| NI N AUSTRIA

Institute of Science and Technology

The Complexity of Evolution on Graphs

Krishnendu Chatterjee and Rasmus Ibsen-Jensen

Technical Report No. 1ST-2014-190-v1+1
Deposited at 14 Apr 2014 11:58
http://repository.ist.ac.at/190/1/main jull.pdf

I —————————————————————————————SS————————
IST Austria (Institute of Science and Technology Austria)

Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright (© 2012, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission.

The Complexity of Evolution on Graphs

Krishnendu Chatterjée ~ Rasmus Ibsen-Jensen Martin A. Nowak

IST Austria
! PED, Harvard University

Abstract

Evolution occurs in populations of reproducing individuaThe structure of the population affects the outcome
of the evolutionary process. Evolutionary graph theory j@aerful approach to study this phenomenon. There are
two graphs. The interaction graph specifies who interactis whom in the context of evolution. The replacement
graph specifies who competes with whom for reproduction. Viéréces of the two graphs are the same, and each
vertex corresponds to an individual. A key quantity is thatiion probability of a new mutant. It is defined as the
probability that a newly introduced mutant (on a single e@rtgenerates a lineage of offspring which eventually
takes over the entire population of resident individualfie Dasic computational questions are as follows: (i) the
qualitative question asks whether the fixation probabi$itgositive; and (ii) the quantitative approximation quest
asks for an approximation of the fixation probability. Ourim@sults are: (1) We show that the qualitative question
is NP-complete and the quantitative approximation quesigtP-hard in the special case when the interaction and
the replacement graphs coincide and even with the restithiat the resident individuals do not reproduce (which
corresponds to an invading population taking over an entpiictsire). (2) We show that in general the qualitative
question is PSPACE-complete and the quantitative appitidm question is PSPACE-hard and can be solved in
exponential time.

Keywords: Evolution; Evolution on graphs; Fixation probability; Cqratational complexity.

1 Introduction

In this work we study the basic computational questions fofgion on graphs, and present complexity results for
them. We start with a description of the model of evolutiongnaphs and its significance. We then state the basic
computational questions and present our results.

Evolutionary dynamics with constant selection. Evolutionary dynamics act on populations. The compositibn
the population changes over time under the influence of noataind selection. Mutation generates new types and
selection changes the relative abundance of differenstypefundamental concept in evolutionary dynamics is the
fixation probability of a new mutant[6, 11, 15,/116]: Considgropulation ofV residentindividuals, each with a non-
negative fitness value, A singlemutantwith fitness value 1 is introduced in the population as thialiZation step.
Then the following step is repeated. At each time step, odigiofual is chosen proportional to the fithess to reproduce
and one individual is chosen uniformly at random for deathe &ffspring of the reproduced individual replaces the
dead individual. This so-called Moran process continuds aither all individuals are mutants or all individuals
are residents. Thixation probabilityis the probability that the mutants take over the populatinich means all
individuals are mutants. A standard calculation shows tihatfixation probability is given byl — r)/(1 — rV).

The correlation between the relative fitness of the mutaith(vespect to resident fitness, i.¢/r) and the fixation
probability is a measure of the effect of natural selectiothat population structuré [19, 114,]24]. A neutral mutant,
r = 1, has fixation probability /N. The rate of evolution, which is the rate at which subseqoertations accumulate

in the population, is proportional to the fixation probatlyjlthe mutation rate, and the population si¥e Hence
fixation probability is a fundamental concept in evolution.

Evolutionary game dynamics.The fitness values of individual types (resident and mutaed)d not be constant, but
could themselves depend on the composition of the populafibis idea brings us to evolutionary game theory, where
the individuals of a population interact with each otherdoaive a payoff. There could be two strategigand M,
and a payoff matrix

R M

R (a1 a2
1
M (a21 a22) @
The payoff of an individual is the average payoff of the iatgions (se€ [16, Section 7.1]; also Secfibn 2). Standard
evolutionary game theory assumes a well-mixed populatiarctuire, which means all individuals interact equally

likely. Again a fundamental question is the fixation proltigbof a mutant [6/ 11] 15, 16], which quantifies whether
or not a mutant is favored by natural selection.

Evolutionary graph theory. The outcome of an evolutionary process are dependent ongimpustructure. Evo-
lutionary graph theory studies this phenomenon. The iddizis of the population occupy the vertices of a graph.
The links determine who interacts with whom. Evolutionarggh theory describes evolutionary dynamics in spa-
tially structured population where most interactions anthpetitions occur mainly among neighbors in physical
space|[[1lr|_14, 20,15]7]. Another application is culturalletion (spread of ideas and behaviors) in social net-
works [9]. Finally, the hierarchy of cellular proliferatiand differentiation in the human body, which are crucial fo
physiological function and for reducing cancer initiati@me described by evolutionary graph theoryl [18]. For the
case of constant fithess (which means residents with relfithess- and mutants with relative fitness 1) graphs have
been identified that maintain the same selection pressuteasell mixed population, that amplify selection, or that
reduce selection. For example, a star graph is an amplifieglettion, because the fixation probability of the mutant
is given by%; hence the star graph squares the relative fitness [14, 4pritrast, ‘isothermal graphs’ where the
in-degree and out-degree of all vertices coincide (sucbk@sar undirected graphs) have the same fixation probabilit
as the Moran proces#:TC‘V [14,[2]. There are some graphs and update rules that enhamesdlution of coopera-
tion, which is a particular strategy in evolutionary ganfesgxample in the well-known Prisoners dilemrhal[14, 20].
Evolution of cooperation is a major topic in evolutionarploigy, because cooperation is seen as a main component
for the creative tendency of evolution. A crucial aspectafletionary graph theory is the computation of the fixation
probability of an invading mutant.

The model and computational questions.In the study of evolutionary games on graphs in general tasgawo
graphs (that have the same verticés) [14, 21]. The “intenagraph” specifies who interacts with whom for payoff.

The “replacement graph” specifies who competes with whomeproduction. The initial step is the introduction of

a mutant uniformly at random and then at each step a vertexasen proportional to the fitness. If the fraction of
successors in the interaction graph that are of the sameatyfiee chosen vertex is below a threshold (i.e., a density
constraint is satisfied), then the individual in the vertegroduces to a successor uniformly at random among the
successors in the replacement graph. The density cortstwdiich is relevant in many applications of evolution
(see bookd]1, page 4701122, page 320]), can alsermodedn the payoff matrix (see Remakk]10). The relevant
computational questions for evolution on graphs are asv@i (1) thequalitativequestion asks whether the fixation
probability is positive; and (2) thguantitative approximatioguestion asks, given> 0, to compute an approximation

of the fixation probability within an additive error ef

Special cases of the modeWhile in the general model the interaction and replacemeaqilts are different (we refer
to the model as the 1&R model), an important special case sravthese two graphs coincide (we refer to the model
as the IR model) [14]. Another important special case is when thilesgs cannot reproduce, i.e.= 0, and this
corresponds to the case where a mutant arises in an emptsagdaglocation, and the question is whether the mutant
can spread (hence the residents cannot reproduce). Noteitha = 0, in the Moran process, the fixation probability
is 1.

Our contributions. While previous results characterized the fixation proliédsl of specific graphs (such as star or
regular undirected graphs), the complexity of computirgftkation probability for arbitrary input graphs has been
open (explicitly referred to as an important open problera gurvey[[23, Open Problem 2.1 and 2.2]). We study the
computational complexity of the basic questions for evolubn graphs and our results are as follows:

1. We show that under no resident reproduction, the quigktdecision question is NP-complete both for the I&R
and IEQR models.

2. We show that under no resident reproduction, the quéagtapproximation problem ig-P-hard even for the
IEQR model. Our result implies thgP-hardness of the quantitative approximation in all models.

3. We show that with resident reproduction, the qualitatjuestion is PSPACE-complete. For the general 1&R
model, the quantitative approximation question is PSPAGE (for all0 < ¢ < 1) and can be solved in
polynomial space with double exponentially small errorqaoility (which we refer to aRPS, and the fixation
probability can be computed in exponential time.

Our results are summarized in Table 1 and our main contdbstare the lower bounds.

Related complexity resulffo the best of our knowledge, previous to our results, theas @nly one computational
complexity result for evolutionary graph. For the precisenputation of the fixation probability, NP-hardness for
evolutionary games (named as frequency dependent selpatithe IEQR model was shown il [14]. Our result
presents much stronger lower bounds: we show NP-hardneed@vthe qualitative problem an@dP-hardness even
for approximation.

No Resident Reproduction Resident Reproduction
IEQR model 1&R model IEQR model 1&R model
Qualitative question NP-complet€LB) | NP-completdUB) | NP-hard, PSPACH PSPACE-completd B,UB)
Approximation question| #P-hard, RPSLB) #P-hard, RPS #P-hard, RPS | PSPACE-hard, RP@.B,UB)

Table 1: Complexity of evolution on graphs. Our main conttibns of lower bounds (LB) and upper bounds (UB)
are boldfaced. RPS indicates that the problem can be satvpdlynomial space, with randomization and double
exponentially small error probability.

2 Models of Evolution on Graphs

In this section we present the basic definitions related ¢odifferent models of evolution on graphs and the basic
computational questions.

