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ABSTRACT The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion
for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of
population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to charac-
terize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been
replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the
inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of
fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone
recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism
to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered
expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes

outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter.
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IVI EIOTIC drivers (also known as segregation distorters)
are selfish alleles or chromosome variants that can
transmit themselves to over 50% of the progeny of heterozy-
gous individuals (Burt and Trivers 2009; Lindholm et al.
2016), often by killing or inactivating gametes that carry
the nondriver allele. This requires the combined action of
at least one distorter gene, which attacks gametes, and a re-
sponder gene, which protects gametes carrying the driver
[reviewed in Lindholm et al. (2016)]. Linkage between the
distorter and responder genes is required for the survival of
the driver, and successful drivers often arise in regions of low
recombination (Schwander et al. 2014). Conversely, the pres-
ence of drivers can select for reduced recombination around the
driving and responding loci (Charlesworth and Hartl 1978).
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Autosomal drivers usually have no detectable phenotypic ef-
fects, and much of what is known about them comes primarily
from studies of two model systems: Segregation Distorter in
Drosophila melanogaster (Larracuente and Presgraves 2012)
and the t-haplotype of the domestic mouse Mus musculus.

The t-haplotype is a 40-Mb variant of the proximal portion
of chromosome 17 (Burt and Trivers 2009; Herrmann and
Bauer 2012), which shows suppressed recombination with the
standard chromosome due to the accumulation of several inver-
sions (three on the t-haplotype and one on the standard chromo-
some; Artzt et al. 1982; Herrmann et al. 1986; Burt and Trivers
2009).When present in females, it is transmitted to 50% of the
progeny, but > 90% of the progeny of t-carrying males inherit it
(Chesley and Dunn 1936; Herrmann and Bauer 2012). Despite
this strong driving capacity, t-haplotypes remain at relatively
low frequency (10-25%; Ardlie 1998), partly because individ-
uals carrying two copies of the t-haplotype have strongly reduced
fertility and viability (Herrmann and Bauer 2012). t-haplotypes
are found throughout the M. musculus species complex (which
includes M. m. domesticus, M. m. musculus, and M. m. castaneus),
but not in the close outgroup M. spretus (Lyon 2003).

The genetics of transmission distortion of the t-haplotype
are well understood, and several drivers, as well as one re-
sponder, have been identified. These lead to morphological
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defects in spermatozoa that do not carry a t-haplotype due to
excessive activation of the chromosome 17 gene Smok (Bauer
et al. 2007, 2012; Herrmann and Bauer 2012). By contrast,
with one exception (Sugimoto 2014), the loci responsible for
the lethality and sterility of homozygous t-haplotypes have
not been mapped to specific genes. It is further unclear if
these are caused by single loci in each t-haplotype, or by
the accumulation of many deleterious mutations [but see
Howell et al. (2004) for at least one example of a cryptic
lethal mutation]. Selection is ineffective in regions of low
recombination and genes located in such regions often accu-
mulate deleterious mutations (Woolfit 2009; Campos et al.
2014). Nonrecombining segregation distorters should be par-
ticularly affected (Dyer et al. 2007), as mutations that arise
there can spread if their harmful effect does not outweigh the
selective advantage of the linked driver, and new mutations
that increase driving efficiency can sweep linked deleterious
variants to fixation (Presgraves et al. 2009). The extent to
which the hundreds of genes on the t-haplotype have deteri-
orated, and whether occasional recombination with the stan-
dard chromosome is sufficient to maintain genetic integrity in
meiotic drivers over millions of years (Dyer et al. 2007; Pieper
and Dyer 2016), remain open questions.

Several questions also remain regarding the origin and
sequence evolution of this meiotic driver. Sequence diver-
gence between the t-haplotype and the standard chromo-
some 17 led to the conclusion that the first inversion arose
over 3 MYA, and inversion 4 ~1.5 MYA (Hammer and Silver
1993). While these are likely overestimates given the current
M. spretus/M. musculus estimates of divergence (Harr et al.
2016), they clearly precede the origin of all the M. musculus
subspecies in which they are found (White et al. 2009), show-
ing that they were present in the ancestral population. How-
ever, the t-haplotype sequences of the different subspecies
show very little differentiation between them, suggesting
that a single t-haplotype introgressed < 0.1 MYA throughout
the species group (Morita et al. 1992; Hammer and Silver
1993). Much of this early work relied on short sequences
and it is unclear if these patterns capture the full history of
this driver; further, where this haplotype introgressed from is
still unknown. Inversions 3 and 4 have been found to carry
more genetic variants than inversion 2, with occasional re-
combination between different t-haplotypes (Dod et al. 2003),
but also with standard chromosomes (Herrmann et al. 1987;
Erhart et al. 1989, 2002; Hammer et al. 1991; Wallace and
Erhart 2008) likely playing a role in their differentiation. How
this varies throughout each inversion is unclear, something
that is potentially problematic, as regions closer to breakpoints
generally show a stronger reduction in recombination than the
middle of inversions (Wallace and Erhart 2008). It has there-
fore not been excluded that differences between inversions
could represent a sampling bias rather than a real difference
in their age, or that estimates of the age of inversions have
been biased by secondary recombination events.

Here, we take advantage of a recently published population
genomics data set of wild mice (Harr et al. 2016), which
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contains RNA-sequencing (RNA-seq) and genomic data de-
rived from 15 M. musculus t-haplotype carriers, 32 noncar-
riers from the same populations and eight individuals of the
closely related species M. spretus, to characterize the t-hap-
lotype at both the genomic and gene expression level.

Materials and Methods
Data source

Harr et al. (2016) recently published extensive population
genomics resources for three subspecies of M. musculus, as
well as its close outgroup M. spretus. These included 15 indi-
viduals heterozygous for t-haplotypes [four in M. m. domes-
ticus, eight in M. m. musculus (excluding mouse CR29 that we
suspect to be a partial t-haplotype-carrier), and three in M. m.
castaneus], as well as many noncarriers [see Table 1 of Harr
et al. (2016)]. For each individual, we downloaded a BAM
alignment file with reads mapped to the house mouse refer-
ence genome and the respective variant-containing variant call
format (VCF) file from http://wwwuser.gwdg.de/~evolbio/
evolgen/wildmouse/.

Harr et al. (2016) further generated RNA-seq reads for
brain, liver, spleen, heart, thyroid, kidney, and testis of the
same 16 M. m. domesticus specimens that were used for ge-
nomic sequencing. The RNA-seq reads were downloaded
from the National Center for Biotechnology Information
Short Reads Archive (bioproject PRJEB11897).

