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Abstract—Digital components play a central role in the
design of complex embedded systems. These components are
interconnected with other, possibly analog, devices and the
physical environment. This environment cannot be entirely
captured and can provide inaccurate input data to the com-
ponent. It is thus important for digital components to have a
robust behavior, i.e. the presence of a small change in the input
sequences should not result in a drastic change in the output
sequences.

In this paper, we study a notion of robustness for sequential
circuits. However, since sequential circuits may have parts
that are naturally discontinuous (e.g., digital controllers with
switching behavior), we need a flexible framework that ac-
commodates this fact and leaves discontinuous parts of the
circuit out from the robustness analysis. As a consequence,
we consider sequential circuits that have their input variables
partitioned into two disjoint sets: control and disturbance
variables. Our contributions are (1) a definition of robustness
for sequential circuits as a form of continuity with respect to
disturbance variables, (2) the characterization of the exact clas
of sequential circuits that are robust according to our definition,
(3) an algorithm to decide whether a sequential circuit is robust
or not.
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Traditionally, robustness and stability of systems are
mainly studied in a continuous setting. Robustness of con-
tinuous systems is usually expressed as a formraform
continuity A system is uniformly continuous if for every
positive reale, there exists a positive redl such that any
change smaller thahin the input results in a change smaller
thane in the output. In control theory, it is also common to
distinguish betweelinput and disturbancevariables, and to
study robustness only with respect to disturbance vasable

In this paper, we extend the study of robustnessetquen-
tial circuits, i.e., discrete input/output finite-state systems
composed of logic gates and delay elements interconnected
by wires. Such circuits are a standard model for the design
of complex digital hardware and finite-state transducers
in general. Finite-state transducers have been integsivel
studied in the field of computer science and lead to some
of the most fundamental results in the field. Adapting the
techniques for robustness analysis from the continuouseto t
discrete setting is not straightforward and, however steahd

the notion of uniform continuity is not directly applicakile

| digital systems:

In embedded systems, digital components play a central
role in the overall system. The external environment of
digital components can be other digital or analog compo-
nents, software, or the actual physical world. This is in
contrast with the traditional (computer science) view of
digital components, where the system is often considered to
be either closed or to interact with an idealized environimen
that can be accurately modeled by a finite-state machine. In
embedded systems, the environment cannot be always cap-
tured and precisely described in such a model. It follows tha
the input assumptions often remain inaccurate or incoraplet
Additionally, the input data provided to the component Iy it
environment can contain errors and imprecisions, either du
to external perturbations, to the poor accuracy of sensors,
or to unpredictable delays in communication links. As a
consequence, a well-designed system needs to deal with
such unexpected inputs. Therefore, it is important that the The main contributions of this paper are twofold. First, we
output behavior of such systems remains robust in presengeopose a new framework for studying robustness of sequen-
of small disturbances in the input sequence. For criticalial circuits based on simple and clean concepts that asldres
applications, such as the flight controllers, it is essémbia the above-mentioned problems resulting from the undeglyin
design systems that guarantee robust behavior even wheliscrete setting. Inspired by the notion of robustness in
the input is correct, to guarantee smooth control actiore Thcontrol theory, we first make a distinction between two
design of robust components has been identified as one of thgpes ofinput alphabetscontrol and disturbancealphabets.
main challenges in the design of embedded systems [Hen08T.ontrol alphabet encodes the control actions and distagban

INTRODUCTION
1) Digital systems can be naturally discontinuous. More-
over, the discontinuity may often be a wanted property
for some sub-components in a digital systems. This
is true, in particular, if the component implements a
discrete controller with switching functionality. On the
other hand, we would like to guarantee that other com-
ponents, such as critical systems, exhibit continuous
behavior.

Another difference with respect to the continuous
setting is that the changes in inputs and outputs of
a digital system are more naturally quantified using
integers instead of reals. The definition of uniform
continuity combined with distance functions taking
integer values results in every discrete system being
uniformly continuous, simply by choosing smaller
thanl.
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alphabet encodes the environment actions. The distinctiom the circuit behavior. Howevek;tr is a control variable
between control and disturbance alphabets is essential fand as such does not affect the -robustness analysis, and
providing a flexible framework for robustness analysis ofthe circuit does remairt p-robust with respect tel; and
sequential circuits. In particular, it allows to identifags  do. This example is a simplified version of a more detailed
of the circuit that are wanted to be discontinuous and taexample described in Section VI.

