
Edit Distance for Pushdown Automata?

Krishnendu Chatterjee, Thomas A. Henzinger, Rasmus Ibsen-Jensen, and Jan Otop

IST Austria

Abstract. The edit distance between two words w1, w2 is the minimal number of
word operations (letter insertions, deletions, and substitutions) necessary to transform
w1 to w2. The edit distance generalizes to languages L1,L2, where the edit distance
is the minimal number k such that for every word from L1 there exists a word in L2

with edit distance at most k. We study the edit distance computation problem between
pushdown automata and their subclasses. The problem of computing edit distance to
a pushdown automaton is undecidable, and in practice, the interesting question is to
compute the edit distance from a pushdown automaton (the implementation, a stan-
dard model for programs with recursion) to a regular language (the specification). In
this work, we present a complete picture of decidability and complexity for deciding
whether, for a given threshold k, the edit distance from a pushdown automaton to a
finite automaton is at most k.

1 Introduction

Edit distance. The edit distance [14] between two words is a well-studied metric, which
is the minimum number of edit operations (insertion, deletion, or substitution of one letter
by another) that transforms one word to another. The edit distance between a word w and
a language L is the minimal edit distance between w and words in L. The edit distance
between two languages L1 and L2 is the supremum over all words w in L1 of the edit
distance between w and L2.
Significance of edit distance. The notion of edit distance provides a quantitative measure
of “how far” are (a) two words, (b) words from a language, and (c) two languages. It forms
the basis for quantitatively comparing sequences, a problem that arises in many different
areas, such as error-correcting codes, natural language processing, and computational biol-
ogy. The notion of edit distance between languages forms the foundations of a quantitative
approach to verification. The traditional qualitative verification (model-checking) question
is the language inclusion problem: given an implementation (source language) defined by
an automatonAI and a specification (target language) defined by an automatonAS , decide
whether the language L(AI) is included in the language L(AS) (i.e., L(AI) ⊆ L(AS)).
The threshold edit distance (TED) problem is a generalization of the language inclusion
problem, which for a given integer threshold k ≥ 0 asks whether every word in the source
language L(AI) has edit distance at most k to the target language L(AS) (with k = 0 we
have the traditional language inclusion problem). For example, in simulation-based veri-
fication of an implementation against a specification automaton, the measured trace may
differ slightly from the specification due to inaccuracies in the implementation. Thus, a
trace of the implementation may not be in the specification. However, instead of reject-
ing the implementation, one can quantify the distance between a measured trace and the
? This research was funded in part by the European Research Council (ERC) under grant agreement

267989 (QUAREM), by the Austrian Science Fund (FWF) project S11402-N23 (RiSE), FWF
Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307:
Graph Games), and Microsoft faculty fellows award.



Language inclusion Edit distance (TED)
PPPPPPPSource

Target
DFA NFA DFA NFA

DPDA PTime ExpTime-c ExpTime-c (Th. 2 (1))
PDA (Th. 2 (2))

Table 1. Complexity of language inclusion and edit distance. Our contributions are boldfaced.

specification. Among all implementations that violate a specification, the closer the imple-
mentation traces are to the specification, the better [6, 7, 11]. The edit distance problem is
also the basis for repairing specifications [2, 3].

Our models. In this work we consider the edit distance computation problem between two
automata A1 and A2, where A1 and A2 can be (non)deterministic finite automata or push-
down automata. Pushdown automata are the standard models for programs with recursion,
and regular languages are canonical to express the basic properties of systems that arise
in verification. We denote by DPDA (resp., PDA) deterministic (resp., nondeterministic)
pushdown automata, and DFA (resp., NFA) deterministic (resp., nondeterministic) finite
automata. We consider source and target languages defined by DFA, NFA, DPDA, and
PDA. We first present the known results and then our contributions.

Previous results. The main results for the classical language inclusion problem are as fol-
lows [12]: (i) if the target language is a DFA, then it can be solved in polynomial time; (ii) if
either the target language is a PDA or both source and target languages are DPDA, then it is
undecidable; (iii) if the target language is an NFA, then (a) if the source language is a DFA
or NFA, then it is PSpace-complete, and (b) if the source language is a DPDA or PDA,
then it is PSpace-hard and can be solved in ExpTime (to the best of our knowledge, there
is a complexity gap where the upper bound is ExpTime and the lower bound is PSpace).
The edit inclusion problem was studied for DFA and NFA, and it is PSpace-complete,
when the source and target languages are given by DFA or NFA [2, 3].

Our contributions. Our main contributions are as follows.
1. We show that the TED problem is ExpTime-complete, when the source language is

given by a DPDA or a PDA, and the target language is given by a DFA or NFA. We
present a hardness result which shows that the TED problem is ExpTime-hard for
source languages given as DPDA and target languages given as DFA. We present a
matching upper bound by showing that for source languages given as PDA and target
languages given as NFA the problem can be solved in ExpTime. As a consequence of
our lower bound we obtain that the language inclusion problem for source languages
given by DPDA (or PDA) and target languages given by DFA (or NFA) is ExpTime-
complete. Thus we present a complete picture of the complexity of the TED problem,
and in addition we close a complexity gap in the classical language inclusion prob-
lem. In contrast, if the target language is given by a DPDA, then the TED problem
is undecidable even for source languages given as DFA. Note that the more interest-
ing verification question is when the implementation (source language) is a DPDA (or
PDA) and the specification (target language) is given as DFA (or NFA), for which we
present decidability results with optimal complexity.