A detailed protocol of all the steps involved and code used in
our analysis is provided in Supplemental Material, File S1, while
supplementary figures, tables, and data are provided in File S2.

Copy number variant (CNV) detection

To avoid biases caused by polymorphic or t-specific CNVs, we
called CNVs using the software Control-FREEC (Boeva et al.
2012) and combined these with the list of CNVs that Harr
et al. (2016) obtained using the software CNVnator; both
methods rely on differences in genomic coverage to detect
deletions or duplications. We first ran Control-FREEC on each
of the 55 BAM files against the reference genome, using win-
dow sizes of 1 and 5 kb. To fully detect t-specific CNVs, we
then used Control-FREEC to call CNVs between the pooled
t-carrier mice of each subspecies and four randomly chosen
non-t-carrier mice controls from the same subspecies (see
details in the supplemental methods described in File S1).
A genomic region was classified as a CNV if it was detected in
at least one sample by either of the two software packages.

SNP filtering

We downloaded the two multisample VCF files provided by Harr
et al. (2016). One contained the high-quality variants obtained
by GATK’s VSQR filtering, while the other contained the unfil-
tered raw SNPs. We conducted our entire analysis on both var-
iant sets, and used BCFtools (Li 2011) to handle the VCF files.
We carried out our analysis using three different SNP-filtering
procedures (detailed in File S1). In filtering procedure 1, we
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Figure 1 Heterozygosity levels and phyloge-
netic topology along the t-haplotype of
M. m. domesticus. The black line shows the
heterozygous SNP density of t-carrier mice di-
vided by the heterozygous SNP density of con-
trol noncarrier mice. The ratio is averaged over
1-Mb windows (sliding by 1-kb). Gray bars
below show, for each 0.5-Mb segment of
the t-complex, the proportion that was iden-
tified as a CNV in any of the 55 mice. Green
bars indicate in each 0.5-Mb segment the pro-
portion of trees that show all M. m. domesticus
t-haplotypes outside of the M. musculus spe-
cies cluster (see Figure 2 and Materials and
Methods). We plotted the data for the entire
chromosome 17 without masking CNVs. Chr,
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used the variants classified as PASS by Harr et al. (2016),
and removed sites that were not SNPs, such as indels (Fig-
ure 1 and Figure S3 and Figure S4 in File S2). We further
deleted sites located within CNVs for the phylogenetic
and deterioration analyses (Figure 2, Figure 3, Figure 4,
and Figure S6, Figure S7, Figure S8, and Figure S9 in
File S2).

The raw variants were similarly filtered for CNVs and non-
SNP variants, as well as additional criteria:

Filtering procedure 2: a variant was kept only if its total
coverage was at least half of the average coverage for
the given sample (reported in Table 1 of Harr et al
2016); this yielded Figure S1 in File S2.

Filtering procedure 3: we used the same coverage filtering
as in procedure 2, and additionally required that each
heterozygous allele be supported by at = 30% of the
reads (Figure S2 in File S2).

Estimates of heterozygosity in M. m. domesticus

We extracted variants for each M. m. domesticus sample from
the multisample VCF file and retained only heterozygous
sites. We then computed the average heterozygous SNP
density of t-carrier mice in 1000-bp regions averaged over
sliding 1-Mb windows. We plotted this density curve divided
by the average of the corresponding densities computed in all
M. m. domesticus non-t-carrier mice.

Extracting “pseudo-t-haplotype” VCF files from
heterozygous t-carriers

Given that t-carrier mice are heterozygous for the t-haplotype,
SNPs found in their VCF files could represent t-derived vari-
ants or SNPs from their standard chromosome. SNPs that
were homozygous in each t-carrier mouse were kept for fur-
ther analysis, as they were likely present on both chromo-
somes. At heterozygous sites, we discarded all SNPs that
were found in at least one noncarrier individual of any of
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the M. musculus subspecies and retained all others as putative
t-haplotype SNPs. One caveat of this subtraction step is that
it excluded any polymorphism that was present on both a
t-haplotype and a standard chromosome, if it happened to be
heterozygous in the t-carrier; however, given the low recom-
bination rates between the t and the standard chromosome,
there should be few shared segregating variants between
the standard and t-haplotypes, such that these should be
a minority. Conversely, rare genetic variants on the standard
chromosome of t-carriers may be wrongfully retained as
t-specific if they are not present in any of the noncarriers
(but given the high level of t-to-standard chromosome diver-
gence relative to genetic diversity in noncarriers, as shown
in Figure 1, these should once again represent only a small
minority of SNPs).

Phylogenetic analysis

We examined the phylogeny of the 15 t-haplotypes from the
three different M. musculus subspecies, along with the non-
carrier mice from each population. SNP profiles from eight
individuals from a closely related species, M. spretus, served
as the outgroup.

We used the pseudo-t-haplotype SNP profiles (see pre-
vious section) to represent the 15 t-haplotypes of the car-
rier mice. We converted all VCF files to FASTA files using
the mouse reference background with the consensus func-
tion of BCFtools (Li 2011), and concatenated all sequences
into a multisample FASTA file. We subsampled this FASTA
file into the desired genomic regions using the faidx func-
tion of SAMtools (Li et al. 2009). To compute the maxi-
mum likelihood phylogenies of the 15 t-haplotypes, and
the 40 noncarriers from M. m. domesticus, M. m. musculus,
M. m. castaneus, and M. spretus, we used the phylogenetic
software IQTree (Nguyen et al. 2015) with an underlying
Hasegawa-Kishono-Yano (HKY) model of DNA substitu-
tion. We assessed branch support values using an ultra-
fast bootstrap approximation UFBoot (Minh et al. 2013),
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Figure 2 Extent of recombination along the
t-haplotype. (A-C) Example trees showing to-
pologies that suggest very recent (A), recent
(B), or no (C) recombination between the
t-haplotype and the standard chromosome. In
each tree, D, C, M, and S, respectively, represent
noncarriers of M. m domesticus, M. m. castaneus,
M. m. musculus, and M. spretus, while t-D, t-C,
and t-M represent pseudo-t-haplotypes of M. m
domesticus, M. m. castaneus, and M. m. musculus.
Topology A is denoted with yellow, B with
orange, and C with green. (D) The propor-
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which we iterated 1000 times. For computation of the max-
imum parsimony phylogenies, we used the software MEGA
(Kumar et al. 2016) with default parameters but keeping
only one tree, while for the neighbor-joining method we used
FastPhylo with default parameters (Khan et al. 2013).