eliminate them from the robustness analysis. This is becaus

control actions are expected to cause discontinuities, (@.9 .
controllers that exhibit switching behavior), and as a eens d a
guence, we want to have a framework that only considers d :)Dm carry
the effect of small changes in the disturbance actions. Due E varry

to their inherent discontinuous nature, the correctness of :

control inputs needs to be provided by using other methods
that are outside of the scope of this paper, such as the error
codes or input replication. (@) ®)
The main challenge for defining robustness as a form of
continuity is to choose an appropriate notion of distance in  Figure 1. (a) 2-bit half-adder (b) Controlled 2-bit halfetzd
the discrete setting. We identify such a metric, that we call
common suffix distanc@he common suffix distance gives  Our definition of ¥ p-robustness relates pairs of input
the last position in which two sequences mismatch. sequences that a sequential circuit consumes to the pairs of
Finally, we define what we call 5-robustnes®f sequen- output sequences that it generates, without explicit esies
tial circuits as a form of continuity with respect to distur- to the underlying structure of the circuit. We give an altern
bance actions in the common suffix topology. Intuitively, tive structure-less characterization Bf-robust sequential
Y p-robustness can be viewed as bounded propagation @frcuits that is expressed in terms of the internal memory
changes in disturbance inputs: a finite number of changetequirements for the storage of previous inputs in ordereto b
in the disturbance values results in a bounded number aible to compute the output. Given a sequential circuit with a
changes in the computed outputs. partition of controlX ¢ and disturbanc& p input alphabets,
We illustrate our notion of p-robustness for sequential we define the class of circuits that hafieite disturbance
circuits with the example of a 2-bit half-adder, which is horizon A circuit has finite disturbance horizon if it has a
depicted in Figure | (a). A 2-bit half-adder implements aboundb such that the output at any time is computed as a
simple arithmetic function that takes as inputs two boolearfunction of, possibly, all previous control inputs, but yuip
data valuesd; and d, and computes theisumand carry  to b previous disturbance inputs. We show thap-robust
values. We modetl; andd- as disturbance variables. This sequential circuits coincide exactly with circuits thatvda
circuit is clearly X p-robust with respect tad, and d,  finite disturbance horizon.
because at any timg the outputssum and carry depend Another contribution of the paper is the characterizatibn o
only on values ofd; andd, att. It follows that the effect the class ofp-robust sequential circuits in the form of their
of a change in input datad{ and d;) at some point in structural properties. This result is obtained by studying
time, is only limited to the computation of output values atrobustness for Mealy machines — a model that corresponds
that time without being propagated further in the future. Into the class of deterministic and synchronous finite-state
Figure | (b), the half-adder is connected to a small cordroll transducers. We define a class %f,-synchronizedvealy
that operates as follows: (1) as long@s remains low, the machines and show that is equivalent to correspondlipg
half-adder is inactive andum and carry remain low, (2) robust sequential circuits: p-synchronization is an explicit
when ctr is set to high for the first time, the half-adder state-based property of Mealy machines. Intuitively, a WMea
is irreversibly activated and from then on, the controlledmachine isXp-synchronized if after reading two finite
circuit copies the output values of the half-adder. Switghi words of the same length with the same control, but possibly
ctr to high has the qualitative effect on the behavior of thediffering disturbance components, the machine is guaeante
circuit. For instance, a sequen@e of ctr values causes the to reach a “reset” state after reading any sufficiently long
half-adder to remains inactive forever. As a consequenceggcontinuation) sequence.
the output values ofum and carry do not depend o, The above characterization Bfp-robust Mealy machines
and d, and always remain low by default. For a sequences operational and results in an effective algorithm for
1.0, that differs from(0“ only in the value ofctr at  checking theXp-robustness of arbitrary Mealy machines.
the first position, the output behavior of the circuit chasmge The time complexity of the algorithm is quadratic in the
drastically. Now, the values ofum andcarry represent the number of states of the Mealy machine and the size of its
result of the half-adder computation on inputs and ds. disturbance alphabet and linear in the size of its control
In this example, the controller clearly causes discontiesii  alphabet.