2. We also consider the finite edit distance (FED) problem, which asks whether there
exists k ≥ 0 such that the answer to the TED problem with threshold k is YES. For
finite automata, it was shown in [2, 3] that if the answer to the FED problem is YES,
then a polynomial bound on k exists. In contrast, we show that for a source language
DPDA and target language DFA, there is an exponential lower bound on k, even if the
answer to FED problem is YES (see Example 16). We present a matching exponential



C2 = DFA C2 = NFA C2 = DPDA C2 = PDA
C1 ∈ {DFA,NFA} coNP-c [3] PSpace-c [3] open (Conj. 18)

C1 ∈ {DPDA,PDA} coNP-hard [3] ExpTime-c undecidable (Prop. 19)in ExpTime (Th. 11) (Th. 11)
Table 2. Complexity of FED(C1, C2). Our results are boldfaced. See Conjecture 23 for the open
complexity problem.

upper bound on k for the FED problem from PDA to NFA. Finally, we also show that
the FED problem is ExpTime-complete when the source language is given as a DPDA
or PDA, and the target language is an NFA.

Our results are summarized in Table 1 and Table 2.
Related work. Algorithms for edit distance have been studied extensively for words [14, 1,
17, 18, 13, 16]. The edit distance between regular languages was studied in [2, 3], between
timed automata in [8], and between straight line programs in [15, 10]. A near-linear time al-
gorithm to approximate the edit distance for a word to a DYCK language has been presented
in [19].

2 Preliminaries

2.1 Words, languages and automata

Words. Given a finite alphabet Σ of letters, a word w is a finite sequence of letters. For a
word w, we define w[i] as the i-th letter of w and |w| as its length. We denote the set of all
words over Σ by Σ∗. We use ε to denote the empty word.
Pushdown automata. A (non-deterministic) pushdown automaton (PDA) is a tuple
(Σ,Γ,Q, S, δ, F ), where Σ is the input alphabet, Γ is a finite stack alphabet, Q is a finite
set of states, S ⊆ Q is a set of initial states, δ ⊆ Q×Σ × (Γ ∪ {⊥})×Q× Γ ∗ is a finite
transition relation and F ⊆ Q is a set of final (accepting) states. A PDA (Σ,Γ,Q, S, δ, F )
is a deterministic pushdown automaton (DPDA) if |S| = 1 and δ is a function. We denote
the class of all PDA (resp., DPDA) by PDA (resp., DPDA). We define the size of a PDA
A = (Σ,Γ,Q, S, δ, F ), denoted by |A|, as |Q|+ |δ|.
Runs of pushdown automata. Given a PDA A and a word w = w[1] . . . w[k] over Σ,
a run π of A on w is a sequence of elements from Q × Γ ∗ of length k + 1 such that
π[0] ∈ S×{ε} and for every i ∈ {1, . . . , k} either (1) π[i− 1] = (q, ε), π[i] = (q′, u′) and
(q, w[i],⊥, q′, u′) ∈ δ, or (2) π[i−1] = (q, ua), π[i] = (q′, uu′) and (q, w[i], a, q′, u′) ∈ δ.
A run π of length k + 1 is accepting if π[k + 1] ∈ F × {ε}, i.e., the automaton is in the
accepting state and the stack is empty.
Language recognized by a PDA. Given a PDA A, we define the language recognized (or
accepted) by A, denoted L(A), as {w ∈ Σ∗ : A has an accepting run on w}.
Finite automata. A non-deterministic finite automaton (NFA) is a pushdown automaton
with empty stack alphabet. We will omit Γ while referring to NFA, i.e., we will consider
them as tuples (Σ,Q, S, δ, F ). We denote the class of all NFA by NFA. Analogously to
DPDA we define deterministic finite automata (DFA).
Language inclusion. Let C1, C2 be subclasses of PDA. The inclusion problem from C1 in
C2 asks, given A1 ∈ C1, A2 ∈ C2, whether L(A1) ⊆ L(A2).
Edit distance between words. Given two words w1, w2, the edit distance between w1, w2,
denoted by ed(w1, w2), is the minimal number of single letter operations: insertions, dele-
tions, and substitutions, necessary to transform w1 into w2.
Edit distance between languages. Let L1,L2 be languages. We define the edit distance
from L1 to L2, denoted ed(L1,L2), as supw1∈L1

infw2∈L2 ed(w1, w2). The edit distance



between languages is not a distance function. In particular, it is not symmetric. For exam-
ple: ed({a}∗, {a, b}∗) = 0, while ed({a, b}∗, {a}∗) = ∞ because for every n, we have
ed({bn}, {a}∗) = n.

2.2 Problem statement

In this section we define the problems of interest. Then, we recall the previous results and
succinctly state our results.