Nonsynonymous to synonymous ratio (NS/S) of SNPs at
varying frequencies

SNPs were classified as synonymous or nonsynonymous using
the SNPeff software (Cingolani et al. 2012). We calculated
the frequencies of each synonymous and nonsynonymous
SNP in the four M. m. domesticus pseudo-t-haplotypes, in
the 24 non-t-carrier M. m. domesticus chromosomes, and in
the 16 M. spretus chromosomes using the genotypes provided
in the VCF files. We counted a SNP once when it was found
in a heterozygous individual, and twice when it was in a
homozygous individual. In the case of the 24 non-t-carrier
M. m. domesticus chromosomes, the four frequency classes were
1-6, 7-12, 13-18, and 19-24, while for the 16 M. spretus
chromosomes, the frequency classes corresponded to 1-4, 5-8,
9-12, and 13-16. In the case of the four pseudo-t-haplotypes,
the respective frequency classes were 1, 2, 3, and 4.

Gene expression analysis

We obtained estimates of gene expression for each M. m.
domesticus RNA-seq sample with Kallisto (Bray et al. 2016),
using the M. musculus GRCm38.p4 coding sequence as refer-
ence. The resulting Kallisto transcript quantification was used
as input for Sleuth, a software for differential expression
analysis, using the gene aggregation feature (Pimentel et al.
2016).

Data availability

All data analyzed in this study were previously published (Harr
etal. 2016). The authors affirm that all analyses performed are
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35 40 Mb on chromosome 17).

fully described within the Materials and Methods and Results of
the manuscript.

Results
Variable levels of divergence along the t-haplotype

We examined the extent of differentiation between the
t-haplotype and the standard chromosome 17 of M. m. domes-
ticus, for which there were four mice carrying the t-haplotype.
While all the main figures are based on the high-quality SNPs
provided by Harr et al. (2016), two alternative SNP-filtering
procedures based on (1) coverage, and (2) coverage and
allele frequency (see Materials and Methods), were used to
check that results held independent of the filtering procedure
(Figure S1 and Figure S2 in File S2).

We plotted the averaged SNP density of the four t-carrier
mice along chromosome 17, divided by the respective aver-
age for noncarriers (for overlapping sliding windows of 1 Mb,
Figure 1). Only heterozygous SNPs were used; in t-carriers
these SNPs correspond to differences between the t-haplotype
and the standard chromosome, whereas in control individuals
they correspond to general levels of heterozygosity. Noncarrier
individuals were used to control for variable genetic diversity
rates along the chromosome (Figure S3 in File S2).

Figure 1 shows that t-carriers have increased heterozygos-
ity in the region from 5 to 40 Mb of chromosome 17, consis-
tent with the expected location of the t-haplotype. The excess
of heterozygosity varies, with several regions showing a
difference > 10-fold. Many of these also overlap with CNVs
identified through differences in coverage between individu-
als (shown in gray in Figure 1), but these CNVs represent a
subset of the high-divergence regions, so divergence in du-
plicated regions does not account for the increase in het-
erozygosity. These results hold when only intergenic and
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Figure 3 Recent history of the t-haplotype. (A) Model phylogeny under the scenario of recent introgression of a single t-haplotype into all M. musculus
subspecies. (B) Model phylogeny under the hypothesis of independent maintenance of ancestrally present t-haplotypes in the different subspecies.
CAST, DOM, MUSC, and SPRET represent noncarriers of M. m. castaneus, M. m. domesticus, M. m. musculus, and M. spretus, respectively, while
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haplotypes and noncarrier mice from the three M. musculus subspecies and the sister species, M. spretus. Nodes with bootstrap values > 94% are
marked with red dots. Only regions of the t-complex where no recombination between the standard chromosomes and the t-haplotype could be
detected were included (green regions in Figure 2). Sequences starting with “t-" (highlighted with a green background) refer to t-haplotypes. AFG, CZE,
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France; CAST stands for M. m. castaneus; and SPRE for M. spretus. (D) Percentage of 5-kb windows without recombination for which the resulting
phylogeny yields one subspecies as the outgroup to the others (“none” shows the proportion of windows for which no subspecies was an outgroup).
Gray bars represent the phylogeny of non-t-carriers, and green bars represent the phylogeny of pseudo-t-haplotypes (see Materials and Methods).

synonymous SNPs are used (Figure S4B in File S2) and when
we compare instead the pseudo-t-haplotype SNP density (see
Materials and Methods) to the SNP density of M. spretus (to
control for fast-diverging regions, Figure S4, C-F in File S2).
We also get a consistent pattern of divergence along the
t-haplotype when we reproduce Figure 1 using insertions and
deletions (Figure S5 in File S2).

We indicated the putative location of the four nonoverlap-
ping inversions (Braidotti and Barlow 1997; Harrison et al.
1998; Herrmann et al. 1999; Zwart et al. 2001; Bauer et al.
2007, 2012; Sugimoto 2014) (inversions 1-4 in Figure 1), as
well as the position of the genes known to be involved in
transmission distortion. As expected, the largest peak of di-
vergence is at the distal end of the second inversion (based on
the standard sequence orientation), near the Smok2A gene,
which is in the vicinity of the previously identified responder
gene Tcr (Herrmann et al. 1999; Tcr itself is not present on
the standard chromosome). This region is assumed to have
been ancestrally recruited to the t-haplotype (Hammer and
Silver 1993). However, inversion 4, which was hypothesized
to have been acquired much later (Hammer and Silver 1993),
contains peaks of nearly equally high divergence at ~37 Mb.
More generally, levels of divergence differ less between the
inversions than they do within them, with putative inversion

boundaries often coinciding with major peaks of divergence
(Figure 1).

Phylogenetic patterns along the t-haplotype suggest
widespread recombination with the
standard chromosome

While other factors could create a mosaic pattern of differen-
tiation, the colocalization of high divergence and inversion
boundaries suggests that recombination with the standard
chromosome in the middle of inversions (Wallace and Erhart
2008) may have eroded the genetic differentiation of the
t-haplotype, as has been suggested by several smaller-scale
studies (Herrmann et al. 1987; Erhart et al. 1989, 2002;
Hammer et al. 1991; Wallace and Erhart 2008). Such recom-
bination events can be detected through changes in the phy-
logenetic topology of the t- and standard chromosomes of the
M. musculus subspecies: segments of the t-haplotype that
have not recombined since the split of the three subspecies
should appear as an outgroup to them, while segments that
have undergone recent recombination should cluster within
the species group.