Related work: Robustness of systems has been stud- Z )
ied and formalized in many different ways. For example, . ’ v =
in [CB02], [KCO4] robustness of hybrid systems (mixing c e Ej
discrete and continuous behaviors) is studied as a form d y z
of continuity in topologies induced by (extensions of) the @ ® ©
Skorokhod distance. The immunity of finite state automata
to noise from the external environment has been studiedigure 2.
in [DM94], but this study is done in a probabilistic setting.
Robustness of finite-state systems has been studied much
less in the area of computer science. The work in [BGHJO9T'. In this paper, we restrict ourselves to sequential finite-
focuses on the synthesis of robust discrete controllers-sat state transducers. Such transducers can be seen as fitéte-st
fying an extended temporal logic specification with quanti-automata [Mea55] whose transitions are labeled by an input

Circuits: (a) combinatorial (b) acyclic with delg) sequential

tative (real-valued) constraints, which results in a défe

and an output letter (see Section V).

model of robustness. In the context of real-time systems,
robustness has been studied in [GHJ97]. This work differs Ill. SEQUENTIAL CIRCUITS AND THEIR ROBUSTNESS

from ours in that (1) the authors study acceptors (automata)
instead of transducers and (2) pairs of timed sequences a{g
compared using the Hausdorff distance with the limitation
that the perturbations are allowed only in the time delay
between events, while the discrete part has to match ex:
actly. Robustness is also closely related to other research
areas such as fault tolerance and error resiliation [SLM09]

In [Mal93], the authors consider combinatorial circuitstwi

S

We use sequential circuits [BW53] for modelling de-
rministic finite-state transducers with finite alphabat
define robustness of sequential circuits with respect to the
common suffix distancand study necessary and sufficient
onditions for a circuit to be robust.

A. Sequential Circuits

cycles, and study conditions under which such circuits can A combinatorial circuitis a logic circuit that computes a

be expressed as an equivalent acyclic circuit. This workBoolean function of its inputs. It consists of a setgzftes

can be related to robustness questions since the presenaed inputs interconnected by a set afires without cycle.

of feedback loops in a circuit is a necessary condition forThe gates are basic elements that compute simple Boolean
generating non-robust behavior. Finally, we observe that t functions such asvoT, AND or OR gates. Combinatorial
problem of robustness can be seen as a dual of the probleaircuits arememoryles$y definition, meaning that the value

of coverage, where one expects that an input change do@f the output at any (discrete) time instant is a function of

result in drastic output change [KLS08].

Il. PRELIMINARIES

the values of its inputs at the same time instant. An example
of combinatorial circuit with thre&lAND gates is shown in
Figure 2(a).

We first recall the classical definitions of distance and A sequential circuitis an extension of combinatorial

metric. A distanceon a setS is a functiond : S x S —

circuits with additionalmemory devicescalleddelays The

R U {oo}. In general, one considers metrics that extenddelay element “shifts” the input values by one time step,
the definition of distance with some natural properties. Thehus the output value of a memory device at time- 0

distanced is ametricif for all z,y,z € S (1) d(z,y) > 0,
(2) d(z,y) =0 if and only if z =y, (3) d(z,y) = d(y, ),
and (4)d(x,y) < d(z,z) +d(z,y).

Let Y = ¥ x Xp andI’ be 2- and1-dimensional) finite
alphabets. Ainite sequencé = (co,dg) -+ (¢n—1,dp_1) IS
an element ino* where|s| = n denotes thdength of the
sequence. Annfinite sequencer = (co,dp) - (¢1,dy) -+ IS
an element of“. We denote by’ = (c;,d;) the (i +1)"
letter in a (finite or infinite) sequence. Given an infinite
sequencer € ¥¥, we denote by[*) the prefix ofo of
length m, and byo™ = oo™ *! ... its infinite suffix
from position m on. We denote byr;(c) = i -
the projection of sequence to its i*» component, where

ip e

i € {c,d}. We similarly definel-dimensional sequences

v € T and 4 € I'*. Given the alphabety¥ and T, a
transduceris a functionF' : ¥“ — I'“ that maps infinite
sequences over the alphahletinto infinite sequences over

is equal to its input value at time — 1. If the circuit
contains no cycle (as in Figure 2(b)), we call it aayclic
circuit with delay In general, sequential circuits can contain
cycles, as long as each cycle has at least one delay element.
Cycles in sequential circuits are callézbdback loopgas in
Figure 2(c)). Feedback loops in sequential circuits ar@ use
to compute the value of the output at time- 0 as a function

of the current value of the inputs, but also of the value of
its output at the previous time steép- 1 which is fed back

to the circuit through the cycle. It follows that the output
of a sequential circuit is a function of itsurrent and past
inputs, and sequential circuits are best viewed as mappings
of input sequencemto output sequencedhe set of output
values of the delay elements represent the cursate of

the circuit. A sequential circuit wittk: memory devices has

at most2”* states, or alternatively, a circuit withw states
needs at leasflogm] delay elements.
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Figure 3. A generic sequential circuit

