadratic fit ( Figure 5A ). Similarly, we estimated the dependence of the phage
latent period on the bacterial growth rate, l …a†(Figure 5B ). Using these estimates we calculated the
expected growth rate±dependent herd immunity threshold

H…a† ˆ
b…a† � 1� l …a†a

b…a†
; (5)

which gives a very good prediction of the shift in the herd immunity threshold to lower values for

Table 2. Estimated parameters for phage growth.
See alsoFigure 5A,B .

Medium Dilution Latent period Burst size Burst size/hour

N l ‰minŠ b b=l ‰h� 1Š

LB 0 0:0 101:1 …�10:9† 3:0 …�1:9† 1:8 …�1:1†

LB 20 0:2 43:4 …�3:9† 3:0 …�1:9† 16:6 …�6:0†

LB 50 0:5 40:0 …�3:0† 35:6 …�16:4† 53:4 …�24:9†

LB 100 1:0 36:1 …�6:1† 85:6 …�47:3† 142:1 …�82:1†
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slower growing populations (green line in Figure 5C ). This verification of our model shows that it
correctly captures the dependence of the herd immunity threshold on bacterial and phage growth
parameters.

The deviations from the herd immunity threshold depicted by the green area in Figure 3 and
green error bars in Figure 5C are derived from uncertainty in measurements in b, l and a. The inher-
ent stochasticity of the adsorption process thus provides additional uncertainty, which is not cap-
tured by the depicted error bars. This additional stochasticity can explain wider transition zone in
experiments with slower growing populations (dilution 0.5 and 0.2), because the fate of the popula-
tion is more prone to stochastic effects as the phage replication rate is slower than in a fast growing
population. This stochastic effect might be reduced by larger phage inocula. This could, however,
also shift the observed transition between collapsing and surviving populations towards higher fre-
quencies of resistant bacteria (and away from the actual herd immunity threshold) as protection by
the immune system is less effective with increasing number of phages per cell (see Figure 2A ).

Modelling herd immunity in spatially structured populations
The dynamics of phage spread differ between growth in unstructured (e.g., liquid) and structured
(e.g., plates) populations. In order to quantify the effect of spatial structure in a population, we
extend our model to include a spatial dimension. In structured populations growth is a radial expan-
sion of phages defined by the plaque radius r and the expansion speed v, for which several authors
have previously derived predictions ( Kaplan et al., 1981 ; Yin and McCaskill, 1992 ; You and Yin,
1999 ; Fort and MeÂndez, 2002a ; Ortega-Cejas et al., 2004 ; Abedon and Culler, 2007 ;
Mitarai et al., 2016 ).

We assume phage movement can be captured by a diffusion process characterized with a diffu-
sion constant D, which we estimate in independent experiments as D ˆ 1:17…�0:26† �10� 2 ~ mm2=h
(see Materials and methods, Figure 8 ). However, we assume that only phages disperse and bacteria
are immobile as the rate of bacterial diffusion does not influence the expanding plaque on time-
scales relevant in the experiment. Adsorption of phages on bacteria is modeled with an adsorption
constant d$ .

Taking these considerations together, allows to write a reaction-diffusion dynamics for growth of
phages P on the growing bacterial population as

qtPˆ Dq2
xP‡ d$

�
bS� 1� la

�
P : (6)

The first term accounts for the diffusive spread of phages, while the second term describes phage
growth. This second term includes the correction la which arises due reproduction of bacteria,
derived in the unstructured liquid case.

The spreading infection will sweep across the bacterial lawn with the following speed

v ˆ 2
••••••••
Dd$

p ••••••••••••••••••••••••
bS� 1� la

p
; (7)

which is computed in more details in the Materials and methods. This expression Equation 7 indi-
cates that the population composition crucially influences the spreading speed at much lower frac-
tions of resistant bacteria than the herd immunity threshold Equation 4 , where phage expansion
stops completely. Consequently, the resulting plaque radius r decays with increasing fractions of
resistants and reaches zero at H. A prediction for r can be obtained by integrating Equation 7 over
time.

In our (simplified) model, time-dependence of the speed only enters via the fraction of suscepti-
bles S, which is assumed to stay at the initial S0 value until it encounters the epidemic wave of
phages. Furthermore, we use the experimental observation that plaque expansion ceases upon
depletion of nutrients, coinciding with a cessation of bacterial growth. This leads to the approxima-
tion r » vTdepl, with Tdepl given by Equation 3 . Using this expression we estimated the adsorption con-
stant d$ from the growth experiments as it is difficult in practice to measure on plates. The green

line in Figure 6B is the best fit, yielding the value d$ ˆ 4:89…�0:19† �10� 2 bacteria=phageh for the
adsorption constant.

Our results for spatially structured populations allows us to speculate on a general epidemiologi-
cal question: If an infection is not stopped by herd immunity in a partially structured population, by
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how much is its spread slowed down? By generalizing Equation 7 we can derive a relative expansion
speed, compared to a fully susceptible population,

vrel ˆ

••••••••••••••••••

1�
1� S

H

r

: (8)

This expression, Equation 8 , is devoid of any (explicit) environmental conditions, which are not
already contained in the herd immunity threshold H itself. Thus, it could apply to any pathogen-host
system. Ultimately, this relative speed approaches zero with a universal exponent of 1=2, when the
fraction of resistant individuals 1� Sapproaches the herd immunity threshold H. However, a few cav-
eats exist when using Equation 8 , as several conditions have to be fulfilled: Obviously, a pathogen is
expected not to spread in a population exhibiting complete herd immunity ± the relative speed
should only hold for populations below the herd immunity threshold. Moreover, if dispersal cannot
be described by diffusion, but rather dominated by large jumps ( Hallatschek and Fisher, 2014 ), the
diffusion approach we used for traveling waves is not applicable, and thus also renders Equation 8
inadequate.

An increase in the number of long range jumps of phages can be considered as a transition
between the two cases we treated here ± spatially explicit dynamics on plates and completely mixed
populations in liquid culture, respectively. Potential long range jumps of phages can be mediated by
host cells moving distances that the phages cannot achieve on their own. In such cases, dispersal of
the phages is a convolution of movement of their hosts with their own ability to spread locally. These
long range jumps would therefore increase the overall expansion speed and area of the epidemic.
We expect that in our setup bacterial motility does not substantially contribute to phage spread
because (i) bacteria become motile only in late exponential/early stationary phase ( Amsler et al.,
1993 ) when phage reproduction drops to very low levels, and (ii) the soft agar concentration used in
our experiments ( » 0:525%) effectively blocks bacterial motility ( Croze et al., 2011 ). However, we
would not expect that long range jumps change the herd immunity threshold H…a† itself. Spread of
pathogens still stops when the fraction of susceptible hosts S is small such that bS< 1 ‡ la , and will
continue as long as bS> 1 ‡ la is fulfilled.