Definition 1. For C1, C2 ∈ {DFA,NFA,DPDA,PDA} we define the following questions:
1. The threshold edit distance problem from C1 to C2 (denoted TED(C1, C2)): Given

automata A1 ∈ C1, A2 ∈ C2 and an integer threshold k ≥ 0, decide whether
ed(L(A1),L(A2)) ≤ k.

2. The finite edit distance problem from C1 to C2 (denoted FED(C1, C2)): Given automata
A1 ∈ C1, A2 ∈ C2, decide whether ed(L(A1),L(A2)) <∞.

3. Computation of edit distance from C1 to C2: Given automata A1 ∈ C1, A2 ∈ C2,
compute ed(L(A1),L(A2)).

We establish the complete complexity picture for the TED problem for all combinations
of source and target languages given by DFA,NFA,DPDA and PDA:
1. TED for regular languages has been studied in [2], where PSpace-completeness of

TED(C1, C2) for C1, C2 ∈ {DFA,NFA} has been established.
2. In Section 3, we study the TED problem for source languages given by pushdown

automata and target languages given by finite automata. We establish ExpTime-
completeness of TED(C1, C2) for C1 ∈ {DPDA,PDA} and C2 ∈ {DFA,NFA}.

3. In Section 5, we study the TED problem for target languages given by pushdown au-
tomata. We show that TED(C1, C2) is undecidable for C1 ∈ {DFA,NFA,DPDA,PDA}
and C2 ∈ {DPDA,PDA}.
The FED for regular languages has been studied in [3]. It has been showed that for

C1 ∈ {DFA,NFA}, the problem FED(C1,DFA) is coNP-complete, while the problem
FED(C1,NFA) is PSpace-complete. We show in Section 4 that for C1 ∈ {DPDA,PDA},
the problem FED(C1,NFA) is ExpTime-complete. Finally, we show in Section 5 that
(1) for C1 ∈ {DFA,NFA,DPDA,PDA}, the problem FED(C1,PDA) is undecidable, and
(2) the problem FED(DPDA,DPDA) is undecidable.

3 Threshold edit distance from pushdown to regular languages

In this section we establish the complexity of the TED problem from pushdown to finite
automata.

Theorem 2. (1) For C1 ∈ {DPDA,PDA} and C2 ∈ {DFA,NFA}, the TED(C1, C2) prob-
lem is ExpTime-complete. (2) For C1 ∈ {DPDA,PDA}, the inclusion of automata from C1
in NFA is ExpTime-complete.

We establish the above theorem as follows: In Section 3.1, we present an exponen-
tial time algorithm for TED(PDA,NFA) (for the upper bound of (1)). Then, in Sec-
tion 3.2 we show (2), in a slightly stronger form, an reduce it (that stronger problem),
to TED(DPDA,DFA), which shows the ExpTime-hardness part of (1). We conclude this
section with a brief discussion on parametrized complexity of TED in Section 3.3.



3.1 Upper bound

We present an ExpTime algorithm that, given (1) a PDA AP ; (2) an NFA AN ; and (3) a
threshold t given in binary, decides whether the edit distance from AP to AN is above t.
The algorithm extends a construction of Benedikt, Puppis and Riveros [2] for NFA.

Intuition. The construction uses the idea that for a given word w and an NFA AN the
following are equivalent: (i) ed(w,AN ) > t, and (ii) for each accepting state s of AN

and for every word w′, if AN can reach s from some initial state upon reading w′, then
ed(w,w′) > t. We construct a PDA AI which simulates the PDA AP and stores in its
states all states of the NFA AN reachable with at most t edits. More precisely, the PDA
AI remembers in its states, for every state s of the NFA AN , the minimal number of edit
operations necessary to transform the currently read prefixwp of the input word into a word
w′p, upon which AN can reach s from some initial state. If for some state the number of
edit operations exceeds t, then we associate with this state a special symbol # to denote
this. Then, we show that a word w accepted by the PDA AP has ed(w,AN ) > t iff the
automaton AI has a run on w that ends (1) in an accepting state of simulated AP , (2) with
the simulated stack of AP empty, and (3) the symbol # is associated with every accepting
state of AN .

Lemma 3. Given (1) a PDA AP ; (2) an NFA AN ; and (3) a threshold t given in binary,
the decision problem of whether ed(AP ,AN ) ≤ t can be reduced to the emptiness problem
for a PDA of size O(|AP | · (t+ 2)|AN |).

Proof. Let QN (resp., FN ) be the set of states (resp., accepting states) of AN . For i ∈ N
and a word w, we define T i

w = {s ∈ QN : there exists w′ with ed(w,w′) = i such thatAN

has a run on the word w′ ending in s}. For a pair of states s, s′ ∈ QN and α ∈ Σ ∪ {ε},
we define m(s, s′, α) as the minimum number of edits needed to apply to α so that AN

has a run on the resulting word from s′ to s. For all s, s′ ∈ QN and α ∈ Σ ∪ {ε}, we
can compute m(s, s′, α) in polynomial time in |AN |. For a state s ∈ QN and a word w let
dsw = min{i ≥ 0 | s ∈ T i

w}, i.e., dsw is the minimal number of edits necessary to apply tow
such that AN reaches s upon reading the resulting word. We will argue that the following
condition (*) holds: (*) dswa = mins′∈QN