We now formally define a sequential circuit as a system o(?v

equations that describe the relation between inputs, taitpu
and memory elements, using a standard notation [LMK98]
[Brz62], with an additional distinction betweerontrol and

Sequential circuits can also be encoded as functions that
map input sequences to output sequences (i.e., transjlucers
Consider a sequential circui with &k + m control and
disturbance input variables and memory elements. Let
Yo = {0,1}* andXp = {0, 1}™ be the correspondingpn-

trol anddisturbance alphabet&Ve denote by = Yo x X p

the jointinput alphabet where each lettét, d) € ¥ denotes

a vector of assignments to the input variables, and by
I' = {0,1} the output alphabetThe sequential behavior of
the circuitC is the functionF, : X* — I'“ and we denote

by v = Fe (o) the fact that the output sequenges T is
enerated by on inputo € ¥“. By Lemma 1, for alt > 0,

e can express’ as a function of the previously consumed
input letterso 1) In the rest of the paper, we use this
sequence-oriented definition of the semantics of sequentia
circuits.

disturbanceinput variables. Figure 3 shows a generic se-

guential circuit.

Definition 1: A sequential circuitC with k& + m control
and disturbance inputs and delay elements consists of
setsU = {uy,...,up} and X = {z1,...,x,} of control
and disturbance variables, a set” = {y1,...,y,} Of
current-statevariables, a sef = {z1, ..., z,} of next-state
variables, amutputvariablew, and a relation between input,
output, and state variables expressed by a set of equatio
of the form

21 - fl(ulv'"auk7x17~-~7xm7yl7"'7yn)
Zn - fn(Ul,---,Uk,$17~-~,17n:,,ylw--,yn)
w = fe(ul,. . Uk 1y Ty Y1y -+ s Yn)

where f; and fc are Boolean functions, far=1...n. The
set{f1,..., fn} is called thetransition equationf C and
fc the output equationof C. The next-state variables are
updated according to the following equations, whgrend
z! denote the valuation of variablgs and z; at time step:

{0 ift=0

Yy 1 fori=1...n

270 it >0
The next lemma states that a sequential circuit can b

B. Hamming Distance

Hamming distance is a standard metric that has been pro-
posed to measure the similarities between pairs of seqaence
Definition 2: Let > be a finite alphabet and;, a; € X.
The Hamming distancéetween two finite wordg, 6, €
¥* such that|1| = |2/, is defined inductively by

nsH(evE) 0
di(ar - 61,a - G2) = dr(61,62)  ifar=ay
H(A1 - 01,02 -02) = 1+dy(61,62) if ap # as

The Hamming distance between two infinite woedso, €
¥ is
).

We argue that the Hamming distance may not always
provide a satisfactory notion of robustness for sequential
circuits. We illustrate this point with the sequential ciitc
C shown in Figure 4. This circuit has a single disturbance
variablep and an output variabler and behaves as follows:
(1) C outputsl wheneverp is true; (2) the first time that the
input p becomedfalse C outputs eithel0 or 1, depending
on whether the current value of the input sequenogas
preceded by an even or odd number of consecutise
€3) the output will bel no matter the subsequent inputs.

[0,1)
1

[0.1)

dy(o1,02) = lim dy(o; ", 04

“unfolded” at any time instant to express the output valueConsider the following patterns of input sequeneesandos

as a function of its past and current (control and data) mput
without explicit reference to the state variables.

Lemma 1:Given a sequential circud with £+m control
and disturbance input variables andlelay elements, and a
time instantt € N, the value of the output and state variables
in C at timet is a function of its past and current control
and disturbance values, that is, there exist functifhg! :

{0, 1} (ktm)x(t+1) 10,1} for i = 1...n such that

t__ gty 0 0 ,.0 0 t to_t t

W= Uy Uy By e Ty ey Uy e ey Uy Ty e ey L)
and

t __ t7, 0 0 .0 0 t t ot t

Zi*gi(ulv' y Ups L1, y Loy '-7u13'~'auk7x17-"aznz)

and the corresponding output sequenges= fc(o1) and
Y2 = fc(o2) generated by, wheren > 0 is some arbitrary
integer

w_w2n

w_an

w w_ww

-w - wY

o1 ¢
g9 .

