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Abstract

Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome
of the evolutionary process. Evolutionary graph theory is apowerful approach to study this phenomenon. There are
two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement
graph specifies who competes with whom for reproduction. Thevertices of the two graphs are the same, and each
vertex corresponds to an individual. A key quantity is the fixation probability of a new mutant. It is defined as the
probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually
takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the
qualitative question asks whether the fixation probabilityis positive; and (ii) the quantitative approximation question
asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question
is NP-complete and the quantitative approximation question is#P-hard in the special case when the interaction and
the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which
corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative
question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in
exponential time.

Keywords: Evolution; Evolution on graphs; Fixation probability; Computational complexity.
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1 Introduction

In this work we study the basic computational questions for evolution on graphs, and present complexity results for
them. We start with a description of the model of evolution ongraphs and its significance. We then state the basic
computational questions and present our results.

Evolutionary dynamics with constant selection.Evolutionary dynamics act on populations. The compositionof
the population changes over time under the influence of mutation and selection. Mutation generates new types and
selection changes the relative abundance of different types. A fundamental concept in evolutionary dynamics is the
fixation probability of a new mutant [6, 11, 15, 16]: Considera population ofN residentindividuals, each with a non-
negative fitness value,r. A singlemutantwith fitness value 1 is introduced in the population as the initialization step.
Then the following step is repeated. At each time step, one individual is chosen proportional to the fitness to reproduce
and one individual is chosen uniformly at random for death. The offspring of the reproduced individual replaces the
dead individual. This so-called Moran process continues until either all individuals are mutants or all individuals
are residents. Thefixation probabilityis the probability that the mutants take over the population, which means all
individuals are mutants. A standard calculation shows thatthe fixation probability is given by(1 − r)/(1 − rN ).
The correlation between the relative fitness of the mutant (with respect to resident fitness, i.e.,1/r) and the fixation
probability is a measure of the effect of natural selection in that population structure [19, 14, 24]. A neutral mutant,
r = 1, has fixation probability1/N . The rate of evolution, which is the rate at which subsequentmutations accumulate
in the population, is proportional to the fixation probability, the mutation rate, and the population sizeN . Hence
fixation probability is a fundamental concept in evolution.

Evolutionary game dynamics.The fitness values of individual types (resident and mutant)need not be constant, but
could themselves depend on the composition of the population. This idea brings us to evolutionary game theory, where
the individuals of a population interact with each other to receive a payoff. There could be two strategies,R andM ,
and a payoff matrix

( R M

R a11 a12
M a21 a22

)
(1)

The payoff of an individual is the average payoff of the interactions (see [16, Section 7.1]; also Section 2). Standard
evolutionary game theory assumes a well-mixed population structure, which means all individuals interact equally
likely. Again a fundamental question is the fixation probability of a mutant [6, 11, 15, 16], which quantifies whether
or not a mutant is favored by natural selection.

Evolutionary graph theory. The outcome of an evolutionary process are dependent on population structure. Evo-
lutionary graph theory studies this phenomenon. The individuals of the population occupy the vertices of a graph.
The links determine who interacts with whom. Evolutionary graph theory describes evolutionary dynamics in spa-
tially structured population where most interactions and competitions occur mainly among neighbors in physical
space [17, 14, 20, 5, 7]. Another application is cultural evolution (spread of ideas and behaviors) in social net-
works [9]. Finally, the hierarchy of cellular proliferation and differentiation in the human body, which are crucial for
physiological function and for reducing cancer initiation, are described by evolutionary graph theory [18]. For the
case of constant fitness (which means residents with relative fitnessr and mutants with relative fitness 1) graphs have
been identified that maintain the same selection pressure asthe well mixed population, that amplify selection, or that
reduce selection. For example, a star graph is an amplifier ofselection, because the fixation probability of the mutant
is given by 1−r2

1−r2N ; hence the star graph squares the relative fitness [14, 4]. Incontrast, ‘isothermal graphs’ where the
in-degree and out-degree of all vertices coincide (such as regular undirected graphs) have the same fixation probability
as the Moran process,1−r

1−rN [14, 2]. There are some graphs and update rules that enhance the evolution of coopera-
tion, which is a particular strategy in evolutionary games,for example in the well-known Prisoners dilemma [14, 20].
Evolution of cooperation is a major topic in evolutionary biology, because cooperation is seen as a main component
for the creative tendency of evolution. A crucial aspect of evolutionary graph theory is the computation of the fixation
probability of an invading mutant.

The model and computational questions.In the study of evolutionary games on graphs in general thereare two
graphs (that have the same vertices) [14, 21]. The “interaction graph” specifies who interacts with whom for payoff.
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The “replacement graph” specifies who competes with whom forreproduction. The initial step is the introduction of
a mutant uniformly at random and then at each step a vertex is chosen proportional to the fitness. If the fraction of
successors in the interaction graph that are of the same typeas the chosen vertex is below a threshold (i.e., a density
constraint is satisfied), then the individual in the vertex reproduces to a successor uniformly at random among the
successors in the replacement graph. The density constraint, which is relevant in many applications of evolution
(see books [1, page 470] [22, page 320]), can also beencodedin the payoff matrix (see Remark 10). The relevant
computational questions for evolution on graphs are as follows: (1) thequalitativequestion asks whether the fixation
probability is positive; and (2) thequantitative approximationquestion asks, givenǫ > 0, to compute an approximation
of the fixation probability within an additive error ofǫ.

Special cases of the model.While in the general model the interaction and replacement graphs are different (we refer
to the model as the I&R model), an important special case is where these two graphs coincide (we refer to the model
as the IEQR model) [14]. Another important special case is when the residents cannot reproduce, i.e.,r = 0, and this
corresponds to the case where a mutant arises in an empty geographic location, and the question is whether the mutant
can spread (hence the residents cannot reproduce). Note that with r = 0, in the Moran process, the fixation probability
is 1.

Our contributions. While previous results characterized the fixation probabilities of specific graphs (such as star or
regular undirected graphs), the complexity of computing the fixation probability for arbitrary input graphs has been
open (explicitly referred to as an important open problem ina survey [23, Open Problem 2.1 and 2.2]). We study the
computational complexity of the basic questions for evolution on graphs and our results are as follows:

1. We show that under no resident reproduction, the qualitative decision question is NP-complete both for the I&R
and IEQR models.

2. We show that under no resident reproduction, the quantitative approximation problem is#P-hard even for the
IEQR model. Our result implies the#P-hardness of the quantitative approximation in all models.

3. We show that with resident reproduction, the qualitativequestion is PSPACE-complete. For the general I&R
model, the quantitative approximation question is PSPACE-hard (for all0 < ǫ < 1) and can be solved in
polynomial space with double exponentially small error probability (which we refer to asRPS), and the fixation
probability can be computed in exponential time.

Our results are summarized in Table 1 and our main contributions are the lower bounds.

Related complexity result.To the best of our knowledge, previous to our results, there was only one computational
complexity result for evolutionary graph. For the precise computation of the fixation probability, NP-hardness for
evolutionary games (named as frequency dependent selection) in the IEQR model was shown in [14]. Our result
presents much stronger lower bounds: we show NP-hardness even for the qualitative problem and#P-hardness even
for approximation.

No Resident Reproduction Resident Reproduction
IEQR model I&R model IEQR model I&R model

Qualitative question NP-complete(LB) NP-complete(UB) NP-hard, PSPACE PSPACE-complete(LB,UB)
Approximation question #P-hard, RPS(LB) #P-hard, RPS #P-hard, RPS PSPACE-hard, RPS(LB,UB)

Table 1: Complexity of evolution on graphs. Our main contributions of lower bounds (LB) and upper bounds (UB)
are boldfaced. RPS indicates that the problem can be solved in polynomial space, with randomization and double
exponentially small error probability.

2 Models of Evolution on Graphs

In this section we present the basic definitions related to the different models of evolution on graphs and the basic
computational questions.

Evolutionary graphs. An evolutionary graphG = (V,EI , ER) consists of a finite setV of vertices; a setEI ⊆ V ×V
of interactionedges; and a setER ⊆ V × V of replacement(or reproduction) edges [21]. The setsEI andER

consist of directed edges, and the graphGI = (V,EI) is called the interaction graph, andGR = (V,ER) is called
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the replacement graph. The graphGI is responsible for determining the interaction of individuals in the graph (which
affects the fitness), and the graphGR captures the underlying structure for reproduction and replacement of individuals
in the graph. Given an edge(v, u) we sayu is asuccessorof v andv is apredecessorof u.