Figure 8. Estimating diffusion constant of phages. (A), (B) Phage are slowly expanding on agar which can be
observed via their fluorescence. Pictures are taken5h apart. (C) The diffusion constant D can be estimated as best-

fit parameter in a heat kernelK…D†propagates the fluorescence profile L…t† at time t forward (via a convolution to

ªsmearº out the signal) to the profile L…t‡ Dt† at the next measured time point. The difference between the
expected change and the actual profile is quantified as total squared deviation, see Equation 10 , which we

minimize to obtain D. Consequently, we can estimate the diffusion constant as D » 1:17� 10� 2 mm2=h. The green
line uses this estimated parameter D and shows the change between the profile at t ˆ 10h (orange line) and the
profile at t ˆ 15h (light brown line), assuming diffusive spread of phages. See Materials and methods for more
information.

DOI: https://doi.org/10.7554/eLife.32035.019
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Discussion
The spread of a pathogen may be halted or slowed by resistant individuals in a population and thus
provide protection to susceptible individuals. This process, known as herd immunity, has been exten-
sively studied in a wide diversity of higher organisms ( Jeltsch et al., 1997 ; Mariner et al., 2012 ;
van Boven et al., 2008 ; Meister et al., 2008 ; Konrad et al., 2012 ; Wang et al., 2013 ). However,
the role of this process has largely been ignored in microbial communities. To delve into this we set
out to determine under what conditions, if any, herd immunity might arise during a phage epidemic
in bacterial populations as it could have profound implications for the ecology of bacterial
communities.

We show that herd immunity can occur in phage-bacterial communities and that it strongly
depends on bacterial growth rates and spatial population structure. Average growth rates of bacte-
ria in the wild have been estimated as substantially slower than in the laboratory (generation time is
» 7.4 fold longer [ Gibson et al., 2017 ]), a condition that we have shown to facilitate herd immunity.
Furthermore, bacterial populations in the wild are also highly structured, as bacteria readily form
micro-colonies or biofilms ( Hall-Stoodley et al., 2004 ) and grow in spatially heterogeneous environ-
ments such as soil or the vertebrate gut ( Fierer and Jackson, 2006 ), a second condition we have
shown to facilitate herd immunity. These suggest that herd immunity may be fairly prevalent in low
nutrient communities such as soil and oligotrophic marine environments.

In an evolutionary context, herd immunity may also impact the efficacy of selection as the selec-
tive advantage of a resistance allele will diminish as the frequency of the resistant allele in a popula-
tion approaches the herd immunity threshold, H. This has two important implications. First, while
complete selective sweeps result in the reduction of genetic diversity at linked loci, herd immunity
may lead to only partial selective sweeps in which some diversity is maintained. Second, herd immu-
nity has a potential to generate and maintain polymorphism at immunity loci, as has been shown for
genes coding for the major histocompatibility complex (MHC) ( Wills and Green, 1995 ). Polymor-
phism in CRISPR spacer contents have been demonstrated in various bacterial (Tyson and Banfield,
2008 ; Sun et al., 2016 ; Kuno et al., 2014 ) and Archaeal (Held et al., 2010 ) populations and com-
munities (Pride et al., 2011 ; Zhang et al., 2013 ; Andersson and Banfield, 2008 ). While these stud-
ies primarily explain polymorphisms in CRISPR spacer content as a result of rapid simultaneous
independent acquisition of new spacers, we suggest that observed polymorphisms may result from
frequency-dependent selection on resistance loci arising from herd immunity. In such a case, herd
immunity is likely to maintain existing polymorphism in CRISPR spacer content in 1 � H fraction of
the population, unless the current major variant goes to fixation due to drift. However, considering
the large population sizes of bacteria, drift is unlikely to have a strong effect, allowing herd immunity
to maintain a large fraction of immunity polymorphism.

It has also been suggested that herd immunity might favor coexistence between hosts and their
pathogens (Hamer, 1906 ), which can lead to cycling in pathogen incidence and proportions of resis-
tant and susceptible individuals over time, e.g., in measles before the era of vaccination ( Fine, 1993 ).
This cycling is caused by the birth of susceptible individuals, which, once their proportion exceeds
the epidemic threshold ( 1 � H), lead to recurring epidemics. CRISPR-based immunity is, however,
heritable meaning that descendants of resistant bacteria remain resistant. One might speculate that
analogous cycling in phage epidemics may occur if immunity is costly. In turn, a computer simulation
study of coevolution of Streptococcus thermophilus and its phage found both cycling and stable
coexistence of different CRISPR spacer mutants and phage strains (Childs et al., 2014 ). The extent
to which herd immunity facilitates maintenance of CRISPR spacer polymorphism and coexistence
with phage requires further experimental and theoretical investigation.

We also developed a mathematical model and show how the herd immunity threshold H (Equa-
tion 4 ) depends on the phage burst size b and latent period l , and on the bacterial growth rate a.
This dependence arises as phages have to outgrow the growing bacterial population, as host and
pathogen have similar generation times in our microbial setting. In addition to these parameters, we
also describe how the speed v (Equation 7 ) of a phage epidemic in spatially structured populations
depends on phage diffusion constant D, phage adsorption rate d$ , and the fraction of resistant and
susceptible individuals in the population. All of which are likely to vary in natural populations. We
also derived the relative speed of spread for partially resistant populations, as measured relative to
a fully susceptible population, and show that it can be parametrized solely with the herd immunity
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threshold H (Equation 8 ). This relative speed of the spread of an epidemic should be applicable to
any spatially structured host population where the spread of the pathogen can be approximated by
diffusion. Both our experiments and the modelling show that even when the fraction of resistant indi-
viduals in the population is below the herd immunity threshold the expansion of an epidemic can be
substantially slowed, relative to a fully susceptible population.

In conclusion, we have presented an experimental model system and the connected theory that
can be usefully applied to both microbial and non-microbial systems. Our theoretical framework can
be useful for identifying critical parameters, such as H (and to some extent R0), from the relative
speed of an epidemic expansion in partially resistant populations so long as the process of pathogen
spread can be approximated by diffusion. This approximation has been shown to be useful in such
notable cases as rabies in English foxes (Murray et al., 1986 ), potato late blight ( Scherm, 1996 ),
foot and mouth disease in feral pigs ( Pech and McIlroy, 1990 ), and malaria in humans
(Gaudart et al., 2010 ).

Materials and methods
Key resources table Table of key strains, reagents and software used in this study.