p-p*ppY
p-p"-PpY e
In the above exampl€y (01,02) = 1 anddg(y1,72) = 1,

for any value ofn. It follows that for this particular pattern of
inputs, the circuit is “robust” with respect to the Hamming
distance. However, the effect of the mismatch in the inputs
becomes observable in the outputs only after+ 2 steps,
wheren can be arbitrarily large. This unbounded “noise”

w



Se=10
Ep = {p.p}

Figure 4. A sequential circuif that delays the mismatching input letter
inoy: p-p*™-p-p¥ andoy : p-p>"-p-p® arbitrarily far in the output.

Figure 5.  An example of a robust sequential circuit
propagation may not be appropriate for analysis of critical
systems where one would expect the system to recover from

a noisy input in a predictable amount of time. definition relates the positions of mismatching charadiers
o the pairs of input and output sequences, where the two input
C. Common suffix distance sequences have the identical control, but possibly difere

We propose an alternative metric that we call toenmon  disturbance components. In particular, we ask that there
suffix distanceand that is the last position in which two exists a bound on the propagations of mismatches, namely,
sequences differ. We note that the common suffix distancehat if the last mismatching in the input sequence occurs at
coincides with the inverse of the Cantor distance. positionk, then the last mismatching in the output sequence

Definition 3: Let ¥ be a finite alphabet. Theommon occurs before positios + b. The addition is used in order
suffix distancebetween two finite wordg;,62 € ¥* such  to make the definition of robustness invariant to the actual
that || = |62] is defined inductively by positions in which mismatches happen.

dy(e, ) — 0 Definition 4:_A sequenti_al circuitC with ¥+ and Z,_:)
’ d,(61,60) ifar=a control and disturbance input alphabets 3s,-robust if
s\01,02 1 2 :
{ 161) + 1 if ay # ay there existsb > 0 such that for allk > 0 and gll
01,09 € (B¢ x Xp)¥ such thatra(o1) = we(o2), if
The common suffix distance between two infinite sequenceg (o, 03) < k, thend” (Fe(oy), Fe(o2)) < k + b.

ds(ffl 'CL1762 : 02)

01,02 € X¥ i We introduce the class of sequential circuits wiithite
d(01,09) = lim d (0[07”) J[OJL)) disturbance horizonA circuit with control alphabeE~ and
s \OHT2) = e L o2 disturbance alphabét, has the finite disturbance horizon

The common Sufﬁx distance is an upper bound on thepl'opel’ty |f |t ha.S a ﬁxed bound on the number Of current
Hamming distance, as for all sequences o, € xv, and pastdisturbance inputs that are necessary to determine
di(oy,05) < dy(o1,00). Although the common suffix Iits output at any time instant.
distance does not count the number of relative differences Definition 5: Let e :  (X¢ x Xp)¥ — I'¥ be the
betweeno; and o, within their prefix where the mismatch- sequential function of a circuit, wherey = F¢ (o). We say
ing occur, it does provide enough information for Checkingthatc hasfinite disturbance horizoif for some bound), for

the robustness of a sequential circuit with respect to aetubs@ll time instantst greater than or equal t it is sufficient

of its input variables. to consider, together with all past control input symbols,
The following lemma states that the distance between twé€ current and previous disturbance input symbols in

sequencesry, o, € X is finite (and bounded by some order to compute the value of', i.e., there existd € N

integer k) if and only if o; and o, have common suffixes such that for allé > b and o € (S¢ x ¥p)“, there

from a position strictly smaller thah. exists a functionG* : X' x Nt — T, such that
Lemma 2:For all 01,02 € 3¢ andk > 0, d¥(o1,02) < 4t = Gt(a[co’tﬂ),a%_b’t“)), where o = 7¢(o) and

k iff there existsO < m < k such thato}* = g op =mp(o).
We can show that the common suffix distance defines &lote that the above definition considers time instants great

metric. than or equal td. Fort < b, the number of previous (control
Lemma 3: The common suffix distance is a metric. and disturbance) inputs needed to compute the output is

o ) ) trivially bounded byab.
D. Xp-Robustness as Finite Disturbance Horizon Example 1:The circuit shown in Figure 2 (c) contains a

In this section, we define robustness for sequential cscuitfeedback loop andi! = \/f:O p? for all ¢+ > 0, that is the
as a form of continuity with respect to the disturbance subseoutput at timet depends on the value @il the previous
of its input variables in the common suffix topology. Our values ofp. This circuit is robust only ifp is a control and



~ s N 2_
k= 61| = |6 b=15,| = Q10

(1) = me(62)

not a disturbance variable.