After removing SNPs from regions that were classified as
CNVs, we created “pseudo-t-haplotype” SNP profiles from
each of the VCF files of the 15 t-carrier mice provided by
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determined based on the phylogenetic topologies shown in Figure 2.

Harr et al. (2016). Since these mice are heterozygous for the
t-haplotype and also carry a standard chromosome 17, we
discarded heterozygous SNPs that were also found in any
of the noncarrier individuals. Homozygous SNPs were pre-
sumed to be both on the standard chromosome and t-haplotype,
and therefore kept even if also present in noncarriers.

After obtaining t-specific SNPs for each of the 15 t-carriers,
we created t-haplotype sequences by replacing these SNPs
into the M. m. domesticus reference genome. We did the same
for each of the noncarrier mice (12 M. m. domesticus, 13 M. m.
musculus, 7 M. m. castaneus, and 8 M. spretus individuals), for
which the list of variants was supplied by Harr et al. (2016).
To verify the reliability of our pipeline, we applied it to a
region of the gene Tcp-1 for which t-haplotype and standard
sequences have been published (Morita et al. 1992; Figure S6
in File S2). Of the 24 published t-specific SNPs, 22 (92%)
were recovered on our pseudo-t-haplotypes.

Using the HKY nucleotide substitution model of the phy-
logenetic software IQTree, we estimated the phylogenetic
topology of the 15 t-haplotypes and 40 noncarriers in non-
overlapping 5-kb windows along the t-complex (5-40 Mb on
chromosome 17). For each subspecies, we observed three
distinct tree topologies (Figure 2, A-C): (1) at least one of
their t-haplotypes was positioned within the subspecies; (2)
at least one of their t-haplotypes was positioned within the M.
musculus clade, but all their t-haplotypes were outgroups
relative to the noncarriers of the subspecies; and (3) all
t-haplotypes from the subspecies were located outside of the
M. musculus clade. The first type of windows supports more
recent and/or extensive recombination events, and the second
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type older or smaller-scale recombination events. We also
obtained phylogenetic trees for each of these windows using
maximum parsimony and neighbor-joining approaches (Figure
S7, A and B in File S2, respectively). The resulting tree topolo-
gies are consistent for all three methods in 75% (M. m. castaneus)
to 85% (M. m. domesticus and M. m. musculus) of the windows,
and similarly distributed along the t-haplotype for all the
methods.

There is a good correspondence between the peaks of high
divergence and regions where most windows show no evi-
dence of recent recombination between the t and standard
chromosomes (green bars in Figure 1). The phylogenetic pat-
terns along the t-haplotype therefore support the view of
four ancient inversions, of which large sections have been
replaced by genetic material from the standard chromosome,
likely through occasional events of recombination between
the two.

The phylogeny of the t-haplotype does not mirror that
of the standard chromosome, but does not support a
single recent introgression

A previous phylogenetic analysis suggested that a single
t-haplotype introgressed into all M. musculus subspecies
< 0.8 MYA (Morita et al. 1992). Figure 3A shows the ex-
pected phylogeny under this scenario: all t-haplotypes are
highly diverged from the standard chromosomes, but very
similar to each other, and the t-haplotype tree is polytomic.
Figure 3B is the expected phylogeny if t-haplotypes were
present in the three M. musculus subspecies before these
split, and have been maintained in each independently. In
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this case, the phylogenetic topology of t-haplotypes reflects
the history of the M. musculus species complex.

To test these two models, we estimated the phylogeny of
the 15 t-haplotypes and 40 noncarrier mice using only the
364 5-kb windows for which no recombination could be de-
tected using any subspecies and phylogenetic method (to
exclude signals caused by recent genetic exchange with the
standard chromosomes). Figure 3C shows that the resulting
phylogeny is not fully consistent with a very recent sweep of a
single t-haplotype across the three subspecies: t-haplotypes
have diverged sufficiently for M. m. castaneus and M. m.
domesticus t-haplotypes to cluster by subspecies, while
M. m. musculus t-haplotypes are outside of the M. m. casta-
neus/M. m. domesticus cluster. Since polytomies can mistak-
enly yield highly supported resolved trees (White et al.
2009), we tested whether the branch leading to the M. m.
castaneus/M. m. domesticus cluster was significantly different
from zero (Almeida et al. 2011). We took the maximum likeli-
hood tree shown in Figure 3C, manually collapsed this
branch, and ran the 1Q-tree “tree topology test” on the orig-
inal and the polytomic trees. This yielded much higher sup-
port for the original tree [P = 0, Shimodaira-Hasegawa test
(Shimodaira and Hasegawa 1999)].

We ran two more controls to check that the clustering of the
M. m. castaneus and M. m. domesticus t-haplotypes was not an
artifact of the data or analysis (Figure S8 in File S2). First, we
reestimated the phylogeny using more stringent pseudo-t-
haplotype SNP profiles, which included only SNPs that were
not found in any of the noncarriers of any subspecies, even if
they were homozygous in t-carriers (Figure S8B in File S2).
The M. m. musculus t-haplotypes remained outside of the
M. m. domesticus/M. m. castaneus cluster. Second, we applied
our SNP subtraction pipeline to the rest of chromosome
17 (50-90 Mb), to check that our procedure was removing
enough SNPs from t-carriers to prevent them from clustering by
subspecies simply due to residual variants (Figure S8A in File
S2). This yielded an unresolved species tree for the t-carriers.

The data were also inconsistent with a simple model of
maintenance of an ancestral t-haplotype in the three subspe-
cies: while the species tree obtained for the noncarriers
reflected the presumed history of the species complex
(White et al. 2009), with M. m. castaneus and M. m. musculus
clustering as sister species, M. m. musculus was an outgroup
to the other two for the t-haplotype. This discrepancy was
fairly consistent: 83% of the resolved 5-kb windows clustered
M. m. musculus and M. m. castaneus for the noncarrier indi-
viduals, whereas 54% of such windows placed M. m. musculus
as an outgroup for the t-haplotype (Figure 3D). Maximum
parsimony and neighbor-joining approaches also supported
primarily the M. m. domesticus/M. m. castaneus t-haplotype
sister relationship (Figure S9, A and B in File S2, respec-
tively). This confirms that t-haplotypes were still ex-
changed between the subspecies during early speciation
(Morita et al. 1992), but suggests that some genetic
flow persisted for longer between M. m. domesticus and
M. m. castaneus.