Evolutionary graphs. An evolutionary graphG = (V, E;, Er) consists of a finite sét of vertices; aseb; C VxV
of interactionedges; and a séfr C V x V of replacemeni{or reproduction) edges [21]. The sdi§ and Er
consist of directed edges, and the gr&aph= (V, E;) is called the interaction graph, ad¢l; = (V, E) is called

the replacement graph. The gra@h is responsible for determining the interaction of indivatkin the graph (which
affects the fitness), and the gra@h captures the underlying structure for reproduction anthigment of individuals
in the graph. Given an edde, «) we sayu is asuccessoof v andv is apredecessoof .

Fitness of individuals. Each vertex of the graph will be occupied by one of two typemdividuals, namely, the
residenttype and thenutanttype. In evolutionary games, along with the evolutionargadr there is a payoff matrix
as defined in Equatiof](1) (Sectibh 1), where the entriesefhtrix are rational numbers and represent the payoff
of an interaction, i.e.¢11 (resp.ai2) is the payoff of a resident type interacting with anothesident (resp. mutant)
type, andas; (resp. aq2) is the payoff of a mutant type interacting with a resideesfr. mutant) type. Given two
types,z andy, we denote byay(z,y) the payoff of typer versus typey. The fithess of an individual at a vertex

is a non-negative number and determined as follows: Agv) = {u | (v,u) € E;} denote the set of interaction
successors of, then the fitness of, denoted a5 (v), is the average payoff of the interactions but at least 0, i.e

flv) = max{%, 0}. A special case of the payoff matrix is thenstant fitnesgaka constant selection)

matrix defined as follows:
R M

R ror

M\1 1
i.e., the mutant types always have fitness 1 and the resigiees fitness:, wherer > 0. Intuitively, the fitness of an
individual represents the reproductive strength.

Threshold for density constraints. Along with the evolutionary graph and the payoff matrix, vesé two thresholds,
namely,fr and#,,, for the resident type and the mutant type, respectiveljuitimely, the thresholds represent a
density constraintand if an individual is surrounded by a lot of individualstbé same type, then its reproductive
strength decreases. The density constraint can also bdeshaoa payoff matrix (see Remdrk| 10).

The evolutionary process.The evolutionary process we consider is the class$icti-deathprocess on an evolution-
ary graph defined as follows:

1. Initially all vertices of the graph are of the residentéygnd a mutant type is introduced uniformly at random at
one of the vertices of the graph and then the following stefe(red to as generation is repeated.

2. In every generation, a vertex is selected proportiontieditness of the individual at the vertex to reproduce.
Let the selected vertex for reproductiondbe_et Same(v) denote the number of vertices iy (v) that are of the

same type as. If vis a mutant type, an E";?fgl) < 6y (resp. ifvis aresident type, anﬁfg‘?—f}gf < 0g), then the
individual gives birth to an individual of the same type. Tesv born individual replaces one of the replacement
successors af, i.e., it replaces a vertex chosen uniformly at random froengetEg (v) = {u | (v,u) € Er}.
Note that the density constraint implies that if the coristris violated, then the selected individual does not

reproduce.
Step 2 (or generations) is repeated until nothing can chéngmrticular, if all vertices have fitness 0, then nothing
can change).

Fixation probability. The most relevant question from an evolutionary perspedithefixation probabilitywhich is
the probability that the mutant takes over the populati@n, eventually all vertices become the mutant type.

Computational questions. Given an evolutionary graph, a payoff matrix, and the thoégshfor density constraints,
we consider the following questions:

1. thequalitativedecision question asks whether the fixation probabilityasitive; and

2. thequantitative approximatioguestion, givere > 0, asks to compute an approximation of the fixation proba-
bility within an additive error ot.

Special casesThere are several special cases of interest that we wilbegpl

1. Thel&R and IEQR models.One important special case is when the interaction and filaaement graphs co-
incide, i.e.,E; = Er [14]. We refer to the general model as the |&kvdel(with possibly different interaction
and replacement graphs) and the special case where thesgm@iphide as the I&R model

2. No resident reproduction. Another special case is when the payoff matrix is the congtayoff matrix with
r = 0. In this case, the resident types cannot reproduce. Thissept the scenario that a mutant invades an
empty geographic location.

3 Qualitative Analysis for No Resident Reproduction

In this section we establish two results for the no resideptaduction model: the qualitative analysis problem is
(1) in NP for the general I&R model; and (2) is NP-hard everhia $pecial case of lgR model.

3.1 Upper bound

The upper bound is relatively straightforward. We simplgchif there exists an initial choiag for the initial mutant
and a sequence;)2<i<n, Of edges of lengtm — 1 in the replacement graph for reproductions that ensuregsatha
vertices are mutants. The initial vertexand the sequence of edges together define a unique sequemctazs for
reproduction; and at every stage we check that for the vetiegen for reproduction the density constraint is satisfied
and it is a mutant. We also need to check that in the end aicesrare mutants. The choice of the initial vertex and
the sequence of reproductions then happen with positiiegtnitity and we are done. Observe that since there is no
resident reproduction, if a vertex becomes a mutant, themigins a mutant. Note that there always exists a sequence
of lengthn — 1, because if the fixation probability is positive, then we ¥énOG assume (till all vertices are mutants)
that in each stepthere is a vertex that is a mutant, with a fraction of mutant neighbors in ttieriaction graph below
the threshold,,, and an edgév, v’) in the replacement graph such théis not a mutant (and becomes a mutant in
stepi), as otherwise nothing can change. This shows that if thevemn® the qualitative decision question is yes in
the no resident reproduction model, then there is a polyabwitness and polynomial-time verification procedure.

Lemma 1. The qualitative decision question for no resident reprdaturcin the general&R model is in NP.

3.2 Lower bound

In this section we present an NP lower bound, and we will piofige the IEQR model with no resident reproduction.
Moreover, since there is no resident reproduction, thesttoleld ; does not matter. We will present a reduction from
the 3-SAT problem (which is NP-complet€ [3./ 13, 8]) and usegholdd,, as% — 0, forany0 < 0 < %. However

it would be easy to modify our construction for any threshldin (0, 1). The “right” way to think of the threshold

is that it is% and that the density constraint uses a strict inequalitg Opper bound is chosen because we will use
vertices with degree five or less.

Notations. Let X = {z1,22,...,2,} be a set oh Boolean variables. Consider a 3-CNF formyla= C; A C3 A
---ACy,, Where eaclt’; is aclauseof a list of (precisely) threéterals (where a literal is a variable or its negatiorx,
wherex € X). Each clause represents a disjunction of the literalsapar in it. An instance of the 3-SAT problem,
given a 3-CNF formulay, asks whether there exists a satisfying assignment. Wenaill construct an evolutionary
graphG(¢), given an instance of a 3-SAT problem, with) = E’g, (ii) no resident reproduction, and (iii) threshold
Oy = % —d,for0 <0 < %0 such that there is a satisfying assignment iff the answeheagualitative decision
problem is YES. We first present two gadget constructionsitiibbe used in the reduction.

Predecessor gadgetWe present @redecessogadget for a vertex paitu, v) such thaw is the only successor af.
The gadget ensures the following property (hamelypileelecessor gadgeroperty): if all vertices become mutants,
then the vertexx must have become a mutant before vertexThe construction of the gadget is as follows: Add a
newdummyvertexu'. Let the successors afbev andwu’, and the successor af be onlyv. Then the only way for
u’ to become a mutant is if is a mutant, since is the only predecessor af. But«’ can only become a mutant if
u is a mutant and is not (since otherwise the threshold condition with = % — ¢ is not satisfied fow, for any
0<d< %). Hence, if all vertices become mutant, themust become a mutant befareThere is an illustration of
the predecessor gadget far, v) in Figure[d. We will denote byredEdges(u, v, u’) the set{(u, v), (u,), (v',v)}

of edges of the predecessor gadget.

O—O - ()

Figure 1: lllustration of a predecessor gadgetv).

@
ol
) (=) S /@\@

Figure 2: A binary treeBinTr(x, {v1,v2,v3}) and the corresponding EBExBinTr(z, {v1, v, v3}, 2), where we
extend with the vertex. The edges ta are dotted to make the similarities easier to see.

(Extended) Binary tree gadget.Given a vertext, and a sefl of vertices, we will denote binTr(rt, L) a binary
tree withrt as root and. as leaf vertices. In a binary tree, every non-leaf vertexdusiegree 2. Note that the binary
tree gadget adds additional vertices, and ©®@4.|) vertices. By an abuse of notation we will uB&Tr(rt, L) to
denote both the set of vertices and the set of edges of theyline®, and it would either be clear from the context or
explicitly mentioned. Given a binary tréé and anextensiorvertexz ¢ T, anextended binary tre€EBT) consists
of T"and an edge from every non-leaf vertex:toGiven a root vertext, a set ofL of leaf vertices, and an extension
vertexz, we denote b¥ExBinTr(rt, L, z) the edge set of the extended binary tree that extends theyltiea ofrt and

L. We will explicitly use the following property for an EBT (nzely, qualitative EBT (QEBTproperty):

e (QEBT Property).In an EBT, every non-leaf vertex has out-degree 3, and fositleoonstraint with threshold
% —9,for0 <6 < % (the construction works evendfis up to%), if the root becomes a mutant ands not a
mutant, then root can be responsible for making every ventéixe tree a mutant. However, note thatifs a
mutant, then any vertex in the tree with out-degree 3 canmienboth the children mutants due to the density
constraint.