Fitness of individuals. Each vertex of the graph will be occupied by one of two types ofindividuals, namely, the
residenttype and themutanttype. In evolutionary games, along with the evolutionary graph there is a payoff matrix
as defined in Equation (1) (Section 1), where the entries of the matrix are rational numbers and represent the payoff
of an interaction, i.e.,a11 (resp.a12) is the payoff of a resident type interacting with another resident (resp. mutant)
type, anda21 (resp. a22) is the payoff of a mutant type interacting with a resident (resp. mutant) type. Given two
types,x andy, we denote bypay(x, y) the payoff of typex versus typey. The fitness of an individual at a vertexv
is a non-negative number and determined as follows: LetEI(v) = {u | (v, u) ∈ EI} denote the set of interaction
successors ofv, then the fitness ofv, denoted asf(v), is the average payoff of the interactions but at least 0, i.e.,

f(v) = max{
∑

u∈EI (v) pay(v,u)

|EI(v)|
, 0}. A special case of the payoff matrix is theconstant fitness(aka constant selection)

matrix defined as follows:

(R M

R r r
M 1 1

)

i.e., the mutant types always have fitness 1 and the resident types fitnessr, wherer ≥ 0. Intuitively, the fitness of an
individual represents the reproductive strength.

Threshold for density constraints.Along with the evolutionary graph and the payoff matrix, we have two thresholds,
namely,θR andθM , for the resident type and the mutant type, respectively. Intuitively, the thresholds represent a
density constraint, and if an individual is surrounded by a lot of individuals ofthe same type, then its reproductive
strength decreases. The density constraint can also be encoded in a payoff matrix (see Remark 10).

The evolutionary process.The evolutionary process we consider is the classicalbirth-deathprocess on an evolution-
ary graph defined as follows:

1. Initially all vertices of the graph are of the resident type and a mutant type is introduced uniformly at random at
one of the vertices of the graph and then the following step (referred to as ageneration) is repeated.

2. In every generation, a vertex is selected proportional tothe fitness of the individual at the vertex to reproduce.
Let the selected vertex for reproduction bev. LetSame(v) denote the number of vertices inEI(v) that are of the
same type asv. If v is a mutant type, andSame(v)

|EI(v)|
≤ θM (resp. ifv is a resident type, andSame(v)

|EI (v)|
≤ θR), then the

individual gives birth to an individual of the same type. Thenew born individual replaces one of the replacement
successors ofv, i.e., it replaces a vertex chosen uniformly at random from the setER(v) = {u | (v, u) ∈ ER}.
Note that the density constraint implies that if the constraint is violated, then the selected individual does not
reproduce.

Step 2 (or generations) is repeated until nothing can change(in particular, if all vertices have fitness 0, then nothing
can change).

Fixation probability. The most relevant question from an evolutionary perspective is thefixation probabilitywhich is
the probability that the mutant takes over the population, i.e., eventually all vertices become the mutant type.

Computational questions.Given an evolutionary graph, a payoff matrix, and the thresholds for density constraints,
we consider the following questions:

1. thequalitativedecision question asks whether the fixation probability is positive; and

2. thequantitative approximationquestion, givenǫ > 0, asks to compute an approximation of the fixation proba-
bility within an additive error ofǫ.

Special cases.There are several special cases of interest that we will explore.

1. The I&R and IEQR models.One important special case is when the interaction and the replacement graphs co-
incide, i.e.,EI = ER [14]. We refer to the general model as the I&Rmodel(with possibly different interaction
and replacement graphs) and the special case where the graphs coincide as the IEQR model.
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2. No resident reproduction. Another special case is when the payoff matrix is the constant payoff matrix with
r = 0. In this case, the resident types cannot reproduce. This represent the scenario that a mutant invades an
empty geographic location.

3 Qualitative Analysis for No Resident Reproduction

In this section we establish two results for the no resident reproduction model: the qualitative analysis problem is
(1) in NP for the general I&R model; and (2) is NP-hard even in the special case of IEQR model.

3.1 Upper bound

The upper bound is relatively straightforward. We simply check if there exists an initial choicev1 for the initial mutant
and a sequence(ei)2≤i≤n of edges of lengthn − 1 in the replacement graph for reproductions that ensures that all
vertices are mutants. The initial vertexv1 and the sequence of edges together define a unique sequence ofvertices for
reproduction; and at every stage we check that for the vertexchosen for reproduction the density constraint is satisfied
and it is a mutant. We also need to check that in the end all vertices are mutants. The choice of the initial vertex and
the sequence of reproductions then happen with positive probability and we are done. Observe that since there is no
resident reproduction, if a vertex becomes a mutant, then itremains a mutant. Note that there always exists a sequence
of lengthn−1, because if the fixation probability is positive, then we canWLOG assume (till all vertices are mutants)
that in each stepi there is a vertexv that is a mutant, with a fraction of mutant neighbors in the interaction graph below
the thresholdθM , and an edge(v, v′) in the replacement graph such thatv′ is not a mutant (and becomes a mutant in
stepi), as otherwise nothing can change. This shows that if the answer to the qualitative decision question is yes in
the no resident reproduction model, then there is a polynomial witness and polynomial-time verification procedure.

Lemma 1. The qualitative decision question for no resident reproduction in the generalI&R model is in NP.

3.2 Lower bound

In this section we present an NP lower bound, and we will proveit for the IEQR model with no resident reproduction.
Moreover, since there is no resident reproduction, the thresholdθR does not matter. We will present a reduction from
the 3-SAT problem (which is NP-complete [3, 13, 8]) and use thresholdθM as 1

2 − δ, for any0 < δ ≤ 1
10 . However

it would be easy to modify our construction for any thresholdθM in (0, 1). The “right” way to think of the threshold
is that it is 1

2 and that the density constraint uses a strict inequality. The upper bound is chosen because we will use
vertices with degree five or less.

Notations. Let X = {x1, x2, . . . , xn} be a set ofn Boolean variables. Consider a 3-CNF formulaϕ = C1 ∧ C2 ∧
· · ·∧Cm, where eachCi is aclauseof a list of (precisely) threeliterals (where a literal is a variablex or its negationx,
wherex ∈ X). Each clause represents a disjunction of the literals thatappear in it. An instance of the 3-SAT problem,
given a 3-CNF formulaϕ, asks whether there exists a satisfying assignment. We willnow construct an evolutionary
graphG(ϕ), given an instance of a 3-SAT problem, with (i)EI = ER, (ii) no resident reproduction, and (iii) threshold
θM = 1

2 − δ, for 0 < δ ≤ 1
10 such that there is a satisfying assignment iff the answer to the qualitative decision

problem is YES. We first present two gadget constructions that will be used in the reduction.

Predecessor gadget.We present apredecessorgadget for a vertex pair(u, v) such thatv is the only successor ofu.
The gadget ensures the following property (namely, thepredecessor gadgetproperty): if all vertices become mutants,
then the vertexu must have become a mutant before vertexv. The construction of the gadget is as follows: Add a
newdummyvertexu′. Let the successors ofu bev andu′, and the successor ofu′ be onlyv. Then the only way for
u′ to become a mutant is ifu is a mutant, sinceu is the only predecessor ofu′. But u′ can only become a mutant if
u is a mutant andv is not (since otherwise the threshold condition withθM = 1

2 − δ is not satisfied foru, for any
0 < δ ≤ 1

10 ). Hence, if all vertices become mutant, thenu must become a mutant beforev. There is an illustration of
the predecessor gadget for(u, v) in Figure 1. We will denote byPredEdges(u, v, u′) the set{(u, v), (u, u′), (u′, v)}
of edges of the predecessor gadget.
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u v ⇒ u

u
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v

Figure 1: Illustration of a predecessor gadget(u, v).

x

x
1 v3

v1 v2
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v1

x
1

v2

x

v3

z

Figure 2: A binary treeBinTr(x, {v1, v2, v3}) and the corresponding EBTExBinTr(x, {v1, v2, v3}, z), where we
extend with the vertexz. The edges toz are dotted to make the similarities easier to see.

(Extended) Binary tree gadget.Given a vertexrt, and a setL of vertices, we will denote byBinTr(rt, L) a binary
tree withrt as root andL as leaf vertices. In a binary tree, every non-leaf vertex hasout-degree 2. Note that the binary
tree gadget adds additional vertices, and hasO(|L|) vertices. By an abuse of notation we will useBinTr(rt, L) to
denote both the set of vertices and the set of edges of the binary tree, and it would either be clear from the context or
explicitly mentioned. Given a binary treeT and anextensionvertexz 6∈ T , anextended binary tree(EBT) consists
of T and an edge from every non-leaf vertex toz. Given a root vertexrt, a set ofL of leaf vertices, and an extension
vertexz, we denote byExBinTr(rt, L, z) the edge set of the extended binary tree that extends the binary tree ofrt and
L. We will explicitly use the following property for an EBT (namely,qualitative EBT (QEBT)property):

• (QEBT Property).In an EBT, every non-leaf vertex has out-degree 3, and for density constraint with threshold
1
2 − δ, for 0 < δ ≤ 1

10 (the construction works even ifδ is up to 1
6 ), if the root becomes a mutant andz is not a

mutant, then root can be responsible for making every vertexin the tree a mutant. However, note that ifz is a
mutant, then any vertex in the tree with out-degree 3 cannot make both the children mutants due to the density
constraint.

There is an illustration of a binary treeBinTr(x, {v1, v2, v3}) and the corresponding EBTExBinTr(x, {v1, v2, v3}, z)
in Figure 2.

The evolutionary graph G(ϕ). We now present the evolutionary graphG(ϕ) where we first describe the vertex set
and then the edges.