While these patterns generally hold using our alternative
SNP-filtering procedures (Figure S1 and Figure S2 in File
S2), the allele frequency filtering yields support for both the
M. m. castaneus/M. m. domesticus and the M. m. musculus/
M. m. domesticus sister relationships. This seems to be driven
by the loss of many heterozygous SNPs in low-coverage
individuals due to deviations in allele frequency from 50%;
when only a coverage filter is applied, the results once again
support primarily the M. m. castaneus/M. m. domesticus clus-
tering of t-haplotypes.

Recombination with the standard chromosome
counteracts the genetic deterioration of the t-haplotype

We estimated the ratio of nonsynonymous to synonymous
SNPs (NS/S) of the pseudo-t-haplotype SNP profiles and
compared it to the respective ratio for noncarrier M. m.
domesticus individuals. When all SNPs are considered, NS/S
is similar (0.74 for the t-haplotypes and 0.69 for noncarriers);
however, most nonsynonymous SNPs found on the standard
chromosomes are segregating at low frequency, as expected if
they are overall deleterious, whereas many are fixed or at
high frequency on the t-haplotype. We therefore reestimated
NS/S for different SNP frequency classes (Figure 4A) among
the four t-haplotypes, 24 control M. m. domesticus and 16
M. spretus chromosomes, for the t-complex region. As expected,
both M. m. domesticus and M. spretus show a decreased NS/S
ratio for high-frequency SNPs. Pseudo-t-haplotypes harbor an
excess of nonsynonymous SNPs for all frequency classes. This
difference is more pronounced for mutations that are shared
by 50-100% of the chromosomes (P = 0.07 and P = 0.007 for
frequency classes 0.75 and 1, respectively, between M. m.
domesticus and the t-haplotypes, and P = 0.006 and P =
0.06 for the corresponding comparisons between M. spretus
and the t-haplotype using Yates-corrected x? test), consistent
with the idea that the t-haplotype has accumulated an excess
of deleterious variants.

It was recently suggested that occasional gene flow be-
tween a meiotic drive system of Drosophila and the standard
chromosome was sufficient to purge deleterious mutations
from the driver (Pieper and Dyer 2016), and that this may
contribute to its long-term viability. We similarly hypothe-
sized that occasional recombination between the t-haplotype
and the standard chromosome may contribute to the regen-
eration of coding sequences, so fixed SNPs in nonrecombined
regions should have higher NS/S overall than regions that
have recently recombined with the standard chromosome.
We assigned SNPs to nonrecombined, recently or very re-
cently recombined regions of the t-complex based on the
M. m. domesticus phylogenetic topologies shown in Figure
2. For each category, we computed NS/S for SNPs found on
the t-haplotypes and on M. spretus (as a control for differ-
ences in selective pressure along the chromosome). Figure 4B
shows that while M. spretus harbors no difference in NS/S
between the three types of regions, t-haplotypes have higher
NS/S in the nonrecombined regions than in either class of
recombined regions (P < 0.001, Yates-corrected x? tests) and
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the corresponding regions in M. spretus (P = 0.008). The two
classes of recombined regions are not significantly different
from each other or from the corresponding regions in
M. spretus.

The decreased NS/S in the most recently/extensively
recombined regions was observable using both of our alter-
native filtering procedures (Figure S1 and Figure S2 in File
S2), but did not yield significant differences for the third
filtering procedure (based on coverage and allele-specific fre-
quency, Figure S2 in File S2), again due to the removal of
many heterozygous SNPs in low-coverage individuals.

CNVs drive expression divergence in t-haplotype carriers

While several chromosome 17 genes were found to differ in
expression between t-haplotype carriers and noncarriers
(Lader et al. 1989; Ha et al. 1991; Braidotti and Barlow 1997;
Zwart et al. 2001), the overall effect of carrying a degenerat-
ing t-haplotype on genome-wide patterns of gene expression
has not yet been assessed. We took advantage of the avail-
ability of RNA-seq data for several tissues derived from the
same M. m. domesticus invidividuals (Harr et al. 2016) to
contrast gene expression levels (in Transcripts Per Million,
TPM) between the four t-carrier mice and all noncarriers
from France and Germany (Table S1 in File S2).

Figure 5 shows the extent to which expression has
changed along the t-haplotype in brain, liver, and testis
(other tissues are shown in Figure S10 in File S2), using a
sliding window of 20 genes. Although different genes are
differentially expressed in each tissue (Table S1 in File S2
and supplemental data in File S2), the general patterns of
divergence are similar for all tissues, with large peaks of
expression divergence at ~5 and 39 Mb. Both of these regions
overlap with CNVs that were detected when the coverage of
t-haplotype carriers and noncarriers was compared (gray
bars in Figure 5).

Duplications and deletions are known to affect gene ex-
pression and have been detected for several differentially
expressed genes on the t-haplotype (Braidotti and Barlow
1997; Zwart et al. 2001). Similarly, gene amplification was
recently found to be essential for R2D2, another mouse mei-
otic driver (Didion et al. 2016; Morgan et al. 2016), and
meiotic drivers on the mouse sex chromosomes have been
postulated to lead to the extensive gene amplification that
is observed on both the X and Y chromosomes (Soh et al.
2014). We therefore tested whether genes that overlapped
with t-specific CNVs had diverged more in expression than
the rest of the t-haplotype. The boxplots in Figure 5 show that
this is indeed the case (P < 107° in all three tissues), with a
median change of > 30% for CNV-overlapping genes vs. 10%
for other genes.

Genes located in windows that have recently recombined
with the standard chromosome were expected to show lower
levels of gene expression divergence. We classified genes into
each recombination class if = 80% of the windows they over-
lapped with were of that class. While genes in recently recom-
bined regions had a lower median percentage change than
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unrecombined windows in all tissues (Figure 5 and Figure
S10 in File S2), the difference was generally not significant.
This is likely due to the fact that highly diverged regions often
overlap with CNVs (Figure 1) and were excluded from our
phylogenetic analysis, such that only a few genes were left in
unrecombined regions.