There is an illustration of a binary tré&inTr(z, {v1, v2, v3}) and the corresponding EBExBinTr(x, {v1, v2,v3}, 2)

in Figure[2.

The evolutionary graph G(y). We now present the evolutionary gragfiy) where we first describe the vertex set
and then the edges.

The vertex sefThe sefV of vertices is as follows (intuitive descriptions follow):
{vr,2.0,y1,2.} U {c,co,...,cm} U {chet,cd|1<i<m} U {xi,xﬁ,xiﬂxieX} U
{vo, vy} U {u‘;,ulf |1<i<n} U Ujcicn(BinTr(zl, L) U BinTr(gcf7 sz))

The vertexvr will be the start vertex; and the vertices, y, , andz’, are end vertices (that will form a predecessor
gadget for(z, ,y,) with dummy vertexz’). We have a vertex; for each clause; (namely, clause vertices); and
one for each literat}, ¢Z, andc? in the clause (namely, clause-literal vertices). Simjlasle have a vertex; for each
variable inX (namely, variable vertices), and verticﬁandx{' (namely, variable-value vertices) to represent the truth
values to be assigned 1q. Corresponding to! andx{ we also have vertices! andu{ (namely, duplicate vertices).

The vertexy, forms a predecessor gadget (using the dummy vefpto u!. Let Lt = {E,i [1<k<m,1<j<

3, c,i x;} denote a copy of the clause-literal vertices that corredpon; ande = {67 [1<k<m,1<j<
3, ¢}, = T;} denote a copy of the clause-literal vertices that corredpomnegation of:;. The seBinTr(x%, L!) (resp.
BinTr(a:{ L)) represents the vertices of a binary tree with the root werfe(resp. xf) and leaf verticed.! (resp.

i)t

The edge setVe now describe the edge set:

e There is an edge from the initial vertex to the first clause vertex ; and we have two predecessor gadgets;
(i) (21, y1) with dummy vertex’, ; and (ii) (vo, u}) with dummy vertex,.

e For each clause vertex, there are five edges, three to clause-literal vert[n;’}e({;orj = 1,2, 3) of the clause,
one to the next clause vertex (foy, this next vertex is;;), and to the vertex! .

e For each variable vertex;, there are three edges: 10 anda:{', and to the next variable vertex, ; (for x,, the
next vertex isg).

e Each duplicate vertex! has three edges: tq(toz!, and toy, . Similarly, each vertemf has three edges: to
ul (uf has edge ta, instead), torf, and toy .

¢ Finally, we have the EBT witke®* (for o € {¢, f}) as root,L¢ as leaf vertices angl, as the extension vertex.
For each vertex i, for o € {t, f}, we add edges to the corresponding clause-literal vertéxaa!. This
ensures that every internal vertex of the binary tree hasegdfree, and leaf vertices have degree two.

The formal description is as follows:
{(vr,e1)} U PredEdges(z1,y.1,2)) U PredEdges(vo,u},v))

{(ci,cj)|1§i§m,1§j§3} U {(ci,ub) |1 <i<m} U {(ci,civ1) |1 <i<m—1}U{(cm,71)} U

{(zs,28), (25,2)|1<z<n} U {(zi,zi41) |1 <i<n—1}U{(zn,v0)} U
{(wtul) | 1<i<n} U {(ul,uly,)[1<i<n—1} U {(Ufwzl)} U {(Uﬁx?)v(u?vwﬂ1§i§n,a€{t,f}}U

(Ur<icn (ExBinTr(at, Lf, y1) U ExBlnTr(:v LZ ,y1)) U {((ck,u1 |, e L 1<i<n,ae{tf}}

Example. We will now give an example of the gragh(y) for p = (ZVyVz)A (2 V2V Z). See Figurgl3. The edges
tou! are dashed and the edge frathfor all 1 < i < 3 anda € {¢, f} are dotted, for readability. Also, the vertek
is included twice to make it clearer that it is in a predecegsaolget.

Basic facts.We first mention some basic facts about the evolutionarytgodyained.

1. First, observe that the predecessor gadget propertygsiplat for fixation the vertex, must become a mutant
before vertex:!; and vertex: | before vertex .

2. Second, for a vertex with degrégeit can reproduce a mutant as long as at mfos(% —) successors are
mutants. In particular, for vertices with five (resp. threefcessors, like the clause (resp. variable) vertices, it
can reproduce a mutant until at most three (resp. two) ssocesre mutants, because of the boundgen
If a vertex has out-degree two (or one), then it can reproduteitant until at most one successor is a mutant,
because of the bounds 6p;. The conditions follow from the density constraint withebhold% —

Two phases for fixation. For mutants to attain fixation (i.e., all vertices becomeants), certain conditions must

be fulfilled. The first basic fact above implies that for thelexionary process to attain fixation, it must make vertex
x, a mutant (then vertex, a mutant) before vertex!. We thus split the process of fixation in two phases: in the
first phaseu! is not a mutant, and in the second phaséewill be a mutant. We further split the first phase into two
sub-phases, the first sub-phase is related to clause wgo®ming mutants, and the next sub-phase is related to the
variable vertices becoming mutants. The description optiases for fixation are as follows:

1. (Phase 1:Part A)The mutant must be initialized at the start vertex (sincev+ has no predecessor). After
vT, the clause vertex; becomes a mutant. Since at most half (three) successorsscamb mutant frona;
(recall thate;, has five successors), and one of them mustb@s the only incoming edge feg is fromc;),
it follows thatc, and at most two clause-literal vertices for cladgebecomes mutant from . This process is
then repeated for all the clause verticgsll x; becomes a mutant.

2. (Phase 1:Part B)Each of the vertices; has three successors, and hence can make two of them muDeuats.
of them must bex;,, (asz; 1 has onlyz; as the predecessor), and the other one is at most omgearfx{.
This continues till we reachy. Note that oncer! becomes a mutant, then the entire EBT undferincluding
the corresponding clause-literal vertices, butmptandu}, can become mutants, as longiasandu! are not
mutants. The reasoning is as follows: the leaf vertices\waut-going edges, and sineé is not a mutant, it
can reproduce a mutant to the corresponding clause-literates, and the rest follows from the QEBT property.
The phase 1 ends with the predecessor gaddet ofi}) becoming mutants. Note that this phase corresponds to
a partial assignment of truth values to the variables asal for a variable:;, if ! was chosen (made mutant),
it corresponds to assigning true tg; if xf was chosen, it corresponds to assigning false;tmtherwise, if
neither was chosen, then it corresponds to no assignment to

3. (Phase 2).This phase starts after; is a mutant. We establish a key property of this phase thatwiused
in the proof. Consider the EBT under some variable-valugxerAll leaf vertices of the tree has out-degree
two: one of the successorsi$ and the other is a clause-literal vertex. It follows thate@nt has become a
mutant, then after that leaf vertices cannot reproduce misitny more for the clause-literal vertices. Thus the
key property of Phase 2 is as follows: leaf vertices of EBTrmncd reproduce mutants to clause-literal vertices
after Phase 2 starts.

The graph G(y) has positive fixation probability iff ¢ is satisfiable.We present two directions of the proof.

1. Satisfiablity implies positive fixationConsider a satisfying assignment¢o and intuitively the assignment
chooses at least one literal in each clause. The sequenagtaifts reproduced in the two phases for fixation is
as follows:

e (Phase 1). The sequence in Phase 1 is the following: (1ainieirtexv+ becomes a mutant which then
reproduces a mutant tg; (2) in vertexc;, it reproduces upto three mutants, one;to, (to x; fori = m)
and upto two mutants for vertice$ of the clauses which are not chosen by the satisfying assigh(this
corresponds to Phase 1:Part A); (3) for a vertgt reproduces two mutants, oneitg, ; (to v fori = n),
and the other ta! (resp.xf) if the assignment choosesto be true (resp. false); and moreover, the entire
EBT underx! (resp.,:cf) including the clause-literal vertices become mutantseothanu; andy); and
(4) thenu(, becomes a mutant and theh becomes a mutant fromy, and proceed to Phase 2.

e (Phase 2). The sequence in Phase 2 is the following: (1) Iryewstexu (for o = ¢ or f) it makesz$
mutant (if it is not already a mutant) and then it makes the mestex in line a mutant (if = » anda = f,
then the next vertex is, , otherwise, the next vertexie{ if o = tandu! , if « = f); moreover, once
becomes a mutant, so does the entire binary tree (othegythamder it (but not the clause-literal vertices
sinceu! is a mutant); and (2) finally the, , y,) predecessor gadget becomes mutants.

The claim follows.