The vertex set.The setV of vertices is as follows (intuitive descriptions follow):

{v⊤, z⊥, y⊥, z
′
⊥} ∪ {c1, c2, . . . , cm} ∪ {c1i , c

2
i , c

3
i | 1 ≤ i ≤ m} ∪ {xi, x

t
i, x

f
i | xi ∈ X} ∪

{v0, v
′
0} ∪ {ut

i, u
f
i | 1 ≤ i ≤ n} ∪

⋃
1≤i≤n(BinTr(x

t
i, L

t
i) ∪ BinTr(xf

i , L
f
i ))

The vertexv⊤ will be the start vertex; and the verticesz⊥, y⊥, andz′⊥ are end vertices (that will form a predecessor
gadget for(z⊥, y⊥) with dummy vertexz′⊥). We have a vertexci for each clauseCi (namely, clause vertices); and
one for each literalc1i , c

2
i , andc3i in the clause (namely, clause-literal vertices). Similarly, we have a vertexxi for each

variable inX (namely, variable vertices), and verticesxt
i andxf

i (namely, variable-value vertices) to represent the truth
values to be assigned toxi. Corresponding toxt

i andxf
i we also have verticesut

i anduf
i (namely, duplicate vertices).

The vertexv0 forms a predecessor gadget (using the dummy vertexv′0) to ut
1. LetLt

i = {ĉjk | 1 ≤ k ≤ m, 1 ≤ j ≤
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3, cjk = xi} denote a copy of the clause-literal vertices that correspond toxi andLf
i = {ĉjk | 1 ≤ k ≤ m, 1 ≤ j ≤

3, cjk = xi} denote a copy of the clause-literal vertices that correspond to negation ofxi. The setBinTr(xt
i, L

t
i) (resp.

BinTr(xf
i , L

f
i )) represents the vertices of a binary tree with the root vertex xt

i (resp. xf
i ) and leaf verticesLt

i (resp.
Lf
i ).

The edge set.We now describe the edge set:

• There is an edge from the initial vertexv⊤ to the first clause vertexc1; and we have two predecessor gadgets;
(i) (z⊥, y⊥) with dummy vertexz′⊥; and (ii) (v0, ut

1) with dummy vertexv′0.

• For each clause vertexci, there are five edges, three to clause-literal verticescji (for j = 1, 2, 3) of the clause,
one to the next clause vertex (forcm this next vertex isx1), and to the vertexut

1.

• For each variable vertexxi, there are three edges: toxt
i andxf

i , and to the next variable vertexxi+1 (for xn the
next vertex isv0).

• Each duplicate vertexut
i has three edges: touf

i , to xt
i, and toy⊥. Similarly, each vertexuf

i has three edges: to
ut
i+1 (uf

n has edge toz⊥ instead), toxf
i , and toy⊥.

• Finally, we have the EBT withxα
i (for α ∈ {t, f}) as root,Lα

i as leaf vertices andy⊥ as the extension vertex.
For each vertex inLα

i , for α ∈ {t, f}, we add edges to the corresponding clause-literal vertex and tout
1. This

ensures that every internal vertex of the binary tree has degree three, and leaf vertices have degree two.

The formal description is as follows:

{(v⊤, c1)} ∪ PredEdges(z⊥, y⊥, z
′
⊥) ∪ PredEdges(v0, u

t
1, v

′
0)

{(ci, c
j
i ) | 1 ≤ i ≤ m, 1 ≤ j ≤ 3} ∪ {(ci, u

t
1) | 1 ≤ i ≤ m} ∪ {(ci, ci+1) | 1 ≤ i ≤ m− 1} ∪ {(cm, x1)} ∪

{(xi, x
t
i), (xi, x

f
i ) | 1 ≤ i ≤ n} ∪ {(xi, xi+1) | 1 ≤ i ≤ n− 1} ∪ {(xn, v0)} ∪

{(ut
i, u

f
i ) | 1 ≤ i ≤ n} ∪ {(uf

i , u
t
i+1) | 1 ≤ i ≤ n− 1} ∪ {(uf

n, z⊥)} ∪ {(uα
i , x

α
i ), (u

α
i , y⊥) | 1 ≤ i ≤ n, α ∈ {t, f}} ∪

(
⋃

1≤i≤n(ExBinTr(x
t
i, L

t
i, y⊥) ∪ ExBinTr(xf

i , L
f
i , y⊥)) ∪ {(ĉjk, c

j
k), (ĉ

j
k, u

t
1) | ĉ

j
k ∈ Lα

i , 1 ≤ i ≤ n, α ∈ {t, f}}

Example. We will now give an example of the graphG(ϕ) for ϕ = (x̄∨y∨x)∧ (z ∨x∨ x̄). See Figure 3. The edges
to ut

1 are dashed and the edge fromuα
i for all 1 ≤ i ≤ 3 andα ∈ {t, f} are dotted, for readability. Also, the vertexut

1

is included twice to make it clearer that it is in a predecessor gadget.

Basic facts.We first mention some basic facts about the evolutionary graph obtained.

1. First, observe that the predecessor gadget property implies that for fixation the vertexv0 must become a mutant
before vertexut

1; and vertexz⊥ before vertexy⊥.

2. Second, for a vertex with degreeℓ, it can reproduce a mutant as long as at mostℓ · (12 − δ) successors are
mutants. In particular, for vertices with five (resp. three)successors, like the clause (resp. variable) vertices, it
can reproduce a mutant until at most three (resp. two) successors are mutants, because of the bounds onθM .
If a vertex has out-degree two (or one), then it can reproducea mutant until at most one successor is a mutant,
because of the bounds onθM . The conditions follow from the density constraint with threshold1

2 − δ.

Two phases for fixation. For mutants to attain fixation (i.e., all vertices become mutants), certain conditions must
be fulfilled. The first basic fact above implies that for the evolutionary process to attain fixation, it must make vertex
xn a mutant (then vertexv0 a mutant) before vertexut

1. We thus split the process of fixation in two phases: in the
first phaseut

1 is not a mutant, and in the second phaseut
1 will be a mutant. We further split the first phase into two

sub-phases, the first sub-phase is related to clause vertices becoming mutants, and the next sub-phase is related to the
variable vertices becoming mutants. The description of thephases for fixation are as follows:
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1. (Phase 1:Part A).The mutant must be initialized at the start vertexv⊤ (sincev⊤ has no predecessor). After
v⊤, the clause vertexc1 becomes a mutant. Since at most half (three) successors can become mutant fromc1
(recall thatc1 has five successors), and one of them must bec2 (as the only incoming edge forc2 is from c1),
it follows thatc2 and at most two clause-literal vertices for clauseC1 becomes mutant fromc1. This process is
then repeated for all the clause verticesci till x1 becomes a mutant.

2. (Phase 1:Part B).Each of the verticesxi has three successors, and hence can make two of them mutants.One
of them must bexi+1 (asxi+1 has onlyxi as the predecessor), and the other one is at most one ofxt

i or xf
i .

This continues till we reachv0. Note that oncext
i becomes a mutant, then the entire EBT underxt

i, including
the corresponding clause-literal vertices, but noty⊥ andut

1, can become mutants, as long asy⊥ andut
1 are not

mutants. The reasoning is as follows: the leaf vertices has two out-going edges, and sinceut
1 is not a mutant, it

can reproduce a mutant to the corresponding clause-literalvertices, and the rest follows from the QEBT property.
The phase 1 ends with the predecessor gadget of(v0, u

t
1) becoming mutants. Note that this phase corresponds to

a partial assignment of truth values to the variables as follows: for a variablexi, if xt
i was chosen (made mutant),

it corresponds to assigning true toxi; if xf
i was chosen, it corresponds to assigning false toxi; otherwise, if

neither was chosen, then it corresponds to no assignment toxi.

3. (Phase 2).This phase starts afterut
1 is a mutant. We establish a key property of this phase that will be used

in the proof. Consider the EBT under some variable-value vertex. All leaf vertices of the tree has out-degree
two: one of the successors isut

1 and the other is a clause-literal vertex. It follows that once ut
1 has become a

mutant, then after that leaf vertices cannot reproduce mutants any more for the clause-literal vertices. Thus the
key property of Phase 2 is as follows: leaf vertices of EBTs cannot reproduce mutants to clause-literal vertices
after Phase 2 starts.

The graphG(ϕ) has positive fixation probability iff ϕ is satisfiable.We present two directions of the proof.

1. Satisfiablity implies positive fixation.Consider a satisfying assignment toϕ, and intuitively the assignment
chooses at least one literal in each clause. The sequence of mutants reproduced in the two phases for fixation is
as follows:

• (Phase 1). The sequence in Phase 1 is the following: (1) initial vertexv⊤ becomes a mutant which then
reproduces a mutant toc1; (2) in vertexci, it reproduces upto three mutants, one toci+1 (to x1 for i = m)
and upto two mutants for verticescji of the clauses which are not chosen by the satisfying assignment (this
corresponds to Phase 1:Part A); (3) for a vertexxi it reproduces two mutants, one toxi+1 (to v0 for i = n),
and the other toxt

i (resp.xf
i ) if the assignment choosesxi to be true (resp. false); and moreover, the entire

EBT underxt
i (resp.,xf

i ) including the clause-literal vertices become mutants (other thanu1
t andy⊥); and

(4) thenv′0 becomes a mutant and thenut
1 becomes a mutant fromv0, and proceed to Phase 2.