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

gene (Streptococcus
pyogenes SF370)

cas9 National Center for
Biotechnology Information

NCBI:NC_002737.2;
gene_ID:901176;
RRID:SCR_006472

Gene symbol SPy_1046

strain, strain background
(Escherichia coli)

E. coli K12 MG1655 Own collection NA

strain, strain background
(Bacteriophage T7)

E. coli bacteriophage T7 ATCC Collection ATCC:BAA-1025-B2;
RRID:SCR_001672

recombinant DNA reagent pCas9 Addgene Vector Database Addgene:42876;
RRID:SCR_005907

pCas9 plasmid was a gift
from Luciano Marraffini

recombinant DNA reagent pCas9T7resistant this paper NA Plasmid derived from pCas9

commercial assay or kit PureYield Plasmid
Miniprep System

Promega Promega:A1223;
RRID:SCR_006724

chemical compound, drug Chloramphenicol Sigma-Aldrich Sigma-Aldrich:C0378-5G;
RRID:SCR_008988

software, algorithm PerkinElmer Volocity v6.3 RRID:SCR_002668 Volocity 3D Image
Analysis Software

software, algorithm Fiji v1.0 doi: 10.1038/nmeth.2019 RRID:SCR_002285 Image processing
package of ImageJ

software, algorithm RStudio 1.0.153 RRID:SCR_000432 Software for the R
statistical computing

software, algorithm Python 3.6.3 RRID:SCR_008394 Python programming language

software, algorithm Model source code doi: 10.5281/zenodo.1038582 RRID:SCR_004129 Zenodo repository

Experimental methods
Engineering resistance
Oligonucleotides AAACTTCGGGAAGCACTTGTGGAAG and AAAACTTCCACAAGTGCTTCCCGAA
were ordered from Sigma-Aldrich, annealed and ligated into pCas9 plasmid (pCas9 was a gift from
Luciano Marraffini, Addgene plasmid #42876) carrying a Streptococcus pyogenes truncated CRISPR
type II system and conferring chloramphenicol resistance. For the detailed protocol see ( Jiang et al.,
2013 ). The oligonucleotides were chosen so that the CRISPR system targets an overlap of phage T7
genes 4A and 4B. Therefore, the CRISPR system allows the gene 0.7, coding for a protein which
inhibits the RNA polymerase of the cell, to be expressed before the T7 DNA gets cleaved
(GarcõÂa and Molineux, 1995). The subsequent growth of the cells is halted and phage replication is
inhibited. The plasmid was electroporated into Escherichia coli K12 MG1655 (F- lambda- ilvG- rfb-50
rph-1). The T7 wildtype phage was used in all experiments.
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Efficiency of the CRISPR-Cas system
Efficiency of the engineered CRISPR-Cas system was tested using the following protocol: Overnight
cultures grown in LB containing 25 � g=ml chloramphenicol were diluted 1 in 10 in the same medium,
cells were infected with the T7 phage (MOI 10, 100, and 1000) and incubated for 15min in 30� C.
Cells were spun down for 2 min in room temperature at 21130g. Supernatant was discarded and the
cell pellet was resuspended in 950 � l of 1X Tris-HCl buffer containing 0.4% ( » 227� M) ascorbic acid
pre-warmed to 43� C and incubated in this temperature for 3 min to deactivate free phage particles
(Murata and Kitagawa, 1973 ). Cultures were serially diluted and plated using standard plaque
assay protocol on a bacterial lawn of susceptible cells to detect bursting infected cells. The superna-
tant was tested for free phage particles, which were not detected in the corresponding dilutions
used for plaque counting. Each experiment was replicated three or four times (MOI 10 three times,
MOI 100 four times and MOI 1000 three times) while samplings from each treatment were per-
formed in quadruplicates. The probability that a resistant cell bursts was calculated as a ratio of
bursting resistant to bursting susceptible cells for each experiment (means of corresponding quadru-
plicates). All LB agar plates and soft agar used throughout this study was supplemented with 25
� g=ml chloramphenicol. These CRISPR-Cas system efficiencies at different MOIs were tested if they
are statistically different from each other using two-tailed unequal variances t-test at 0.05 confidence
level using RStudio (R Core Team, 2013 ).

Determining the mean number of phages per cell
The cultures that were plated using standard plaque assays in the ªEfficiency of the CRISPR-Cas sys-
temº experiment were also plated on LB agar plates containing 25 � g=ml chloramphenicol to deter-
mine the number of surviving CFUs. The numbers of bursting and surviving susceptible cells were
subsequently used to determine the actual mean number of adsorbed phages per cell. The fraction
of susceptible cells surviving the phage challenge experiment was assumed to correspond to the
Poisson probability that a cell does not encounter any phage, which was than used to determine the
mean of the Poisson distribution, which corresponds to the mean number of phages per cell.

Herd immunity in a liquid culture
Herd immunity in a liquid culture was tested in 200 � l of LB broth supplemented with 25 � g=ml chlor-
amphenicol in Nunclon flat bottom 96 well plate in a Bio-Tek Synergy H1 Plate reader. Bacterial cul-
tures were diluted 1 in 1000 and mixed in the following ratios of resistant to susceptible cells: 50:50,
75:25, 87.5:12.5, 93.75:6.25, 96.88:3.13, 98.44:1.56, 99.22:0.78, 99.61:0.39, 99.8:0.2, 99.9:0.1,

99.95:0.05, 100:0 %. T7 phage was added at a multiplicity of infection (MOI) of » 10� 4 (» 50 plaque
forming units ( pfu) per culture) to resemble an epidemic initiated by the burst size from one infected
cell and the cultures were monitored at an optical density 600 nm for 18 hours post inoculation ( hpi).
Each population composition was replicated 16 times. Herd immunity in diluted LB was measured in
LB broth mixed with 1X M9 salts in ratios 1:1 (50% LB) and 1:4 (20% LB) using the same protocol as
for 100% LB broth. Each population composition was replicated 18 times.

Time-lapse imaging of plaque growth
Soft LB agar (0.7%) containing 25 � g=ml chloramphenicol was melted and 3 ml were poured into
glass test tubes heated to 43� C in a heating block. After the temperature equilibrated, 0.9 ml of a
bacterial culture consisting of resistant and susceptible cells (ratios 10% ± 100% of susceptible cells,
10% increments) were diluted 1 in 10 and added to the tubes. Then, 100 � l of bacteriophage stock,
diluted such that there would be » 10 plaques per plate, was added to the solution. Tubes were vor-
texed thoroughly and poured as an overlay on LB agar plates containing 25 � g=ml chloramphenicol.
The plates were placed on scanners (Epson Perfection V600 Photo Scanner) and scanned every 20
minutes in ºWide Transparency modeª for 48 hours in 30� C. A total of 3 scanners were employed
with a total of 12 plates, plus a no phage control plate and 100% resistant control outside the scan-
ners (see Appendix figure 3). No plaques were detected in the 100% resistant controls. Time-lapse
images were used to calculate the increase of individual plaque areas using image analysis software
PerkinElmer Volocity v6.3 and Fiji v1.0 (Schindelin et al., 2012 ).
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Bacterial growth on soft agar
Growth rate of susceptible bacteria in soft LB agar (0.7%) was measured by sampling from a petri
dish with a soft agar overlay with bacteria prepared in the same way as the plaque assays except an
absence of the phage. Sampling was performed in spatially randomized quadruplicates at the begin-
ning of the experiment and subsequently after 2, 4, 6, 8, 10, 12, 14, 16, 24, 32, 40, and 48 hours
using sterile glass Pasteur pipettes (Fisherbrand art.no.: FB50251). Samples were blown out from the
Pasteur pipette using an Accu-jet pro pipettor into 1 ml of M9 buffer pre-warmed to 43� C, vortexed
for 15 seconds and incubated for 10 minutes in 43� C with two more vortexing steps after 5 and 10
minutes of incubation. Samples were serially diluted and plated on LB agar plates containing 25
� g=ml chloramphenicol. How bacterial densities change over time, measured as CFU=ml, is shown in
Figure 4A .

