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Abstract. Linearizability requires that the outcome of calls by compet-
ing threads to a concurrent data structure is the same as some sequential
execution where each thread has exclusive access to the data structure.
In an ordered data structure, such as a queue or a stack, linearizabil-
ity is ensured by requiring threads commit in the order dictated by the
sequential semantics of the data structure; e.g., in a concurrent queue
implementation a dequeue can only remove the oldest element.

In this paper, we investigate the impact of this strict ordering, by com-
paring what linearizability allows to what existing implementations do.
We first give an operational definition for linearizability which allows us
to build the most general linearizable implementation as a transition sys-
tem for any given sequential specification. We then use this operational
definition to categorize linearizable implementations based on whether
they are bound or free. In a bound implementation, whenever all threads
observe the same logical state, the updates to the logical state and the
temporal order of commits coincide. All existing queue implementations
we know of are bound. We then proceed to present, to the best of our
knowledge, the first ever free queue implementation. Our experiments
show that free implementations have the potential for better performance
by suffering less from contention.

1 Introduction

Concurrent data structures form the crux of every application software intended
to run on a multi-core architecture which covers almost all computing domains.
This is why correct and scalable implementations of concurrent data structures,
especially at the library level, is crucial. The common perception, however, in-
dicates that there is a trade-off between scalability and correctness for such
implementations. Ideally, correctness is captured by linearizability [6]: A con-
current implementation of data structure D is correct if it is linearizable with
respect to the sequential definition of D. In this paper, we pose the following
question: Have the existing implementations reached the limits of linearizabil-
ity? We argue that there exist promising optimizations that future linearizable
implementations can use.

As a motivating example, think of the following scenario. We have a concur-
rent queue implementation and the execution has reached a point where there
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Fig. 1: Representative contention for concurrent dequeues.

are n elements in the queue, x; to x, with x; being the oldest, and there are n
dequeues, d; to d,, executing concurrently. Existing concurrent queue implemen-
tations proceed by removing the elements in the queue in the correct order, illus-
trated in Fig. 1la. What is not known and scheduler dependent is which dequeue
instance d; is going to return the first element, x;. It is this non-determinism
that leads to a better use of computational resources. However, the serialization
implied by this approach results in high contention for the same element since
all the dequeue instances initially try to remove the same element, x;. Once the
oldest element is removed, then the remaining n — 1 dequeue instances compete
for the current oldest element x5, perpetuating high contention for the oldest
element. Implementations following this serialization scheme are called bound.

We observe that this high contention scenario is not necessary to guarantee
linearizability. In fact, at one extreme, with the scenario above, each dequeue
instance can remove any element from the queue, as illustrated in Fig. 1b. In fact,
as long as each element is removed exactly once, any permutation of removal of
the elements in the queue will yield a linearizable execution.

It is desirable to have implementations that are not bound, which we call
free. We show that neither the Herlihy-Wing queue [6] nor the Michael-Scott
queue [10] is free. In fact, to the best of our knowledge, all existing implementa-
tions of concurrent queue implementations are bound.

As far as whether one can realize a free implementation, we provide two
solutions. The first of these solutions, on a more abstract level, is based on an
operational definition of linearizability. This definition allows us to effectively
keep track of all possible linearizations of a given concurrent execution in an
inductive manner. We use this definition to give a generic (keeping the sequential
specification S as a parameter) coarse-grained reference model for all possible
linearizable implementations of S.

The second solution is an instance of a concurrent queue implementation
which is free. This implementation is derived from the Michael-Scott queue by
adding a contention manager. We show that the manager indeed reduces con-
tention, measured through the number of failed Compare-And-Swap calls, re-
sulting in increased performance.

Related Work. To the best of our knowledge, this is the first work that
investigates the gap between what linearizability allows and what existing im-
plementations do. In the domain of concurrent queue implementations, with
which we are mainly concerned in this paper, there have been extensive work
on designing more efficient implementations (e.g., [4,7,8,10,12]) and on verify-



ing these implementations correct (e.g., [1,2,9,13,14]). However, none of these
queue implementations is free. Thus, the free queue implementation presented
in this paper is, to the best of our knowledge, the first of its kind. On the other
hand, without being identified as such, a free linearizable implementation does
exist [5]. We should note that the sequential behavior of the counting network
of [5] can also be specified using a non prefix-closed set, in contrast to our defi-
nition of free which requires a prefix-closed sequential specification.