• (Phase 2). The sequence in Phase 2 is the following: (1) In every vertexuα
i (for α = t or f ) it makesxα

i

mutant (if it is not already a mutant) and then it makes the next vertex in line a mutant (ifi = n andα = f ,
then the next vertex isz⊥, otherwise, the next vertex isuf

i if α = t andut
i+1 if α = f ); moreover, oncexα

i

becomes a mutant, so does the entire binary tree (other thany⊥) under it (but not the clause-literal vertices
sinceut

1 is a mutant); and (2) finally the(z⊥, y⊥) predecessor gadget becomes mutants.

The claim follows.

2. No satisfying assignment implies no fixation.Note that for fixation we need the two phases. In every clauseci
at least one of the clause-literal verticescji was not made a mutant byci in Phase 1:Part A (or even after that).
This implies that if Phase 2 has started and not all clause-literal verticescji of a clauseci have become mutants,
then at least one of these vertices cannot become a mutant, bythe key property of Phase 2. For each (partial)
assignment that is not satisfying, there exists at least oneclause, in which no literals are chosen. Recall that the
reproduction of mutants in Phase 1:Part B gives a partial assignment of truth values to variables. Hence, in the
process of reproducing mutants in Phase 1:Part B, there mustremain a clause where at most two clause-literal
vertices are mutants. Therefore it implies that if there is no satisfying assignment, then fixation is not possible.
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We obtain the following result. Lemma 1 and Lemma 2 give Theorem 3.

Lemma 2. The qualitative decision question for no resident reproduction in theIEQR model is NP-hard.

Theorem 3. The qualitative decision question for no resident reproduction in both the generalI&R model and the
IEQR model is NP-complete.

4 Approximation in the IEQR Model with No Resident Reproduction

In this section we show that forǫ > 0 the problem of approximating the fixation probability within±ǫ is#P-hard, in
the IEQR model with no resident reproduction. Again the thresholdθM will be 1

2 − δ, for any0 < δ ≤ 1
10 .

Perfect matching in bipartite graphs. We present a reduction from the computation of the number of perfect match-
ings in a bipartite graphG = (V,E). In a bipartite graphG, the vertex setV is partitioned into verticesVℓ (left
vertices) andVr (right vertices) and all edges go from a vertex inVℓ to a vertex inVr (i.e.,E ⊆ Vℓ × Vr). We also
have|Vℓ| = |Vr| = n. A perfect matchingPM is a set{e1, e2, . . . , en} of n edges fromE such that for every vertex
vℓ ∈ Vℓ (resp.vr ∈ Vr) there exists an edgeeℓ = (vℓ, v

′
r) (resp.er = (v′ℓ, vr)) in PM. Given a bipartite graph, the

problem of computing the number of distinct perfect matchings was shown by Valiant [25] to be#P-complete.

Uniform degree property. First, we will show that we only need to consider bipartite graphs for which there exists
an integerk such that all vertices inVℓ have either degree2k or 1. We refer to the property as theuniform degree
property.

Reduction to uniform-degree graphs. We present a reduction from a general bipartite graphG = (V,E) (with
|Vℓ| = |Vr| = n) to a bipartite graphG′ = (V ′, E′) with at most6n vertices and which has the uniform degree
property. Letk = ⌈log dmax⌉, wheredmax is the maximum degree of any vertex inG. The graphG′ will have
precisely as many perfect matchings asG. Observe that2k < 2n. We constructG′ by adding2k new pairs of vertices,
one on each side, and for each new pair(v, v′), we add an edge fromv to v′. Then, for vertexv ∈ Vℓ, we add edges
from v to some newly added vertex inV ′

r until v has degree2k. It is clear that any perfect matching inG corresponds
to a perfect matching inG′ using the same edges, and the edges between newly added pairs. Conversely, we also see
that in each perfect matching inG′, for each newly added pair(v, v′), the matching must use the edge betweenv and
v′, since the vertex in(V ′

ℓ \ Vℓ) has degree 1. Thus every perfect matching inG′ corresponds to one inG.

Perfect binary trees.We will consider perfect binary trees as gadgets.

• A perfect binary tree(PBT) is a balanced binary tree (every internal vertex has exactly two children) with all
leaves at the same level (i.e. with2k leaf vertices, for some non-negative integerk). For a PBT we will use the
following property, which we refer to as theprobabilistic PBT (PPBT)property: if the root becomes a mutant,
then eventually all vertices in a path from the root to some leaf will become mutants, where such a path is chosen
uniformly at random. Since every non-leaf vertex has out-degree two, due to the density constraint, each internal
vertex can make one of its children (chosen uniformly) a mutant and hence the PPBT property follows.

The graph Red(G). Given a bipartite graphG with the uniform degree property, let the vertex sets beVℓ andVr,
respectively. LetE(v) = {u | (v, u) ∈ E} denote the successors of a vertexv ∈ Vℓ. Let V k

ℓ = {v ∈ Vℓ | |E(v)| =
2k} be the set of vertices with degree2k; andV 1

ℓ = Vℓ \ V
k
ℓ be the set of vertices inVℓ with degree 1. Our reduction,

denoted Red(G), will construct an evolutionary graph (withEI = ER and hence we only specify one set of edges),
which consists of three parts: part 1 sub-graph, then edges related toVr, and a copy of part 1 with some additional
edges. We first describe the part 1 sub-graph and then its copy.

• (Part 1). We have a start vertexvs, a final vertexy⊥, and we create an EBTBs as follows:ExBinTr(vs, Vℓ, y⊥),
i.e., the start vertex is the root,Vℓ is the set of leaf vertices, andy⊥ is the extension vertex. For every vertex
v ∈ V k

ℓ , let E(v) = {u1, u2, . . . , uj}, and we consider a setLk
v = {u1

v, u
2
v, . . . , u

j
v} of j = 2k vertices and

construct a PBTPv = BinTr(v, Lk
v). Note thatBs is an EBT (but the underlying binary tree is not necessarily

perfect).
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• (Edges related toVr). From every vertexv ∈ V k
ℓ , and everyui

v in Lk
v , we add two edges: one toui ∈ E(v) and

one toy⊥. From every vertexv ∈ V 1
ℓ (with degree 1), we add two edges: to the uniqueu ∈ E(v) and toy⊥.

Every vertex inVr has an edge toy⊥.

• (Copy 1 of Part 1 with additional edges).First, we create a copy of the part of the graph described in part 1,
along with one additional vertexz⊥. For every vertexv of part 1, let the corresponding vertex in the copy be
calledv, and the copy of the extension vertex isy⊥. We describe the difference in the copy as compared to the
graph of part 1: (i) first there is an edge fromy⊥ to the copyvs of the start vertex; (ii) for every vertexz which
is a copy of a non-leaf vertexz in Pv, for somev ∈ V k

ℓ , (i.e.,z 6∈ Lk
v), there are three additional edges fromz:

(a) toz (i.e., from the copy to the original vertex), (b) toy⊥, and (c) toz⊥; and (iii) for every vertexz which is
a copy of a leaf vertexz in Pv, for somev ∈ V k

ℓ , (i.e.,z ∈ Lk
v), there is only one edge which goes toz (i.e.,

there is no edge toVr or y⊥, but an edge from the copy to the original vertex). Hence in the copy ofPv, for any
v, internal vertices have degree five, and leaf vertices have degree 1.

• Finally, we have the following edges:{(y⊥, y⊥), (y⊥, z⊥), (y⊥, z⊥)}.

We denote bŷn the number of vertices in Red(G), and note that̂n = O(m), wherem is the number of edges inG.

Example. We consider the graphG with six vertices, whereVℓ = {v1, v2, v3} andVr = {v4, v5, v6}, such thatv1 and
v2 each have edges tov4 andv5 andv3 has an edge tov6. See Figure 4 for an illustration. Observe thatG satisfies
the uniform degree property. In Figure 5 we have part 1 of the graph Red(G) along withVr. In Figure 6 we have the
remainder of Red(G). Consider some fixed perfect matchingPM in G, i.e. v1 → v4 andv2 → v5 andv3 → v6. The
graph Red(G)PM is then the same graph as in Figure 5 and Figure 6, except that in Figure 5 it does not contain the
edges fromv12 or v21 .

The process of fixation inRed(G). The process of fixation in Red(G) can be decomposed in two phases. The first
phase (Phase 1) is over wheny⊥ becomes a mutant; and the second phase (Phase 2) is over with the fixation. A
key property of Phase 2 is as follows: vertices inVr cannot become a mutant aftery⊥ has become a mutant: This is
because for each vertexu in Vr, every predecessorv of u has exactly two successors, and one them isy⊥ (and hence
the density constraint with threshold12 − δ ensures that ify⊥ is a mutant, then vertices inVr cannot become mutants
after that).