Bacterial growth rates in liquid culture
Nutrient-dependent growth rate of susceptible bacteria was measured in Nunclon flat bottom 96
well plate in Bio-Tek Synergy H1 Plate reader in 30� C. Overnight LB cultures were diluted 1:200 in
media consisting of LB broth mixed with 1X M9 salts in ratios 10:90, 20:80, 30:70, 40:60, 50:50,
60:40, 70:30, 80:20, 90:10 and 100:0. Final volume was 200 � l. Optical density at 600 nm was mea-
sured every 10 min. Every treatment was replicated eight times. Natural logarithm of the optical
density values was calculated to determine the growth rate using a maximal slope of a linear regres-
sion of a sliding window spanning 90 min.

The resulting growth rates for various nutrient concentrations fit well with Monod's growth
kinetics,

a ˆ amax
N

Kc ‡ N
: (9)

Results for the two fitting parameters, amax and Kc, are listed in Table 1 . The whole dataset,
including the fit, is displayed in Figure 4B .

Test for a difference in growth rates of resistant and susceptible bacteria was done in LB broth in
the same manner as nutrient-dependent growth rate measurements. Two-sample t-test was per-
formed on acquired growth rate data at 0.05 confidence level using RStudio ( R Core Team, 2013 ).

All growth media used in growth rate measurements were supplemented with 25 � g=ml
chloramphenicol.

Phage burst sizes
Phage burst sizes in bacteria growing at different growth rates were measured by one-step phage
growth experiments in LB mixed with 1X M9 salts in the following ratios 0:100, 20:80, 50:50 and
100:0. The burst sizes were calculated as the ratio of average number of plaques before burst to
average number of plaques after burst. Consecutive samplings before and after burst were used for
the calculation if they were not significantly different from each other (two sided t-test, p> 0:05). All
experiments were performed in triplicates.

Phage latent periods
Phage latent periods were determined from the phage burst size experiments as the time interval
between the first and the last significantly different consecutive sampling between those used for
phage burst size calculations.

Speed of phage expansion
The speed of the phage expansion was measured as difference in radii of plaques over time. Statisti-
cal tests allowed to infer that the reduction of expansion speed is significant already for small devia-
tions from the 100% susceptible control experiment, as described and shown in Figure 7 .

Phage diffusion in soft agar
Soft M9 salts soft agar (0.5%) was supplemented with SYBR safe staining (final conc. 1%) and poured
into glass cuvettes (VWR type 6040-OG) to fill ~2cm of the cuvette height. After soft agar
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solidification, the same stained soft agar was supplemented with T7 phage particles to a final con-

centration 1011 pfu=ml and poured on top of the agar without phages. The cuvettes were monitored
in 30� C every hour for 40 hours at the SYBR safe emission spectrum peak wave length 524nm illumi-
nated with the SYBR safe excitation spectrum peak wave length 509nm. The diffusion constant was
estimated as the best fit parameter for the spread of fluorescent phages through the soft agar over
time.

First we computed the luminosity Li of fluorescence (a gray-scale value defined as L ˆ 0:2126R‡
0:7152G ‡ 0:0722B from the RGB image) as average over the width of the cuvette for pixel row i, and
corrected the profiles of luminosity Li by subtracting the background value. This background value
was estimated as a linear fit at the end of the profile without phages, where only the gray value of
the agar was measured. Moreover, in our setup luminosity seems to saturate at values above ~0:4
where it does not have a simple linear dependence on fluorescence anymore: diffusion would lead
to a decrease of the signal behind the inflection point of the profile and increase after the inflection
point, but images only show increasing profiles ± the bulk density does not decay. Thus, any esti-
mate should only take the part of the profile that is below the threshold value of 0:4 into account
(see Figure 8 ).

The diffusion constant D itself was estimated as the minimal value of the total squared deviation

of the convoluted profile L…t† (at time t) with a heat kernel K…D†compared to the profile L…t‡ 1† at time
t ‡ 1,

D ˆ min
D

X

i

 
� X

j

e�…i� j†2=4D

••••••••••
4pD

p L…t†
j

�
� L…t‡ 1†

i

! 2* +

: (10)

Such a convolution with the heat kernel Kij …D† ˆ …4pD†� 1=2 exp
�
�…i � j†2=4D

�
assumes that the only

change in the profile is due to diffusion for a time span of length 1 with i and j indices of pixels.

Thus, expression Equation 10 estimates the diffusion constant in units of pixel2=frame, where frame
is the time difference between two images. Several estimates are averaged over different snapshots
in the whole experiment that spans 40h in intervals of 1h each.

The final estimate in appropriate units is

D»1:17…�0:26† �10� 2 ~ mm2=h ; (11)

which is in agreement with previous measures of phage diffusion ( Stent and Wollman, 1952 ;
Bayer and DeBlois, 1974 ; Briandet et al., 2008 ).