Recently, a different taxonomy of linearizable implementations has been sug-
gested by [3], which introduces the notion of strong linearizability. Intuitively,
an implementation is strongly linearizable if its linearization does not depend
on future behavior. The class of bound implementations properly subsumes the
class of strongly linearizable implementations; e.g., the Herlihy-Wing queue is
not strongly linearizable, even though it is bound.

2 Preliminaries

In this section, we develop the formal framework, by introducing notation and
necessary terminology, in order to present our main theoretical results.

Notation. Let A be a set. A* and Z?(A) denote the set of all sequences over
A and the power-set (set of all subsets) of A, respectively. Empty string and
empty set are denoted by € and J, respectively. For any sequence s € A* and
any subset B € A, s |p denotes the subword obtained by removing from s all
symbols in A\ B. We call sequence x a prefix of y, written x < y, whenever there
exists a sequence z such that y is the concatenation of z to x; that is, y = xz.
If z # ¢, x is a proper prefix of y, written x < y. A subset B of A* is called
prefiz-closed if x <y and y € B imply x € B. For subsets Ay,..., Ay € A, the
set A1 A, ... Ay, denotes the set of all sequences a; ...ay, where a; € A;.

A labelled transition system (LTS) is a tuple M = (Q, ¢init, L, —), where @Q is
the set of states, qini; is the initial state, L is the set of labels, and - Q x L x @ is
the transition relation. A run of M is an alternating sequence r = qol1q1 - .. lnqn

of states and labels such that ¢y = @init and for all 1 < i < n, ¢;—1 L ¢;- The
sequence of labels 1 = [1l5...[, is the trace of r. The language of M, written
L(M), contains all sequences 1 € L* such that there is a run of M with trace 1.

We represent the set of natural numbers with N. A is a shorthand for Nx 4 =
{(n,a)|n € N,a e A}. For a collection of sets Aj ... Ay, A1 x ... A denotes the
set of all k-tuples (a1, ..., ax) such that a; € A;. For any k-tuple a = (a1, ..., ax),
7;(a) denotes the projection of a on to the i*" component, a;. We extend 7; point-
wise to sequences over k-tuples. For any sequence a over ;1, a |; is a shorthand
for a l{i}xA-

Sequential specification, refinement. A sequential specification S is a
prefix-closed set of sequences, called sequential behaviors, over a set M, called
sequential alphabet. Let M be a sequential alphabet and A be a set. A mapping
p from M to Z(A*) is called an (M, A)-refinement if

— for any m # m/, p(m) n p(m') = &, and



— for any m € M and a € p(m), there does not exist a sequence a’ # ¢ and
m’ € M such that aa’ € p(m/).

Intuitively, each sequence in p(m) gives one possible execution path of a proce-
dure implementing m in the programming language A.

An (M, A)-refinement p is called canonical if A = {m;|m € M} U {m.|m e
M} and for all m € M, p(m) = {m;m,}. Canonical refinement simply splits
each method into invocation and response events, m; and m,., respectively.

With an abuse of notation, we set p~1(a) = m iff a € p(m). The sequences
for which p~! is defined are called complete with respect to p.

The fate set of a sequence a = a; ...a; € A*, fate,(a), is the set of methods
m for which there exists a p-refinement a’ containing a as a prefix. Intuitively,
method m is in the fate set of a sequence of instructions in A if there is an
execution path of m that starts with the same sequence. Formally, fate,(a) =
{m|3a’ € p(m).a < a’}. The sequence a is called unifate if |fate,(a)| = 1.

Sequential execution, p-trace. For the following, fix a = a;...a, as a
sequence over A. The sequence a is called quiescent if it is the concatenation
of complete subsequences. Formally, a is quiescent if there exists a sequence
m = my ... my over M such that a € p(mq)p(msz)...p(my). Observe that if m
exists, it is unique. The methods my to m,, are said to occur in a. For quiescent
a, let p~!(a) denote m.

Let a% and a” denote the partition of a = a%a” such that a? is the maximal
quiescent prefix of a. Then, a sequence ada’ is called a completion of a, if either
al =¢ ora” #candae fate,(a"). In other words, a completion of a either
discards the incomplete suffix, or extends the incomplete suffix to some complete
sequence. Let C'S,(a) denote the set of all completions of a. By convention, we
set CS,(e) = .