• Phase 1.In Phase 1, the vertexvs must be the first vertex to become a mutant (since it has no predecessor).
After vs, all vertices inBs turn into mutants (by the QEBT property). Once a vertexv ∈ V k

ℓ becomes a mutant,
then a path in the PBTPv underv is chosen uniformly at random to become mutants (by the PPBT property),
and then the leaf of the path can make the corresponding vertex in Vr a mutant. Once a vertexv in V 1

ℓ with
degree 1 becomes a mutant, then it can reproduce a mutant to the unique neighbor inVr . In the end, some vertex
in Vr reproduces a mutant toy⊥ and Phase 1 ends.

• In Phase 2, first the copyvs becomes a mutant fromy⊥. After vs, all vertices which are copy of vertices inBs

become mutants (again by the QEBT property). Once copies of vertices inV k
ℓ become mutant, then the tree

underneath them in the copy become mutants. Consider a vertex u which is a copy of a vertexu ∈ Pv, for some
v ∈ V k

ℓ , and there are two cases: (i) ifu is a non-leaf vertex, thenu has degree five, and can reproduce mutants
until the two children in the tree and the original vertexu are mutants (note ify⊥ or z⊥ is a mutant, then both the
children and the original copy cannot all become mutants dueto the density constraint); (ii) ifu is a leaf-vertex,
thenu has degree one, and can reproduce mutant foru. Finally,y⊥ makesy⊥ a mutant, which then makesz⊥ a
mutant.

Fixation and a perfect matching. Observe that fixation implies that all vertices inVr have become mutant, and
no vertex inVr can become a mutant in the second phase. Each vertex inVℓ is responsible for making at most one
neighbor inVr a mutant (for vertices with degree 1 it is the unique successor in Vr, and for vertices with degree2k, it
corresponds to the leaf of the path in the perfect binary treechosen uniformly at random by the PPBT property). This
defines a perfect matching. Conversely, given a perfect matching, Phase 1 and Phase 2 of fixation can be described
using the pairs of the matching (to chose paths uniformly at random in the perfect binary trees). Thus given fixation,
it defines a perfect matching, and we say that fixation hasusedthe perfect matching.
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Exact fixation probability. Consider some perfect matchingPM. Observe that if there ares > 0 perfect matchings,
then the exact fixation probability iss · xPM, wherexPM is the probability that we have fixation and usedPM. This is
because each perfect matching has the same probability to bethe chosen matching in Phase 1 by the PPBT property. In
Phase 2, any vertexv which is either a vertex inV 1

ℓ or a leaf inPv, for v ∈ V k
ℓ , cannot reproduce by the key property

of Phase 2 (and thus can be viewed as having no out-going edges). Thus in Phase 2, by symmetry, the probabilityxPM

of fixation for a perfect matchingPM is independent ofPM.

Bounds onx and s. We show that the probabilityx for fixation of a fixed matching is at leastη = n̂−2n̂, wheren̂ is
the number of vertices in Red(G). Each possible way that all vertices can become mutants happens with probability at
leastn̂−2n̂, because there are at mostn̂ reproductions (effective reproductions which produce a new mutant) and each
specific reproduction chooses two verticesv andv′ at random from some set of vertices and thus, a specific choice
happens with probability at leastn̂−2. Thus the lower boundη on x follows. Finally, observe that the numbers of
perfect matchings can be at mostn! (i.e., upper bound ons is n!).

The graph Red(G)PM. Given a perfect matchingPM, we can findx as the fixation probability for the graph
Red(G)PM, which is similar to Red(G), except that each leaf vertexui

v in Pv, for v ∈ V k
ℓ , if (v, ui) is not in the

matching, then we remove all out-edges fromui
v, and otherwiseui

v has the same edges as in Red(G). It is clear that
the fixation probability in Red(G)PM is x.

Approximating the fixation probability is #P-hard. Our reduction is as follows: Given a graphG with the uniform
degree property, we want to find the number of perfect matchings s in it. First, (i) we find an arbitrary perfect
matchingPM in polynomial time using the algorithm of [10] (if there exists none, we are done); (ii) construct Red(G)
and Red(G)PM in polynomial time; and (iii) compute the approximationy′ of the fixation probabilityy∗ in Red(G)
for ǫ = η

16 , and the approximationx′ of the fixation probabilityx in Red(G)PM for ǫPM = η
n!·16 = ǫ

n! . We now show
how to obtains from y′ andx′. We have thaty′ is such that

y′ ≤ x · s+ ǫ ≤ (x′ + ǫPM) · s+ ǫ = x′ · s+
η

n! · 16
· s+

η

16
≤ x′ · s+

η

8
,

and similarlyy′ ≥ x′ · s− η
8 . This shows that

s−
η

8x′
≤

y′

x′
≤ s+

η

8x′
.

Since we also havex′ ≥ x− ǫ = η − η
n!·16 ≥ 15·η

16 we see thatη8x′ < 1/3 and thuss is the integer closest toy
′

x′ .

Theorem 4. The quantitative approximation problem for no resident reproduction in both the generalI&R model and
the IEQR model is#P-hard.
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Figure 5: Part 1 and the edges related toVr of the graph Red(G). The edges toy⊥ are dotted for readability.
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5 PSPACE-Completeness for theI&R Model with Resident Reproduction

In this section we will establish the polynomial space upperbound and lower bound in the I&R model with resident
reproduction.

5.1 Upper bound

In regards to the approximation problem, we only provide a randomized algorithm with double exponentially small
error probability. We first describe what is a Markov chain and Markov chains associated with an evolutionary graph.

Markov chain. A Markov chainM = (S,∆) consists of a finite setS of states, and a probabilistic transition function
∆ that assigns transition probabilities∆(s, s′) for all s, s′ ∈ S, i.e.,0 ≤ ∆(s, s′) ≤ 1 for all s, s′ ∈ S and for all
s ∈ S we have

∑
s′∈S ∆(s, s′) = 1. Given a Markov chain, its graph(S,E) consists of the setS as the set of vertices,

andE = {(s, s′) | ∆(s, s′) > 0} positive transition probabilities as the set of edges.

Exponential Markov chain. Given an evolutionary graphG = (V,EI , ER), with a payoff matrix, and the density
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constraints, an exponential Markov chainME = (S,∆) is constructed as follows: (1)S consists of subsets ofV
which denotes the set of vertices ofV which are currently mutants; (2) fors ∈ S ands′ ∈ S there is positive transition
probability if the cardinality ofs ands′ differ by 1 and the transition probability∆(s, s′) is computed depending on the
payoff matrix,EI , ER, and the density constraints. Observe that for the Markov chainME , the transition probabilities
of a state in the Markov chain can be constructed in polynomial space, and hence the Markov chain can be constructed
in polynomial (working) space.

Qualitative analysis and approximation of Markov chains.We sketch the arguments for the upper bounds.

• The qualitative analysis is achieved by simply checking if in the graph of the Markov chain the statesf = V is
reachable from some states = {v} for v ∈ V . It follows that the qualitative question is in PSPACE.

• For the approximation problem we simulate the Markov chain as follows. We start at an initial state uniformly
at random among those where there is exactly one mutant. Consider atrial run of the Markov chain as follows.
Given the current state, we first check if (i) the current state isV ; else we check (ii) if there is a path from the
current state tosf = V . If (i) is true we have a success; and if (ii) is false we have a failure. If we neither
succeed or fail, we use the transition probability of the Markov chain to obtain the next state till we succeed or
fail. Note that each trial run succeeds or fails eventually with probability 1. We can view the outcome of each
trial run as the outcome of a Bernoulli distributed random variable with success probability equal to the fixation
probability. Hence repeating the trial runs independentlyan exponential number of times, we can approximate
the fixation probability using Chernoff bounds, within any given ǫ > 0, with double-exponential small error
probability.

Lemma 5. The qualitative decision problem in the generalI&R model is in PSPACE. The quantitative approxima-
tion problem can be solved for the generalI&R model in polynomial space with double exponentially small error
probability.

Remark 6. Observe that since precise probabilities to reach a state ina Markov chain can be computed in polyno-
mial time in the size of the Markov chain [12], it follows thatthe precise fixation probabilities can be computed in
exponential time.

5.2 Lower bound

We show two lower bounds: (i) the qualitative decision question is PSPACE-hard; and (ii) the question that given an
evolutionary graph with the promise that the fixation probability is either 0 or close to 1, deciding which is the case is
PSPACE-hard. We will present a reduction from the membership problem of a deterministic polynomial space Turing
machine (which is PSPACE-hard by definition) to an evolutionary graph (with separateEI andER) and a constant
fitness matrix (butr > 0, and hence residents can reproduce). Given an instance of a Turing machineA with binary
inputI of lengthn, whetherA acceptsI using space at mostP (n), whereP is a polynomial, we present the reduction
in two stages. First we will present a reduction such that if aspecific vertex is the first to become a mutant, then
the fixation probability is precisely 1 ifA accepts inputI using at mostP (n) space, otherwise it is 0. Thus since
all vertices are chosen uniformly at random for the initial mutant, there is a fixation probability of at least1N if the
machine accepts (whereN is the number of vertices in the evolutionary graph). This already shows the hardness for
the qualitative problem. Later we show how to amplify the fixation probability to show the hardness for approximation.