Modelling
Phage growth
In the main text we stated that relevant processes for phages growing on bacteria are given by the
set of reactions Equation 2 . In the following, we will analyze an extended version of our model,
which takes all these processes into account. We try to justify our approximations and explain the
reasoning behind leaving parts of the full model out. While reactions for single bacteria or phages
are inherently stochastic in nature, we assume that the involved numbers are large enough such that
the dynamics can be described with deterministic differential equations for the populations. Further-
more, reaction rates are identified with the inverse of the average time scale of the process. Thus,
the full model is given by the coupled differential equations,

qtBs ˆ aBs � A‰Bs;PjBs;BrŠ; (12a)

qtBr ˆ aBr � A‰Br ;PjBs;BrŠ ‡� Ir ; (12b)

qtIs ˆ A‰Bs;PjBs;BrŠ � …1=l †Is ; (12c)

qtIr ˆ A‰Br ;PjBs;BrŠ � …1=l †Ir � � Ir ; (12d)

qtP ˆ …b=l †
�
Is ‡ Ir

�
�

X

i2f s;rg

A‰Bi ;PjBs;BrŠ �
X

i2f s;rg

A‰Ii ;PjIs; IrŠ; (12e)

qtN ˆ � a=y
�
Bs ‡ Br

�
: (12f)

Both bacterial populations Bi , i 2 f s; rg, grow with rate a and decay via adsorption of phages
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A‰Bi ;PjBs;BrŠ, an expression that is specified below. Infected populations Ii gain numbers by adsorp-
tion and decrease via bursting. Resistant bacteria also can recover from their infected state with a
recovery rate � . Phages grow by bursting cells, and lose numbers by adsorption to the various bacte-
rial populations. Moreover, explicit dynamics for nutrients is considered, which are drained by each
grown cell inversely proportional to the yield Y, the conversion factor between nutrient concentra-
tion and cell numbers. Essentially, this last equation acts as a timer, when we switch from abundant
resources to the depleted state: all growth parameters change significantly upon nutrient depletion.
Nevertheless, despite the possible deviations, we assume depletion time is given by the simple esti-
mate Equation 3 and only treat the two possible states of abundant and depleted nutrients.

Adsorption of phages, given by the term A
�
Bi ; PjBs; Br

�
, can be influenced by the whole distribu-

tion of populations within the culture. In liquid medium, a common assumption is that this term is
proportional to the concentrations of both the phages and cells ( Weitz, 2016 ),

A
�
Bi ;PjBs;Br

�
ˆ dBiP; (13)

with an adsorption constant d. This expression assumes constant mixing of the population and rela-
tively short contact times between phages and bacteria. In general, this system of equations is akin
to Lotka-Volterra dynamics, which has been analyzed in great detail, eg. ( Hofbauer and Sigmund,
1998 ; Nowak, 2006 ).

For our ensuing analysis, we neglect the population of infected resistant bacteria Ir . Upon examin-
ing Equation 12 we find that most cells to leave their infected state by reducing phage DNA via
CRISPR/Cas instead of bursting if � � 1=l . If furthermore � � dP, which is true at least in the initial
stages of the experiment, essentially all infected resistant bacteria immediately recover from a phage
infection. Consequently, with both conditions, the resistant infected bacteria tend to vanish, Ir ! 0,
and their dynamics can be neglected. Only in the Appendix (section Simulation of recovery rate) we
release this assumption to explicitly cover the full dynamics of Equation 12 in simulations to esti-
mate values for � .

Exponentially growing bacteria lead to double exponential phage growth
For convenience, we transform the populations to the total bacterial density B ˆ Bs ‡ Br and intro-
duce the fraction of susceptible cells Sˆ Bs=B. The crucial assumption for the remainder of this sec-
tion is that phages burst immediately after infection, l ˆ 0, such that we can ignore all infected
populations. While not a very biological condition, it allows to analyze the model in more detail.
Using these simplifications, we obtain

qtB ˆ …a � dSP†B; (14a)

qtS ˆ � S…1� S†dP; (14b)

qtP ˆ …bS� 1†dBP: (14c)

If we assume that in initial stages of phage growth the number of phages is small, ie.
dP � a ~O…1h� 1†, the dynamics of bacteria and the fraction of susceptibles simplify to qtBˆ aB and
qtSˆ 0. Note that this term dP also occurs in the linear phage dynamics, where it cannot be
neglected. In this instance, we need to view dB as a coefficient, which is likely much larger initially.
This set of simplified equations can be solved in closed form,

S…t† ˆ S0 ; (15a)

B…t† ˆ B0 exp…at†; (15b)

P…t† ˆ P0 exp
�
…S0b � 1†dB0…exp…at† � 1†=a

�
: (15c)

The structure of phage dynamics is particularly important here ± it exhibits a double-exponential
dependence on time t, which is a very fast, almost explosive, growth. Such double-exponential
growth leads to very large population sizes within a short amount of time (but after an extended ini-
tial delay). This general behavior of the solution is independent of the actual growth rate of phages,
which only has to be positive. Thus, inspecting the exponent in Equation 15 yields the condition

bS0 > 1 (16)
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for phage growth to be positive. Incidentally, relation Equation 16 is the naive estimate for the num-
ber of successful additional infections arising from a single burst. The double exponential time-
dependence is central for our arguing that the dynamics can be described by threshold phenomena,
given by conditions like Equation 16 : Usually, phages are negligible in the dynamics until they grow
fast enough to large enough size, such that it is too late for the bacterial population to deal with the
overwhelming phage population.

An important question in the context of these solutions is whether nutrients run out before this
double-exponential growth of phages occurs. Hence, we compute the time Td defined as when
phages reach a population of P…Td† ˆ 1=d assuming phages grow as Equation 15 until then. After Td

the assumptions that allowed to obtain Equation 15 are not valid anymore. Inverting Equation 15
for time leads to

Td ˆ
1
a

log 1‡
a log…1=dP0†
…bS0 � 1†dB0

� �
: (17)

Subsequently, we can compare this estimate Td to the depletion time Tdepl ˆ …1=a†log…B¥ =B0†.
When rearranging the inequality Tdepl > Td in terms of the (initial) fraction of susceptibles S0, we
obtain

bS0 > 1‡
a log…1=dP0†
d…B¥ � B0†

: (18)

This expression Equation 18 is a condition for phages to reach ªlargeº population sizes before
nutrients are depleted by bacteria. The final population density B¥ usually fulfills dB¥ =a � 1, such
that the correction given by the second term of Equation 18 can be considered small. Thus, if
phages grow (b S0 >1), they also grow very fast with a double-exponential time-dependence and
reach a considerably large population size before bacteria stop multiplying (for almost all parameter
values).

Extending analysis to finite burst times
The analysis above only treated the case l ! 0. However, we reported that the latency time l
increases significantly when bacterial growth rate a declines, see Table 2 . Considering finite latency
times entails dealing with an infected bacterial population I . (However, we identify I � Is and set
Ir ˆ 0.)

To this end, note that we can rearrange Equation 12 to
�
1 ‡ l qt

�
I ˆ ld SBPusing the adsorption

model in Equation 13 . Hence, we can use the differential operator …1 ‡ l qt† and apply it directly to
Equation 12e to reduce the dependence on I in this equation at the cost of introducing higher
order derivatives. In particular, we obtain

l q2
t P‡

�
1‡ ld B

�
qtP‡ dB…bS� 1� la †Pˆ 0 ; (19)

where we also inserted qtB»aB in the last term, as we aim again for a solution at initial times where
dP � a. The effects of the limit l ! 0 are directly observable ± no terms are undefined in this limit. In
particular, we find that equation Equation 19 and l ˆ 0 lead directly to the dynamics of phages we
just analyzed above, obtaining solution Equation 15 .