Finally, while our differential expression analysis in the
testis recovered mainly chromosome 17 genes that were
previously known to differ in expression in t-carriers (Lader
etal. 1989; Ha et al. 1991; Braidotti and Barlow 1997; Zwart
et al. 2001), one of the genes with the lowest g-value,
Ppplcb, is located on chromosome 5; despite not being on
the t-haplotype, it shows a consistent 10-fold overexpression
in t-carriers (Table S1 in File S2). Protein phosphatase 1 pro-
teins are known to be essential for spermatogenesis (Silva
et al. 2014). One of the active forms of PP1 has been shown
to repress sperm motility in the epididymis, making Ppplcb a
promising candidate for involvement in drive and/or re-
sponse to the driver (Vijayaraghavan et al. 1996). Another
2 out of 12 differentially expressed genes (Dr1 and Scamp2)
are located on other chromosomes, emphasizing that reg-
ulatory changes on the t-haplotype can affect its biology
through changes in the expression of genes located on other
chromosomes.

Discussion

Despite having been studied for close to a century, reduced
recombination rates on the t-haplotype have limited the
power of traditional genetic studies for this selfish element,
and next-generation sequencing approaches offer a promis-
ing alternative to complement this body of work.

The variable levels of divergence along the t-haplotype
complicate the inference of the history of the four inversions.
While large sections of inversion 4 have lower divergence
levels than the other inversions, as expected if it was acquired
later (Hammer and Silver 1993), a peak of very high diver-
gence is found at ~37-40 Mb. Two hypotheses could account
for this: (1) inversion 4 may be of similar age as inversion 2,
but much of its differentiation may have been lost through
recombination with the standard chromosome, and (2) this
region may have particularly high rates of divergence. Al-
though we do find evidence of recombination over much of
inversion 4, the region of highest divergence contains clusters
of olfactory, immune, and pheromone genes, all of which
tend to be highly polymorphic and fast evolving (Figure S3
in File S2). We control for these by normalizing by the non-
carrier heterozygosity, by checking that the pattern holds
when only neutral SNPs are used (Figure S4B in File S2),
and by comparing the SNP density of the pseudo-t-haplotype
to the SNP density of M. spretus (Figure S4, C-F in File S2).
However, the reduced recombination rates on the t-haplotype
may have led to the fixation of many ancestral neutral poly-
morphisms, and consequently increased rates of neutral di-
vergence specifically on the t-haplotype. These results are
therefore not incompatible with a younger age of inversion
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Figure 5 Divergence of gene expression between t-carriers and noncarriers. (A-C) Percentage difference between the average gene expression of
t-carrier and noncarriers (estimated as: | average_t-carrier — average_noncarrier | / average_noncarrier), plotted using a sliding window of 20 genes (using all
genes with expression values > 10 in noncarriers). Expression divergence is shown for (A) the brain, (B) the liver, and (C) the testis. Regions that contain
t-specific copy number variants (CNVs) (obtained by comparing the coverage of t-carriers to noncarriers, see Materials and Methods) are marked by gray
rectangles. (D) The percentage of 5-kb windows for which no recombination was detected on M. m. domesticus t-haplotypes. (E-G) Boxplots showing the
percentage difference in expression of t-carriers relative to that of noncarriers for genes that overlap with at = 80% 5-kb windows for which no
recombination was detected (green), some/old recombination was detected (orange), and recent/extensive recombination was detected (yellow), in (E)
the brain, (F) the liver, and (G) the testis. (H-J) Boxplots showing the percentage difference in expression of t-carriers relative to that of noncarriers for genes
overlapping or not overlapping a CNV, in (H) the brain, (I) the liver, and (J) the testis.

4, and emphasize that care should be taken when interpret-
ing data obtained from small genomic regions.

Genetic exchange between the t-haplotype and the stan-
dard homolog was supported both by the phylogenetic topol-
ogy and by the colocalization of some of the most diverged
regions with putative inversion boundaries. Although several
studies have found evidence for small-scale gene conversion
in the fourth and largest inversion (Herrmann et al. 1987;
Erhart et al. 1989, 2002; Hammer et al. 1991; Wallace and
Erhart 2008), the extent of recombination that we observe
here is unexpected, as repressed recombination is thought to
be a hallmark of successful segregation distorters. However, it
is in-line with Pieper and Dyer (2016), who suggested that
occasional recombination events could provide a mechanism
to counteract the accumulation of deleterious mutations on
meiotic drivers due to Hill-Robertson effects. Consistent with
this, the excess of fixed nonsynonymous SNPs on the t-haplotype
is reduced in regions for which we detect recent recombination.
Another effect of occasional gene flow with the standard homo-
log may be the maintenance of optimal gene expression levels on
the t-haplotype. Although several genes showed altered expres-
sion in t-carriers (12 out of 463 genes in the testis, fewer in other
tissues), the vast majority did not, and it is likely that such con-
served expression results at least in part from genetic homogeni-
zation due to recombination.

Finally, our phylogenetic analysis uncovered variation be-
tween t-haplotypes sampled from the three M. musculus sub-
species, and a phylogenetic topology that disagrees with that
of the standard subspecies tree, but also seems inconsistent
with a very recent introgression of a single t-haplotype. Some
caveats should be taken into account when interpreting these
data. First, we use pseudo-t-haplotypes, which may contain
some residual SNPs from the standard chromosome, and it
will be important to confirm these results using sequences
derived from homozygous t-carriers. Second, gene conver-
sion from the standard chromosome to the t-haplotype could
result in t-haplotypes becoming quickly differentiated after
introgressing. Finally, the evolutionary history of the M. mus-
culus subspecies complex is itself challenging to disentangle,
as the three subspecies are estimated to have diverged less
than half a million years ago, and because there is a varying
rate of gene flow between them and across genomic regions
(Geraldes et al. 2008). Despite this variance, 39% of the ge-
nome supports the M. m. musculus/M. m. castaneus sister
species relationship (White et al. 2009), which is most likely
the primary phylogenetic history (in agreement with our
findings for noncarriers). Contrary to this, the M. m. casta-
neus and M. m. domesticus t-haplotypes are most closely re-
lated in 53% of the windows. However, the fact that the
other two topologies are also supported by 16% (for the
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M. m. musculus/M. m. castaneus cluster) and 30% (M. m.
domesticus/M. m. castaneus cluster) of windows suggests
that, similar to what occurred on the standard chromosome,
gene flow between the t-haplotypes of the different subspe-
cies may have shaped the phylogenetic topology of this large
meiotic driver, as expected if t-haplotypes were being regu-
larly exchanged between subspecies during early speciation.