Density constraint.Our construction will be forθR = θM = 0, but a similar construction will work for any choice
of θR, θM ∈ [0, 1). The thresholdsθR = θM = 0 indicates that a vertexv can reproduce precisely as long as all its
successors inEI are of the opposite type ofv, because of the density constraint.

Ideas behind the reduction.We will use the following ideas in our construction:

1. Changing Turing machine:We will first reduce the problem to a similar Turing machineA′, which has states
A′(S) = {0, 1, 2} ×A(S), whereA(S) is the set of states ofA. For each transitiont from states to states′ in
A there are three corresponding transitions inA′, one for eachi ∈ {0, 1, 2}, which updates the tape content and
the position of the tape-head in the same way ast, but goes from state(i mod 3, s) to state(i+ 1 mod 3, s′)
in A′. This reduction given two successive configurations of the Turing machine allows to detect which is the
former and which the later.

14



vjfs vjts

vjfv vjtv

Figure 7: Boolean-value gadget: Dashed edges are inEI and non-dashed are inER.

2. States which are nearly always a mutant/resident:Similar to the previous lower bounds, we have a vertexvs
without any predecessor inER. Thus, ifvs is not made a mutant at the start, then it cannot become a mutant.
Hence we will only consider the case whenvs is a mutant in the beginning and stays a mutant forever. We
will also have a vertex̂vs, and our construction will ensure that it stays a resident until all other vertices are
mutants and then (after a few more steps) all vertices becomemutants, and we get fixation. We will use the
verticesvs andv̂s to ensure that a given vertex has a desired type, and otherwise the vertex cannot reproduce.
Our construction will ensure (using the density constraint) the following properties:

• A vertexv with v̂s as a successor underEI can only reproduce if it is a mutant (using the density constraint
and v̂s is a resident). Similarly, a vertexv with vs as a successor underEI can only reproduce if it is a
resident.

3. Boolean-value gadgets:The vertices of the graph will encode values of tape cells of the Turing machine, along
with the states and tape head positions of the Turing machine. We describe how to implement aboolean-value
gadget in the evolutionary graph, which can be checked and set to a boolean value using a single external
resident predecessor. In effect the value setting is done atrandom, but the resident predecessor will keep on
setting the value of the boolean-value gadget either to trueor false and eventually, with probability 1 it will be
set to the right value. We first describe the construction of the gadget, then its requirement, and finally present
the principle with which the gadget works (given the requirement is fulfilled).

• (Construction):Each boolean-value gadgetj consist of four vertices: Twovalue vertices, namely, (i)vjtv
(the true-value-vertex) which is a mutant if the boolean value is true; and (ii)vjfv (the false-value-vertex)
which is a mutant if the boolean value is false. If neither of the value vertices are mutants, we interpret
that the gadget hasno value. Besides the value vertices, there are two vertices (calledthe setter vertices)
which will be required to be mutants: (i)vjts (the true-setter-vertex) and (ii) vjfs (the false-setter-vertex).

The edge set is as follows: (i) bothvjts andvjfs havev̂s, v
j
tv , v

j
fv as successors underEI ; (ii) vjts (resp.vjfs )

has onlyvjtv (resp. vjfv ) as a successor underER (see Figure 7). The purpose of the edges inEI are as
follows: the edge tôvs enforces that the setter vertex is a mutant before reproduction; and the other two
edges enforce that only if the gadget has no value (i.e., bothvalue vertices are resident), then the setter
vertex can reproduce a mutant (by the density constraint andthatθR = θM = 0).

• (Requirement):The only requirement for the gadget to work is that both the setter vertices are mutants and
the setter vertices have no other successors (except for theones specified above).

• (Principle): The main principle of the gadget is as follows: the two settervertices become mutants (in
an initial phase and remain mutants, to ensure the requirement). In aconsistent phase, exactly one of the
two value vertices will be a mutant and the other cannot become a mutant due to density constraints. The
consistent phase represents a boolean value. To change the boolean value the procedure is as follows: an
external resident vertex can check usingEI that the Turing machine should change the value of the gadget,
say from false to true. Then the external resident vertex reproduces a resident to the false-value-vertexvjfv .
At this point, the boolean gadget has no value (i.e., not in a consistent phase), and both the setter vertices
can reproduce mutants (especially, there is a positive probability to reproduce a mutant fromvjts to vjtv ). If
a mutant is reproduced tovjfv , then the external vertex can keep reproducing residents tovjfv , which ensures
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that eventually with probability 1 the vertexvjtv is a mutant and the boolean gadget restores to a consistent
phase (with a true value). The process of setting a true valueto false is similar by reproducing residents to
vjtv .

The construction of the graphG(A, I, P ). We now start the description of the construction of the evolutionary graph
given an instance of the membership problem of a polynomial-space Turing machine. We start with the boolean-value
gadgets for the Turing machine.

Turing machine boolean-value gadgets.For eachi in {−1, 0, 1, . . . , P (n)+1} there are(2·|A′(S)|+1) boolean-value
gadgets. One boolean-value gadgeti corresponds to the content of the tape at positioni. For each states in A′(S),
each positioni, and each contentc (wherec = 0 or 1), there is a boolean-value gadget(i, s, c) for the tape-head being
in positioni, in states, and the tape content at positioni beingc. We say that the Turing machine is in asuper-position
if more than one boolean-gadget(i, s, c) is true. The value vertices in most of these boolean-value gadgets have no
successors in eitherEI or ER. We now describe the exceptions. For each accepting states in A′(S) and for eachi

in {0, 1, . . . , P (n)}, consider the value verticesv(i,s,1)tv andv(i,s,0)tv of the boolean-value gadgets(i, s, 1) and(i, s, 0).
The value vertices have one successorv̂s in EI and a special vertexv⊤ in ER. The key idea is as follows: If the
machine accepts, then one of these value vertices become a mutant, and then they will makev⊤ mutant. The edge to
v̂s underEI ensures that the vertex reproduces only if it is a mutant. Ourconstruction will ensure that oncev⊤ is a
mutant, then fixation follows givenvs is already a mutant.

The three stages.We will split the construction with the following stages in mind. (1)The initialization stageconsists
of two parts. First, for each Turing machine boolean-value gadget, the initial values are set in two steps. A gadget
with initial value false (resp. true) ispartly initialized if the false-setter-vertex (resp. true-setter-vertex) becomes a
mutant which then reproduces a mutant to the false-value-vertex (resp. true-value-vertex) of the gadget. In the first
stage of the initialization, all Turing machine boolean-value gadgets are partly initialized (using another boolean-value
gadget namedb1); and then checked that the partial initialization is achieved (using a check vertex calledc1). In the
second stage, all the remaining setter vertices in the Turing machine boolean-value gadgets become mutants, and each
gadget gets to a consistent phase. The second stage of initialization and checking are achieved (similar to the first
stage) with boolean-value gadgetb2 and check vertexc2, respectively. The boolean-value gadgetb1 is only set to true
after the boolean-value gadgets of the Turing machines are partly initialized. Similarly, the boolean-value gadgetb2
is only set to true after all the boolean-value gadgets for the Turing machine have finished initialization (i.e., are in
a consistent state). (2)The execution stagewhich corresponds to the execution of the Turing machine on the input.
(3)The post-acceptance stagewhich corresponds to the steps after acceptance of the Turing machine to ensure fixation.

1. Preprocessing step:Before the initialization phase we describe two vertices and their roles.

(a) Start vertex:The vertexvs has no predecessor inER (hence must be the first vertex to become a mutant)
and no successors inEI . The vertex has two successors inER, namely, vertexv1 and the false-setter-
vertexvb1fs for b1. This ensures that aftervs bothvb1fs (to partly initializeb1) andv1 can become mutants
(note that sincevs has no successor inEI it can always reproduce mutants).

(b) Last resident:The vertexv1 has no successors in either set (i.e., no out-going edges inEI orER). If there
is fixation, then this vertex will become a mutant in the beginning (fromvs), then will become a resident
close to the end of fixation (only after acceptance); and thenfinally become a mutant again as the last
vertex.

2. Initialization state, part 1:We first partly initialize the boolean-value gadgets of the Turing machine and it is
achieved as follows: first the partial initialization is done (byvb1fv ), and then it is checked (by an additional vertex
c1).

(a) First part of initialization: The false-value-vertexvb1fv for b1 hasv̂s as the only successor inEI (to enforce
that the vertex is a mutant before reproduction). The successors underER are as follows:

• The true-setter-vertexvb1ts . This allowsvb1fv to finish the initialization ofb1.
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• For each boolean-value gadget of the Turing machine,vb1fv has either the true-setter-vertex or the false-
setter-vertex as successor depending on the initial value for the gadget being true or false, respectively.
This allowsvb1fv to partly initialize the boolean-value gadgets of the Turing machine.

(b) Check if first part of initialization is done:We have a check vertexc1. The check vertexc1 has out-going
edges inEI consisting of the following:

• Edges tovs, v1, v
b1
fv , v

b1
fs , v

b1
ts . The purpose of the edge tovs is to ensure thatc1 is itself a resident before

reproduction. The rest of the edges enforce that all these vertices are mutants beforec1 reproduces
residents, to ensure thatv1 is a mutant, and the boolean-value gadgetb1 has value false.