In principle, Equation 19 is a hyperbolic reaction-diffusion-equation, which is known to occur
upon transformation (or approximation) of time-delayed differential equations ( Fort and MeÂndez,
2002b ). For initial times we can use the solutions B…t† ˆ B0 exp…at† and S…t† ˆ S0. To proceed, we
introduce the auxiliary variable

z…t† ˆ � dB0 exp…at†=a ; (20)

and assume P…z† as a function of this new variable z. We need to transform the differential operators

of time derivatives, and obtain qt ˆ qz…t†
qt qz ˆ azqz and q2

t ˆ …azqz†…azqz† ˆ a2…zqz ‡ z2q2
z†. Inserting these

expressions in Equation 19 and multiplying the whole equation with …a2l z†� 1 yields the dynamics for
phages,

0 ˆ zq2
zP…z† ‡ …b� z†qzP…z† � aP…z†; (21)
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where the two extant constants are a ˆ 1� …bS0 � 1†=…la † and b ˆ 1‡ 1=…la †. Equation 21 is called
'Kummer's equation' with confluent hypergeometric functions 1F1 as solutions (Abramowitz and
Stegun, 1964 , pg. 504),

P…z† ˆ A1F1
�
a;b;z

�
‡ Bz1� b

1F1
�
a � b‡ 1;2� b;z

�
: (22)

The two integration constants A and B can be determined via the initial conditions P…t ˆ 0† ˆ P0

and …qtP†…t ˆ 0† ˆ � dB0P0. Using these conditions, the shape of the solution is again similar to before
with l ˆ 0 (double exponential time-dependence), although l > 0 introduces some skew. The most
important aspect of this solution Equation 22 is to compute the parameter combination where it
switches from a decreasing to increasing function over time. A careful analysis reveals that at the
parameter value a ˆ 0 the behavior of the solution changes. Consequently, we find the condition for
growing phage populations,

bS0 > 1‡ la ; (23)

which is a non-trivial extension including finite latency times l .
Note, however, that this relation Equation 23 does not indicate a correction to the general epi-

demiological parameter R0, which can be identified with b in our model. Rather, it shows that a
growing bacterial population requires the phage population to grow even faster for a continuous
chain of infections in an epidemic. The term la denotes the ratio of generation times of pathogen
over host, which in most cases is small and negligible compared to 1. For bacteria and phages, how-
ever, which have similar generation times, such a correction is needed to describe the effects of
growing host population sizes. In contrast, many other epidemiological models assume the host
population size constant and only pathogens are increasing (or decreasing) in number.

While our result Equation 23 suggest that it also should hold in the limit a ! 0, it might not nec-
essarily be so. This specific limit is actually quite important for the time when nutrients are depleted
in the experiments. However, at several instances in the calculations above we implied a positive
a > 0. The most important of these is the transformation to z…t† ˆ � dB…t†=a, which actually exhibits
two problems: dividing by a should not be allowed and B…t† is essentially constant and cannot serve
as a variable in a differential equation. We also neglected the second term in qtB ˆ …a � dSP†B
throughout our calculation. For a ˆ 0 this second term is dominant in bacterial dynamics and would
generate non-linear phage dynamics if inserted for qtB right before stating Equation 19 . However,
we expect that albeit the process will run very slow, and might not be measurable in experiments,
the simple condition bS0 > 1 could indicate phage expansion and bacterial decay.

Growth of phages on plated bacterial lawn
Spatial modelling of phage expansion has produced several predictions for how plaque radius r and
expansion speed v are influenced by experimentally adjustable parameters ( Kaplan et al., 1981 ;
Yin and McCaskill, 1992 ; You and Yin, 1999 ; Fort and MeÂndez, 2002a ; Ortega-Cejas et al., 2004 ;
Abedon and Culler, 2007 ; Mitarai et al., 2016 ). Here, we try to use a minimal model to estimate
these two observables, based on the considerations of previous sections.

One of the main complications arises from the fact that all densities in Equation 12 have a spatial
dimension in addition to their time dependence, Bi ˆ Bi…~x; t†, i 2 f s; rg. As explained in the main text
we only consider phage diffusion, heterogeneities in all other densities are generated only by phage
growth. The additional spatial dimension imposes a particular contact network between phages and
bacteria, which are not entirely random encounters anymore: One can expect that the size of the

bacterial neighborhood B̂ phages are able to explore is only slightly determined by the actual den-

sity B, and can be assumed constant for most of the experiment, B̂…B†» const. Consequently, the
adsorption term can be written in the following way,

A
�
Bi ;PjBs;Br

�
ˆ d$

Bi

Bs ‡ Br
P; i 2 f s; rg ; (24)

which only depends on the relative frequencies of bacterial strains. The adsorption constant d$ is
both the rate of adsorption and inter-host transit time as determined by the diffusion constant D.

Thus, one can expect the formal dependence d$ ˆ d$
�
D; B̂…B†

�
. For our particular experimental setup,
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however, d$ will be treated as a constant. This adsorption term Equation 24 leads to the dynamics
of phages

qtPˆ Dr 2P‡ G‰P;SŠ; (25)

where we collected all contributions to phage growth in G‰P;SŠand added the spatial diffusion term

Dr 2P. For simplicity, we consider only expansion in a single dimension ( r 2 � q2
x), which has been

found to coincide well with the dynamics of plaque growth ( Yin and McCaskill, 1992 ). The growth
term for phages is then defined as,

G
�
P;S

�
ˆ d$

�
Sb � 1� la

�
P ; (26)

where we also consider the correction la obtained from the analysis in liquid culture. Due to the dif-
ferent absorption dynamics on plates, however, this correction might be a slight overestimate of the
actual term that accounts for bacterial growth. Reaction-diffusion equations similar to Equation 25
have been first analyzed about 80 years ago (Fisher, 1937 ; Kolmogorov et al., 1991 ) and since
then treated extensively, e.g. ( Murray, 2002 ; van Saarloos, 2003 ). They admit a traveling wave
solution ± here, this corresponds to phages sweeping over an uninfected bacterial lawn. In general,
the asymptotic expansion speed for the traveling wave solutions is given by the following
expression,

v ˆ 2
••••••••••••••••••••••••••
D…qPG†

�
0;S

�q

ˆ 2
••••••••
Dd$

p ••••••••••••••••••••••••
Sb � 1� la

p
:

(27)

Only the linearized growth rate of phages at very low densities is relevant for the expansion
speed, qPG

�
Pˆ 0;S

�
. Thus, the fraction of susceptible individuals S should be unchanged from its ini-

tial value S0. It should be noted, that only for S0b > 1‡ la does Equation 27 remain valid, otherwise
we have v ˆ 0. Such a scenario is relevant when nutrients are depleted and phage growth parameters
changes to bdepl and l depl.