2. No satisfying assignment implies no fixatidvote that for fixation we need the two phases. In every clayse
at least one of the clause-literal verticésvas not made a mutant ky in Phase 1:Part A (or even after that).
This implies that if Phase 2 has started and not all clameealiverticeﬁ of a clause:; have become mutants,
then at least one of these vertices cannot become a mutatite ey property of Phase 2. For each (partial)
assignment that is not satisfying, there exists at leastlause, in which no literals are chosen. Recall that the
reproduction of mutants in Phase 1:Part B gives a partigyasgent of truth values to variables. Hence, in the
process of reproducing mutants in Phase 1:Part B, therenemustin a clause where at most two clause-literal
vertices are mutants. Therefore it implies that if thereasatisfying assignment, then fixation is not possible.

We obtain the following result. Lemnid 1 and Leminha 2 give Tha®8.
Lemma 2. The qualitative decision question for no resident reprdaturcin thelEQR model is NP-hard.

Theorem 3. The qualitative decision question for no resident reprdaurcin both the general&R model and the
IEQR model is NP-complete.

4 Approximation in the IEQR Model with No Resident Reproduction

In this section we show that fer> 0 the problem of approximating the fixation probability withte is #P-hard, in
the IEQR model with no resident reproduction. Again the thresltigldwill be % — ¢, forany0 < 0 < %.

Perfect matching in bipartite graphs. We present a reduction from the computation of the numbeedépt match-
ings in a bipartite grapli = (V, E). In a bipartite graphG, the vertex seV is partitioned into vertice¥, (left
vertices) and/,. (right vertices) and all edges go from a vertexiinto a vertex inV,. (i.e., E C V, x V;.). We also
have|V;| = |V;.| = n. A perfect matchind®M is a set{ey, es, .. ., e, } of n edges fromE such that for every vertex
ve € Vg (resp.v, € V;) there exists an edge = (v¢,v,.) (resp.e, = (v}, v,)) in PM. Given a bipartite graph, the
problem of computing the number of distinct perfect matgkiwas shown by Valiant [25] to b&P-complete.
Uniform degree property. First, we will show that we only need to consider bipartitagrs for which there exists
an integerk such that all vertices i, have either degre2® or 1. We refer to the property as thmiform degree
property.

Reduction to uniform-degree graphs. We present a reduction from a general bipartite grapb- (V, E) (with
[Ve| = |Vi| = n) to a bipartite grapl’ = (V’, E’) with at most6n vertices and which has the uniform degree
property. Letk = [logdmax|, Whered.x is the maximum degree of any vertex@ The graphG’ will have
precisely as many perfect matchinggasObserve tha* < 2n. We construct:’ by adding2* new pairs of vertices,
one on each side, and for each new fgair’), we add an edge fromto v’. Then, for vertexw € V;, we add edges
from v to some newly added vertex Iy until v has degre@*. Itis clear that any perfect matching @ corresponds
to a perfect matching i’ using the same edges, and the edges between newly addedjmiversely, we also see
that in each perfect matching &', for each newly added pafp, v’), the matching must use the edge betweamd
v’, since the vertex ifV;/ \ ;) has degree 1. Thus every perfect matchingircorresponds to one 8.

Perfect binary trees. We will consider perfect binary trees as gadgets.

e A perfect binary tregPBT) is a balanced binary tree (every internal vertex hagtiyxtwo children) with all
leaves at the same level (i.e. wizh leaf vertices, for some non-negative integ®r For a PBT we will use the
following property, which we refer to as thpobabilistic PBT (PPBTproperty: if the root becomes a mutant,
then eventually all vertices in a path from the root to soraéueéll become mutants, where such a path is chosen
uniformly at random. Since every non-leaf vertex has ogjrdetwo, due to the density constraint, each internal
vertex can make one of its children (chosen uniformly) a miéad hence the PPBT property follows.

The graph Red). Given a bipartite grapldr with the uniform degree property, let the vertex sets’b@andV/,,
respectively. Let(v) = {u | (v,u) € E} denote the successors of a vertex V;. LetV} = {v € V, | |E(v)| =

2k} be the set of vertices with degreé; andV,! = V;, \ V/* be the set of vertices i, with degree 1. Our reduction,
denoted Re(>), will construct an evolutionary graph (with; = Er and hence we only specify one set of edges),
which consists of three parts: part 1 sub-graph, then edgated toV;., and a copy of part 1 with some additional
edges. We first describe the part 1 sub-graph and then its copy

e (Part 1). We have a start vertex, a final vertexy, , and we create an EBB; as follows:ExBinTr (v, Ve, v),
i.e., the start vertex is the rodt; is the set of leaf vertices, and is the extension vertex. For every vertex

v e VE let E(v) = {u*,u?, ... ,u/}, and we consider a sét* = {ul,u2, ... uJ} of j = 2* vertices and
construct a PBTP, = BinTr(v, L¥). Note thatB, is an EBT (but the underlying binary tree is not necessarily
perfect).

Clause verticep

. | Clause-literal verticep
. Y N

N\

Variable vertice
Ty
\
\ X1 =
\
\
\
\
\
- =
c % B S
== < =~ 4
3 = N
Q o P
@ o
< (=2
: ?
= T2 =
o = 2=y
® c
—r—)
<
@
=
(o]
LD
N

Predecessor gadget, ,y.) |

sefo!ua/\ anjeA-ajgeleA asje

Predecessor gadgel, u})

Figure 3: The grapli:(y) for o = (2 Vy V) A (2 V2 V T). Edges tau} are dashed and edges frarfi are dotted
for readability. The vertex! is included twice to make it clearer that it is in a predecegsaget.

e (Edges related td,). From every vertex € V}, and every! in L*, we add two edges: one té € E(v) and
one toy, . From every vertex € V;! (with degree 1), we add two edges: to the unigue E(v) and toy .
Every vertex inV,. has an edge tg, .

e (Copy 1 of Part 1 with additional edgeskirst, we create a copy of the part of the graph describediinlpa
along with one additional vertex, . For every vertex of part 1, let the corresponding vertex in the copy be
calledw, and the copy of the extension vertexgis. We describe the difference in the copy as compared to the
graph of part 1: (i) first there is an edge fram to the copyv, of the start vertex; (ii) for every vertexwhich
is a copy of a non-leaf vertexin P,, for somev € V%, (i.e.,z ¢ Lk), there are three additional edges fram
(a) toz (i.e., from the copy to the original vertex), (b)#¥q , and (c) toz, ; and (iii) for every vertext which is
a copy of a leaf vertex in P,, for somev € V¥, (i.e.,z € LF), there is only one edge which goes:di.e.,
there is no edge o). or iy, , but an edge from the copy to the original vertex). Hence éncibpy of P,,, for any
v, internal vertices have degree five, and leaf vertices hagees 1.

e Finally, we have the following edge$(y.,7,), (v1,21), (@, 21)}

We denote by: the number of vertices in Réd'), and note that = O(m), wherem is the number of edges .

Example. We consider the grap@ with six vertices, wher®, = {v1, v2, v3} andV,. = {vy4, v5, vs}, such that;, and
vy each have edges tQ andvs andv; has an edge tog. See Figur€l4 for an illustration. Observe thasatisfies
the uniform degree property. In Figure 5 we have part 1 of tlaply RedG) along withV.. In Figurel® we have the
remainder of Re@>). Consider some fixed perfect matchidlyl in G, i.e. v1 — v4 andvy — vs andvs — vg. The
graph RedG)PM is then the same graph as in Figlie 5 and Figlire 6, excepttiragure s it does not contain the
edges fromd or v?.

The process of fixation inRed G). The process of fixation in Réd') can be decomposed in two phases. The first
phase (Phase 1) is over whgn becomes a mutant; and the second phase (Phase 2) is ovehwiitixdtion. A
key property of Phase 2 is as follows: verticedincannot become a mutant after has become a mutant: This is
because for each vertexin V., every predecesserof v has exactly two successors, and one theg igand hence
the density constraint with thresho&d— 0 ensures that ify; is a mutant, then vertices . cannot become mutants
after that).

e Phase 1.In Phase 1, the vertex, must be the first vertex to become a mutant (since it has nepesdor).
After v, all vertices inB; turn into mutants (by the QEBT property). Once a vertex V* becomes a mutant,
then a path in the PBP, underv is chosen uniformly at random to become mutants (by the PRBpepty),
and then the leaf of the path can make the correspondingxverté. a mutant. Once a vertexin V,! with
degree 1 becomes a mutant, then it can reproduce a mutastiaitjue neighbor i,.. In the end, some vertex
in V,. reproduces a mutant o and Phase 1 ends.

e In Phase 2, first the copy, becomes a mutant from, . After o, all vertices which are copy of vertices i\
become mutants (again by the QEBT property). Once copiegntices inV* become mutant, then the tree
underneath them in the copy become mutants. Consider &evtbich is a copy of a vertex € P,, for some
v € V[, and there are two cases: (iyifis a non-leaf vertex, them has degree five, and can reproduce mutants
until the two children in the tree and the original verteare mutants (note §f | orz, is a mutant, then both the
children and the original copy cannot all become mutantgadtige density constraint); (i) i is a leaf-vertex,
thenw has degree one, and can reproduce mutant.féinally, y; makesy, a mutant, which then makes a
mutant.