(ds
′

w + m(s, s′, a)). Consider a run witnessing
dswa. As shown by [20] we can split the run into two parts, one sub-run accepting w ending
in s′, for some s′, and one sub-run accepting a starting in s′. Clearly, the sub-run accepting
w has used ds

′

w edits and the one accepting a has used m(s, s′, a) edits.
Let QP (resp., FP ) be the set of states (resp., accepting states) of the PDA AP . For

all word w and state q ∈ QP such that there is a run on w ending in q, we define
Impact(w, q,AP ,AN , t) as a pair (q, λ) in QP × {0, 1, . . . , t,#}|QN |, where λ is defined
as follows: for every s ∈ QN we have λ(s) = dsw if dsw ≤ t, and λ(s) = # otherwise.
Clearly, the edit distance from AP to AN exceeds t if there is a word w and an accepting
state q of AP such that Impact(w, q,AP ,AN , t) is a pair (q, λ) and for every s ∈ FN we
have λ(s) = # (i.e., the word w is in L(AP ) but any run ofAN ending in FN has distance
exceeding t).

We can now construct an impact automaton, a PDA AI , with state space
QP × {0, 1, . . . , t,#}QN and the transition relation defined as follows: A tuple
(〈q, λ1〉, a, γ, 〈q′, λ2〉, u) is a transition of AI iff the following conditions hold:
1. the tuple projected to the first component of its state (i.e., the tuple (q, a, γ, q′, u)) is a

transition of AP , and
2. the second component λ2 is computed from λ1 using the condition (*), i.e., for every
s ∈ QN we have λ2(s) = mins′∈QN

(λ1(s
′) +m(s, s′, a)).



The initial states of AI are SP × {λ0}, where SP are initial states of AP and λ0 is defined
as follows. For every s ∈ QN we have λ0(s) = mins′∈SN

m(s, s′, ε), where SN are initial
states of AN (i.e., a start state of AI is a pair of a start state of AP together with the
vector where the entry describing s is the minimum number of edits needed to get to the
state s on the empty word). Also, the accepting states are {〈q, λ〉 | q ∈ FP and for every
s ∈ FN we have λ(s) = #}. Observe that for a run ofAI on w ending in (s, λ), the vector
Impact(w, s,AP ,AN , t) is precisely (s, λ). Thus, the PDA AI accepts a word w iff the
edit distance betweenAP andAN is above t. Since the size ofAI is O(|AP | · (t+2)|AN |)
we obtain the desired result. ut

Lemma 4. TED(PDA,NFA) is in ExpTime.

Proof. Let AP ,AN and t be an instance of TED(PDA,NFA), where AP is a PDA, AN

is an NFA, and t is a threshold given in binary. By Lemma 3, we can reduce TED to the
emptiness question of a PDA of the size O(|AP | · (t + 2)|AN |). Since |AP | · (t + 2)|AN |

is exponential in |AP | + |AN | + t and the emptiness problem for PDA can be decided in
time polynomial in their size [12], the result follows. ut

3.2 Lower bound

Our ExpTime-hardness proof of TED(DPDA,DFA) extends the idea from [2] that shows
PSpace-hardness of the edit distance for DFA. In the standard proof of PSpace-hardness
of the universality problem for NFA [12], the NFA recognizes a language of all words
that do not encode valid computation of a given Turing machine M working on the tape
bounded by a given (in unary) n. Observe that such an NFA checks the following three
conditions: (1) the given word is a sequence of configurations, (2) the state of the Turing
machine and the adjunct letters follow from transitions of M , and (3) the tape’s cells are
changed only by M , i.e., they do not change values spontaneously. While conditions (1)
and (2) can be checked by a DFA of polynomial size, condition (3) can be encoded by
a polynomial NFA but not polynomial DFA. However, to check (3) the automaton has to
make only a single non-deterministic choice to pick a position in the encoding of the com-
putation, which violates (3), i.e., the value at that position is different than the value n+ 1
letters further, which corresponds to the same memory cell in the successive configuration,
and the head of M does not change it. We can transform a non-deterministic automaton
AN checking (3) into a deterministic automatonAD by encoding such a non-deterministic
pick using an external letter. Since we need only at most one external symbol, we can show
that L(AN ) = Σ∗ iff ed(Σ∗,L(AD)) = 1. This suggests the following definition:

Definition 5. An NFA A = (Σ,Q, S, δ, F ) is nearly-deterministic if |S| = 1 and δ =
δ1 ∪ δ2, where δ1 is a function and in every accepting run the automaton takes a transition
from δ2 exactly once.

Lemma 6. There exists a DPDA AP such that the problem, given a nearly-deterministic
NFA AN , decide whether L(AP ) ⊆ L(AN ), is ExpTime-hard.

Proof. We show the ExpTime-hardness of the above problem by reduction from the halting
problem of a fixed alternating Turing machine M in linear space on a given input. The
halting problem of a fixed alternating Turing machine M working on a tape bounded by n,
where n is the length of the input, is ExpTime-complete [5].