The sequence a is called a p-trace if it can be extended into a quiescent
sequence. Formally, either a € C'S,(a) or |CS,(a)] > 1. Note that, any prefix of
a p-trace is also a p-trace.

A method m; has terminated in a if m; occurs in a?. The method my is
executing in a if my, has not terminated in a and there is a (quiescent) completion
of a in which my, occurs.

Concurrent execution, linearizability. A sequence ¢ over A is called a
concurrent execution induced by p, if for all ¢ € N, ma(c | i), called the local
history of thread i, is a p-trace. We will also use c[i] as a shorthand for m2(c |
i). Observe that for the canonical (M, A)-refinement, concurrent execution is
equivalent to the well-known notion of history [6]. We call i idle after ¢ if the
local history of thread 7 in ¢ is quiescent.

Let ¢ be a concurrent execution induced by p and m,n € M be two method
instances such that there are i,j € N for which m (resp., n) occurs in some
completion sequence of the local history of thread i (resp., 7). The method
instance m precedes n in ¢, written m »— n, if there exists a prefix ¢’ of ¢ such
that ¢ is idle after ¢/, m appears in the local history of thread 7 in ¢/, and n is
neither executing nor has terminated in the local history of thread j in c’.



Let ¢ be a concurrent execution induced by p. The sequence s, € M* is a
linearization of c if there is a collection of sequences a; € C'S,(c[i]) such that
Sc is a permutation of methods appearing in all a;, and if m — n in c, then m
appears before n in s.

A concurrent implementation I of a sequential specification S is a tuple
(A, p, M1), where A is the set of actions, p is an (M, A)-refinement and My =
(Q, Ginit, ./Z, —) is an LTS such that each trace in L(Mj) is a concurrent execution
induced by p. A concurrent implementation I of S is linearizable if for every trace
c € L(Mj), there exists a linearization s € S.

3 Operational Definition for Linearizability

In this Section, we will give an alternative and operational definition for lineariz-
ability. We will first describe the algorithm which computes on-the-fly a set of
sequences as possible linearizations of the concurrent execution. We will then
state the main result of the section which establishes the equivalence between
the existence of possible linearizations and linearizability.

For the following, let us fix a sequential specification S over M and a (M, A)-
refinement p. Let (2 stand for A* = {(i, a)li e NJae A*}. An element (i,a) € £2
is closed if there is an m € M with a € p(m); otherwise, (i,a) is open. Similarly,
a sequence w € 2% is closed (resp., open) if all symbols in w are closed (resp.,
open).

Algorithm 1 Computing potential witnesses, W(c).

1: function Apply(W,(3,a))

2: W' — &

3 for all we W do

4 if there is no open symbol (i,a’) in w then

5: for all z,y such that w = zy and y is open do
6.

7

8

W' — W' U {z(i,a)y}
else
: W' — W' U {z(i,a’a)y}, where w = z(i,a)y
9: for all we W’ do

10: if w = z(i,a’)y and z is closed then
11: if a” € fate ,(a’) implies p~ ' (m2(z - (i,a"))) ¢ S then
12: W' — W"\{w}

13: W(c) « W'

Let ¢ = (i1,a1) ... (in,an) be a concurrent execution induced by p. The set
of potential witnesses for the concurrent execution ¢, W(c) < 2%, is defined
inductively as follows:

- W) = {2}



= W((ir,a1) ... (i5,a;)) = ApplyW((i1, a1) - .. (ij-1,a;-1)), (i5,a;))

where the function Apply constructs a new potential witness set, for a given
potential witness set and a symbol in 4. The definition of Apply is given in
Alg. 1. Apply has two phases: the expansion phase (lines 3-9), and the pruning
phase (lines 9-12). Given the current set of potential witnesses W and the current
symbol (i, a), in the expansion phase, there are two possibilities. Either ¢ was idle
and (i, a) is the first action of a new method instance, or (i, a) is the continuation
of an executing method. In the first case, all sequences x(i, a)y, where xz and y is a
partitioning of some potential witness in W such that y contains no terminated
methods, are added to the potential witness set. In the second case, in each
potential witness, (4, a) is concatenated to the unique symbol which corresponds
to thread ¢ executing some method.