• Forz ∈ {t, f}, an edge to each setter-vertexvbzs and the corresponding value vertexvbzv in the Turing
machine boolean-value gadgets where the setter vertex is a successor ofvb1fv underER. These edges
enforce that these gadgets are partly initialized beforec1 reproduces residents.

The successor ofc1 in ER is vb1fv to set the boolean-value gadgetb1 to true. Thusc1 is an external resident
vertex to set the boolean-value gadgetb1 to true. Note thatb1 is only set to true after all the boolean-value
gadgets of the Turing machine are partly initialized.

(c) Go to part two of initialization:The true-value-vertexvb1tv for b1 has the false-setter-vertexvb2fs for b2 as a

successor inER, andv̂s as successor inEI . The edge inEI enforces thatvb1tv is itself a mutant, if it can
reproduce. The edge inER ensures that the boolean-value gadgetb2 can become partly initialized. Also,
we will later usevb1tv to check that the first part of the initialization is over (by checking that it is a mutant).

3. Initialization stage, part 2:The second phase of initialization begins when the check vertex c1 has set the
boolean-value gadgetb1 to true. In this phase, the initialization of the Turing machine (which was partly done in
the first part) is completed and checked. The procedure is similar to the first part and the details are as follows.

(a) Second part of initialization:The false-value-vertexvb2fv for b2 has v̂s as the only successor inEI (to
enforce that the vertex is a mutant before reproduction). The successors inER consists of the following:

• The true-setter-vertexvb2ts for b2. This allowsvb2fv to finish the initialization ofb2.

• Each setter-vertex in a boolean-value gadget in the Turing machine which is not a successor forvb1fv
underER. This allowsvb2fv to finish the initialization of the boolean value gadgets in the Turing
machine.

(b) Check if second part of the initialization is done:The successors of check vertexc2 in EI are

• The verticesvs, v
b1
tv v

b2
fv , v

b2
fs , andvb2fs . The purpose of the edge tovs is to enforce that ifc2 can

reproduce, then it is itself a resident. The edge tovb1tv enforces that the first part of initialization
is over, and the remaining edges enforce thatb2 has been initialized to false, beforec2 reproduces
residents.

• The successors ofvb2fv underER. The purpose of these edges is to ensure that the boolean-value
gadgets of the Turing machine have been initialized beforec2 reproduces residents.

The only successor ofc2 underER is vb2fv . Thusc2 is an external resident vertex tob2, to set the value of
b2 to true. Again note that the value ofb2 is set to true, only after the boolean-value gadgets of the Turing
machine have been initialized. Another important point is that after the initialization, since the setter
vertices of the boolean-value gadgets are all mutants, the requirement for all such gadgets are fulfilled.

(c) Initialization is done:The true-value-vertexvb2tv for b2 has no successors inEI orER and is used to check
that the second part of initialization is done (by checking that it is a mutant).

4. The execution stage:For eachi ∈ {0, 1, . . . , P (n)}, each states of A′(S), and each possible contentc ∈ {0, 1}

of the tape at positioni there are five check vertices, namely,c
(i,s,c)
1 , c(i,s,c,0)2 , c(i,s,c,1)2 , c(i,s,c,0)3 , andc(i,s,c,1)3 .

Let the content of the tape at positioni just after having been in states beb (and the content before wasc) and
the complement value ofb beb. Let the next position of the tape head bei′ and the states′, given that the Turing
machine is in states, the tape head is at positioni, and the tape-content isc (this is defined by description of the
Turing machine).

17



Intuitively, we will split each step of the execution into three parts. First, (1) we update the content of the tape
at positioni (if needed); (2) then we set the next configuration (i.e. the boolean-value gadget(i′, s′, c′), where
c′ is the content of the tape at positioni′) of the Turing machine to true; and (3) then at the end we set the
current configuration to false (i.e. the boolean-value gadget (i, s, c)). Each check vertex associated with partj
has subscriptj, for j ∈ {1, 2, 3}. We have one check vertex for the first part and two for each of the others,
because we do not know a priori the contentc′ of the tape at positioni′. Note that we enter a super-position
after part 2, but by construction ofA′ we can still distinguish(i, s, c) from (i′, s′, c′). Note that fori = −1 and
P (n) + 1 we do not have check vertices, ensuring that if the Turing machine head enters one of these positions,
then the machine does not accept, and inG(A, I, P ) the evolutionary process stops without fixation.

(a) Updating the tape:First we will describe the successors of the check vertexc
(i,s,c)
1 . The set of successors

for c(i,s,c)1 in EI consists of

• The verticesvs, v
b1
tv , v

b2
tv . Theses edges enforce that the vertexc

(i,s,c)
1 is a resident, and the initialization

is over, beforec(i,s,c)1 reproduces.

• The true-value-vertexv(i,s,c)tv for the tape-head being in positioni, in states, with the tape content at
positioni beingc. In other words, this enforces that the Turing machine is in that position/state/has
that content, beforec(i,s,c)1 reproduces residents.

• For eachi′′, s′′, c′′ such thati 6= i′′ or s 6= s′′ or c 6= c′′, the false-value-vertexv(i
′′,s′′,c′′)

fv for the
tape-head being in positioni′′ and in states′′ of A′(S) while the content of the tape below isc′′. This

enforces that the Turing machine is not in a super-position beforec(i,s,c)1 reproduces residents.

• Theb-value-vertexvi
bv

for positioni of the tape. This enforces that the content of the tape at position

i should be updated, beforec(i,s,c)1 reproduces residents.

The setER is then theb-value-vertexvi
bv

for positioni of the tape. Thusc(i,s,c)1 is an external resident
vertex that changes the value of the tape tob.

(b) Moving the tape head, part 1:Next we will describe the successors of the check vertexc
(i,s,c,c′)
2 , for

c′ ∈ {0, 1}. The set of successors forc(i,s,c,c
′)

2 in EI , is similar to the vertexc(i,s,c)1 , (except thatc(i,s,c,c
′)

2

has one more, and the one checking the tape has changed, and the first three items are exactly similar) and
consists of

• The verticesvs, v
b1
tv , v

b2
tv .

• The true-value-vertexv(i,s,c)tv for the tape-head being in positioni, in states, and with content ati
beingc.

• For eachi′′, s′′, c′′ such thati 6= i′′ or s 6= s′′ or c 6= c′′, the false-value-vertexv(i
′′,s′′,c′′)

fv for the
tape-head being in positioni′′ and in states′′ of A′(S) while the content of the tape below isc′′.

• Theb-value-vertexvibv for positioni of the tape. This enforces that the content of the tape at position

i has the right value, beforec(i,s,c,c
′)

2 reproduces residents.

• The c′-value vertexvi
′

c′v for the content of the tape at positioni′. This enforces that the content of

the tape at positioni′ (the place the head is moving to) isc′, beforec(i,s,c,c
′)

2 reproduces residents.

Observe that the check vertexc(i,s,c,c
′′)

2 for c′ 6= c′′ checks for the opposite value.

The setER is then the false-value-vertexv(i
′,s′,c′)

fv for the tape-head being in positioni′, in states′, and

the content of the tape beingc′ (the vertexc(i,s,c,c
′)

2 is the external resident vertex). This puts the Turing
machine in a super-position.

(c) Moving the tape head, part 2:Last we will describe the successors of the check vertexc
(i,s,c,c′)
3 , for

c′ ∈ {0, 1}. The first two items are exactly similar as the previous two cases. The set of successors for

c
(i,s,c,c′)
3 in EI consists of
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• The verticesvs, v
b1
tv , v

b2
tv .

• The true-value-vertexv(i,s,c)tv for the tape-head being in positioni, in states, and with content ati
beingc.

• The true-value-vertexv(i
′,s′,c′)

tv for the tape-head being in positioni′, in states′, and with content at
i beingc′. This enforces that the Turing machine is in the super-position introduced in the last step,

beforec(i,s,c,c
′)

3 reproduces residents.

• For eachi′′, s′′, c′′ such that(i′′, s′′, c′′) 6∈ {(i, s, c), (i′, s′, c′)} the false-value-vertexv(i
′′,s′′,c′′)

fv for
the tape-head being in positioni′′, in states′′ of A′, with the tape contentc′′ under it. This enforces

that the Turing machine is not in any further super-position, beforec(i,s,c,c
′)

3 reproduces residents.

The setER is then the true-value-vertexv(i,s,c)tv for the tape-head being in positioni, in states with tape

contentc. Thus the vertexc(i,s,c,c
′)

3 is an external resident vertex that resolves the super-position by setting
the boolean(i, s, c) to false. Afterwards we are not in a super-position and the Turing-machine is in
positioni′, in states′, with content of the tape at positioni′ beingc′. Note that the construction ofA′

ensures that check vertexc(i
′,s′,c′,0)

3 and check vertexc(i
′,s′,c′,1)

3 cannot reproduce, since we cannot get
back to states in the next step froms′ in the Turing machineA′ (i.e., we cannot resolve the super-position
backwards).