We w.l.o.g. assume that existential and universal transitions of M alternate. The main
idea is to construct a language L of words that encode valid terminating computation



trees of M . We encode configurations of M as words of length n + 3 of the form
#{0, 1}iq{0, 1}n−i#, where q is a state of M . We use brackets to encode computation
tree in the following way. Consider a computation in which the first transition is existen-
tial from C1 to C2 and the second transition is universal from C2 to C3,0 and C3,1. The
computation is encoded as follows, where the superscript R denotes reversal of a word:

#C1#C
R
2 #(C3,0 . . . $) (C3,1 . . . $) .

We define automata AN and AP . The automaton AN is a nearly deterministic NFA
that recognizes only (but not all) words not encoding valid computation trees of M . More
precisely,AN accepts in four cases: (1)AN accepts if the word does not encode a tree (the
parentheses may not match as the automaton cannot check it) of computation as presented
above. (2)AN accepts if the initial configuration is different than the intended input. (3)AN

checks that the successive configurations, i.e., those that result from existential transitions
or left-branch universal transitions (like C2 to C3,0), are valid. The right-branch universal
transitions, which are preceded by the word “)(”, are not checked byAN . E.g. the configu-
ration C3,1 does not have a preceding configuration forAN . Finally, (4)AN accepts words
in which at least one final configuration, a configuration followed by $, is not final for M .

Next, we defineAP as a pushdown automaton that accepts words in which parentheses
match and right-branch universal transitions are consistent. E.g. it checks consistency of
transition C2 to C3,1. Observe that the automaton can put on the stack CR

2 and pull from
the stack the configuration C2 (not reversed) letter-by-letter to compare it with C3,1. While
the automaton processes the subword (C3,0 . . . $), it can use its stack to check consistency
of universal transitions in that word. We assumed that M does not have consecutive uni-
versal transitions, therefore AP does not need to check consistency of C3,1 its successive
configuration. By the construction, we have L = L(AP ) ∩ L(AN )c and M halts on the
given input if and only if L(AP ) ⊆ L(AN ) fails. ut

Now, the following lemma, which is (2) of Theorem 2, follows from Lemma 6.

Lemma 7. The inclusion problem of DPDA in NFA is ExpTime-complete.

Proof. The ExpTime upper bound is immediate (basically, an exponential determiniza-
tion of the NFA, followed by complementation, product construction with the PDA, and
the emptiness check of the product PDA in polynomial-time in the size of the product).
ExpTime-hardness of the problem follows from Lemma 6. ut

Now, we show that the inclusion problem of DPDA in nearly-deterministic NFA re-
duces to TED(DPDA,DFA).

Lemma 8. TED(DPDA,DFA) is ExpTime-hard.

Proof. To show ExpTime-hardness of TED(DPDA,DFA), we reduce the inclusion prob-
lem of DPDA in nearly-deterministic NFA to TED(DPDA,DFA). Consider a DPDA AP

and a nearly-deterministic NFA AN over an alphabet Σ. Without loss of generality we as-
sume that letters on even positions are $ ∈ Σ and $ do not appear on the odd positions.
Let δ = δ1 ∪ δ2 be the transition relation of AN , where δ1 is a function and along each ac-
cepting run,AN takes exactly one transition from δ2. We transform the NFAAN to a DFA
AD by extending the alphabet Σ with external letters {1, . . . , |δ2|}. On letters from Σ, the
automaton AD takes transitions from δ1. On a letter i ∈ {1, . . . , |δ2|}, the automaton AD

takes the i-th transition from δ2.



We claim that L(AP ) ⊆ L(AN ) iff ed(L(AP ),L(AD)) = 1. Every word w ∈
L(AD) contains a letter i ∈ {1, . . . , |δ2|}, which does not belong to Σ. Therefore,
ed(L(AP ),L(AD)) ≥ 1. But, if we substitute letter i by the letter in the i-th transition of
δ2, we get a word from L(AN ). If we simply delete the letter i, we get a word which does
not belong toL(AN ) as it has letter $ on an odd position. Therefore, ed(L(AP ),L(AD)) ≤
1 implies L(AP ) ⊆ L(AN ). Finally, consider a word w′ ∈ L(AN ). The automaton AN

has an accepting run on w′, which takes exactly once a transition from δ2. Say the taken
transition is the i-th transition and the position in w′ is p. Then, the word w, obtained
from w′ by substituting the letter at position p by letter i, is accepted by AD. Therefore,
L(AP ) ⊆ L(AN ) implies ed(L(AP ),L(AD)) ≤ 1. Thus we have L(AP ) ⊆ L(AN ) iff
ed(L(AP ),L(AD)) = 1. ut

3.3 Parameterized complexity
Problems of high complexity can be practically viable if the complexity is caused by a
parameter, which tends to be small in the applications. In this section we discuss the de-
pendence of the complexity of TED based on its input values.

Proposition 9. (1) There exist a threshold t > 0 and a DPDA AP such that the variant of
TED(DPDA,DFA), in which the threshold is fixed to t and DPDA is fixed to AP , is still
ExpTime-complete. (2) The variant of TED(PDA,NFA), in which the threshold is given
in unary and NFA is fixed, is in PTime.