In the pruning phase, all the sequences generated after the expansion phase
are checked whether they can be extended to sequences in the specification.
The main observation is that if all symbols in a prefix of w are closed, then
no further extension of the current execution will have an effect on that prefix.
Thus, if the current modified open symbol to which (¢, a) is appended in w comes
immediately after a closed prefix of w and no matter how thread ¢ continues its
execution, the closed symbol is not allowed to follow the closed symbols in that
prefix, w is removed from the potential witness set. Observe that, if at any point
we get W(c) = &, then for all extensions ¢’ of ¢, that is, ¢ < ¢/, we will have
W(c') = &. The following equivalence result follows from these explanations.

Theorem 1. A concurrent execution ¢ has a linearization in S iff W(c) # .

3.1 Most General Linearizable Implementations

Before we move on to defining free linearizable implementations, we present a
way to construct an implementation I(S) for a given sequential specification S
such that I(S) generates all possible concurrent traces with linearizations in S.

Let S be a sequential specification over M, and let p be the canonical (M, A)-
refinement. The concurrent implementation 1(5) is given as (A, p, M (g)), where

M sy is the LTS (Q, ginit, A, —). Each state ¢ € @ is a potential witness set. The

initial state ginit = {¢}. The transition ¢ ) ¢ is allowed iff ¢’ = Apply(q, (i,a))
and ¢’ # 4. Note that, if there is no transition out of ¢ with label (i,m,.), it
means that terminating m,. at ¢ leads to a non-linearizable concurrent execution,

by Thm. 1.

Corollary 1. A concurrent history h has a linearization in S iff h is a trace in
L(Mjps))-

4 Free Linearizable Implementations

In this section, we are going to formalize free linearizable implementations.



Let S be a sequential specification over M. For any sequence s € S and
any symbol m € M, let d(s,m) be the length of the shortest sequence t such
that stm € S. Formally, d(s,m) = min{|t||stm € S}. In particular, if sm € S,
d(s,m) = 0.

A specification S over M is trivial if Vm € M,s € S.d(s,m) = 0. Observe
that & and M* are the only trivial (prefix-closed) specifications over M. We
are now ready to give the main definition of this section.

Definition 1 (Free). Let S be a non-trivial specification over M, and let s € S
and m € M be such that d(s,m) = k > 0. Let I be a linearizable implementation
of S. Letr = qq ... lsqslst1 - .- lngn be a run of My such that i) all threads after
c1 = li...1ls are idle and the only potential witness w in W(cy) is such that

s = p~Y(me(w)), and ii) the last transition g, by qn of v terminates m. The
implementation I is free if there are at most |s| + k unifate method instances in
ly... 0.

We call an implementation bound if it is not free.

Imagine a concurrent queue which contains [1;2], 1 being the oldest entry.
Assume that there are three concurrent dequeue instances, di, da, dz, and that
dy completes its execution by returning 2. If the implementation is bound, then
for all continuations of this execution, the dequeue instance removing 1 will be
the same. That is, if there is an extension in which 1 is removed by, say, d2, then
in all extensions where 1 is removed, it will have been removed by ds. On the
other hand, if the implementation is free, there might be two different extensions
such that 1 is removed by ds in one extension and removed by d3 in the other.

We will end this section by justifying our claim that I(S) is the most general
linearizable implementation.

Proposition 1. I(S) is free.

5 Concurrent Queue Implementations

In this section, we will analyze two of the best-known concurrent queue im-
plementations. The first is the Herlihy-Wing queue, abbreviated as HW-queue,
given as an example for linearizable data structures in [6]. The second imple-
mentation we consider is the Michael-Scott queue[10], abbreviated as MS-queue.
Almost all of the state-of-the-art concurrent queue implementations are derived
from the MS-queue and the argument presented for the MS-queue applies to all
the existing implementations we know of. We will show that both the HW-queue
and the MS-queue are bound linearizable implementations.

The sequential alphabet for the queue implementations we consider in this
paper, Mg is given as the union of Eng = {enq(i)|i € N} and Deq = {deq(i)|i €
NuU{NULL}}. The sequential specification for queues, Sg, has the usual semantics
in that enq instances can be appended to any sequence in Sg whereas which
deq instance can be appended depends on the contents of the queue. A queue is
called partial if the queue is empty after a sequence of operations, no deq can be



appended. The queue is called total if whenever the queue is empty, deq(NULL)
can be appended. Note that for any given s € Sg, there is at most one d € Deg
such that sd € Sq.