Example 2: The circuit in Figure 5 has a disturbance vari-
ablep and a feedback loop and can be logically decomposed .
into four components. The circuf implements a modula ‘ el ‘ A
counter using a feedback loop and has no input. The circuits :( ‘ o/

Cy andCs define two sequential functions that are dependent 224+ W7

only on the input value in the present and previous time step, ‘ ‘ ‘

respectively. FinallyC, propagates the output of eith&p ‘ ffﬂ/‘ﬂ\@/ S

or C3 depending on the current value of the counfer ‘

The output can be expressed a$ = p' if ¢ is even,

and wt = pt~! if ¢ is odd. Therefore, the whole system

implements a sample-and-hold function that propagates the Figure 6. X -synchronization of Mealy machines: General case
input value at every even time step, and holds it for two

instants of time. Although the output at timdepends on the S0 = (0.7}

current state of the circuit, it can be computed as a function 5/0

of some bounded portion of the past inputs. Therefore the
circuit has finite disturbance memory.

We show in Theorem 1 that a sequential circuittig-
robust if and only if it has finite disturbance horizon, that i
if it always forgets about disturbance inputs older thanesom
bounded amount of time. The intuition is that an “altered”
disturbance input is forgotten by the circuit after sometdini

time and consequently does not influence the computation »/1
of the circuit's output after that time.
Theorem 1:A sequential circuit iS p-robust if and only Figure 7. X p-synchronization of Mealy machines: Example

if it has finite disturbance horizon.
The next result follows from the fact that combinatorial
circuits are memoryless and that acyclic circuits with gela 5 Mealy machineM defines a functionfy : (S¢ x

have finite disturbance horizon by definition. $p)¥ — ¥ in the expected way. The machine( and

Corollary 1: Every combinatorial circuit and every 4 sequential circuiC are equivalentif fu((c) = Fo(o)

acyclic circuit with delay is¥p-robust. for all 0 € (S¢ x Xp)¥. M is minimal if for all states
q,q € @ such thatg # ¢, there exists an input sequence

IV. OPERATIONAL CHARACTERIZATION OF 0q € (S¢ x ©p)* such that\(q,o,) # A(¢,04). Mealy

%p-ROBUSTNESS FORSEQUENTIAL CIRCUITS machines can be minimized in tin@(n - log n) wheren =

Sequential circuits have an equivalent graphical reprel@| is the number of states [Hop71].
sentation calledVlealy machine§Mea55]. Such machines  In the sequel, we define a class of Mealy machines (as
consist of a finite number of states (the internal memoryin Figure 6) that we call:p-synchronized Intuitively, a
of the circuit) and transitions between the states labejed bMealy machines is¥p-synchronized if from every pair
input/output actions. Mealy machines can be used to modelf states reachable by two input sequences of the same
the high-level behavior of the underlying circuit. We prepo length and with the same control component, a “reset’
an alternative characterization of robustness based on tt&$ate is reached after reading any sufficiently long word.
state-based properties of Mealy machines. Consider the machingt in Figure 7 with¥p = {p,p},
Definition 6: A Mealy machineis a tuple M = implementing a delay of lengt®. From the initial stateA,
(Q,2¢,%p,T,q0,0,)\) where Q is a finite set of states, €very state is reachable with some input of lengjtin this
Y and ¥p are control and disturbance input alphabets particular example, in order to show that the machine is
I is the output alphabetg, € @ is the initial state, 2p-synchronized, we need to check that from every pair
§:Qx (¢ x ¥p) — Q is the state transition function of its states, a single state is reached with every suffigient
and\: Q x (S¢ x £p) — I is the output function. long word. This holds since from every state, the disturbanc
The state transition functiod and the output func- INPUtp-pleadstod,p-pto B, p-ptoC, andp-pto D.
tion \ are extended to sequences as follows (inductively): Definition 7: A Mealy machineM is X p-synchronized
d(q, (c,d) - &) = 6(6(q,(e,d)),5) and (g, - (¢,d)) = if there exists a boun@ € N such that for allgy, 62,55 €
A(d(q,&), (C, d)) for all (C,d) S (ZC X ED) and & ¢ (20XZD)* with |(§'1| = ‘6’2 ,ﬂc(é’l) = Wc(é'g) and\&s\ >
(X x Xp)*. 3, we haved(qo, o1 - 75) = 0(qo, G2 - Gs).