Proof. (1): The inclusion problem of DPDA in nearly-deterministic NFA is ExpTime-
complete even if a DPDA is fixed (Lemma 6). Therefore, the reduction in Lemma 8 works
for threshold 1 and fixed DPDA.
(2): In the reduction from Lemma 3, the resulting PDA has size |AP | · (t+ 2)|AN |, where
AP is a PDA,AN is an NFA and t is a threshold. IfAN is fixed and t is given in unary, then
|AP | ·(t+2)|AN | is polynomial in the size of the input and we can decide its non-emptiness
in polynomial time. ut

Conjecture 10 completes the study of the parameterized complexity of TED.

Conjecture 10. The variant of TED(PDA,NFA), in which the threshold is given in binary
and NFA is fixed, is in PTime.

4 Finite edit distance from pushdown to regular languages

In this section we study the complexity of the problem FED from pushdown automata to
finite automata.

Theorem 11. (1) For C1 ∈ {DPDA,PDA} and C2 ∈ {DFA,NFA} we have the following
dichotomy: for all A1 ∈ C1,A2 ∈ C2 either ed(L(A1),L(A2)) is exponentially bounded
in |A1|+ |A2| or ed(L(A1),L(A2)) is infinite. Conversely, for every n there exist a DPDA
AP and a DFA AD, both of the size O(n), such that ed(L(AP ),L(AD)) is finite and
exponential in n (i.e., the dichotomy is asymptotically tight). (2) For C1 ∈ {DPDA,PDA}
we have FED(C1,NFA) is ExpTime-complete. (3) Given a PDA AP and an NFA AN , we
can compute the edit distance ed(L(AP ),L(AN )) in time exponential in |AP |+ |AN |.

First, we show in Section 4.1 the exponential upper bound for (1), which together with
Theorem 2, implies the ExpTime upper bound for (2). Next, in Section 4.2, we show that
FED(DPDA,NFA) is ExpTime-hard. We also present the exponential lower bound for (1).
Finally, (1), (2), and Theorem 2 imply (3) (by iteratively testing with increasing thresholds
upto exponential bounds along with the decision procedure from Theorem 2).



4.1 Upper bound

In this section we consider the problem of deciding whether the edit distance from a PDA to
an NFA is finite. We start with a reduction for the problem. Given a language L, we define
prefix(L) = {u : u is a prefix of some word from L}. We call an automaton A safety if
every state ofA is accepting. Note that for every NFAAN , the language prefix(L(AN )) is
the language of a safety NFA. We show that FED(PDA,NFA) reduces to FED from PDA
to safety NFA.

Lemma 12. Let AP be a PDA and AN an NFA. Then the following inequalities hold:

ed(L(AP ),L(AN )) ≥ ed(L(AP ),prefix(L(AN ))) ≥ ed(L(AP ),L(AN ))− |AN |

Proof. Since L(AN ) ⊆ prefix(L(AN )), we have

ed(L(AP ),L(AN )) ≥ ed(L(AP ),prefix(L(AN )))

as the latter is the minimum over a larger set by definition.
Hence, we only need to show the other inequality. First observe that for every w ∈

prefix(L(AN )), upon reading w, the automaton AN can reach a state from which an ac-
cepting state is reachable and thus, an accepting state can be reached in at most |AN | steps.
Therefore, for every w ∈ prefix(L(AN )) there exists w′ of length bounded by |AN | such
that ww′ ∈ L(AN ). It follows that ed(L(AP ),prefix(L(AN ))) ≥ ed(L(AP ),L(AN ))−
|AN |. ut

Remark 13. Consider an NFAAN recognizing a language such that prefix(L(AN )) = Σ∗.
For every PDA AP , the edit distance ed(L(AP ),L(AN )) is bounded by |AN |.

Let us recall the pumping lemma for context-free languages [12]. It states that for a
given PDA AP , there is a constant η such that every word w ∈ L(AP ) of length greater
than η can be partitioned into v1 · u1 · v2 · u2 · v3 with |v1v2v3| ≤ η such that for every `
we have v1 · u`1 · v2 · u`2 · v3 ∈ L(AP ). The minimum such constant η for AP is called the
pumping constant for AP .

Lemma 14. Let AP be a PDA, AN be a safety NFA and let η be the pumping constant for
AP . If the edit distance ed(L(AP ),L(AN )) > η+2·|AN |, then ed(L(AP ),L(AN )) =∞.

Proof. Let QN be the set of states of AN . For a word w and a set of states Q′ ⊆ QN we
defineR(w,Q′) ⊆ QN as the set of states that are reachable from the states reachable from
Q′ upon reading w. We will use the following property (*) of safety NFA: (*) if R(w,QN )
is empty, then for any word w′′ containing c occurrences of w as disjoint sub-words (for
instance wc), ed(w′′,AN ) ≥ c. Let ` = η + 2 · |AN | − 2. Consider a word w ∈ L(AP )
such that ed(w,L(AN )) > `. By the pumping lemma, we can write w as v1 ·u1 ·v2 ·u2 ·v3,
such that |v1v2v3| ≤ η. For convenience of notation, we will consider that the state space
of AN is pruned in the sense that all states can be reached in some way from some start
state (other states can simply be removed without affecting the language).

Our proof will proceed as follows: First we will show that at least one of R(u1, QN )
and R(u2, R(u1, QN )) must be empty, and then use that together with the property (*) to
show that for every c > 1, the word v1 · uc1 · v2 · uc2 · v3 (which is in AP by the pumping
lemma) has edit distance to L(AN ) at least c.