We note that if d(s,m) > 0, then m € Degq. In other words, for any m € Eng,
we have d(s,m) = 0 for all s € Sq.

procedure enq(z)
atomic

1: 1: procedure deq()

2 2 while true do

3 i «— q.back 3 atomic

4 q.back «— q.back + 1 4 range < q.back — 1

5: end atomic 5: end atomic

6: atomic 6: for i = 0 to range do

7 g.items[i] <« x 7 atomic

8 end atomic 8 x <« SWAP(q.items][i], NULL)
9 end atomic
0 if ! = NULL then return z
1 end for

Fig.2: HW-queue methods.

The Herlihy-Wing Queue. The pseudo-code for the HW-queue is given
in Fig. 2. We are going to use the notation enq[l;] (resp., deq[l;]) to denote the
statement at line ¢ of method enq (resp., deq). The atomic regions, delimited
by the keywords, atomic and end atomic, represent code blocks that execute
without interference. For atomic regions, the corresponding action is the list of
instructions appearing within; e.g., the first atomic region of enq(z) is repre-
sented by enqg(x)[l3,4]. We assume that A is the set of all possible syntactically
correct statements of some programming language, to which all codes presented
in this paper belong.

The (Mg, A)-refinement p implied by the given code is all possible unfoldings
of the programs following standard control flow. For instance, an enq instance,
eng(z) has the unique refinement enq(x)[l3 4]enq(x)[l7]. A deq instance, deq(z)
has infinitely many refinement sequences, the shortest of which is given by

p(deq(w)) = deq(z)[lz]deq(z)[ls]deq(z)[ls]deq(w)[ls]deq(x)[l10]

corresponding to finding an enqueued element in g.items[0] and dequeueing it
successfullly. We now show that the HW-queue is not free.

Lemma 1. The HW-queue is bound.

Proof (Sketch). Observe that d(s, m) = k > 0 implies that m is a deq instance,
the state represented by s has two possibilities: 1) it has greater than k elements,
m is removing the k + 1%, 2) it has exactly k¥ — 1 elements and m is returning an
element currently not in the queue. Note that, since the HW-queue is partial,
an empty returning deq instance is not possible. These cases are similar, we will



: procedure eng(x)
n < new(x)

1 1: procedure deq()

2 2 while true do

3 while true do 3 h <« Head, t < Tail, ¢ « h.next
4: t <« Tail 4: if h == Head then

5: c < t.next 5: if h ==t then

6 if t == Tail then 6: if ¢ == NULL then

7 if ¢ == NULL then 7 return NULL

8 if CAS(t.next,c,n) then 8 CAS(Tail, t,c)

9: return 9: else
10: else 10: T «— c.val
11: CAS(Tail,t,c) 11: if CAS(Head, h,c) then
12:  end while 12: break
13: end while
14: return

Fig. 3: MS-queue methods.

only consider the first case. If stm € Sg and |t| = k, then t is a sequence of k
deq instances, removing all of the k oldest elements in the queue represented by
s. The deq instances not concurrent with previously terminated enq instances,
observe these instances according to the temporal ordering of the first blocks of
enq instances; i.e. in ascending order of slot indices. The main loop of deq(x)
starts looking for the element to dequeue from the beginning of the array. A deq
instance is unifate after a non-NULL swap (lg). Thus, the deq(x) can complete
only if all of the oldest k elements have been successfully removed, implying that
there must be at least k deq instances that are unifate. m]

The Michael-Scott Queue. The pseudo-code for the MS-queue is given in
Fig. 3. We will omit a detailed explanation of this well-known implementation
details of which can be found in [10].

Lemma 2. The MS-queue is bound.

Proof (Sketch). d(s,m) > 0 only when m is a deq instance. The state of the
queue is given by the order of the nodes in the linked list, whose first element is
always pointed to by the next field of the sentinel pointed to by Head, and whose
last element is either pointed to by Tail or the next pointer of the node pointed
to by Tail. The commit point of an enq instance is the execution of a successful
CAS updating the next pointer of the last node (line 8). Similarly, the commit
point of a deq instance not returning NULL is the execution of a successful CAS
updating the Head pointer (line 11). Then, if d(s,m) = k > 0, it means that m
removes the k + 15! node counting from the sentinel node of Head. The commit
points mentioned above imply that for m to complete, the Head pointer must
have been updated at least k& many times for m to observe the node, which
m is going to remove, pointed to by Head. On the other hand, executing l1;
successfully means that the deq instance becomes unifate. These imply that
when m terminates there are at least |s| + k + 1 unifate method instances: |s|



comes from the fact that all the method instances in s are complete, k is the
minimum number of unifate deq instances that have managed to update Head
and 1 is for m, which is unifate when it terminates. ]

6 Free Concurrent Queue Implementation

In this section, we will present a free concurrent queue implementation, Iy. Our
implementation is derived from the MS-queue.