We remark that in the execution stage, at any point there is exactly one boolean-gadget that isactivein the sense
that reproduction can change the value of the boolean-valuegadget, and nothing else can change. Moreover, the
active boolean-value gadget is set to the right value by reproduction in finitely many steps with probability 1.

5. The post-acceptance stage:We will now describe the vertices that makes fixation happen after acceptance.

(a) After accept:The vertexv⊤ has vertex̂vs as successor inEI and all vertices besidesvs andv̂s as successors
in ER. Oncev⊤ is a mutant and̂vs is a resident, it ensures that eventually all vertices otherthanv̂s become
mutants. This is because, nothing changes any of the check vertices (i.e. the verticesc1 andc2 and the
verticesc(i,s,c)1 , c(i,s,c,0)2 , c(i,s,c,1)2 , c(i,s,c,0)3 , andc(i,s,c,1)3 , for anyi, s, c) back to residents after they have
become mutants and thus eventually all those vertices become mutants. At that point no vertex can change
any vertex in any boolean-value gadget in the Turing machineto residents and thus, eventually they also
become mutants.

(b) The vertex which is nearly always a resident:The vertex̂vs has all other vertices as successors inEI and
vertexv1 in ER. In other words, after the vertexv⊤ has made all other vertices into mutants,v̂s makesv1
a resident.

(c) Changing vertex̂vs to a mutant:The vertexy⊤ haŝvs andv1 as successors inEI and vertex̂vs as successor
underER. The vertexy⊤ changeŝvs to a mutant. Note that the only predecessor ofy⊤ in ER is v⊤ and
especially, it cannot become a mutant before afterv1 has become a mutant (which happens in the first part
of the initialization). Thus, it can first reproduce oncev̂s has madev1 back into a resident, which first
happens once all other vertices are mutants. Afterv̂s has become a mutant, thenvs makesv1 a mutant.
Note thatvs or v⊤ might makev1 a mutant beforey⊤ has madêvs a mutant, but in that case,v̂s will just
try again by makingv1 a resident, and eventually,y⊤ then makeŝvs into a mutant. Hence fixation happens
with probability 1.

Illustrations. There is an illustration of the construction ofG(A, I, P ) in Figure 8, not explicitly including the Turing
machine (it is shown as just a gray box) and not including the edges (1) inEI to and fromv̂s (each of the 8 vertices
in the boolean-value-gadgets, the place where “Execution”is written and the verticesv⊥ andv2⊥ has one tôvs andv̂s
has one to each other vertex); and (2) inER from v⊥ (there is one to each other vertex, besidesv̂s andvs). Also, the
gray edges are used for partial initialization. The location where “Part init.” is written is for partial initialization. The
location where “Finish init.” is written is for the remaining part of initializing the booleans in the Turing machine. The
location where “Execution” is written is the active part of the Turing machine.
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In Figure 9 there is an illustration of the operation of the Turing machine. Each vertex which is black with white
text is a mutant and each other vertex is a resident. The Turing machine is such that it if it is in state 1 and reads a
0, the Turing machine writes 1 to the tape, moves right and goes to state 2. The illustration only contains the small
part of the Turing machine needed for the move from being in position 1 in state 1 with tape content 0, when the tape
content at position 2 is 0 (i.e.v1fv is a mutant). The Turing machine is in state 1 at position 1 andthe content of

the tape is 0 at position 1 (as seen byv
(1,1,0)
tv andv1fv being mutants). This causesc(1,1,0)1 to reproduce (it is the only

vertex that can) and makesv1fv into a resident and then bothv1ts andv1fs can reproduce. Ifv1fs reproduces we repeat (i.e.

c
(1,1,0)
1 reproduces). Eventuallyv1ts reproduces and afterwards, the vertexc

(1,1,0,0)
2 can reproduce and makesv(2,2,0)fv

into a resident (this letsv(2,2,0)fs andv(2,2,0)ts reproduce like before - again, ifv(2,2,0)fs reproduces, then so doesc(1,1,0,0)2

repeatedly). Eventually,v(2,2,0)ts reproduces, which letsc(1,1,0,0)3 reproduce and changesv(1,1,0)tv to resident. That lets

v
(1,1,0)
ts andv(1,1,0)fs reproduce. Ifv(1,1,0)ts does, thenc(1,1,0,0)3 does as well, repeatedly. Eventually,v

(1,1,0)
fs reproduces

and the Turing machine is in state2 at position 2, with 0 on the tape at position 1 (as seen byv
(2,2,0)
tv andv2fv being

mutants).

The graphG(A, I, P ) has the wanted properties.It is straightforward, following the description in the construction,
to see that ifvs becomes mutant at first, then fixation is ensured with probability 1 if A accepts inputI using at most
P (|I|) space. IfA does not acceptI using at mostP (|I|) space, thenv⊥ cannot become a mutant. It follows that given
vs becomes a mutant at first, then the fixation probability is 1 ifA acceptsI with space at mostP (|I|), otherwise the
fixation probability is 0. Note that initialization, each step of the execution, and the fixation stage might take long, but
we have that each ends with probability 1 after a finite numberof steps. Note that the PSPACE-hardness for qualitative
question follows.

Lemma 7. The qualitative decision question for the generalI&R model is PSPACE-hard.

Amplifying the probability: The graph G′(A, I, P, p). We now describe how to, given a polynomialp, increase the
fixation probability of the graphG(A, I, P ), if the Turing machine accepts with polynomial space from1N to 1− 1

p(n) .

The graph G′(A, I, P, p) from G(A, I, P ) and p. We create a new graphG′(A, I, P, p) as follows: We addk =
N · (p(n) − 1) new verticesv1, v2, . . . , vk, such that, for alli 6= k, the vertexvi hasv̂s as the only successor inEI

andvi+1 in ER. The vertexvk hasv̂s as the only successor inEI andvs andv1 as the successors inER. The check
vertexc1 has, besides the successors inEI defined in the construction ofG(A, I, P ) also the verticesvi for all i as
successors inEI .

The graph G′(A, I, P, p) has the desired properties.Observe that if some vertexvi has become a mutant at the
start, then each vertexvj can become mutants (one after the other) and eventually alsovs. Note also that the vertex
vi can keep reproducing mutants tillv̂s has become a mutant. At the time whenv̂s has become a mutant, the vertex
c1 must have changedb1 to true (given thatvi was the first mutant for somei). But in that case all verticesvj have
become mutants and remain mutants. Hence, using a argument like the above, we see that if we pick some vertexvi

to be the initial mutant, then the fixation probability is 1 ifthe Turing machine accepts and 0 otherwise. This shows
that the fixation probability is either1− N

N ·(p(n)−1)+N = 1− 1
p(n) , or 0, as desired.

Lemma 8. Given an evolutionary graphG = (V,EI , ER) in the generalI&R model, a polynomialp, with the promise
that the fixation probability inG is either (i) 0 or (ii)1− 1

p(|V |) , deciding between (i) and (ii) is PSPACE-hard.

Hence we have the following result.

Theorem 9. The following assertions hold for evolutionary graphG in the generalI&Rmodel: (1) The qualitative
decision question for the generalI&R model is PSPACE-complete. (2) For0 < ǫ < 1 (specified in unary), with the
promise that the fixation probability inG is either (i) 0 or (ii) 1 − ǫ, deciding between (i) and (ii) is PSPACE-hard;
and the approximation of the fixation probability with double exponentially small error probability can be achieved in
polynomial space. (3) The fixation probability can be computed in exponential time.
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vs vb1fs vb1ts

vb1fv vb1tv

v1v̂sc1

vb2fs vb2ts

vb2fv vb2tv

c2

v⊥

v2⊥

Part init. Finish init. Excution

Figure 8: The part of the graphG(A, I, P ) not including the Turing machine (the Turing machine is in the gray box).
Some edges are not included to make the graph more readable.
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Figure 9: Part of the operation of the Turing machine. Black vertices with white text are mutants.
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Remark 10 (Matrix encoding of density constraints). Note that in our results for lower bounds we consider density
constraints of12 − δ, for 0 < δ < 1/10 (in Section 3 and Section 4) and 0 in this section. In all the lower bounds,
the payoff matrix is constant, and for the first two lower boundsr = 0. The density constraints can be encoded as a
payoff matrix (that is not constant) as follows:

(R M

R 0 0
M 1 −1

)
;

( R M

R −N 1
M 1 −N

)
;

the first payoff matrix encodes that a vertex that is a mutant can reproduce only if strictly less than half of the successors
in EI are mutants; and the second matrix (for vertex set of sizeN ) encodes that a vertex can reproduce only if all
the successors inEI are of the opposite type. Note that with the matrix encoding the PPBT property still holds for
#P-hard lower bounds, and hence the lower bound proof argumentremains unchanged.

Concluding remarks. In this work we studied the complexity of basic computation questions for evolution on graphs.
We established many lower and upper bounds. An interesting open question is the exact complexity of the quantitative
approximation question for the general I&R model. Our paperwidens the reach of complexity investigations to the
computation of fixation probability in evolutionary graph theory, a fundamental problem in evolution. While we
establish several important complexity results (in many cases precise complexity bounds), further investigations are
necessary to establish precise complexity bounds for some of the problems.
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