We first argue that one of the sets R(u1, QN ) and R(u2, R(u1, QN )) is empty. Assume
towards contradiction that they are both non-empty. Then w could be accepted byAN with



at most ` edits by a run as follows: Starting from a start state s1 of AN go to a state s2 that
has an accepting run on u1. Let v′1 be any shortest word on which AN can go from state
s1 to state s2. Next, follow a run from s2 accepting u1 ending in some state s3. Then go to
a state s4 from which there exists an accepting run on u2. Let v′2 be any shortest word on
whichAN can go from state s3 to state s4. Then follow the run accepting u2. Because both
R(u1, QN ) and R(u2, R(u1, QN )) are non-empty, this can be done in some way. Hence,
the word w′ = v′1u1v

′
2u2 is in L(AN ). We can then edit w′ into w using ` edits, by editing

(1) v′1 into v1; and (2) v′2 into v2; and (3) the empty word at the end of w′ into v3. In the
worst case (i) |v1| = |v2| = 0; and (ii) |v′1| = |v′2| = |AN | − 1; and (iii) |v3| = η and the
edit distance is `.

Next consider the word v1 ·uc1 · v2 ·uc2 · v3, for some number c > 1, which is in L(AP )
by the pumping lemma. We will argue that the edit distance from that word to L(AN ) is
at least c. Towards contradiction, assume that ed(v1 · uc1 · v2 · uc2 · v3,L(AN )) < c and
consider a run of AN witnessing that inequality. Consider first the prefix v1 · uc1. Either
there are c edits, one for each repetition of u1, or the run has ended up in R(u1, QN ) after
some repetition of u1 (and thus stayed there). In the first case, we get a contradiction and
thus only need to consider the second case. Note that R(u1, QN ) is then non-empty in this
case and thusR(u2, R(u1, QN )) is empty. The run is still inR(u1, QN ) after v1 ·uc1 ·v2, but
then it needs to make at least 1 edit to each of the c repetitions of the words u2, because of
the emptiness of R(u2, R(u1, QN )). Hence, the run needs c edits, which is a contradiction.
This completes the proof. ut

The following lemma follows from Lemmas 12 and 14 and the fact, that the pumping
constant is exponentially bounded in the size of the PDA [12].

Lemma 15. For all C1 ∈ {DPDA,PDA}, C2 ∈ {DFA,NFA} the following conditions
hold: (1) For allA1 ∈ C1,A2 ∈ C2, if ed(A1,A2) is finite, then it is exponentially bounded
in A1 and linearly bounded in A2. (2) FED(C1, C2) is in ExpTime.

Given a PDA AP and an NFA AN , we can compute the edit distance
ed(L(AP ),L(AN )) in time exponential in |AP |+ |AN |.

4.2 Lower bound

We have shown the exponential upper bound on the edit distance if it is finite. Example 16
shows that the exponential bound is asymptotically tight, which is in contrast to the edit
distance from an NFA to another NFA, where the edit distance, if finite, is polynomially
bounded [2]. Finally, in Lemma 17 we show that for the target language given by NFA, the
problem FED is as hard as TED.

Example 16 (The edit distance of a DPDA to a DFA can be exponential.). Given n > 0,
consider a context free grammar Gn = ({S,A1, . . . , An}, {S → An, A1 → a}∪{Ai+1 →
AiAi : i = 1, . . . , n− 1}). The grammar Gn derives a single word a2

n

. Let AR be a DFA
that recognizes the language b∗. Now, the size of grammar Gn is polynomial in n and there
exists a DPDA An equivalent to Gn such that the size of An is O(n). The edit distance
ed(L(An),L(AR)) is 2n. Hence, the edit distance of a DPDA to a DFA can be exponential
in the size of the DPDA.

Lemma 17. FED(DPDA,NFA) is ExpTime-hard.



Proof. We show that the inclusion problem of DPDA in NFA, which is ExpTime-hard
by Lemma 6 reduces to FED(DPDA,NFA). Consider a DPDA AP and an NFA AN . We
define L̂ = {#w1# . . .#wk# : k ∈ N, w1, . . . , wk ∈ L}. Observe that either L̂1 ⊆ L̂2

or ed(L̂1, L̂2) = ∞. Therefore, ed(L̂1, L̂2) < ∞ iff L1 ⊆ L2. In particular, L(AP ) ⊆
L(AN ) iff ed(L̂(AP ), L̂(AN )) < ∞. Observe that in polynomial time we can transform
AP (resp., AN ) to a DPDA ÂP (resp., an NFA ÂN ) recognizing L̂(AP ) (resp., L̂(AP )).
It suffices to add transitions from all final states to all initial states with the letter #, i.e.,
{(q,#, s) : q ∈ F, s ∈ S}. ut

Conjecture 18. FED(DPDA,DFA) is ExpTime-hard.