Conclusions

Our global analysis of the sequence and expression patterns of
the t-haplotype confirmed its ancient origin, the involvement
of large parts of chromosome 17, and revealed an excess of
nonsynonymous mutations consistent with the genetic dete-
rioration that is expected in the absence of recombination.
Surprisingly, this was counteracted by occasional recombina-
tion with the standard chromosome over a large proportion
of the t-complex, providing an explanation for its long-term
survival. Finally, the fact that most of the change in gene
expression is driven by the accumulation of CNVs, but that
regulatory changes on the t-haplotype can also affect the
expression of genes elsewhere, provides new insights into
the biology of the t-haplotype, and opens new avenues of
exploration for this model segregation distorter.

Acknowledgments

We are grateful to Dominik Schrempf for assistance with the
phylogenetic analyses, to Brian Charlesworth for comments
on the manuscript, and to the Vicoso laboratory for many
lively discussions. This project has received funding from the
European Research Council under the European Union’s Horizon
2020 research and innovation program (grant agreement number
715257).

Literature Cited

Almeida, F. C., N. P. Giannini, R. DeSalle, and N. B. Simmons,
2011 Evolutionary relationships of the old world fruit bats
(Chiroptera, Pteropodidae): another star phylogeny? BMC Evol.
Biol. 11: 281.

Ardlie, K. G., 1998 Putting the brake on drive: meiotic drive of t
haplotypes in natural populations of mice. Trends Genet. 14:
189-193.

Artzt, K., H. S. Shin, and D. Bennett, 1982 Gene mapping within
the T/t complex of the mouse. II. Anomalous position of the H-2
complex in t haplotypes. Cell 28: 471-476.

Bauer, H., N. Véron, J. Willert, and B. G. Herrmann, 2007 The
t-complex-encoded guanine nucleotide exchange factor Fgd2
reveals that two opposing signaling pathways promote trans-
mission ratio distortion in the mouse. Genes Dev. 21:
143-147.

Bauer, H., S. Schindler, Y. Charron, J. Willert, B. Kusecek et al.,
2012 The nucleoside diphosphate kinase gene Nme3 acts as
quantitative trait locus promoting non-Mendelian inheritance.
PLoS Genet. 8: e1002567.

Boeva, V., T. Popova, K. Bleakley, P. Chiche, J. Cappo et al,
2012 Control-FREEC: a tool for assessing copy number and
allelic content using next-generation sequencing data. Bioinfor-
matics 28: 423-425.

374 R. K. Kelemen and B. Vicoso

Braidotti, G., and D. P. Barlow, 1997 Identification of a male
meiosis-specific gene, Tcte2, which is differentially spliced in
species that form sterile hybrids with laboratory mice and de-
leted in t chromosomes showing meiotic drive. Dev. Biol. 186:
85-99.

Bray, N. L., H. Pimentel, P. Melsted, and L. Pachter, 2016 Near-
optimal probabilistic RNA-seq quantification. Nat. Biotechnol.
34: 525-527.

Burt, A., and R. Trivers, 2009 Genes in Conflict. Harvard Univer-
sity Press, Cambridge, MA.

Campos, J. L., D. L. Halligan, P. R. Haddrill, and B. Charlesworth,
2014 The relation between recombination rate and patterns of
molecular evolution and variation in Drosophila melanogaster.
Mol. Biol. Evol. 31: 1010-1028.

Charlesworth, B., and D. L. Hartl, 1978 Population dynamics of
the segregation distorter polymorphism of DROSOPHILA
MELANOGASTER. Genetics 89: 171-192.

Chesley, P., and L. C. Dunn, 1936 The inheritance of taillessness
(Anury) in the house mouse. Genetics 21: 525-536.

Cingolani, P., A. Platts, Le L. Wang, M. Coon, T. Nguyen et al.,
2012 A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff. Fly (Austin) 6: 80-92.

Didion, J. P., A. P. Morgan, L. Yadgary, T. A. Bell, R. C. McMullan
et al., 2016 R2d2 drives selfish sweeps in the house mouse.
Mol. Biol. Evol. 33: 1381-1395.

Dod, B., C. Litel, P. Makoundou, A. Orth, and P. Boursot,
2003 Identification and characterization of t haplotypes in
wild mice populations using molecular markers. Genet. Res.
81: 103-114.

Dyer, K. A., B. Charlesworth, and J. Jaenike, 2007 Chromosome-
wide linkage disequilibrium as a consequence of meiotic drive.
Proc. Natl. Acad. Sci. USA 104: 1587-1592.

Erhart, M. A,, S. J. Phillips, F. Bonhomme, P. Boursot, E. K. Wakeland
et al,, 1989 Haplotypes that are mosaic for wild-type and t complex-
specific alleles in wild mice. Genetics 123: 405-415.

Erhart, M. A., S. Lekgothoane, J. Grenier, and J. H. Nadeau,
2002 Pattern of segmental recombination in the distal inver-
sion of mouse t haplotypes. Mamm. Genome 13: 438-444.

Geraldes, A., P. Basset, B. Gibson, K. L. Smith, B. Harr et al,
2008 Inferring the history of speciation in house mice from
autosomal, X-linked, Y-linked and mitochondrial genes. Mol.
Ecol. 17: 5349-5363.

Ha, H.,, C. A. Howard, Y. I. Yeom, K. Abe, H. Uehara et al,
1991 Several testis-expressed genes in the mouse t-complex
have expression differences between wild-type and t-mutant
mice. Dev. Genet. 12: 318-332.

Hammer, M. F., and L. M. Silver, 1993 Phylogenetic analysis of
the alpha-globin pseudogene-4 (Hba-ps4) locus in the house
mouse species complex reveals a stepwise evolution of t haplo-
types. Mol. Biol. Evol. 10: 971-1001.

Hammer, M. F., S. Bliss, and L. M. Silver, 1991 Genetic exchange
across a paracentric inversion of the mouse t complex. Genetics
128: 799-812.

Harr, B., E. Karakoc, R. Neme, M. Teschke, C. Pfeifle et al.,
2016 Genomic resources for wild populations of the house
mouse, Mus musculus and its close relative Mus spretus. Sci.
Data 3: 160075.

Harrison, A., P. Olds-Clarke, and S. M. King, 1998 Identification
of the t complex-encoded cytoplasmic dynein light chain tctex1
in inner arm I1 supports the involvement of flagellar dyneins in
meiotic drive. J. Cell Biol. 140: 1137-1147.