It turns out that the class a&f p-synchronized Mealy ma- oo '
chines corresponds exactly to the one of sequential circuit
that areX p-robust.
Theorem 2:A sequential circuit i p-robust if and only &f( N N N 3 d
if its equivalent Mealy machine i% p-synchronized. \ \ \ 3 Q(j—
Moreover, the robustness bourdin Definition 4 and | be | | 1o | | bt | | 1be J | |
the bounds in Definition 7 coincide. Finally, we show in Adder Adder Adder Adder
the proof of Theorem 2 in AppendiR? that if the Mealy \ \ \ \
machine of a sequential circuit 8p-synchronized, then
we can takes = w giving the same value for the
robustness bound of the circuit.

Figure 8. A4-bit ripple carry adder-subtractor

V. CHECKING X -ROBUSTNESS OAMEALY MACHINES

In this Section, we propose a tWO-Step a|gorithm for CheckSWitCh |t-(.30mbines the addlng and SUbtraCting Capabilities
ing the ¥ p-robustness of minimal Mealy machines. The al-by exploiting the fact that when the numbers are in two's
gorithm is based on a standard graph analysis. Given an arbfomplement, it is sufficient to invert each bit witnaT gate
trary minimal Mealy machine\l = (Q, %, %4, T, q0, 9, \), and addl, to implement subtraction using the adders. The

the first part of the algorithm is a graph exploration pro-Circuit takes as inputs variables, ..., as and by, ..., bs
cedure that compute ., the set that contains all distinct and outputs their sum or difference in the output variables
pairs of states in\t that are reachable from the initial state so, - - - ; 3, together with a carry outpu,.

qo by reading two input words of the same length with the The _function that is_ computed by thg circuit depends on
same control, but possibly differing disturbance compésmen the switch control unit that takes as input the signdl
Initially, the circuit is set to do addition. Whenevar is

Qv = {{a, e} | ¢, eQst.q #q¢ and set to high, the circuit switches to the other function.
Joa, 05 € (e X ¥p)* s.tloa| = |ow], Intuitively, the input variables in this circuit are natliya
mc(0a) = me (o) partitioned into set$/ = {d} and X = {ayg, bo, . . .,as,bs}

andq: = d(qo, o) andqz = (g0, )} of control and disturbance variables, respectively. Theud

We have to check whether there exists a lengttsuch is clearly X p-robust under this partition, becausebit full
that onall input wordso, € (X¢ x ¥p)* of length 3,  adders are combinatorial circuits without memory. Howgver
from every pair of statedq¢i,¢2} in Qaq, @ single state if we assume that the external environment is not fully
is reached, i.e.f(q1,05) = 0(q2,05). This is the case reliable, and may introduce errors in thesignal, we cannot
only if there exists no wordr; of length L;'Q' that considerd anymore a control, but rather a disturbance
induces a loop through pairs @, (otherwise an arbitrarily ~variable. In that case, the circuit is nBi,-robust anymore.
long word can be constructed that violates the condition ofor this, consider two input sequencesdofs, : 110« and
Y p-synchronization), i.e., that{q;, 2} € Qu - P o, : oy : 10“. In the first case, the circuit switches to do the
@1 = 0(q1,05) and ¢a = (g2, 05). It follows that the subtraction in the first step, and than switches to the amditi
Y. p-robustness of a Mealy machink! can be decided by operation in the next step and remains doing addition fareve
a cycle detection algorithm on the graghuy(Qa, o) On the other hand, the second input sequence makes the
where 6y € Qum x Qaq and ({q1, 42}, {q1,d5}) € o0 Circuit doing subtraction forever. As a consequence, the
iff ¢4 =d(q1,(c,d)) andgh = §(qo, (¢,d)) andq} # ¢ for ~ common suffix distance between the two input sequences
some(c,d) € Yo x Xp. The cycle detection can be done is 1, but the output sequences drastically differ, given that
on-the-fly with the generation af 4. they are computed using a different operation.