Fixation and a perfect matching. Observe that fixation implies that all verticesih have become mutant, and
no vertex inV,. can become a mutant in the second phase. Each vertéxismresponsible for making at most one
neighbor inV,. a mutant (for vertices with degree 1 it is the unique sucadssi,., and for vertices with degre®, it
corresponds to the leaf of the path in the perfect binarydhesen uniformly at random by the PPBT property). This
defines a perfect matching. Conversely, given a perfecthitajcPhase 1 and Phase 2 of fixation can be described
using the pairs of the matching (to chose paths uniformlaatiom in the perfect binary trees). Thus given fixation,
it defines a perfect matching, and we say that fixationusasithe perfect matching.

10

Exact fixation probability. Consider some perfect matchid/l. Observe that if there are> 0 perfect matchings,
then the exact fixation probability is- xpm, Wherezpy is the probability that we have fixation and ug&ld. This is
because each perfect matching has the same probabilitythe lseosen matching in Phase 1 by the PPBT property. In
Phase 2, any vertexwhich is either a vertex if;! or a leaf inP,, for v € V/*, cannot reproduce by the key property
of Phase 2 (and thus can be viewed as having no out-going)eddess in Phase 2, by symmetry, the probabilipy,

of fixation for a perfect matchingM is independent oPM.

Bounds onz and s. We show that the probability for fixation of a fixed matching is at leagt= 12", wheren is

the number of vertices in Réd'). Each possible way that all vertices can become mutantssimappith probability at
leastn—2", because there are at masteproductions (effective reproductions which produceva meitant) and each
specific reproduction chooses two vertieeandv’ at random from some set of vertices and thus, a specific choice
happens with probability at leagt 2. Thus the lower bound on z follows. Finally, observe that the numbeiof
perfect matchings can be at medt(i.e., upper bound oais n!).

The graph RedG)PM. Given a perfect matchinM, we can findz as the fixation probability for the graph
Red G)PM, which is similar to Re@(7), except that each leaf verte® in P,, for v € V/}, if (v,u?) is not in the
matching, then we remove all out-edges frafn and otherwise:! has the same edges as in R&dl It is clear that
the fixation probability in Re@=)PM is x.

Approximating the fixation probability is #P-hard. Our reduction is as follows: Given a graphwith the uniform
degree property, we want to find the number of perfect maghinin it. First, (i) we find an arbitrary perfect
matchingPM in polynomial time using the algorithm df [10] (if there etdsione, we are done); (ii) construct Reg
and RedG)™ in polynomial time; and (iii) compute the approximatighof the fixation probabilityy* in Red G)
for e = 1, and the approximation’ of the fixation probability: in Red G)™ for epy = —2= = -5. We now show
how to obtains from 3’ andx’. We have thay’ is such that

< < (' . — 2. _n . i< !, n
Yy <z-s+e<(z +epm)-s+e==zx S+n!-16 s+16_x s+8,
and similarlyy’ > 2’ - s — 2. This shows that
n _vy 7
- <L < —.
s 8x’_:v’_s+8:6’

Since we also have’ >z — e =n — 4= > 11”—6" we see tha’; < 1/3 and thuss is the integer closest t%}i.

Theorem 4. The quantitative approximation problem for no residentegluction in both the generd&R model and
the [EQR model is#P-hard.

11

O—)

Figure 4: The grapld.

Part 1]

The EBTB,

The PBTPM

U1

.“::1: N The PBTPvz /

N

7

B

&
/

Figure 5: Part 1 and the edges relatedt®f the graph Re@). The edges tg, are dotted for readability.

Copy of part E|
The copy ofB,

<
<
<
<
<
<

=1
O

Figure 6: The copy of part 1 of the graph Rél. Most edges t@, and toz, are dotted for readability.

5 PSPACE-Completeness for thé&R Model with Resident Reproduction

In this section we will establish the polynomial space ugpmind and lower bound in the 1&R model with resident
reproduction.

5.1 Upper bound
In regards to the approximation problem, we only provideradcamized algorithm with double exponentially small
error probability. We first describe what is a Markov chaid &tarkov chains associated with an evolutionary graph.

Markov chain. A Markov chainM = (S, A) consists of a finite sef of states, and a probabilistic transition function
A that assigns transition probabilitiés(s, s') for all s,s’ € S, i.e.,0 < A(s,s’) < 1forall s,s’ € S and for all

s € Swehave) o A(s,s") = 1. Given a Markov chain, its grap$, E) consists of the sef as the set of vertices,
andE = {(s,s") | A(s,s’) > 0} positive transition probabilities as the set of edges.

Exponential Markov chain. Given an evolutionary grap¥ = (V, E;, Eg), with a payoff matrix, and the density

13

constraints, an exponential Markov chdifi; = (S, A) is constructed as follows: (1§ consists of subsets df
which denotes the set of verticesIéfwhich are currently mutants; (2) fere S ands’ € S there is positive transition
probability if the cardinality of ands’ differ by 1 and the transition probabilit(s, s’) is computed depending on the
payoff matrix,Er, Er, and the density constraints. Observe that for the Markainch/ i, the transition probabilities

of a state in the Markov chain can be constructed in polynbspiace, and hence the Markov chain can be constructed
in polynomial (working) space.

Qualitative analysis and approximation of Markov chains. We sketch the arguments for the upper bounds.

e The qualitative analysis is achieved by simply checking iftie graph of the Markov chain the state= V' is
reachable from some state= {v} for v € V. It follows that the qualitative question is in PSPACE.

e For the approximation problem we simulate the Markov chaifolows. We start at an initial state uniformly
at random among those where there is exactly one mutantideoradrial run of the Markov chain as follows.
Given the current state, we first check if (i) the currentestal’; else we check (ii) if there is a path from the
current state tay = V. If (i) is true we have a success; and if (i) is false we havailufe. If we neither
succeed or fail, we use the transition probability of the ké&rchain to obtain the next state till we succeed or
fail. Note that each trial run succeeds or fails eventuaity\probability 1. We can view the outcome of each
trial run as the outcome of a Bernoulli distributed randomalae with success probability equal to the fixation
probability. Hence repeating the trial runs independeatiyexponential number of times, we can approximate
the fixation probability using Chernoff bounds, within anyen e > 0, with double-exponential small error
probability.

Lemma 5. The qualitative decision problem in the genef&R model is in PSPACE. The quantitative approxima-
tion problem can be solved for the genef&8R model in polynomial space with double exponentially smiaire
probability.

Remark 6. Observe that since precise probabilities to reach a state Markov chain can be computed in polyno-
mial time in the size of the Markov chain |12], it follows ththe precise fixation probabilities can be computed in
exponential time.

5.2 Lower bound

We show two lower bounds: (i) the qualitative decision gioesis PSPACE-hard; and (ii) the question that given an
evolutionary graph with the promise that the fixation pralighis either O or close to 1, deciding which is the case is
PSPACE-hard. We will present a reduction from the membpngtoblem of a deterministic polynomial space Turing
machine (which is PSPACE-hard by definition) to an evolwigngraph (with separate; and Er) and a constant
fitness matrix (but > 0, and hence residents can reproduce). Given an instanceuwfragTnachined with binary
input I of lengthn, whetherA acceptd using space at most(n), whereP is a polynomial, we present the reduction
in two stages. First we will present a reduction such thatspacific vertex is the first to become a mutant, then
the fixation probability is precisely 1 ift accepts inpuf using at mostP(n) space, otherwise it is 0. Thus since
all vertices are chosen uniformly at random for the initialtemt, there is a fixation probability of at Ieaﬁt if the
machine accepts (wher€ is the number of vertices in the evolutionary graph). Thieady shows the hardness for
the qualitative problem. Later we show how to amplify thefiima probability to show the hardness for approximation.

Density constraintOur construction will be fobr = 65, = 0, but a similar construction will work for any choice
of Or,0r € [0,1). The threshold§r = 6, = 0 indicates that a vertex can reproduce precisely as long as all its
successors il are of the opposite type of because of the density constraint.

Ideas behind the reduction.We will use the following ideas in our construction:

1. Changing Turing machineWe will first reduce the problem to a similar Turing machiAg which has states
A'(S) ={0,1,2} x A(S), whereA(S) is the set of states of. For each transition from states to states’ in
A there are three corresponding transitionglinone for eachi € {0, 1, 2}, which updates the tape content and
the position of the tape-head in the same way, dsit goes from staté mod 3, s) to state(i + 1 mod 3, s)
in A’. This reduction given two successive configurations of thenf machine allows to detect which is the
former and which the later.

14

Figure 7: Boolean-value gadget: Dashed edges aFg iand non-dashed are itig.

2. States which are nearly always a mutant/resideBimilar to the previous lower bounds, we have a vettex
without any predecessor ifig. Thus, ifv, is not made a mutant at the start, then it cannot become a tmutan
Hence we will only consider the case whenis a mutant in the beginning and stays a mutant forever. We
will also have a vertex;, and our construction will ensure that it stays a residetit at other vertices are
mutants and then (after a few more steps) all vertices becouaiants, and we get fixation. We will use the
verticesv; andv, to ensure that a given vertex has a desired type, and otleetinesvertex cannot reproduce.
Our construction will ensure (using the density constjahm following properties:

e A vertexv with U, as a successor undey can only reproduce if it is a mutant (using the density caistr
andv; is a resident). Similarly, a vertexwith vs as a successor under; can only reproduce if it is a
resident.