The expression for the expansion speed also shows the need for the spatial adsorption model in
Equation 24 , in contrast to the liquid case Equation 13 . If adsorption would directly depend on the
bacterial density B, the additional linear dependence on B in Equation 26 would lead to an expo-
nentially increasing speed during the experiment. This is in clear contradiction to experimental
observations.

The density of phages behind the expanding front is large and as previously noted at large MOIs
the CRISPR-Cas system fails to provide effective immunity (see section Materials and methods and
appendix Infection load and efficiency of the CRISPR/Cas system). However, in comparison to an un-
structured environment (e.g., liquid) the structured environment effectively limits transit of phage
from within a plaque to the expanding front: The combined effect of growth and diffusion usually
generates a much faster expansion of phages during plaque formation, than diffusion alone. Only
when nutrients are depleted, can pure diffusion processes explain the slow decrease in speed
observed in experiments (see Figure 7A ). Our model assumes a sharp drop to v ˆ 0 at Tdepl for small
S.

In order to derive an expression for the plaque radius r, we integrate the expansion speed Equa-

tion 7 over time, r…t† ˆ
Rt

0 dt0v…t0†. Employing the simplification that only two values of phage growth

are necessary to describe the dynamics ± before Tdepl phages grow normally with b and l , after Tdepl

phage growth changes to bdepl and l depl ± we can evaluate the integral for the radius directly, arriv-

ing at,

r…t† ˆ
2t

••••••••
Dd$

p ••••••••••••••••••••••••
Sb � 1� la

p
; 0< t < Tdepl ;

2
••••••••
Dd$

p �
Tdepl

••••••••••••••••••••••••
Sb � 1� la

p
‡

�
t � Tdepl

� ••••••••••••••••••••
Sbdepl � 1

p �
; Tdepl < t :

8
<

:
(28)

Using this expression we estimated the adsorption constant d$ from the growth experiments as it
difficult to measure in practice. This estimate is done for radii exactly at the time of nutrient deple-
tion Tdepl, and excluding the control experiment with only susceptible cells.
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Predictions of our model show a discrepancy from experimental results on plates after depletion.
We independently estimated bdepl ˆ 3:0, which results in Hdepl ˆ

�
bdepl � 1

�
=bdepl » 0:67. Thus, all

experiments with S> 0:33 should exhibit expanding plaques after nutrients are depleted. In the
experimental setup plaques stop expanding in all mixtures of resistant to susceptible cells ( S� 0:9),
which would correspond to bdepl < 1:1. This value is, however, still within experimental accuracy of

our estimates of bdepl.
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Appendix 1
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Additional theoretical considerations

Simulation of recovery rate
Throughout the main text we assumed that resistant bacteria are completely immune to
phage infection as their CRISPR/Cas system immediately kills adsorbed phages. However,
experimental observation suggest that for fractions close to what we predicted as herd
immunity threshold, all bacteria eventually die. Thus, in the following section we use numerical
simulations to investigate the full set of equations Equation 12 , with a particular focus on the
question why the whole bacterial population goes extinct. As it turns out, this requires using
finite values for the recovery rate � (instead of the � ! ¥ approximation employed previously).

A major difficulty in analyzing the full model Equation 12 is finding appropriate parameter
values. In particular, we need values for the adsorption constant d, the recovery rate � and the
yield coefficient Y. Undiluted LB medium is known to support a population of 5 � 109 cells=ml.
Thus one can easily estimateY as the inverse of this number, when nutrients are measured in
units of dilutions, which we already used throughout this publication (undiluted medium
corresponds to N ˆ 1). Parameter scans in simulations reveal that the actual value of the
adsorption constant d does usually not influence the actual outcome (collapsed or surviving
bacterial population), it only adjusts time scales. However, deviations in time scales are
insignificant, even when d is changed by orders of magnitude, d~O

�
10� 6 . . . 10� 8

�
. They are

roughly an hour or less, which is small compared to the expected duration of the experiment
that lasts a few hours. For definiteness, we use the value of d ˆ 10� 7 h� 1 for our simulations.
That the value of the adsorption constant has only a minor impact on phage growth on
bacterial cultures, is also in line with previous findings ( Mitarai et al., 2016 ).

The most elusive parameter is the recovery rate � . A first indication of the value of � can be
drawn from our experiments on bursting resistant cells, summarized in Figure 2 . As the
probability for bursting resistant cells is 3 orders of magnitude smaller than for susceptible
bacteria, we can use 1=l ~O…1†to estimate � ~O

�
103

�
. However, our results also indicate that

recovery via the CRISPR/Cas system heavily depends on MOI, implying that � depends on the
actual densities of phages and bacteria. Nevertheless, as experimental determination of
recovery is complicated, even more so determining a functional dependence on dynamically
changing densities B and P, we assume that � is constant.

We ran parameter sweeps in simulations and compared the outcome ± collapsed or
surviving bacterial populations ± to the observed experimental results (see Figure 3 ). The best
agreement of simulations and experiments was reached with � ~O

�
1
�
. Lower values of � do

not allow the resistant population to recover from phage infection, while for larger values of � ,
phages are drained from the culture very fast. Such a small value of � is most likely related to
the recovery at very large MOI, when the densities involved in the dynamics are large, which
dominate the overall observed dynamics. At this time phages repeatedly infect the same
bacteria and their CRISPR/Cas immune system cannot deal with such an infection load (or only
too slow). Thus, we can argue that our final choice � ˆ 1:5 h� 1 is the recovery rate when the
CRISPR/Cas system is heavily stressed, which is comparable to the actual burst rate1=l for
phages.

In Appendix 1Ðfigure 1 we show three exemplary sets of trajectories for bacteria and
phage. For a tiny fraction of susceptibles, Sˆ 10� 3, which is well below the herd immunity
threshold (see Figure 3 ), phages do not thrive on the limited number of favorable hosts and
decay fast after a slight increase initially. For intermediate fractions of susceptibles, Sˆ 0:04,
we observe more complex, non-monotonic trajectories of bacterial populations. For such
values of Swe also observe mixed outcomes in experiments, see Figure 3 . When Sis
increased further (Sˆ 0:06), enough susceptible bacteria exists to produce enough phages and
ultimately the whole bacterial population goes extinct.
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Appendix 1Ðfigure 1. Simulated trajectories for all populations in liquid culture for the
extended model, including infected and recovering bacteria. Trajectories are obtained by
numerically integrating equations Equation 12 , using parameters listed in Appendix 1Ðtable

1 and additionally N ˆ 1, Y ˆ 2 � 10� 10 cells� 1, d ˆ 10� 7 h� 1 and � ˆ 1:5 h� 1. (A) For population
compositions with a large majority of resistant cells ( Sˆ 10� 3), phages get wiped out fast. ( B)
For intermediate S(close to parameters where we observe both, collapsed and surviving,
populations, see Figure 3 ), the populations exhibit a complex, non-monotonic trajectory. After
fast initial growth of phages, bacterial populations decay but ultimately can recover. ( C) If the
fraction of susceptibles is too large ( Sˆ 0:06), the whole bacterial population is infected and
succumbs to the overwhelming phage infection. See supporting text for more detailed
information.
DOI: https://doi.org/10.7554/eLife.32035.023

Appendix 1Ðtable 1. Parameters used in simulations shown in Appendix 1Ðfigure 1 .