Herrmann, B., M. Bucan, P. E. Mains, A. M. Frischauf, L. M. Silver
et al., 1986 Genetic analysis of the proximal portion of the
mouse t complex: evidence for a second inversion within t hap-
lotypes. Cell 44: 469-476.

Herrmann, B. G., and H. Bauer, 2012 The mouse t-haplotype: a
selfish chromosome-genetics, molecular mechanism, and evolution,



Pp- 297-314 in Evolution of the House Mouse, edited by M. Macholan,
S. J. E. Baird, P. Munclinger, and J. Pidlek. Cambridge University
Press, Cambridge.

Herrmann, B. G., D. P. Barlow, and H. Lehrach, 1987 A large
inverted duplication allows homologous recombination between
chromosomes heterozygous for the proximal t complex inver-
sion. Cell 48: 813-825.

Herrmann, B. G., B. Koschorz, K. Wertz, K. J. McLaughlin, and A.
Kispert, 1999 A protein kinase encoded by the t complex re-
sponder gene causes non-mendelian inheritance. Nature 402:
141-146.

Howell, G. R., R. A. Bergstrom, R. J. Munroe, J. Masse, and J. C.
Schimenti, 2004 Identification of a cryptic lethal mutation in
the mouse t(w73) haplotype. Genet. Res. 84: 153-159.

Khan, M. A., 1. Elias, E. Sj6lund, K. Nylander, R. V. Guimera et al.,
2013 Fastphylo: fast tools for phylogenetics. BMC Bioinfor-
matics 14: 334.

Kumar, S., G. Stecher, and K. Tamura, 2016 MEGA7: molecular
evolutionary genetics analysis version 7.0 for bigger datasets.
Mol. Biol. Evol. 33: 1870-1874.

Lader, E., H.-S. Ha, M. O'Neill, K. Artzt, and D. Bennett,
1989 tctex-1: a candidate gene family for a mouse t complex
sterility locus. Cell 58: 969-979.

Larracuente, A. M., and D. C. Presgraves, 2012 The selfish segre-
gation distorter gene complex of Drosophila melanogaster. Ge-
netics 192: 33-53.

Li, H.,, 2011 A statistical framework for SNP calling, mutation
discovery, association mapping and population genetical param-
eter estimation from sequencing data. Bioinformatics 27: 2987—
2993.

Li, H.,, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al,
2009 The sequence Alignment/Map format and SAMtools. Bi-
oinformatics 25: 2078-2079.

Lindholm, A. K., K. A. Dyer, R. C. Firman, L. Fishman, W. Forstmeier
etal., 2016 The ecology and evolutionary dynamics of meiotic
drive. Trends Ecol. Evol. (Amst.) 31: 315-326.

Lyon, M. F., 2003 Transmission ratio distortion in mice. Annu.
Rev. Genet. 37: 393-408.

Minh, B. Q., M. A. T. Nguyen, and A. von Haeseler, 2013  Ultrafast
approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30:
1188-1195.

Morgan, A. P., J. M. Holt, R. C. McMullan, T. A. Bell, A. M.-F.
Clayshulte et al., 2016 The evolutionary fates of a large seg-
mental duplication in mouse. Genetics 204: 267-285.

Morita, T., H. Kubota, K. Murata, M. Nozaki, C. Delarbre et al.,
1992 Evolution of the mouse t haplotype: recent and world-
wide introgression to Mus musculus. Proc. Natl. Acad. Sci. USA
89: 6851-6855.

Nguyen, L.-T., H. A. Schmidt, A. von Haeseler, and B. Q. Minh,
2015 IQ-TREE: a fast and effective stochastic algorithm for
estimating maximume-likelihood phylogenies. Mol. Biol. Evol.
32: 268-274.

Pieper, K. E., and K. A. Dyer, 2016 Occasional recombination of a
selfish X-chromosome may permit its persistence at high fre-
quencies in the wild. J. Evol. Biol. 29: 2229-2241.

Pimentel, H. J., N. Bray, S. Puente, P. Melsted, and L. Pachter,
2016 Differential analysis of RNA-Seq incorporating quantifi-
cation uncertainty. bioRxiv DOI: 10.1101/058164.

Presgraves, D. C., P. R. Gérard, A. Cherukuri, and T. W. Lyttle,
2009 Large-scale selective sweep among segregation distorter
chromosomes in African populations of Drosophila melanogaster.
PLoS Genet. 5: e1000463.

Schwander, T., R. Libbrecht, and L. Keller, 2014 Supergenes and
complex phenotypes. Curr. Biol. 24: R288-R294.

Shimodaira, H., and M. Hasegawa, 1999 Multiple comparisons of
log-likelihoods with applications to phylogenetic inference. Mol.
Biol. Evol. 16: 1114-1116.

Silva, J. V., M. J. Freitas, and M. Fardilha, 2014 Phosphoprotein
phosphatase 1 complexes in spermatogenesis. Curr. Mol. Phar-
macol. 7: 136-146.

Soh, Y. Q. S., J. Alfoldi, T. Pyntikova, L. G. Brown, T. Graves et al.,
2014 Sequencing the mouse Y chromosome reveals conver-
gent gene acquisition and amplification on both sex chromo-
somes. Cell 159: 800-813.

Sugimoto, M., 2014 Developmental genetics of the mouse t-complex.
Genes Genet. Syst. 89: 109-120.

Vijayaraghavan, S., D. T. Stephens, K. Trautman, G. D. Smith, B.
Khatra et al., 1996 Sperm motility development in the
epididymis is associated with decreased glycogen synthase
kinase-3 and protein phosphatase 1 activity. Biol. Reprod. 54:
709-718.

Wallace, L. T., and M. A. Erhart, 2008 Recombination within
mouse t haplotypes has replaced significant segments of
t-specific DNA. Mamm. Genome 19: 263-271.

White, M. A, C. Ané, C. N. Dewey, B. R. Larget, and B. A. Payseur,
2009 Fine-scale phylogenetic discordance across the house
mouse genome. PLoS Genet. 5: €1000729.

Woolfit, M., 2009 Effective population size and the rate and pat-
tern of nucleotide substitutions. Biol. Lett. 5: 417-420.

Zwart, R., S. Verhaagh, J. de Jong, M. Lyon, and D. P. Barlow,
2001 Genetic analysis of the organic cation transporter genes
Orct2/S1c22a2 and Orct3/Slc22a3 reduces the critical region for
the t haplotype mutant tw73 to 200 kb. Mamm. Genome 12:
734-740.

Communicating editor: B. Payseur

Genomics of the t-Haplotype 375