3. Boolean-value gadgetS:he vertices of the graph will encode values of tape cellfeffuring machine, along
with the states and tape head positions of the Turing machNiedescribe how to implementamolean-value
gadget in the evolutionary graph, which can be checked antbs& boolean value using a single external
resident predecessor. In effect the value setting is donanatom, but the resident predecessor will keep on
setting the value of the boolean-value gadget either todrdalse and eventually, with probability 1 it will be
set to the right value. We first describe the constructiomefgadget, then its requirement, and finally present
the principle with which the gadget works (given the requieat is fulfilled).

¢ (Construction):Each boolean-value gadggtonsist of four vertices: Twwoalue verticesnamely, (i)v{v
(thetrue-value-vertexwhich is a mutant if the boolean value is true; and 1@ (thefalse-value-vertex
which is a mutant if the boolean value is false. If neitherhaf value vertices are mutants, we interpret
that the gadget haso value Besides the value vertices, there are two vertices (ctiedetter verticés

which will be required to be mutants: (@)ZS (thetrue-setter-vertexand (ii) v, (the false-setter-vertex

S
The edge set is as follows: () bot#}, andv?, havet,, v}, v}, as successors undg; (i) v, (resp.v},)
has onlyv-tjv (resp. v}v) as a successor undel; (see Figur&l7). The purpose of the edge&inare as
follows: the edge ta; enforces that the setter vertex is a mutant before reprmy@nd the other two
edges enforce that only if the gadget has no value (i.e., \tre vertices are resident), then the setter
vertex can reproduce a mutant (by the density constrainttatdr = 65, = 0).

¢ (Requirement)The only requirement for the gadget to work is that both theesgertices are mutants and
the setter vertices have no other successors (except fondsespecified above).

e (Principle): The main principle of the gadget is as follows: the two settatices become mutants (in
an initial phase and remain mutants, to ensure the requitga aconsistent phasexactly one of the
two value vertices will be a mutant and the other cannot becamutant due to density constraints. The
consistent phase represents a boolean value. To changedteab value the procedure is as follows: an
external resident vertex can check usiiigthat the Turing machine should change the value of the gadget
say from false to true. Then the external resident vertesodies a resident to the false-value-veugx
At this point, the boolean gadget has no value (i.e., not iarssistent phase), and both the setter vertices
can reproduce mutants (especially, there is a positivegnitity to reproduce a mutant fromj, to v7,). If
a mutantis reproduced u;lv, then the external vertex can keep reproducing residemﬂg,twhich ensures

15

that eventually with probability 1 the vert@;'u is a mutant and the boolean gadget restores to a consistent

phase (with a true value). The process of setting a true valfadse is similar by reproducing residents to
J

vtv .
The construction of the graphG(A, I, P). We now start the description of the construction of the eNoihary graph
given an instance of the membership problem of a polynospake Turing machine. We start with the boolean-value
gadgets for the Turing machine.
Turing machine boolean-value gadgdter each in {—1,0,1,..., P(n)+1} there aré¢2-|A’(S)|+1) boolean-value
gadgets. One boolean-value gadgebrresponds to the content of the tape at positioRor each state in A’(.9),
each positioni, and each contert(wherec = 0 or 1), there is a boolean-value gadget, ¢) for the tape-head being
in positions, in states, and the tape content at positibheingc. We say that the Turing machine is irsaper-position
if more than one boolean-gadgéts, ¢) is true. The value vertices in most of these boolean-valdgeis have no
successors in eithdt; or Er. We now describe the exceptions. For each accepting siatel’(S) and for each

in {0,1,..., P(n)}, consider the value vertices’*") andv{"** of the boolean-value gadgfs s, 1) and (4, s, 0).
The value vertices have one successaoim E; and a special vertexr in Er. The key idea is as follows: If the
machine accepts, then one of these value vertices becom&atiand then they will maker mutant. The edge to
vs underE; ensures that the vertex reproduces only if it is a mutant. @@ustruction will ensure that oneg- is a

mutant, then fixation follows given, is already a mutant.

The three stage&ie will split the construction with the following stages irind. (1) The initialization stageonsists

of two parts. First, for each Turing machine boolean-valadggt, the initial values are set in two steps. A gadget
with initial value false (resp. true) igartly initialized if the false-setter-vertex (resp. true-setter-vertexjonmees a
mutant which then reproduces a mutant to the false-valuexéresp. true-value-vertex) of the gadget. In the first
stage of the initialization, all Turing machine booleadueegadgets are partly initialized (using another boolealne
gadget named,); and then checked that the partial initialization is aghte(using a check vertex calleg). In the
second stage, all the remaining setter vertices in the @umiachine boolean-value gadgets become mutants, and each
gadget gets to a consistent phase. The second stage dfzatt@ and checking are achieved (similar to the first
stage) with boolean-value gaddetand check vertex,, respectively. The boolean-value gadbets only set to true
after the boolean-value gadgets of the Turing machinesantéy pnitialized. Similarly, the boolean-value gadget

is only set to true after all the boolean-value gadgets ferTiiring machine have finished initialization (i.e., are in
a consistent state). (dhe execution stagehich corresponds to the execution of the Turing machineherinput.

(3) The post-acceptance stagiich corresponds to the steps after acceptance of thegimathine to ensure fixation.

1. Preprocessing steBefore the initialization phase we describe two verticas their roles.

(a) Start vertex:The vertexvs has no predecessor iz (hence must be the first vertex to become a mutant)
and no successors ifi;. The vertex has two successorshlg, namely, vertexy; and the false-setter-
vertexafg for b;. This ensures that after, both v}ZZ; (to partly initializeb;) andv; can become mutants
(note that since, has no successor ifi; it can always reproduce mutants).

(b) Last residentThe vertexv; has no successors in either set (i.e., no out-going edgésam E'y). If there
is fixation, then this vertex will become a mutant in the begig (fromwv,), then will become a resident
close to the end of fixation (only after acceptance); and firelly become a mutant again as the last
vertex.

2. Initialization state, part 1:We first partly initialize the boolean-value gadgets of theifig machine and it is
achieved as follows: first the partial initialization is di)(rh)yvfi;), and then it is checked (by an additional vertex

Cl).

(a) First part of initialization: The false—value—verte@; for b, hasv, as the only successor i; (to enforce
that the vertex is a mutant before reproduction). The ssoeesinde, are as follows:

e The true-setter-vertex(! . This allowsu}! to finish the initialization ob .

16

e For each boolean-value gadget of the Turing machifjehas either the true-setter-vertex or the false-
setter-vertex as successor depending on the initial vahteé gadget being true or false, respectively.
This a||0WSvf1 to partly initialize the boolean-value gadgets of the Tgmmachine.

(b) Check if first part of initialization is doneiVe have a check vertex. The check vertex; has out-going
edges inE; consisting of the following:

e Edgestay,vi,v }“ v% 4%, The purpose of the edgetgis to ensure that; is itself a resident before
reproduction. The rest of the edges enforce that all thegeees are mutants beforg reproduces
residents, to ensure that is a mutant, and the boolean-value gadgdtas value false.

e Forz € {t, f}, an edge to each setter-vertex and the corresponding value verte in the Turing
machine boolean-value gadgets where the setter vertexiscassor Of} ! underEg. These edges

enforce that these gadgets are partly initialized befpreproduces reS|dents

The successor af; in Eg is v‘;; to set the boolean-value gadgetto true. Thus: is an external resident
vertex to set the boolean-value gadieto true. Note thab, is only set to true after all the boolean-value
gadgets of the Turing machine are partly initialized.

(c) Go to part two of initialization:The true-value-verte'xf; for b; has the false-setter-vertefg2 for b, as a

successor i, andv, as successor il;. The edge inE; enforces that;f; is itself a mutant, if it can
reproduce. The edge iz ensures that the boolean-value gadgeatan become partly initialized. Also,
we will later useut1 to check that the first part of the initialization is over (bhecking that it is a mutant).

3. Initialization stage, part 2: The second phase of initialization begins when the chectexer has set the
boolean-value gadgét to true. In this phase, the initialization of the Turing maeh(which was partly done in
the first part) is completed and checked. The procedure itssita the first part and the details are as follows.

(a) Second part of initialization:The false-value-vertex’;j for b, hasv, as the only successor iB; (to
enforce that the vertex is a mutant before reproductiond. Sttccessors iRk consists of the following:

e The true-setter-vertev@s2 for by. This aIIOWSUI;U2 to finish the initialization obs.

e Each setter-vertex in a boolean-value gadget in the Turiaghine which is not a successor fmfg

under Er. This a||OWSvf2 to finish the initialization of the boolean value gadgetshe furing
machine.

(b) Check if second part of the initialization is doriEhe successors of check veriexin £ are

e The vertice%s,vf;v}?j,vfs, andv The purpose of the edge tg is to enforce that ifc; can

reproduce, then it is itself a re3|dent. The edge;ﬁ,b enforces that the first part of initialization
is over, and the remaining edges enforce thahas been initialized to false, before reproduces
residents.

e The successors of’.j under E'r. The purpose of these edges is to ensure that the booleam-val
gadgets of the Turing machine have been initialized befpreproduces residents.