The low level representation of the queue uses new structures. A segment
structure has an array of nodes, called seg, of size SEGSIZE. Each node in the seg
array corresponds to a slot of the queue. The val field holds the element, denoting
an empty slot if it is equal to -1 (we assume that the queue contains only non-
negative values). The marked field denotes whether the value in the slot, if valid,
has already been removed by a dequeue (marked=1) or not (marked=0). A
segment structure has also an array dequec, again of size SEGSIZE. This dequeue
vector dequec is used as an under-approximation for the number of concurrent
dequeue instances.

The code for the deq method is given in Fig. 4. The code for the enq method
is given in App. A, which is essentially the same as the one given in Fig. 3; each
enqueue instance competes for the same available slot in a segment, and when
the segment is full a new segment is inserted.

The deq method stays in a loop until either an element is removed by this
instance (line 18) or the queue is found in an empty state (lines 10-11 and 24-25).
The main loop starts by copying the necessary synchronization information into
local variables. The variable h is assigned to the current value of Head. The
pointer f gets the current dequeue vector for the segment pointed to by h. The
variable index ranging over the slots of the segment is initialized to 0.

The first loop (lines 4-7) skips over all the busy slot of the segment pointed to
by h, adjusting index accordingly. At the end of this loop, the variable skipent
will hold the number of busy slots that were skipped following the logically
removed slot with the greatest index.

Then we enter the main inner loop (lines 8-28). We first check whether the
current slot is busy and the current number of skipped slots (line 9). If the slot
is busy and we are allowed to skip a busy slot, we increment index to point to
the next slot (line 21) and start a new iteration. If the slot is not busy or we are
not allowed to skip any more slots, we check the contents of the slot. If the slot
is empty, we simply return EMPTY, without updating any shared variable (lines
10-11). If the slot is not empty, we update the dequeue vector to notify other
dequeue instances by marking this slot as busy (line 12). Since marking the bit
is not synchronized, it is possible that other dequeue instances are also trying
to remove the same element. In order to guarantee exactly one removal by all
competing dequeue instances, we attempt to mark the slot as deleted (setting
the marked field of the slot to 1, line 14). If successful (line 15) and the slot that
was marked is the last slot of the segment (line 16), then we also ensure that the
Head pointer does not stay pointing to a stale segment (line 17) and complete



1: procedure deq()
2 while true do
3 h <« Head; f < &(h->dequec); index — 0; skipent «— 0
4 while (xf)[index] A index < SEGSIZE do
5: indexr < index + 1; skipent «— skipent + 1
6 if h->seg[index].marked then
7 skipent < 0
8: while index < SEGSIZE do
9: if 1(xf)[index] v skipent > LOOKAHEAD then
10: if h->seg[index].val = —1 then
11: return EMPTY
12: (xf)[index] — 1
13: curr «— (h->seglindez]); val « (curr->val)
14: if CAS(curr->marked,0,1) then
15: if index = SEGSIZE — 1 then
16: if h->next # NULL then
17: CAS(Head, h, h->next)
18: return val
19: else
20: skipent «— 0
21: index <« index + 1
22: t — Tail
23: if h =t then
24: if t->next = NULL then
25: return EMPTY
26: else
27: CAS(Tail, t,t->next)
28: CAS(Head, h, h->next)

29: end procedure

Fig.4: The dequeue method of the free queue implementation, Iy.

the removal by returning the value held in the slot (line 18). If the CAS fails, we
reset the skipped node count (line 20), and move on to the next slot by adjusting
index (line 21).

If the loop terminates by reaching the end of the segment (line 22), we then
check whether this is indeed the last segment (line 23), in which case Head
and T'ail should be pointing to the same segment and there would be no other
segment (line 24), in which case we return EMPTY. Otherwise, that is, if the queue
is not empty, we ensure that Head does not point to the current stale segment
(line 28) and go back to the beginning of the main loop.