5 Edit distance to PDA

Observe that the threshold distance problem from DFA to PDA with the fixed threshold 0
and a fixed DFA recognizing Σ∗ coincides with the universality problem for PDA. Hence,
the universality problem for PDA, which is undecidable, reduces to TED(DFA,PDA). The
universality problem for PDA reduces to FED(DFA,PDA) as well by the same argument
as in Theorem 17. Finally, we can reduce the inclusion problem of DPDA in DPDA, which
is undecidable, to TED(DPDA,DPDA) (resp., FED(DPDA,DPDA)). Again, we can use
the same construction as in Theorem 17. In conclusion, we have the following proposition.

Proposition 19. (1) For every class C ∈ {DFA,NFA,DPDA,PDA}, the problems
TED(C,PDA) and FED(C,PDA) are undecidable. (2) For every class C ∈ {DPDA,PDA},
the problem FED(C,DPDA) is undecidable.

The results in (1) of Proposition 19 are obtained by reduction from the universality
problem for PDA. However, the universality problem for DPDA is decidable. Still we
show that TED(DFA,DPDA) is undecidable. The overall argument is similar to the one in
Section 3.2. First, we define nearly-deterministic PDA, a pushdown counterpart of nearly-
deterministic NFA.

Definition 20. A PDA A = (Σ,Γ,Q, S, δ, F ) is nearly-deterministic if |S| = 1 and δ =
δ1∪δ2, where δ1 is a function and for every accepting run, the automaton takes a transition
from δ2 exactly once.

By carefully reviewing the standard reduction of the halting problem for Turing ma-
chines to the universality problem for pushdown automata [12], we observe that the PDA
that appear as the product of the reduction are nearly-deterministic.

Lemma 21. The problem, given a nearly-deterministic PDA AP , decide whether
L(AP ) = Σ∗, is undecidable.

Using the same construction as in Theorem 8 we can show a reduction of the universal-
ity problem for nearly-deterministic PDA to TED(DFA,DPDA).

Proposition 22. For every class C ∈ {DFA,NFA,DPDA,PDA}, the problem
TED(C,DPDA) is undecidable.

Proof. We show that TED(DFA,DPDA) (resp., FED(DFA,PDA)) is undecidable as it im-
plies undecidability of the rest of the problems. The same construction as in the proof of
Theorem 8 shows a reduction of the universality problem for nearly-deterministic DPDA
to TED(DFA,DPDA). ut



We presented the complete decidability picture for the problems TED(C1, C2), for C1 ∈
{DFA,NFA,DPDA,PDA} and C2 ∈ {DPDA,PDA} To complete the characterization of
the problems FED(C1, C2), with respect to their decidability, we still need to settle the
decidability (and complexity) status of FED(DFA,DPDA). We leave it as an open problem,
which is likely to be undecidable.

Conjecture 23. FED(DFA,DPDA) is undecidable.

6 Conclusions

In this work we consider the edit distance problem for PDA and its subclasses and present
a complete decidability and complexity picture for the TED problem. We leave some open
conjectures about the parametrized complexity of the TED problem, and the complexity of
FED problem when the target is a DPDA or a DFA. While in this work we count the number
of edit operations, a different notion is to measure the average number of edit operations.
The average-based measure is undecidable in many cases even for finite automata, and in
cases when it is decidable reduces to mean-payoff games on graphs [4]. Since mean-payoff
games on pushdown graphs are undecidable [9], most of the problems related to the edit
distance question for average measure for DPDA and PDA are likely to be undecidable.

References

1. Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free languages.
SIAM J. of Computing 1, 305–312 (1972)

2. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS’11. pp. 335–344
(2011)

3. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst.
Sci. 79(8), 1302–1321 (2013)

4. Benedikt, M., Puppis, G., Riveros, C.: The per-character cost of repairing word languages. Theor.
Comput. Sci. 539, 38–67 (2014), http://dx.doi.org/10.1016/j.tcs.2014.04.021

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (Jan 1981),
http://doi.acm.org/10.1145/322234.322243

6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log.
11(4) (2010)

7. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata (2014),
http://repository.ist.ac.at/170/

8. Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC’14.
pp. 303–312 (2014)

9. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: LICS. pp. 195–204 (2012)
10. Gawrychowski, P.: Faster algorithm for computing the edit distance between slp-compressed

strings. In: SPIRE’12. pp. 229–236 (2012)
11. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: CONCUR’13. pp. 273–

287 (2013)
12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation.

Adison-Wesley Publishing Company, Reading, Massachusets, USA (1979)
13. Karp, R.: Mapping the genome: some combinatorial problems arising in molecular biology. In:

STOC 93. pp. 278–285. ACM (1993)
14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In:

Soviet physics doklady. vol. 10, pp. 707–710 (1966)
15. Lifshits, Y.: Processing compressed texts: A tractability border. In: Combinatorial Pattern Match-

ing. pp. 228–240. Springer (2007)



16. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Intl. J. of
Foundations of Comp. Sci. 14, 957–982 (2003)

17. Okuda, T., Tanaka, E., Kasai, T.: A method for the correction of garbled words based on the
levenshtein metric. IEEE Trans. Comput. 25, 172–178 (1976)

18. Pighizzini, G.: How hard is computing the edit distance? Information and Computation 165,
1–13 (2001)

19. Saha, B.: The dyck language edit distance problem in near-linear time. In: FOCS’14. pp. 611–
620 (2014)

20. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM pp. 168–173
(1974)