The only successor @ underEy is v}?j. Thusc, is an external resident vertex &g, to set the value of
bs to true. Again note that the value bf is set to true, only after the boolean-value gadgets of thimgu
machine have been initialized. Another important pointhiattafter the initialization, since the setter
vertices of the boolean-value gadgets are all mutantsetipgirement for all such gadgets are fulfilled.

(c) Initialization is done:The true—value-vertezxﬁﬁ for by has no successors ity or Er and is used to check
that the second part of initialization is done (by checkimaf it is a mutant).

4. The execution stagé&or each € {0,1,..., P(n)}, each state of A’(S), and each possible conten& {0,1}
of the tape at positionthere are five check vertices, namely; "), ({0 Jise) | plise0) gngoheel),
Let the content of the tape at positidjust after having been in sta&ebeb (and the content before wayand
the complement value ofbeb. Let the next position of the tape headiband the state’, given that the Turing

machine is in state, the tape head is at positiopand the tape-contentiqthis is defined by description of the
Turing machine).

17

Intuitively, we will split each step of the execution intadle parts. First, (1) we update the content of the tape
at position: (if needed); (2) then we set the next configuration (i.e. theldan-value gadgét’, s’,¢’), where

¢’ is the content of the tape at positiéf) of the Turing machine to true; and (3) then at the end we st th
current configuration to false (i.e. the boolean-value gaflgs, ¢)). Each check vertex associated with part
has subscripg, for j € {1,2,3}. We have one check vertex for the first part and two for eachebthers,
because we do not know a priori the contehof the tape at positioil. Note that we enter a super-position
after part 2, but by construction ef we can still distinguist{i, s, ¢) from (', s’, ¢’). Note that fori = —1 and
P(n) + 1 we do not have check vertices, ensuring that if the Turinghimechead enters one of these positions,
then the machine does not accept, and'{, I, P) the evolutionary process stops without fixation.

(a) Updating the tapeFirst we will describe the successors of the check vm‘fe%(c). The set of successors
for c(z’s’c) in E; consists of

e Thevertices,, v, v?2. Theses edges enforce that the vecﬁéﬁ is aresident, and the initialization
is over, before:(l 8:¢) reproduces.

ZSC

e The true-value- vertexm for the tape-head being in positionin states, with the tape content at
position: beinge. In other words, this enforces that the Turing machine ihat position/state/has

that content, beforel*) reproduces residents.

e For eachi”,s”,c” such thati # " ors # s orc # ¢”, the false-value-verteulﬂz"vS"70”) for the
tape-head being in positioff and in states” of A’(S) while the content of the tape belowdé. This
enforces that the Turing machine is not in a super-positﬁfm’ecg”"c) reproduces residents.

. TheE-vaIue-vertex%v for position: of the tape. This enforces that the content of the tape atiposi
i should be updated, befoc%’s’c) reproduces residents.

%,8,¢)

The setFE, is then theb-value- vertexz;Z for positioni of the tape. Thu:a1 is an external resident

vertex that changes the value of the tapé to
(b) Moving the tape head, part INext we will describe the successors of the check vedfgefcc) for

¢ € {0,1}. The set of successors faf***” in E;, is similar to the vertex{"**, (except that{"**)
has one more, and the one checking the tape has changedediditithree items are exactly 5|m|lar) and
consists of
e The vertices,, v2!, v%2.
e The true-value- vertextl <) for the tape-head being in positianin states, and with content at
beingc.

e For eachi”,s”,c” such thati # i ors # s"” orc # ¢”, the false—value-verteu}(cz”’SN’C”) for the
tape-head being in positioff and in states” of A’(S) while the content of the tape belowds.

e Theb-value-vertex?, for positioni of the tape. This enforces that the content of the tape atiposi
i has the right value, befozéi’s’c’c,) reproduces residents.

e The ¢'-value vertexz;i' for the content of the tape at positiah This enforces that the content of
the tape at positiosf (the place the head is moving to)d§ beforec(l s:,¢') reproduces residents.
Observe that the check verteé% <) for o/ = ¢ checks for the opposite value.

The setEy is then the false-value-verte»;z/’sl’c/) for the tape-head being in positiof) in states’, and

(i,5,¢,¢")

the content of the tape being (the vertexc,
machine in a super-position.

is the external resident vertex). This puts the Turing

(c) Moving the tape head, part 2tast we will describe the successors of the check vearié?(c’c/), for
¢ € {0,1}. The first two items are exactly similar as the previous tweesa The set of successors for

. ’
cgj’s’“)in E; consists of

18

e The vertices,, v2!, v%2.

e The true—value—vertexgz’s’c) for the tape-head being in positianin states, and with content at
beingc.

e The true—value—vertex,gfj,’S,’C,) for the tape-head being in positiéf) in states’, and with content at
1 beingc’. This enforces that the Turing machine is in the super-posititroduced in the last step,

(4,8,¢,¢")

beforec, reproduces residents.

=1 " 1
e For each”,s”, ¢ such that(i”, s",c") & {(i,s,c), (i’,s',c)} the false-value-vertex’. ** ") for

‘fo
the tape-head being in positiofy, in states” of A’, with the tape content’ under it. This enforces

(i,5,6,¢")

that the Turing machine is not in any further super-posijtimgforec; reproduces residents.

The setFEy is then the true-value-verte»gi’s’c) for the tape-head being in positianin states with tape

(i,5,¢,¢)

contentc. Thus the vertex; is an external resident vertex that resolves the supetipo$iy setting
the boolean(i, s, c) to false. Afterwards we are not in a super-position and thengemachine is in
positions’, in states’, with content of the tape at positiahbeingc’. Note that the construction of’

ensures that check verte¥ **“**) and check vertex| """ cannot reproduce, since we cannot get
back to state in the next step froms’ in the Turing machine!’ (i.e., we cannot resolve the super-position

backwards).

We remark that in the execution stage, at any point theresistBxone boolean-gadget thasistivein the sense
that reproduction can change the value of the boolean-galdget, and nothing else can change. Moreover, the
active boolean-value gadget is set to the right value byodgymetion in finitely many steps with probability 1.

5. The post-acceptance stagé#e will now describe the vertices that makes fixation hapftsr acceptance.

(a) After acceptThe vertexo+ has vertex; as successor ifi; and all vertices besideg andv, as successors

(b)

(©

in Er. OncevT is a mutant and, is a resident, it ensures that eventually all vertices dtieany, become

mutants. This is because, nothing changes any of the chetitkese(i.e. the verticeg; andc, and the

verticesc\"*¢) | {0 plimed) (65.00) ang (ool for anyi, s, ¢) back to residents after they have

become mutants and thus eventually all those vertices becmmants. At that point no vertex can change
any vertex in any boolean-value gadget in the Turing mactunesidents and thus, eventually they also
become mutants.

The vertex which is nearly always a residefhe vertexv,; has all other vertices as successor&jnand
vertexv; in Er. In other words, after the vertex- has made all other vertices into mutantsmakesv;
aresident.

Changing vertex, to a mutant.The vertexy+ hasv; andv; as successors ifi; and vertex); as successor
underEr. The vertexy+ change$, to a mutant. Note that the only predecessogfin Er is vt and
especially, it cannot become a mutant before aftdras become a mutant (which happens in the first part
of the initialization). Thus, it can first reproduce ongehas madey; back into a resident, which first
happens once all other vertices are mutants. Afidnas become a mutant, then makesv; a mutant.
Note thatv, or vt might makev; a mutant beforg+ has madé&,; a mutant, but in that case;, will just

try again by making a resident, and eventually; then make$, into a mutant. Hence fixation happens
with probability 1.

lllustrations. There is an illustration of the construction@f{ A, I, P) in Figure[8, not explicitly including the Turing
machine (it is shown as just a gray box) and not including tiges (1) inE; to and fromu, (each of the 8 vertices
in the boolean-value-gadgets, the place where “Execut®wiitten and the vertices, andvi has one t@, andv,
has one to each other vertex); and (2fip from v, (there is one to each other vertex, besideandv;). Also, the
gray edges are used for partial initialization. The loaatithere “Part init.” is written is for partial initializatim The
location where “Finish init.” is written is for the remairgmpart of initializing the booleans in the Turing machineeTh
location where “Execution” is written is the active part bétTuring machine.

19

In Figure[® there is an illustration of the operation of theiilg machine. Each vertex which is black with white
text is a mutant and each other vertex is a resident. The gumiachine is such that it if it is in state 1 and reads a
0, the Turing machine writes 1 to the tape, moves right and gmstate 2. The illustration only contains the small
part of the Turing machine needed for the move from being Bitjpm 1 in state 1 with tape content 0, when the tape
content at position 2 is 0 (i.eu}v is a mutant). The Turing machine is in state 1 at position 1 thedcontent of
the tape is O at position 1 (as seendffy"* andv}, being mutants). This cause§"” to reproduce (it is the only
vertex that can) and makeﬁ into a resident and then botk, andv}S can reproduce. lt}s reproduces we repeat (i.e.