Before we proceed to state the properties of Iy, we will illustrate the behavior
of the modified deq method. A sample configuration is given in Fig. 5. The list
contains at least two segments, represented by gray rectangles, and Tail # Head.
The slots of a segment are denoted by rectangles; a cross (’x’) means that the
slot is marked and a plus (’+’) means that it contains a valid entry (val = 0) and
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Fig.5: A representative state of the implementation /.

is unmarked. There are currently five concurrent deq instances, d; to ds. The
current dequeue vector, dequec, by having its first 4 slots set to 1, conveys the
information that there are at least four deq instances running concurrently. T'wo
of these instances, d3 and ds, have successfully marked two slots, the first and the
fourth, respectively. The remaining three instances will compete for the second
and third slots, but it is not known at this state which instance will remove
which slot, which informally shows that the implementation is free. Observe also
that any deq instance starting after this point will not compete for any of the
first four slots, because of the dequeue vector, which demonstrates the potential
for low contention.

We first prove that the relaxation in removing nodes does not lead to non-
linearizable concurrent executions.

Theorem 2. Iy is linearizable.

Proof (Sketch). Tt is clear that each deq method either does not modify the
shared state or removes exactly one element from the queue. Let us denote
by d a fixed deq instance. If d returns EMPTY by executing line 11, then its
linearization point is immediately after the linearization point of the deq instance
d’ which successfully removes the element at slot index-1. Observe that d’ exists
and cannot start after d has completed because at least one deq sets the the
bit corresponding to index-1 in the dequeue vector, and marks the slot by a
successful CAS. Then, d either sees this bit set in the dequeue vector or also
sets the same bit. If latter, d must have failed its own CAS by the EMPTY return
assumption. In both cases, d’ cannot start after d has completed. For returning
EMPTY via executing line 25, the linearization point is the latest of the times
when t->next is observed to be NULL and when the dequeue instance removing
the last unmarked slot has committed. Note that at that instant, the queue is
logically empty, because all the slots in the last segment are found to be either
busy or marked. If d removes a value by executing line 18, then its linearization
point is immediately after the commit point of the dequeue instance removing
the element at index-1. If index=0, then the commit point is the time when the
slot is marked as busy. The linearization points of the enq method follow from
the correctness proof of the ms-queue. ]

Finally, we show that our implementation unlike the queue implementations we
discuss in this paper and, to the best of our knowledge, all the existing queue
implementations is not bound.



Theorem 3. Iy is free.

Proof. Assume that LOOKAHEAD is greater than 1. Let s = enq(1l)enq(2) and
x = deq(2), which results in d(s,m) = k = 1. Now consider the run which is
1) an isolated (sequential) execution of enq(1) by thread 1, followed by

2) an isolated (sequential) execution of enq(2) by thread 1, followed by

3) (1,deq[lz — l12]), followed by
4) (2,deq[ls — l13]), followed by
5) (1,deq[l12,114]), followed by
6) an isolated (sequential) execution of deq() by thread 3 which completes by
removing 2.
Here, we use the notation I; — I; to denote the isolated execution of all the
statements from I; to [;, the latter being exclusive, i.e. not executed. Note that
all six parts are possible to execute. In particular, the last part where deq of
thread 3 terminates with value 2 found in the second slot of the current segment
is possible because the first slot was marked busy by both of the two other
dequeue instances run by threads 1 and 2.

Now, at this point, neither the method instance of thread 1 nor that of thread

2 is unifate. If we extend by having thread 1 execute in isolation, followed by
thread 2, the former will return 1 and the latter will return NULL. If on the other
hand, we swap the order of execution of the two instances, then the dequeue of
thread 2 will return 1 and that of thread 1 will return NULL. Thus, the number
of unifate method instances is given by 3, the two enq instances plus the deq(2)
instance, which is strictly less than |s| + 1+ 1 = 4. This concludes the proof that
Iy is free. O

7 Experimental Evaluation

In this section, we empirically show that it is possible to improve performance
of a bound implementation by turning it into a free implementation. As our
reference model, we use the ms-queue and compare its performance with that of
our free implementation Iy described in the previous section.