Theorem 3:The complexity of checking robustness of a  This circuit can be made-p-robust with respect to
minimal Mealy machineM = (Q,X¢,Xp,T,q0,0,A) is  all inputs by changing the encoding of the control signal

O(IQF% Se] - [Zp?). d. Instead of having the environment that provides the
information when to switch from addition to subtraction
V1. DETAILED EXAMPLE and vice versa, we can design a circuit that expects from

An adder-subtractolis a sequential circuit that combines the environment explicit request about which operation to
addition or subtraction operations of binary numbers in aapply at each step. In this case, we do not need the switch
single unit. Adders and subtractors are usually part of theontrol unit and the control input can be directly fed to
arithmetic logic unit(ALU). There is an additionatontrol ~ the ALU. Any error in the control signal would then affect
unit that decides which operation the ALU should perform.only the computation of the output at the time step of the

The 4-bit adder-subtractor shown in Figure VI, the circuit error occurrence, but would not propagate to the future
is composed of fourl-bit full adders and a control unit computation of the output.



VIl. FUTURE WORK [CMSVO01] L. P. Carloni, K. L. McMillan and A. L. Sangiovanni-
) Vincentelli, Theory of latency-insensitive design, IBEE
A natural extension of our work would be to study  Transactions on Computer-Aided Design of Integrated Circuits
the logical and algebraic characterization of robustness a 20(9):1059-1076, 2001.

identify the subset ofu-regular languages that are robust %DM94] B. Delyon and O. Maler, On the Effects of Noise and

with respect to_ the dlstanpe measures described in thi Speed on Computations, Mheoretical Computer Science

paper. Another important direction for future researchois t 129, 279-291, 1994

study quantitative extensions of sequential circuits sagh _

continuous-time sequential circuits [PRT04] or probatiti ~ [GHJ97] V. Gupta, T. A. Henzinger and R. Jagadeesan, Robust

circuits,[PM75]. One could obtain a logical characteiizat timed automata. IHybrid and Real-Time SystemsNCS

L . L e 1201, 331-345, 1997.

of such circuits by using the quantitative and probabdisti

languages introduced in [CDHO08], [CDHO09]. [Ham50] R. W. Hamming, Error detecting and error correcting
We would also like to extend the study of robustness to  codes. IrBell System Technical Journa9 (2), 147160, 1950.

vanant; of asynchronous C|.rcwts..\(ve are partlcularlxermt [Hen08] T. A. Henzinger, Two challenges in embedded systems
ested in consideringatency-insensitive desigri€MSVO01] design: Predictability and robustness, Rhilosophical Trans-
and elastic circuits [KCKOO06], which relax the standard actions of the Royal Societ$66, 3727-3736, 2008.
synchronous model by elasticizing the time dimension and ) o
enabling the circuit to be tolerant to arbitrary discreteda  [HOoP71] J. E. Hopcroft, Ann - logn algorithm for minimizing
cies in its timing behavior. In order to study such circuits, states in a finite automaton,Technical Report CS-71-190

: 9 : : y ’ Stanford University, 1971.
believe that we should adapt our notion of robustness to the
editlike distances that allow not only standard substitution [KC04] C. Kossentini and P. Caspi, Approximation, sampling and
but also insertion and deletion of data. voting in hybrid computing systems, IHSCC’'04 363-376,

It would be also interesting to be able to distinguish 2004.

between systems that are robust. As an example, considi{CKO06] S. Krstic, J. Cortadella, M. Kishinevsky and

two robust circuits’; andC,. Assume that the two circuits J. O'Leary, Synchronous elastic networks, FVICAD'06,
generate the same behaviors for a given subséexpected 19-30, 2006.

inputs, but may generate different behaviors for input$ tha[KLSOS] O.Kupferman, W.Li and S.A.Seshia, A theory of muta-
are outside off. It could be that the in the distance is tions with applications to vacuity, coverage, and fault tolerance,
the same for botl®; andC,, but that thisb is only reached In FMCAD '08, 1-9, 2008.

when reading a few sequences outsidd @i C; and all the . . )

sequences outside dfin C,. In this situation, one should [-€v66l V. I Levenshtein, Binary codes capable of correcting
. . deletions, insertions, and reversalSoviet Physics Doklady

conclude that it is better to ugg thanC,. Indeed, for input 10. 707710. 1966.

sequences that are outside IgfC; recovers faster thas.

The common suffix distance cannot make such distinction§-ev96] W. S. Levine, The Control HandboakNew York: CRC

and should be further refined in order to be able to quantify ~ Press, 1996.

the degree of robustness of such circuits. [LMK98] G. Langholz, J. L. Mott and A. KandelFoundations of
Digital Logic Design World Scientific Publishing, 1998.
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