(1’1’0) 10.9) can reproduce and makeg’zo)

reproduces). Eventually,, reproduces and afterwards, the ver&é&
(2:2.0) andv{2*? reproduce like before - again,vjrﬁ’m) reproduces, then so doeg™* "
reproduces, which Iet%l’l’o’o) reproduce and changeg’l’o) to resident. That lets

1’1’0) does, therazgl’l’o’o) does as well, repeatedly. Eventua{l%’l’o) reproduces

into a resident (this Iets
repeatedly). Eventuallmt

vgi’l’o) andvlgcls’l’o) reproduce. I,

220)

and the Turing machine is in sta@eat position 2, with 0 on the tape at position 1 (as seemt(ﬁﬁ’o) andv?v being
mutants). '

The graph G(4, I, P) has the wanted properties |t is straightforward, following the description in the agruction,

to see that iy, becomes mutant at first, then fixation is ensured with prdibabiif A accepts inpuf using at most
P(]I]) space. IfA does not acceptusing at mosP(]I|) space, them; cannot become a mutant. It follows that given
vs becomes a mutant at first, then the fixation probability is A dcceptd with space at mosP(|I|), otherwise the
fixation probability is 0. Note that initialization, eacleptof the execution, and the fixation stage might take long, bu
we have that each ends with probability 1 after a finite nunobsteps. Note that the PSPACE-hardness for qualitative
guestion follows.

Lemma 7. The qualitative decision question for the gend&R model is PSPACE-hard.

Amplifying the probability: The graph G’(A, I, P, p). We now describe how to, given a polynorryinalincrease the
fixation probability of the grapli’(A, I, P), if the Turing machine accepts with polynomial space frﬁmo 1-— p(n)

The graph G'(A, I, P,p) from G(A, I, P) and p. We create a new grap’(A, I, P, p) as follows: We add: =
N - (p(n) — 1) new verticesv*, v2, ..., v¥, such that, for alf # k, the vertexo’ hasv, as the only successor ifi;
andv*! in Eg. The vertex* hasv, as the only successor ii; andv, andv® as the successors fiz. The check
vertexc; has, besides the successorszindefined in the construction @f(A4, I, P) also the vertices’ for all i as
successors ;.

The graph G'(A, I, P, p) has the desired properties.Observe that if some verteX has become a mutant at the
start, then each verteX can become mutants (one after the other) and eventuallyalsdote also that the vertex

v' can keep reproducing mutants @l has become a mutant. At the time whgnhas become a mutant, the vertex
c1 must have changel to true (given thav? was the first mutant for somg. But in that case all vertices' have
become mutants and remain mutants. Hence, using a argukeetitd above, we see that if we pick some ventéx

to be the initial mutant, then the fixation probability is llie Turing machine accepts and 0 otherwise. This shows

that the fixation probability is either — W =1- p(n or 0, as desired.

Lemma 8. Given an evolutionary grap& = (V, E1, ER) in the general&R model, a polynomial, with the promise

that the fixation probability irG is either (i) 0 or (ii) 1 — \VI)’ deciding between (i) and (ii) is PSPACE-hard.

Hence we have the following result.

Theorem 9. The following assertions hold for evolutionary graghin the general&R model: (1) The qualitative
decision question for the generdtR model is PSPACE-complete. (2) Ror< e < 1 (specified in unary), with the
promise that the fixation probability i& is either (i) 0 or (ii) 1 — ¢, deciding between (i) and (ii) is PSPACE-hard;
and the approximation of the fixation probability with doalekponentially small error probability can be achieved in
polynomial space. (3) The fixation probability can be coragduh exponential time.

20

\\ \
/ * u /,’

Figure 8: The part of the gragh(A, I, P) not including the Turing machine (the Turing machine is ia ¢iay box).
Some edges are not included to make the graph more readable.

21

-« - - -

©!

’

Figure 9: Part of the operation of the Turing machine. Blagkiges with white text are mutants.

22

Remark 10 (Matrix encoding of density constraintsiNote that in our results for lower bounds we consider density
constraints of; — 4, for 0 < ¢ < 1/10 (in Sectior[B and Sectidi 4) and 0 in this section. In all thedobounds,
the payoff matrix is constant, and for the first two lower basin = 0. The density constraints can be encoded as a
payoff matrix (that is not constant) as follows:

R M R M
R (0 0 R (—-N 1)
M\1 -1)" M\ 1 -N)~’
the first payoff matrix encodes that a vertex that is a mutanteproduce only if strictly less than half of the successor
in F; are mutants; and the second matrix (for vertex set of Aizeencodes that a vertex can reproduce only if all

the successors ifv; are of the opposite type. Note that with the matrix encodirgRPBT property still holds for
#P-hard lower bounds, and hence the lower bound proof argumeenains unchanged.

Concluding remarks. In this work we studied the complexity of basic computatioesfions for evolution on graphs.
We established many lower and upper bounds. An interesfieg question is the exact complexity of the quantitative
approximation question for the general I&R model. Our papielens the reach of complexity investigations to the
computation of fixation probability in evolutionary graphebry, a fundamental problem in evolution. While we
establish several important complexity results (in margesgprecise complexity bounds), further investigatioes ar
necessary to establish precise complexity bounds for sdtine @roblems.

AcknowledgementdVe thank Erez Lieberman for insightful discussions andisldris thoughts on the problem.

References

[1] N. Barton, D. E. Briggs, J. A. Eisen, D. B. Goldstein, andiN Patel.Evolution Cold Spring Harbor Laboratory
Press, 2007.

[2] M. Broom and J. Rychtar. An analysis of the fixation prbitity of a mutant on special classes of non-directed
graphsProceedings of the Royal Society A: Mathematical, PhysindlEngineering Sciencé64(2098):2609—
2627, 2008.

[3] S. A. Cook. The complexity of theorem-proving procedurén Proceedings of the Third Annual ACM Sympo-
sium on Theory of Computin§TOC '71, pages 151-158, New York, NY, USA, 1971. ACM.

[4] J. Diaz, L. A. Goldberg, G. B. Mertzios, D. Richerby, Mef8a, and P. G. Spirakis. On the fixation probability
of superstarsProceedings of the Royal Society A: Mathematical, PhysindlEngineering Sciengcé69(2156),
2013.

[5] F. Débarre, C. Hauert, and M. Doebeli. Social evolutiorstructured populationsNature Communications
2014.

[6] W. Ewens. Mathematical Population Genetics 1: |. Theoretical Intumtion Interdisciplinary Applied Mathe-
matics. Springer, 2004.

[7]1 M. Frean, P. B. Rainey, and A. Traulsen. The effect of gapaon structure on the rate of evolutioRroceedings
of the Royal Society B: Biological Scienc280(1762), 2013.

[8] M. R. Garey and D. S. Johnsof.omputers and Intractability: A Guide to the Theory of NPr@etenessW.
H. Freeman, 1979.

[9] A. L. Hill, D. G. Rand, M. A. Nowak, and N. A. Christakis. Emtions as infectious diseases in a large social
network: the SISa modePRroceedings of the Royal Society B: Biological Scien2ég:3827-3835, 2010.

23

[10] J. E. Hopcroft and R. M. Karp. A5/2 algorithm for maximum matchings in bipartite graphs.Proceedings
of the 12th Annual Symposium on Switching and Automata Yh&wat 1971) SWAT '71, pages 122-125,
Washington, DC, USA, 1971. IEEE Computer Society.

[11] S. Karlin and H. M. TaylorA First Course in Stochastic Processes, Second Edifmademic Press, 2 edition,
Apr. 1975.

[12] J. Kemeny, J. Snell, and A. Knappenumerable Markov Chain®. Van Nostrand Company, 1966.
[13] L. A. Levin. Universal sequential search problerRsoblems of Information Transmissio®(3):265—-266, 1973.

[14] E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionagndmics on graphsNature 433(7023):312-316,
Jan. 2005.

[15] P. A. P. Moran.The Statistical Processes of Evolutionary Theddxford University Press, Oxford, 1962.
[16] M. A. Nowak. Evolutionary Dynamics: Exploring the Equations of Liféarvard University Press, 2006.
[17] M. A. Nowak and R. M. May. Evolutionary games and spatizhos.Nature 359:826, 1992.

[18] M. A. Nowak, F. Michor, and Y. lwasa. The linear proce$somatic evolution.Proceedings of the National
Academy of Sciences00(25):14966-14969, 2003.

[19] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg. Egegrce of cooperation and evolutionary stability in
finite populationsNature 428(6983):646—650, 2004.

[20] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. Apie rule for the evolution of cooperation on graphs
and social networkdNature 441:502-505, 2006.

[21] H. Ohtsuki, J. M. Pacheco, and M. A. Nowak. Evolutiongnaph theory: Breaking the symmetry between
interaction and replacemenitournal of Theoretical Biology246(4):681 — 694, 2007.

[22] S. Otto and T. DayA Biologist's Guide to Mathematical Modeling in Ecology dfeblution Princeton Univer-
sity Press, 2011.

[23] P. Shakarian, P. Roos, and A. Johnson. A review of eimiaty graph theory with applications to game theory.
Biosystemsl07(2):66 — 80, 2012.

[24] C.E. Tarnita, H. Ohtsuki, T. Antal, F. Fu, and M. A. Now&ktrategy selection in structured populatiofsurnal
of Theoretical Biology259(3):570-81, 2009.

[25] L. G. Valiant. The complexity of computing the permaherheor. Comput. Sgi8:189-201, 1979.

24