We ran our experiments on an 2.3GHz AMD Opteron Processor with 8 cores.
Each experiment starts with a queue containing 160,000 elements and eight
threads run concurrently, each making 20,000 calls to dequeue. Our experiments
are meant to measure the speed of the dequeue instances, which is where our
implementation I differs from the MS-queue. The variable LOOKAHEAD was used
to measure the impact of allowing more elements to be removed by concur-
rent dequeue instances. Intuitively, LOOKAHEAD gives a bound on the number of
concurrent dequeue instances that can remove elements from the queue simulta-
neously. In other words, it gives a bound on the length of consecutive successful
CAS calls (line 14, Fig. 4). The results for varying values of LOOKAHEAD are
reported in Table. 1.

In addition to measuring the time of execution, we also report the number
of failed CAS calls for marking a node (line 14, Fig. 4), which is the main



Table 1: Experimental Results

MS-queue (Ifao) (val) (If72) (If74) (If’8) (va*)

Failed CAS 373219| 208270( 150492 141970| 139253| 138567 121141

Execution time 890000| 882000( 842000| 844000| 852000| 842000| 816000

source of contention for the dequeue implementation. The numbers reported
are the average of five experiments per each entry. The pair (Iy,j) denotes Iy
instantiated with LOOKAHEAD set to j. The last column, (I, *), denotes the free
implementation which does not check skipent at all.

As expected, the number of failed CAS calls decreases with increasing the
value LOOKAHEAD and saturates around the number of cores on which the experi-
ments ran. The execution time of the instance of I; with LOOKAHEAD taken to be
0, which essentially is the same as the original MS-queue, is observed to be com-
parable to that of the MS-queue. Note however that the number of failed CAS
attempts is much lower in (I,0) compared to the MS-queue. This is expected:
if the computation load of methods is increased, the contention decreases (it
becomes less likely that two CAS calls overlap). The computation load of (I¢,0)
is more than that of the MS-queue because of the extra cache traffic for checking
and updating busy slots.

As long as the mechanism for monitoring the number of skipped busy slots,
by comparing skipcnt with LOOKAHEAD, is present, the execution times do not
improve much, after picking a LOOKAHEAD strictly greater than 0. This suggests
that, even though the number of failed CAS attempts decreases with increasing
values of LOOKAHEAD, the communication overhead prevents further speed-up.
Finally, when LOOKAHEAD is completely ignored (last column), we obtain the
best performance, both in terms of number of failed CAS attempts and execution
time, improvements of approximately sixty and ten percent over the performance
figures of the MS-queue, respectively.

8 Conclusion

In this paper, we defined a new property for linearizable implementations. A
linearizable implementation is called free if a thread ¢ can commit without ob-
serving the abstract state at which ¢ linearizes as long as t has the knowledge of
the existence of other threads which will reach some consistent state with which
what t does agrees. For instance, ¢ can remove the third oldest element in a queue
without observing the two oldest elements being removed, as long as ¢ knows
that there are at least two more concurrent dequeue instances which have not
committed yet. This, as we argue, can reduce contention, which in turn has the
potential to improve performance. The data structure of interest in this paper



is queue, and to the best of our knowledge, no existing queue implementation is
free. We show that by turning an existing queue implementation, the Michael-
Scott queue, into a free implementation, we are able to improve performance by
cutting down the number of failed synchronization attempts, made via calls to
Compare-And-Swap.

We believe that similar improvements can be done to any other concurrent
data structure, which requires a total order over its operations in its sequential
specification. Theoretically interesting is the question whether it is provable that
any bound linearizable implementation can be turned into one that is free and
performs better, a question which we leave as future work.

It is worth noting that free implementations will constitute a challenge to the
verification community as the existing approaches rely on the property of being
bound; that is, the existence of a correspondence between the temporal order of
linearization points in the implementation and the logical order of updates to
the abstract data structure.
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The Enqueue Method

procedure eng(x)
nseg «— NewSeg(z)
index < 0;tail «— Q.tail
while true do
if tail->seg[index].val = —1 then > Optimization
if CAS(tail->seg[index].val,—1,0) then
CAS(Q tail, tail, tail->next)
break
if indexr = SEGSIZE — 1 then
if CAS(tail->next,NULL, nseg) then
CAS(Q.tail, tail, tail->next)
break
tail «— Q.tail;indexr «— 0
else
index <« index + 1
end while
end procedure

Fig.6: The enqueue method of a free queue implementation.