Parameter Value Units Comment

Bacterial growth rate a 0:63 1=h Table 1, Figure 4

Yield Y 2 � 10� 1 1=cell Measured in dilution of LB

Recovery rate � 1:5 1=h See this appendix

Adsorption constant d 10� 7 1=…hcell† See this appendix

Diffusion constant D 1:17� 10� 2 mm2=h See Methods

Burst size b 85:6 phages=cell Table 2, Figure 5

Latency time l 0:60 h Table 2, Figure 5

Initial bacterial population B0 105 cells

Initial phage population P0 10 phages

DOI: https://doi.org/10.7554/eLife.32035.024

The purpose of the extended model in this section was to justify the fact that phages can
wipe out the whole bacterial population, which was not possible in the simplified model used
in the main text. There, the resistant bacterial population was basically unaffected by phages
and just acted as `sink' for phages. However, also in this extended model, we see a very
similar behavior in terms of the threshold phenomena reported earlier in the manuscript.

Infection load and efficiency of the CRISPR/Cas system
In the section Modelling we showed that positive phage growth leads eventually to a very
fast increase in the phage population, that occurs before nutrients are depleted (for almost
all realistic parameters). This behavior of the dynamics was also observed in the extended
simulation model presented in the last section. Moreover, as a condition we used that the
phage population reaches a size P~1=d, which is after all arbitrary ± it only determines if we
can employ useful simplifications and approximations to model equations. However,
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simulation results presented in the last section indicate that the bacterial population starts to
decay soon after such a threshold P~1=d is exceeded.

In order to proceed, we investigate the system at time Td further. We assume that the
phage population is large enough that it will not be degraded by the CRISPR/Cas immune
system. The threat to immediate phage extinction is low at this point. The actual equations
are hard to solve directly, hence we revert to simple balance equations, ignoring the
dynamical component. Specifically, we compare the number of (present and eventually
produced) phages to the number of infections needed to wipe out the whole population. To
incorporate the effects of the bacterial immune system in resistant bacteria, we assume that
they need M > 1 infections before they burst and produce only kb phages, which reduces the
burst size by a (yet unspecified) factor 0< k<1. k ˆ 1 implies that resistant cells produce the
same number of phages as susceptible cells, while k ˆ 0 indicates only cell death. Combining
these considerations yields

1=d
|{z}

phages~present

‡ bS0B…Td†
|‚‚‚‚‚{z‚‚‚‚‚}

phage~production~Bs

‡ kb…1� S0†B…Td†
|‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚}
phage~production~Br

> S0B…Td†
|‚‚‚‚{z‚‚‚‚}

infections~Bs

‡ M…1� S0†B…Td†
|‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚}

infections~Br

; (29)

where the left side indicates the total number of phages, while the right side indicates the
number of necessary infections to kill all bacteria. The number of bacteria B…Td†can be
estimated by inserting the time Td from Equation 18 into the exponential growth
Equation 15b . Subsequently, we can rearrange Equation 29 , obtaining a bound on M:

M <
1=dB…Td† ‡ S0…b � 1†

1� S0
‡ kb : (30)

The first term 1=dB…Td† indicates the ratio of phages to bacteria at time Td, and can be
considered small for non-extremal parameters compared to the other terms. This fact
justifies our assumption that the actual value of d is not crucial. This number M might allow
some insight into the effectiveness of the CRISPR/Cas immune system. For a fraction of
susceptibles Sˆ 0:03, which corresponds to the minimal value where we observe only
collapsed bacterial populations in undiluted LB medium (see Figures 3 ,5), we would obtain
the relation M <~3 ‡ 86k. Thus, each resistant bacterial cell could degrade up to O

�
101 . . . 102

�

phages before their CRISPR/Cas system cannot cope with the infection load anymore.
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Appendix 2
DOI: https://doi.org/10.7554/eLife.32035.025

Supplementary results

Reduction in number of plaques in spatially structured populations
The reduction in the number of plaques with increasing proportions of resistant bacteria is
shown in Appendix 2Ðfigure 1 .

Appendix 2Ðfigure 1. Number of plaques declines faster than proportionally to the fraction of
resistant bacteria. Number of plaque forming units observed on a plate (y-axis) for different
proportions of resistant bacteria (x-axis). Grey numbers below each boxplot indicate the
average number of phages inoculated in the respective treatment. The numbers of phages
inoculated were chosen to retain the expected number of plaques on the plate (green dashed
line) as in the 0% resistant treatment (red boxplot). Plates were prepared using identical
procedure as in Time-lapse imaging of plaque growth (see Materials and methods). The data
presented in this figure can be found in Appendix 2Ðfigure 1Ðsource data 1 .

DOI: https://doi.org/10.7554/eLife.32035.026

The following source data is available for figure :

Appendix 2Ðfigure 1Ðsource data 1. Measurements of plaque numbers in populations
consisting of varying proportions of resistant to susceptible bacteria.
DOI: https://doi.org/10.7554/eLife.32035.027
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Appendix 3
DOI: https://doi.org/10.7554/eLife.32035.028

Additional information on experimental setup
Our experimental setup for the scanner system is shown in Appendix 3Ðfigure 1 .

Appendix 3Ðfigure 1. Image of the scanner system. Photograph of the scanner system used
for time-lapse imaging of phage spread in spatially structured bacterial populations. Three
scanners (Epson Perfection V600 Photo Scanner) simultaneously scanned 12 plates in total
every 20 min in 30� C for 48 hr per experiment.

DOI: https://doi.org/10.7554/eLife.32035.029
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Appendix 4
DOI: https://doi.org/10.7554/eLife.32035.030

Source data and code
Time-lapse images of spread of T7 phage epidemics in Escherichia coli spatially structured
populations are available on the Dryad Digital Repository: https://doi.org/10.5061/dryad.
42n44. Source code of the model presented here is available on GitHub ( https://github.com/
lukasgeyrhofer/phagegrowth ) (Payne et al., 2018 ) and its archived version is accessible
through Zenodo: https://dx.doi.org/10.5281/zenodo.1038582 and https://github.com/
elifesciences-publications/phagegrowth .
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